WO2024034142A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2024034142A1
WO2024034142A1 PCT/JP2022/030829 JP2022030829W WO2024034142A1 WO 2024034142 A1 WO2024034142 A1 WO 2024034142A1 JP 2022030829 W JP2022030829 W JP 2022030829W WO 2024034142 A1 WO2024034142 A1 WO 2024034142A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
dci
signal
tci state
indicated
Prior art date
Application number
PCT/JP2022/030829
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ジン ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/030829 priority Critical patent/WO2024034142A1/ja
Publication of WO2024034142A1 publication Critical patent/WO2024034142A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 is a specification for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel. 8, 9). was made into
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • UE User Equipment
  • QCL quasi-co-location
  • TCI state/spatial relationship
  • TCI states applicable to multiple types of signals (channels/reference signals) using downlink control information.
  • the relationship between the number of indicated TCI states and the signals to which the indicated TCI states are applied is not clear. If such a relationship is not clear, there is a risk of deterioration in communication quality, throughput, etc.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately determine QCL assumption/TCI state.
  • a terminal includes a receiving unit that receives first downlink control information (DCI) used for beam instruction and second DCI that schedules or triggers an uplink (UL) signal; Based on a specific field included in the second DCI, one or more TCI states to be applied to the UL signal are determined from a plurality of Transmission Configuration Indication (TCI) states indicated by the first DCI. , a control unit that determines whether the UL signal is a signal that uses one transmission/reception point (TRP) or a signal that uses a plurality of TRPs.
  • DCI downlink control information
  • TRP transmission/reception point
  • the QCL assumption/TCI state can be appropriately determined.
  • FIG. 1A and 1B illustrate an example of a unified/common TCI framework.
  • 2A and 2B illustrate an example of a DCI-based TCI status indication.
  • FIG. 3 shows an example of the application time of the unified TCI status indication.
  • FIGS. 4A and 4B are diagrams illustrating an example of association between PUCCH resources/resource groups and indicated TCI states.
  • 5A to 5C are diagrams illustrating an example of application of the indicated TCI state according to the first embodiment.
  • 6A and 6B are diagrams illustrating an example of application of the instruction TCI state according to Embodiment 1-1.
  • 7A and 7B are diagrams illustrating an example of application of the instruction TCI state according to a variation of Embodiment 1-1.
  • FIG. 8 is a diagram illustrating an example of information regarding the instruction TCI states and the number/order of the instruction TCI states instructed by the scheduling DCI.
  • FIG. 9 is a diagram illustrating an example of a TCI status instruction according to Embodiment 1-2-1.
  • FIG. 10 is a diagram illustrating an example of a TCI status instruction according to Embodiment 1-2-2.
  • FIG. 11 is a diagram showing another example of the TCI state instruction according to the embodiment 1-2-2.
  • FIG. 12 is a diagram illustrating an example of a TCI status instruction according to Embodiment 1-3.
  • FIG. 13 is a diagram illustrating an example of fields in the DCI according to embodiments 1-4.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 17 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 18 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the UE performs reception processing (e.g. reception, demapping, demodulation, Controlling at least one of decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, and encoding) is being considered.
  • reception processing e.g. reception, demapping, demodulation, Controlling at least one of decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, and encoding
  • the TCI states may represent those that apply to downlink signals/channels. What corresponds to the TCI state applied to uplink signals/channels may be expressed as a spatial relation.
  • the TCI state is information regarding quasi-co-location (QCL) of signals/channels, and may also be called spatial reception parameters, spatial relation information, etc.
  • the TCI state may be set in the UE on a per-channel or per-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, the Doppler shift, Doppler spread, and average delay are calculated between these different signals/channels. ), delay spread, and spatial parameters (e.g., spatial Rx parameters) can be assumed to be the same (QCL with respect to at least one of these). You may.
  • the spatial reception parameters may correspond to the UE's reception beam (eg, reception analog beam), and the beam may be identified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be defined for QCL.
  • QCL types AD four QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same.
  • Control Resource Set CORESET
  • channel or reference signal is in a particular QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal, It may also be called a QCL assumption.
  • QCL Control Resource Set
  • the UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for the signal/channel based on the TCI state or QCL assumption of the signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information regarding the QCL between a target channel (in other words, a reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by upper layer signaling, physical layer signaling, or a combination thereof.
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), and Uplink Shared Channel (Physical Uplink Shared Channel).
  • the channel may be at least one of a physical uplink control channel (PUCCH) and a physical uplink control channel (PUCCH).
  • the RS that has a QCL relationship with the channel is, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding
  • the signal may be at least one of a tracking reference signal (SRS), a tracking CSI-RS (also referred to as a tracking reference signal (TRS)), and a QCL detection reference signal (also referred to as a QRS).
  • SRS tracking reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • the SSB is a signal block that includes at least one of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • An RS of QCL type X in a TCI state may mean an RS that has a QCL type It's okay.
  • the UE determines up to M TCI-States in the upper layer parameter PDSCH-Config for decoding of the PDSCH according to the detected PDCCH with DCI intended for the UE and a given serving cell.
  • M depends on the UE capabilities maxNumberConfiguredTCIstatesPerCC.
  • Each TCI-State is a parameter for setting the QCL relationship between one or two downlink reference signals and a DMRS port of a PDSCH, a DMRS port of a PDCCH, or a CSI-RS port of a CSI-RS resource.
  • the QCL relationship is set by upper layer parameter qcl-Type1 for the first DL RS and (if set) upper layer parameter qcl-Type2 for the second DL RS.
  • the QCL type corresponding to each DL RS is given by the upper layer parameter qcl-Type in QCL-Info and takes one of the following values.
  • - 'typeA' ⁇ Doppler shift, Doppler spread, average delay
  • delay spread ⁇ - 'typeB' ⁇ Doppler shift
  • Doppler spread ⁇ - 'typeC' ⁇ Doppler shift
  • average delay ⁇ - 'typeD' ⁇ Spatial Rx parameter ⁇
  • a TCI-State associates one or two DL reference signals (RS) with a corresponding QCL type. If an additional physical cell identifier (PCI) is configured for that RS, the same value is configured for both DL RSs.
  • PCI physical cell identifier
  • unified/common TCI framework According to the unified TCI framework, multiple types (UL/DL) of channels/RS can be controlled by a common framework.
  • the unified TCI framework is Rel. Instead of specifying the TCI state or spatial relationship for each channel as in 15, it is possible to specify a common beam (common TCI state) and apply it to all channels of UL and DL. A common beam may be applied to all channels of UL, and a common beam for DL may be applied to all channels of DL.
  • One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are considered.
  • the UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL.
  • the UE assumes different TCI states (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool) for each of UL and DL. You may.
  • the default beams of UL and DL may be aligned by beam management based on MAC CE (MAC CE level beam instruction).
  • the default TCI state of the PDSCH may be updated to match the default UL beam (spatial relationship).
  • DCI-based beam management may dictate a common beam/unified TCI state from the same TCI pool (joint common TCI pool, joint TCI pool, set) for both UL and DL.
  • X (>1) TCI states may be activated by the MAC CE.
  • the UL/DL DCI may select one from X active TCI states.
  • the selected TCI state may be applied to both UL and DL channels/RSs.
  • a TCI pool may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by the MAC CE (active TCI state, active TCI pool, set).
  • Each TCI state may be a QCL type A/D RS.
  • SSB, CSI-RS, or SRS may be set as the QCL type A/D RS.
  • the number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N ( ⁇ 1) of TCI states (UL TCI states) applied to UL channels/RSs, and the number M ( ⁇ 1) of TCI states (DL TCI states) applied to DL channels/RSs. may be specified. At least one of N and M may be notified/set/instructed to the UE via upper layer signaling/physical layer signaling.
  • the UE is told that It may also mean that the TCI status) is notified/set/instructed.
  • the UE is This may mean that the UL TCI state (corresponding to the TRPs) and the Y DL TCI states (that is, separate TCI states) (corresponding to the Y TRPs) are notified/set/instructed, respectively.
  • the UE is notified/set/instructed separately of one UL TCI state and one DL TCI state for a single TRP. (separate TCI state for a single TRP).
  • the UE is notified/set/instructed of the TCI state common to multiple (two) ULs and DLs for multiple (two) TRPs. (joint TCI state for multiple TRPs).
  • the UE has multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs. It may also mean that the state is notified/set/instructed (separate TCI states for multiple TRPs).
  • N and M are 1 or 2
  • the values of N and M may be 3 or more, or N and M may be different.
  • the RRC parameters configure multiple TCI states for both DL and UL.
  • the MAC CE may activate multiple TCI states among the configured multiple TCI states.
  • the DCI may indicate one of multiple activated TCI states.
  • the DCI may be a UL/DL DCI.
  • the indicated TCI state may be applied to at least one (or all) of the UL/DL channels/RSs.
  • One DCI may indicate both UL TCI and DL TCI.
  • one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL, respectively.
  • At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be referred to as a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good.
  • the multiple TCI states activated by the MAC CE may be referred to as an active TCI pool (active common TCI pool).
  • RRC parameters upper layer parameters that configure multiple TCI states
  • configuration information that configures multiple TCI states, or simply "configuration information.”
  • being instructed to one of a plurality of TCI states using a DCI may mean receiving instruction information that instructs one of a plurality of TCI states included in the DCI. , it may be simply receiving "instruction information”.
  • the RRC parameters configure multiple TCI states (joint common TCI pool) for both DL and UL.
  • the MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of UL and DL may be configured/activated.
  • the DL DCI or the new DCI format may select (instruct) one or more (for example, one) TCI state.
  • the selected TCI state may be applied to one or more (or all) DL channels/RSs.
  • the DL channel may be PDCCH/PDSCH/CSI-RS.
  • the UE has Rel. 16 TCI state operations (TCI framework) may be used to determine the TCI state of each channel/RS of the DL.
  • TCI framework 16 TCI state operations (TCI framework) may be used to determine the TCI state of each channel/RS of the DL.
  • the UL DCI or the new DCI format may select (instruct) one or more (eg, one) TCI state.
  • the selected TCI state may be applied to one or more (or all) UL channels/RSs.
  • the UL channel may be PUSCH/SRS/PUCCH. In this way, different DCIs may indicate UL TCI and DL DCI separately.
  • MAC CE/DCI will support activation/direction of beams to TCI states associated with different physical cell identifiers (PCIs). Also, Rel. From 18 NR onwards, it is assumed that MAC CE/DCI will support an instruction to change the serving cell to a cell with a different PCI.
  • PCIs physical cell identifiers
  • the UE In order to provide reference signals for PDSCH DMRS, PDCCH DMRS, and CSI-RS in a certain CC, if the dynamic grant and configuration grant-based PUSCH and PUCCH resources in a certain CC , SRS, and, if a UL TX (transmit) spatial filter is available, in the PDSCH-Config, the UE shall: A list of up to 128 DLorJointTCIState settings can be configured.
  • the UE can apply the setting of DLorJointTCIState or UL-TCIState from the reference BWP of the reference CC. If the UE has DLorJointTCIState or UL-TCIState set in any CC in the same band, TCI-State, SpatialRelationInfo (spatial relationship information) excluding SpatialRelationInfoPos (spatial relationship information for location) in that band , PUCCH-SpatialRelationInfo (PUCCH spatial relationship information) is not assumed to be set.
  • the UE is determined whether the UE is using a simultaneous TCI-UpdateList1-r16 (simultaneous TCI update list 1), a simultaneous TCI-UpdateList2-r16 (simultaneous TCI update list 2), a simultaneousSpatial-UpdatedList1-r16 (simultaneous spatial update list 1), or a simultaneousSpatial-UpdatedList2.
  • a simultaneous TCI-UpdateList1-r16 simultaneous TCI update list 1
  • a simultaneous TCI-UpdateList2-r16 simultaneous TCI update list 2
  • simultaneousSpatial-UpdatedList1-r16 simultaneous spatial update list 1
  • simultaneousSpatial-UpdatedList2 simultaneousSpatial-UpdatedList2
  • the UE shall, if available, for the DL channel/signal to the code point in the DCI field 'Transmission Configuration Indication' (TCI) for one of the CC/DL BWPs or a set of CC/DL BWPs.
  • TCI Transmission Configuration Indication
  • Receive activation commands used to map up to eight TCI states and/or pairs of TCI states with one TCI state and one TCI state for UL channels/signals. If a set of TCI state IDs is activated for a set of CC/DL BWPs and, if available, for one of the CC/DL BWPs, then all DL and The same set of TCI state IDs applies for the BWP of/or the UL.
  • the applicable list of CCs is determined by the CCs indicated in the activation command. If the activation command maps DLorJointTCIState and/or UL-TCIState to only one TCI codepoint, the UE shall map the indicated DLorJointTCIState and/or UL-TCIState to CC/DL BWP. If the indicated mapping for a single TCI codepoint is applied, then the indicated DLorJointTCIState and/or UL-TCIState of the CC/DL BWP. Apply to one or a set of CC/DL BWPs.
  • the UE will Assume that a type A/D source RS is configured.
  • TCI status indication (TCI status indication) Rel.
  • the X.17 unified TCI framework supports modes 1 to 3 below.
  • a UE with a TCI state configured and activated with a TCI state ID has a Rel.
  • Receive DCI format 1_1/1_2 providing an indicated TCI state with TCI state ID, or simultaneous TCI update list 1 or simultaneous TCI update list 2 (e.g., simultaneousTCI-UpdateList1 or simultaneousTCI-UpdateList2) For all CCs in the same CC list as the CC list set by Rel.
  • Receive DCI format 1_1/1_2 providing an indication TCI status with TCI status ID.
  • DCI format 1_1/1_2 may or may not be accompanied by DL assignments if available.
  • DCI format 1_1/1_2 does not involve DL assignment, the UE can assume (verify) the following for that DCI.
  • - CS-RNTI is used to scramble the CRC for DCI.
  • the values of the following DCI fields are set as follows: - The redundancy version (RV) field is all '1's. - The modulation and coding scheme (MCS) field is all '1's. - The new data indicator (NDI) field is 0.
  • the frequency domain resource assignment (FDRA) field is set to all '0's for FDRA type 0, or all '1's for FDRA type 1, or all '0's for DynamicSwitch (DL semi- similar to the PDCCH validation of the release of persistent scheduling (SPS) or UL grant type 2 scheduling).
  • DCI in Mode 2/Mode 3 above may be referred to as beam instruction DCI.
  • Rel. 17 Similar operations are being considered regarding the relationship between support for TCI states and interpretation of TCI fields. If the UE is Rel. 17. When configured with TCI state, the TCI field is always present in DCI format 1_1/1_2, and if the UE does not support TCI update via DCI, the UE shall ignore the TCI field. It is being considered.
  • TCI presence information within DCI, tci-PresentInDCI is set for each CORESET.
  • the TCI field in DCI format 1_1 is 0 bits if the upper layer parameter tci-PresentInDCI is not enabled, and 3 bits otherwise. If the BWP indicator field indicates a BWP other than the active BWP, the UE follows the following actions. [Operation] If the upper layer parameter tci-PresentInDCI is not enabled for the CORESET used for the PDCCH carrying its DCI format 1_1, the UE shall enable the tci-PresentInDCI for all CORESETs in the indicated BWP. If not, the UE assumes that tci-PresentInDCI is enabled for all CORESETs in the indicated BWP.
  • the TCI field in DCI format 1_2 is 0 bits if the upper layer parameter tci-PresentInDCI-1-2 is not set, otherwise it is 1 or 2 or 2 bits as determined by the upper layer parameter tci-PresentInDCI-1-2. It is 3 bits. If the BWP indicator field indicates a BWP other than the active BWP, the UE follows the following actions.
  • tci-PresentInDCI-1-2 is not set for the CORESET used for the PDCCH that conveys the DCI format 1_2, the UE shall - Assuming that PresentInDCI is not enabled, otherwise the UE specifies that tci-PresentInDCI-1-2 is the CORESET used for the PDCCH carrying that DCI format 1_2 for all CORESETs in the indicated BWP. Assume that it is configured with the same value as tci-PresentInDCI-1-2 configured for tci-PresentInDCI-1-2.
  • FIG. 2A shows an example of DCI-based joint DL/UL TCI status indication.
  • a TCI state ID indicating the joint DL/UL TCI state is associated with the value of the TCI field for joint DL/UL TCI state indication.
  • FIG. 2B shows an example of DCI-based separate DL/UL TCI status indication.
  • the value of the TCI field for separate DL/UL TCI status indication is associated with at least one TCI status ID: a TCI status ID indicating a DL-only TCI status and a TCI status ID indicating a UL-only TCI status. ing.
  • TCI field values 000 to 001 are associated with only one TCI state ID for DL
  • TCI field values 010 to 011 are associated with only one TCI state ID for UL
  • TCI field values 010 to 011 are associated with only one TCI state ID for UL.
  • the values 100 to 111 are associated with both one TCI state ID for DL and one TCI state ID for UL.
  • TCI states indicated TCI states, unified/common TCI states, TCI states applied to multiple types of signals (channels/RS), TCI states for multiple types of signals (channels/RS), They may be read interchangeably.
  • Instruction Rel. 17TCI states include UE-specific reception on PDSCH/PDCC (updated using Rel.17 DCI/MAC CE/RRC), dynamic grant (DCI)/configured grant PUSCH, and multiple (e.g., all) dedicated PUCCH resources.
  • the TCI state indicated by DCI/MAC CE/RRC may be called an indicated TCI state or a unified TCI state.
  • Rel. 17 TCI state TCI states other than unified TCI state are Rel.17 configured using MAC CE/RRC (Rel.17). 17TCI state (configured Rel.17 TCI state). In this disclosure, the configuration Rel. 17 TCI state, configured TCI state, TCI state other than unified TCI state, and TCI state applied to a specific type of signal (channel/RS) may be read interchangeably.
  • Setting Rel. 17TCI states include UE-specific reception on PDSCH/PDCC (updated using Rel.17 DCI/MAC CE/RRC), dynamic grant (DCI)/configured grant PUSCH, and multiple (e.g., all) dedicated PUCCH resources.
  • Setting Rel. 17TCI state is set by RRC/MAC CE for each CORESET/each resource/each resource set, and is based on the above-mentioned instruction Rel. 17 Even if the TCI status (common TCI status) is updated, the setting Rel.
  • the 17TCI state may be configured not to be updated.
  • the indication Rel For the UE specific channel/signal (RS), the indication Rel. It is being considered that the 17TCI state will be applied. Also, for non-UE specific channels/signals, the indication Rel. 17TCI status and settings Rel. Consideration is being given to using upper layer signaling (RRC signaling) to notify the UE as to which of the No. 17 TCI states is to be applied.
  • RRC signaling upper layer signaling
  • TCI status ID TCI status
  • Setting Rel. 17 RRC parameters regarding TCI status are specified in Rel. It is being considered to have the same configuration as the RRC parameters in the TCI state in 15/16.
  • Setting Rel. It is being considered that the 17TCI state is set/instructed for each CORESET/each resource/each resource set using RRC/MAC CE. Further, it is being considered that the UE makes a determination regarding the settings/instructions based on specific parameters.
  • the indicated TCI state and configured TCI state are updated separately for the UE. For example, when the unified TCI state for the indicated TCI state is updated for the UE, the configured TCI state may not be updated. Further, it is being considered that the UE makes a decision regarding the update based on specific parameters.
  • the instruction Rel. 17TCI state is applied or the indication Rel. 17TCI state is not applied (the configured Rel.17TCI state is applied, the TCI state set separately from the instruction Rel.17TCI state is applied), using upper layer signaling (RRC/MAC CE). Switching is being considered.
  • TCI state instructions UE-specific CORESET and PDSCH associated with the corresponding CORESET, and non-UE-specific CORESET and PDSCH associated with the applicable CORESET.
  • Instruction Rel 17 TCI states will be supported.
  • inter-cell beam instructions for example, L1/L2 intercell mobility
  • instructions Rel for example, 17 TCI states will be supported.
  • step 15 whether or not to instruct the TCI state to CORESET #0 was up to the implementation of the base station.
  • the designated TCI state is applied to CORESET #0 for which the TCI state has been designated.
  • the SSB and QCL selected during the latest (recent) PRACH transmission are applied to CORESET #0 for which no TCI status is indicated.
  • the indication Rel. associated with the serving cell is set by RRC for each CORESET, and if it is not applied, the existing MAC CE/RACH signaling mechanism (legacy MAC CE/RACH) signaling mechanism) may also be used.
  • the existing MAC CE/RACH signaling mechanism legacy MAC CE/RACH signaling mechanism
  • the CSI-RS associated with the 17 TCI state may be QCLed with the SSB associated with the serving cell PCI (physical cell ID) (similar to Rel. 15).
  • CORESET #0 CORESET with common search space (CSS), CORESET with CSS and UE-specific search space (USS), for each CORESET, the instruction Rel. Whether or not to follow the T.17TCI state may be set by an RRC parameter. For that CORESET, the instruction Rel. If not configured to follow TCI status, set Rel. 17 TCI states may apply to that CORESET.
  • CRS common search space
  • USS UE-specific search space
  • the instruction Rel For non-UE-dedicated channels/RSs (excluding CORESET), the instruction Rel. Whether or not to follow the T.17TCI state may be set by an RRC parameter. For that channel/resource/resource set, the instruction Rel. If not configured to follow TCI status, set Rel. 17 TCI states may be applied to that channel/resource/resource set.
  • the first slot to apply the indicated TCI is at least Y symbols after the last symbol of acknowledgment (ACK) for joint or separate DL/UL beam indication. It is contemplated that the first slot to apply the indicated TCI is at least Y symbols after the last symbol of an ACK/negative acknowledgment (NACK) for a joint or separate DL/UL beam indication.
  • the Y symbol may be configured by the base station based on the UE capabilities reported by the UE. The UE capabilities may be reported in units of symbols.
  • the ACK may be an ACK for a PDSCH scheduled by the beam direction DCI.
  • PDSCH may not be transmitted in this example.
  • the ACK in this case may be an ACK to the beam instruction DCI.
  • the SCS is different between multiple CCs
  • the value of the Y symbol is also different, so the application time may be different between the multiple CCs.
  • the application timing/BAT of the beam instruction may follow any of the following options 1 to 3.
  • [Option 1] Both the first slot and the Y symbol are determined on the carrier with the lowest SCS among the carrier or carriers applying the beam designation.
  • [Option 2] Both the first slot and the Y symbol are determined on the carrier with the lowest SCS among the carrier or carriers applying the beam indication and the UL carrier carrying the ACK.
  • the application time (Y symbol) of the beam indication for CA may be determined on the carrier with the minimum SCS among the carriers to which the beam indication is applied.
  • Rel. 17 MAC CE base beam indication (if only a single TCI codepoint is activated) is the Rel. 16 application timeline may be followed.
  • the indicated TCI states with 17 TCI states may start applying from the first slot that is at least Y symbols after the last symbol of that PUCCH.
  • Y may be an upper layer parameter (for example, BeamAppTime_r17 [symbol]). Both the first slot and the Y symbol may be determined on the carrier with the lowest SCS among the carriers to which beam pointing is applied.
  • the UE may assume one indicated TCI state with Rel17 TCI state for DL and UL at a certain point, or one indicated TCI state (separately from DL) with Rel17 TCI state for UL. You can assume the situation.
  • X [ms] may be used instead of Y [symbol].
  • the UE reports at least one of the following UE capabilities 1 and 2: [UE ability 1] Minimum application time per SCS (minimum of Y symbols between the last symbol of the PUCCH carrying an ACK and the first slot in which the beam is applied). [UE ability 2] Minimum time gap between the last symbol of the beam indication PDCCH (DCI) and the first slot in which the beam is applied. The gap between the last symbol of the beam indication PDCCH (DCI) and the first slot in which the beam is applied may meet the UE capability (minimum time gap).
  • UE capability 2 may be an existing UE capability (for example, timeDurationForQCL).
  • the relationship between the beam instruction and the channel/RS to which the beam is applied may satisfy at least one of UE capabilities 1 and 2.
  • the parameter set by the base station may be an optional field.
  • the T.17TCI state may be shared (applied) to a UE-dedicated channel/RS and a non-UE-dedicated channel/RS within a cell.
  • the 17TCI state may be shared (applied) only to UE individual channels/RSs between cells.
  • instructions Rel Whether or not to follow the T.17TCI state may be set by an RRC parameter.
  • the UE individual channel/RS does not follow its RRC parameters and always follows the indication Rel. 17TCI status may be followed.
  • a non-UE-specific CORESET may mean a CORESET with a CSS
  • a UE-specific CORESET may mean a CORESET with a USS.
  • a non-UE specific PDSCH may refer to a PDSCH scheduled by a CORESET with a CSS, or may refer to a PDSCH scheduled by a CORESET with a CSS other than type 3 CSS.
  • UE-specific PDSCH may refer to a PDSCH scheduled by a CORESET with a USS, or may refer to a PDSCH scheduled by a CORESET with a USS or type 3 CSS.
  • the instruction Rel for each PDSCH configuration (PDSCH-Config), the instruction Rel.
  • Rel.17TCI state is set by an RRC parameter (e.g., followUnifiedTCIstate), and this setting does not apply to UE-specific PDSCH (UE-specific PDSCH always follows Rel.17TCI state), and non-UE-specific PDSCH may be applied to.
  • RRC parameter e.g., followUnifiedTCIstate
  • the "indicated TCI state" by the MAC CE/DCI may be applied to the following channels/RSs:
  • [PDSCH] The indicated TCI state is always applied to all UE-dedicated PDSCHs. - For a non-UE-dedicated PDSCH (PDSCH scheduled by the DCI in the CSS), if followUnifiedTCIState is set (for the CORESET of the PDCCH that schedules that PDSCH), the indicated TCI state is may be applied. Otherwise, the configured TCI state for that PDSCH is applied to that PDSCH. If followUnifiedTCIState is not set for a PDSCH, whether a non-UE specific PDSCH follows the indicated TCI state may be determined depending on whether followUnifiedTCIState is set for the CORESET used for scheduling that PDSCH. .
  • [CSI-RS] If followUnifiedTCIState is set for an A-CSI-RS for CSI acquisition or beam management (for the CORESET of the PDCCH that triggers that A-CSI-RS), the indicated TCI state applies. For other CSI-RSs, the configured TCI state for that CSI-RS is applied.
  • [SRS] - Follow unified TCI state for SRS resource sets for A-SRS for beam management purposes and A/SP/P-SRS for codebook (CB)/non-codebook (NCB)/antenna switching purposes. If set, the indicated TCI state applies. For other SRSs, the configured TCI state within that SRS resource set is applied.
  • Joint transmission may refer to simultaneous data transmission from multiple points (eg, TRPs) to a single UE.
  • Rel. 17 supports NCJT from two TRPs.
  • PDSCHs from the two TRPs may be independently precoded and independently decoded.
  • Frequency resources may be non-overlapping, partially overlapping, or full-overlapping. If overlap occurs, the PDSCH from one TRP will interfere with the PDSCH from the other TRP.
  • data from the four TRPs may be coherently precoded and transmitted to the UE on the same time-frequency resource.
  • the same precoding matrix may be used.
  • Coherent may mean that there is a fixed relationship between the phases of multiple received signals.
  • 4TRP joint precoding the signal quality is improved and there may be no interference between the 4 TRPs.
  • Data may only be subject to interference outside of the four TRPs.
  • TCI states there can be up to more than 2 indicated TCI states (e.g. up to 4 per BWP/CC), and a UE notified of more than 2 TCI states by RRC/MAC CE/DCI can use a single TRP or It is conceivable that it becomes impossible to determine which multi-TRP operation to perform.
  • the UE may decide to apply multi-TRP. For example, if one indicated TCI state is indicated, the UE may apply single TRP operation, and if two or more indicated TCI states are indicated, the UE may apply multi-TRP operation.
  • single TRP and multi-TRP can be switched by scheduling DCI, except for PDCCH repetition.
  • single TRP and multi-TRP can be switched by the number of TCI states indicated by the TCI field.
  • single TRP and multi-TRP can be switched based on whether or not the TCI states indicated by the DCI corresponding to each CORESET pool index are the same.
  • the SRS resource set indicator field in DCI format 0_1/0_2 for switching between single-TRP PUSCH repetition and multi-TRP PUSCH repetition is switched.
  • the present inventors have developed a method that can appropriately switch between single TRP and multi-TRP even in operations regarding unified TCI states, and can appropriately determine QCL assumptions/TCI states to be applied to each channel/signal. I came up with the idea.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • notification, activate, deactivate, indicate, select, configure, update, determine, etc. may be read interchangeably.
  • supporting, controlling, being able to control, operating, capable of operating, etc. may be read interchangeably.
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, indicated TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • groups e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups
  • resources e.g., reference signal resources, SRS resource
  • resource set for example, reference signal resource set
  • CORESET pool downlink Transmission Configuration Indication state (TCI state) (DL
  • spatial relationship information identifier (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably.
  • “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
  • the panel identifier (ID) and the panel may be read interchangeably. That is, TRP ID and TRP, CORESET group ID and CORESET group, etc. may be read interchangeably.
  • one of two TCI states associated with one code point of TRP, transmission point, panel, DMRS port group, CORESET pool, TCI field may be read interchangeably.
  • transmission/reception of a channel/signal using a single TRP means that the TCI states (joint/separate/indicated TCI states) are equal in the transmission/reception of the channel/signal (e.g., NCJT/CJT/repetition).
  • the number of TCI states is one in transmission/reception of the channel/signal (for example, NCJT/CJT/repetition).
  • Transmission/reception of a channel/signal using a single TRP may be caused by different TCI states (joint/separate/indicated TCI states) in the transmission/reception of the channel/signal (e.g., NCJT/CJT/repetition) or /In transmission/reception of signals (e.g., NCJT/CJT/repetition), the number of different TCI states (joint/separate/instruction TCI states) may be read as being plural (e.g., two).
  • single (single) TRP, single TRP system, single TRP transmission, and single PDSCH may be read interchangeably.
  • multi-TRP, multi-TRP system, multi-TRP transmission, and multi-PDSCH may be interchanged.
  • a single DCI, a single PDCCH, multiple TRPs based on a single DCI, activated two TCI states on at least one TCI code point, at least one code point of a TCI field mapped to two TCI states. and that a particular index (eg, a TRP index, a CORESET pool index, or an index corresponding to a TRP) is set for a particular channel/CORESET may be read interchangeably.
  • a single TRP, a channel/signal with a single TRP, a channel with one TCI state/spatial relationship, multiple TRPs not enabled by RRC/DCI, multiple TCI states/spatial relationships by RRC/DCI Not being enabled, not having a CORESETPoolIndex value of 1 set for any CORESET, and not having any code points in the TCI field mapped to two TCI states are interchangeable. Good too.
  • multi-TRP based on single DCI, and at least one of multi-TRP based on multi-DCI may be read interchangeably.
  • CORESETPoolIndex CORESET Pool index (CORESETPoolIndex) value of 1 is set for a multi-TRP, CORESET based on multi-DCI, and multiple specific indexes (e.g., TRP index, CORESET “Pool index” or “TRP-corresponding index) is set” may be read interchangeably.
  • single DCI sDCI
  • single PDCCH multi-TRP system based on single DCI
  • sDCI-based MTRP activated two TCI states on at least one TCI code point
  • multi-DCI multi-PDCI
  • multi-PDCCH multi-PDCCH
  • multi-TRP system based on multi-DCI
  • mDCI-based MTRP two CORESET pool indexes
  • beam designation DCI, beam designation MAC CE, and beam designation DCI/MAC CE may be read interchangeably.
  • the instruction regarding the indicated TCI state to the UE may be performed using at least one of the DCI and the MAC CE.
  • repetition, repeated transmission, and repeated reception may be interchanged.
  • channel may be interchanged.
  • DL channel may be interchanged.
  • DL signal may be interchanged.
  • DL signal/channel transmission/reception of DL signal/channel, DL reception, and DL transmission
  • UL channel, UL signal, UL signal/channel, transmission/reception of UL signal/channel, UL reception, and UL transmission may be read interchangeably.
  • applying TCI state/QCL assumptions to each channel/signal/resource may mean applying TCI state/QCL assumptions to transmission and reception of each channel/signal/resource.
  • the first TCI state may correspond to the first TRP.
  • a second TCI state may correspond to the second TRP.
  • the n-th TCI state may correspond to the n-th TRP.
  • a first CORESET pool index value (e.g., 0), a first TRP index value (e.g., 1), and a first TCI state (first DL/UL (joint/separate) TCI states) may correspond to each other.
  • a second CORESET pool index value (e.g., 1), a second TRP index value (e.g., 2), and a second TCI state (second DL/UL (joint/separate) TCI states) may correspond to each other.
  • a method that targets two TRPs that is, when at least one of N and M is 2
  • the number of TRPs may be three or more (plurality)
  • each embodiment may be applied to correspond to the number of TRPs. In other words, at least one of N and M may be a number greater than two.
  • receiving DL signals (PDSCH/PDCCH) using SFN means transmitting the same data (PDSCH)/control information (PDCCH) to multiple It may also mean receiving from a sending/receiving point.
  • Receiving a DL signal using SFN also means using the same time/frequency resources and/or the same data/control information using multiple TCI states/spatial domain filters/beams/QCLs. It may also mean receiving the information.
  • the UE may be instructed of y indication TCI states using the beam indication DCI/MAC CE.
  • the y may be, for example, a maximum of 4, a maximum of a number greater than 4, or a maximum of a number smaller than 4.
  • the UE may select x indicated TCI states among the y indicated TCI states and apply them to each channel/signal.
  • the UE transmits at least one of information regarding x and information regarding which of the y indicated TCI states to apply using upper layer signaling (RRC/MAC CE)/DCI. You can also receive it by
  • the x may differ depending on the type of each channel/signal.
  • the y may be different depending on the type of each channel/signal, or may be the same.
  • y may be a first value (eg, 1). For example, if y is 1, the UE has Rel. It may be assumed that the unified TCI state operation specified in 17 is performed.
  • y may be a second value (eg, 2). Also, in the case of multi-TRP operation, y may be a third value (eg, 4). By setting y to the third value in the case of multi-TRP operation, more flexible beam instruction can be performed.
  • y may be a third value (eg 4).
  • the joint TCI state will be described as a main example, but it can also be applied to separate (UL/DL) TCI states as appropriate.
  • 2y indicated TCI states may be indicated for a separate (UL/DL) TCI state. For example, if up to four joint TCI states are indicated, then up to four UL TCI states and up to four DL TCI states may be indicated (ie, up to eight).
  • either the joint TCI state or the separate (UL/DL) TCI state may be set/instructed by RRC/MAC CE/DCI.
  • both a joint TCI state and a separate (UL/DL) TCI state may be set/instructed by RRC/MAC CE/DCI.
  • a mapping/correspondence relationship between a configuration/instruction TCI state (joint/DL TCI state) and a CORESET/CORESET group may be configured for the UE.
  • the settings may be configured using upper layer signaling (RRC).
  • RRC upper layer signaling
  • One or more (for example, two) indexes for the instruction TCI state may be set for each CORESET.
  • x TCI states selected from y instruction TCI states may be applied to the CORESET.
  • the x for a CORESET in which a single frequency network (SFN) scheme (for example, SFN scheme A/B) is not configured may be a first value (for example, 1).
  • the x for a CORESET in which an SFN scheme (eg, SFN scheme A/B) is configured may be a second value (eg, 2).
  • x TCI states selected from y indicated TCI states may be applied to the PDSCH.
  • the x for a single TRP PDSCH may be a first value (eg, 1).
  • the x for a multi-TRP PDSCH (eg, NCJT/repetition/SFN with single DCI-based multi-TRP) may be a second value (eg, 2).
  • x TCI states selected from y indicated TCI states may be applied to PUCCH.
  • the x may be indicated by a scheduling DCI.
  • the x for a single TRP PUCCH may be a first value (for example, 1).
  • the x for multi-TRP PUCCH may be a second value (eg, 2).
  • one TCI state selected from y indicated TCI states may be applied to the PUCCH.
  • the selection of the one TCI state may be defined in advance in the specifications, or may be set by upper layer signaling (RRC).
  • RRC upper layer signaling
  • the specific field may be, for example, an SRS resource set indicator field.
  • the scheduling DCI may be, for example, in DCI format 0_1/0_2.
  • x TCI states selected from y indicated TCI states may be applied to PUSCH.
  • the x may be indicated by a scheduling DCI.
  • the x for a single TRP PUSCH may be a first value (for example, 1).
  • the x for multi-TRP PUSCH may be a second value (eg, 2).
  • one TCI state selected from y indicated TCI states may be applied to PUSCH.
  • the selection of the one TCI state may be defined in advance in the specifications, or may be set by upper layer signaling (RRC).
  • RRC upper layer signaling
  • Multi-DCI-based multi-TRP PDCCH A specific field in the DCI (DCI format 1_1/1_2 (with/without DL assignment)) that corresponds to the value of the CORESET pool index (CORESETPoolIndex) is used to create an indication TCI state (joint /DL/UL TCI state) may be indicated.
  • y 1 indicated TCI state is indicated, and for a CORESET pool index of a second value (e.g., 1), y 2 indicated TCI states are indicated. may be done.
  • x TCI states selected from y 1 indicated TCI states may be applied to the CORESET.
  • x TCI states selected from y 2 indicated TCI states may be applied to the CORESET.
  • the x for a CORESET in which no SFN scheme (for example, SFN scheme A/B) is set may be a first value (for example, 1).
  • the x for a CORESET in which an SFN scheme (eg, SFN scheme A/B) is configured may be a second value (eg, 2).
  • One or more (for example, two) indexes for the instruction TCI state may be set for each CORESET.
  • the settings may be configured using higher layer signaling (RRC).
  • the x may be the number of TCI states to be applied to each channel/signal among the y (including y 1 and y 2 ) indicated TCI states.
  • the above x may be determined separately for each applied channel/signal.
  • the above x may be supported to be different depending on the applied channel/signal.
  • the TCI states to be applied separately for each applied channel/signal may be determined. It may be supported that different TCI states are applied for each applicable channel/signal among the y indicated TCI states.
  • the applicable TCI state may be determined separately for each applicable channel/signal resource/resource set/CORESET.
  • the applied TCI state is different for each applied channel/signal resource/resource set/CORESET.
  • [CSI-RS/TRS/SSB/SRS] x for a particular reference signal may be a particular value.
  • the specific value may be 1.
  • the specific value may be 2 or more.
  • x may be 2 or more in a specific reference signal repetition using multi-TRP.
  • the specific reference signal type may be a specific type (for example, A/SP/P).
  • the specific reference signal may be limited to CSI-RS/SRS.
  • the specific reference signal may be set by higher layer signaling (RRC).
  • RRC higher layer signaling
  • the specific reference signal may be a reference signal to which a specific RRC parameter (eg, followUnifiedTCIstate) is set.
  • the specific reference signal may be a reference signal for a specific use/purpose.
  • the specific reference signal may be a CSI-RS with repetition, a CSI-RS without repetition, or a CSI with tracking reference signal information (trs-info).
  • -RS, CSI-RS for beam management, and SRS whose usage is CB/NCB/beam management/antenna switching.
  • [PDSCH] x for a particular channel may be a particular value.
  • the specific value may be, for example, a value of 2 or more (for example, 2).
  • the specific value may be 2 for a single DCI-based multi-TRP PDSCH (NCJT/repetition/SFN).
  • the UE may assume/determine reception of a single DCI-based multi-TRP PDSCH (NCJT/repetition/SFN).
  • the specific value may be 1, for example.
  • the specific value may be 1 for at least one of a single TRP PDSCH and a multi-DCI-based multi-TRP PDSCH.
  • the multi-DCI-based multi-TRP PDSCH may have one indicated TCI state for each CORESET pool index.
  • the UE may assume/determine reception of at least one of a single TRP PDSCH and a multi-DCI-based multi-TRP PDSCH.
  • [PDCCH] x for a particular channel may be a particular value.
  • the specific value may be, for example, a value of 2 or more (for example, 2).
  • the specific value may be 2.
  • the UE may assume/determine reception of the SFN PDCCH.
  • the specific value may be 1, for example.
  • the specific value may be 1 for PDCCHs other than the SFN PDCCH.
  • the UE may assume/determine reception of a PDCCH other than the SFN PDCCH.
  • x for PDCCH may be determined/set/instructed for each CORESET/search space. Also, x for PDCCH may be determined/set/indicated for multiple (eg, all) CORESET/search spaces in a certain BWP/CC.
  • [PUCCH] x for a particular channel may be a particular value.
  • the specific value may be, for example, a value of 2 or more (for example, 2).
  • PUCCH repetition e.g., when cyclic/sequential beam hopping is configured
  • PUCCH of Simultaneous Transmission across multiple panels STxMP
  • FDM frequency division multiplexing
  • SDM Space division multiplexing
  • SFN Spa division multiplexing
  • the UE may assume/determine reception of at least one of PUCCH repetition and STxMP PUCCH.
  • the specific value may be 1, for example.
  • the specific value may be 1 for PUCCHs other than at least one of PUCCH repetition and STxMP PUCCH.
  • the UE may assume/determine the reception of a PUCCH other than at least one of PUCCH repetition and STxMP PUCCH.
  • x for PUCCH may be determined based on the use of PUCCH. For example, if a specific UCI (eg, HARQ-ACK) is not included in the PUCCH, x for the PUCCH may be 1. For example, if a specific UCI (eg, HARQ-ACK) is included in a PUCCH, x for the PUCCH may be allowed to be 2.
  • a specific UCI eg, HARQ-ACK
  • x for PUCCH may be determined based on the method of triggering PUCCH. For example, if the PUCCH is not triggered by DCI, x for the PUCCH may be 1. For example, if a PUCCH is triggered by DCI (eg, for a PUCCH on which a HARQ-ACK is transmitted), x for that PUCCH may be allowed to be 2.
  • x for PUCCH may be determined/set/instructed for each PUCCH resource/resource group in BWP/CC.
  • x for PUCCH may be determined/set/instructed for multiple (eg, all) PUCCH resources/resource groups in a certain BWP/CC.
  • FIGS. 4A and 4B are diagrams illustrating an example of the association between PUCCH resources/resource groups and indicated TCI states.
  • PUCCH resource groups (PUCCH resource groups #1 to #4) and PUCCH resources (PUCCH resources #1 to #8) are configured for the UE.
  • These PUCCH resources/resource sets may be configured in a certain BWP (BWP#1) within a certain CC (CC#1).
  • BWP#1 BWP#1
  • CC#1 CC
  • FIG. 4B is a diagram showing the association between the four TCI states indicated by the beam indication TCI state and the index corresponding to each TCI state.
  • an index related to the applicable TCI state is associated with each PUCCH resource group.
  • the UE may determine the TCI state corresponding to each PUCCH and the number of the TCI states based on the associated index and the TCI state corresponding to the index shown in FIG. 4B.
  • setting/instruction/updating of the index of the indication TCI state in units of PUCCH resources/resource groups may be performed using upper layer signaling (RRC/MAC CE)/DCI (beam indication DCI).
  • the instruction TCI state applied to the PUCCH resource and the number (x) of instruction TCI states based on at least one of the instruction TCI state applied to the PUCCH resource and the number (x) of instruction TCI states, the instruction TCI state applied to the PDSCH scheduled by the same DCI and the instruction TCI state At least one of the numbers (x) may be determined.
  • the instruction TCI state applied to the PUCCH resource and the instruction TCI state At least one of the numbers (x) may be determined.
  • [PUSCH] x for a particular channel may be a particular value.
  • the specific value may be, for example, a value of 2 or more (for example, 2).
  • PUSCH repetition e.g., when multiple (e.g., two) SRS resource sets of CB/NCB are configured
  • STxMP PUSCH e.g., frequency FDM/SDM/SFN PUSCH repetition, and , when each layer of the PUSCH is transmitted using a separate beam
  • the specific value may be 2.
  • the UE may assume/determine reception of at least one of PUSCH repetition and STxMP PUSCH.
  • the specific value may be 1, for example.
  • the specific value may be 1 for PUSCH other than at least one of PUSCH repetition and STxMP PUSCH.
  • the UE may assume/determine the reception of a PUSCH other than at least one of the repetition of PUSCH and the PUSCH of STxMP.
  • the PUSCH in this embodiment may be, for example, at least one of a configured grant PUSCH and a DCI scheduled PUSCH.
  • x for PUCCH may be determined based on the DCI that schedules PUSCH. For example, if a PUSCH is scheduled with a specific DCI format (eg, DCI format 0_1/0_2), x for the PUCCH may be 2. For example, if a PUSCH is scheduled in a DCI format other than a specific DCI format (eg, DCI format 0_1/0_2), x for the PUSCH may be 1.
  • the number of instruction TCI states to be applied to each channel/signal can be appropriately determined.
  • FIGS. 5A to 5C An overview of the operation in this embodiment will be explained using FIGS. 5A to 5C.
  • FIG. 5A is a diagram illustrating an example of application of the instruction TCI state according to the first embodiment.
  • the UE may first receive the beam indication DCI.
  • the UE may also receive a DCI (scheduling/triggering DCI) that schedules/trigger each channel/signal.
  • the UE first receives a beam indication DCI (DCI #0). Then, the UE receives DCIs #1 to #4, which are DCIs (scheduling DCIs) that schedule PDSCHs #1 to #4, respectively.
  • DCI #0 a beam indication DCI
  • DCIs #1 to #4 which are DCIs (scheduling DCIs) that schedule PDSCHs #1 to #4, respectively.
  • the beam indication DCI may indicate y indication TCI states.
  • the indicated TCI state may be identified by an index corresponding to the indicated TCI state.
  • DCI #0 indicates four instruction TCI states, and each instruction TCI state is identified by the first to fourth indexes (see FIG. 5B).
  • Beam application time (BAT), time indicated by BeamAppTime_r17) has elapsed since the transmission of HARQ-ACK corresponding to PDSCH #1-#4, the UE transmits the instruction TCI indicated by the new beam instruction DCI. (See, for example, the correspondence shown in FIG. 5C).
  • the UE may determine which TCI state to apply among the indicated TCI states based on the beam indicated DCI based on a specific field included in the scheduling DCI.
  • the UE may be indicated with an index for one or more (eg, two) indicated TCI states based on specific fields included in the scheduling DCI.
  • the UE determines at least one of the TCI state to be applied and the order of the TCI states based on a specific method among the plurality of indicated TCI states. may be judged.
  • DCI #1 applies the indicated TCI state of the first index to PDSCH #1
  • DCI #2 applies the indicated TCI state of the second index to PDSCH #2
  • #3 applies the indicated TCI state of the first index (first TCI state) and the indicated TCI state of the second index (second TCI state) to PDSCH #3
  • 4 indicates that the indicated TCI state of the third index (first TCI state) and the indicated TCI state of the fourth index (second TCI state) are applied to PDSCH #4. .
  • the UE may follow at least one method described in embodiments 1-1 to 1-4 below.
  • the UE may determine at least one of the TCI states to apply to each channel/signal and the order of the TCI states based on specific fields included in the scheduling/triggering DCI.
  • the UE may select/determine x TCI states (one or more) from y indicated TCI states based on specific fields.
  • the particular field is Rel. It may be a new field defined after 18.
  • the scheduling/triggering DCI may be a DCI that schedules a channel (e.g., PUSCH/PDSCH/PUCCH) or a DCI that triggers a signal (e.g., SRS/CSI-RS). good.
  • the scheduling/triggering DCI may be in a particular DCI format (eg, DCI format 0_1/0_2/1_1/1_2).
  • the specific field may be a field indicating any of the indexes of y indication TCI states.
  • the correspondence between the code point of a specific field and the index of the indicated TCI state may be defined/set/instructed/notified to the UE (see FIG. 6B).
  • the UE may determine the TCI state (index of indicated TCI state) to apply to the scheduled/triggered channel/signal based on the specific field and the correspondence.
  • the correspondence relationship may be defined in advance in the specifications, may be set/instructed to the UE by upper layer signaling (RRC/MAC CE), or may be instructed by a specific DCI.
  • RRC/MAC CE upper layer signaling
  • the specific DCI may be, for example, a beam pointing DCI.
  • the UE may be updated with the index corresponding to each code point in a particular field by the beam indication DCI.
  • the particular field may have a particular number of bits (for example, 2 bits).
  • the specific number of bits may be defined in advance in the specifications, or may be set in the UE by upper layer signaling (RRC/MAC CE).
  • the UE applies the indicated TCI state corresponding to the index indicated in the specific field to the channel (e.g. PDSCH/PUSCH/PUCCH)/signal (e.g. CSI-RS/TRS) corresponding to the scheduling/triggering DCI. You may.
  • the channel e.g. PDSCH/PUSCH/PUCCH
  • signal e.g. CSI-RS/TRS
  • FIGS. 6A and 6B are diagrams illustrating an example of application of the instruction TCI state according to Embodiment 1-1.
  • the UE is scheduled with PDSCH #4 and PUCCH #4 by the scheduling DCI (DCI #4).
  • the UE is instructed using fields included in the scheduling DCI to indicate the index of the TCI state to apply to the channel.
  • the field indicates code point "00".
  • the UE is instructed to the first index corresponding to code point "00" based on the correspondence relationship as shown in FIG. 6B described above.
  • the UE applies the indicated TCI state corresponding to the first index to PDSCH #4 and PUCCH #4.
  • TCI state #1 which is the first index indicated TCI state (joint/DL TCI state)
  • TCI state #1 which is the first index indicated TCI state (joint/DL TCI state)
  • PUCCH #4 An example will be described in which TCI state #1, which is UL TCI state), is applied.
  • the DL channel/signal in this embodiment is not limited to the PDSCH/RS scheduled/triggered by the scheduling/triggering DCI.
  • the DL channel/signal in this embodiment may be any other PDSCH (e.g., PDSCH other than the scheduled PDSCH) or any other RS (e.g., RS other than the triggered RS). It may be.
  • the UL channel/signal in this embodiment is not limited to PUSCH/PUCCH/RS scheduled/triggered by the scheduling/triggering DCI.
  • the UL channel/signal in this embodiment may be any other PUSCH/PUCCH (e.g., PUSCH/PUCCH other than the scheduled PUSCH/PUCCH) or any other RS (e.g., triggered RS) other than RS may be used.
  • the scheduling DCI may include one or more specific fields.
  • the UE may determine the TCI state to apply to each channel/signal based on multiple (for example, two) specific fields (here, the first field and the second field).
  • the UE may be indicated by the first field a first index regarding the indicated TCI state, and may be indicated by the second field a second index regarding the indicated TCI state.
  • the UE may determine the one TCI state based on the first (or second) field.
  • the UE may determine the two TCI states based on the first field and the second field.
  • the correspondence regarding the index indicated by the first field (first index) and the correspondence concerning the index indicated by the second field (second index) may be a common correspondence. Furthermore, the correspondence regarding the index shown in the first field (first index) and the correspondence regarding the index (second index) shown in the second field are separate (different) correspondences. It's okay.
  • FIGS. 7A and 7B are diagrams illustrating an example of application of the instruction TCI state according to a variation of Embodiment 1-1.
  • the UE is scheduled with PDSCH #4 and PUCCH #4 (PUCCH #4-1 and PUCCH #4-2) by the scheduling DCI (DCI #4).
  • the UE is instructed using fields included in the scheduling DCI to indicate the index of the TCI state to apply to the channel.
  • the field indicating the first index indicates code point "00"
  • the field indicating the second index indicates code point "10”.
  • the UE determines the TCI state to apply based on the correspondence relationship as shown in FIG. 7B.
  • the example shown in FIG. 7B shows a case where the correspondence relationship regarding the first index and the correspondence relationship regarding the second index are common.
  • TCI state #1 there is one TCI state applied to PDSCH #4.
  • the UE applies the indicated TCI state (here, TCI state #1) corresponding to the first index indicated by code point "00" to PDSCH #4.
  • TCI state #1 and TCI state #4 are two TCI states applied to PUCCH #4 (PUCCH #4-1 and PUCCH #4-2).
  • the UE transmits the indicated TCI states (here, TCI state #1 and TCI state #4) corresponding to the second index indicated by code point "10" to PUCCH #4 (respectively PUCCH #4-1 and TCI state #4). Applicable to PUCCH#4-2).
  • a channel/signal to which multiple (for example, two) TCI states are applied may mean a channel/signal that uses multi-TRP.
  • the UE when an operation that requires one instruction TCI state (for example, a single TRP operation) is configured and multiple instruction TCI states are instructed, the UE performs RRC/ The MAC CE/DCI (new DCI field) may be used to determine one indication TCI state.
  • the MAC CE/DCI new DCI field
  • the number of bits of the new DCI field may be determined based on the number of indicated TCI states (for example, y).
  • FIG. 8 is a diagram illustrating an example of information regarding the instruction TCI states and the number/order of the instruction TCI states instructed by the scheduling DCI.
  • the example shown in FIG. 8 shows the correspondence between the code points of specific fields included in the scheduling DCI, the indicated TCI states indicated by the beam indicated DCI, and the number/order of the indicated TCI states.
  • the UE may be instructed to indicate one code point in the corresponding relationship using the above specific field.
  • code point "00" indicates that one instruction TCI state is applied to the corresponding PDSCH, and indicates that the applied TCI state is the first TCI state. Further, code point "01" indicates that one instruction TCI state is applied to the corresponding PDSCH, and indicates that the applied TCI state is the second TCI state.
  • the code point "10" indicates that two indicated TCI states are applied to the corresponding PDSCH, and the applied TCI states are first, the first TCI state, and then , the second TCI state.
  • the code point "11" indicates that two indicated TCI states are applied to the corresponding PDSCH, and the applied TCI states are first, the second TCI state, then the first TCI state, This shows that the order is as follows.
  • the UE is instructed by a field (e.g., TCI field) of the scheduling DCI to indicate a first index indicated TCI state and a second index indicated TCI state, and by a specific field of the scheduling DCI, one TCI state is indicated.
  • TCI field e.g., TCI field
  • the UE applies the indicated TCI state of the first index to the PDSCH corresponding to the scheduling DCI.
  • FIG. 8 may be defined in advance in the specifications, or may be set/updated for the UE by upper layer signaling (RRC/MAC CE).
  • RRC/MAC CE upper layer signaling
  • the UE may determine at least one of the TCI states to apply to each channel/signal and the order of the TCI states based on specific fields included in the scheduling/triggering DCI.
  • the UE may select/determine x (one or more) TCI states from the y indicated TCI states based on the particular field.
  • the specific field may be an existing field (defined up to Rel. 17).
  • the specific field may be an expanded field of an existing field (defined up to Rel. 17).
  • particular fields included in the DCI may be used to indicate x TCI states.
  • the UE may follow at least one of the following embodiments 1-2-1 and 1-2-2 for determining x TCI states for a particular DL channel.
  • the UE may determine the indicated TCI state to apply to a particular DL channel (eg, PDSCH) based on particular fields included in the DCI.
  • a particular DL channel eg, PDSCH
  • the DCI may be, for example, a DCI that schedules the specific channel (for example, DCI format 1_1/1_2).
  • the DCI may be, for example, a DCI other than the beam instruction DCI.
  • the specific field may be an existing field (defined up to Rel. 17).
  • the specific field may be an expanded field of an existing field (defined up to Rel. 17).
  • the particular field is Rel. It may be a field that is not used in operation No. 17.
  • the specific field may be, for example, a TCI status (TCI) field. Further, the specific field may be a field other than the TCI status (TCI) field.
  • TCI TCI status
  • TCI TCI status
  • the UE may apply the TCI state indicated in the particular field to the particular DL channel (for example, PDSCH) and the UL channel (for example, PUCCH) associated with the particular DL channel.
  • the particular DL channel for example, PDSCH
  • the UL channel for example, PUCCH
  • FIG. 9 is a diagram illustrating an example of a TCI status instruction according to Embodiment 1-2-1.
  • the index of one or more (two) applicable TCI states and at least one of the first to fourth joint TCI states are included in the code point of the TCI field in the scheduling DCI. handle.
  • the UE determines the TCI state index to apply to the DL channel scheduled in the scheduling DCI based on the indicated TCI field.
  • the TCI state applied by the UE is the TCI state indicated by the currently applied beam direction DCI.
  • the UE does not apply the indicated TCI states (first to fourth joint TCI states) corresponding to the TCI field in the scheduling DCI to the scheduled DL channel.
  • the instruction TCI state (first to fourth joint TCI states) corresponding to the TCI field in the scheduling DCI is determined after the transmission of the UL channel (HARQ-ACK) corresponding to the DL channel scheduled in the scheduling DCI. It may also indicate the TCI state that is applied after the BAT has passed.
  • the UE may determine the indicated TCI state to apply to a particular DL channel (eg, PDSCH) based on particular fields included in the DCI.
  • a particular DL channel eg, PDSCH
  • the DCI may be, for example, a specific DCI (for example, DCI format 1_1/1_2).
  • the specific DCI may be a DCI with DL assignment, or a DCI that schedules a DL channel (PDSCH).
  • the specific DCI may be a DCI without DL assignment or a DCI that does not schedule a DL channel (PDSCH).
  • the specific field may be an existing field (defined up to Rel. 17).
  • the specific field may be an expanded field of an existing field (defined up to Rel. 17).
  • the UE may apply the TCI state indicated in the particular field to the particular DL channel (for example, PDSCH) and the UL channel (for example, PUCCH) associated with the particular DL channel.
  • the particular DL channel for example, PDSCH
  • the UL channel for example, PUCCH
  • FIG. 10 is a diagram illustrating an example of a TCI status instruction according to Embodiment 1-2-2.
  • the code point of the TCI field in the scheduling DCI includes an index of one or more (two) applicable TCI states and at least one of the first to fourth joint TCI states. Either one corresponds.
  • the UE determines the index of the TCI state to be applied to the DL channel scheduled in the scheduling DCI based on the indicated TCI field.
  • the UE updates the indicated TCI state when one or more (two) applicable TCI state indices and corresponding code points (e.g., code points "000"-"011" in FIG. 10) are indicated. Among the plurality (y) of already indicated indicated TCI states, the indicated TCI state corresponding to the indicated index is applied to the channel/signal.
  • the indicated TCI state may be updated to the indicated TCI state indicated by the code point.
  • the correspondence relationship described in FIG. 10 may be set/instructed to the UE using upper layer signaling (RRC/MAC CE). As described in FIG. 10, the correspondence relationship may or may not include information (column) indicating whether or not the TCI status has been updated.
  • the correspondence relationship described in FIG. 10 may be a correspondence relationship regarding DCI with DL assignment, DCI that schedules a DL channel (PDSCH), or a correspondence relationship regarding DCI with DL assignment.
  • the correspondence relationship may be related to DCI (DCI without DL assignment) or DCI that does not schedule a DL channel (PDSCH).
  • FIG. 11 is a diagram showing another example of the TCI status instruction according to Embodiment 1-2-2.
  • the code point of the TCI field in the scheduling DCI corresponds to at least one of the first to fourth joint TCI states.
  • FIG. 11 shows that at least one of the first to fourth joint TCI states corresponds to all the code points of the indicated TCI field.
  • the UE may update the already instructed multiple (y) indicated TCI states to the indicated TCI state indicated by the code point. good.
  • the correspondence relationship described in FIG. 11 may be set/instructed to the UE using upper layer signaling (RRC/MAC CE). As described in FIG. 11, the correspondence relationship may or may not include information (column) indicating whether or not the TCI status has been updated.
  • the correspondence relationship described in FIG. 11 may be a correspondence relationship regarding DCI without DL assignment (DCI without DL assignment) or DCI that does not schedule a DL channel (PDSCH).
  • the correspondence relationship described in FIG. 11 may be used in at least one of cases where there is no schedule for PDSCH and cases where there is no need to notify the index of the TCI state applied for PDSCH.
  • the above-described embodiment 1-2-1 may be applied, or the below-described embodiment 1-3 may be applied.
  • the UE may determine at least one of the TCI states to apply to each channel/signal and the order of the TCI states based on specific fields included in the scheduling/triggering DCI.
  • the UE may select/determine x (one or more) TCI states from the y indicated TCI states based on the particular field.
  • the specific field may be an existing field (defined up to Rel. 17).
  • the specific field may be an expanded field of an existing field (defined up to Rel. 17).
  • the specific field may be, for example, at least one of a PRI field and a CCE index field.
  • specific fields included in the DCI may be used to indicate x TCI states.
  • Indexes corresponding to x TCI states are configured/activated/instructed to the UE in advance for each PUCCH resource (resource group) using upper layer signaling (RRC/MAC CE)/physical layer signaling (DCI). It's okay.
  • RRC/MAC CE upper layer signaling
  • DCI physical layer signaling
  • the UE may determine (x or y) TCI states corresponding to each PUCCH resource (resource group) based on the PUCCH resource instruction by the DCI.
  • FIG. 12 is a diagram illustrating an example of a TCI status instruction according to Embodiment 1-3.
  • PUCCH resource groups (PUCCH resource groups #1 to #4) and PUCCH resources (PUCCH resources #1 to #8) are configured for the UE.
  • the configuration of these PUCCH resources/resource sets is performed using the PUCCH configuration (PUCCH-Config) in a certain BWP (BWP#1) in a certain CC (CC#1).
  • BWP#1 BWP#1
  • CC#1 CC
  • the correspondence between PUCCH resource groups and PUCCH resources is as shown in FIG. 12.
  • an index related to the applied TCI state is associated with each PUCCH resource group.
  • the UE determines x TCI states from the y TCI states indicated by the beam indication DCI based on the associated index and the selected PUCCH resource (PRI/CCE index field).
  • setting/instruction/updating of the index of the indication TCI state in units of PUCCH resources/resource groups may be performed using upper layer signaling (RRC/MAC CE)/DCI (beam indication DCI).
  • a PUCCH resource #A to which one instruction TCI state is associated (set) and a plurality of (for example, two) instruction TCI states are described below. Assume a case in which one or more PUCCH resources #B to which PUCCH is associated (set) are set using upper layer signaling (RRC).
  • RRC upper layer signaling
  • the UE may be instructed by the beam indication DCI/MAC CE to update to one TCI state (indication TCI state) for the unified TCI state (indication TCI state).
  • the UE may update the PUCCH resource #A to one new TCI state as instructed.
  • the UE may update PUCCH resource #B to one new TCI state as instructed (option 1-3-1-1). That is, the UE may update all of the multiple (for example, two) indicated TCI states related to PUCCH resource #B to one new instructed TCI state.
  • the UE does not need to update PUCCH resource #B to one new TCI state as instructed (option 1-3-1-2).
  • the UE may ignore the instruction to update to one indicated TCI state for PUCCH resource #B.
  • PUCCH resource #B to which multiple (for example, two) indicated TCI states are associated does not have its TCI state updated by a beam indicated DCI/MAC CE that indicates one TCI state.
  • the UE may update at least one (some) TCI state related to PUCCH resource #B to one new TCI state as instructed (option 1-3-1-3). For example, if a first TCI state and a second TCI state are associated with a PUCCH resource, the UE may replace either the first TCI state or the second TCI state with a new one TCI state. You may decide to update to .
  • the TCI state to be updated (for example, the above-mentioned first TCI state or second TCI state) may be defined in advance in the specifications, or may be determined by upper layer signaling (RRC/MAC CE) may be set in the UE.
  • RRC/MAC CE upper layer signaling
  • the UE may be instructed by the beam indication DCI/MAC CE to update a unified TCI state (indication TCI state) to multiple (eg, two) TCI states (indication TCI state).
  • the UE may update the indicated new plurality (for example, two) TCI states for PUCCH resource #A (option 1-3-2-1).
  • the UE does not need to update the indicated new plurality (for example, two) TCI states for PUCCH resource #A (option 1-3-2-2).
  • the UE may ignore the instruction to update multiple (for example, two) indicated TCI states for PUCCH resource #A.
  • PUCCH resource #A to which one indicated TCI state is associated does not have its TCI state updated by a beam indicated DCI/MAC CE that indicates multiple (for example, two) TCI states.
  • the UE may update one TCI state related to PUCCH resource #A to any one of a plurality of new (e.g., two) new TCI states (option 1-3-2). -3). For example, when instructed to update the first TCI state and the second TCI state by the beam instruction DCI/MAC CE, the UE updates one TCI state related to PUCCH resource #A to the first TCI state. You may decide to update either the state or the second TCI state.
  • the TCI state used for updating (for example, the first TCI state or the second TCI state) may be defined in advance in the specifications, or may be determined by upper layer signaling (RRC/ MAC (CE) may be set in the UE.
  • RRC/ MAC CE
  • the UE may update the PUCCH resource #B to new multiple (for example, two) TCI states as instructed.
  • the UE may select one TCI state from a plurality of (for example, two) TCI states based on a specific method.
  • the particular method may be defined in advance in the specifications, for example.
  • the UE may select a first (or second/last) TCI state among multiple (eg, two) TCI states.
  • the UE may select the TCI state with the lowest (or highest) index among a plurality of (for example, two) TCI states.
  • the specific method may be, for example, a method based on the correspondence between the TCI status/PUCCH and an index related to TRP (for example, CORESET pool index/TRP ID/TRP index).
  • the UE may determine which TCI state is updated based on the TRP associated with the TCI state/PUCCH.
  • An association between a PUCCH resource (resource group) and an index related to TRP may be configured for the UE. If an index regarding the TRP is associated with the indicating TCI state (for example, when at least one of the first/second TCI state and the CORESET pool index is associated with the beam indicating DCI), each PUCCH resource (resource group) , the UE may decide to update the TCI state associated with the index for the TRP.
  • the UE may determine at least one of the TCI states to apply to each channel/signal and the order of the TCI states based on specific fields included in the scheduling/triggering DCI.
  • the UE may select/determine x (one or more) TCI states from the y indicated TCI states based on the particular field.
  • the specific field is at least an existing field (defined up to Rel. 17) (or an expanded field of an existing field) and a newly defined field (defined after Rel. 18). It may be one.
  • the existing field may be, for example, an SRS resource set indicator field. Further, the existing field may be, for example, a field other than the SRS resource set indicator field.
  • specific fields included in the DCI may be used to indicate x TCI states.
  • the UE uses a specific field (e.g., SRS resource set indicator field) to An index of the indicated TCI state to apply to the channel (eg, PUSCH) may be indicated.
  • a specific field e.g., SRS resource set indicator field
  • the UE determines whether to repeat the PUSCH using a single TRP or repeat the PUSCH using multiple TRPs based on a specific field (for example, the SRS resource set indicator field). It's okay.
  • FIG. 13 is a diagram showing an example of fields in the DCI according to Embodiment 1-4. In the example shown in FIG. 13, the association between the code points of the SRS resource set indicator field and the single TRP/multi-TRP scheme is shown.
  • TRP #1 the first TRP
  • TRP #2 when the UE is instructed to code point "1 (01)" in the SRS resource set indicator field, it is determined that the UE has been instructed to operate a single TRP using the second TRP (TRP #2).
  • the UE determines that it has been instructed to apply the first TCI state to the channel related to the first TRP and the second TCI state to the channel related to the second TRP.
  • the UE when the UE is instructed to code point "3 (11)" in the SRS resource set indicator field, multi-TRP operation using the first TRP (TRP #1) and the second TRP (TRP #2) It is determined that the instructions have been given. At this time, the UE determines that it has been instructed to apply the first TCI state to the channel related to the second TRP and the second TCI state to the channel related to the first TRP.
  • the first TRP may correspond to the first SRS resource set of the CB/NCB (of Rel.17). Rel. From 18 onwards, the UE may determine the first TRP to be the first TCI state. Additionally, the second TRP may correspond to the second SRS resource set of the CB/NCB (in Rel.17). Rel. From 18 onwards, the UE may determine the second TRP to be in the second TCI state.
  • Embodiment 1-4-2 The specific fields for selecting/determining x (one or more) TCI states from y indicated TCI states may be the fields described in Embodiment 1-1 above.
  • the above embodiment 1-1 may be used for selecting/determining the TCI state to be applied to a specific UL channel (for example, PUSCH).
  • the specific field described in Embodiment 1-1 above may indicate one or more indexes.
  • the operations related to the DCI field indicating one or more indexes may only be used/applied when multi-TRP PUSCH repetition (two SRS resource sets with CB/NCB usage) is configured for the UE. good.
  • the UE may assume that there is no DCI field indicating one or more indexes if multi-TRP PUSCH repetition (two SRS resource sets with CB/NCB usage) is not configured.
  • Embodiments 1-4-1 and 1-4-2 described above may be used in combination, or each may be used alone.
  • RRC/MAC CE upper layer signaling
  • the instruction TCI state to be applied to each channel/signal can be appropriately determined, and based on the number of applied TCI states, single TRP operation and multi-TRP operation can be performed. can be switched by DCI.
  • a field regarding an index regarding the TCI state applied to each channel/signal may not be included in a particular DCI format.
  • the specific DCI format may be, for example, a DCI format that schedules PUSCH (for example, DCI format 0_0/0_1).
  • a specific DCI format does not include a field for the index
  • the UE is scheduled/triggered in the specific DCI format based on the field for the index indicated in a DCI format other than the specific DCI format.
  • An index of TCI state may be derived that applies to the channel/signal.
  • the UE may use a predefined index (e.g., lowest (1st)/maximum index) or by upper layer signaling (RRC/MAC CE).
  • a predefined index e.g., lowest (1st)/maximum index
  • RRC/MAC CE upper layer signaling
  • Notification of information to UE is performed using physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels (e.g. PDCCH, PDSCH, reference signals), or a combination thereof. It's okay.
  • NW Network
  • BS Base Station
  • the MAC CE may be identified by including a new logical channel ID (LCID), which is not specified in the existing standard, in the MAC subheader.
  • LCID logical channel ID
  • the above notification When the above notification is performed by a DCI, the above notification includes a specific field of the DCI, a radio network temporary identifier (Radio Network Temporary Identifier (RNTI)), the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • notification of any information to the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
  • the notification of any information from the UE (to the NW) in the above embodiments is performed using physical layer signaling (e.g. UCI), upper layer signaling (e.g. , RRC signaling, MAC CE), specific signals/channels (eg, PUCCH, PUSCH, PRACH, reference signals), or a combination thereof.
  • physical layer signaling e.g. UCI
  • upper layer signaling e.g. , RRC signaling, MAC CE
  • specific signals/channels eg, PUCCH, PUSCH, PRACH, reference signals
  • the MAC CE may be identified by including a new LCID that is not defined in the existing standard in the MAC subheader.
  • the above notification may be transmitted using PUCCH or PUSCH.
  • notification of arbitrary information from the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the embodiments described above may be applied if certain conditions are met.
  • the specific conditions may be specified in the standard, or may be notified to the UE/BS using upper layer signaling/physical layer signaling.
  • At least one of the embodiments described above may be applied only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: Supporting specific processing/operation/control/information for at least one of the above embodiments (e.g., switching between single-TRP and multi-TRP operation using unified TCI state); Support for reporting in the DCI the index of the indicated TCI state that applies to each channel/signal; ⁇ Number of at least one of y and x to be supported.
  • the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination thereof), or it may be a capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • SCS subcarrier spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the UE configures/activates specific information related to the embodiment described above (or performs the operation of the embodiment described above) by upper layer signaling/physical layer signaling. / May be applied when triggered.
  • the specific information may include information indicating that switching between single TRP and multi-TRP operations using unified TCI state is enabled, and arbitrary RRC parameters for a specific release (e.g., Rel. 18/19). etc.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16/17 operations may be applied.
  • a receiving unit that receives first downlink control information (DCI) used for beam instruction and second DCI that schedules or triggers a downlink (DL) signal; Based on a specific field included in the second DCI, one or more TCI states to be applied to the DL signal are determined from a plurality of Transmission Configuration Indication (TCI) states indicated in the first DCI. and a control unit that determines whether the DL signal is a signal that uses one transmission/reception point (TRP) or a signal that uses multiple TRPs.
  • DCI downlink control information
  • TCI Transmission Configuration Indication
  • Appendix A-2 When one TCI state is indicated by the specific field, the control unit determines that the DL signal is a signal that uses the one transmission/reception point, The terminal according to appendix A-1, wherein when a plurality of TCI states are indicated by the specific field, the control unit determines that the DL signal is a signal that uses the plurality of transmission/reception points.
  • Appendix A-3 Appendix A-1, wherein the specific field indicates at least one of the number of one or more TCI states to be applied to the DL signal and the order of one or more TCI states to be applied to the DL signal. or the terminal described in Appendix A-2.
  • the DL signal is a physical downlink shared channel (PDSCH)
  • the control unit determines a TCI state to be applied to a physical uplink control channel corresponding to the PDSCH based on specific fields of the first DCI and the second DCI, Appendix A-1 to Appendix A. - Terminal described in any of 3.
  • Appendix B-1 a receiving unit that receives first downlink control information (DCI) used for beam instruction and second DCI that schedules or triggers uplink (UL) signals; Based on a specific field included in the second DCI, one or more TCI states to be applied to the UL signal are determined from a plurality of Transmission Configuration Indication (TCI) states indicated in the first DCI. and a control unit that determines whether the UL signal is a signal that uses one transmission/reception point (TRP) or a signal that uses a plurality of TRPs.
  • DCI downlink control information
  • TCI Transmission Configuration Indication
  • Appendix B-2 When one TCI state is indicated by the specific field, the control unit determines that the UL signal is a signal that uses the one transmission/reception point, The terminal according to Appendix B-1, wherein when a plurality of TCI states are indicated by the specific field, the control unit determines that the UL signal is a signal that uses the plurality of transmission/reception points.
  • Appendix B-3 Appendix B-1, wherein the specific field indicates at least one of the number of one or more TCI states to be applied to the UL signal and the order of one or more TCI states to be applied to the UL signal. or the terminal described in Appendix B-2.
  • the UL signal is a physical uplink control channel (PUCCH)
  • the control unit further determines one or more TCI states to be applied to the PUCCH based on an index configured for each PUCCH resource or PUCCH resource group. Terminal described in Crab.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management
  • UDM Unified Data Management.
  • AF ApplicationFunction
  • DN Location Management Network Functions
  • NF Location Management Network Functions
  • LMF Location Management Network Functions
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20.
  • signals backhaul signaling
  • devices included in the core network 30 for example, network nodes providing NF, other base stations 10, etc.
  • User data user plane data
  • control plane data etc. may be acquired and transmitted.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitter/receiver 120 may transmit first downlink control information (DCI) used for beam instruction and second DCI that schedules or triggers a downlink (DL) signal.
  • the control unit 110 uses a specific field included in the second DCI to select one or more Transmission Configuration Indication (TCI) states to be applied to the DL signal from a plurality of Transmission Configuration Indication (TCI) states indicated by the first DCI.
  • TCI Transmission Configuration Indication
  • TCI Transmission Configuration Indication
  • TCI Transmission Configuration Indication
  • TCI Transmission Configuration Indication
  • the transmitter/receiver 120 may transmit first downlink control information (DCI) used for beam instruction and second DCI that schedules or triggers uplink (UL) signals.
  • the control unit 120 uses a specific field included in the second DCI to select one or more Transmission Configuration Indication (TCI) states to be applied to the UL signal from a plurality of Transmission Configuration Indication (TCI) states indicated by the first DCI.
  • TCI Transmission Configuration Indication
  • TCI Transmission Configuration Indication
  • TCI Transmission Configuration Indication
  • TCI Transmission Configuration Indication
  • FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitter/receiver 220 may receive first downlink control information (DCI) used for beam instruction and second DCI that schedules or triggers a downlink (DL) signal.
  • the control unit 210 selects one or more Transmission Configuration Indication (TCI) states to be applied to the DL signal from a plurality of Transmission Configuration Indication (TCI) states indicated by the first DCI, based on a specific field included in the second DCI.
  • TCI state of the DL signal may be determined to determine whether the DL signal is a signal that uses one transmission/reception point (TRP) or a signal that uses multiple TRPs (0th, 1st embodiment).
  • the control unit 210 may determine that the DL signal is a signal that uses the one transmission/reception point. When a plurality of TCI states are indicated by the specific field, the control unit 210 may determine that the DL signal is a signal that uses the plurality of transmission/reception points (0th and 1st embodiments). ).
  • the specific field may indicate at least one of the number of one or more TCI states to be applied to the DL signal, and the order of one or more TCI states to be applied to the DL signal.
  • Embodiment 1 may indicate at least one of the number of one or more TCI states to be applied to the DL signal, and the order of one or more TCI states to be applied to the DL signal.
  • the DL signal may be a physical downlink shared channel (PDSCH).
  • the control unit 210 may determine the TCI state to be applied to the physical uplink control channel corresponding to the PDSCH based on specific fields of the first DCI and the second DCI (as in the first embodiment). form).
  • the transmitter/receiver 220 may receive first downlink control information (DCI) used for beam instruction and second DCI that schedules or triggers uplink (UL) signals.
  • the control unit 210 selects one or more Transmission Configuration Indication (TCI) states to be applied to the UL signal from a plurality of Transmission Configuration Indication (TCI) states indicated by the first DCI, based on a specific field included in the second DCI.
  • TCI state of the UL signal may be determined to determine whether the UL signal is a signal that uses one transmission/reception point (TRP) or a signal that uses multiple TRPs (0th, 1st embodiment).
  • the control unit 210 may determine that the UL signal is a signal that uses the one transmission/reception point.
  • the control unit 210 may determine that the UL signal is a signal that uses the plurality of transmission/reception points (0th and 1st embodiments). ).
  • the specific field may indicate at least one of the number of one or more TCI states to be applied to the UL signal, and the order of one or more TCI states to be applied to the UL signal.
  • Embodiment 1 may indicate at least one of the number of one or more TCI states to be applied to the UL signal, and the order of one or more TCI states to be applied to the UL signal.
  • the UL signal may be a physical uplink control channel (PUCCH).
  • the control unit 210 may further determine one or more TCI states to be applied to the PUCCH based on an index configured for each PUCCH resource or PUCCH resource group (first embodiment).
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 17 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 18 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60.
  • current sensor 50 including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service section 59 including a communication module 60.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified,
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、ビーム指示に用いられる第1の下り制御情報(DCI)と、上りリンク(UL)信号をスケジュール又はトリガする第2のDCIとを受信する受信部と、前記第2のDCIに含まれる特定のフィールドに基づいて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記UL信号に適用する1つ又は複数のTCI状態を判断し、前記UL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを判断する制御部と、を有する。本開示の一態様によれば、QCL想定/TCI状態を適切に決定することができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)において、ユーザ端末(端末、user terminal、User Equipment(UE))は、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報(QCL想定/Transmission Configuration Indication(TCI)状態/空間関係)に基づいて、送受信処理を制御することが検討されている。
 また、複数種類の信号(チャネル/参照信号)に適用可能なTCI状態を、下りリンク制御情報によって指示することが検討されている。しかしながら、指示されるTCI状態の数と、当該指示されるTCI状態が適用される信号と、の関係が明らかでない。このような関係が明らかでなければ、通信品質の低下、スループットの低下など、を招くおそれがある。
 そこで、本開示は、QCL想定/TCI状態を適切に決定する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、ビーム指示に用いられる第1の下り制御情報(DCI)と、上りリンク(UL)信号をスケジュール又はトリガする第2のDCIとを受信する受信部と、前記第2のDCIに含まれる特定のフィールドに基づいて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記UL信号に適用する1つ又は複数のTCI状態を判断し、前記UL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを判断する制御部と、を有する。
 本開示の一態様によれば、QCL想定/TCI状態を適切に決定することができる。
図1A及び1Bは、統一/共通TCIフレームワークの一例を示す。 図2A及び2Bは、DCIベースTCI状態指示の一例を示す。 図3は、統一TCI状態指示の適用時間の一例を示す。 図4A及び図4Bは、PUCCHリソース/リソースグループと指示TCI状態との関連付けの一例を示す図である。 図5A-図5Cは、第1の実施形態に係る指示TCI状態の適用の一例を示す図である。 図6A及び図6Bは、実施形態1-1に係る指示TCI状態の適用の一例を示す図である。 図7A及び図7Bは、実施形態1-1のバリエーションに係る指示TCI状態の適用の一例を示す図である。 図8は、スケジューリングDCIによって指示される指示TCI状態、指示TCI状態の数/順序に関する情報の一例を示す図である。 図9は、実施形態1-2-1に係るTCI状態の指示の一例を示す図である。 図10は、実施形態1-2-2に係るTCI状態の指示の一例を示す図である。 図11は、実施形態1-2-2に係るTCI状態の指示の他の例を示す図である。 図12は、実施形態1-3に係るTCI状態の指示の一例を示す図である。 図13は、実施形態1-4に係るDCI内のフィールドの一例を示す図である。 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図15は、一実施形態に係る基地局の構成の一例を示す図である。 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図18は、一実施形態に係る車両の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよい。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
〔データ用物理レイヤ手順/アンテナポートQCL〕
 UEは、そのUEと、与えられたサービングセルと、を目的するDCIを伴う検出されたPDCCHに従って、PDSCHの復号のための上位レイヤパラメータPDSCH-Config内のM個までのTCI-State(TCI状態)設定のリストを設定されることができる。ここで、Mは、UE能力maxNumberConfiguredTCIstatesPerCCに依存する。
 各TCI-Stateは、1つ又は2つの下りリンク参照信号と、PDSCHのDMRSポート、PDCCHのDMRSポート、又はCSI-RSリソースのCSI-RSポートと、の間のQCL関係の設定のためのパラメータを含む。そのQCL関係は、第1DL RSに対する上位レイヤパラメータqcl-Type1と、(もし設定されれば)第2DL RSに対する上位レイヤパラメータqcl-Type2と、によって設定される。
 2つのDL RSのケースにおいて、参照が同じDL RSへの参照であるか異なるDL RSへの参照であるかに関わらず、複数QCLタイプは同じでない。各DL RSに対応するQCLタイプは、QCL-Info内の上位レイヤパラメータqcl-Typeによって与えられ、以下の値の1つを取る。
- 'typeA':{Doppler shift,Doppler spread,average delay,delay spread}
- 'typeB':{Doppler shift,Doppler spread}
- 'typeC':{Doppler shift,average delay}
- 'typeD':{Spatial Rx parameter}
〔RRCプロトコル仕様/RRC IE/TCI状態〕
 TCI-State(TCI状態)は、1つ又は2つのDL参照信号(RS)を、対応するQCLタイプに関連付ける。もしそのRSに対して追加physical cell identifier(PCI)が設定される場合、両方のDL RSに対して同じ値が設定される。
(統一(unified)/共通(common)TCIフレームワーク)
 統一TCIフレームワークによれば、複数種類(UL/DL)のチャネル/RSを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネルごとに規定するのではなく、共通ビーム(共通TCI状態)を指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
 DL及びULの両方のための1つの共通ビーム、又は、DL用の共通ビームとUL用の共通ビーム(全体で2つの共通ビーム)が検討されている。
 UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態、ジョイントTCIプール、ジョイント共通TCIプール、ジョイントTCI状態セット)を想定してもよい。UEは、UL及びDLのそれぞれに対して異なるTCI状態(セパレートTCI状態、セパレートTCIプール、ULセパレートTCIプール及びDLセパレートTCIプール、セパレート共通TCIプール、UL共通TCIプール及びDL共通TCIプール)を想定してもよい。
 MAC CEに基づくビーム管理(MAC CEレベルビーム指示)によって、UL及びDLのデフォルトビームを揃えてもよい。PDSCHのデフォルトTCI状態を更新し、デフォルトULビーム(空間関係)に合わせてもよい。
 DCIに基づくビーム管理(DCIレベルビーム指示)によって、UL及びDLの両方用の同じTCIプール(ジョイント共通TCIプール、ジョイントTCIプール、セット)から共通ビーム/統一TCI状態が指示されてもよい。X(>1)個のTCI状態がMAC CEによってアクティベートされてもよい。UL/DL DCIは、X個のアクティブTCI状態から1つを選択してもよい。選択されたTCI状態は、UL及びDLの両方のチャネル/RSに適用されてもよい。
 TCIプール(セット)は、RRCパラメータによって設定された複数のTCI状態であってもよいし、RRCパラメータによって設定された複数のTCI状態のうち、MAC CEによってアクティベートされた複数のTCI状態(アクティブTCI状態、アクティブTCIプール、セット)であってもよい。各TCI状態は、QCLタイプA/D RSであってもよい。QCLタイプA/D RSとしてSSB、CSI-RS、又はSRSが設定されてもよい。
 1以上のTRPのそれぞれに対応するTCI状態の個数が規定されてもよい。例えば、ULのチャネル/RSに適用されるTCI状態(UL TCI状態)の個数N(≧1)と、DLのチャネル/RSに適用されるTCI状態(DL TCI状態)の個数M(≧1)と、が規定されてもよい。N及びMの少なくとも一方は、上位レイヤシグナリング/物理レイヤシグナリングを介して、UEに通知/設定/指示されてもよい。
 本開示において、N=M=X(Xは任意の整数)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL及びDLに共通のTCI状態(ジョイントTCI状態)が通知/設定/指示されることを意味してもよい。また、N=X(Xは任意の整数)、M=Y(Yは任意の整数、Y=Xであってもよい)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL TCI状態及びY個の(Y個のTRPに対応する)DL TCI状態(すなわち、セパレートTCI状態)がそれぞれ通知/設定/指示されることを意味してもよい。
 例えば、N=M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(単一TRPのためのジョイントTCI状態)。
 また、例えば、N=1、M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL TCI状態と、1つのDL TCI状態と、が別々に通知/設定/指示されることを意味してもよい(単一TRPのためのセパレートTCI状態)。
 また、例えば、N=M=2と記載される場合は、UEに対し、複数の(2つの)TRPに対する、複数の(2つの)のUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(複数TRPのためのジョイントTCI状態)。
 また、例えば、N=2、M=2と記載される場合は、UEに対し、複数(2つ)のTRPに対する、複数の(2つの)UL TCI状態と、複数の(2つの)DL TCI状態と、が通知/設定/指示されることを意味してもよい(複数TRPのためのセパレートTCI状態)。
 なお、上記例においては、N及びMの値が1又は2のケースを説明したが、N及びMの値は3以上であってもよいし、N及びMは異なってもよい。
 Rel.17においてN=M=1がサポートされることが検討されている。Rel.18以降において他のケースがサポートされることが検討されている。
 図1Aの例において、RRCパラメータ(情報要素)は、DL及びULの両方用の複数のTCI状態を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態をアクティベートしてもよい。DCIは、アクティベートされた複数のTCI状態の1つを指示してもよい。DCIは、UL/DL DCIであってもよい。指示されたTCI状態は、UL/DLのチャネル/RSの少なくとも1つ(又は全て)に適用されてもよい。1つのDCIがUL TCI及びDL TCIの両方を指示してもよい。
 この図の例において、1つの点は、UL及びDLの両方に適用される1つのTCI状態であってもよいし、UL及びDLにそれぞれ適用される2つのTCI状態であってもよい。
 RRCパラメータによって設定された複数のTCI状態と、MAC CEによってアクティベートされた複数のTCI状態と、の少なくとも1つは、TCIプール(共通TCIプール、ジョイントTCIプール、TCI状態プール)と呼ばれてもよい。MAC CEによってアクティベートされた複数のTCI状態は、アクティブTCIプール(アクティブ共通TCIプール)と呼ばれてもよい。
 なお、本開示において、複数のTCI状態を設定する上位レイヤパラメータ(RRCパラメータ)は、複数のTCI状態を設定する設定情報、単に「設定情報」と呼ばれてもよい。また、本開示において、DCIを用いて複数のTCI状態の1つを指示されることは、DCIに含まれる複数のTCI状態の1つを指示する指示情報を受信することであってもよいし、単に「指示情報」を受信することであってもよい。
 図1Bの例において、RRCパラメータは、DL及びULの両方用の複数のTCI状態(ジョイント共通TCIプール)を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態(アクティブTCIプール)をアクティベートしてもよい。UL及びDLのそれぞれに対する(別々の、separate)アクティブTCIプールが、設定/アクティベートされてもよい。
 DL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のDLのチャネル/RSに適用されてもよい。DLチャネルは、PDCCH/PDSCH/CSI-RSであってもよい。UEは、Rel.16のTCI状態の動作(TCIフレームワーク)を用いて、DLの各チャネル/RSのTCI状態を決定してもよい。UL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のULチャネル/RSに適用されてもよい。ULチャネルは、PUSCH/SRS/PUCCHであってもよい。このように、異なるDCIが、UL TCI及びDL DCIを別々に指示してもよい。
 Rel.17 NR以降では、MAC CE/DCIにより、異なるphysical cell identifier(PCI)に関連付けられたTCI状態へのビームのアクティベーション/指示がサポートされることが想定される。また、Rel.18 NR以降では、MAC CE/DCIにより、異なるPCIを有するセルへのサービングセルの変更が指示されることがサポートされることが想定される。
〔データ用物理レイヤ手順/アンテナポートQCL〕
 あるCC内のPDSCHのDMRS及びPDCCHのDMRSと、CSI-RSと、のための参照信号を提供するために、さらに、もし、あるCC内の動的グラント及び設定グラントベースのPUSCH及びPUCCHリソースと、SRSと、のためのUL TX(送信)空間フィルタが利用可能である場合、そのUL TCIフィルタの決定のための参照を提供するために、PDSCH-Config(PDSCH設定)内において、UEは、128個までのDLorJointTCIState(DL又はジョイントのTCI状態)設定のリストを設定されることができる。
 もしそのCC内のBWP内に、DLorJointTCIState又はUL-TCIState(UL TCI状態)の設定がない場合、そのUEは、参照CCの参照BWPからのDLorJointTCIState又はUL-TCIStateの設定を適用できる。もしそのUEが同じバンド内のいずれかのCC内においてDLorJointTCIState又はUL-TCIStateを設定された場合、そのバンド内のSpatialRelationInfoPos(位置用空間関係情報)を除く、TCI-State、SpatialRelationInfo(空間関係情報)、PUCCH-SpatialRelationInfo(PUCCH空間関係情報)を設定されると想定しない。そのUEは、そのUEがsimultaneousTCI-UpdateList1-r16(同時TCI更新リスト1)、simultaneousTCI-UpdateList2-r16(同時TCI更新リスト2)、simultaneousSpatial-UpdatedList1-r16(同時空間更新リスト1)、又はsimultaneousSpatial-UpdatedList2-r16(同時空間更新リスト2)によってCCリスト内の任意のCC内のTCI-Stateを設定される場合に、そのUEが、そのCC内の任意のCC内のDLorJointTCIState又はUL-TCIStateを設定されない、と想定する。
 そのUEは、もし利用可能であれば、CC/DL BWPの1つ、又は、CC/DL BWPのセットに対する、DCIフィールド'Transmission Configuration Indication'(TCI)のコードポイントへ、DLのチャネル/信号に対する1つのTCI状態と、ULのチャネル/信号に対する1つのTCI状態と、を伴う、8個までの、TCI状態及び/又はTCI状態のペアをマップすることに用いられるアクティベーションコマンドを受信する。CC/DL BWPのセットに対して、さらに、もし利用可能であればCC/DL BWPの1つに対して、TCI状態IDのセットがアクティベートされる場合、指示されたCC内の全てのDL及び/又はULのBWPに対して、TCI状態IDの同じセットが適用される。ここで、CCの適用可能リストは、そのアクティベーションコマンド内において指示されたCCによって決定される。もしそのアクティベーションコマンドが、DLorJointTCIState及び/又はUL-TCIStateを、1つのみのTCIコードポイントへマップする場合、そのUEは、その指示されたDLorJointTCIState及び/又はUL-TCIStateを、CC/DL BWPの1つ又はCC/DL BWPのセットへ適用し、もし1つの単一TCIコードポイントに対する指示されたマッピングが適用されると、その指示されたDLorJointTCIState及び/又はUL-TCIStateを、CC/DL BWPの1つ又はCC/DL BWPのセットへ適用する。
 DLorJointTCIStateを設定されたTCI状態のQCL-Info内のQCLタイプA/DソースRSに対するbwp-id又はcellが設定されない場合、そのUEは、TCI状態が適用されるCC/DL BWP内に、そのQCLタイプA/DソースRSが設定される、と想定する。
(TCI状態の指示)
 Rel.17統一TCIフレームワークは、以下のモード1から3をサポートする。
[モード1]MAC CEベースTCI状態指示(MAC CE based TCI state indication)
[モード2]DLアサインメントを伴うDCIベースTCI状態指示(DCI based TCI state indication by DCI format 1_1/1_2 with DL assignment)
[モード3]DLアサインメントを伴わないDCIベースTCI状態指示(DCI based TCI state indication by DCI format 1_1/1_2 without DL assignment)
 Rel.17 TCI状態ID(例えば、tci-StateId_r17)を伴って設定されアクティベートされたTCI状態を伴うUEは、1つのCCに対し、Rel.17 TCI状態IDを伴う指示TCI状態(indicated TCI state)を提供するDCIフォーマット1_1/1_2を受信する、又は、同時TCI更新リスト1又は同時TCI更新リスト2(例えば、simultaneousTCI-UpdateList1 or simultaneousTCI-UpdateList2)によって設定されたCCリストと同じCCリスト内の全てのCCに対し、Rel.17 TCI状態IDを伴う指示TCI状態を提供するDCIフォーマット1_1/1_2を受信する。DCIフォーマット1_1/1_2は、もしDLアサインメントが利用可能であればそれを伴ってもよいし、伴わなくてもよい。
 もしDCIフォーマット1_1/1_2がDLアサインメントを伴わない場合、UEは、そのDCIに対して、以下を想定(検証)できる。
- CS-RNTIがDCIのためのCRCのスクランブルに用いられる。
- 以下のDCIフィールド(特別フィールド)の値が以下のようにセットされる:
  - redundancy version(RV)フィールドがall '1's。
  - modulation and coding scheme(MCS)フィールドがall '1's。
  - new data indicator(NDI)フィールドが0。
  - frequency domain resource assignment(FDRA)フィールドが、FDRAタイプ0に対してall '0's、又は、FDRAタイプ1に対してall '1's、又は、ダイナミックスイッチ(DynamicSwitch)に対してall '0's(DL semi-persistent scheduling(SPS)又はULグラントタイプ2スケジューリングのリリースのPDCCHの検証(validation)と同様)。
 なお、上記モード2/モード3におけるDCIは、ビーム指示DCIと呼ばれてもよい。
 Rel.15/16において、もしUEがDCIを介するアクティブBWP変更をサポートしない場合、UEは、BWPインディケータフィールドを無視する。Rel.17 TCI状態のサポートと、TCIフィールドの解釈と、の関係についても、同様の動作が検討されている。もしUEがRel.17 TCI状態を伴って設定された場合、DCIフォーマット1_1/1_2内にTCIフィールドが常に存在すること、もしUEがDCIを介するTCI更新をサポートしない場合、UEは、TCIフィールドを無視すること、が検討されている。
 Rel.15/16において、TCIフィールドが存在するか否か(DCI内TCI存在情報、tci-PresentInDCI)は、CORESETごとに設定される。
 DCIフォーマット1_1におけるTCIフィールドは、上位レイヤパラメータtci-PresentInDCIが有効にされない場合に0ビットであり、そうでない場合に3ビットである。もしBWPインディケータフィールドが、アクティブBWP以外のBWPを指示する場合、UEは、以下の動作に従う。
[動作]もしそのDCIフォーマット1_1を伝達するPDCCHに用いられるCORESETに対して上位レイヤパラメータtci-PresentInDCIが有効にされない場合、UEは、指示されたBWP内の全てのCORESETに対してtci-PresentInDCIが有効にされないと想定し、そうでない場合、UEは、指示されたBWP内の全てのCORESETに対してtci-PresentInDCIが有効にされると想定する。
 DCIフォーマット1_2におけるTCIフィールドは、上位レイヤパラメータtci-PresentInDCI-1-2が設定されない場合に0ビットであり、そうでない場合に上位レイヤパラメータtci-PresentInDCI-1-2によって決定される1又は2又は3ビットである。もしBWPインディケータフィールドが、アクティブBWP以外のBWPを指示する場合、UEは、以下の動作に従う。
[動作]もしそのDCIフォーマット1_2を伝達するPDCCHに用いられるCORESETに対して上位レイヤパラメータtci-PresentInDCI-1-2が設定されない場合、UEは、指示されたBWP内の全てのCORESETに対してtci-PresentInDCIが有効にされないと想定し、そうでない場合、UEは、指示されたBWP内の全てのCORESETに対してtci-PresentInDCI-1-2が、そのDCIフォーマット1_2を伝達するPDCCHに用いられるCORESETに対して設定されたtci-PresentInDCI-1-2と同じ値を伴って設定されると想定する。
 図2Aは、DCIベースのジョイントDL/UL TCI状態指示の一例を示す。ジョイントDL/UL TCI状態指示用のTCIフィールドの値に対し、ジョイントDL/UL TCI状態を示すTCI状態IDが関連付けられている。
 図2Bは、DCIベースのセパレートDL/UL TCI状態指示の一例を示す。セパレートDL/UL TCI状態指示用のTCIフィールドの値に対し、DLのみのTCI状態を示すTCI状態IDと、ULのみのTCI状態を示すTCI状態IDと、の少なくとも1つのTCI状態IDが関連付けられている。この例において、TCIフィールドの値000から001は、DL用の1つのTCI状態IDのみに関連付けられ、TCIフィールドの値010から011は、UL用の1つのTCI状態IDのみに関連付けられ、TCIフィールドの値100から111は、DL用の1つのTCI状態IDと、UL用の1つのTCI状態IDとの両方に関連付けられている。
(指示TCI状態/設定TCI状態)
 Rel.17TCI状態について、統一/共通TCI状態は、(Rel.17の)DCI/MAC CE/RRCを用いて指示されるRel.17TCI状態(指示Rel.17TCI状態(indicated Rel.17 TCI state))を意味してもよい。
 本開示において、指示Rel.17TCI状態、指示TCI状態(indicated TCI state)、統一/共通TCI状態、複数種類の信号(チャネル/RS)に適用されるTCI状態、複数種類の信号(チャネル/RS)のためのTCI状態、は互いに読み替えられてもよい。
 指示Rel.17TCI状態は、(Rel.17のDCI/MAC CE/RRCを用いて更新された、)PDSCH/PDCCにおけるUE固有の受信、動的グラント(DCI)/設定(configured)グラントのPUSCH、及び、複数の(例えば、全ての)固有(dedicated)PUCCHリソース、の少なくとも1つと共有されてもよい。DCI/MAC CE/RRCにより指示されるTCI状態は、指示TCI状態、統一TCI状態と呼ばれてもよい。
 Rel.17TCI状態について、統一TCI状態以外のTCI状態は、(Rel.17の)MAC CE/RRCを用いて設定されるRel.17TCI状態(設定Rel.17TCI状態(configured Rel.17 TCI state))を意味してもよい。本開示において、設定Rel.17TCI状態、設定TCI状態(configured TCI state)、統一TCI状態以外のTCI状態、特定種類の信号(チャネル/RS)に適用されるTCI状態、は互いに読み替えられてもよい。
 設定Rel.17TCI状態は、(Rel.17のDCI/MAC CE/RRCを用いて更新された、)PDSCH/PDCCにおけるUE固有の受信、動的グラント(DCI)/設定(configured)グラントのPUSCH、及び、複数の(例えば、全ての)固有(dedicated)PUCCHリソース、の少なくとも1つと共有されなくてもよい。設定Rel.17TCI状態は、CORESETごと/リソースごと/リソースセットごとにRRC/MAC CEで設定され、上述した指示Rel.17TCI状態(コモンTCI状態)が更新されても、設定Rel.17TCI状態は更新されない構成であってもよい。
 UE固有のチャネル/信号(RS)に対して、指示Rel.17TCI状態が適用されることが検討されている。また、非UE固有のチャネル/信号に対して、指示Rel.17TCI状態及び設定Rel.17TCI状態のいずれかを適用するかについて上位レイヤシグナリング(RRCシグナリング)を用いてUEに通知することが検討されている。
 設定Rel.17TCI状態(TCI状態ID)に関するRRCパラメータは、Rel.15/16におけるTCI状態のRRCパラメータと同じ構成とすることが検討されている。設定Rel.17TCI状態は、RRC/MAC CEを用いて、CORESETごと/リソースごと/リソースセットごとに設定/指示されることが検討されている。また、当該設定/指示について、UEは、特定のパラメータに基づいて判断することが検討されている。
 UEに対し、指示TCI状態の更新と、設定TCI状態の更新と、が別々に行われることが検討されている。例えば、UEに対し、指示TCI状態についての統一TCI状態が更新された場合、設定TCI状態の更新が行われなくてもよい。また、当該更新について、UEは、特定のパラメータに基づいて判断することが検討されている。
 また、PDCCH/PDSCHについて、指示Rel.17TCI状態が適用されるか、指示Rel.17TCI状態が適用されない(設定Rel.17TCI状態が適用される、指示Rel.17TCI状態とは別に設定されたTCI状態が適用される)か、について、上位レイヤシグナリング(RRC/MAC CE)を用いて切り替えることが検討されている。
 また、セル内(intra-cell)のビーム指示(TCI状態の指示)について、UE固有のCORESET及び当該CORESETに関連するPDSCHと、非UE固有のCORESET及び当該CORESETに関連するPDSCHと、に対して指示Rel.17TCI状態がサポートされることが検討されている。
 また、セル間(inter-cell)のビーム指示(例えば、L1/L2インターセルモビリティ)について、UE固有のCORESET及び当該CORESETに関連するPDSCHに対して、指示Rel.17TCI状態がサポートされることが検討されている。
 Rel.15において、CORESET#0に対しTCI状態を指示するかどうかは基地局の実装次第であった。Rel.15では、TCI状態を指示されたCORESET#0について、当該指示されたTCI状態が適用される。TCI状態が指示されないCORESET#0に対して、最新(最近)のPRACH送信時に選択したSSBとQCLが適用される。
 Rel.17以降の統一TCI状態フレームワークにおいて、CORESET#0に関するTCI状態について検討がされている。
 例えば、Rel.17以降の統一TCI状態のフレームワークでは、CORESET#0のRel.17 TCI状態指示について、サービングセルに関連づけられた指示Rel.17TCI状態(indicated Rel-17 TCI state associated with the serving cell)を適用するかどうかは、RRCによりCORESETごとに設定され、適用しない場合には、既存のMAC CE/RACHシグナリングメカニズム(legacy MAC CE/RACH signalling mechanism)が利用されてもよい。
 なお、CORESET#0に適用されるRel.17TCI状態に関連するCSI-RSは、サービングセルPCI(物理セルID)に関連するSSBとQCLされてもよい(Rel.15と同様)。
 CORESET#0、共通サーチスペース(common search space(CSS))を伴うCORESET、CSSとUE固有サーチスペース(UE-specific search space(USS))を伴うCORESET、に対し、CORESETごとに、指示Rel.17TCI状態に従うか否かがRRCパラメータによって設定されてもよい。そのCORESETに対し、指示Rel.17TCI状態に従うことを設定されない場合、設定Rel.17TCI状態が、そのCORESETに適用されてもよい。
 (CORESETを除く)非UE個別(non-UE-dedicated)のチャネル/RSに対し、チャネル/リソース/リソースセットごとに、指示Rel.17TCI状態に従うか否かがRRCパラメータによって設定されてもよい。そのチャネル/リソース/リソースセットに対し、指示Rel.17TCI状態に従うことを設定されない場合、設定Rel.17TCI状態が、そのチャネル/リソース/リソースセットに適用されてもよい。
(beam application time(BAT))
 Rel.17におけるDCIベースビーム指示(DCI-based beam indication)において、ビーム/統一TCI状態の指示の適用時間(ビーム適用時間(BAT)の条件)に関し、以下の検討1及び2が検討されている。
[検討1]
 指示されたTCIを適用する最初のスロットは、ジョイント又はセパレートDL/ULビーム指示に対する肯定応答(acknowledgement(ACK))の最後のシンボルの少なくともYシンボル後であることが検討されている。指示されたTCIを適用する最初のスロットは、ジョイント又はセパレートDL/ULビーム指示に対するACK/否定応答(negative acknowledgement(NACK))の最後のシンボルの少なくともYシンボル後であることが検討されている。Yシンボルは、UEによって報告されたUE能力に基づき、基地局によって設定されてもよい。そのUE能力は、シンボルの単位で報告されてもよい。
 図3の例においてACKは、ビーム指示DCIによってスケジュールされたPDSCHに対するACKであってもよい。この例においてPDSCHが送信されなくてもよい。この場合のACKは、ビーム指示DCIに対するACKであってもよい。
 Rel.17のDCIベースビーム指示に対し、BWP/CCごとに少なくとも1つのYシンボルがUEに設定されることが検討されている。
 複数CCの間においてSCSが異なる場合、Yシンボルの値も異なるため、複数CCの間において、適用時間が異なる可能性がある。
[検討2]
 CAのケースに対し、そのビーム指示の適用タイミング/BATは、以下の選択肢1から3のいずれかに従ってもよい。
[選択肢1]その最初のスロット及びYシンボルの両方は、そのビーム指示を適用する1つ以上のキャリアの内、最小SCSを伴うキャリア上において決定される。
[選択肢2]その最初のスロット及びYシンボルの両方は、そのビーム指示を適用する1つ以上のキャリアと、そのACKを運ぶULキャリアと、の内、最小SCSを伴うキャリア上において決定される。
[選択肢3]その最初のスロット及びYシンボルの両方は、そのACKを運ぶULキャリア上において決定される。
 Rel.17のCC同時ビーム更新機能として、CAにおいて複数CC間においてビームを共通化することが検討されている。検討2によれば、複数CCの間において適用時間が共通になる。
 CAに対するビーム指示の適用時間(Yシンボル)は、ビーム指示が適用されるキャリアの内、最小SCSを伴うキャリア上において決定されてもよい。Rel.17のMAC CEベースビーム指示(単一のTCIコードポイントのみがアクティベートされた場合)は、MAC CEアクティベーションのRel.16適用タイムラインに従ってもよい。
 これらの検討に基づき、以下の動作が仕様に規定されることが検討されている。
[動作]
 UEが、TCI状態指示を伝えるDCIに対応するHARQ-ACK情報を伴うPUCCHの最後のシンボルを送信する場合、Rel.17TCI状態を伴う指示されたTCI状態は、そのPUCCHの最後のシンボルから少なくともYシンボル後である最初のスロットから適用を開始されてもよい。Yは、上位レイヤパラメータ(例えば、BeamAppTime_r17[シンボル])であってもよい。その最初のスロットとYシンボルとの両方は、ビーム指示が適用されるキャリアの内、最小SCSを伴うキャリア上において決定されてもよい。UEは、ある時点において、DL及びUL用のRel17TCI状態を伴う指示された1つのTCI状態を想定してもよいし、UL用のRel17TCI状態を伴う(DLとは別に)指示された1つのTCI状態を想定してもよい。
 Y[シンボル]の代わりにX[ms]が用いられてもよい。
 適用時間に関し、UEが以下のUE能力1及び2の少なくとも1つを報告することが検討されている。
[UE能力1]
 SCSごとの最小適用時間(ACKを運ぶPUCCHの最後のシンボルと、ビームが適用される最初のスロットと、の間のYシンボルの最小値)。
[UE能力2]
 ビーム指示PDCCH(DCI)の最後のシンボルと、ビームが適用される最初のスロットと、の間の最小時間ギャップ。ビーム指示PDCCH(DCI)の最後のシンボルと、ビームが適用される最初のスロットと、の間のギャップが、UE能力(最小時間ギャップ)を満たしてもよい。
 UE能力2は、既存のUE能力(例えば、timeDurationForQCL)であってもよい。
 ビームの指示と、そのビームが適用されるチャネル/RSとの関係は、UE能力1及び2の少なくとも1つを満たしてもよい。
 適用時間に関し、基地局によって設定されるパラメータ(例えば、BeamAppTime_r17)は、オプショナルフィールドになることが考えられる。
(セル内(intra-cell)/セル間(inter-cell)のビームの指示/管理)
 Rel.17 NR以降では、MAC CE/DCIにより、異なるPCIに関連付けられたTCI状態へのビーム指示がサポートされることが想定される。また、Rel.18 NR以降では、MAC CE/DCIにより、異なるPCIを有するセルへのサービングセルの変更が指示されることがサポートされることが想定される。
 指示Rel.17TCI状態は、セル内において、UE個別(UE-dedicated)のチャネル/RSと、非UE個別(non-UE-dedicated)のチャネル/RSと、に共有(適用)されてもよい。
 指示Rel.17TCI状態は、セル間において、UE個別のチャネル/RSのみに共有(適用)されてもよい。
 セル間において、非UE個別のチャネル/RSに対し、PDSCH(PDSCH設定)ごと/CORESET(CORESET設定)ごとに指示Rel.17TCI状態に従うか否かがRRCパラメータによって設定されてもよい。UE個別のチャネル/RSは、そのRRCパラメータに従わず、常に指示Rel.17TCI状態に従ってもよい。
 本開示において、非UE個別のCORESETは、CSSを伴うCORESETを意味してもよく、UE個別のCORESETは、USSを伴うCORESETを意味してもよい。本開示において、非UE個別のPDSCHは、CSSを伴うCORESETによってスケジュールされたPDSCHを意味してもよいし、タイプ3CSS以外のCSSを伴うCORESETによってスケジュールされたPDSCHを意味してもよい。本開示において、UE個別のPDSCHは、USSを伴うCORESETによってスケジュールされたPDSCHを意味してもよいし、USS又はタイプ3CSSを伴うCORESETによってスケジュールされたPDSCHを意味してもよい。例えば、PDSCH設定(PDSCH-Config)ごとに、指示Rel.17TCI状態に従うか否かがRRCパラメータ(例えば、followUnifiedTCIstate)によって設定され、この設定は、UE個別のPDSCHに適用されず(UE個別のPDSCHは、常にRel.17TCI状態に従い)、非UE個別のPDSCHに適用されてもよい。
(指示TCI状態が適用されるチャネル/RS)
 MAC CE/DCIによる指示TCI状態("indicated TCI state")は、以下のチャネル/RSに適用されてもよい。
[PDCCH]
・CORESET0に対し、followUnifiedTCIState(統一TCI状態に従うこと)が設定された場合、指示TCI状態が適用される。そうでない場合、そのCORESETに対し、Rel.15仕様が適用される。すなわち、CORESET0は、MAC CEによってアクティベートされたTCI状態に従う、又は、SSBとQCLされる。
・USS/CSSタイプ3を伴う、インデックス0以外のCORESETに対し、常に指示TCI状態が適用される。
・少なくともCSSタイプ3以外のCSSを伴う、インデックス0以外のCORESETに対し、統一TCI状態に従うことが設定された場合、指示TCI状態が適用される。そうでない場合、そのCORESETに対する設定TCI状態("configured TCI state")が、そのCORESETに適用される。
[PDSCH]
・全てのUE個別(UE-dedicated)PDSCHに対し、常に指示TCI状態が適用される。
・非UE個別(non-UE-dedicated)PDSCH(CSS内のDCIによってスケジュールされたPDSCH)に対し、(そのPDSCHをスケジュールするPDCCHのCORESETに対して)followUnifiedTCIStateが設定された場合、指示TCI状態が適用されてもよい。そうでない場合、そのPDSCHに対する設定TCI状態が、そのPDSCHに適用される。PDSCHに対し、followUnifiedTCIStateが設定されない場合、非UE個別PDSCHが指示TCI状態に従うかどうかが、そのPDSCHのスケジューリングに用いられたCORESETに対し、followUnifiedTCIStateが設定されたか否かに応じて決定されてもよい。
[CSI-RS]
・CSI取得(acquisition)又はビーム管理(management)のためのA-CSI-RSに対し、(そのA-CSI-RSをトリガするPDCCHのCORESETに対して)followUnifiedTCIStateが設定された場合、指示TCI状態が適用される。その他のCSI-RSに対し、そのCSI-RSに対する設定TCI状態("configured TCI state")が適用される。
[PUCCH]
・全ての個別(dedicated)PUCCHリソースに対し、常に指示TCI状態が適用される。
[PUSCH]
・動的(dynamic)/設定(configured)グラントPUSCHに対し、常に指示TCI状態が適用される。
[SRS]
・ビーム管理の用途のA-SRSと、コードブック(CB)/ノンコードブック(NCB)/アンテナスイッチングの用途のA/SP/P-SRSのための、SRSリソースセットに対し、統一TCI状態に従うことが設定された場合、指示TCI状態が適用される。その他のSRSに対し、そのSRSリソースセット内の設定TCI状態が適用される。
(分析)
 ところで、Rel.18以降において、ビーム指示DCIによって指示されたTCI状態の数に応じて、シングルTRP又はマルチTRPの設定/動作を切り替えることが検討されている。
 一方、Rel.18において、4つまでのTRPを用いるcoherent joint transmission(CJT)をサポートすることが検討されている。joint transmission(JT)は、複数のポイント(例えば、TRP)から単一のUEへの同時データ送信を意味してもよい。
 Rel.17は、2つのTRPからのNCJTをサポートする。2つのTRPからのPDSCHは、独立にプリコードされ、独立に復号されてもよい。周波数リソースは、オーバーラップしなくてもよいし(non-overlapping)、部分的にオーバーラップしてもよいし(partial-overlapping)、完全にオーバーラップしてもよい(full-overlapping)。オーバラップが起こる場合、1つのTRPからのPDSCHは、他のTRPからのPDSCHへの干渉になる。
 CJTについて、4つのTRPからのデータは、コヒーレントにプリコードされ、同じ時間-周波数リソース上においてUEへ送信されてもよい。例えば、4つのTRPからのチャネルを考慮し、同じプリコーディング行列が用いられてもよい。コヒーレントは、複数の受信信号の位相の間に一定の関係があることを意味してもよい。4TRPジョイントプリコーディングを用いて、信号品質が改善され、4つのTRPの間位において干渉がなくてもよい。データは、4つのTRPの外の干渉のみを受けてもよい。
 CJTのサポートのために、指示TCI状態は最大2より多く(例えば、BWP/CCあたり最大4つ)、RRC/MAC CE/DCIによって2つより多いTCI状態を通知されたUEは、シングルTRP又はマルチTRPのいずれの動作を行うかの判断ができなくなることが考えられる。
 この場合において、特定の数より大きい(以上)の指示TCI状態が指示される場合、UEはマルチTRPを適用することを判断することが考えられる。例えば、1つの指示TCI状態が指示される場合、UEはシングルTRPの動作を適用し、2つ以上の指示TCI状態が指示される場合、UEはマルチTRPの動作を適用することが考えられる。
 また、Rel.16/17のマルチTRPでは、PDCCHの繰り返し(repetition)を除き、スケジューリングDCIによってシングルTRP及びマルチTRPを切り替えることができる。
 Rel.16で規定されるシングルDCIベースのマルチTRPのNCJT/繰り返しでは、TCIフィールドで指示されるTCI状態の数でシングルTRP及びマルチTRPを切り替えることができる。
 Rel.16で規定されるマルチDCIベースのマルチTRPのNCJT/繰り返しでは、各CORESETプールインデックスに対応するDCIで指示されるTCI状態が同じか否かに基づいてシングルTRP及びマルチTRPを切り替えることができる。
 Rel.17で規定される、シングルDCIベースのマルチTRPのPUSCHの繰り返しでは、シングルTRPのPUSCH繰り返しとマルチTRPのPUSCH繰り返しとの間の切り替えのために、DCIフォーマット0_1/0_2内のSRSリソースセットインディケータフィールドに基づいて、シングルTRP及びマルチTRPを切り替えることができる。
 Rel.17で規定される、シングルDCIベースのマルチTRPのPUCCHの繰り返しでは、1つ又は2つの空間関係が1つのPUCCHリソース(リソースグループ)に対してアクティベートされ、DCI(に含まれるPUCCHリソースインディケータ(PRI)/制御チャネル要素(CCE)インデックス)によって1つのPUCCHリソースが選択されることによって、シングルTRP及びマルチTRPを切り替えることができる。
 Rel.17で規定される、PDCCHの繰り返しでは、DCIによって1つのCORESETのアクティブTCI状態の数(すなわち、シングルTRPとマルチTRP)を切り替える方法はない。
 これらを踏まえると、Rel.18以降に規定される統一TCI状態に関する動作においても、スケジューリングDCIによってシングルTRPとマルチTRPとの切り替えを行うようにすることが望ましい。
 しかしながら、統一TCI状態に関する動作において、DCIによるTRP数の切り替えを行う方法について検討が十分でない。この検討が十分でなければ、通信品質の低下、スループットの低下など、を招くおそれがある。
 そこで、本発明者らは、統一TCI状態に関する動作においても、シングルTRPとマルチTRPとの切り替えを適切に行うことができ、各チャネル/信号に適用するQCL想定/TCI状態を適切に決定できる方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、指示TCI状態(indicated TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。
 また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。つまり、TRP IDとTRP、CORESETグループIDとCORESETグループなどは、互いに読み替えられてもよい。
 本開示において、TRP、送信ポイント、パネル、DMRSポートグループ、CORESETプール、TCIフィールドの1つのコードポイントに関連付けられた2つのTCI状態の1つ、は互いに読み替えられてもよい。
 本開示において、シングルTRPを用いるチャネル/信号の送信/受信は、当該チャネル/信号の送信/受信(例えば、NCJT/CJT/繰り返し)において、TCI状態(ジョイント/セパレート/指示TCI状態)が等しい、又は、当該チャネル/信号の送信/受信(例えば、NCJT/CJT/繰り返し)において、TCI状態(ジョイント/セパレート/指示TCI状態)の数が1つである、と読み替えられてもよい。
 シングルTRPを用いるチャネル/信号の送信/受信は、当該チャネル/信号の送信/受信(例えば、NCJT/CJT/繰り返し)において、TCI状態(ジョイント/セパレート/指示TCI状態)が異なる、又は、当該チャネル/信号の送信/受信(例えば、NCJT/CJT/繰り返し)において、異なるTCI状態(ジョイント/セパレート/指示TCI状態)の数が複数(例えば、2つ)である、と読み替えられてもよい。
 本開示において、シングル(単一)TRP、シングルTRPシステム、シングルTRP送信、シングルPDSCH、は互いに読み替えられてもよい。本開示において、マルチ(複数)TRP、マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。
 本開示において、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、特定のチャネル/CORESETに対して特定のインデックス(例えば、TRPインデックス、CORESETプールインデックス、又は、TRPに対応するインデックス)が設定されること、は互いに読み替えられてもよい。
 本開示において、シングルTRP、シングルTRPを用いるチャネル/信号、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、は互いに読み替えられてもよい。
 本開示において、マルチTRP、マルチTRPを用いるチャネル/信号、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。
 本開示において、マルチDCIに基づくマルチTRP、CORESETに対して1のCORESETプールインデックス(CORESETPoolIndex)値が設定されること、特定のチャネル/CORESETに対して複数の特定のインデックス(例えば、TRPインデックス、CORESETプールインデックス、又は、TRPに対応するインデックス)が設定されること、は互いに読み替えられてもよい。
 本開示において、TRP#1(第1TRP)は、CORESETプールインデックス=0に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1番目のTCI状態に対応してもよい。TRP#2(第2TRP)TRP#1(第1TRP)は、CORESETプールインデックス=1に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの2番目のTCI状態に対応してもよい。
 本開示において、シングルDCI(sDCI)、シングルPDCCH、シングルDCIに基づくマルチTRPシステム、sDCIベースMTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。
 本開示において、マルチDCI(mDCI)、マルチPDCCH、マルチDCIに基づくマルチTRPシステム、mDCIベースMTRP、2つのCORESETプールインデックス又はCORESETプールインデックス=1(又は1以上の値)が設定されること、は互いに読み替えられてもよい。
 本開示において、ビーム指示DCI、ビーム指示MAC CE、ビーム指示DCI/MAC CEは互いに読み替えられてもよい。言い換えれば、UEに対する指示TCI状態に関する指示は、DCI及びMAC CEの少なくとも1つを用いて行われてもよい。
 本開示において、繰り返し(repetition)、繰り返し送信、繰り返し受信、は互いに読み替えられてもよい。
 本開示において、チャネル、信号、チャネル/信号、は互いに読み替えられてもよい。本開示おいて、DLチャネル、DL信号、DL信号/チャネル、DL信号/チャネルの送信/受信、DL受信、DL送信、は互いに読み替えられてもよい。本開示おいて、ULチャネル、UL信号、UL信号/チャネル、UL信号/チャネルの送信/受信、UL受信、UL送信、は互いに読み替えられてもよい。
 本開示において、各チャネル/信号/リソースにTCI状態/QCL想定を適用することは、各チャネル/信号/リソースの送受信にTCI状態/QCL想定を適用することを意味してもよい。
 本開示において、第1のTRPに第1のTCI状態が対応してもよい。本開示において、第2のTRPに第2のTCI状態が対応してもよい。本開示において、第nのTRPに第nのTCI状態が対応してもよい。
 本開示において、第1のCORESETプールインデックスの値(例えば、0)、第1のTRPインデックスの値(例えば、1)、及び、第1のTCI状態(第1のDL/UL(ジョイント/セパレート)TCI状態)は互いに対応してもよい。本開示において、第2のCORESETプールインデックスの値(例えば、1)、第2のTRPインデックスの値(例えば、2)、及び、第2のTCI状態(第2のDL/UL(ジョイント/セパレート)TCI状態)は互いに対応してもよい。
 なお、下記本開示の各実施形態においては、複数TRPを利用する送受信における複数のTCI状態の適用について、2つのTRPを対象とする方法(すなわち、N及びMの少なくとも一方が2である場合)について主に説明するが、TRPの数は3以上(複数)であってもよく、TRPの数に対応するよう各実施形態が適用されてもよい。言い換えれば、N及びMの少なくとも一方は、2より大きい数であってもよい。
 本開示において、SFNを利用してDL信号(PDSCH/PDCCH)を受信することは、同一時間/周波数リソースを用いて、かつ/または、同一データ(PDSCH)/制御情報(PDCCH)を、複数の送受信ポイントから受信すること、を意味してもよい。また、SFNを利用してDL信号を受信することは、同一時間/周波数リソースを用いて、かつ/または、同一データ/制御情報を、複数のTCI状態/空間ドメインフィルタ/ビーム/QCLを利用して受信すること、を意味してもよい。
(無線通信方法)
<第0の実施形態>
 本実施形態では、各チャネルに対する指示TCI状態のマッピング/関連付けについて説明する。
 UEは、ビーム指示DCI/MAC CEを利用して、y個の指示TCI状態を指示されてもよい。当該yは、例えば、最大4であってもよいし、最大で4より大きい数であってもよいし、最大で4より小さい数であってもよい。
 UEは、y個の指示TCI状態のうち、x個の指示TCI状態を選択し、各チャネル/信号に適用してもよい。
 UEは、xに関する情報と、y個の指示TCI状態のうちどのx個の指示TCI状態を適用するかに関する情報と、の少なくとも1つを、上位レイヤシグナリング(RRC/MAC CE)/DCIを用いて受信してもよい。
 当該xは、各チャネル/信号の種類によって異なってもよい。当該yは、各チャネル/信号の種類によって異なってもよいし、同じであってもよい。
 シングルTRPの動作の場合、yは第1の値(例えば、1)であってもよい。例えば、yが1である場合、UEは、Rel.17で規定される統一TCI状態の動作を行うと想定してもよい。
 マルチTRP動作の場合、yは第2の値(例えば、2)であってもよい。また、マルチTRP動作の場合、yは第3の値(例えば、4)であってもよい。マルチTRP動作の場合にyを第3の値とすることで、より柔軟なビーム指示を行うことができる。
 CJTに関する動作の場合、yは第3の値(例えば、4)であってもよい。
 なお、本開示の各実施形態では、ジョイントTCI状態を主な例として記載するが、セパレート(UL/DL)TCI状態についても適宜適用が可能である。
 ジョイントTCI状態についてy個の指示TCI状態が指示される場合、セパレート(UL/DL)TCI状態について2y個の指示TCI状態が指示されてもよい。例えば、最大で4つのジョイントTCI状態が指示される場合、最大で4つのUL TCI状態と、最大で4つのDL TCI状態と、が指示されてもよい(すなわち、最大で8つ)。
 本開示において、同一のBWP/CC内では、ジョイントTCI状態及びセパレート(UL/DL)TCI状態のいずれか片方がRRC/MAC CE/DCIで設定/指示されてもよい。また、本開示において、同一のBWP/CC内では、ジョイントTCI状態及びセパレート(UL/DL)TCI状態の両方がRRC/MAC CE/DCIで設定/指示されてもよい。
《シングルDCIベースのマルチTRPのPDCCH》
 UEに対して、設定/指示TCI状態(ジョイント/DL TCI状態)と、CORESET/CORESETグループと、のマッピング/対応関係が設定されてもよい。
 当該設定は、上位レイヤシグナリング(RRC)を用いて設定されてもよい。
 1つのCORESETごとに、指示TCI状態(例えば、第1/第2の指示TCI状態)についての1つの又は複数(例えば、2つ)のインデックスが設定されてもよい。
 統一TCI状態に従うこと(例えば、followUnifiedTCIstate)が設定されるCORESETについて、当該CORESETに対し、y個の指示TCI状態から選択されたx個のTCI状態が適用されてもよい。
 例えば、single frequency network(SFN)スキーム(例えば、SFNスキームA/B)が設定されないCORESETについての当該xは、第1の値(例えば、1)であってもよい。例えば、SFNスキーム(例えば、SFNスキームA/B)が設定されるCORESETについての当該xは、第2の値(例えば、2)であってもよい。
《シングルDCIベースのマルチTRPのPDSCH》
 シングルDCIベースのマルチTRPのPDSCHが設定される場合、スケジューリングDCIによる、シングルTRPのPDSCHとマルチTRPのPDSCHとの切り替えがサポートされてもよい。
 PDSCHに対し、y個の指示TCI状態から選択されたx個のTCI状態が適用されてもよい。
 例えば、シングルTRPのPDSCHについての当該xは、第1の値(例えば、1)であってもよい。例えば、マルチTRPのPDSCH(例えば、シングルDCIベースのマルチTRPによるNCJT/繰り返し/SFN)についての当該xは、第2の値(例えば、2)であってもよい。
《シングルDCIベースのマルチTRPのPUCCH》
 マルチTRPのPUCCH(繰り返し)が設定される場合、スケジューリングDCIによる、シングルTRPのPUCCH(繰り返し)とマルチTRPのPUCCH(繰り返し)との切り替えがサポートされてもよい。
 PUCCHに対し、y個の指示TCI状態から選択されたx個のTCI状態が適用されてもよい。当該xは、スケジューリングDCIによって示されてもよい。
 例えば、シングルTRPのPUCCH(繰り返し)についての当該xは、第1の値(例えば、1)であってもよい。例えば、マルチTRPのPUCCH(繰り返し)についての当該xは、第2の値(例えば、2)であってもよい。
 マルチTRPのPUCCH(繰り返し)が設定されない場合、PUCCHに対し、y個の指示TCI状態から選択された1つのTCI状態が適用されてもよい。
 当該1つのTCI状態の選択は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC)で設定されもよい。
 PDSCHと関連するPUCCHのTCI状態は、同じであってもよいし、異なってもよい。例えば、PDSCHに対し2つのTCI状態を要し、当該PDSCHに関連するPUCCHが1つのTCI状態を要する場合、UEは、PDSCH/PUCCHのために2つ(x=2)のTCI状態を選択し、PUCCHについての2番目のTCI状態を無視してもよい。
《シングルDCIベースのマルチTRPのPUSCH》
 マルチTRPのPUSCH繰り返し(CB/NCBの複数(例えば、2つ)のSRSリソースセット)が設定される場合、スケジューリングDCI内の特定のフィールドによる、シングルTRPのPUSCH繰り返しとマルチTRPのPUSCH繰り返しとの切り替えがサポートされてもよい。
 当該特定のフィールドは、例えば、SRSリソースセットインディケータフィールドであってもよい。当該スケジューリングDCIは、例えば、DCIフォーマット0_1/0_2であってもよい。
 PUSCHに対し、y個の指示TCI状態から選択されたx個のTCI状態が適用されてもよい。当該xは、スケジューリングDCIによって示されてもよい。
 例えば、シングルTRPのPUSCH(繰り返し)についての当該xは、第1の値(例えば、1)であってもよい。例えば、マルチTRPのPUSCH(繰り返し)についての当該xは、第2の値(例えば、2)であってもよい。
 マルチTRPのPUSCH(繰り返し)が設定されない場合、PUSCHに対し、y個の指示TCI状態から選択された1つのTCI状態が適用されてもよい。
 当該1つのTCI状態の選択は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC)で設定されもよい。
《マルチDCIベースのマルチTRPのPDCCH》
 CORESETプールインデックス(CORESETPoolIndex)の値に対応するDCI(DCIフォーマット1_1/1_2(DLアサインメントあり/なし))内における特定のフィールドを用いて、同じCORESETプールインデックスの値に対応する指示TCI状態(ジョイント/DL/UL TCI状態)が指示されてもよい。
 第1の値(例えば、0)のCORESETプールインデックスについて、y個の指示TCI状態が指示され、第2の値(例えば、1)のCORESETプールインデックスについて、y個の指示TCI状態が指示されてもよい。
 第1の値のCORESETプールインデックスが設定されるCORESETについて、当該CORESETに対し、y個の指示TCI状態から選択されたx個のTCI状態が適用されてもよい。
 第2の値のCORESETプールインデックスが設定されるCORESETについて、当該CORESETに対し、y個の指示TCI状態から選択されたx個のTCI状態が適用されてもよい。
 例えば、SFNスキーム(例えば、SFNスキームA/B)が設定されないCORESETについての当該xは、第1の値(例えば、1)であってもよい。例えば、SFNスキーム(例えば、SFNスキームA/B)が設定されるCORESETについての当該xは、第2の値(例えば、2)であってもよい。
 1つのCORESETごとに、指示TCI状態(例えば、第1/第2の指示TCI状態)についての1つの又は複数(例えば、2つ)のインデックスが設定されてもよい。当該設定は、上位レイヤシグナリング(RRC)を用いて設定されてもよい。
《指示TCI状態に関する数》
 以下では、各チャネル/信号についての上記x及びyについて詳述する。
 上記xは、上記y(y及びyを含む)個の指示TCI状態のうちの、各チャネル/信号に適用するTCI状態の数であってもよい。
 上記xは、適用されるチャネル/信号ごと別々に決定されてもよい。上記xは、適用されるチャネル/信号ごと異なることがサポートされてもよい。
 上記y個の指示TCI状態のうち、適用されるチャネル/信号ごと別々に適用されるTCI状態が決定されてもよい。上記y個の指示TCI状態のうち、適用されるチャネル/信号ごとに適用されるTCI状態が異なることがサポートされてもよい。
 上記y個の指示TCI状態のうち、適用されるチャネル/信号のリソース/リソースセット/CORESETごと別々に、適用されるTCI状態が決定されてもよい。上記y個の指示TCI状態のうち、適用されるチャネル/信号のリソース/リソースセット/CORESETごとに、適用されるTCI状態が異なることがサポートされてもよい。
[CSI-RS/TRS/SSB/SRS]
 特定の参照信号(例えば、CSI-RS/TRS/SSB/SRS)についてのxは、特定の値であってもよい。
 当該特定の値は、1であってもよい。
 また、当該特定の値は、2以上であってもよい。例えば、マルチTRPを利用する特定の参照信号の繰り返しでは、xが2以上であってもよい。
 特定の参照信号のタイプは、特定のタイプ(例えば、A/SP/P)であってもよい。
 特定の参照信号は、CSI-RS/SRSに限定されてもよい。
 特定の参照信号は、上位レイヤシグナリング(RRC)で設定されてもよい。例えば、特定の参照信号は、特定のRRCパラメータ(例えば、followUnifiedTCIstate)が設定される参照信号であってもよい。
 当該特定の参照信号は、特定の用途/目的の参照信号であってもよい。例えば、当該特定の参照信号は、繰り返しありのCSI-RS(CSI-RS with repetition)、繰り返しなしのCSI-RS(CSI-RS without repetition)、トラッキング参照信号の情報(trs-info)を有するCSI-RS、ビームマネジメント用のCSI-RS、用途(usage)がCB/NCB/ビームマネジメント/アンテナスイッチングのSRS、の少なくとも1つであってもよい。
[PDSCH]
 特定のチャネル(例えば、PDSCH)についてのxは、特定の値であってもよい。
 特定の値は、例えば、2以上の値(例えば、2)であってもよい。
 例えば、シングルDCIベースのマルチTRPのPDSCH(NCJT/繰り返し/SFN)について、当該特定の値が2であってもよい。
 例えば、UEは、当該特定の値が2であるとき、シングルDCIベースのマルチTRPのPDSCH(NCJT/繰り返し/SFN)の受信を想定/判断してもよい。
 特定の値は、例えば、1であってもよい。
 例えば、シングルTRPのPDSCH、及び、マルチDCIベースのマルチTRPのPDSCH、の少なくとも一方について、当該特定の値が1であってもよい。当該マルチDCIベースのマルチTRPのPDSCHは、CORESETプールインデックスごとに1つの指示TCI状態が指示される場合であってもよい。
 例えば、UEは、当該特定の値が1であるとき、シングルTRPのPDSCH、及び、マルチDCIベースのマルチTRPのPDSCH、の少なくとも一方の受信を想定/判断してもよい。
 なお、マルチDCIベースのマルチTRPのPDSCHについて、1つのDCIによってCORESETプールインデックス向けに複数(例えば、2つ)の指示TCI状態が指示される場合、上記xは2であってもよい。
[PDCCH]
 特定のチャネル(例えば、PDCCH)についてのxは、特定の値であってもよい。
 特定の値は、例えば、2以上の値(例えば、2)であってもよい。
 例えば、SFNのPDCCH(例えば、CORESETに対してSFNスキーム(スキームA/B)が設定される場合)について、当該特定の値が2であってもよい。
 例えば、UEは、当該特定の値が2であるとき、SFNのPDCCHの受信を想定/判断してもよい。
 特定の値は、例えば、1であってもよい。
 例えば、SFNのPDCCH以外のPDCCHについて、当該特定の値が1であってもよい。
 例えば、UEは、当該特定の値が1であるとき、SFNのPDCCH以外のPDCCHの受信を想定/判断してもよい。
 PDCCHに対するxは、CORESET/サーチスペースごとに決定/設定/指示されてもよい。また、PDCCHに対するxは、あるBWP/CCにおける複数(例えば、全ての)CORESET/サーチスペースについて決定/設定/指示されてもよい。
[PUCCH]
 特定のチャネル(例えば、PUCCH)についてのxは、特定の値であってもよい。
 特定の値は、例えば、2以上の値(例えば、2)であってもよい。
 例えば、PUCCHの繰り返し(例えば、ビームの循環的(cyclic)/逐次的(sequential)ホッピングが設定される場合)、及び、Simultaneous Transmission across multiple panels(STxMP)のPUCCH(例えば、周波数分割多重(FDM)/空間分割多重(SDM)/SFNのPUCCHの繰り返し)、の少なくとも一方について、当該特定の値が2であってもよい。
 例えば、UEは、当該特定の値が2であるとき、PUCCHの繰り返し、及び、STxMPのPUCCH、の少なくとも一方の受信を想定/判断してもよい。
 特定の値は、例えば、1であってもよい。
 例えば、PUCCHの繰り返し、及び、STxMPのPUCCH、の少なくとも一方以外のPUCCHについて、当該特定の値が1であってもよい。
 例えば、UEは、当該特定の値が1であるとき、PUCCHの繰り返し、及び、STxMPのPUCCH、の少なくとも一方以外のPUCCHの受信を想定/判断してもよい。
 PUCCHに対するxは、PUCCHの用途に基づいて決定されてもよい。例えば、PUCCHにおいて特定のUCI(例えば、HARQ-ACK)が含まれない場合、当該PUCCHに対するxは1であってもよい。例えば、PUCCHにおいて特定のUCI(例えば、HARQ-ACK)が含まれる場合、当該PUCCHに対するxが2であることが許容されてもよい。
 PUCCHに対するxは、PUCCHのトリガの方法に基づいて決定されてもよい。例えば、PUCCHがDCIによってトリガされない場合、当該PUCCHに対するxは1であってもよい。例えば、PUCCHがDCIによってトリガされる場合(例えば、HARQ-ACKが送信されるPUCCHの場合)、当該PUCCHに対するxが2であることが許容されてもよい。
 PUCCHに対するxは、BWP/CCにおけるPUCCHリソース/リソースグループごとに決定/設定/指示されてもよい。
 また、PUCCHに対するxは、あるBWP/CCにおける複数(例えば、全ての)PUCCHリソース/リソースグループについて決定/設定/指示されてもよい。
 図4A及び図4Bは、PUCCHリソース/リソースグループと指示TCI状態との関連付けの一例を示す図である。図4Aに示す例において、UEに対し、PUCCHリソースグループ(PUCCHリソースグループ#1-#4)、及び、PUCCHリソース(PUCCHリソース#1-#8)が設定される。これらPUCCHリソース/リソースセットは、あるCC(CC#1)内のあるBWP(BWP#1)において設定されてもよい。PUCCHリソースグループとPUCCHリソースの対応関係は、図4Aに示す通りである。
 図4Bは、ビーム指示TCI状態によって指示される4つのTCI状態と、各TCI状態に対応するインデックスとの関連付けを示す図である。
 図4Aに示す通り、PUCCHリソースグループごとに、適用するTCI状態に関するインデックスが関連付けられる。UEは、当該関連付けられるインデックスと、図4Bに示されるインデックスに対応するTCI状態とに基づいて、各PUCCHに対応するTCI状態と、当該TCI状態の数を判断してもよい。
 このように、PUCCHリソース単位/リソースグループ単位で指示TCI状態のインデックスを設定/決定/指示することで、スケジューリングDCI(に含まれるPRI/CCEインデックスフィールド)でシングルTRP及びマルチTRPの動作を切り替えることができる。
 また、PUCCHリソース単位/リソースグループ単位による指示TCI状態のインデックスの設定/指示/更新は、上位レイヤシグナリング(RRC/MAC CE)/DCI(ビーム指示DCI)を用いて行われてもよい。
 また、PUCCHリソースに適用される指示TCI状態、及び、指示TCI状態の数(x)の少なくとも一方に基づいて、同一のDCIがスケジュールするPDSCHに適用される指示TCI状態、及び、指示TCI状態の数(x)の少なくとも一方が決定されてもよい。
 また、同一のDCIがスケジュールするPDSCHに適用される指示TCI状態、及び、指示TCI状態の数(x)の少なくとも一方に基づいて、PUCCHリソースに適用される指示TCI状態、及び、指示TCI状態の数(x)の少なくとも一方が決定されてもよい。
[PUSCH]
 特定のチャネル(例えば、PUSCH)についてのxは、特定の値であってもよい。
 特定の値は、例えば、2以上の値(例えば、2)であってもよい。
 例えば、PUSCHの繰り返し(例えば、CB/NCBの複数(例えば、2つ)のSRSリソースセットが設定される場合)、及び、STxMPのPUSCH(例えば、周波数FDM/SDM/SFNのPUSCHの繰り返し、及び、PUSCHの各レイヤをそれぞれ別のビームで送信する場合)、の少なくとも一方について、当該特定の値が2であってもよい。
 例えば、UEは、当該特定の値が2であるとき、PUSCHの繰り返し、及び、STxMPのPUSCH、の少なくとも一方の受信を想定/判断してもよい。
 特定の値は、例えば、1であってもよい。
 例えば、PUSCHの繰り返し、及び、STxMPのPUSCH、の少なくとも一方以外のPUSCHについて、当該特定の値が1であってもよい。
 例えば、UEは、当該特定の値が1であるとき、PUSCHの繰り返し、及び、STxMPのPUSCH、の少なくとも一方以外のPUSCHの受信を想定/判断してもよい。
 本実施形態におけるPUSCHは、例えば、コンフィギュアドグラントのPUSCH、及び、DCIでスケジュールされるPUSCH、の少なくとも一方であってもよい。
 PUCCHに対するxは、PUSCHをスケジュールするDCIに基づいて決定されてもよい。例えば、PUSCHが特定のDCIフォーマット(例えば、DCIフォーマット0_1/0_2)でスケジュールされる場合、当該PUCCHに対するxは2であってもよい。例えば、PUSCHが特定のDCIフォーマット(例えば、DCIフォーマット0_1/0_2)以外のDCIフォーマットでスケジュールされる場合、当該PUSCHに対するxは1であってもよい。
 以上第0の実施形態によれば、各チャネル/信号に対して適用する指示TCI状態の数を適切に決定することができる。
<第1の実施形態>
 本実施形態では、指示TCI状態の適用を詳述する。
 本実施形態における動作の概要を、図5A-図5Cを用いて説明する。
 図5Aは、第1の実施形態に係る指示TCI状態の適用の一例を示す図である。
 UEは、まず、ビーム指示DCIを受信してもよい。また、UEは、各チャネル/信号をスケジュール/トリガするDCI(スケジューリング/トリガリングDCI)を受信してもよい。
 図5Aに示す例において、UEは、まず、ビーム指示DCI(DCI#0)を受信する。ついで、UEは、PDSCH#1-#4をそれぞれスケジュールするDCI(スケジューリングDCI)である、DCI#1-#4を受信する。
 ビーム指示DCIは、y個の指示TCI状態を指示してもよい。当該指示TCI状態は、当該指示TCI状態に対応するインデックスによって識別されてもよい。
 例えば、DCI#0は、4個の指示TCI状態を指示し、各指示TCI状態は第1-第4のインデックスで識別される(図5B参照)。
 UEは、PDSCH#1-#4に対応するHARQ-ACKの送信から、特定の時間(ビーム適用時間(BAT)、BeamAppTime_r17で示される時間)経過後に、新たなビーム指示DCIによって指示される指示TCI状態(例えば、図5Cに示す対応関係を参照)に更新してもよい。
 UEは、スケジューリングDCIに含まれる特定のフィールドに基づいて、ビーム指示DCIに基づく指示TCI状態のうち、どのTCI状態を適用するか判断してもよい。
 例えば、UEは、スケジューリングDCIに含まれる特定のフィールドに基づいて、1つ又は複数(例えば、2つ)の指示TCI状態に関するインデックスを指示されてもよい。
 複数の指示TCI状態に関するインデックスを指示される場合、UEは、当該指示される複数の指示TCI状態のうち、特定の方法に基づいて、適用するTCI状態と、TCI状態の順番と、の少なくとも一方を判断してもよい。
 当該特定の方法については、以下で詳述する。
 図5Aに示す例では、DCI#1によってPDSCH#1に第1のインデックスの指示TCI状態を適用すること、DCI#2によってPDSCH#2に第2のインデックスの指示TCI状態を適用すること、DCI#3によってPDSCH#3に、第1のインデックスの指示TCI状態(第1のTCI状態)と、第2のインデックスの指示TCI状態(第2のTCI状態)とを適用すること、及び、DCI#4によってPDSCH#4に、第3のインデックスの指示TCI状態(第1のTCI状態)と、第4のインデックスの指示TCI状態(第2のTCI状態)とを適用すること、が示されている。
 以下では、各チャネル/信号に適用する指示TCI状態の判断に係る上記特定の方法について説明する。
 UEは、下記実施形態1-1から1-4に記載される少なくとも1つの方法に従ってもよい。
《実施形態1-1》
 UEは、スケジューリング/トリガリングDCIに含まれる特定のフィールドに基づいて、各チャネル/信号に適用するTCI状態と、TCI状態の順番と、の少なくとも一方を判断してもよい。
 UEは、特定のフィールドに基づいて、y個の指示TCI状態から、x個(1つ又は複数)のTCI状態を選択/決定してもよい。
 当該特定のフィールドは、Rel.18以降に規定される新たなフィールドであってもよい。
 本開示において、スケジューリング/トリガリングDCIは、チャネル(例えば、PUSCH/PDSCH/PUCCH)をスケジュールするDCIであってもよいし、信号(例えば、SRS/CSI-RS)をトリガするDCIであってもよい。スケジューリング/トリガリングDCIは、特定のDCIフォーマット(例えば、DCIフォーマット0_1/0_2/1_1/1_2)であってもよい。
 当該特定のフィールドは、y個の指示TCI状態のインデックスのいずれかを示すフィールドであってもよい。
 特定のフィールドのコードポイントと、指示TCI状態のインデックスと、の対応関係が、UEに対し規定/設定/指示/通知されてもよい(図6B参照)。UEは、特定のフィールドと当該対応関係とに基づいて、スケジュール/トリガされるチャネル/信号に適用するTCI状態(指示TCI状態のインデックス)を判断してもよい。
 当該対応関係は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)でUEに設定/指示されてもよいし、特定のDCIで指示されてもよい。
 当該特定のDCIは、例えば、ビーム指示DCIであってもよい。UEは、ビーム指示DCIによって、特定のフィールドの各コードポイントに対応するインデックスを更新されてもよい。
 当該特定のフィールドは、特定のビット数(例えば、2ビット)を有してもよい。当該特定のビット数は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)でUEに設定されてもよい。
 UEは、特定のフィールドで指示されるインデックスに対応する指示TCI状態を、スケジューリング/トリガリングDCIに対応するチャネル(例えば、PDSCH/PUSCH/PUCCH)/信号(例えば、CSI-RS/TRS)に適用してもよい。
 図6A及び図6Bは、実施形態1-1に係る指示TCI状態の適用の一例を示す図である。図6Aに示す例において、UEは、スケジューリングDCI(DCI#4)によって、PDSCH#4及びPUCCH#4をスケジュールされる。
 図6Aに示す例において、UEは、スケジューリングDCIに含まれるフィールドを用いて、チャネルに適用するTCI状態のインデックスを指示される。図6Bに示す例では、当該フィールドはコードポイント「00」を示す。
 UEは、上述の図6Bに示すような対応関係に基づき、コードポイント「00」に対応する第1のインデックスを指示される。UEは、当該第1のインデックスに対応する指示TCI状態を、PDSCH#4及びPUCCH#4に適用する。図6Bに示す例では、PDSCH#4に第1のインデックスの指示TCI状態(ジョイント/DL TCI状態)であるTCI状態#1が適用され、PUCCH#4に第1のインデックスの指示TCI状態(ジョイント/UL TCI状態)であるTCI状態#1が適用される例が記載される。
 なお、本実施形態におけるDLのチャネル/信号は、スケジューリング/トリガリングDCIによってスケジュール/トリガされるPDSCH/RSに限られない。本実施形態におけるDLのチャネル/信号は、他の任意のPDSCH(例えば、スケジュールされるPDSCH以外のPDSCH)であってもよいし、他の任意のRS(例えば、トリガされるRS以外のRS)であってもよい。
 また、本実施形態におけるULのチャネル/信号は、スケジューリング/トリガリングDCIによってスケジュール/トリガされるPUSCH/PUCCH/RSに限られない。本実施形態におけるULのチャネル/信号は、他の任意のPUSCH/PUCCH(例えば、スケジュールされるPUSCH/PUCCH以外のPUSCH/PUCCH)であってもよいし、他の任意のRS(例えば、トリガされるRS以外のRS)であってもよい。
[実施形態1-1のバリエーション]
 スケジューリングDCIに含まれる特定のフィールドは、1つ又は複数であってもよい。
 UEは、複数(例えば、2つ)の特定のフィールド(ここでは、第1のフィールド及び第2のフィールドとする)に基づいて、各チャネル/信号に適用するTCI状態を判断してもよい。
 UEは、第1のフィールドによって、指示TCI状態に関する第1のインデックスを指示され、第2のフィールドによって、指示TCI状態に関する第2のインデックスを指示されてもよい。
 UEは、チャネル/信号に適用するTCI状態が1つである場合、第1(又は第2)のフィールドに基づいて、当該1つのTCI状態を判断してもよい。
 UEは、チャネル/信号に適用するTCI状態が複数(例えば、2つ)である場合、第1のフィールド及び第2のフィールドに基づいて、当該2つのTCI状態を判断してもよい。
 第1のフィールドで示されるインデックス(第1のインデックス)に関する対応関係と、第2のフィールドで示されるインデックス(第2のインデックス)に関する対応関係とは、共通の対応関係であってもよい。また、第1のフィールドで示されるインデックス(第1のインデックス)に関する対応関係と、第2のフィールドで示されるインデックス(第2のインデックス)に関する対応関係とは、別々の(異なる)対応関係であってもよい。
 図7A及び図7Bは、実施形態1-1のバリエーションに係る指示TCI状態の適用の一例を示す図である。図7Aに示す例において、UEは、スケジューリングDCI(DCI#4)によって、PDSCH#4、PUCCH#4(PUCCH#4-1及びPUCCH#4-2)をスケジュールされる。
 図7Aに示す例において、UEは、スケジューリングDCIに含まれるフィールドを用いて、チャネルに適用するTCI状態のインデックスを指示される。図7Aに示す例では、第1のインデックスを示すフィールドによってコードポイント「00」が示され、第2のインデックスを示すフィールドによってコードポイント「10」が示される。
 UEは、図7Bに示すような対応関係に基づき、適用するTCI状態を判断する。図7Bに示す例では、第1のインデックスに関する対応関係と、第2のインデックスに関する対応関係とが、共通である場合を示している。
 図7Aに示す例では、PDSCH#4に適用するTCI状態は1つである。このとき、UEは、コードポイント「00」が示す第1のインデックスに対応する指示TCI状態(ここでは、TCI状態#1)を、PDSCH#4に適用する。
 また、図7Bに示す例では、PUCCH#4(PUCCH#4-1及びPUCCH#4-2)に適用するTCI状態は2つである。このとき、UEは、コードポイント「10」が示す第2のインデックスに対応する指示TCI状態(ここでは、TCI状態#1及びTCI状態#4)を、PUCCH#4(それぞれPUCCH#4-1及びPUCCH#4-2)に適用する。
 なお、本開示において、複数(例えば、2つ)のTCI状態が適用されるチャネル/信号は、マルチTRPを利用するチャネル/信号を意味してもよい。
 なお、上記図7A及び図7Bに記載するような、1つ又は複数のインデックスを指示するDCIフィールドに関する動作は、UEに対し、マルチTRPのPUCCH(繰り返し)が設定された場合にのみ使用/適用されてもよい。UEは、マルチTRPのPUCCH(繰り返し)が設定されない場合、1つ又は複数のインデックスを指示するDCIフィールドが存在しないと想定してもよい。
 また、本開示において、1つの指示TCI状態を要する動作(例えば、シングルTRPの動作)が設定され、複数の指示TCI状態が指示される場合、UEは、当該複数の指示TCI状態から、RRC/MAC CE/DCI(新規DCIフィールド)を用いて1つの指示TCI状態を決定してもよい。
 当該新規DCIフィールドのビット数は、指示される指示TCI状態の数(例えば、y)に基づいて決定されてもよい。
 図8は、スケジューリングDCIによって指示される指示TCI状態、指示TCI状態の数/順序に関する情報の一例を示す図である。図8に示す例では、スケジューリングDCIに含まれる特定のフィールドのコードポイントと、ビーム指示DCIによって指示される指示TCI状態、指示TCI状態の数/順序と、の対応関係が示される。
 UEは、上記特定のフィールドを用いて、当該対応関係に示す1つのコードポイントを指示されてもよい。
 図8に示す例では、コードポイント「00」は、対応するPDSCHに、1つの指示TCI状態を適用することを示し、適用されるTCI状態が第1のTCI状態であることを示している。また、コードポイント「01」は、対応するPDSCHに、1つの指示TCI状態を適用することを示し、適用されるTCI状態が第2のTCI状態であることを示している。
 また、図8に示す例では、コードポイント「10」は、対応するPDSCHに、2つの指示TCI状態を適用することを示し、適用されるTCI状態が、最初に、第1のTCI状態、次いで、第2のTCI状態、の順番であることを示している。また、コードポイント「11」は、対応するPDSCHに、2つの指示TCI状態を適用することを示し、適用されるTCI状態が、最初に、第2のTCI状態、次いで、第1のTCI状態、の順番であることを示している。
 例えば、UEが、スケジューリングDCIのフィールド(例えば、TCIフィールド)によって、第1のインデックスの指示TCI状態と、第2のインデックスの指示TCI状態を指示され、スケジューリングDCIの特定のフィールドによって、1つのTCI状態の適用及び第1のTCI状態の適用(すなわち、上記コードポイント「00」)を指示される場合、UEは、第1のインデックスの指示TCI状態を、スケジューリングDCIに対応するPDSCHに適用する。
 なお、図8に示す対応関係は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)でUE対して設定/更新されてもよい。
《実施形態1-2》
 UEは、スケジューリング/トリガリングDCIに含まれる特定のフィールドに基づいて、各チャネル/信号に適用するTCI状態と、TCI状態の順番と、の少なくとも一方を判断してもよい。
 UEは、当該特定のフィールドに基づいて、y個の指示TCI状態から、x個(1つ又は複数)のTCI状態を選択/決定してもよい。
 当該特定のフィールドは、既存の(Rel.17までに規定される)フィールドであってもよい。当該特定のフィールドは、既存の(Rel.17までに規定される)フィールドが拡張されたフィールドであってもよい。
 特定のDLチャネル(例えば、PDSCH)について、DCIに含まれる特定のフィールドが、x個のTCI状態の指示に用いられてもよい。
 UEは、特定のDLチャネルについてのx個のTCI状態の決定について、以下の実施形態1-2-1及び1-2-2の少なくとも1つに従ってもよい。
[実施形態1-2-1]
 UEは、DCIに含まれる特定のフィールドに基づいて、特定のDLチャネル(例えば、PDSCH)に適用する指示TCI状態を決定してもよい。
 当該DCIは、例えば、当該特定のチャネルをスケジュールするDCI(例えば、DCIフォーマット1_1/1_2)であってもよい。
 当該DCIは、例えば、ビーム指示DCI以外のDCIであってもよい。
 当該特定のフィールドは、既存の(Rel.17までに規定される)フィールドであってもよい。当該特定のフィールドは、既存の(Rel.17までに規定される)フィールドが拡張されたフィールドであってもよい。
 当該特定のフィールドは、Rel.17の動作では使用されないフィールドであってもよい。
 当該特定のフィールドは、例えば、TCI状態(TCI)フィールドであってもよい。また、当該特定のフィールドは、TCI状態(TCI)フィールド以外のフィールドであってもよい。
 UEは、当該特定のフィールドで指示されるTCI状態を、当該特定のDLチャネル(例えば、PDSCH)と、当該特定のDLチャネルに関連するULチャネル(例えば、PUCCH)に適用してもよい。
 図9は、実施形態1-2-1に係るTCI状態の指示の一例を示す図である。図9に示す例において、スケジューリングDCI内のTCIフィールドのコードポイントに、1つ又は複数(2つ)の適用するTCI状態のインデックスと、第1-第4のジョイントTCI状態の少なくとも1つと、が対応する。
 図9に示す例において、UEは、指示されるTCIフィールドに基づいて、スケジューリングDCIでスケジュールされるDLチャネルに適用するTCI状態のインデックスを判断する。このとき、UEが適用するTCI状態は、現在適用されているビーム指示DCIによる指示TCI状態である。図9に示す例において、UEは、スケジューリングDCI内のTCIフィールドに対応する指示TCI状態(第1-第4のジョイントTCI状態)については、スケジュールされるDLチャネルには適用しない。
 なお、スケジューリングDCI内のTCIフィールドに対応する指示TCI状態(第1-第4のジョイントTCI状態)は、当該スケジューリングDCIでスケジュールされるDLチャネルに対応するULチャネル(HARQ-ACK)の送信後、BAT経過後に適用されるTCI状態を示してもよい。
[実施形態1-2-2]
 UEは、DCIに含まれる特定のフィールドに基づいて、特定のDLチャネル(例えば、PDSCH)に適用する指示TCI状態を決定してもよい。
 当該DCIは、例えば、特定のDCI(例えば、DCIフォーマット1_1/1_2)であってもよい。
 当該特定のDCIは、DLアサインメントありのDCI(DCI with DL assignment)、DLチャネル(PDSCH)をスケジュールするDCI、であってもよい。当該特定のDCIは、DLアサインメントなしのDCI(DCI without DL assignment)、DLチャネル(PDSCH)をスケジュールしないDCI、であってもよい。
 当該特定のフィールドは、既存の(Rel.17までに規定される)フィールドであってもよい。当該特定のフィールドは、既存の(Rel.17までに規定される)フィールドが拡張されたフィールドであってもよい。
 UEは、当該特定のフィールドで指示されるTCI状態を、当該特定のDLチャネル(例えば、PDSCH)と、当該特定のDLチャネルに関連するULチャネル(例えば、PUCCH)に適用してもよい。
 図10は、実施形態1-2-2に係るTCI状態の指示の一例を示す図である。図10に示す例において、スケジューリングDCI内のTCIフィールドのコードポイントに、1つ又は複数(2つ)の適用するTCI状態のインデックスと、第1-第4のジョイントTCI状態の少なくとも1つと、のいずれかが対応する。
 図10に示す例において、UEは、指示されるTCIフィールドに基づいて、スケジューリングDCIでスケジュールされるDLチャネルに適用するTCI状態のインデックスを判断する。
 UEは、1つ又は複数(2つ)の適用するTCI状態のインデックスと対応するコードポイント(例えば、図10におけるコードポイント「000」-「011」)が指示される場合、指示TCI状態について更新をせず、すでに指示された複数の(y個)の指示TCI状態のうち、指示されたインデックスに対応する指示TCI状態を、チャネル/信号に適用する。
 UEは、第1-第4のジョイントTCI状態の少なくとも1つと対応するコードポイント(例えば、図10におけるコードポイント「100」-「111」)が指示される場合、すでに指示された複数の(y個)指示TCI状態を、当該コードポイントで指示される指示TCI状態に更新してもよい。
 なお、図10に記載される対応関係は、上位レイヤシグナリング(RRC/MAC CE)を用いてUEに設定/指示されてもよい。図10に記載した通り、当該対応関係には、TCI状態の更新の有無を示す情報(列(column))が含まれてもよいし、含まれなくてもよい。
 なお、図10に記載される対応関係は、DLアサインメントありのDCI(DCI with DL assignment)、DLチャネル(PDSCH)をスケジュールするDCI、に関する対応関係であってもよいし、DLアサインメントなしのDCI(DCI without DL assignment)、DLチャネル(PDSCH)をスケジュールしないDCI、に関する対応関係であってもよい。
 図11は、実施形態1-2-2に係るTCI状態の指示の他の例を示す図である。図11に示す例において、スケジューリングDCI内のTCIフィールドのコードポイントに、第1-第4のジョイントTCI状態の少なくとも1つと、のいずれかが対応する。
 図11は、前述の図10と比較し、指示されるTCIフィールドのコードポイントの全てに、第1-第4のジョイントTCI状態の少なくとも1つが対応する。
 この場合、UEは、いずれのコードポイントを指示された場合であっても、すでに指示された複数の(y個)指示TCI状態を、当該コードポイントで指示される指示TCI状態に更新してもよい。
 なお、図11に記載される対応関係は、上位レイヤシグナリング(RRC/MAC CE)を用いてUEに設定/指示されてもよい。図11に記載した通り、当該対応関係には、TCI状態の更新の有無を示す情報(列(column))が含まれてもよいし、含まれなくてもよい。
 なお、図11に記載される対応関係は、DLアサインメントなしのDCI(DCI without DL assignment)、DLチャネル(PDSCH)をスケジュールしないDCI、に関する対応関係であってもよい。
 図11に記載される対応関係は、PDSCHのスケジュールがない場合、及び、PDSCH用に適用するTCI状態のインデックスを通知する必要がない場合、の少なくとも一方において使用されてもよい。この場合のPUCCHに対するTCI状態の適用は、前述の実施形態1-2-1が適用されてもよいし、後述する実施形態1-3が適用されてもよい。
《実施形態1-3》
 UEは、スケジューリング/トリガリングDCIに含まれる特定のフィールドに基づいて、各チャネル/信号に適用するTCI状態と、TCI状態の順番と、の少なくとも一方を判断してもよい。
 UEは、当該特定のフィールドに基づいて、y個の指示TCI状態から、x個(1つ又は複数)のTCI状態を選択/決定してもよい。
 当該特定のフィールドは、既存の(Rel.17までに規定される)フィールドであってもよい。当該特定のフィールドは、既存の(Rel.17までに規定される)フィールドが拡張されたフィールドであってもよい。
 当該特定のフィールドは、例えば、PRIフィールド、及び、CCEインデックスフィールド、の少なくとも1つであってもよい。
 特定のULチャネル(例えば、PUCCH)について、DCIに含まれる特定のフィールドが、x個のTCI状態の指示に用いられてもよい。
 UEに対し、予め上位レイヤシグナリング(RRC/MAC CE)/物理レイヤシグナリング(DCI)を用いて、PUCCHリソース(リソースグループ)ごとに、x個のTCI状態に対応するインデックスが設定/アクティベート/指示されてもよい。
 例えば、UEは、DCIによるPUCCHのリソースの指示に基づいて、PUCCHリソース(リソースグループ)ごとに対応する(x個又はy個)のTCI状態を判断してもよい。
 図12は、実施形態1-3に係るTCI状態の指示の一例を示す図である。図12に示す例において、UEに対し、PUCCHリソースグループ(PUCCHリソースグループ#1-#4)、及び、PUCCHリソース(PUCCHリソース#1-#8)が設定される。これらPUCCHリソース/リソースセットの設定は、あるCC(CC#1)内のあるBWP(BWP#1)におけるPUCCH設定(PUCCH-Config)を用いて行われる。PUCCHリソースグループとPUCCHリソースの対応関係は、図12に示すとおりである。
 また、図12に示す通り、PUCCHリソースグループごとに、適用するTCI状態に関するインデックスが関連付けられる。UEは、当該関連付けられるインデックスと、選択するPUCCHリソース(PRI/CCEインデックスフィールド)とに基づいて、ビーム指示DCIで指示されたy個のTCI状態から、x個のTCI状態を判断する。
 このように、PUCCHリソース単位/リソースグループ単位で指示TCI状態のインデックスを設定/決定/指示することで、スケジューリングDCI(に含まれるPRI/CCEインデックスフィールド)でシングルTRP及びマルチTRPの動作を切り替えることができる。
 また、PUCCHリソース単位/リソースグループ単位による指示TCI状態のインデックスの設定/指示/更新は、上位レイヤシグナリング(RRC/MAC CE)/DCI(ビーム指示DCI)を用いて行われてもよい。
 以下では、ビーム指示DCI/MAC CEによって、指示TCI状態が更新されるケースについて説明する。
 以下実施形態1-3-1及び1-3-2では、UEに対し、1つの指示TCI状態が関連する(設定される)PUCCHリソース#Aと、複数(例えば、2つ)の指示TCI状態が関連する(設定される)PUCCHリソース#Bとが、上位レイヤシグナリング(RRC)を用いて、それぞれ1つ又は複数設定されるケースを仮定する。
[実施形態1-3-1]
 UEは、ビーム指示DCI/MAC CEによって、統一TCI状態(指示TCI状態)について1つのTCI状態(指示TCI状態)に更新することを指示されてもよい。
 UEは、PUCCHリソース#Aについて、指示される新たな1つのTCI状態に更新してもよい。
 UEは、PUCCHリソース#Bについて、指示される新たな1つのTCI状態に更新してもよい(オプション1-3-1-1)。すなわち、UEは、PUCCHリソース#Bに関連する複数(例えば、2つ)の指示TCI状態の全てを、指示される新たな1つのTCI状態に更新してもよい。
 UEは、PUCCHリソース#Bについて、指示される新たな1つのTCI状態に更新しなくてもよい(オプション1-3-1-2)。UEは、PUCCHリソース#Bについて、1つの指示TCI状態に更新する指示を無視してもよい。複数(例えば、2つ)の指示TCI状態が関連するPUCCHリソース#Bは、1つのTCI状態を指示するビーム指示DCI/MAC CEによってTCI状態を更新されなくてもよい。
 UEは、PUCCHリソース#Bに関連する少なくとも1つ(一部)のTCI状態について、指示される新たな1つのTCI状態に更新してもよい(オプション1-3-1-3)。例えば、PUCCHリソースに第1のTCI状態と第2のTCI状態とが関連する場合、UEは、第1のTCI状態又は第2のTCI状態のいずれかを、指示される新たな1つのTCI状態に更新すると判断してもよい。
 オプション1-3-1-3において、更新されるTCI状態(例えば、上記第1のTCI状態又は第2のTCI状態)は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)でUEに設定されてもよい。
[実施形態1-3-2]
 UEは、ビーム指示DCI/MAC CEによって、統一TCI状態(指示TCI状態)について複数(例えば、2つ)のTCI状態(指示TCI状態)に更新することを指示されてもよい。
 UEは、PUCCHリソース#Aについて、指示される新たな複数(例えば、2つ)のTCI状態に更新してもよい(オプション1-3-2-1)。
 UEは、PUCCHリソース#Aについて、指示される新たな複数(例えば、2つ)のTCI状態に更新しなくてもよい(オプション1-3-2-2)。UEは、PUCCHリソース#Aについて、複数(例えば、2つ)の指示TCI状態に更新する指示を無視してもよい。1つの指示TCI状態が関連するPUCCHリソース#Aは、複数(例えば、2つ)のTCI状態を指示するビーム指示DCI/MAC CEによってTCI状態を更新されなくてもよい。
 UEは、PUCCHリソース#Aに関連する1つのTCI状態について、指示される新たな複数(例えば、2つ)のTCI状態のいすれか1つに更新してもよい(オプション1-3-2-3)。例えば、ビーム指示DCI/MAC CEによって第1のTCI状態と第2のTCI状態との更新を指示される場合、UEは、PUCCHリソース#Aに関連する1つのTCI状態を、当該第1のTCI状態又は当該第2のTCI状態のいずれかに更新すると判断してもよい。
 オプション1-3-2-3において、更新に用いられるTCI状態(例えば、上記第1のTCI状態又は第2のTCI状態)は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)でUEに設定されてもよい。
 UEは、PUCCHリソース#Bについて、指示される新たな複数(例えば、2つ)のTCI状態に更新してもよい。
 上記実施形態1-3-1/1-3-2において、UEは、特定の方法に基づいて、複数(例えば、2つ)のTCI状態から1つのTCI状態を選択してもよい。
 当該特定の方法は、例えば、予め仕様で規定されてもよい。例えば、UEは、複数(例えば、2つ)のTCI状態のうち、第1(又は、第2/最後)のTCI状態を選択してもよい。また、例えば、UEは、複数(例えば、2つ)のTCI状態のうち、最も低い(又は、高い)インデックスのTCI状態を選択してもよい。
 また、当該特定の方法は、例えば、TCI状態/PUCCHと、TRPに関するインデックス(例えば、CORESETプールインデックス/TRP ID/TRPインデックス)との対応関係に基づく方法であってもよい。UEは、TCI状態/PUCCHに関連するTRPに基づいて、いずれのTCI状態が更新されるかを判断してもよい。
 UEに対し、PUCCHリソース(リソースグループ)と、TRPに関するインデックスとの関連付けが設定されてもよい。もし指示TCI状態にTRPに関するインデックスが関連付けられる場合(例えば、第1/第2のTCI状態、及び、CORESETプールインデックスの少なくとも一方が、ビーム指示DCIに関連付けられる場合)、各PUCCHリソース(リソースグループ)について、UEは、当該TRPに関するインデックスに関連付くTCI状態を更新すると判断してもよい。
《実施形態1-4》
 UEは、スケジューリング/トリガリングDCIに含まれる特定のフィールドに基づいて、各チャネル/信号に適用するTCI状態と、TCI状態の順番と、の少なくとも一方を判断してもよい。
 UEは、当該特定のフィールドに基づいて、y個の指示TCI状態から、x個(1つ又は複数)のTCI状態を選択/決定してもよい。
 当該特定のフィールドは、既存の(Rel.17までに規定される)フィールド(又は、既存のフィールドが拡張されたフィールド)と、新たに(Rel.18以降に)規定されるフィールドと、の少なくとも1つであってもよい。
 当該既存のフィールドは、例えば、SRSリソースセットインディケータフィールドであってもよい。また、当該既存のフィールドは、例えば、SRSリソースセットインディケータフィールド以外のフィールドであってもよい。
 特定のULチャネル(例えば、PUSCH)について、DCIに含まれる特定のフィールドが、x個のTCI状態の指示に用いられてもよい。
[実施形態1-4-1]
 特定の用途(例えば、コードブック/ノンコードブック)の複数(例えば、2つ)のSRSリソースセットが設定される場合、UEは、特定のフィールド(例えば、SRSリソースセットインディケータフィールド)を用いて、チャネル(例えば、PUSCH)に適用する指示TCI状態のインデックスを指示されてもよい。
 このとき、UEは、特定のフィールド(例えば、SRSリソースセットインディケータフィールド)に基づいて、シングルTRPを利用するPUSCHの繰り返しと、マルチTRPを利用するPUSCHの繰り返しと、のいずれを行うかを判断してもよい。
 図13は、実施形態1-4に係るDCI内のフィールドの一例を示す図である。図13に示す例において、SRSリソースセットインディケータフィールドのコードポイントと、シングルTRP/マルチTRPスキームと、の関連付けが示される。
 例えば、UEが、SRSリソースセットインディケータフィールドのコードポイント「0(00)」を指示される場合、第1のTRP(TRP#1)を用いるシングルTRPの動作を指示されたと判断する。
 例えば、UEが、SRSリソースセットインディケータフィールドのコードポイント「1(01)」を指示される場合、第2のTRP(TRP#2)を用いるシングルTRPの動作を指示されたと判断する。
 例えば、UEが、SRSリソースセットインディケータフィールドのコードポイント「2(10)」を指示される場合、第1のTRP(TRP#1)及び第2のTRP(TRP#2)を用いるマルチTRPの動作を指示されたと判断する。このとき、UEは、第1のTCI状態を第1のTRPに関するチャネルに、第2のTCI状態を第2のTRPに関するチャネルに、それぞれ適用することを指示されたと判断する。
 例えば、UEが、SRSリソースセットインディケータフィールドのコードポイント「3(11)」を指示される場合、第1のTRP(TRP#1)及び第2のTRP(TRP#2)を用いるマルチTRPの動作を指示されたと判断する。このとき、UEは、第1のTCI状態を第2のTRPに関するチャネルに、第2のTCI状態を第1のTRPに関するチャネルに、それぞれ適用することを指示されたと判断する。
 なお、第1のTRPは、(Rel.17の)CB/NCBの第1のSRSリソースセットに対応してもよい。Rel.18以降では、UEは、第1のTRPを第1のTCI状態と判断してもよい。また、第2のTRPは、(Rel.17の)CB/NCBの第2のSRSリソースセットに対応してもよい。Rel.18以降では、UEは、第2のTRPを第2のTCI状態と判断してもよい。
[実施形態1-4-2]
 y個の指示TCI状態からx個(1つ又は複数)のTCI状態を選択/決定するための特定のフィールドは、上記実施形態1-1に記載されるフィールドであってもよい。
 言い換えれば、上記実施形態1-1が、特定のULチャネル(例えば、PUSCH)に適用するTCI状態の選択/決定のために用いられてもよい。
 例えば、上記実施形態1-1に記載される特定のフィールドは、1つ又は複数のインデックスを指示してもよい。1つ又は複数のインデックスを指示するDCIフィールドに関する動作は、UEに対し、マルチTRPのPUSCH繰り返し(用途がCB/NCBの2つのSRSリソースセット)が設定された場合にのみ使用/適用されてもよい。UEは、マルチTRPのPUSCH繰り返し(用途がCB/NCBの2つのSRSリソースセット)が設定されない場合、1つ又は複数のインデックスを指示するDCIフィールドが存在しないと想定してもよい。
 なお、上述の実施形態1-4-1及び1-4-2は、組み合わせて用いられてもよいし、それぞれ単独で用いられてもよい。
 例えば、上述の実施形態1-4-1及び1-4-2のいずれを用いるかが、上位レイヤシグナリング(RRC/MAC CE)を用いてUEに設定されてもよい。
 以上第1の実施形態によれば、各チャネル/信号に適用する指示TCI状態を適切に決定することができるとともに、適用されるTCI状態の数に基づいて、シングルTRPの動作とマルチTRPの動作をDCIによって切り替えることができる。
<変形例>
 本開示の各実施形態における、各チャネル/信号に適用するTCI状態に関するインデックスに関するフィールドは、特定のDCIフォーマットにおいて含まれなくてもよい。
 当該特定のDCIフォーマットは、例えば、PUSCHをスケジュールするDCIフォーマット(例えば、DCIフォーマット0_0/0_1)であってもよい。
 特定のDCIフォーマットに当該インデックスに関するフィールドが含まれない場合、UEは、当該特定のDCIフォーマット以外のDCIフォーマットで指示される当該インデックスに関するフィールドに基づいて、当該特定のDCIフォーマットでスケジュール/トリガされるチャネル/信号に適用するTCI状態のインデックスを導出してもよい。
 特定のDCIフォーマットに当該インデックスに関するフィールドが含まれない場合、UEは、予め規定されているインデックス(例えば、最低(1番目)/最大のインデックス)、又は、上位レイヤシグナリング(RRC/MAC CE)による設定、を用いて、当該特定のDCIフォーマットでスケジュール/トリガされるチャネル/信号に適用するTCI状態のインデックスを決定してもよい。
<補足>
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報(例えば、統一TCI状態を利用するシングルTRP及びマルチTRPの動作の切り替え)をサポートすること、
 ・各チャネル/信号に適用する指示TCI状態のインデックスをDCIで通知することをサポートすること、
 ・サポートするy及びx少なくとも一方の数。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、統一TCI状態を利用するシングルTRP及びマルチTRPの動作の切り替えを有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16/17の動作を適用してもよい。
(付記A)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記A-1]
 ビーム指示に用いられる第1の下り制御情報(DCI)と、下りリンク(DL)信号をスケジュール又はトリガする第2のDCIとを受信する受信部と、
 前記第2のDCIに含まれる特定のフィールドに基づいて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記DL信号に適用する1つ又は複数のTCI状態を判断し、前記DL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを判断する制御部と、を有する端末。
[付記A-2]
 前記特定のフィールドによって1つのTCI状態を指示される場合、前記制御部は、前記DL信号が前記1つの送受信ポイントを利用する信号であると判断し、
 前記特定のフィールドによって複数のTCI状態を指示される場合、前記制御部は、前記DL信号が前記複数の送受信ポイントを利用する信号であると判断する、付記A-1に記載の端末。
[付記A-3]
 前記特定のフィールドは、前記DL信号に適用する1つ又は複数のTCI状態の数と、前記DL信号に適用する1つ又は複数のTCI状態の順番と、の少なくとも一方を示す、付記A-1又は付記A-2に記載の端末。
[付記A-4]
 前記DL信号は、物理下りリンク共有チャネル(PDSCH)であり、
 前記制御部は、前記PDSCHに対応する物理上りリンク制御チャネルに適用するTCI状態を、前記第1のDCI及び前記第2のDCIの特定のフィールドに基づいて判断する、付記A-1から付記A-3のいずれかに記載の端末。
(付記B)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記B-1]
 ビーム指示に用いられる第1の下り制御情報(DCI)と、上りリンク(UL)信号をスケジュール又はトリガする第2のDCIとを受信する受信部と、
 前記第2のDCIに含まれる特定のフィールドに基づいて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記UL信号に適用する1つ又は複数のTCI状態を判断し、前記UL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを判断する制御部と、を有する端末。
[付記B-2]
 前記特定のフィールドによって1つのTCI状態を指示される場合、前記制御部は、前記UL信号が前記1つの送受信ポイントを利用する信号であると判断し、
 前記特定のフィールドによって複数のTCI状態を指示される場合、前記制御部は、前記UL信号が前記複数の送受信ポイントを利用する信号であると判断する、付記B-1に記載の端末。
[付記B-3]
 前記特定のフィールドは、前記UL信号に適用する1つ又は複数のTCI状態の数と、前記UL信号に適用する1つ又は複数のTCI状態の順番と、の少なくとも一方を示す、付記B-1又は付記B-2に記載の端末。
[付記B-4]
 前記UL信号は、物理上りリンク制御チャネル(PUCCH)であり、
 前記制御部は、さらに、PUCCHリソース又はPUCCHリソースグループごとに設定されるインデックスに基づいて、前記PUCCHに適用する1つ又は複数のTCI状態を判断する、付記B-1から付記B-3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図14、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、ApplicationFunction(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図15は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、ビーム指示に用いられる第1の下り制御情報(DCI)と、下りリンク(DL)信号をスケジュール又はトリガする第2のDCIとを送信してもよい。制御部110は、前記第2のDCIに含まれる特定のフィールドを用いて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記DL信号に適用する1つ又は複数のTCI状態を指示し、前記DL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを指示してもよい(第0、第1の実施形態)。
 送受信部120は、ビーム指示に用いられる第1の下り制御情報(DCI)と、上りリンク(UL)信号をスケジュール又はトリガする第2のDCIとを送信してもよい。制御部120は、前記第2のDCIに含まれる特定のフィールドを用いて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記UL信号に適用する1つ又は複数のTCI状態を指示し、前記UL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを指示してもよい(第0、第1の実施形態)。
(ユーザ端末)
 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、ビーム指示に用いられる第1の下り制御情報(DCI)と、下りリンク(DL)信号をスケジュール又はトリガする第2のDCIとを受信してもよい。制御部210は、前記第2のDCIに含まれる特定のフィールドに基づいて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記DL信号に適用する1つ又は複数のTCI状態を判断し、前記DL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを判断してもよい(第0、第1の実施形態)。
 前記特定のフィールドによって1つのTCI状態を指示される場合、制御部210は、前記DL信号が前記1つの送受信ポイントを利用する信号であると判断してもよい。前記特定のフィールドによって複数のTCI状態を指示される場合、制御部210は、前記DL信号が前記複数の送受信ポイントを利用する信号であると判断してもよい(第0、第1の実施形態)。
 前記特定のフィールドは、前記DL信号に適用する1つ又は複数のTCI状態の数と、前記DL信号に適用する1つ又は複数のTCI状態の順番と、の少なくとも一方を示してもよい(第1の実施形態)。
 前記DL信号は、物理下りリンク共有チャネル(PDSCH)であってもよい。制御部210は、前記PDSCHに対応する物理上りリンク制御チャネルに適用するTCI状態を、前記第1のDCI及び前記第2のDCIの特定のフィールドに基づいて判断してもよい(第1の実施形態)。
 送受信部220は、ビーム指示に用いられる第1の下り制御情報(DCI)と、上りリンク(UL)信号をスケジュール又はトリガする第2のDCIとを受信してもよい。制御部210は、前記第2のDCIに含まれる特定のフィールドに基づいて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記UL信号に適用する1つ又は複数のTCI状態を判断し、前記UL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを判断してもよい(第0、第1の実施形態)。
 前記特定のフィールドによって1つのTCI状態を指示される場合、制御部210は、前記UL信号が前記1つの送受信ポイントを利用する信号であると判断してもよい。前記特定のフィールドによって複数のTCI状態を指示される場合、制御部210は、前記UL信号が前記複数の送受信ポイントを利用する信号であると判断してもよい(第0、第1の実施形態)。
 前記特定のフィールドは、前記UL信号に適用する1つ又は複数のTCI状態の数と、前記UL信号に適用する1つ又は複数のTCI状態の順番と、の少なくとも一方を示してもよい(第1の実施形態)。
 前記UL信号は、物理上りリンク制御チャネル(PUCCH)であってもよい。制御部210は、さらに、PUCCHリソース又はPUCCHリソースグループごとに設定されるインデックスに基づいて、前記PUCCHに適用する1つ又は複数のTCI状態を判断してもよい(第1の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図18は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  ビーム指示に用いられる第1の下り制御情報(DCI)と、上りリンク(UL)信号をスケジュール又はトリガする第2のDCIとを受信する受信部と、
     前記第2のDCIに含まれる特定のフィールドに基づいて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記UL信号に適用する1つ又は複数のTCI状態を判断し、前記UL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを判断する制御部と、を有する端末。
  2.  前記特定のフィールドによって1つのTCI状態を指示される場合、前記制御部は、前記UL信号が前記1つの送受信ポイントを利用する信号であると判断し、
     前記特定のフィールドによって複数のTCI状態を指示される場合、前記制御部は、前記UL信号が前記複数の送受信ポイントを利用する信号であると判断する、請求項1に記載の端末。
  3.  前記特定のフィールドは、前記UL信号に適用する1つ又は複数のTCI状態の数と、前記UL信号に適用する1つ又は複数のTCI状態の順番と、の少なくとも一方を示す、請求項1に記載の端末。
  4.  前記UL信号は、物理上りリンク制御チャネル(PUCCH)であり、
     前記制御部は、さらに、PUCCHリソース又はPUCCHリソースグループごとに設定されるインデックスに基づいて、前記PUCCHに適用する1つ又は複数のTCI状態を判断する、請求項1に記載の端末。
  5.  ビーム指示に用いられる第1の下り制御情報(DCI)と、上りリンク(UL)信号をスケジュール又はトリガする第2のDCIとを受信するステップと、
     前記第2のDCIに含まれる特定のフィールドに基づいて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記UL信号に適用する1つ又は複数のTCI状態を判断し、前記UL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを判断するステップと、を有する端末の無線通信方法。
  6.  ビーム指示に用いられる第1の下り制御情報(DCI)と、上りリンク(UL)信号をスケジュール又はトリガする第2のDCIとを送信する送信部と、
     前記第2のDCIに含まれる特定のフィールドを用いて、前記第1のDCIで指示される複数のTransmission Configuration Indication(TCI)状態から、前記UL信号に適用する1つ又は複数のTCI状態を指示し、前記UL信号が、1つの送受信ポイント(TRP)を利用する信号、及び、複数のTRPを利用する信号のいずれであるかを指示する制御部と、を有する基地局。
PCT/JP2022/030829 2022-08-12 2022-08-12 端末、無線通信方法及び基地局 WO2024034142A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030829 WO2024034142A1 (ja) 2022-08-12 2022-08-12 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030829 WO2024034142A1 (ja) 2022-08-12 2022-08-12 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2024034142A1 true WO2024034142A1 (ja) 2024-02-15

Family

ID=89851396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030829 WO2024034142A1 (ja) 2022-08-12 2022-08-12 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2024034142A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154372A1 (en) * 2020-01-31 2021-08-05 Qualcomm Incorporated Uplink power control method based on path loss reference signal (pl rs) application time, corresponding ue and bs
WO2022097619A1 (ja) * 2020-11-06 2022-05-12 株式会社Nttドコモ 端末、無線通信方法及び基地局

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154372A1 (en) * 2020-01-31 2021-08-05 Qualcomm Incorporated Uplink power control method based on path loss reference signal (pl rs) application time, corresponding ue and bs
WO2022097619A1 (ja) * 2020-11-06 2022-05-12 株式会社Nttドコモ 端末、無線通信方法及び基地局

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "On unified TCI framework extension for multi-TRP operation", 3GPP DRAFT; R1-2203441, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052152973 *
NOKIA, NOKIA SHANGHAI BELL: "Unified TCI framework extension for multi-TRP", 3GPP DRAFT; R1-2204538, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153575 *

Similar Documents

Publication Publication Date Title
WO2024034142A1 (ja) 端末、無線通信方法及び基地局
WO2024034141A1 (ja) 端末、無線通信方法及び基地局
WO2024042926A1 (ja) 端末、無線通信方法及び基地局
WO2024042925A1 (ja) 端末、無線通信方法及び基地局
WO2023203760A1 (ja) 端末、無線通信方法及び基地局
WO2024042924A1 (ja) 端末、無線通信方法及び基地局
WO2024004143A1 (ja) 端末、無線通信方法及び基地局
WO2023203713A1 (ja) 端末、無線通信方法及び基地局
WO2024069968A1 (ja) 端末、無線通信方法及び基地局
WO2023209885A1 (ja) 端末、無線通信方法及び基地局
WO2024029029A1 (ja) 端末、無線通信方法及び基地局
WO2024095477A1 (ja) 端末、無線通信方法及び基地局
WO2024029030A1 (ja) 端末、無線通信方法及び基地局
WO2024009474A1 (ja) 端末、無線通信方法及び基地局
WO2024095478A1 (ja) 端末、無線通信方法及び基地局
WO2024009473A1 (ja) 端末、無線通信方法及び基地局
WO2024009475A1 (ja) 端末、無線通信方法及び基地局
WO2024029039A1 (ja) 端末、無線通信方法及び基地局
WO2024069810A1 (ja) 端末、無線通信方法及び基地局
WO2024069808A1 (ja) 端末、無線通信方法及び基地局
WO2024069809A1 (ja) 端末、無線通信方法及び基地局
WO2023162725A1 (ja) 端末、無線通信方法及び基地局
WO2023167214A1 (ja) 端末、無線通信方法及び基地局
WO2024029038A1 (ja) 端末、無線通信方法及び基地局
WO2024100733A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955056

Country of ref document: EP

Kind code of ref document: A1