WO2023209885A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2023209885A1
WO2023209885A1 PCT/JP2022/019135 JP2022019135W WO2023209885A1 WO 2023209885 A1 WO2023209885 A1 WO 2023209885A1 JP 2022019135 W JP2022019135 W JP 2022019135W WO 2023209885 A1 WO2023209885 A1 WO 2023209885A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
tci state
signals
dci
states
Prior art date
Application number
PCT/JP2022/019135
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/019135 priority Critical patent/WO2023209885A1/ja
Publication of WO2023209885A1 publication Critical patent/WO2023209885A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • UE User Equipment
  • QCL quasi-co-location
  • TCI Transmission Configuration Indication
  • TCI states to multiple types of signals (channels/RSs) is being considered. However, there are cases where it is not clear how to indicate the TCI status. If the method of indicating the TCI status is not clear, there is a risk of deterioration in communication quality, throughput, etc.
  • one of the objects of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately instruct the TCI state.
  • a terminal includes a receiving unit that receives instruction information of a plurality of transmission setting instruction (TCI) states applied to a plurality of signals, and a receiving unit that receives instruction information of a plurality of TCI states based on the instruction information. It has a plurality of transmission/reception points (TRPs) and a control unit that applies to each of the signals to be transmitted and received, and each of the plurality of TCI states is applied to both a downlink (DL) signal and an uplink (UL) signal. or a TCI state applied to DL signals and a TCI state applied to UL signals, each of the plurality of TCI states being associated with a different physical cell ID (PCI). .
  • PCI physical cell ID
  • FIGS. 1A and 1B are diagrams illustrating an example of a common beam.
  • 2A and 2B are diagrams illustrating an example of single DCI-based multi-TRP transmission and multi-DCI-based multi-TRP transmission, respectively.
  • 3A and 3B are diagrams illustrating an example of the TCI field within the DCI.
  • FIGS. 4A and 4B are diagrams illustrating an example of setting/instructing a joint TCI state in a single DCI-based multi-TRP.
  • 5A and 5B are diagrams illustrating an example of setting/instructing a separate TCI state in a single DCI-based multi-TRP.
  • FIGS. 6A and 6B are diagrams illustrating an example of setting/instructing a joint TCI state corresponding to a first value of the CORESET pool index in a multi-DCI-based multi-TRP.
  • FIGS. 7A and 7B are diagrams illustrating an example of setting/instructing a joint TCI state corresponding to a second value of the CORESET pool index in a multi-DCI-based multi-TRP.
  • FIGS. 8A and 8B are diagrams illustrating an example of inter-cell mobility.
  • FIG. 9 is a diagram showing TCI states corresponding to CSI-RSs related to SSBs of non-serving cells.
  • FIG. 10 is a diagram illustrating an example of the relationship between beam reports and rebuild indexes.
  • FIG. 9 is a diagram showing TCI states corresponding to CSI-RSs related to SSBs of non-serving cells.
  • FIG. 10 is a diagram illustrating an example of the relationship between beam reports and rebuild indexes.
  • FIG. 11 is a diagram illustrating an example of an inter-cell scenario in multi-DCI-based multi-TRP.
  • FIG. 12A is a diagram showing the maximum number of additional PCIs in case 1.
  • FIG. 12B is a diagram showing the maximum number of additional PCIs in case 2.
  • FIG. 13 is a diagram illustrating an example in which SSB from a serving cell, SSB from a cell with additional PCI, and UL transmission overlap.
  • FIG. 14A shows Rel. 15 TCI states
  • Rel. 17 is a diagram showing the set DL/joint TCI state.
  • FIG. FIG. 14B is a diagram showing the indicated DL/Joint TCI state.
  • FIGS. 15A and 15B are diagrams showing examples of TCI state settings and instructions in the first embodiment.
  • FIG. 16A is a diagram illustrating a first example of TCI state settings and instructions in the second embodiment.
  • FIG. 16B is a diagram illustrating an example of correspondence between TCI code points and active TCI states.
  • FIG. 17A is a diagram illustrating a second example of TCI state settings and instructions in the second embodiment.
  • FIG. 17B is a diagram illustrating an example of correspondence between TCI code points and active TCI states.
  • FIG. 18 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 19 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 20 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 21 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 22 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the UE performs reception processing (e.g. reception, demapping, demodulation, Controlling at least one of decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, and encoding) is being considered.
  • reception processing e.g. reception, demapping, demodulation, Controlling at least one of decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, and encoding
  • the TCI states may represent those that apply to downlink signals/channels. What corresponds to the TCI state applied to uplink signals/channels may be expressed as a spatial relation.
  • the TCI state is information regarding quasi-co-location (QCL) of signals/channels, and may also be called spatial reception parameters, spatial relation information, etc.
  • the TCI state may be set in the UE on a per-channel or per-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, the Doppler shift, Doppler spread, and average delay are calculated between these different signals/channels. ), delay spread, and spatial parameters (e.g., spatial Rx parameters) can be assumed to be the same (QCL with respect to at least one of these). You may.
  • the spatial reception parameters may correspond to the UE's reception beam (eg, reception analog beam), and the beam may be identified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be defined for QCL.
  • QCL types A-D may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below: ⁇ QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread, ⁇ QCL type B (QCL-B): Doppler shift and Doppler spread, ⁇ QCL type C (QCL-C): Doppler shift and average delay, - QCL type D (QCL-D): Spatial reception parameters.
  • Control Resource Set CORESET
  • channel or reference signal is in a particular QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal, It may also be called a QCL assumption.
  • QCL Control Resource Set
  • the UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for the signal/channel based on the TCI state or QCL assumption of the signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information regarding the QCL between a target channel (in other words, a reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by upper layer signaling, physical layer signaling, or a combination thereof.
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), and Uplink Shared Channel (Physical Uplink Shared Channel).
  • the channel may be at least one of a physical uplink control channel (PUCCH) and a physical uplink control channel (PUCCH).
  • the RS that has a QCL relationship with the channel is, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding
  • the signal may be at least one of a tracking reference signal (SRS), a tracking CSI-RS (also referred to as a tracking reference signal (TRS)), and a QCL detection reference signal (also referred to as a QRS).
  • SRS tracking reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • the SSB is a signal block that includes at least one of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • An RS of QCL type X in a TCI state may mean an RS that has a QCL type It's okay.
  • QCL type A RS is always set for PDCCH and PDSCH, and QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving one shot of DMRS, QCL type A RS is used to improve channel estimation accuracy. QCL type D RS is used for receiving beam determination during DMRS reception.
  • TRS1-1, 1-2, 1-3, and 1-4 are transmitted, and TRS1-1 is notified as a QCL type C/D RS depending on the TCI state of the PDSCH.
  • the UE can use information obtained from past periodic TRS1-1 reception/measurement results for PDSCH DMRS reception/channel estimation.
  • the QCL source for PDSCH is TRS1-1
  • the QCL target is DMRS for PDSCH.
  • the PDSCH may be scheduled with a DCI having a TCI field.
  • the TCI state for PDSCH is indicated by the TCI field.
  • the TCI field of DCI format 1-1 has 3 bits, and the TCI field of DCI format 1-2 has a maximum of 3 bits.
  • the UE In RRC connected mode, if the first intra-DCI TCI information element (upper layer parameter tci-PresentInDCI) is set to "enabled" for a CORESET that schedules a PDSCH, the UE shall It is assumed that a TCI field exists in the DCI format 1_1 of the transmitted PDCCH.
  • upper layer parameter tci-PresentInDCI upper layer parameter
  • the UE can determine the DCI format of the PDSCH transmitted in the CORESET. Assume that there is a TCI field in DCI 1_2 with the DCI field size indicated by the second intra-DCI TCI information element.
  • the PDSCH may be scheduled with a DCI without a TCI field.
  • the DCI format of the DCI is DCI format 1_0, or DCI format 1_1/1_2 in the case where the intra-DCI TCI information element (upper layer parameter tci-PresentInDCI or tci-PresentInDCI-1-2) is not set (enabled). It's okay.
  • a PDSCH is scheduled with a DCI that does not have a TCI field, and if the DL is greater than or equal to a threshold (timeDurationForQCL), the UE assumes that the TCI state or QCL assumption for the PDSCH is the same as the TCI state or QCL assumption (default TCI state) of the CORESET (e.g., scheduling DCI). .
  • a threshold timeDurationForQCL
  • the TCI state (default TCI state) of the PDSCH is the TCI state of the lowest CORESET ID in the latest slot in the active DL BWP of that CC (of a specific UL signal). It may be. Otherwise, the TCI state of the PDSCH (default TCI state) may be the TCI state of the lowest TCI state ID of the PDSCH in the active DL BWP of the scheduled CC.
  • MAC CEs are required: a MAC CE for activation/deactivation related to PUCCH space and a MAC CE for activation/deactivation related to SRS space.
  • PUSCH spatial relationships follow SRS spatial relationships.
  • At least one of the MAC CE for activation/deactivation related to PUCCH space and the MAC CE for activation/deactivation related to SRS space may not be used.
  • both the spatial relationship and PL-RS for PUCCH are not configured in FR2 (applicable condition, second condition), default assumption of spatial relationship and PL-RS for PUCCH (default spatial relationship and default PL-RS) applies.
  • both the spatial relationship for SRS (SRS resource for SRS, or SRS resource corresponding to SRI in DCI format 0_1 that schedules PUSCH) and PL-RS are not configured (applicable condition, second condition)
  • Default assumptions of spatial relationship and PL-RS (default spatial relationship and default PL-RS) apply for PUSCH and SRS scheduled by DCI format 0_1.
  • the default spatial relationship and default PL-RS are based on the TCI state or QCL assumption of the CORESET with the lowest CORESET ID in the active DL BWP. There may be. If no CORESET is configured in the active DL BWP on that CC, the default spatial relationship and default PL-RS may be the active TCI state with the lowest ID of the PDSCH in the active DL BWP.
  • the spatial relationship of PUSCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource with the lowest PUCCH resource ID among the active spatial relationships of PUCCH on the same CC.
  • the network needs to update the PUCCH spatial relationships on all SCells even if no PUCCH is transmitted on the SCell.
  • the application conditions for the default spatial relationship/default PL-RS for SRS may include that the default beam path loss enable information element for SRS (upper layer parameter enableDefaultBeamPlForSRS) is set to valid.
  • the application condition of the default spatial relationship/default PL-RS for PUCCH may include that the default beam path loss enable information element for PUCCH (upper layer parameter enableDefaultBeamPlForPUCCH) is set to valid.
  • the application condition for the default spatial relationship/default PL-RS for PUSCH scheduled by DCI format 0_0 is that the default beam path loss enable information element for PUSCH scheduled by DCI format 0_0 (upper layer parameter enableDefaultBeamPlForPUSCH0_0) is set to valid. It may also include.
  • the RRC parameter (parameter for enabling default beam PL for PUCCH (enableDefaultBeamPL-ForPUCCH), parameter for enabling default beam PL for PUSCH (enableDefaultBeamPL-ForPUSCH0_0)), or SRS If the parameter (enableDefaultBeamPL-ForSRS) is configured and no spatial relationship or PL-RS is configured, the UE applies the default spatial relationship/PL-RS.
  • the above thresholds are: time duration for QCL, “timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI”, “Threshold hold-Sched-Offset”, “ beamSwitchTiming, schedule offset threshold, scheduling offset threshold, etc.
  • the threshold may be reported by the UE as the UE capability (per subcarrier interval).
  • the offset (scheduling offset) between the reception of DL DCI and the corresponding PDSCH is smaller than the threshold timeDurationForQCL, and at least one TCI state configured for the serving cell of the scheduled PDSCH is "QCL type D" and the UE is configured with two default TCI enable information elements (enableTwoDefaultTCIStates-r16) and at least one TCI code point (code point of the TCI field in the DL DCI) indicates two TCI states.
  • the DMRS port of the serving cell's PDSCH or PDSCH transmission occasion is QCLed with the RS with respect to the QCL parameters associated with the two TCI states corresponding to the lowest code point of the TCI code points containing the two different TCI states ( quasi co-located) (2 default QCL assumption decision rule).
  • 2 Default TCI Enablement Information Element indicates the Rel. 16 operation is enabled.
  • a default TCI state for single TRP As the default TCI state of PDSCH in 15/16, a default TCI state for single TRP, a default TCI state for multi-TRP based on multi-DCI, and a default TCI state for multi-TRP based on single DCI are specified.
  • the default TCI state of aperiodic CSI-RS (A (periodic)-CSI-RS) in 15/16 is the default TCI state for single TRP, the default TCI state for multi-TRP based on multi-DCI, and the default TCI state for multi-TRP based on single DCI.
  • a default TCI state for multi-TRP is specified.
  • Multi TRP In NR, one or more Transmission/Reception Points (TRPs) (multi TRPs (MTRPs)) communicate with the UE using one or more panels (multi-panels). DL transmission is being considered. Further, it is being considered that the UE performs UL transmission using one or more panels for one or more TRPs.
  • TRPs Transmission/Reception Points
  • multiple TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • Multi-TRPs may be connected by an ideal/non-ideal backhaul, and information, data, etc. may be exchanged.
  • Each TRP of the multi-TRP may transmit a different code word (CW) and a different layer.
  • NJT Non-Coherent Joint Transmission
  • NJT Non-Coherent Joint Transmission
  • TRP #1 modulates and layer-maps a first codeword to a first number of layers (e.g., 2 layers) to transmit a first PDSCH using a first precoding.
  • TRP #2 modulates and maps the second codeword, performs layer mapping, and transmits the second PDSCH using a second number of layers (eg, 2 layers) using a second precoding.
  • multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap in at least one of time and frequency resources.
  • first PDSCH and second PDSCH may be assumed not to be in a quasi-co-location (QCL) relationship.
  • Reception of multiple PDSCHs may also be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI (S-DCI), single PDCCH) (single master mode).
  • DCI single DCI
  • S-DCI single DCI
  • PDCCH single PDCCH
  • One DCI may be transmitted from one TRP of multiple TRPs.
  • a configuration that uses one DCI in multi-TRP may be called single DCI-based multi-TRP (mTRP/MTRP).
  • Multiple PDSCHs from multiple TRPs may be scheduled using multiple DCIs (multiple DCI (M-DCI), multiple PDCCH (multiple PDCCH)) (multimaster mode).
  • M-DCI multiple DCI
  • PDCCH multiple PDCCH
  • a plurality of DCIs may be transmitted from multiple TRPs.
  • a configuration that uses multiple DCIs in multi-TRP may be referred to as multi-DCI-based multi-TRP (mTRP/MTRP).
  • CSI feedback may be called separate feedback, separate CSI feedback, or the like.
  • "separate” may be mutually read as “independent.”
  • PDSCH transport block (TB) or codeword (CW) repetition across multiple TRPs
  • repetition schemes URLLC schemes, e.g. Schemes 1, 2a, 2b, 3, 4
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RVs may be the same or different for multiple TRPs.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted within one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • one control resource set (CORESET) in the PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
  • the UE may determine that the multi-TRP is based on multi-DCI.
  • TRP may be replaced with CORESET pool index.
  • CORESET pool index A CORESET pool index of 1 is set.
  • Two different values eg, 0 and 1) of the CORESET pool index are set.
  • the UE may determine multi-TRP based on single DCI.
  • the two TRPs may be translated into two TCI states indicated by the MAC CE/DCI.
  • the "Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE (Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE) is used.
  • the DCI for common beam indication may be a UE-specific DCI format (for example, DL DCI format (for example, 1_1, 1_2), UL DCI format (for example, 0_1, 0_2)), or a UE-group common (UE-group Common) DCI format may be used.
  • DL DCI format for example, 1_1, 1_2
  • UL DCI format for example, 0_1, 0_2
  • UE-group Common UE-group Common
  • unified/common TCI framework According to the unified TCI framework, UL and DL channels can be controlled by a common framework.
  • the unified TCI framework is Rel. Instead of specifying the TCI state or spatial relationship for each channel as in 15, it is possible to specify a common beam (common TCI state) and apply it to all channels of UL and DL. A common beam may be applied to all channels of UL, and a common beam for DL may be applied to all channels of DL.
  • One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are considered.
  • the UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL.
  • the UE assumes different TCI states (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool) for each of UL and DL. You may.
  • the default beams of UL and DL may be aligned by beam management based on MAC CE (MAC CE level beam instruction).
  • the default TCI state of the PDSCH may be updated to match the default UL beam (spatial relationship).
  • DCI-based beam management may dictate a common beam/unified TCI state from the same TCI pool (joint common TCI pool, joint TCI pool, set) for both UL and DL.
  • X (>1) TCI states may be activated by the MAC CE.
  • the DCI may select one of X active TCI states.
  • the selected TCI state may be applied to both UL and DL channels/RSs.
  • a TCI pool may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by the MAC CE (active TCI state, active TCI pool, set).
  • Each TCI state may be a QCL type A/D RS.
  • SSB, CSI-RS, or SRS may be set as the QCL type A/D RS.
  • the number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N ( ⁇ 1) of TCI states (UL TCI states) applied to UL channels/RSs, and the number M ( ⁇ 1) of TCI states (DL TCI states) applied to DL channels/RSs. may be specified. At least one of N and M may be notified/set/instructed to the UE via upper layer signaling/physical layer signaling.
  • the case of M>1/N>1 may indicate at least one of TCI status indications for multiple TRPs and multiple TCI status indications for interband CA.
  • the RRC parameters configure multiple TCI states for both DL and UL.
  • the MAC CE may activate multiple TCI states among the configured multiple TCI states.
  • the DCI may indicate one of multiple activated TCI states.
  • the DCI may be a UL/DL DCI.
  • the indicated TCI state may be applied to at least one (or all) of the UL/DL channels/RSs.
  • One DCI may indicate both UL TCI and DL TCI.
  • one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL, respectively.
  • At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be referred to as a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good.
  • the multiple TCI states activated by the MAC CE may be referred to as an active TCI pool (active common TCI pool).
  • RRC parameters upper layer parameters that configure multiple TCI states
  • configuration information that configures multiple TCI states, or simply "configuration information.”
  • being instructed to one of a plurality of TCI states using a DCI may mean receiving instruction information that instructs one of a plurality of TCI states included in the DCI. , it may be simply receiving "instruction information”.
  • the RRC parameters configure multiple TCI states (joint common TCI pool) for both DL and UL.
  • the MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of UL and DL may be configured/activated.
  • the DL DCI or the new DCI format may select (instruct) one or more (for example, one) TCI state.
  • the selected TCI state may be applied to one or more (or all) DL channels/RSs.
  • the DL channel may be PDCCH/PDSCH/CSI-RS.
  • the UE has Rel. 16 TCI state operations (TCI framework) may be used to determine the TCI state of each channel/RS of the DL.
  • TCI framework 16 TCI state operations (TCI framework) may be used to determine the TCI state of each channel/RS of the DL.
  • the UL DCI or the new DCI format may select (instruct) one or more (eg, one) TCI state.
  • the selected TCI state may be applied to one or more (or all) UL channels/RSs.
  • the UL channel may be PUSCH/SRS/PUCCH. In this way, different DCIs may indicate UL TCI and DL DCI separately.
  • the DCI format that indicates the TCI state may be a specific DCI format.
  • the specific DCI format may be DCI format 1_1/1_2 (defined in Rel. 15/16/17).
  • the DCI format (DCI format 1_1/1_2) that indicates the TCI state may be a DCI format without DL assignment.
  • a DCI format without DL assignment, a DCI format without scheduling PDSCH (DCI format 1_1/1_2), a DCI format without one or more specific fields (DCI format 1_1/1_2), one or more They may be interchanged with each other, such as DCI format (DCI format 1_1/1_2) in which specific fields are set to fixed values.
  • the specific fields are the TCI field, the DCI format identifier field, the carrier indicator field, and the bandwidth portion (BWP) indicator field.
  • BWP bandwidth portion
  • TDRA Time Domain Resource Assignment
  • DAI Downlink Assignment Index
  • TPC Transmission Power Control
  • PUCCH resource indicator field PUCCH resource indicator field
  • PDSCH-to-HARQ feedback timing indicator field if present.
  • the particular field may be set as a reserved field or may be ignored.
  • the specific fields include the Redundancy Version (RV) field, the Modulation and Coding Scheme (MCS) field, New Data Indicator field, and Frequency Domain Resource Assignment (FDRA) field.
  • RV Redundancy Version
  • MCS Modulation and Coding Scheme
  • FDRA Frequency Domain Resource Assignment
  • the RV field may be set to all 1s.
  • the MCS field may be set to all ones.
  • the NDI field may be set to zero.
  • Type 0 FDRA fields may be set to all zeros.
  • Type 1 FDRA fields may be set to all ones.
  • the FDRA field for the dynamic switch (upper layer parameter dynamicSwitch) may be set to all zeros.
  • the common TCI framework may have separate TCI states for DL and UL.
  • one beam instruction DCI may indicate multiple TCI states for each TRP.
  • the plurality of TCI states may be, for example, a maximum of two joint TCI states, or a maximum of four separate DL/UL TCI states (two DL TCI states and two UL TCI states). good.
  • one TCI state may mean one joint (DL/UL) TCI state, or may refer to at least one of one DL (separate) TCI state and one UL (separate) TCI state. It can also mean
  • Multi-PDCCH may be assumed to be supported when multiple TRPs utilize ideal backhaul/non-ideal backhaul (see Figure 2B). .
  • one DCI associated with one TRP may indicate the TCI state corresponding to the TRP.
  • ideal backhaul may also be called DMRS port group type 1, reference signal related group type 1, antenna port group type 1, CORESET pool type 1, etc.
  • Non-ideal backhaul may be referred to as DMRS port group type 2, reference signal related group type 2, antenna port group type 2, CORESET pool type 2, etc. The names are not limited to these.
  • the field (TCI field) that indicates the TCI status included in the DCI may follow at least one of the following options 0-1 and 0-2.
  • the TCI field defined up to 15/16 may be reused (see FIG. 3A).
  • the DCI may include one TCI field.
  • the number of bits in the TCI field may be a specific number (for example, 3).
  • the TCI field defined up to 15/16 may be extended (see FIG. 3B).
  • the DCI may include a plurality of (for example, two) TCI fields.
  • the number of bits in each TCI field may be a specific number (eg, 3).
  • DL/UL (joint) TCI state may be activated for the UE using MAC CE.
  • the UE may then be instructed to a first DL/UL (joint) TCI state and a second DL/UL (joint) TCI state using DCI (beam indication) (see FIG. 4A). ).
  • the TCI code point indicated by the beam instruction may correspond to one or more (two) TCI states (first joint TCI state/second joint TCI state) (see FIG. 4B).
  • all of the TCI code points corresponding to the active TCI state correspond to two TCI states, but at least one of the TCI code points corresponding to the active TCI state corresponds to the two TCI states.
  • An association corresponding to the above may also be used. By using such an association, it is possible to dynamically switch between single TRP and multi-TRP.
  • DL (separate) TCI state and UL (separate) TCI state may be activated for the UE using MAC CE.
  • the UE uses the DCI (Beam Indication) to enter a first DL (Separate) TCI state and a first UL (Separate) TCI state, a second DL (Separate) TCI state and a second UL ( separate) TCI state (see FIG. 5A).
  • DCI Beam Indication
  • the TCI code point indicated by the beam instruction corresponds to one or more (two) TCI states (first separate (DL/UL) TCI state/second separate (DL/UL) TCI state). (See FIG. 5B).
  • all TCI code points corresponding to the active TCI state correspond to two TCI states (first separate (DL/UL) TCI state/second separate (DL/UL) TCI state).
  • an association may be used in which at least one of the TCI code points corresponding to an active TCI state corresponds to two TCI states. By using such an association, it is possible to dynamically switch between single TRP and multi-TRP.
  • the TCI state activated by the MAC CE an example was shown in which separate TCI states are activated in the DL TCI state and the UL TCI state, but even in the case of the separate TCI state, the activated The DL TCI state and UL TCI state to be provided may include a common TCI state.
  • At least one of setting of the TCI state by RRC, activation by MAC CE, and instruction by DCI may be performed for each CORESET pool index.
  • a CORESET pool index of the first value e.g. 0
  • the UE configuration of TCI state by RRC, activation by MAC CE
  • Instructions may also be given by the DCI (see FIG. 6A).
  • the indicated TCI state corresponding to the first value of the CORESET pool index may be referred to as a first TCI state.
  • the TCI code point indicated by the beam instruction may correspond to one TCI state (first joint TCI state) (see FIG. 6B).
  • a CORESET pool index of a second value (e.g. 1), configuration of TCI state by RRC, activation by MAC CE; Instructions may also be given by the DCI (see FIG. 7A).
  • the indicated TCI state corresponding to the second value of the CORESET pool index may be referred to as a second TCI state.
  • the TCI code point indicated by the beam instruction may correspond to one TCI state (second joint TCI state) (see FIG. 7B).
  • the UE may determine that one TCI state is indicated. At this time, the UE may perform an operation using a single TRP.
  • multi-DCI-based multi-TRP described above has been described as an example using a joint TCI state, it can also be appropriately applied to a case using a separate TCI state.
  • indicated TCI state, Rel. 17 TCI state, common TCI state, and unified TCI state may be read interchangeably.
  • common TCI states applied to channels/signals utilizing multi-TRP Rel. 17TCI state, Rel. 18TCI states may be read interchangeably.
  • the UE may apply the indicated TCI state to a particular channel/signal.
  • the specific channel/signal may be a UE-dedicated DL channel/signal.
  • the UE-specific DL channel/signal may be a UE-specific PDCCH/PDSCH/CSI-RS (eg, an aperiodic (A-) CSI-RS).
  • the specific channel/signal may be a specific UL channel/signal.
  • a specific UL channel/signal can be a DCI-indicated (dynamic grant-indicated) PUSCH, a configured grant PUSCH, multiple (all) unique PUCCHs (resources), SRS (e.g. aperiodic (A-))SRS).
  • One or more (eg, two) indicated TCI states may be indicated based on the method described above.
  • Each embodiment of the present disclosure may be applied to a single TRP PDSCH.
  • a single TRP PDSCH may be scheduled with a specific DCI (DCI format).
  • the specific DCI format may be, for example, DCI format 1_0 (or a DCI format that does not include a TCI field).
  • the specific DCI format may be DCI format 1_1/1-2.
  • the particular DCI format may indicate one TCI state.
  • the QCL assumption for a single TRP PDSCH may be the default TCI state.
  • the default TCI state may be one TCI state (in any DCI format).
  • the single TRP PDSCH may be scheduled as a single layer MIMO (with single layer MIMO) PDSCH.
  • the single TRP PDSCH may be the PDSCH when multiple TRPs (for example, CORESET pool index) are not configured in the UE.
  • the single TRP PDSCH may be a PDSCH scheduled at least in CSS CORESET.
  • a single TRP PDSCH may be a PDSCH scheduled with a CORESET of only a CSS (or a CSS other than a type 3 CSS).
  • Each embodiment of the present disclosure may be applied to a multi-TRP PDSCH.
  • a single TRP PDSCH may be scheduled with a specific DCI (DCI format).
  • the specific DCI format may be DCI format 1_1/1-2.
  • the particular DCI format may indicate two TCI states.
  • the QCL assumption for PDSCH of multi-TRP may be the default TCI state.
  • the default TCI state may be two TCI states (in any DCI format).
  • the multi-TRP PDSCH may be scheduled as a multi-layer MIMO (with multi-layer MIMO) PDSCH.
  • the multi-TRP PDSCH may be a PDSCH when the UE is configured to repeatedly transmit multi-TRP. At this time, the multi-TRP PDSCH may be scheduled as a PDSCH with repetition transmission (using TDM/FDM/SDM).
  • the multi-TRP PDSCH may be a PDSCH when SFN scheme A/B is configured in the UE.
  • a multi-TRP PDSCH may be a PDSCH with multiple TCI states.
  • Each embodiment of the present disclosure may be applied to a single TRP PDCCH.
  • the single TRP PDCCH may be a PDCCH related to a CORESET in which SFN scheme A/B is not configured.
  • the PDCCH of a single TRP may be a PDCCH related to a CORESET (of two linked SSs) in which repeated transmission is not configured.
  • Each embodiment of the present disclosure may be applied to a multi-TRP PDCCH.
  • the multi-TRP PDCCH may be a PDCCH related to a CORESET in which SFN scheme A/B is configured.
  • Each embodiment of the present disclosure may be applied to a single TRP PUSCH/PUCCH.
  • the single TRP PUSCH/PUCCH may be a PUSCH/PUCCH for which repeated transmission of multiple TRPs is not set.
  • Each embodiment of the present disclosure may be applied to multi-TRP PUSCH/PUCCH.
  • the multi-TRP PUSCH/PUCCH may be a PUSCH/PUCCH on which repeated transmission of the multi-TRP is configured.
  • Each embodiment of the present disclosure may be applied to single/multi-TRP CSI-RS/SRS.
  • TRPs transmission/reception points
  • MTRPs Multi-TRPs
  • the UE receives channels/signals from multiple cells/TRPs in inter-cell mobility (eg, L1/L2 inter-cell mobility).
  • inter-cell mobility eg, L1/L2 inter-cell mobility
  • FIG. 8A shows an example of inter-cell mobility (for example, Single-TRP inter-cell mobility) including non-serving cells.
  • the UE may be configured with one TRP (or single TRP) in each cell.
  • the UE connects the base station/TRP of cell #1 (PCI#1) which is a serving cell and the base station/TRP of cell #3 (PCI#3) which is not a serving cell (becomes a non-serving cell).
  • PCI#1 base station/TRP of cell #1
  • PCI#3 base station/TRP of cell #3
  • This shows the case where a channel/signal is received from.
  • this corresponds to the case where the UE switches/switches from cell #1 to cell #3 (for example, fast cell switch).
  • port (for example, antenna port)/TRP selection may be performed dynamically. This may be done based on port (eg, antenna port)/TRP selection or TCI status indicated or updated by the DCI/MAC CE.
  • port for example, antenna port
  • TCI status indicated or updated by the DCI/MAC CE.
  • PCI Physical Cell Identifier
  • the UE can transmit and receive UL/DL channels/RSs between cells having a PCI different from the serving cell's PCI. For example, if the RSRP of the non-serving cell is greater than the RSRP of the serving cell, the UE can transmit and receive UL/DL channels/RSs to and from the non-serving cell without handover.
  • FIG. 8B shows an example of a multi-TRP scenario. Similar to FIG. 8A, the UE connects the base station/TRP of cell #1 (PCI #1) that will be the serving cell and the base station of cell #3 (PCI #3) that is not the serving cell (will be the non-serving cell). The case where a channel/signal is received from a station/TRP is shown.
  • the multi-DCI-based multi-TRP using the above-mentioned NCJT is applied to the PCI#1 TRP and the PCI#3 TRP.
  • the TCI states in FIGS. 8A and 8B are Rel. 15/16 TCI status may be used, or Rel.
  • the unified TCI state may be 17 or later.
  • the beam management/reporting (eg, L1-RSRP reporting of non-serving cells) in FIGS. 8A and 8B may be common.
  • FIG. 9 is a diagram showing the TCI state corresponding to the CSI-RS related to the SSB of a non-serving cell.
  • PCI #1 and #3 in FIG. 9 correspond to PCI #1 and #3 in FIG. 8A.
  • the UE switches the TCI state used for DL reception from TCI state #1 to TCI state #2.
  • FIG. 10 is a diagram illustrating an example of the relationship between beam reports and rebuild indexes.
  • the beam report (CSI report) of a non-serving cell includes an RSRP value and CRI or SSBRI.
  • the CRI or SSBRI is related to the Rebuild Index (ID for PCI).
  • the re-created index is a newly created index based on the PCI, and is associated with at least a portion of the PCI.
  • the regeneration index may be set in the UE by RRC and assigned a number up to 7 corresponding to the additional PCI (non-serving cell PCI).
  • ID When the re-creation index (ID) is 0, it may mean a serving cell (PCI of the serving cell). Since the recreated index can be expressed using a smaller number of bits than PCI, communication overhead can be suppressed.
  • Multi-TRP inter-cell scenario An inter-cell scenario (inter-cell mobility) in multi-DCI-based multi-TRP will be described.
  • coresetPoolIndex is set.
  • Additional PCI is associated with the activated TCI state (SSB as QCL source RS) corresponding to PDSCH/PDCCH.
  • One PCI is associated with an activated TCI state corresponding to one coresetPoolIndex.
  • the serving cell PCI is always associated with an activated TCI state, and the additional PCI (SSB corresponding to the additional PCI) is associated with only one active TCI state.
  • Rate matching around SSB related to the PCI of the serving cell may be performed for the PDCCH/PDSCH corresponding to the serving cell.
  • rate matching around SSB related to the additional PCI may be performed for PDCCH/PDSCH corresponding to the additional PCI.
  • shared search spaces (CSS) of type 0/0A/1/2 may not be monitored.
  • the serving cell and the cell having additional PCI may have the same center frequency, subcarrier spacing (SCS), and system frame number (SFN) offset.
  • the number of additional PCIs configured by RRC may be up to seven.
  • the UE may also report the UE capability indicating the maximum number X of additional PCIs.
  • FIG. 12A is a diagram showing the maximum number of additional PCIs in case 1.
  • X1 is 4.
  • FIG. 12B is a diagram showing the maximum number of additional PCIs in case 2.
  • X2 is 8.
  • FIG. 13 is a diagram showing an example in which SSB from a serving cell, SSB from a cell with additional PCI, and UL transmission overlap.
  • a UE may cancel a UL transmission if an SSB from a serving cell or an SSB from a cell with additional PCI associated with an active TCI state overlaps in time with the UL transmission.
  • the configured DL/joint TCI state for PDCCH/PDSCH DMRS is specified as "DLorJointTCIState" except for the indicated "DLorJointTCIState". be done.
  • the indicated TCI state is applied to multiple UL/DL channels/RSs.
  • a configured TCI state applies only to one channel/RS.
  • FIG. 14A shows Rel. 15 TCI states
  • Rel. 17 is a diagram showing the set DL/joint TCI state
  • FIG. 14B is a diagram showing the indicated DL/Joint TCI state.
  • FIG. 14B differs from FIG. 14A in that the relationship in the third row is not supported.
  • Configured may mean configured by upper layer (RRC) signaling.
  • Directed may mean directed by the DCI.
  • NZP-CSI-RS-ResourceSet is an upper layer parameter regarding the non-zero power CSI-RS resource set.
  • the UE determines whether the TCI state is one of the following QCL types (1) or (2). We expect you to demonstrate this. (1) “typeC” corresponding to the SS/PBCH block and, if applicable, "typeD” corresponding to the same SS/PBCH block. (2) “typeC” of the SS/PBCH block and, if applicable, "typeD” corresponding to the CSI-RS in the NZP-CSI-RS-ResourceSet configured with the upper layer parameter repetition.
  • the UE For CSI-RS resources in the NZP-CSI-RS-ResourceSet configured with the upper layer parameter repetition, the UE expects the TCI state to indicate one of the following QCL types (1) to (3). do. (1) "typeA" corresponding to the CSI-RS resource in the NZP-CSI-RS-ResourceSet configured with the upper layer parameter trs-Info and, if applicable, "typeD" corresponding to the same CSI-RS resource. ”.
  • This reference RS may additionally be an SS/PBCH block with a PCI different from that of the serving cell.
  • the UE may assume that the center frequency, SCS, SFN offset is the same for the SS/PBCH block from the serving cell and the SS/PBCH block with a different PCI than the serving cell.
  • NZP CSI-RS (NZP CSI-RS) Rel.
  • This section does not prohibit a CSI-RS (including a TRS) from being further associated with an SSB with additional PCI.
  • the UE assumes non-zero transmit power for the CSI-RS resource, which is configured via the upper layer parameters NZP-CSI-RS-Resource, CSI-ResourceConfig, and NZP-CSI-RS-ResourceSet for each CSI-RS resource configuration.
  • NZP-CSI-RS-Resource the upper layer parameters
  • CSI-ResourceConfig the upper layer parameters
  • NZP-CSI-RS-ResourceConfig the upper layer parameters
  • NZP-CSI-RS-ResourceConfig CSI-ResourceConfig
  • NZP-CSI-RS-ResourceSet for each CSI-RS resource configuration.
  • the following (1) qcl-InfoPeriodicCSI-RS may be used as a parameter in this case.
  • (1) qcl-InfoPeriodicCSI-RS contains a reference to the QCL source RS(s) and the TCI state indicating the QCL type.
  • That RS is configured to be an SS/PBCH block located in the same or different CC/DL BWP or in the same or different CC/ It may be a periodic configured CSI-RS resource located in the DL BWP.
  • the reference RS may additionally be an SS/PBCH block associated with a PCI different from the serving cell's PCI.
  • TCI status there are cases where it is not clear how to indicate the TCI status. For example, the relationship between TCI states applied to multiple types of signals (channels/RSs) and the physical cell ID of a serving cell or a non-serving cell was not clear. If the method of indicating the TCI status is not clear, there is a risk of deterioration in communication quality, throughput, etc.
  • the present inventors came up with a method for appropriately indicating the TCI status.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • groups e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups
  • resources e.g., reference signal resources, SRS resource
  • resource set for example, reference signal resource set
  • CORESET pool downlink Transmission Configuration Indication state (TCI state) (DL TCI state), up
  • spatial relationship information identifier (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably.
  • “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
  • drop, abort, cancel, puncture, rate match, postpone (postpone), etc. may be read interchangeably.
  • common beam common TCI, common TCI state, Rel. 17TCI state, Rel. TCI state after 17, unified TCI, unified TCI state, TCI state applied to multiple types of channels/RSs, TCI states applied to multiple (multiple types) channels/RSs, applied to multiple types of channels/RSs Possible TCI states, TCI states for multiple types of signals, TCI states for multiple types of channels/RSs, TCI states, unified TCI states, UL and DL TCI states for joint TCI indications, UL for separate TCI indications DL-only TCI state, DL-only TCI state for separate TCI instructions, joint TCI state for DL and UL, and separate TCI state for each of DL and UL may be read interchangeably.
  • TCI states In the present disclosure, Rel. 15/16 TCI states, TCI states/spatial relationships that apply only to a specific channel/RS, and TCI states/spatial relationships that apply to one type of channel/RS may be read interchangeably.
  • multiple TCI states configured by an RRC IE, multiple TCI states activated by a MAC CE, information regarding one or more TCI states, TCI state settings, a TCI state pool, an active TCI state pool, a common TCI state pool, unified TCI state pool, TCI state list, unified TCI state list, joint TCI state pool, separate TCI state pool, separate DL/UL TCI state pool, DL TCI state pool, UL TCI state pool, separate DL TCI state pool , separate UL TCI state pool may be read interchangeably.
  • DL TCI, DL only TCI, separate DL only TCI, DL common TCI, DL unified TCI, common TCI, and unified TCI may be read interchangeably.
  • UL TCI, UL only TCI, separate UL only TCI, UL common TCI, UL unified TCI, common TCI, and unified TCI may be read interchangeably.
  • the channel/RS to which the unified TCI state is applied may be PDSCH/PDCCH/CSI-RS/PUSCH/PUCCH/SRS.
  • the CSI-RS having information (upper layer parameter trs-Info) and the NZP CSI-RS resource in the NZP CSI-RS resource set having TRS information may be read interchangeably.
  • the terms CSI-RS resource, CSI-RS resource set, CSI-RS resource group, and information element (IE) may be interchanged.
  • a non-serving cell a candidate serving cell, a cell with a different PCI from the serving cell, and another serving cell with a different PCI may be interchanged with each other.
  • PCI different from the serving cell and additional PCI may be interchanged.
  • Cell and PCI may be read interchangeably.
  • a TRS, a tracking CSI-RS, a CSI-RS with TRS information (upper layer parameter trs-Info), and an NZP-CSI-RS resource in a NZP-CSI-RS resource set with TRS information are mutually exclusive. It may be read differently.
  • TCI state, TCI state or QCL assumption, QCL assumption, QCL information, QCL parameter, spatial domain receive filter, UE spatial domain receive filter, spatial domain filter, UE receive beam, DL receive beam, DL precoding, DL precoder, DL- RS, RS of QCL type X in TCI state or QCL assumption may be read interchangeably.
  • RS of QCL type X, DL-RS associated with QCL type X, DL-RS with QCL type X, source of DL-RS, SSB, and CSI-RS may be read interchangeably.
  • the X is, for example, any one of A, B, C, and D.
  • Y's QCL source is Z
  • Y and Z are in a QCL relationship
  • Y and Z are in a QCL type X relationship
  • Y's TCI state is a QCL type X (with Z).
  • QCL-typeX with M) may be interpreted interchangeably.
  • X may be A, B, C, or D, for example.
  • Y and Z may be, for example, DM-RS, CSI-RS, TRS, or SSB of PDSCH/PDCCH.
  • PDSCH/PDCCH DM-RS, CSI-RS, TRS, and SSB may be read as PDSCH/PDCCH DM-RS TCI state, CSI-RS TCI state, TRS TCI state, and SSB TCI state, respectively. good.
  • SSB and SS/PBCH blocks may be read interchangeably.
  • Z corresponding to Y, Z with Y (Z with Y), and Y with Z (Y with Z) may be read interchangeably.
  • Type X and QCL type X may be read interchangeably.
  • the X is, for example, any one of A, B, C, and D.
  • An SS/PBCH block having a PCI different from that of the serving cell and an SS/PBCH block of a non-serving cell may be read interchangeably.
  • the description XX may indicate a 3GPP release. Although XX indicates a release number, it is not limited to the numbers shown in this disclosure and may be replaced with other release numbers. For example, Rel. 18 is Rel. It may be replaced by other release numbers after 18. Rel. The description XX may be omitted.
  • the unified TCI state for multi-TRPs may be applied to multi-TRP inter-cell operations. That is, the UE receives instruction information of multiple transmission configuration indication (TCI) states (unified TCI states) applied to multiple signals, and based on the instruction information, assigns the multiple TCI states to multiple TRPs. It may be applied to each signal to be transmitted and received.
  • TCI transmission configuration indication
  • Each of the plurality of TCI states is a TCI state applied to both the DL signal and the UL signal (joint TCI state), or a TCI state applied to the DL signal and a TCI state applied to the UL signal. state (separate TCI state).
  • Each of the multiple TCI states (unified TCI states) may be associated with a different physical cell ID (PCI).
  • CORESETPoolIndex/TCI state and PCI may be indicated by RRC signaling (for example, ControlResourceSets)/MAC CE/DCI.
  • the number of additional PCIs is set in the UE, and the Rel.
  • 17 unified TCI states DL/Joint/UL TCI states or Rel.18 TCI states
  • M>1 TCI states DL/Joint/UL TCI states>1
  • one indicated TCI state may be associated with one PCI
  • another indicated TCI state may be associated with another PCI.
  • the TCI state of the DMRS of the PDCCH/PDSCH is set with the QCL type A/D CSI-RS/TRS as the QCL source RS.
  • the TCI state of the CSI-RS/TRS may be set with the SSB/CSI-RS-TRS of QCL type C/D as the QCL source RS.
  • the SSB may be associated with a PCI different from the serving cell's PCI.
  • FIGS. 15A and 15B are diagrams showing examples of TCI state settings and instructions in the first embodiment.
  • the correspondence between TCI code points and TCI states is the same as that in FIGS. 6B and 7B, and will therefore be omitted (FIG. 6B corresponds to FIG. 15A, and FIG. 7B corresponds to FIG. 15B).
  • the QCL source RS in the first/second joint/DL/UL TCI state may be associated with the SSB of the additional PCI.
  • both the unified TCI state for multi-TRP and the inter-cell operation for multi-TRP can be performed appropriately.
  • the unified TCI state may support S-DCI based multi-TRP intercell operation. That is, the UE may receive one DCI (single DCI) that schedules multiple PDSCHs from multiple TRPs. At least one of the plurality of unified TCI states (first or second TCI state) may be associated with a PCI different from the serving cell (SSB corresponding to the PCI (SSB of a non-serving cell)).
  • One TRP index may be associated with one PCI (either serving cell PCI or additional PCI).
  • the number of additional PCIs (NumberOfAdditionalPCI) is set in the UE, the unified TCI state (DL/Joint/UL TCI state in Rel.17, or the TCI state in Rel.18) is set, and the TCI state (DL/Joint/UL TCI state in Rel.18) is set in the UE.
  • a joint/UL TCI state>1 is indicated, one indicated TCI state may be associated with one PCI, and another indicated TCI state may be associated with another PCI.
  • FIG. 16A is a diagram showing a first example of TCI state settings and instructions in the second embodiment.
  • FIG. 16B is a diagram illustrating an example of correspondence between TCI code points and active TCI states.
  • one DCI indicates the 1st DL/UL (joint) TCI state and the 2nd DL/UL (joint) TCI state.
  • the 1stDL/UL TCI state is related to PCI#1, and the 2ndDL/UL TCI state is related to PCI#2.
  • FIG. 17A is a diagram showing a second example of TCI state settings and instructions in the second embodiment.
  • FIG. 17B is a diagram illustrating an example of correspondence between TCI code points and active TCI states.
  • one DCI indicates the 1st DL TCI state, 2nd DL TCI state, 1st UL TCI state, and 2nd UL TCI state (separate TCI state).
  • the 1stDL TCI state and 1stUL TCI state are related to PCI#1, and the 2ndDL TCI state and 2ndUL TCI state are related to PCI#2.
  • At least one of the following constraints (1) to (3) may be applied.
  • the UE assumes that the center frequency, SCS, and SFN offset are the same for the SS/PBCH block corresponding to the serving cell and the SS/PBCH block corresponding to a PCI different from the serving cell.
  • the UE receives two PDSCHs from two TRPs (two cells with different PCIs) within one cyclic prefix (CP) in the time domain.
  • CP cyclic prefix
  • the UE transmits two UL signals for two TRPs (two cells with different PCIs) using the same Timing Advance (TA).
  • TA Timing Advance
  • multiple unified TCI states can be appropriately utilized in S-DCI-based multi-TRP inter-cell operations.
  • One PCI has one designated Rel. 17 TCI states only.
  • Single TRP is applied to Rel.17 multi-TRP inter-cell operation (for example, see FIG. 8B).
  • one Rel. Fifteen TCI states are associated with the serving cell PCI and one additional Rel. Fifteen TCI states are associated with additional PCIs.
  • both functions of L1/L2 inter-cell mobility (for example, see FIG. 8A) and multi-TRP inter-cell operation (for example, see FIG. 8B) may be configured at the same time.
  • the UE may receive PDSCH from multiple TRPs using NCJT and select one TRP from the multiple TRPs based on the TCI state instructed or updated by the DCI/MAC CE ( (The serving cell may be switched.)
  • unified TCI states may be used for beam pointing indication.
  • at least one of the following restrictions (3-1) and (3-2) may be applied.
  • TCI state When two TCI states (indicated TCI state or configured TCI state) exist, at least one TCI state is associated with the serving cell PCI. Other TCI states are associated with additional PCIs. As a result, Rel. The operation is the same as in No. 17, and the UE can always transmit and receive signals to and from the serving cell. (3-2) If two TCI states exist (indicated TCI state or configured TCI state), both TCI states can be either serving cell PCI only, additional PCI only, or both PCIs (serving cell PCI and additional PCI).
  • a UE can always send and receive signals to and from a serving cell.
  • the UE may receive information about the cell (system information, paging, short messages) only from the serving cell. Note that information regarding the cell may be received from the serving cell while only the TCI state of the non-serving cell is active.
  • the UE When switching between serving cells is performed in L1/L2, the UE receives the settings of multiple serving cells through RRC, is instructed (selected) to select some of the multiple serving cells by MAC CE/DCI, and selects a portion of the serving cells from the designated serving cells. You may also send and receive data.
  • MAC CE/DCI As an example of MAC CE/DCI, a new MAC CE may be defined, or a new DCI format/DCI field may be defined.
  • the UE has Rel.
  • the serving cell may be switched by switching the TCI state using a mechanism similar to the L1/L2 inter-cell mobility in No. 17.
  • the UE configures the Rel.18 mobility function.
  • the 17/18 unified TCI state (Joint/DL/UL TCI) may be used to indicate the TCI state of a cell corresponding to at least one PCI.
  • the UE switches the serving cell (servingcellconfig) based on the TCI states of the serving cell and non-serving cell instructed in advance and the MAC CE/DCI (for example, cell switching dedicated MAC CE, dedicated DCI format/DCI field). It's okay.
  • the UE may apply two indicated TCI states as the serving cell and non-serving cell indicated TCI states, respectively.
  • the first TCI state may be applied as the TCI state of the serving cell
  • the second TCI state may be applied as the indicated TCI state of the non-serving cell. This example may be applied in the case of a single TRP.
  • multi-TRP may be applied and two TCI states may be indicated to each cell. That is, a total of four TCI states may be indicated.
  • the UE has a first TCI state for the serving cell (for the first TRP), a second TCI state for the serving cell (for the second TRP), and a first TCI state for the non-serving cell. (for the first TRP) and a second TCI state (for the second TRP) for non-serving cells may be indicated.
  • the UE then applies two TCI states for the non-serving cell when multi-TRP is applied in the non-serving cell.
  • the UE applies one TCI state (for the first or second TRP) for the non-serving cell if a single TRP is applied in the non-serving cell. Note that the number of cells may not be 2, for example.
  • the UE determines whether the SSB of the QCL source RS of the CSI-RS/TRS of the QCL source RS in the indicated TCI state is the PCI of the serving cell. Serving cell switching may be performed depending on whether it is related to PCI or another PCI.
  • the number of indicated TCI states may be limited to 1 (only a single TRP may be applied) or may be greater than or equal to 1 (multi-TRP inter-cell operation may be applied). Further, the number of TCI states corresponding to the PCI of the serving cell may be one or more, and the number of TCI states corresponding to the PCI of the non-serving cell (serving cell after switching) may be one. In other words, single TRP may be applied only when switching cells.
  • multi-TRP inter-cell operation may not be supported since serving cell switching takes place. That is, it may not be assumed that multiple TCI states are indicated, or that multiple TCI states associated with multiple PCIs are indicated simultaneously.
  • multi-TRP intercell operation may be supported.
  • the associated PCI in the first (or second) TCI state is the serving cell
  • the associated PCI in the second (or first) TCI state PCI may be a non-serving cell. That is, the UE may switch the information regarding the serving cell to the designated serving cell.
  • the UE may receive cell-related information (system information, paging, short messages) only from the serving cell. Further, in a state where only the TCI state of a non-serving cell is active, the serving cell may not be able to receive cell-related information (system information, paging, short messages) from the serving cell (the UE does not monitor paging/short messages).
  • system information system information, paging, short messages
  • the serving cell is switched by MAC CE/DCI, so if the serving cell is switched from the serving cell at a certain point to another cell, the "another cell" will become the serving cell at the next point, so the UE at this point information regarding the cell can be appropriately received from the serving cell of the cell.
  • the UE assumes that the center frequency, SCS, and SFN offset are the same for the SS/PBCH block corresponding to the serving cell and the SS/PBCH block corresponding to a PCI different from the serving cell.
  • the UE receives two PDSCHs from two TRPs (two cells with different PCIs) within one cyclic prefix (CP) in the time domain.
  • the UE transmits two UL signals for two TRPs (two cells with different PCIs) using the same Timing Advance (TA).
  • TA Timing Advance
  • the serving cell is switched, so it is assumed that the serving cell of the existing specification is switched at L1/L2. In other words, handover using MAC CE/DCI becomes possible. However, there is a possibility that a complete handover may not be possible. For example, even if the serving cell is switched, the TA may not be updated.
  • new terms such as a connected cell, a providing cell, a serving cell subset, and a sub-serving cell may be used for the serving cell.
  • Rel It may be the cell of the new term that is switched by the 18 MAC CE/DCI.
  • the serving cells of the existing specifications are switched by MAC CE/DCI, the above new terminology becomes unnecessary, and at least some parameters (for example, TA value, TAG value, etc.) are common among multiple serving cells. Good too.
  • the "between multiple serving cells” may mean cells related to multiple serving cell configurations (ServingCellConfig) configured by RRC.
  • Rel. Appropriate information can be received regarding the operation of the terminal corresponding to 18.
  • ⁇ Supplement> At least one of the embodiments described above may apply only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: - Supporting specific processing/operation/control/information for at least one of the above embodiments. - Support unified TCI states for multi-TRP inter-cell operation. - Number of PCIs that can be configured by the UE. - Number of PCIs associated with active TCI status. - Support joint TCI, DL TCI state and UL TCI state, or both.
  • the above-mentioned specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (for example, cell, band, BWP). , capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), or for each subcarrier spacing (SCS). It may be the ability of
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • At least one of the embodiments described above may be applied when the UE is configured with specific information related to the embodiment described above by upper layer signaling.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
  • a receiving unit that receives instruction information of a plurality of transmission configuration indication (TCI) states applied to a plurality of signals; a control unit that applies the plurality of TCI states to signals using a plurality of transmission/reception points (TRPs), respectively, based on the instruction information,
  • TCI transmission configuration indication
  • TRPs transmission/reception points
  • Each of the plurality of TCI states is a TCI state applied to both downlink (DL) signals and uplink (UL) signals, or a TCI state applied to DL signals and a TCI state applied to UL signals.
  • Each of the plurality of TCI states is associated with a different physical cell ID (PCI) of the terminal.
  • PCI physical cell ID
  • the receiving unit receives one piece of downlink control information (DCI) that schedules a plurality of physical downlink shared channels (PDSCH) from the plurality of TRPs, The terminal according to supplementary note 1, wherein at least one of the plurality of TCI states is associated with a PCI different from a serving cell.
  • DCI downlink control information
  • PDSCH physical downlink shared channels
  • the receiving unit receives a physical downlink shared channel (PDSCH) from a plurality of TRPs using non-coherent joint transmission,
  • the control unit selects one TRP from a plurality of TRPs based on a TCI state indicated by at least one of downlink control information (DCI) and a medium access control control element (MAC CE).
  • Appendix 1 or Appendix 1 The terminal described in 2.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 18 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 19 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit instruction information of a plurality of transmission setting instruction (TCI) states applied to a plurality of signals. Based on the instruction information, the transmitting/receiving unit 120 may apply the plurality of TCI states to signals transmitted/received by the terminal to/from a plurality of transmitting/receiving points (TRPs), and may receive the signals.
  • TCI transmission setting instruction
  • the control unit 110 may control transmission and reception by the transmission and reception unit 120.
  • Each of the plurality of TCI states is a TCI state applied to both downlink (DL) signals and uplink (UL) signals, or a TCI state applied to DL signals and a TCI state applied to UL signals. It may be.
  • Each of the plurality of TCI states may be associated with a different physical cell ID (PCI).
  • PCI physical cell ID
  • FIG. 20 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitting/receiving unit 220 may receive instruction information of a plurality of transmission setting instruction (TCI) states applied to a plurality of signals. Based on the instruction information, the control unit 210 may apply the plurality of TCI states to each of the signals transmitted to and received from the plurality of transmission/reception points (TRPs).
  • TCI transmission setting instruction
  • Each of the plurality of TCI states is a TCI state applied to both downlink (DL) signals and uplink (UL) signals, or a TCI state applied to DL signals and a TCI state applied to UL signals. It may be.
  • Each of the plurality of TCI states may be associated with a different physical cell ID (PCI).
  • PCI physical cell ID
  • the transceiver unit 220 may receive one piece of downlink control information (DCI) that schedules a plurality of physical downlink shared channels (PDSCH) from the plurality of TRPs. At least one of the plurality of TCI states may be associated with a different PCI than a serving cell.
  • DCI downlink control information
  • PDSCH physical downlink shared channels
  • the transmitting/receiving unit 220 may receive physical downlink shared channels (PDSCH) from multiple TRPs using non-coherent joint transmission.
  • the control unit 210 may select one TRP from a plurality of TRPs based on the TCI state indicated by at least one of downlink control information (DCI) and Medium Access Control Control Element (MAC CE).
  • DCI downlink control information
  • MAC CE Medium Access Control Control Element
  • the control unit 210 may switch the serving cell based on the TCI states of the serving cell and non-serving cell instructed in advance, and at least one of the DCI and MAC CE.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 21 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 22 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New Radio Access
  • FX Future Generation Radio Access
  • G Global System for Mobile Communications
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、複数の信号に適用される複数の送信設定指示(TCI)状態の指示情報を受信する受信部と、前記指示情報に基づいて、前記複数のTCI状態を、複数の送受信ポイント(TRP)と送受信する信号にそれぞれ適用する制御部と、を有し、前記複数のTCI状態のそれぞれは、下りリンク(DL)信号及び上りリンク(UL)信号の両方に適用されるTCI状態、又は、DL信号に適用されるTCI状態及びUL信号に適用されるTCI状態であり、前記複数のTCI状態のそれぞれは、異なる物理セルID(PCI)に関連することを特徴とする。本開示の一態様によれば、TCI状態指示を適切に行うことができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システムにおいて、ユーザ端末(端末、user terminal、User Equipment(UE))は、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報(QCL想定/Transmission Configuration Indication(TCI)状態/空間関係)に基づいて、送受信処理を制御することが検討されている。
 設定/アクティベート/指示されたTCI状態を複数種類の信号(チャネル/RS)に適用することが検討されている。しかしながら、TCI状態の指示方法が明らかでないケースがある。TCI状態の指示方法が明らかでなければ、通信品質の低下、スループットの低下など、を招くおそれがある。
 そこで、本開示は、TCI状態の指示を適切に行う端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、複数の信号に適用される複数の送信設定指示(TCI)状態の指示情報を受信する受信部と、前記指示情報に基づいて、前記複数のTCI状態を、複数の送受信ポイント(TRP)と送受信する信号にそれぞれ適用する制御部と、を有し、前記複数のTCI状態のそれぞれは、下りリンク(DL)信号及び上りリンク(UL)信号の両方に適用されるTCI状態、又は、DL信号に適用されるTCI状態及びUL信号に適用されるTCI状態であり、前記複数のTCI状態のそれぞれは、異なる物理セルID(PCI)に関連することを特徴とする。
 本開示の一態様によれば、TCI状態の指示を適切に行うことができる。
図1A及び図1Bは、共通ビームの一例を示す図である。 図2A及び図2Bは、それぞれシングルDCIベースのマルチTRP送信及びマルチDCIベースのマルチTRP送信の一例を示す図である。 図3A及び図3Bは、DCI内のTCIフィールドの一例を示す図である。 図4A及び図4Bは、シングルDCIベースのマルチTRPにおけるジョイントTCI状態の設定/指示の一例を示す図である。 図5A及び図5Bは、シングルDCIベースのマルチTRPにおけるセパレートTCI状態の設定/指示の一例を示す図である。 図6A及び図6Bは、マルチDCIベースのマルチTRPにおける、第1の値のCORESETプールインデックスに対応するジョイントTCI状態の設定/指示の一例を示す図である。 図7A及び図7Bは、マルチDCIベースのマルチTRPにおける、第2の値のCORESETプールインデックスに対応するジョイントTCI状態の設定/指示の一例を示す図である。 図8A及び図8Bは、セル間モビリティの一例を示す図である。 図9は、非サービングセルのSSBに関連するCSI-RSに対応するTCI状態を示す図である。 図10は、ビーム報告及び再作成インデックスの関係の例を示す図である。 図11は、マルチDCIベースのマルチTRPにおけるセル間シナリオの例を示す図である。 図12Aは、ケース1の追加PCIの最大数を示す図である。図12Bは、ケース2の追加PCIの最大数を示す図である。 図13は、サービングセルからのSSB、追加PCIを有するセルからのSSBとUL送信がオーバーラップする例を示す図である。 図14Aは、Rel.15のTCI状態、及びRel.17の設定されたDL/ジョイントTCI状態を示す図である。図14Bは、指示されたDL/ジョイントTCI状態を示す図である。 図15A及び図15Bは、第1の実施形態におけるTCI状態の設定、指示の例を示す図である。 図16Aは、第2の実施形態におけるTCI状態の設定、指示の第1の例を示す図である。図16Bは、TCIコードポイントとアクティブTCI状態との対応例を示す図である。 図17Aは、第2の実施形態におけるTCI状態の設定、指示の第2の例を示す図である。図17Bは、TCIコードポイントとアクティブTCI状態との対応例を示す図である。 図18は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図19は、一実施形態に係る基地局の構成の一例を示す図である。 図20は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図21は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図22は、一実施形態に係る車両の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
 PDCCH及びPDSCHに対してQCLタイプA RSは必ず設定され、QCLタイプD RSは追加で設定されてもよい。DMRSのワンショットの受信によってドップラーシフト、遅延などを推定することが難しいため、チャネル推定精度の向上にQCLタイプA RSが使用される。QCLタイプD RSは、DMRS受信時の受信ビーム決定に使用される。
 例えば、TRS1-1、1-2、1-3、1-4が送信され、PDSCHのTCI状態によってQCLタイプC/D RSとしてTRS1-1が通知される。TCI状態が通知されることによって、UEは、過去の周期的なTRS1-1の受信/測定の結果から得た情報を、PDSCH用DMRSの受信/チャネル推定に利用できる。この場合、PDSCHのQCLソースはTRS1-1であり、QCLターゲットはPDSCH用DMRSである。
(デフォルトTCI状態/デフォルト空間関係/デフォルトPL-RS)
 Rel.16において、PDSCHは、TCIフィールドを有するDCIでスケジュールされてもよい。PDSCHのためのTCI状態は、TCIフィールドによって指示される。DCIフォーマット1-1のTCIフィールドは3ビットであり、DCIフォーマット1-2のTCIフィールドは最大3ビットである。
 RRC接続モードにおいて、もしPDSCHをスケジュールするCORESETに対して、第1のDCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI)が「有効(enabled)」とセットされる場合、UEは、当該CORESETにおいて送信されるPDCCHのDCIフォーマット1_1内に、TCIフィールドが存在すると想定する。
 また、もしPDSCHをスケジュールするCORESETに対する第2のDCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI-1-2)がUEに設定される場合、UEは、当該CORESETにおいて送信されるPDSCHのDCIフォーマット1_2内に、第2のDCI内TCI情報要素で指示されるDCIフィールドサイズをもつTCIフィールドが存在すると想定する。
 また、Rel.16において、PDSCHは、TCIフィールドを有さないDCIでスケジュールされてもよい。当該DCIのDCIフォーマットは、DCIフォーマット1_0、又は、DCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI又はtci-PresentInDCI-1-2)が設定(有効に)されないケースにおけるDCIフォーマット1_1/1_2であってもよい。PDSCHがTCIフィールドを有さないDCIでスケジュールされ、もしDL DCI(PDSCHをスケジュールするDCI(スケジューリングDCI))の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)以上である場合、UEは、PDSCHのためのTCI状態又はQCL想定が、CORESET(例えば、スケジューリングDCI)のTCI状態又はQCL想定(デフォルトTCI状態)と同じであると想定する。
 RRC接続モードにおいて、DCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI及びtci-PresentInDCI-1-2)が「有効(enabled)」とセットされる場合と、DCI内TCI情報要素が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)より小さい場合(適用条件、第1条件)、もし非クロスキャリアスケジューリングの場合、PDSCHのTCI状態(デフォルトTCI状態)は、その(特定UL信号の)CCのアクティブDL BWP内の最新のスロット内の最低のCORESET IDのTCI状態であってもよい。そうでない場合、PDSCHのTCI状態(デフォルトTCI状態)は、スケジュールされるCCのアクティブDL BWP内のPDSCHの最低のTCI状態IDのTCI状態であってもよい。
 Rel.15においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の個々のMAC CEが必要である。PUSCH空間関係は、SRS空間関係に従う。
 Rel.16においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の少なくとも1つが用いられなくてもよい。
 もしFR2において、PUCCHに対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、PUCCHに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。もしFR2において、SRS(SRSに対するSRSリソース、又はPUSCHをスケジュールするDCIフォーマット0_1内のSRIに対応するSRSリソース)に対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、DCIフォーマット0_1によってスケジュールされるPUSCHとSRSとに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。
 もしそのCC上のアクティブDL BWP内にCORESETが設定される場合(適用条件)、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内の最低CORESET IDを有するCORESETのTCI状態又はQCL想定であってもよい。もしそのCC上のアクティブDL BWP内にCORESETが設定されない場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内のPDSCHの最低IDを有するアクティブTCI状態であってもよい。
 Rel.15において、DCIフォーマット0_0によってスケジュールされるPUSCHの空間関係は、同じCC上のPUCCHのアクティブ空間関係のうち、最低PUCCHリソースIDを有するPUCCHリソースの空間関係に従う。ネットワークは、SCell上でPUCCHが送信されない場合であっても、全てのSCell上のPUCCH空間関係を更新する必要がある。
 Rel.16においては、DCIフォーマット0_0によってスケジュールされるPUSCHのためのPUCCH設定は必要とされない。DCIフォーマット0_0によってスケジュールされるPUSCHに対し、そのCC内のアクティブUL BWP上に、アクティブPUCCH空間関係がない、又はPUCCHリソースがない場合(適用条件、第2条件)、当該PUSCHにデフォルト空間関係及びデフォルトPL-RSが適用される。
 SRS用デフォルト空間関係/デフォルトPL-RSの適用条件は、SRS用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForSRS)が有効にセットされることを含んでもよい。PUCCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、PUCCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUCCH)が有効にセットされることを含んでもよい。DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUSCH0_0)が有効にセットされることを含んでもよい。
 Rel.16において、UEに対し、RRCパラメータ(PUCCHのためのデフォルトビームPLを有効化するパラメータ(enableDefaultBeamPL-ForPUCCH)、PUSCHのためのデフォルトビームPLを有効化するパラメータ(enableDefaultBeamPL-ForPUSCH0_0)、又は、SRSのためのデフォルトビームPLを有効化するパラメータ(enableDefaultBeamPL-ForSRS))が設定され、空間関係又はPL-RSが設定されない場合、UEは、デフォルト空間関係/PL-RSを適用する。
 上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、「beamSwitchTiming」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。上記閾値は、(サブキャリア間隔毎の)UE能力として、UEによって報告されてもよい。
 DL DCIの受信と、それに対応するPDSCHと、の間のオフセット(スケジューリングオフセット)が閾値timeDurationForQCLより小さく、且つスケジュールされたPDSCHのサービングセルに対して設定された少なくとも1つのTCI状態が「QCLタイプD」を含み、且つUEが2デフォルトTCI有効化情報要素(enableTwoDefaultTCIStates-r16)を設定され、且つ少なくとも1つのTCIコードポイント(DL DCI内のTCIフィールドのコードポイント)が2つのTCI状態を示す場合、UEは、サービングセルのPDSCH又はPDSCH送信オケージョンのDMRSポートが、2つの異なるTCI状態を含むTCIコードポイントのうちの最低コードポイントに対応する2つのTCI状態に関連付けられたQCLパラメータに関するRSとQCLされる(quasi co-located)と想定する(2デフォルトQCL想定決定ルール)。2デフォルトTCI有効化情報要素は、少なくとも1つのTCIコードポイントが2つのTCI状態にマップされる場合のPDSCH用の2つのデフォルトTCI状態のRel.16動作が有効化されることを示す。
 Rel.15/16におけるPDSCHのデフォルトTCI状態として、シングルTRP向けのデフォルトTCI状態、マルチDCIに基づくマルチTRP向けのデフォルトTCI状態、シングルDCIに基づくマルチTRP向けのデフォルトTCI状態、が仕様化されている。
 Rel.15/16における非周期的CSI-RS(A(aperiodic)-CSI-RS)のデフォルトTCI状態として、シングルTRP向けのデフォルトTCI状態、マルチDCIに基づくマルチTRP向けのデフォルトTCI状態、シングルDCIに基づくマルチTRP向けのデフォルトTCI状態、が仕様化されている。
 Rel.15/16において、PUSCH/PUCCH/SRSのそれぞれについての、デフォルト空間関係及びデフォルトPL-RSが仕様化されている。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI(S-DCI)、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード)。1つのDCIは、マルチTRPの1つのTRPから送信されてもよい。マルチTRPにおいて1つのDCIを利用する構成は、シングルDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。
 マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI(M-DCI)、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード)。複数のDCIは、マルチTRPからそれぞれ送信されてもよい。マルチTRPにおいて複数のDCIを利用する構成は、マルチDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。
 UEは、異なるTRPに対して、それぞれのTRPに関する別々のCSI報告(CSIレポート)を送信すると想定してもよい。このようなCSIフィードバックは、セパレートフィードバック、セパレートCSIフィードバックなどと呼ばれてもよい。本開示に置いて、「セパレート」は、「独立した(independent)」と互いに読み替えられてもよい。
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。
 次の条件1及び2の少なくとも1つが満たされた場合、UEは、マルチDCIに基づくマルチTRPと判定してもよい。この場合、TRPは、CORESETプールインデックスに読み替えられてもよい。
[条件1]
 1のCORESETプールインデックスが設定される。
[条件2]
 CORESETプールインデックスの2つの異なる値(例えば、0及び1)が設定される。
 次の条件が満たされた場合、UEは、シングルDCIに基づくマルチTRPと判定してもよい。この場合、2つのTRPは、MAC CE/DCIによって指示される2つのTCI状態に読み替えられてもよい。
[条件]
 DCI内のTCIフィールドの1つのコードポイントに対する1つ又は2つのTCI状態を指示するために、「UE固有PDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)」が用いられる。
 共通ビーム指示用DCIは、UE固有DCIフォーマット(例えば、DL DCIフォーマット(例えば、1_1、1_2)、UL DCIフォーマット(例えば、0_1、0_2))であってもよいし、UEグループ共通(UE-group common)DCIフォーマットであってもよい。
(統一(unified)/共通(common)TCIフレームワーク)
 統一TCIフレームワークによれば、UL及びDLのチャネルを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネルごとに規定するのではなく、共通ビーム(共通TCI状態)を指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
 DL及びULの両方のための1つの共通ビーム、又は、DL用の共通ビームとUL用の共通ビーム(全体で2つの共通ビーム)が検討されている。
 UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態、ジョイントTCIプール、ジョイント共通TCIプール、ジョイントTCI状態セット)を想定してもよい。UEは、UL及びDLのそれぞれに対して異なるTCI状態(セパレートTCI状態、セパレートTCIプール、ULセパレートTCIプール及びDLセパレートTCIプール、セパレート共通TCIプール、UL共通TCIプール及びDL共通TCIプール)を想定してもよい。
 MAC CEに基づくビーム管理(MAC CEレベルビーム指示)によって、UL及びDLのデフォルトビームを揃えてもよい。PDSCHのデフォルトTCI状態を更新し、デフォルトULビーム(空間関係)に合わせてもよい。
 DCIに基づくビーム管理(DCIレベルビーム指示)によって、UL及びDLの両方用の同じTCIプール(ジョイント共通TCIプール、ジョイントTCIプール、セット)から共通ビーム/統一TCI状態が指示されてもよい。X(>1)個のTCI状態がMAC CEによってアクティベートされてもよい。DCIは、X個のアクティブTCI状態から1つを選択してもよい。選択されたTCI状態は、UL及びDLの両方のチャネル/RSに適用されてもよい。
 TCIプール(セット)は、RRCパラメータによって設定された複数のTCI状態であってもよいし、RRCパラメータによって設定された複数のTCI状態のうち、MAC CEによってアクティベートされた複数のTCI状態(アクティブTCI状態、アクティブTCIプール、セット)であってもよい。各TCI状態は、QCLタイプA/D RSであってもよい。QCLタイプA/D RSとしてSSB、CSI-RS、又はSRSが設定されてもよい。
 1以上のTRPのそれぞれに対応するTCI状態の個数が規定されてもよい。例えば、ULのチャネル/RSに適用されるTCI状態(UL TCI状態)の個数N(≧1)と、DLのチャネル/RSに適用されるTCI状態(DL TCI状態)の個数M(≧1)と、が規定されてもよい。N及びMの少なくとも一方は、上位レイヤシグナリング/物理レイヤシグナリングを介して、UEに通知/設定/指示されてもよい。
 M>1/N>1のケースは、複数TRPのためのTCI状態指示、及び、バンド間(inter band)CAのための複数のTCI状態指示、の少なくとも一方を示してもよい。
 図1Aの例において、RRCパラメータ(情報要素)は、DL及びULの両方用の複数のTCI状態を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態をアクティベートしてもよい。DCIは、アクティベートされた複数のTCI状態の1つを指示してもよい。DCIは、UL/DL DCIであってもよい。指示されたTCI状態は、UL/DLのチャネル/RSの少なくとも1つ(又は全て)に適用されてもよい。1つのDCIがUL TCI及びDL TCIの両方を指示してもよい。
 図1Aの例において、1つの点は、UL及びDLの両方に適用される1つのTCI状態であってもよいし、UL及びDLにそれぞれ適用される2つのTCI状態であってもよい。
 RRCパラメータによって設定された複数のTCI状態と、MAC CEによってアクティベートされた複数のTCI状態と、の少なくとも1つは、TCIプール(共通TCIプール、ジョイントTCIプール、TCI状態プール)と呼ばれてもよい。MAC CEによってアクティベートされた複数のTCI状態は、アクティブTCIプール(アクティブ共通TCIプール)と呼ばれてもよい。
 なお、本開示において、複数のTCI状態を設定する上位レイヤパラメータ(RRCパラメータ)は、複数のTCI状態を設定する設定情報、単に「設定情報」と呼ばれてもよい。また、本開示において、DCIを用いて複数のTCI状態の1つを指示されることは、DCIに含まれる複数のTCI状態の1つを指示する指示情報を受信することであってもよいし、単に「指示情報」を受信することであってもよい。
 図1Bの例において、RRCパラメータは、DL及びULの両方用の複数のTCI状態(ジョイント共通TCIプール)を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態(アクティブTCIプール)をアクティベートしてもよい。UL及びDLのそれぞれに対する(別々の、separate)アクティブTCIプールが、設定/アクティベートされてもよい。
 DL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のDLのチャネル/RSに適用されてもよい。DLチャネルは、PDCCH/PDSCH/CSI-RSであってもよい。UEは、Rel.16のTCI状態の動作(TCIフレームワーク)を用いて、DLの各チャネル/RSのTCI状態を決定してもよい。UL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のULチャネル/RSに適用されてもよい。ULチャネルは、PUSCH/SRS/PUCCHであってもよい。このように、異なるDCIが、UL TCI及びDL DCIを別々に指示してもよい。
 既存のDCIフォーマット1_1/1_2が、共通TCI状態の指示に用いられてもよい。
 TCI状態を指示するDCIフォーマットは、特定のDCIフォーマットであってもよい。例えば、当該特定のDCIフォーマットは、(Rel.15/16/17で規定される)DCIフォーマット1_1/1_2であってもよい。
 TCI状態を指示するDCIフォーマット(DCIフォーマット1_1/1_2)は、DLアサインメントなしのDCIフォーマットであってもよい。本開示において、DLアサインメントなしのDCIフォーマット、PDSCHをスケジュールしないDCIフォーマット(DCIフォーマット1_1/1_2)、1つ以上の特定のフィールドを含まないDCIフォーマット(DCIフォーマット1_1/1_2)、1つ以上の特定のフィールドが固定値にセットされるDCIフォーマット(DCIフォーマット1_1/1_2)、などと互いに読み替えられてもよい。
 DLアサインメントなしのDCIフォーマット(1つ以上の特定のフィールドを含まないDCIフォーマット)について、当該特定のフィールドは、TCIフィールド、DCIフォーマットの識別子フィールド、キャリアインディケータフィールド、帯域幅部分(BWP)インディケータフィールド、時間ドメインリソースアサインメント(Time Domain Resource Assignment(TDRA))フィールド、Downlink Assignment Index(DAI)フィールド(もし設定される場合には)、(スケジュールされるPUCCHのための)送信電力制御(Transmission Power Control(TPC))コマンドフィールド、PUCCHリソースインディケータフィールド、及び、PDSCHからHARQ-ACKフィードバックまでのタイミング指示(PDSCH-to-HARQ feedback timing indicator)フィールド(もし存在する場合)、以外のフィールドであってもよい。当該特定のフィールドは、リザーブドフィールドとしてセットされてもよいし、無視されてもよい。
 DLアサインメントなしのDCIフォーマット(1つ以上の特定のフィールドが固定値にセットされるDCIフォーマット)について、当該特定のフィールドは、冗長バージョン(Redundancy Version(RV))フィールド、変調符号化方式(Modulation and Coding Scheme(MCS))フィールド、新規データインディケータ(New Data Indicator)フィールド、及び、周波数ドメインリソースアサインメント(Frequency Domain Resource Assignment(FDRA))フィールドであってもよい。
 RVフィールドは全て1にセットされてもよい。MCSフィールドは、全て1にセットされてもよい。NDIフィールドは0にセットされてもよい。タイプ0のFDRAフィールドは、全て0にセットされてもよい。タイプ1のFDRAフィールドは、全て1にセットされてもよい。ダイナミックスイッチ(上位レイヤパラメータdynamicSwitch)用のFDRAフィールドは、全て0にセットされてもよい。
 共通TCIフレームワークは、DL及びULに対して別々のTCI状態を有してもよい。
(マルチTRP用の統一TCI状態)
 シングルDCIベースのマルチTRPは、マルチTRPが理想的バックホール(ideal backhaul)を利用する場合にサポートされると想定されてもよい(図2A参照)。
 このとき、1つのビーム指示DCIが、各TRPについて複数のTCI状態を指示してもよい。当該複数のTCI状態は、例えば、最大で2つのジョイントTCI状態であってもよいし、最大で4つのセパレートDL/UL TCI状態(2つのDL TCI状態と2つのUL TCI状態)であってもよい。
 本開示において、1つのTCI状態は、1つのジョイント(DL/UL)TCI状態を意味してもよいし、1つのDL(セパレート)TCI状態と1つのUL(セパレート)TCI状態との少なくとも一方を意味してもよい。
 マルチPDCCH(DCI)は、マルチTRP間が理想的バックホール(ideal backhaul)/非理想的バックホール(non-ideal backhaul)を利用する場合にサポートされると想定されてもよい(図2B参照)。
 このとき、1つのTRP(CORESETプールインデックス)に関連付く1つのDCIが、当該TRPに対応するTCI状態を指示してもよい。
 なお、理想的バックホールは、DMRSポートグループタイプ1、参照信号関連グループタイプ1、アンテナポートグループタイプ1、CORESETプールタイプ1、などと呼ばれてもよい。非理想的バックホールは、DMRSポートグループタイプ2、参照信号関連グループタイプ2、アンテナポートグループタイプ2、CORESETプールタイプ2、などと呼ばれてもよい。名前はこれらに限られない。
 DCIに含まれるTCI状態を指示するフィールド(TCIフィールド)は、以下の選択肢0-1及び0-2の少なくとも一方に従ってもよい。
[選択肢0-1]
 Rel.15/16までに規定されるTCIフィールドが再利用されてもよい(図3A参照)。図3Aに示すように、DCIに1つのTCIフィールドが含まれてもよい。当該TCIフィールドのビット数は、特定の数(例えば、3)であってもよい。
[選択肢0-2]
 Rel.15/16までに規定されるTCIフィールドが拡張されてもよい(図3B参照)。例えば、DCIに、TCIフィールドが複数(例えば、2つ)含まれてもよい。それぞれのTCIフィールドのビット数は、特定の数(例えば、3)であってもよい。
 選択肢0-2において、DLアサインメントなしのDCIについて、DCIオーバーヘッドが追加されることはない。一方、DLアサインメントを含むDCIについて、DCIオーバーヘッドが追加される。
 シングルDCIベースのマルチTRPについて、ジョイントTCI状態の場合、UEに対し、MAC CEを用いてDL/UL(ジョイント)TCI状態がアクティベートされてもよい。次いで、UEは、DCI(ビーム指示)を用いて、第1のDL/UL(ジョイント)TCI状態と、第2のDL/UL(ジョイント)TCI状態と、を指示されてもよい(図4A参照)。
 当該ビーム指示によって指示されるTCIコードポイントは、1つ又は複数(2つ)のTCI状態(第1のジョイントTCI状態/第2のジョイントTCI状態)と対応してもよい(図4B参照)。
 図4Bに示す例では、アクティブTCI状態に対応するTCIコードポイントの全てが2つのTCI状態と対応する例を示しているが、アクティブTCI状態に対応するTCIコードポイントの少なくとも1つが2つのTCI状態に対応するような関連付けが用いられてもよい。このような関連付けを用いることで、シングルTRP及びマルチTRPを動的に切り替えることができる。
 シングルDCIベースのマルチTRPについて、セパレートTCI状態の場合、UEに対し、MAC CEを用いてDL(セパレート)TCI状態及びUL(セパレート)TCI状態がアクティベートされてもよい。次いで、UEは、DCI(ビーム指示)を用いて、第1のDL(セパレート)TCI状態及び第1のUL(セパレート)TCI状態と、第2のDL(セパレート)TCI状態及び第2のUL(セパレート)TCI状態と、を指示されてもよい(図5A参照)。
 当該ビーム指示によって指示されるTCIコードポイントは、1つ又は複数(2つ)のTCI状態(第1のセパレート(DL/UL)TCI状態/第2のセパレート(DL/UL)TCI状態)と対応してもよい(図5B参照)。
 図5Bに示す例では、アクティブTCI状態に対応するTCIコードポイントの全てが2つのTCI状態(第1のセパレート(DL/UL)TCI状態/第2のセパレート(DL/UL)TCI状態)と対応する例を示しているが、アクティブTCI状態に対応するTCIコードポイントの少なくとも1つが2つのTCI状態に対応するような関連付けが用いられてもよい。このような関連付けを用いることで、シングルTRP及びマルチTRPを動的に切り替えることができる。
 なお、図5Aにおいて、MAC CEによってアクティベートされるTCI状態について、DL TCI状態とUL TCI状態とで別々のTCI状態がアクティベートされる例を示したが、セパレートTCI状態の場合であっても、アクティベートされるDL TCI状態とUL TCI状態とは、共通のTCI状態を含んでもよい。
 マルチDCIベースのマルチTRPについて、CORESETプールインデックスごとにTCI状態の、RRCによる設定、MAC CEによるアクティベーション、及び、DCIによる指示、の少なくとも1つが行われてもよい。
 マルチDCIベースのマルチTRPについて、ジョイントTCI状態の場合、第1の値(例えば、0)のCORESETプールインデックス用に、UEに対し、TCI状態の、RRCによる設定、MAC CEによるアクティベーション、及び、DCIによる指示、が行われてもよい(図6A参照)。第1の値のCORESETプールインデックスに対応する指示されたTCI状態は、第1のTCI状態と呼ばれてもよい。
 当該ビーム指示によって指示されるTCIコードポイントは、1つのTCI状態(第1のジョイントTCI状態)と対応してもよい(図6B参照)。
 マルチDCIベースのマルチTRPについて、ジョイントTCI状態の場合、第2の値(例えば、1)のCORESETプールインデックス用に、UEに対し、TCI状態の、RRCによる設定、MAC CEによるアクティベーション、及び、DCIによる指示、が行われてもよい(図7A参照)。第2の値のCORESETプールインデックスに対応する指示されたTCI状態は、第2のTCI状態と呼ばれてもよい。
 当該ビーム指示によって指示されるTCIコードポイントは、1つのTCI状態(第2のジョイントTCI状態)と対応してもよい(図7B参照)。
 各CORESETプールインデックスに対応するDCIが、同じTCI状態(TCI状態ID)を指示するとき(例えば、図6B及び図7BにおけるTCIコードポイント「111」に対応するTCI状態#7が指示されるとき)、UEは、1つのTCI状態を指示されたと判断してもよい。このとき、UEは、シングルTRPを用いる動作を行ってもよい。
 なお、上記マルチDCIベースのマルチTRPについては、ジョイントTCI状態を用いる例に説明したが、セパレートTCI状態を用いるケースにも適宜適用可能である。
 本開示において、指示されるTCI状態(indicated TCI state)、Rel.17TCI状態、共通TCI状態、統一TCI状態、は互いに読み替えられてもよい。本開示において、マルチTRPを利用するチャネル/信号に適用される共通TCI状態、Rel.17TCI状態、Rel.18TCI状態、は互いに読み替えられてもよい。
 UEは、指示されたTCI状態を、特定のチャネル/信号に適用してもよい。
 当該特定のチャネル/信号は、UE固有(dedicated)のDLチャネル/信号であってもよい。UE固有のDLチャネル/信号は、UE固有のPDCCH/PDSCH/CSI-RS(例えば、非周期(aperiodic(A-))CSI-RS)であってもよい。
 当該特定のチャネル/信号は、特定のULチャネル/信号であってもよい。特定のULチャネル/信号は、DCIで指示される(動的グラントで指示される)PUSCH、コンフィギュアドグラントPUSCH、複数(全て)の固有のPUCCH(リソース)、SRS(例えば、非周期(aperiodic(A-))SRS)の少なくとも1つであってもよい。
 1つ又は複数(例えば、2つ)の指示されるTCI状態は、上述の方法に基づいて指示されてもよい。
 本開示の各実施形態は、シングルTRPのPDSCHに適用されてもよい。
 シングルTRPのPDSCHは、特定のDCI(DCIフォーマット)でスケジュールされてもよい。当該特定のDCIフォーマットは、例えば、DCIフォーマット1_0(又は、TCIフィールドを含まないDCIフォーマット)であってもよい。当該特定のDCIフォーマットは、DCIフォーマット1_1/1-2であってもよい。当該特定のDCIフォーマットは、1つのTCI状態を指示してもよい。
 シングルTRPのPDSCHのQCL想定は、デフォルトTCI状態であってもよい。デフォルトTCI状態は(任意のDCIフォーマットにおける)1つのTCI状態であってもよい。
 UEに対しマルチTRPの繰り返し送信が設定されなくてもよい。このとき、シングルTRPのPDSCHはシングルレイヤMIMOの(with single layer MIMO)PDSCHとしてスケジュールされてもよい。
 シングルTRPのPDSCHは、UEにマルチTRP(例えば、CORESETプールインデックス)が設定されないときのPDSCHであってもよい。
 シングルTRPのPDSCHは、少なくともCSSのCORESETでスケジュールされるPDSCHであってもよい。シングルTRPのPDSCHは、CSS(又は、タイプ3のCSSを除くCSS)のみのCORESETでスケジュールされるPDSCHであってもよい。
 本開示の各実施形態は、マルチTRPのPDSCHに適用されてもよい。
 シングルTRPのPDSCHは、特定のDCI(DCIフォーマット)でスケジュールされてもよい。当該特定のDCIフォーマットは、DCIフォーマット1_1/1-2であってもよい。当該特定のDCIフォーマットは、2つのTCI状態を指示してもよい。
 マルチTRPのPDSCHのQCL想定は、デフォルトTCI状態であってもよい。デフォルトTCI状態は(任意のDCIフォーマットにおける)2つのTCI状態であってもよい。
 UEに対しマルチTRPの繰り返し送信が設定されなくてもよい。このとき、マルチTRPのPDSCHは、マルチレイヤMIMOの(with multi layer MIMO)PDSCHとしてスケジュールされてもよい。
 マルチTRPのPDSCHは、UEにマルチTRPの繰り返し送信が設定されるときのPDSCHであってもよい。このとき、マルチTRPのPDSCHは、(TDM/FDM/SDMを利用する)繰り返し送信の(with repetition)PDSCHとしてスケジュールされてもよい。
 マルチTRPのPDSCHは、UEにSFNスキームA/Bが設定されるときのPDSCHであってもよい。マルチTRPのPDSCHは、複数のTCI状態を有するPDSCHであってもよい。
 本開示の各実施形態は、シングルTRPのPDCCHに適用されてもよい。
 シングルTRPのPDCCHは、SFNスキームA/Bが設定されないCORESETに関連するPDCCHであってもよい。
 シングルTRPのPDCCHは、(2つのリンクされたSSの)繰り返し送信が設定されないCORESETに関連するPDCCHであってもよい。
 本開示の各実施形態は、マルチTRPのPDCCHに適用されてもよい。
 マルチTRPのPDCCHは、SFNスキームA/Bが設定されるCORESETに関連するPDCCHであってもよい。
 本開示の各実施形態は、シングルTRPのPUSCH/PUCCHに適用されてもよい。
 シングルTRPのPUSCH/PUCCHは、マルチTRPの繰り返し送信が設定されないPUSCH/PUCCHであってもよい。
 本開示の各実施形態は、マルチTRPのPUSCH/PUCCHに適用されてもよい。
 マルチTRPのPUSCH/PUCCHは、マルチTRPの繰り返し送信が設定されるPUSCH/PUCCHであってもよい。
 本開示の各実施形態は、シングル/マルチTRPのCSI-RS/SRSに適用されてもよい。
(セル間モビリティ/マルチTRPセル間動作)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi-TRP(MTRP)))が、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
 UEは、セル間モビリティ(例えば、L1/L2 inter cell mobility)において、複数のセル/TRPからのチャネル/信号を受信することが考えられる。
 図8Aは、非サービングセルを含むセル間モビリティ(例えば、Single-TRP inter-cell mobility)の一例を示している。UEは、各セルにおいて1つのTRP(又は、シングルTRP)が設定されてもよい。ここでは、UEは、サービングセルとなるセル#1(PCI#1)の基地局/TRPと、サービングセルでない(非サービングセル/Non-serving cellとなる)セル#3(PCI#3)の基地局/TRPとからチャネル/信号を受信する場合を示している。例えば、UEがセル#1からセル#3にスイッチ/切り替えする場合(例えば、fast cell switch)に相当する。
 この場合、ポート(例えば、アンテナポート)/TRPの選択又がダイナミックに行われてもよい。ポート(例えば、アンテナポート)/TRPの選択又は、DCI/MAC CEにより指示又はアップデートされるTCI状態に基づいて行われてもよい。ここでは、セル#1とセル#3に対して、異なる物理セルID(Physical Cell Identifier(PCI))の設定がサポートされる場合を示している。
 このようなセル間モビリティ(例えばL1/L2セル間モビリティ)により、UEは、サービングセルのPCIとは異なるPCIを有するセルとの間において、UL/DLのチャネル/RSを送受信することができる。例えば、非サービングセルのRSRPがサービングセルのRSRPより大きい場合、UEは、ハンドオーバーせずに非サービングセルとの間でUL/DLのチャネル/RSを送受信することができる。
 図8Bは、マルチTRPシナリオの一例を示している。図8Aと同様に、UEは、サービングセルとなるセル#1(PCI#1)の基地局/TRPと、サービングセルでない(非サービングセル/Non-serving cellとなる)セル#3(PCI#3)の基地局/TRPとからチャネル/信号を受信する場合を示している。図8Bでは、上述したNCJTを用いたマルチDCIベースのマルチTRPが、PCI#1のTRPとPCI#3のTRPとに適用されている。
 ビーム指示について、図8A及び図8BのTCI状態は、Rel.15/16のTCI状態でもよいし、Rel.17以降の統一TCI状態であってもよい。図8A及び図8Bのビーム管理/報告(例えば非サービングセルのL1-RSRP報告)は、共通であってもよい。
 図9は、非サービングセルのSSBに関連するCSI-RSに対応するTCI状態を示す図である。図9のPCI#1、#3は、図8AのPCI#1、#3に対応する。図8Aに示すセル間モビリティが実行された場合、UEは、DLの受信に使用するTCI状態をTCI state#1からTCI state#2に切り替える。
<ビーム報告及び再作成インデックス>
 図10は、ビーム報告及び再作成インデックスの関係の例を示す図である。図10に示すように、非サービングセルのビーム報告(CSI報告)は、RSRPの値と、CRI又はSSBRIとを含む。CRI又はSSBRIは、再作成インデックス(ID for PCI)に関連している。
 再作成インデックスは、PCIに基づいて、新たに作成されたインデックスであり、PCIの少なくとも一部と関連している。再作成インデックスは、RRCによりUEに設定され、追加PCI(非サービングセルのPCI)に対応する7までの数値が割り当てられてもよい。再作成インデックス(ID)が0である場合、サービングセル(サービングセルのPCI)を意味してもよい。再作成インデックスは、PCIに比べて少ないビット数で表現することができるので通信のオーバーヘッドを抑制できる。
<マルチTRPセル間シナリオ>
 マルチDCIベースのマルチTRPにおけるセル間シナリオ(セル間モビリティ)について説明する。マルチTRPが適用される場合、coresetPoolIndexが設定される。図11に示すように、追加PCI(Additional PCI)は、PDSCH/PDCCHに対応するアクティブ化されたTCI状態(QCLソースRSとしてのSSB)に関連付けられる。1つのPCIは、1つのcoresetPoolIndexに対応するアクティブ化されたTCI状態に関連する。
 また、図11に示すように、サービングセルのPCIは、常に、アクティブ化されたTCI状態に関連付けられ、追加PCI(追加PCIに対応するSSB)は、1つのみアクティブなTCI状態に関連付けられる。サービングセルに対応するPDCCH/PDSCHに対して、当該サービングセルのPCIに関連するSSB周りのレートマッチングが行われてもよい。また、追加PCIに対応するPDCCH/PDSCHに対して、当該追加PCIに関連するSSB周りのレートマッチングが行われてもよい。また、タイプ0/0A/1/2の共有サーチスペース(CSS)はモニタされなくてよい。
 なお、サービングセルと追加PCIを有するセルとは、中心周波数、サブキャリア間隔(SubCarrier Spacing(SCS))、システムフレーム番号(System Frame Number(SFN))オフセットが同じであってもよい。RRCにより設定される追加PCIは最大7個であってもよい。また、UEは、追加PCIの最大数Xを示すUE能力を報告してもよい。
 UE能力として設定された追加PCIの最大数に対するXについて、以下の2つのケースが考えられる。なお、ケース1とケース2は、同時に有効にされなくてもよい。
[ケース1]Xは、対応する「SSB時間領域の位置と周期」がサービングセルと同じである追加PCIの最大数を示す(当該XをX1とする)。
[ケース2]Xは、対応する「SSB時間領域の位置と周期」の1部又は全部がサービングセルとは異なる追加PCIの最大数を示す(当該XをX2とする)。
 図12Aは、ケース1の追加PCIの最大数を示す図である。図12Aでは、X1は、4となる。図12Bは、ケース2の追加PCIの最大数を示す図である。図12Bでは、X2は、8となる。
 図13は、サービングセルからのSSB、追加PCIを有するセルからのSSBとUL送信がオーバーラップする例を示す図である。UEは、サービングセルからのSSB、又は、アクティブなTCI状態に関連する追加PCIを有するセルからのSSBが、UL送信と時間的にオーバーラップする場合、そのUL送信をキャンセルしてもよい。
 Rel.17に採用が検討されているQCL関連の規則において、PDCCH/PDSCHのDMRSについて、設定された(configured)DL/ジョイントTCI状態は、指示された(Indicated)"DLorJointTCIState"を除く"DLorJointTCIState"として特定される。指示されたTCI状態は、複数のUL/DLのチャネル/RSに適用される。設定されたTCI状態は、1つのチャネル/RSにのみ適用される。
 図14Aは、Rel.15のTCI状態、及びRel.17の設定されたDL/ジョイントTCI状態を示す図である。図14Bは、指示されたDL/ジョイントTCI状態を示す図である。図14Bでは、3行目の関係がサポートされない点で、図14Aとは異なる。「設定された」は、上位レイヤ(RRC)シグナリングにより設定されたことを意味してもよい。「指示された」は、DCIにより指示されたことを意味してもよい。
(アンテナポートquasi co-location(QCL))
 Rel.17のアンテナポートQCLのセクションにおいて、Tracking Reference Signal(TRS)に関して、次のように規定されていることが検討されている。なお、NZP-CSI-RS-ResourceSetは、ノンゼロパワーCSI-RSリソースセットについての上位レイヤパラメータである。
<TRS>
 上位レイヤパラメータtrs-Infoとともに設定されたNZP-CSI-RS-ResourceSetにおける周期的(periodic)CSI-RSリソースについて、UEは、TCI状態が以下の(1)又は(2)のQCLタイプのいずれかを示すことを期待する。
(1)SS/PBCHブロックに対応する「typeC」、及び、適用可能な場合、同じSS/PBCHブロックに対応する「typeD」。
(2)SS/PBCHブロックの「typeC」、及び、適用可能な場合、上位レイヤパラメータrepetition(繰り返し)とともに設定されたNZP-CSI-RS-ResourceSet内のCSI-RSに対応する「typeD」。
 Rel.17のアンテナポートQCLにおいて、繰り返し送信に対応するCSI-RSに関して、次のように規定されることが検討されている。
<repetitionに対応するCSI-RS>
 上位レイヤのパラメータrepetitionとともに設定されたNZP-CSI-RS-ResourceSet内のCSI-RSリソースについて、UEは、TCI状態が以下の(1)~(3)のQCLタイプのいずれかを示すことを期待する。
(1)上位レイヤパラメータtrs-Infoとともに設定されたNZP-CSI-RS-ResourceSet内のCSI-RSリソースに対応する「typeA」、及び、適用可能な場合、同じCSI-RSリソースに対応する「typeD」。
(2)上位レイヤパラメータtrs-Infoとともに設定されたNZP-CSI-RS-ResourceSet内のCSI-RSリソースに対応する「typeA」、上位レイヤパラメータrepetitionとともに設定されたNZP-CSI-RS-ResourceSet内のCSI-RSリソースに対応する「typeD」。
(3)SS/PBCHブロックに対応する「typeC」、適用可能な場合、同じSS/PBCHブロックに対応する「typeD」。この参照RSは、追加的に、サービングセルのPCIと異なるPCIを有するSS/PBCHブロックであってもよい。UEは、サービングセルからのSS/PBCHブロックとサービングセルとは異なるPCIを有するSS/PBCHブロックとについて、中心周波数、SCS、SFNオフセットが同じであると想定してもよい。
(NZP CSI-RS)
 Rel.17のNZP CSI-RSのセクションにおいて、以下のように規定されることが検討されている。このセクションでは、CSI-RS(TRSを含む)がさらに、追加PCIを有するSSBに関連付けられることを禁止されていない。
 CSI-RSリソース設定毎に上位レイヤパラメータNZP-CSI-RS-Resource、CSI-ResourceConfig、NZP-CSI-RS-ResourceSetを介して設定される、CSI-RSリソースのためのノンゼロ送信電力をUEが想定する場合のパラメータは、例えば以下の(1)のqcl-InfoPeriodicCSI-RSが挙げられる。
(1)qcl-InfoPeriodicCSI-RSは、QCLソースRS(s)とQCLタイプを示すTCI状態への参照を含んでいる。そのTCI状態がQCLタイプをタイプD関連に設定したRSへの参照とともに設定されている場合、そのRSは、同一又は異なるCC/DL BWPに位置するSS/PBCHブロック、又は、同一又は異なるCC/DL BWPに位置する周期的(periodic)として設定されたたCSI-RSリソースであってもよい。参照RSは、追加的に、サービングセルのPCIとは異なるPCIに関連するSS/PBCHブロックであってもよい。
(分析)
 上述のように、将来の無線通信システムにおいて、端末は、QCLに関する情報(QCL想定/Transmission Configuration Indication(TCI)状態/空間関係)に基づいて、送受信処理を制御することが検討されている。設定/アクティベート/指示されたTCI状態を複数種類の信号(チャネル/RS)に適用することが検討されている。また、上述のように、将来の無線通信システムにおいて、セル間モビリティ/マルチTRPセル間動作が検討されている。
 しかしながら、TCI状態の指示方法が明らかでないケースがある。例えば、複数種類の信号(チャネル/RS)に適用するTCI状態と、サービングセル又は非サービングセルの物理セルIDとの関係について明確ではなかった。TCI状態の指示方法が明らかでなければ、通信品質の低下、スループットの低下など、を招くおそれがある。
 そこで、本発明者らは、TCI状態指示を適切に行う方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。
 本開示において、ドロップ、中止、キャンセル、パンクチャ、レートマッチ、延期(postpone)などは、互いに読み替えられてもよい。
 本開示において、共通ビーム、共通TCI、共通TCI状態、Rel.17TCI状態、Rel.17以降のTCI状態、統一TCI、統一TCI状態、チャネル/RSの複数種類に適用されるTCI状態、複数(複数種類)のチャネル/RSに適用されるTCI状態、複数種類のチャネル/RSに適用可能なTCI状態、複数種類の信号に対するTCI状態、チャネル/RSの複数種類に対するTCI状態、TCI状態、統一TCI状態、ジョイントTCI指示のためのUL及びDLのTCI状態、セパレートTCI指示のためのULのみのTCI状態、セパレートTCI指示のためのDLのみのTCI状態、DL及びULのためのジョイントTCI状態、DL及びULのそれぞれのためのセパレートTCI状態、は互いに読み替えられてもよい。
 本開示において、Rel.15/16のTCI状態、特定のチャネル/RSのみに適用されるTCI状態/空間関係、チャネル/RSの1つの種類に適用されるTCI状態/空間関係、は互いに読み替えられてもよい。
 本開示において、RRC IEによって設定された複数のTCI状態、MAC CEによってアクティベートされた複数のTCI状態、1つ以上のTCI状態に関する情報、TCI状態設定、TCI状態プール、アクティブTCI状態プール、共通TCI状態プール、統一TCI状態プール、TCI状態リスト、統一TCI状態リスト、ジョイントTCI状態プール、セパレートTCI状態プール、セパレートDL/UL TCI状態プール、DL TCI状態プール、UL TCI状態プール、セパレートDL TCI状態プール、セパレートUL TCI状態プール、は互いに読み替えられてもよい。
 本開示において、DL TCI、DLのみのTCI(DL only TCI)、セパレートなDLのみのTCI、DL共通TCI、DL統一TCI、共通TCI、統一TCI、は互いに読み替えられてもよい。本開示において、UL TCI、ULのみのTCI(UL only TCI)、セパレートなULのみのTCI、UL共通TCI、UL統一TCI、共通TCI、統一TCI、は互いに読み替えられてもよい。
 本開示において、統一TCI状態が適用されるチャネル/RSは、PDSCH/PDCCH/CSI-RS/PUSCH/PUCCH/SRSであってもよい。
 本開示において、CSI-RS、NZP-CSI-RS、periodic(P)-CSI-RS、P-TRS、semi-persistent(SP)-CSI-RS、aperiodic(A)-CSI-RS、TRS、TRS情報(上位レイヤパラメータtrs-Info)を有するCSI-RS、TRS情報を有するNZP CSI-RSリソースセット内のNZP CSI-RSリソース、は互いに読み替えられてもよい。本開示において、CSI-RSリソース、CSI-RSリソースセット、CSI-RSリソースグループ、情報要素(IE)、は互いに読み替えられてもよい。
 本開示において、非サービングセル、候補サービングセル、サービングセルとは異なるPCIを持つセル、異なるPCIを持つ別のサービングセルは、互いに言い換えられてもよい。サービングセルとは異なるPCI、追加(additional)PCIは、互いに言い換えられてもよい。セル、PCIは互いに読み替えられてもよい。
 本開示において、TRS、トラッキング用CSI-RS、TRS情報(上位レイヤパラメータtrs-Info)を有するCSI-RS、TRS情報を有するNZP-CSI-RSリソースセット内のNZP-CSI-RSリソース、は互いに読み替えられてもよい。
 TCI状態、TCI状態又はQCL想定、QCL想定、QCL情報、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、空間ドメインフィルタ、UE受信ビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態又はQCL想定のQCLタイプXのRS、は互いに読み替えられてもよい。QCLタイプXのRS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、は互いに読み替えられてもよい。当該Xは、例えば、A,B,C,Dのいずれかである。
 本開示において、YのQCLソースがZであること、YとZがQCL関係であること、YとZがQCLタイプXの関係であること、YのTCI状態が、Zを有するQCLタイプX(QCL-typeX with M)を示すことは、互いに読み替えられてもよい。Xは、例えばA,B,C,又はDであってもよい。Y、Zは、例えば、PDSCH/PDCCHのDM-RS、CSI-RS、TRS、SSBのいずれかであってもよい。PDSCH/PDCCHのDM-RS、CSI-RS、TRS、SSBは、PDSCH/PDCCHのDM-RSのTCI状態、CSI-RSのTCI状態、TRSのTCI状態、SSBのTCI状態にそれぞれ読み替えられてもよい。SSB、SS/PBCHブロックは、互いに読み替えられてもよい。
 Yに対応するZ、Yを有するZ(Z with Y)、Zを有するY(Y with Z)は、互いに読み替えられてもよい。タイプX、QCLタイプXは、互いに読み替えられてもよい。当該Xは、例えば、A,B,C,Dのいずれかである。サービングセルのPCIと異なるPCIを有するSS/PBCHブロック、非サービングセルのSS/PBCHブロックは、互いに読み替えられてもよい。
 本開示におけるRel.XXという記載は、3GPPのリリースを示してもよい。XXは、リリース番号を示すが、本開示に示した番号には限定されず、他のリリース番号に置き換えられてもよい。例えば、Rel.18は、Rel.18以降の他のリリース番号に置き換えられてもよい。Rel.XXという記載は、省略されてもよい。
 「指示された」は、「DCIを用いて指示された」に読み替えられてもよい。「設定された」は、「RRC/MAC CEを用いて設定された」に読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 マルチTRPのための統一TCI状態は、マルチTRPのセル間動作に適用されてもよい。すなわち、UEは、複数の信号に適用される複数の送信設定指示(TCI)状態(統一TCI状態)の指示情報を受信し、その指示情報に基づいて、複数のTCI状態を、複数のTRPと送受信する信号にそれぞれ適用してもよい。複数のTCI状態(統一TCI状態)のそれぞれは、DL信号及びUL信号の両方に適用されるTCI状態(ジョイントTCI状態)、又は、DL信号に適用されるTCI状態及びUL信号に適用されるTCI状態(セパレートTCI状態)であってもよい。複数のTCI状態(統一TCI状態)のそれぞれは、異なる物理セルID(PCI)に関連していてもよい。
 Rel.17におけるマルチTRPのセル間の動作において、マルチDCIのマルチTRPのみがサポートされることが検討されている。また、1つのCORESETPoolIndexは1つのPCI(サービングセルのPCI又は追加PCI)に関連付けられることが検討されている。
 CORESETPoolIndex/TCI状態とPCIとの関連づけは、RRCシグナリング(例えば、ControlResourceSets)/MAC CE/DCIにより示されてもよい。
 すなわち、UEに追加PCIの数が設定され、UEにRel.17の統一TCI状態(DL/ジョイント/UL TCI状態、又はRel.18におけるTCI状態)が設定され、N,M>1のTCI状態(DL/ジョイント/UL TCI状態>1)が指示される場合、一つの指示されたTCI状態が一つのPCIと関連づけられ、別の指示されたTCI状態が他のPCIと関連付けられてもよい。
 PDCCH/PDSCHのDMRSのTCI状態は、QCLタイプA/DのCSI-RS/TRSをQCLソースRSとして設定される。CSI-RS/TRSのTCI状態は、QCLタイプC/DのSSB/CSI-RS-TRSをQCLソースRSとして設定されてもよい。SSBは、サービングセルのPCIと異なるPCIに関連付けられてもよい。
 図15A及び図15Bは、第1の実施形態におけるTCI状態の設定、指示の例を示す図である。TCIコードポイントとTCI状態との対応は、図6B、図7Bと同様であるため、省略する(図6Bが図15Aに対応し、図7Bが図15Bに対応する)。図15Aに示すように、CORESETPoolIndex=0及び1stDL/UL TCI状態は、PCI#1に対応し、CORESETPoolIndex=1及び2ndDL/UL TCI状態は、PCI#2に対応する。つまり、各TCI状態は、それぞれ異なるPCIに対応(関連)する。
 第1/第2のジョイント/DL/UL TCI状態のQCLソースRSが追加PCIのSSBと関連付けられてもよい。
 本実施形態によれば、マルチTRPのための統一TCI状態と、マルチTRPのセル間動作との両方を適切に行うことができる。
<第2の実施形態>
 統一TCI状態は、S-DCIベースのマルチTRPセル間動作をサポートしてもよい。つまり、UEは、複数のTRPからの複数のPDSCHをスケジュールする1つのDCI(シングルDCI)を受信してもよい。複数の統一TCI状態(第1又は第2のTCI状態)の少なくとも1つは、サービングセルとは異なるPCI(当該PCIに対応するSSB(非サービングセルのSSB))と関連していてもよい。
 1つのTRPインデックスが1つのPCI(サービングセルPCIまたは追加PCIのいずれか)に関連付けられてもよい。UEに追加PCIの数(NumberOfAdditionalPCI)が設定され、統一TCI状態(Rel.17のDL/ジョイント/UL TCI状態、又はRel.18の)が設定され、N,M>1のTCI状態(DL/ジョイント/UL TCI状態>1)が指示されるとき、指示された一つのTCI状態は、1つのPCIと関連し、別の指示されたTCI状態は、他のPCIと関連してもよい。
 図16Aは、第2の実施形態におけるTCI状態の設定、指示の第1の例を示す図である。図16Bは、TCIコードポイントとアクティブTCI状態との対応例を示す図である。図16Aでは、図4Aと同様に、1つのDCIが1stDL/UL(ジョイント) TCI状態及び2ndDL/UL(ジョイント) TCI状態を指示する。1stDL/UL TCI状態は、PCI#1に関連し、2ndDL/UL TCI状態は、PCI#2に関連する。
 図17Aは、第2の実施形態におけるTCI状態の設定、指示の第2の例を示す図である。図17Bは、TCIコードポイントとアクティブTCI状態との対応例を示す図である。図17Aでは、図5Aと同様に、1つのDCIが1stDL TCI状態、2ndDL TCI状態、1stUL TCI状態及び2ndUL TCI状態(セパレートTCI状態)を指示する。1stDL TCI状態及び1stUL TCI状態は、PCI#1に関連し、2ndDL TCI状態及び2ndUL TCI状態は、PCI#2に関連する。
 S-DCIベースのマルチTRPのセル間動作において、以下の(1)~(3)の制約のうち少なくとも1つが適用されてもよい。
(1)UEは、サービングセルに対応するSS/PBCHブロックとサービングセルと異なるPCIに対応するSS/PBCHブロックとで中心周波数、SCS、SFNオフセットが同一であると想定する。
(2)UEは、2つのTRP(異なるPCIを有する2つのセル)からの2つのPDSCHを、時間領域における1つのサイクリックプレフィクス(CP)内において受信する。
(3)UEは、2つのTRP(異なるPCIを有する2つのセル)に対する2つのUL信号を、同一のタイミングアドバンス(Timing Advance(TA))を用いて送信する。
 本実施形態によれば、S-DCIベースのマルチTRPセル間動作において、複数の統一TCI状態を適切に利用することができる。
<第3の実施形態>
 Rel.17のL1/L2セル間モビリティ(例えば図8A参照)にシングルTRPが適用されている。1つのPCIは1つの指示されたRel.17のTCI状態にのみ関連付けられている。
 Rel.17のマルチTRPセル間動作(例えば図8B参照)にシングルTRPが適用されている。この場合、1つのRel.15のTCI状態がサービングセルPCIと関連付けられ、1つの追加されたRel.15のTCI状態が追加PCIと関連付けられている。
 そこで、L1/L2セル間モビリティ(例えば図8A参照)とマルチTRPセル間動作(例えば図8B参照)の両方の機能が同時に設定されてもよい。つまり、UEは、NCJTが用いられた複数のTRPからPDSCHを受信し、DCI/MAC CEにより指示又はアップデートされるTCI状態に基づいて、当該複数のTRPから1つのTRPを選択してもよい(サービングセルを切り替えてもよい)。この場合、ビーム指示表示のために統一TCI状態が使用されてもよい。また、この場合、以下の(3-1)、(3-2)の少なくとも1つの制限が適用されてもよい。
(3-1)2つのTCI状態(指示されたTCI状態又は設定されたTCI状態)が存在する場合、少なくとも1つのTCI状態は、サービングセルPCIと関連づけられる。他のTCI状態は、追加のPCIと関連付けられる。これにより、Rel.17の動作と同じになり、UEは、常にサービングセルとの間で信号を送受信することができる。
(3-2)2つのTCI状態(指示されたTCI状態又は設定されたTCI状態)が存在する場合、両方のTCI状態は、サービングセルPCIのみ、追加PCIのみ、又は両方のPCI(サービングセルPCIと追加PCI)に関連付けられる。
 本実施形態によれば、L1/L2セル間モビリティ(例えば図8A参照)とマルチTRPセル間動作(例えば図8B参照)の両方の機能が同時に設定される場合であっても、適切な送受信を行うことができる。
<第4の実施形態>
 Rel.17のL1/L2セル間モビリティでは、UEは常にサービングセルとの間で信号の送受信が可能である。UEは、セルに関する情報(システム情報、ページング、ショートメッセージ)を、サービングセルからのみ受信してもよい。なお、非サービングセルのTCI状態のみアクティブな状態で、サービングセルからセルに関する情報を受信してもよい。
 Rel.17では、厳密なセル切り替えはできず、サービングセルとの接続を維持したまま、非サービングセルの方が、受信電力が高い場合に、UEは、非サービングセルと信号の送受信を実行できる。例えば、ハンドオーバを頻繁に行うと、通信できない区間などがあって非効率であったが、L1/L2セル間モビリティを適用してセル境界付近で、より受信電力が大きいセルと信号の送受信を行うことで、通信品質を改善することができる。
 サービングセルの切り替えをL1/L2で行う場合、UEは、RRCにより複数のサービングセルの設定を受信し、MAC CE/DCIにより、当該複数のサービングセルのうち一部を指示(選択)され、指示されたサービングセルと送受信を行ってもよい。MAC CE/DCIの例として、新しいMAC CEが規定されてもよいし、新しいDCIフォーマット/DCIフィールドが規定されもよい。また、UEは、Rel.17のL1/L2セル間モビリティと同様の仕組みを使って、TCI状態の切り替えにより、サービングセルの切り替えを行ってもよい。
[第1の態様]
 Rel.18のモビリティ機能が設定された場合(例えば、複数のセルに関する上位レイヤパラメータ(servingcellconfigなど)が設定された場合)、UEは、Rel.17/18の統一TCI状態(ジョイント/DL/UL TCI)を用いて、少なくとも1つのPCIに対応するセルのTCI状態を指示されてもよい。
《オプション4-1》
 UEは、予め指示されたサービングセルと非サービングセルのそれぞれのTCI状態と、MAC CE/DCI(例えば、セル切り替え専用MAC CE、専用DCIフォーマット/DCIフィールド)に基づいて、サービングセル(servingcellconfig)の切り替えを行ってもよい。
 UEは、2つの指示されたTCI状態を、それぞれサービングセルと非サービングセルの指示されたTCI状態として適用してもよい。例えば、2つの指示されたTCI状態のうち、第1のTCI状態をサービングセルのTCI状態として適用し、第2のTCI状態を非サービングセルの指示されたTCI状態として適用してもよい。この例は、シングルTRPの場合に適用されてもよい。
 Rel.18のセル間モビリティにおいて、マルチTRPが適用され、2つのTCI状態が各セルに指示されてもよい。つまり、合計4つのTCI状態が指示されてもよい。具体的には、UEは、サービングセル用の第1のTCI状態(第1のTRP用)、サービングセル用の第2のTCI状態状態(第2のTRP用)、非サービングセル用の第1のTCI状態(第1のTRP用)、及び非サービングセル用の第2のTCI状態(第2のTRP用)が指示されてもよい。そして、UEは、非サービングセルにおいてマルチTRPが適用される場合、非サービングセル用の2つのTCI状態を適用する。UEは、非サービングセルにおいてシングルTRPが適用される場合、非サービングセル用の1つのTCI状態(第1又は第2のTRP用)を適用する。なお、セル数は、例えば、2でなくてもよい。
《オプション4-2》
 UEは、サービングセル(servingcellconfig)の切り替えを、TCI状態の切り替え(MAC CE/DCI)により行う場合、指示されたTCI状態のQCLソースRSのCSI-RS/TRSのQCLソースRSのSSBがサービングセルのPCIに関連するか、別のPCIに関連するかに応じて、サービングセル切り替えを行っても良い。
 指示されたTCI状態の数は、1に制限されてもよい(シングルTRPのみ適用されてもよい)し、1以上でもよい(マルチTRPセル間動作が適用されてもよい)。また、サービングセルのPCIに対応するTCI状態の数は1又は1以上として、非サービングセル(切り替え後のサービングセル)のPCIに対応するTCI状態の数は1としてもよい。つまり、セル切り替えをする場合のみ、シングルTRPが適用されてもよい。
 Rel.18では、サービングセルの切り替えが行われるので、マルチTRPセル間動作(例えば図8B参照)はサポートされなくてもよい。つまり、複数の指示されるTCI状態を想定しないか、複数のPCIに関連する複数のTCI状態が同時に指示されることを想定しなくてもよい。
 又は、Rel.18では、マルチTRPセル間動作は、サポートされてもよい。複数のPCIに関連する複数のTCI状態が同時に指示される場合、第1の(又は第2の)TCI状態の関連するPCIをサービングセルとし、第2の(又は第1の)TCI状態の関連するPCIを非サービングセルとしてもよい。つまり、UEは、サービングセルに関する情報を、指示されたサービングセルに切り替えてもよい。
[第2の態様]
 Rel.18においても、UEは、セルに関する情報(システム情報、ページング、ショートメッセージ)を、サービングセルからのみ受信してもよい。また、非サービングセルのTCI状態のみアクティブな状態において、サービングセルサービングセルからのセルに関する情報(システム情報、ページング、ショートメッセージ)を受信できない(UEは、ページング/ショートメッセージをモニタしない)としてもよい。
 Rel.18では、サービングセルがMAC CE/DCIにより切り替わるので、ある時点でのサービングセルから別のセルにサービングセルを切り替えた場合、次の時点では当該「別のセル」がサービングセルになるので、UEは、この時点のサービングセルからセルに関する情報を適切に受信することができる。
 Rel.18では、第2の実施形態にも記載した下記(1)~(3)の制約の少なくとも一部は適用されてもよいし、全ての制約が適用されなくてもよい。
(1)UEは、サービングセルに対応するSS/PBCHブロックとサービングセルと異なるPCIに対応するSS/PBCHブロックとで中心周波数、SCS、SFNオフセットが同一であると想定する。
(2)UEは、2つのTRP(異なるPCIを有する2つのセル)からの2つのPDSCHを、時間領域における1つのサイクリックプレフィクス(CP)内において受信する。
(3)UEは、2つのTRP(異なるPCIを有する2つのセル)に対する2つのUL信号を、同一のタイミングアドバンス(Timing Advance(TA))を用いて送信する。 
 Rel.18では、サービングセルが切り替わるので、既存仕様のサービングセルがL1/L2において切り替わることが想定される。つまり、MAC CE/DCIによるハンドオーバが可能になる。ただし、完全なハンドオーバができない可能性もある。例えば、サービングセルを切り替えてもTAは更新されない可能性がある。
 ここで、サービングセルに近い概念の別の新しい表現が規定されてもよい。サービングセルは、例えば、接続セル(Connected cell)、提供セル(providing cell)、サービングセルサブセット(serving cell subset)、サブサービングセル(sub-serving cell)などの新しい用語が用いられてもよい。つまり、Rel.18のMAC CE/DCIにより切り替えられるのは、当該新しい用語のセルであってもよい。
 又は、既存仕様のサービングセルがMAC CE/DCIで切り替わる場合、上記新しい用語は不要となり、少なくとも一部のパラメータ(例えば、TAの値、TAGの値など)は、複数のサービングセル間で共通であってもよい。当該「複数のサービングセル間」は、RRCにより設定された複数のサービングセル設定(ServingCellConfig)に関連するセルを意味してもよい。
 本実施形態によれば、Rel.18に対応する端末の動作に関して、適切な情報を受信することができる。
<補足>
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること。
・マルチTRPのセル間動作のための統一TCI状態をサポートすること。
・UEが設定可能なPCIの数。
・アクティブTCI状態に関連するPCIの数。
・ジョイントTCIと、DL TCI状態及びUL TCI状態と、うちのいずれか一方又は両方をサポートすること。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、BWP)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 複数の信号に適用される複数の送信設定指示(TCI)状態の指示情報を受信する受信部と、
 前記指示情報に基づいて、前記複数のTCI状態を、複数の送受信ポイント(TRP)を利用する信号にそれぞれ適用する制御部と、を有し、
 前記複数のTCI状態のそれぞれは、下りリンク(DL)信号及び上りリンク(UL)信号の両方に適用されるTCI状態、又は、DL信号に適用されるTCI状態及びUL信号に適用されるTCI状態であり、
 前記複数のTCI状態のそれぞれは、異なる物理セルID(PCI)に関連する
 端末。
[付記2]
 前記受信部は、前記複数のTRPからの複数の物理下りリンク共有チャネル(PDSCH)をスケジュールする1つの下りリンク制御情報(DCI)を受信し、
 前記複数のTCI状態の少なくとも1つは、サービングセルとは異なるPCIに関連する
 付記1に記載の端末。
[付記3]
 前記受信部は、ノンコヒーレントジョイント送信が用いられた複数のTRPから物理下りリンク共有チャネル(PDSCH)を受信し、
 前記制御部は、下りリンク制御情報(DCI)及びMedium Access Control Control Element(MAC CE)の少なくとも1つにより指示されたTCI状態に基づいて、複数のTRPから1つのTRPを選択する
 付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、予め指示されたサービングセルと非サービングセルのそれぞれのTCI状態と、DCI及びMAC CEの少なくとも1つに基づいて、サービングセルの切り替えを行う
 付記1から付記3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図18は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図19は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、複数の信号に適用される複数の送信設定指示(TCI)状態の指示情報を送信してもよい。送受信部120は、前記指示情報に基づいて、前記複数のTCI状態が、端末が複数の送受信ポイント(TRP)と送受信する信号にそれぞれ適用され、前記信号を受信してもよい。
 制御部110は、送受信部120の送受信を制御してもよい。前記複数のTCI状態のそれぞれは、下りリンク(DL)信号及び上りリンク(UL)信号の両方に適用されるTCI状態、又は、DL信号に適用されるTCI状態及びUL信号に適用されるTCI状態であってもよい。 前記複数のTCI状態のそれぞれは、異なる物理セルID(PCI)に関連してもよい。
(ユーザ端末)
 図20は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、複数の信号に適用される複数の送信設定指示(TCI)状態の指示情報を受信してもよい。制御部210は、前記指示情報に基づいて、前記複数のTCI状態を、複数の送受信ポイント(TRP)と送受信する信号にそれぞれ適用してもよい。前記複数のTCI状態のそれぞれは、下りリンク(DL)信号及び上りリンク(UL)信号の両方に適用されるTCI状態、又は、DL信号に適用されるTCI状態及びUL信号に適用されるTCI状態であってもよい。前記複数のTCI状態のそれぞれは、異なる物理セルID(PCI)に関連してもよい。
 送受信部220は、前記複数のTRPからの複数の物理下りリンク共有チャネル(PDSCH)をスケジュールする1つの下りリンク制御情報(DCI)を受信してもよい。前記複数のTCI状態の少なくとも1つは、サービングセルとは異なるPCIに関連していてもよい。
 送受信部220は、ノンコヒーレントジョイント送信が用いられた複数のTRPから物理下りリンク共有チャネル(PDSCH)を受信してもよい。制御部210は、下りリンク制御情報(DCI)及びMedium Access Control Control Element(MAC CE)の少なくとも1つにより指示されたTCI状態に基づいて、複数のTRPから1つのTRPを選択してもよい。
 制御部210は、予め指示されたサービングセルと非サービングセルのそれぞれのTCI状態と、DCI及びMAC CEの少なくとも1つに基づいて、サービングセルの切り替えを行ってもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図21は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図22は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  複数の信号に適用される複数の送信設定指示(TCI)状態の指示情報を受信する受信部と、
     前記指示情報に基づいて、前記複数のTCI状態を、複数の送受信ポイント(TRP)と送受信する信号にそれぞれ適用する制御部と、を有し、
     前記複数のTCI状態のそれぞれは、下りリンク(DL)信号及び上りリンク(UL)信号の両方に適用されるTCI状態、又は、DL信号に適用されるTCI状態及びUL信号に適用されるTCI状態であり、
     前記複数のTCI状態のそれぞれは、異なる物理セルID(PCI)に関連する
     端末。
  2.  前記受信部は、前記複数のTRPからの複数の物理下りリンク共有チャネル(PDSCH)をスケジュールする1つの下りリンク制御情報(DCI)を受信し、
     前記複数のTCI状態の少なくとも1つは、サービングセルとは異なるPCIに関連する
     請求項1に記載の端末。
  3.  前記受信部は、ノンコヒーレントジョイント送信が用いられた複数のTRPから物理下りリンク共有チャネル(PDSCH)を受信し、
     前記制御部は、下りリンク制御情報(DCI)及びMedium Access Control Control Element(MAC CE)の少なくとも1つにより指示されたTCI状態に基づいて、複数のTRPから1つのTRPを選択する
     請求項1に記載の端末。
  4.  前記制御部は、予め指示されたサービングセルと非サービングセルのそれぞれのTCI状態と、DCI及びMAC CEの少なくとも1つに基づいて、サービングセルの切り替えを行う
     請求項1に記載の端末。
  5.  複数の信号に適用される複数の送信設定指示(TCI)状態の指示情報を受信する工程と、
     前記指示情報に基づいて、前記複数のTCI状態を、複数の送受信ポイント(TRP)と送受信する信号にそれぞれ適用する工程と、を有し、
     前記複数のTCI状態のそれぞれは、下りリンク(DL)信号及び上りリンク(UL)信号の両方に適用されるTCI状態、又は、DL信号に適用されるTCI状態及びUL信号に適用されるTCI状態であり、
     前記複数のTCI状態のそれぞれは、異なる物理セルID(PCI)に関連する
     端末の無線通信方法。
  6.  複数の信号に適用される複数の送信設定指示(TCI)状態の指示情報を送信する送信部と、
     前記指示情報に基づいて、前記複数のTCI状態が、端末が複数の送受信ポイント(TRP)と送受信する信号にそれぞれ適用され、前記信号を受信する受信部と、を有し、
     前記複数のTCI状態のそれぞれは、下りリンク(DL)信号及び上りリンク(UL)信号の両方に適用されるTCI状態、又は、DL信号に適用されるTCI状態及びUL信号に適用されるTCI状態であり、
     前記複数のTCI状態のそれぞれは、異なる物理セルID(PCI)に関連する
     基地局。
PCT/JP2022/019135 2022-04-27 2022-04-27 端末、無線通信方法及び基地局 WO2023209885A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019135 WO2023209885A1 (ja) 2022-04-27 2022-04-27 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019135 WO2023209885A1 (ja) 2022-04-27 2022-04-27 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2023209885A1 true WO2023209885A1 (ja) 2023-11-02

Family

ID=88518375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019135 WO2023209885A1 (ja) 2022-04-27 2022-04-27 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2023209885A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021013088A1 (zh) * 2019-07-24 2021-01-28 维沃移动通信有限公司 传输方式确定、信息配置方法和设备
WO2022074834A1 (ja) * 2020-10-09 2022-04-14 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2022079903A1 (ja) * 2020-10-16 2022-04-21 株式会社Nttドコモ 端末、無線通信方法及び基地局

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021013088A1 (zh) * 2019-07-24 2021-01-28 维沃移动通信有限公司 传输方式确定、信息配置方法和设备
WO2022074834A1 (ja) * 2020-10-09 2022-04-14 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2022079903A1 (ja) * 2020-10-16 2022-04-21 株式会社Nttドコモ 端末、無線通信方法及び基地局

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Support of Inter-cell Beam Management and Multi-TRP Operations", 3GPP DRAFT; R2-2110976, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052067414 *

Similar Documents

Publication Publication Date Title
WO2023209984A1 (ja) 端末、無線通信方法及び基地局
WO2023209885A1 (ja) 端末、無線通信方法及び基地局
WO2024042866A1 (ja) 端末、無線通信方法及び基地局
WO2023203728A1 (ja) 端末、無線通信方法及び基地局
WO2023203760A1 (ja) 端末、無線通信方法及び基地局
WO2024004143A1 (ja) 端末、無線通信方法及び基地局
WO2024009473A1 (ja) 端末、無線通信方法及び基地局
WO2023203766A1 (ja) 端末、無線通信方法及び基地局
WO2024009475A1 (ja) 端末、無線通信方法及び基地局
WO2024009474A1 (ja) 端末、無線通信方法及び基地局
WO2023203767A1 (ja) 端末、無線通信方法及び基地局
WO2023203713A1 (ja) 端末、無線通信方法及び基地局
WO2024029038A1 (ja) 端末、無線通信方法及び基地局
WO2023209985A1 (ja) 端末、無線通信方法及び基地局
WO2024034141A1 (ja) 端末、無線通信方法及び基地局
WO2024034142A1 (ja) 端末、無線通信方法及び基地局
WO2023175938A1 (ja) 端末、無線通信方法及び基地局
WO2024029039A1 (ja) 端末、無線通信方法及び基地局
WO2023175937A1 (ja) 端末、無線通信方法及び基地局
WO2024034120A1 (ja) 端末、無線通信方法及び基地局
WO2023188392A1 (ja) 端末、無線通信方法及び基地局
WO2024018609A1 (ja) 端末、無線通信方法及び基地局
WO2024018608A1 (ja) 端末、無線通信方法及び基地局
WO2024029043A1 (ja) 端末、無線通信方法及び基地局
WO2024029044A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940163

Country of ref document: EP

Kind code of ref document: A1