WO2024034034A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2024034034A1
WO2024034034A1 PCT/JP2022/030504 JP2022030504W WO2024034034A1 WO 2024034034 A1 WO2024034034 A1 WO 2024034034A1 JP 2022030504 W JP2022030504 W JP 2022030504W WO 2024034034 A1 WO2024034034 A1 WO 2024034034A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
information
ssb
cell
Prior art date
Application number
PCT/JP2022/030504
Other languages
French (fr)
Japanese (ja)
Inventor
翔貴 井上
天楊 閔
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/030504 priority Critical patent/WO2024034034A1/en
Publication of WO2024034034A1 publication Critical patent/WO2024034034A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • the present invention relates to a terminal, a base station, and a communication method in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • NR Release 18 considers network energy saving techniques from both the base station and terminal perspectives.
  • the present invention has been made in view of the above points, and it is an object of the present invention to provide a technology for realizing energy saving in a network.
  • a transmitter that transmits a predicted value of traffic volume to a base station; and a receiving unit that receives from the base station an instruction to disable a cell or an instruction to enable a cell, which is an instruction determined based on the predicted value.
  • a technology for realizing energy saving in a network is provided.
  • FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an SSB transmission cycle. It is a figure which shows the example of a setting of SMTC window.
  • FIG. 3 is a diagram illustrating an example of measurement gap settings.
  • FIG. 3 is a diagram for explaining the operation of the first embodiment.
  • FIG. 7 is a diagram for explaining the operation of the second embodiment.
  • FIG. 7 is a diagram for explaining the operation of the second embodiment.
  • 1 is a diagram showing a configuration example of a base station 10.
  • FIG. 2 is a diagram showing a configuration example of a terminal 20.
  • FIG. FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention.
  • 1 is a diagram showing an example of the configuration of a vehicle.
  • Existing technology is used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technology is, for example, existing LTE or existing NR, but is not limited to existing LTE or NR.
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
  • FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system according to an embodiment of the present invention.
  • a wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although FIG. 1 shows one base station 10 and one terminal 20, this is just an example, and there may be a plurality of each.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too.
  • Base station 10 transmits a synchronization signal and system information to terminal 20.
  • the synchronization signals are, for example, NR-PSS and NR-SSS.
  • System information is transmitted, for example, on NR-PBCH, and is also referred to as notification information or broadcast information.
  • the synchronization signal and system information may be called SSB (SS/PBCH block). As shown in FIG.
  • the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell) and a primary cell (PCell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary SCG cell (PSCell) of another base station 10 using DC (Dual Connectivity).
  • SCell secondary cell
  • PCell primary cell
  • DC Direct Connectivity
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Furthermore, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the channel quality based on the reception results of the reference signals.
  • a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
  • M2M Machine-to-Machine
  • the terminal 20 is capable of performing carrier aggregation in which multiple cells (multiple CCs (Component Carriers)) are bundled to communicate with the base station 10.
  • multiple CCs Component Carriers
  • carrier aggregation one PCell (Primary cell) and one or more SCells (Secondary cells) are used.
  • SCells Secondary cells
  • PUCCH-SCell with PUCCH may be used.
  • FIG. 2 is a diagram for explaining an example (2) of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 shows an example of the configuration of a wireless communication system when dual connectivity (DC) is implemented.
  • a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
  • Base station 10A and base station 10B are each connected to a core network.
  • Terminal 20 can communicate with both base station 10A and base station 10B.
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the MCG is composed of one PCell and one or more SCells
  • PSCell Primary SCG Cell
  • the processing operations in this embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
  • the terminal 20 transmits assistance information to the base station 10, and the base station 10 uses the assistance information to perform operations for power saving.
  • the support information is, for example, preferred SSB settings or traffic information of the terminal 20.
  • no network power saving technology using specific support information has been proposed in relation to this.
  • preferred SSB settings and "traffic information of terminal 20" are used as support information to realize power saving of the network.
  • an embodiment related to "preferred SSB settings” will be described as a first embodiment
  • an embodiment related to "traffic information of terminal 20" will be described as a second embodiment.
  • the first embodiment and the second embodiment may be implemented in combination.
  • periodic downlink (DL) transmission/reception such as SSB constantly consumes power of the base station 10 and terminal 20.
  • the longer the SSB transmission cycle the more likely it is possible to reduce power consumption and improve throughput
  • the longer the SSB reception cycle the more it is possible to reduce power consumption and improve throughput.
  • the reception cycle becomes longer, the time required for synchronization, channel estimation, etc. in the terminal 20 becomes longer, which becomes a factor in reducing throughput if the propagation situation cannot be followed.
  • the terminal 20 if the terminal 20 hardly moves and the radio wave propagation environment is stable, there is no need to frequently monitor SSB, so power consumption can be reduced by lengthening the SSB reception cycle (or transmission cycle). can.
  • the SSB transmission cycle and reception cycle are set from the base station 10 to the terminal 20 regardless of the status of the terminal 20, so power consumption cannot be reduced.
  • the terminal 20 notifies the base station 10 of a desired value related to SSB reception, and the base station 10 determines the SSB transmission cycle or reception cycle based on the desired value. changes) can be made. This makes it possible to save power in the network.
  • SSB is an abbreviation for Synchronization Signal Block. Further, SSB may be called Synchronization/PBCH block or SS/PBCH block. SSB may also be called a synchronization signal.
  • RRM radio resource management
  • the terminal 20 performs radio resource management (RRM) by measuring the received quality or received power of the own cell or other cells by receiving the SSB.
  • RRM radio resource management
  • FIG. 3 is a diagram showing a case where four SSBs are transmitted per cycle in a certain cell (cell A) with a cycle of Xms.
  • One SSB is, for example, four symbols long, and each SSB starts at a defined position.
  • One SSB includes a PBCH and synchronization signals (PSS, SSS). The period of SSB and the number of SSBs per period can be set for each cell.
  • SSB is broadcast from the base station 10 regardless of a request from the terminal 20;
  • a mode in which the base station 10 transmits SSB this is called on-demand SSB may be used.
  • the terminal 20 can synchronize with the base station 10 (timing synchronization and frequency synchronization).
  • beam management can also be performed using SSB.
  • the terminal 20 When the terminal 20 performs a handover to another cell, when adding a new CC during CA, etc., the terminal 20 needs to maintain communication quality while maintaining the communication quality of its own cell or another cell. Measure reception quality (e.g. RSRP, RSRQ). Control related to such measurements is called RRM. Moreover, such a measurement may be called an RRM measurement. RRM measurement is performed using SSB or CSI-RS, and below, measurement using SSB will be explained as an example.
  • Measure reception quality e.g. RSRP, RSRQ
  • RRM Radio Resource Management Function
  • RRM measurement is performed using SSB or CSI-RS, and below, measurement using SSB will be explained as an example.
  • the NR is equipped with a function of notifying the terminal 20 from the base station 10 of information indicating the cycle and time window in which the terminal 20 measures (receives) SSB.
  • This window is called the SMTC window (SSB based RRM Measurement Timing Configuration window).
  • the terminal 20 When the terminal 20 is notified of the SMTC window from the base station 10, it detects and measures SSB within the window and reports the results to the base station 10.
  • the time length of the SMTC window is set from the base station 10 to the terminal 20 based on the duration in the SSB-MTC, for example.
  • the value of the time length is, for example, one of ⁇ sf1, sf2, sf3, sf4, sf5 ⁇ . That is, it is any one of 1 ms, 2 ms, 3 ms, 4 ms, and 5 ms. However, in this embodiment, values other than these values (for example, a time length longer than 5 ms) may be used.
  • the periodicity of the SMTC window is set from the base station 10 to the terminal 20 using, for example, periodicityAndOffset in the SSB-MTC.
  • the value of the period is, for example, one of ⁇ sf5, sf10, sf20, sf40, sf80, sf160 ⁇ . That is, it is any one of 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms. However, in this embodiment, values other than these values (for example, a period longer than 160 ms) may be used.
  • the frequency range for measurement is set from the base station 10 to the terminal 20 by ssbFrequency in MeasObjectNR.
  • the terminal 20 does not assume SSB transmission in subframes outside the SMTC window.
  • Figure 4 shows an example of SMTC window settings.
  • the SMTC window is set according to the SSB transmission cycle and time length (time width).
  • the SSB transmission cycle and measurement cycle do not have to be the same.
  • the SMTC window cycle is longer than the SSB transmission cycle.
  • SMTC window may also be referred to as smtc.
  • smtc includes smtc2, smtc2-LP, etc., but the explanation of the SMTC window (primary smtc) described in this embodiment is applicable to both smtc2 and smtc2-LP. .
  • ⁇ Measurement gap in RRM measurement> For example, when the terminal 20 measures another cell with a frequency different from that of its own cell, or another cell with a RAT different from that of its own cell, the terminal 20 stops transmission and reception in the current cell (its own cell), Start RRM measurement of other cells (different cells). When the RRM measurement is completed, the terminal 20 resumes transmission and reception in its own cell. Note that a measurement gap may be used when measuring frequencies outside the active BWP in the own cell.
  • the time from when transmission/reception is stopped until transmission/reception is resumed is defined as the measurement gap.
  • Measurement gap length is set by mgl in GapConfig in MeasGapConfig.
  • the value of the MGL is, for example, one of ⁇ ms1dot5, ms3, ms3dot5, ms4, ms5dot5, ms6 ⁇ . That is, it is any one of 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, and 6ms. However, in this embodiment, values other than these values (for example, a time length longer than 6 ms) may be used.
  • Measurement gap repetition period is set by mgrp in GapConfig in MeasGapConfig.
  • the value of the MGRP is one of ⁇ ms20, ms40, ms80, ms160 ⁇ . That is, it is any one of 20ms, 40ms, 80ms, and 160ms.
  • values other than these values for example, a period longer than 160 ms
  • the measurement gap repetition period may also be referred to as measurement gap periodicity.
  • Figure 5 shows an example of measurement gap settings in NR.
  • the portion shown by (1) in FIG. 5(3) is shown in (1) in the upper row of FIG.
  • it is shown that measurement using the SMTC window is possible in 3 ms out of 4 ms excluding the time for RF retuning.
  • FIG. 5(2) shows an example of measurement gap settings in NR.
  • the terminal 20 notifies the base station 10 of the desired value regarding SSB reception, and the base station 10 determines (changes) the SSB transmission cycle based on the desired value. , smtc period is determined (changed), measurement gap period is determined (changed), etc.
  • smtc period is determined (changed)
  • measurement gap period is determined (changed)
  • An example of the operation of the first embodiment will be described with reference to the sequence diagram of FIG. 6.
  • the terminal 20 acquires information regarding its own operation.
  • the information acquired in S101 is not limited to specific information, but for example, any one, any plurality, or all of the following (1) to (4) is acquired.
  • the information acquired in S101 is information regarding the operation at the time of acquisition.
  • transmission and reception that appears in the first embodiment and the second embodiment means “transmission or reception.” That is, “transmission and reception” means “transmission only,” “reception only,” or “both transmission and reception.”
  • Information indicating the characteristics of the traffic to be sent and received e.g. QoS information, amount of sent and received data, sent and received packet cycle, information on the application used
  • Power saving settings of the terminal 20 by the user (3) Information regarding movement of the terminal 20 (e.g. speed, speed) (4) Information regarding radio wave propagation in the terminal 20 (e.g. path loss between the base station 10 and the terminal 20, radio wave propagation time (delay time) between the base station 10 and the terminal 20)
  • the terminal 20 determines a desired value regarding SSB reception based on the information acquired in S101, and transmits terminal support information including the desired value to the base station 10.
  • the terminal support information may be transmitted using signals other than RRC (eg, MAC CE, UCI).
  • the terminal assistance information may be referred to as "UE assistance information" or "UEAsistanceInfo.”
  • the above desired value is, for example, one or more of smtc periodicity, smtc2 periodicity, smtc2-LP periodicity, measurement gap length, and measurement gap repetition period, or all of them.
  • the desired value may be the transmission cycle at which the base station 10 transmits the SSB.
  • the “transmission cycle at which the base station 10 transmits SSB” is also an example of the “desired value regarding SSB reception” for the terminal 20.
  • the terminal 20 determines that it can stably communicate in its own cell (or the current active BWP). , large values are notified to the base station 10 as desired values (eg, smtc periodicity and measurement gap repetition period).
  • the terminal 20 determines that the radio wave propagation situation in its own cell has deteriorated, it sets values smaller than the above values to the base station as desired values (e.g. smtc periodicity and measurement gap repetition period). Notify 10.
  • the terminal 20 may set desired values (e.g. smtc periodicity and measurement gap) in order to avoid periodic reception of SSB as much as possible. A large value is notified to the base station 10 as a repetition period).
  • desired values e.g. smtc periodicity and measurement gap
  • the desired value mentioned above may be, for example, one of a plurality of values predefined in the specifications, etc., or a value other than the value specified in the specifications, etc. good.
  • the base station 10 determines whether to change the setting value (also referred to as a parameter) regarding SSB reception.
  • the setting value regarding SSB reception is, for example, any one, any plurality, or all of smtc periodicity, smtc2 periodicity, smtc2-LP periodicity, measurement gap length, and measurement gap repetition period. Further, the setting value regarding SSB reception may be a transmission cycle in which the base station 10 transmits the SSB.
  • the base station 10 When the base station 10 changes the setting value related to SSB reception based on the desired value received from the terminal 20, it notifies the terminal 20 of the changed "setting value related to SSB reception" in S104.
  • the notification in S104 may be performed using any of RRC, MAC, and DCI. Further, the notification in S104 may be a notification of a specific setting value to a specific terminal 20, or may be a broadcast notification to all terminals 20 in the cell of the base station 10.
  • the base station 10 when the base station 10 receives a desired value for either or both of Measurement gap length and Measurement gap repetition period from the terminal 20, the base station 10 sets the desired value as the changed setting value and sends the desired value to the terminal 20. Notice.
  • the base station 10 when the base station 10 receives a plurality of different desired values of smtc periodicity (smtc2 periodicity, smtc2 periodicity or smtc2-LP periodicity) from a plurality of terminals 20, the base station 10 selects the minimum value of the plurality of desired values, It is notified within the cell as a setting value that applies to all terminals 20 in the cell of the base station 10.
  • smtc periodicity smtc2 periodicity, smtc2 periodicity or smtc2-LP periodicity
  • the base station 10 may change the transmission cycle of SSB that is periodically transmitted within the cell to match the smtc periodicity. For example, if the SSB period before change is 40 ms and the smtc periodicity is changed to 320 ms, the base station 10 may change the SSB period to 320 ms.
  • the base station 10 notifies the terminal 20 within the cell of the changed SSB transmission cycle using, for example, ssb-periodicityServingCell or ssb-periodicityServingCell-r18 in S104.
  • the base station 10 transmits SSB at the changed period.
  • the base station 10 when the base station 10 receives a plurality of desired values with different SSB transmission cycles from a plurality of terminals 20, the base station 10 assigns the minimum value of the plurality of desired values to all terminals in the cell of the base station 10. It is also possible to notify within the cell as a setting value applied to 20. For example, if the SSB period before the change is 40 ms and the minimum desired value of the SSB transmission period is 160 ms, the base station 10 changes the SSB period to 160 ms, and Notify 20. The base station 10 transmits SSB at the changed period.
  • the minimum value among multiple desired values is set. There may be cases where it does not apply. That is, the base station 10 may notify the terminal 20 of a value larger than the minimum value among the plurality of desired values received from the plurality of terminals 20 as the changed setting value.
  • the terminal 20 may include information indicating that it wishes to "not receive periodic SSB" (this is an example of a desired value) in the terminal support information and notify it.
  • the terminal 20 determines that it does not need periodic SSB reception because it does not move much, it notifies the base station 10 of information indicating that it wishes not to receive periodic SSB. . Furthermore, since the terminal 20 can perform control such as synchronization based on information from other cells, if the terminal 20 determines that the periodic SSB reception of its own cell is unnecessary, it can request to "not receive periodic SSB". The base station 10 may be notified of information indicating.
  • the base station 10 which has received the information indicating that it wishes not to receive periodic SSB from the terminal 20, sends a notification indicating that it has confirmed that it does not wish to receive periodic SSB, for example, in step S104.
  • the terminal 20 is notified at the time.
  • the terminal 20 that has received this notification does not receive the SSB periodically transmitted from the base station 10, for example.
  • the terminal 20 needs to receive SSB (for example, when synchronizing with the base station 10), it requests the base station 10 to transmit the SSB.
  • the base station 10 receives information indicating that it wishes not to receive periodic SSB from a plurality of terminals 20 in its own cell (for example, a proportion of terminals equal to or higher than a certain threshold among all terminals). If received, periodic SSB transmission may be stopped in the cell.
  • the base station 10 can use a timer to perform control to deactivate the SCell when it is determined that the traffic of the terminal 20 does not occur for a predetermined period of time. This allows the base station 10 and the terminal 20 to save power.
  • the terminal 20 transmits information on the predicted value regarding the traffic at the terminal 20 to the base station 10, so that the base station 10 can predict the traffic pattern of the terminal 20. grasp.
  • the base station 10 can quickly control activation/deactivation of the SCell based on the traffic pattern of the terminal 20.
  • S201 information regarding transmission and reception traffic at the terminal 20 is acquired (calculated).
  • the information acquired in S201 is not limited to specific information, but for example, any one, any two, or all of the following (1) to (3) are acquired.
  • the statistical amount of sent/received traffic in (1) may be, for example, the average value from a certain point in the past to the present, or it may be based on the chronological change in the amount of sent/received traffic from a certain point in the past to the present. It can be an estimated amount of future inbound and outbound traffic (e.g., an estimated amount of time-series inbound and outbound traffic from the present to a certain point in the future), or both (an average from past to present and an estimate of future inbound and outbound traffic). estimated value) or other values may be used.
  • calculation of the future estimated amount in the second embodiment is executed by the control unit of the terminal 20, any method may be used for calculation.
  • regression analysis or DNN (deep learning) may be used.
  • the amount of sent/received traffic expected from an app in (2) above is, for example, the amount of future sent/received traffic estimated from the characteristics of the app (e.g., estimated time-series sent/received traffic from the present to a certain point in the future). amount) or other information.
  • the "future estimated amount” may also be referred to as a predicted value.
  • the terminal 20 determines, for example, any one or more of "average data rate, average packet size, average number of packets, maximum burst size" of the transmission/reception traffic of the terminal 20.
  • Obtain future estimators e.g., time series estimators from now to some point in the future) for all.
  • the above-mentioned "average” is, for example, an average over a certain period of time.
  • the above-mentioned “maximum” is, for example, the maximum in a certain period of time.
  • the terminal 20 transmits terminal support information including the information acquired in S201 to the base station 10.
  • the terminal support information may be transmitted using signals other than RRC (eg, MAC CE, UCI).
  • the terminal assistance information may be referred to as "UE assistance information" or "UEAsistanceInfo.”
  • the base station 10 estimates a time when no transmission/reception traffic occurs at the terminal 20 (or a time when the amount of transmission/reception traffic at the terminal 20 is less than a threshold value) based on the information received from the terminal 20 in S202, and determines the time when the transmission/reception traffic at the terminal 20 is less than the threshold.
  • an instruction to deactivate the SCell is transmitted to the terminal 20 (S204).
  • the SCell can be deactivated more quickly than before.
  • the base station 10 determines that the amount of transmitted and received traffic in the entire area will be smaller than a threshold value at a certain time (and a certain length of time after that time) based on information received from multiple terminals 20 in its own area. Additionally, the radio waves used in the SCell may be stopped. In other words, the SCell in all terminals 20 in the own area may be deactivated.
  • the base station 10 estimates the time when the amount of transmitted and received traffic at the terminal 20 becomes larger than the threshold based on the information received from the terminal 20, and When the time comes (or just before the time), an instruction to enable the SCell is transmitted to the terminal 20. As a result, it is possible to reduce the delay in SCell validation control compared to the conventional technology.
  • the terminal 20 may acquire the information described in S201 above, and may notify the base station 10 of the acquired information using Buffer Status Report MAC CE or new MAC CE (S302).
  • the information regarding the transmission/reception traffic acquired in S301 may be information on the transmission/reception traffic in the LCG (Logical Channel Group) corresponding to the MAC CE used for notification.
  • LCG Logical Channel Group
  • the content of the information transmitted in S302 may be the same as that in S202, for example, any one of "average data rate, average packet size, average number of packets, maximum burst size" of the transmission/reception traffic of the terminal 20.
  • it may be a future estimator (for example, a time-series estimator from the present to a certain point in the future) for any plurality or all of them.
  • the terminal 20 may notify the current amount of UL buffer retention in the terminal 20 using the Buffer Status Report MAC CE or the new MAC CE.
  • the UL buffer retention amount may be the RLC buffer retention amount, the PDCP buffer retention amount, or the total value of the UL buffer retention amount of the entire terminal 20.
  • the terminal 20 instead of or in addition to the current UL buffer retention amount, the terminal 20 also calculates an estimated future amount of the UL buffer retention amount (for example, from the present to a certain point in the future). may be notified to the base station 10.
  • the operations in S303 to S304 are the same as the operations in S203 to S204.
  • the terminal 20 Only when the terminal 20 notifies the base station 10 of capability information (UE Capability) indicating that the terminal 20 supports the operation of notifying the desired value described in the first embodiment, the first embodiment The following operations may be performed.
  • UE Capability capability information
  • the second embodiment Only when the terminal 20 notifies the base station 10 of capability information (UE Capability) indicating that the terminal 20 supports the operation of notifying information regarding traffic described in the second embodiment, the second embodiment The operation of the form may be performed.
  • UE Capability capability information
  • FIG. 9 is a diagram showing an example of the functional configuration of the base station 10.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 9 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 110 and the receiving section 120 may be collectively referred to as a communication section.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals.
  • the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI using PDCCH, data using PDSCH, etc. to the terminal 20.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
  • the control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. Further, the control unit 140 executes the determination at the base station described in the first embodiment and the second embodiment (determination of setting values/instructions based on information received from the terminal 20, etc.).
  • a functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
  • the transmitting section 110 may be called a transmitter
  • the receiving section 120 may be called a receiver.
  • FIG. 10 is a diagram illustrating an example of the functional configuration of the terminal 20.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 10 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 210 and the receiving section 220 may be collectively referred to as a communication section.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, etc. transmitted from the base station 10. Further, for example, the transmitter 210 transmits a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH (PSDCH) to another terminal 20 as D2D communication. Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc., and the receiving unit 220 may receive the PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Broadcast Channel
  • the setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device included in the setting unit 230, and reads the information from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the control unit 240 controls the terminal 20. Further, in the first embodiment, the control unit 240 includes at least one of information indicating the characteristics of transmission and reception traffic in the terminal 20, power saving settings of the terminal 20, information regarding movement of the terminal 20, and information regarding radio wave propagation in the terminal 20. The desired value can be obtained (calculated) based on one of the following. Furthermore, in the second embodiment, the control unit 240 controls the terminal 20 based on at least one of the past traffic volume in the terminal 20, the application used in the terminal 20, and the OS used in the terminal 20. Obtain (calculate) the predicted value of traffic volume.
  • a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220. Further, the transmitter 210 may be called a transmitter, and the receiver 220 may be called a receiver.
  • At least the terminal, base station, and communication method described in Appendix 1 and Appendix 2 below are provided.
  • Additional note 1 a transmitter that transmits a desired value regarding reception of the synchronization signal to a base station that periodically transmits the synchronization signal;
  • a terminal comprising: a receiving unit that receives a setting value determined based on the desired value from the base station.
  • the desired value includes at least one of a reception period of the synchronization signal, a measurement gap period, and information indicating not to receive a periodic synchronization signal.
  • the desired value is determined based on at least one of information indicating characteristics of traffic in the terminal, power saving settings of the terminal, information regarding movement of the terminal, and information regarding radio wave propagation in the terminal.
  • the terminal further comprising: a control unit for acquiring information.
  • a transmitter that periodically transmits a synchronization signal; a receiving unit that receives a desired value regarding reception of the synchronization signal from a terminal, The transmitting unit transmits a setting value determined based on the desired value to the terminal.
  • a base station (Additional note 5) transmitting a desired value regarding reception of the synchronization signal to a base station that periodically transmits the synchronization signal;
  • a communication method performed by a terminal comprising: receiving a setting value determined based on the desired value from the base station.
  • any of Supplementary Notes 1 to 5 it is possible to realize power saving of at least one of a terminal and a base station in a wireless communication system.
  • an appropriate value can be notified as the desired value.
  • an appropriate desired value can be obtained.
  • a transmitting unit that transmits a predicted value of traffic volume to a base station; a receiving unit that receives from the base station an instruction to disable a cell or an instruction to enable a cell, which is an instruction determined based on the predicted value.
  • the predicted value includes at least one of an average data rate, an average packet size, an average number of packets, and a maximum burst size.
  • Supplementary note further comprising: a control unit that obtains the predicted value based on at least one of a past traffic amount in the terminal, an application used in the terminal, and an OS used in the terminal. Terminal according to item 1 or 2.
  • a receiving unit that receives a predicted value of traffic volume from the terminal; and a transmitting unit that transmits to the terminal an instruction to disable a cell or an instruction to enable a cell, which is an instruction determined based on the predicted value.
  • a transmitting unit that transmits to the terminal an instruction to disable a cell or an instruction to enable a cell, which is an instruction determined based on the predicted value.
  • a communication method performed by a terminal comprising: receiving from the base station an instruction to deactivate a cell or an instruction to activate a cell, which is an instruction determined based on the predicted value.
  • any of Supplementary Notes 1 to 5 it is possible to realize power saving of at least one of a terminal and a base station in a wireless communication system.
  • an appropriate value can be notified as a predicted value.
  • an appropriate predicted value can be obtained.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control unit 140 of the base station 10 shown in FIG. 9 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 10 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor 1001 may be implemented using at least one of these hardwares.
  • FIG. 12 shows an example of the configuration of the vehicle 2001.
  • a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • the terminal 20 or base station 10 according to each aspect/embodiment described in this disclosure may be applied to a communication device mounted on the vehicle 2001, for example, may be applied to the communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal acquired by vehicle speed sensor 2024, acceleration signal acquired by acceleration sensor 2025, accelerator pedal depression amount signal acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • Communication module 2013 may be base station 10 or terminal 20.
  • the communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
  • the present invention may be
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a terminal.
  • a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • a terminal in the present disclosure may be replaced by a base station.
  • a configuration may be adopted in which the base station has the functions that the above-described terminal has.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” mean that resolving, selecting, choosing, establishing, comparing, etc. are considered to be “judgement” and “decision.” may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • one slot may be called a unit time. The unit time may be different for each cell depending on the numerology.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control section 2012 Information service section 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Abstract

The present invention provides a terminal comprising a transmission unit that transmits a predicted value of a traffic amount to a base station and a reception unit that receives, from the base station, an instruction to deactivate a cell or an instruction to activate the cell, the instruction being determined on the basis of the predicted value.

Description

端末、基地局、及び通信方法Terminal, base station, and communication method
 本発明は、無線通信システムにおける端末、基地局、及び通信方法に関する。 The present invention relates to a terminal, a base station, and a communication method in a wireless communication system.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。 The requirements for NR (New Radio) (also referred to as "5G"), which is the successor system to LTE (Long Term Evolution), are a large capacity system, high data transmission speed, low latency, and the simultaneous use of a large number of terminals. Techniques that satisfy connectivity, low cost, power saving, etc. are being considered (for example, Non-Patent Document 1).
 また、NRリリース18では、基地局と端末の両方の観点でのネットワークのエネルギー節約(Network energy saving)技術が検討されている。 Additionally, NR Release 18 considers network energy saving techniques from both the base station and terminal perspectives.
 ネットワークのエネルギー節約を実現するために、端末から基地局に支援情報を送信することにより、基地局において、高精度かつ適応的な制御を行うことが検討されている。しかし、エネルギー節約を実現するための具体的な技術は提案されていない。 In order to save energy in the network, it is being considered to perform highly accurate and adaptive control at the base station by transmitting support information from the terminal to the base station. However, no specific technology for achieving energy savings has been proposed.
 なお、「エネルギー節約」を「省電力化」と言い換えてもよい。また、本明細書において、「ネットワークのエネルギー節約」は、「基地局のエネルギー節約」と「端末のエネルギー節約」のそれぞれの意味を含むものとする。 Note that "energy saving" may be replaced with "power saving". Furthermore, in this specification, "network energy saving" includes the meanings of "base station energy saving" and "terminal energy saving".
 本発明は上記の点に鑑みてなされたものであり、ネットワークのエネルギー節約を実現するための技術を提供することを目的とする。 The present invention has been made in view of the above points, and it is an object of the present invention to provide a technology for realizing energy saving in a network.
 開示の技術によれば、トラフィック量の予測値を基地局に送信する送信部と、
 前記予測値に基づいて決定された指示である、セルを非有効化する指示又はセルを有効化する指示を、前記基地局から受信する受信部と
 を備える端末が提供される。
According to the disclosed technology, a transmitter that transmits a predicted value of traffic volume to a base station;
and a receiving unit that receives from the base station an instruction to disable a cell or an instruction to enable a cell, which is an instruction determined based on the predicted value.
 開示の技術によれば、ネットワークのエネルギー節約を実現するための技術が提供される。 According to the disclosed technology, a technology for realizing energy saving in a network is provided.
本発明の実施の形態における無線通信システムを説明するための図である。FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention. 本発明の実施の形態における無線通信システムを説明するための図である。FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention. SSBの送信周期を説明するための図である。FIG. 2 is a diagram for explaining an SSB transmission cycle. SMTC windowの設定例を示す図である。It is a figure which shows the example of a setting of SMTC window. measurement gapの設定例を示す図である。FIG. 3 is a diagram illustrating an example of measurement gap settings. 第1実施形態の動作を説明するための図である。FIG. 3 is a diagram for explaining the operation of the first embodiment. 第2実施形態の動作を説明するための図である。FIG. 7 is a diagram for explaining the operation of the second embodiment. 第2実施形態の動作を説明するための図である。FIG. 7 is a diagram for explaining the operation of the second embodiment. 基地局10の構成例を示す図である。1 is a diagram showing a configuration example of a base station 10. FIG. 端末20の構成例を示す図である。2 is a diagram showing a configuration example of a terminal 20. FIG. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention. 車両の構成例を示す図である。1 is a diagram showing an example of the configuration of a vehicle.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEあるいは既存のNRであるが、既存のLTE、NRに限られない。 Existing technology is used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, existing LTE or existing NR, but is not limited to existing LTE or NR.
 また、以下で説明する本発明の実施の形態では、既存のNRで使用されているSSB等の用語を使用する。これは記載の便宜上のためであり、同様の信号等が他の名称で呼ばれてもよい。 Furthermore, in the embodiments of the present invention described below, terms such as SSB used in existing NR are used. This is for convenience of description, and similar signals etc. may be called by other names.
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 Furthermore, in the embodiment of the present invention, "configure" the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
 図1は、本発明の実施の形態における無線通信システムの構成例(1)を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。 FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system according to an embodiment of the present invention. A wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although FIG. 1 shows one base station 10 and one terminal 20, this is just an example, and there may be a plurality of each.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報あるいはブロードキャスト情報ともいう。同期信号及びシステム情報は、SSB(SS/PBCH block)と呼ばれてもよい。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセルグループセル(PSCell:Primary SCG Cell)を介して通信を行ってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too. Base station 10 transmits a synchronization signal and system information to terminal 20. The synchronization signals are, for example, NR-PSS and NR-SSS. System information is transmitted, for example, on NR-PBCH, and is also referred to as notification information or broadcast information. The synchronization signal and system information may be called SSB (SS/PBCH block). As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell) and a primary cell (PCell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary SCG cell (PSCell) of another base station 10 using DC (Dual Connectivity).
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。また、端末20は、基地局10から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。 The terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Furthermore, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the channel quality based on the reception results of the reference signals.
 端末20は、複数のセル(複数のCC(Component Carrier, コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(Primary cell, プライマリセル)と1以上のSCell(Secondary cell, セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。 The terminal 20 is capable of performing carrier aggregation in which multiple cells (multiple CCs (Component Carriers)) are bundled to communicate with the base station 10. In carrier aggregation, one PCell (Primary cell) and one or more SCells (Secondary cells) are used. Also, a PUCCH-SCell with PUCCH may be used.
 図2は、本発明の実施の形態における無線通信システムの例(2)を説明するための図である。図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。 FIG. 2 is a diagram for explaining an example (2) of a wireless communication system according to an embodiment of the present invention. FIG. 2 shows an example of the configuration of a wireless communication system when dual connectivity (DC) is implemented. As shown in FIG. 2, a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided. Base station 10A and base station 10B are each connected to a core network. Terminal 20 can communicate with both base station 10A and base station 10B.
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCG Cell)と1以上のSCellから構成される。 A cell group provided by the base station 10A, which is a MN, is called an MCG (Master Cell Group), and a cell group provided by the base station 10B, which is an SN, is called an SCG (Secondary Cell Group). Furthermore, in the DC, the MCG is composed of one PCell and one or more SCells, and the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
 本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。 The processing operations in this embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
 (省電力化について)
 次に、NRリリース18におけるネットワークの省電力化の議論状況について説明する。基地局の送信と受信の両方の観点からネットワークのエネルギー節約を改善するための基地局および端末の手法について検討されている。
(About power saving)
Next, the status of discussions regarding network power saving in NR Release 18 will be explained. Base station and terminal techniques to improve network energy savings from both base station transmission and reception perspectives are discussed.
 例えば、端末20から基地局10に支援情報(assistance information)を送信し、基地局10が、支援情報を用いて、省電力化のための動作を実行する技術が検討されている。支援情報は、例えば、好ましいSSB設定、あるいは、端末20のトラフィック情報である。しかしながら、従来技術では、こられに関連して、具体的な支援情報を用いたネットワークの省電力化技術は提案されていない。 For example, a technology is being considered in which the terminal 20 transmits assistance information to the base station 10, and the base station 10 uses the assistance information to perform operations for power saving. The support information is, for example, preferred SSB settings or traffic information of the terminal 20. However, in the related art, no network power saving technology using specific support information has been proposed in relation to this.
 本実施の形態では、「好ましいSSB設定」及び「端末20のトラフィック情報」を支援情報として使用して、ネットワークの省電力化を実現している。以下、「好ましいSSB設定」に関連する実施形態を第1実施形態として説明し、「端末20のトラフィック情報」に関連する実施形態を第2実施形態として説明する。第1実施形態と第2実施形態を組み合わせて実施してもよい。 In this embodiment, "preferred SSB settings" and "traffic information of terminal 20" are used as support information to realize power saving of the network. Hereinafter, an embodiment related to "preferred SSB settings" will be described as a first embodiment, and an embodiment related to "traffic information of terminal 20" will be described as a second embodiment. The first embodiment and the second embodiment may be implemented in combination.
 (第1実施形態)
 <概要>
 まず、第1実施形態を説明する。第1実施形態は、周期的に送信されるダウンリンク信号の例として、SSBを取り上げているが、第1実施形態で説明する技術は、SSB以外のダウンリンク信号にも適用可能である。
(First embodiment)
<Summary>
First, a first embodiment will be described. Although the first embodiment takes up SSB as an example of downlink signals that are periodically transmitted, the technology described in the first embodiment is also applicable to downlink signals other than SSB.
 無線通信システムにおいて、SSB等の周期的なダウンリンク(DL)送信/受信は、基地局10及び端末20の電力をコンスタントに消費する。 In a wireless communication system, periodic downlink (DL) transmission/reception such as SSB constantly consumes power of the base station 10 and terminal 20.
 基地局10にとってはSSBの送信周期が長いほど消費電力を削減し、スループットの向上を図れる可能性があり、端末20にとってはSSBの受信周期が長いほど消費電力を削減し、スループットの向上を図れる可能性がある。しかし、受信周期が長くなると、端末20において同期及びチャネル推定等にかかる時間が長くなり、伝搬状況に追従できない場合にはスループットの低下の要因となる。 For the base station 10, the longer the SSB transmission cycle, the more likely it is possible to reduce power consumption and improve throughput, and for the terminal 20, the longer the SSB reception cycle, the more it is possible to reduce power consumption and improve throughput. there is a possibility. However, as the reception cycle becomes longer, the time required for synchronization, channel estimation, etc. in the terminal 20 becomes longer, which becomes a factor in reducing throughput if the propagation situation cannot be followed.
 端末20にとって、例えば、ほとんど移動せず、電波伝搬環境が安定している場合、SSBを頻繁にモニタする必要はないので、SSBの受信周期(あるいは送信周期)を長くすることで消費電力を削減できる。 For example, if the terminal 20 hardly moves and the radio wave propagation environment is stable, there is no need to frequently monitor SSB, so power consumption can be reduced by lengthening the SSB reception cycle (or transmission cycle). can.
 しかし、従来技術では、端末20の状況に関わらずに基地局10から端末20に対してSSBの送信周期及び受信周期が設定されるので、消費電力削減を行うことができない。 However, in the conventional technology, the SSB transmission cycle and reception cycle are set from the base station 10 to the terminal 20 regardless of the status of the terminal 20, so power consumption cannot be reduced.
 そこで第1実施形態では、端末20から基地局10に対して、SSBの受信に関連する希望値を通知し、基地局10はその希望値に基づいて、SSBの送信周期あるいは受信周期の決定(変更)を行うことができる。これによりネットワークの省電力化を実現できる。 Therefore, in the first embodiment, the terminal 20 notifies the base station 10 of a desired value related to SSB reception, and the base station 10 determines the SSB transmission cycle or reception cycle based on the desired value. changes) can be made. This makes it possible to save power in the network.
 なお、SSBは、Synchronization Signal Block(同期信号ブロック)の略称である。また、SSBをSynchronization/PBCH blockあるいはSS/PBCH blockと呼ぶ場合もある。SSBを同期信号と呼んでもよい。 Note that SSB is an abbreviation for Synchronization Signal Block. Further, SSB may be called Synchronization/PBCH block or SS/PBCH block. SSB may also be called a synchronization signal.
 以降の説明では、上記の課題を解決する仕組みを、SSBを例に取り上げて説明するが、SSBは、基地局10が周期的に送信するDL信号(DL情報と呼んでもよい)の例であり、SSB以外のDL信号に対して以下で説明する技術が適用されてもよい。 In the following explanation, a mechanism for solving the above problem will be explained using SSB as an example. , the technology described below may be applied to DL signals other than SSB.
 <SSBを用いたRRMに関わる基本的な動作について>
 SSBを使用する例として、無線リソース制御(RRM:radio Resource Management)がある。すなわち、端末20は、SSBを受信することで、自セルあるいは他セルの受信品質あるいは受信電力を測定することにより、無線リソース制御(RRM:radio Resource Management)を行っている。無線リソース制御により、端末20はモビリティ性能を担保している。
<About basic operations related to RRM using SSB>
An example of using SSB is radio resource management (RRM). That is, the terminal 20 performs radio resource management (RRM) by measuring the received quality or received power of the own cell or other cells by receiving the SSB. The terminal 20 ensures mobility performance through radio resource control.
 第1実施形態では、measurement gap等のRRMに関するパラメータを取り上げているので、まず、SSBを用いたRRMに関する基本的な動作の例を説明する。 Since the first embodiment deals with parameters related to RRM such as measurement gap, first, an example of basic operation related to RRM using SSB will be explained.
 NRのSSBは、基本的に、1フレーム(10ms)の前半又は後半の半分(half frame:半フレーム)の時間リソース内で周期的に送信される。図3は、あるセル(セルA)において、周期Xmsで、1周期あたり4個のSSBが送信される場合を示す図である。SSB1個は、例えば4シンボル長であり、個々のSSBは、規定された位置から開始する。1個のSSBには、PBCH、及び同期信号(PSS,SSS)が含まれる。SSBの周期及び1周期あたりの個数は、セル毎に設定可能である。 NR SSB is basically transmitted periodically within a time resource of the first half or the second half of one frame (10 ms). FIG. 3 is a diagram showing a case where four SSBs are transmitted per cycle in a certain cell (cell A) with a cycle of Xms. One SSB is, for example, four symbols long, and each SSB starts at a defined position. One SSB includes a PBCH and synchronization signals (PSS, SSS). The period of SSB and the number of SSBs per period can be set for each cell.
 なお、本実施の形態では、端末20からの要求に依らずに、基地局10からSSBがブロードキャストされる形態を主に想定しているが、端末20からの要求に応じて、その端末20に対して基地局10がSSBを送信する形態(これをオンデマンドSSBと呼ぶ)を用いてもよい。 Note that in this embodiment, it is mainly assumed that SSB is broadcast from the base station 10 regardless of a request from the terminal 20; On the other hand, a mode in which the base station 10 transmits SSB (this is called on-demand SSB) may be used.
 端末20は、SSBを受信することで、基地局10との同期(タイミング同期及び周波数同期)をとることができる。また、SSBにより、ビームマネジメントを行うこともできる。 By receiving the SSB, the terminal 20 can synchronize with the base station 10 (timing synchronization and frequency synchronization). In addition, beam management can also be performed using SSB.
 端末20が他セルにハンドオーバする場合、CA時にCCを新たに追加する場合などにおいて、端末20は、通信品質を維持しながら、これらの処理を適切に実施するために、自セルあるいは他セルの受信品質(例:RSRP、RSRQ)を測定する。このような測定に係る制御はRRMと呼ばれる。また、このような測定をRRM測定と呼んでもよい。RRM測定は、SSBあるいはCSI-RSにより行われるが、以下では、SSBを用いた測定を例にとって説明する。 When the terminal 20 performs a handover to another cell, when adding a new CC during CA, etc., the terminal 20 needs to maintain communication quality while maintaining the communication quality of its own cell or another cell. Measure reception quality (e.g. RSRP, RSRQ). Control related to such measurements is called RRM. Moreover, such a measurement may be called an RRM measurement. RRM measurement is performed using SSB or CSI-RS, and below, measurement using SSB will be explained as an example.
 <SMTC window)
 NRでは、端末20がSSBの測定(受信)を行う周期及び時間幅(window)等を示す情報を基地局10から端末20へ通知する機能が備えられている。このwindowは、SMTC window(SSB based RRM Measurement Timing Configuration window)と呼ばれる。端末20は、SMTC windowを基地局10から通知された場合、window内でSSBの検出及び測定を実施し、その結果を基地局10に報告する。
<SMTC window)
The NR is equipped with a function of notifying the terminal 20 from the base station 10 of information indicating the cycle and time window in which the terminal 20 measures (receives) SSB. This window is called the SMTC window (SSB based RRM Measurement Timing Configuration window). When the terminal 20 is notified of the SMTC window from the base station 10, it detects and measures SSB within the window and reports the results to the base station 10.
 SMTC windowの時間長は、例えば、SSB-MTCの中のdurationにより基地局10から端末20に設定される。当該時間長の値は、例えば{sf1, sf2, sf3, sf4, sf5}のうちのいずれかである。すなわち、1ms、2ms、3ms、4ms、5msのうちのいずれかである。ただし、本実施の形態では、これらの値以外の値(例えば、5msよりも長い時間長)が用いられてもよい。 The time length of the SMTC window is set from the base station 10 to the terminal 20 based on the duration in the SSB-MTC, for example. The value of the time length is, for example, one of {sf1, sf2, sf3, sf4, sf5}. That is, it is any one of 1 ms, 2 ms, 3 ms, 4 ms, and 5 ms. However, in this embodiment, values other than these values (for example, a time length longer than 5 ms) may be used.
 SMTC windowの周期(periodicity)は、例えば、SSB-MTCの中のperiodicityAndOffsetにより基地局10から端末20に設定される。当該周期の値は、例えば{sf5, sf10, sf20, sf40, sf80, sf160}のうちのいずれかである。すなわち、5ms、10ms、20ms、40ms、80ms、160msのうちのいずれかである。ただし、本実施の形態では、これらの値以外の値(例えば、160msよりも長い周期)が用いられてもよい。 The periodicity of the SMTC window is set from the base station 10 to the terminal 20 using, for example, periodicityAndOffset in the SSB-MTC. The value of the period is, for example, one of {sf5, sf10, sf20, sf40, sf80, sf160}. That is, it is any one of 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms. However, in this embodiment, values other than these values (for example, a period longer than 160 ms) may be used.
 また、測定を行う周波数範囲は、MeasObjectNRの中のssbFrequencyにより基地局10から端末20に設定される。ssbFrequencyで示される周波数範囲において、端末20は、SMTC windowの外側のサブフレームでは、SSB送信を想定しない。 Furthermore, the frequency range for measurement is set from the base station 10 to the terminal 20 by ssbFrequency in MeasObjectNR. In the frequency range indicated by ssbFrequency, the terminal 20 does not assume SSB transmission in subframes outside the SMTC window.
 図4に、SMTC windowの設定例を示す。図4の例において、セルAでは、SSBの送信周期と時間長(時間幅)に合わせてSMTC windowが設定されている。 Figure 4 shows an example of SMTC window settings. In the example of FIG. 4, in cell A, the SMTC window is set according to the SSB transmission cycle and time length (time width).
 SSB送信周期と測定周期(受信周期)は同じでなくてもよい。図4のセルBの例では、SMTC windowの周期がSSB送信周期よりも長い。 The SSB transmission cycle and measurement cycle (reception cycle) do not have to be the same. In the example of cell B in FIG. 4, the SMTC window cycle is longer than the SSB transmission cycle.
 なお、SMTC windowのことをsmtcと呼んでもよい。smtcには、プライマリのsmtcの他、smtc2、smtc2-LP等があるが、本実施の形態で説明するSMTC window(プライマリのsmtc)の説明はsmtc2、smtc2-LPのいずれにも適用可能である。 Note that the SMTC window may also be referred to as smtc. In addition to primary smtc, smtc includes smtc2, smtc2-LP, etc., but the explanation of the SMTC window (primary smtc) described in this embodiment is applicable to both smtc2 and smtc2-LP. .
 <RRM測定におけるMeasurement gap(測定ギャップ)>
 端末20は、例えば、自セルと異なる周波数の他セル、あるいは、自セルのRATと異なるRATの他セルを測定する際に、現在のセル(自セル)での送信と受信を停止して、他セル(異セル)のRRM測定を開始する。RRM測定が終了すると、端末20は、自セルでの送信と受信を再開する。なお、自セルにおいて、アクティブBWPの外側の周波数の測定を行う際にMeasurement gapが使用される場合もある。
<Measurement gap in RRM measurement>
For example, when the terminal 20 measures another cell with a frequency different from that of its own cell, or another cell with a RAT different from that of its own cell, the terminal 20 stops transmission and reception in the current cell (its own cell), Start RRM measurement of other cells (different cells). When the RRM measurement is completed, the terminal 20 resumes transmission and reception in its own cell. Note that a measurement gap may be used when measuring frequencies outside the active BWP in the own cell.
 送信/受信を停止してから、送信/受信を再開するまでの時間がMeasurement gapとして定義されている。 The time from when transmission/reception is stopped until transmission/reception is resumed is defined as the measurement gap.
 Measurement gap length(測定ギャップ長、MGL)は、MeasGapConfigにおけるGapConfigの中のmglにより設定される。当該MGLの値は、例えば、{ms1dot5, ms3, ms3dot5, ms4, ms5dot5, ms6}のうちのいずれかである。すなわち、1.5ms、3ms、3.5ms、4ms、5.5ms、6msのうちのいずれかである。ただし、本実施の形態では、これらの値以外の値(例えば、6msよりも長い時間長)が用いられてもよい。 Measurement gap length (MGL) is set by mgl in GapConfig in MeasGapConfig. The value of the MGL is, for example, one of {ms1dot5, ms3, ms3dot5, ms4, ms5dot5, ms6}. That is, it is any one of 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, and 6ms. However, in this embodiment, values other than these values (for example, a time length longer than 6 ms) may be used.
 Measurement gap repetition period(測定ギャップの繰り返し周期、MGRP)は、MeasGapConfigにおけるGapConfigの中のmgrpにより設定される。例えば、当該MGRPの値は、{ms20, ms40, ms80, ms160}のうちのいずれかである。すなわち、20ms、40ms、80ms、160msのうちのいずれかである。ただし、本実施の形態では、これらの値以外の値(例えば、160msよりも長い周期)が用いられてもよい。なお、Measurement gap repetition periodを、measurement gap periodicity(測定ギャップ周期)と呼んでもよい。 Measurement gap repetition period (MGRP) is set by mgrp in GapConfig in MeasGapConfig. For example, the value of the MGRP is one of {ms20, ms40, ms80, ms160}. That is, it is any one of 20ms, 40ms, 80ms, and 160ms. However, in this embodiment, values other than these values (for example, a period longer than 160 ms) may be used. Note that the measurement gap repetition period may also be referred to as measurement gap periodicity.
 図5に、NRにおけるMeasurement gapの設定例を示す。図5の(3)は、MGL=4msとMGRP=20msの場合と、MGL=6msとMGRP=160msの場合を示している。図5(3)の(1)で示す部分が、図5の上段の(1)に示されている。ここでは、4msのうち、RF retuningのための時間を除いた3msにて、SMTC windowを用いた測定が可能であることが示されている。図5(2)も同様である。 Figure 5 shows an example of measurement gap settings in NR. (3) in FIG. 5 shows a case where MGL=4ms and MGRP=20ms and a case where MGL=6ms and MGRP=160ms. The portion shown by (1) in FIG. 5(3) is shown in (1) in the upper row of FIG. Here, it is shown that measurement using the SMTC window is possible in 3 ms out of 4 ms excluding the time for RF retuning. The same applies to FIG. 5(2).
 <第1実施形態の動作例>
 前述したとおり、第1実施形態では、端末20から基地局10に対して、SSBの受信に関する希望値を通知し、基地局10はその希望値に基づいて、SSBの送信周期の決定(変更)、smtcの周期の決定(変更)、Measurement gapの周期の決定(変更)等を行う。第1実施形態の動作例を図6のシーケンス図を参照して説明する。
<Operation example of the first embodiment>
As described above, in the first embodiment, the terminal 20 notifies the base station 10 of the desired value regarding SSB reception, and the base station 10 determines (changes) the SSB transmission cycle based on the desired value. , smtc period is determined (changed), measurement gap period is determined (changed), etc. An example of the operation of the first embodiment will be described with reference to the sequence diagram of FIG. 6.
  <S101>
 S101において、端末20は、端末20自身の動作に関する情報を取得する。S101で取得する情報は特定の情報に限られないが、例えば、下記の(1)~(4)のうちのいずれか1つ又はいずれか複数又は全てを取得する。S101で取得する情報は、その取得を行う時点での動作に関する情報である。
<S101>
In S101, the terminal 20 acquires information regarding its own operation. The information acquired in S101 is not limited to specific information, but for example, any one, any plurality, or all of the following (1) to (4) is acquired. The information acquired in S101 is information regarding the operation at the time of acquisition.
 なお、第1実施形態及び第2実施形態で登場する「送受信」とは、「送信又は受信」を意味する。つまり、「送受信」は、「送信のみ」、「受信のみ」、又は、「送信と受信の両方」である。 Note that "transmission and reception" that appears in the first embodiment and the second embodiment means "transmission or reception." That is, "transmission and reception" means "transmission only," "reception only," or "both transmission and reception."
 (1)送受信するトラフィックの特徴を示す情報(例:QoS情報、送受信データ量、送受信パケット周期、使用するアプリの情報)
 (2)ユーザによる端末20の省電力設定
 (3)端末20の移動に関する情報(例:速度、速さ)
 (4)端末20における電波伝搬に関する情報(例:基地局10と端末20との間のパスロス、基地局10と端末20との間の電波伝搬時間(遅延時間))
  <S102>
 S102において、端末20は、S101で取得した情報に基づいて、SSBの受信に関する希望値を決定し、当該希望値を含む端末支援情報を基地局10に送信する。端末支援情報はRRCにて送信することを想定しているが、RRC以外の信号(例:MAC CE、UCI)で端末支援情報を送信してもよい。なお、端末支援情報を「UE assistance information」又は「UEAsistanceInfo」と呼んでもよい。
(1) Information indicating the characteristics of the traffic to be sent and received (e.g. QoS information, amount of sent and received data, sent and received packet cycle, information on the application used)
(2) Power saving settings of the terminal 20 by the user (3) Information regarding movement of the terminal 20 (e.g. speed, speed)
(4) Information regarding radio wave propagation in the terminal 20 (e.g. path loss between the base station 10 and the terminal 20, radio wave propagation time (delay time) between the base station 10 and the terminal 20)
<S102>
In S102, the terminal 20 determines a desired value regarding SSB reception based on the information acquired in S101, and transmits terminal support information including the desired value to the base station 10. Although it is assumed that the terminal support information is transmitted using RRC, the terminal support information may be transmitted using signals other than RRC (eg, MAC CE, UCI). Note that the terminal assistance information may be referred to as "UE assistance information" or "UEAsistanceInfo."
 上記の希望値は、例えば、smtc periodicity、smtc2 periodicity、smtc2-LP periodicity、Measurement gap length、及び、Measurement gap repetition periodのうちのいずれか1つ又はいずれか複数又は全部である。また、希望値が、基地局10がSSBを送信する送信周期であってもよい。「基地局10がSSBを送信する送信周期」も、端末20にとっての「SSBの受信に関する希望値」の例である。 The above desired value is, for example, one or more of smtc periodicity, smtc2 periodicity, smtc2-LP periodicity, measurement gap length, and measurement gap repetition period, or all of them. Alternatively, the desired value may be the transmission cycle at which the base station 10 transmits the SSB. The “transmission cycle at which the base station 10 transmits SSB” is also an example of the “desired value regarding SSB reception” for the terminal 20.
 例えば、端末20は、自身がほとんど移動しない場合(つまり、速度が0か、閾値よりも小さい場合)、安定して自セル(あるいは現在のアクティブBWP)での通信を行うことができると判断し、希望値(例:smtc periodicity及びMeasurement gap repetition period)として大きな値を基地局10に通知する。 For example, when the terminal 20 hardly moves (that is, when the speed is 0 or smaller than a threshold), the terminal 20 determines that it can stably communicate in its own cell (or the current active BWP). , large values are notified to the base station 10 as desired values (eg, smtc periodicity and measurement gap repetition period).
 また、例えば、端末20は、自セルでの電波伝搬状況が悪化したと判断した場合には、希望値(例:smtc periodicity及びMeasurement gap repetition period)として、上記の値よりも小さな値を基地局10に通知する。 For example, if the terminal 20 determines that the radio wave propagation situation in its own cell has deteriorated, it sets values smaller than the above values to the base station as desired values (e.g. smtc periodicity and measurement gap repetition period). Notify 10.
 また、例えば、端末20は、自身のOSにより省電力モードに設定されている場合には、SSBの周期的な受信をできるだけ行わないようにするために、希望値(例:smtc periodicity及びMeasurement gap repetition period)として、大きな値を基地局10に通知する。 For example, if the terminal 20 is set to power saving mode by its own OS, the terminal 20 may set desired values (e.g. smtc periodicity and measurement gap) in order to avoid periodic reception of SSB as much as possible. A large value is notified to the base station 10 as a repetition period).
 なお、上述した希望値は、例えば、予め仕様書等で規定されている複数の値のうちのある値であってもよいし、仕様書等で規定されている値以外の値であってもよい。 Note that the desired value mentioned above may be, for example, one of a plurality of values predefined in the specifications, etc., or a value other than the value specified in the specifications, etc. good.
  <S103、S104>
 基地局10は、端末20から受信した希望値に基づいて、SSBの受信に関する設定値(パラメータと呼んでもよい)を変更するかどうかを判断する。SSBの受信に関する設定値とは、例えば、smtc periodicity、smtc2 periodicity、smtc2-LP periodicity、Measurement gap length、及び、Measurement gap repetition periodのうちのいずれか1つ又はいずれか複数又は全部である。また、SSBの受信に関する設定値が、基地局10がSSBを送信する送信周期であってもよい。
<S103, S104>
Based on the desired value received from the terminal 20, the base station 10 determines whether to change the setting value (also referred to as a parameter) regarding SSB reception. The setting value regarding SSB reception is, for example, any one, any plurality, or all of smtc periodicity, smtc2 periodicity, smtc2-LP periodicity, measurement gap length, and measurement gap repetition period. Further, the setting value regarding SSB reception may be a transmission cycle in which the base station 10 transmits the SSB.
 基地局10は、端末20から受信した希望値に基づいて、SSBの受信に関する設定値を変更する場合、S104において、変更後の「SSBの受信に関する設定値」を端末20に通知する。S104の通知は、RRC、MAC、DCIのうちのいずれを用いて行ってもよい。また、S104の通知は、特定の端末20に対する特定の設定値の通知であってもよいし、基地局10のセルにおける全端末20に対するブロードキャストの通知であってもよい。 When the base station 10 changes the setting value related to SSB reception based on the desired value received from the terminal 20, it notifies the terminal 20 of the changed "setting value related to SSB reception" in S104. The notification in S104 may be performed using any of RRC, MAC, and DCI. Further, the notification in S104 may be a notification of a specific setting value to a specific terminal 20, or may be a broadcast notification to all terminals 20 in the cell of the base station 10.
 例えば、基地局10は、端末20から、Measurement gap lengthとMeasurement gap repetition periodのうちのいずれか又は両方の希望値を受信した場合に、その希望値を変更後の設定値として、当該端末20に通知する。 For example, when the base station 10 receives a desired value for either or both of Measurement gap length and Measurement gap repetition period from the terminal 20, the base station 10 sets the desired value as the changed setting value and sends the desired value to the terminal 20. Notice.
 また、例えば、基地局10は、複数の端末20から、smtc periodicity(smtc2 periodicity、smtc2-LP periodicityでもよい)の異なる複数の希望値を受信した場合、複数の希望値のうちの最小値を、基地局10のセルにおける全体の端末20に適用する設定値としてセル内に通知する。 Further, for example, when the base station 10 receives a plurality of different desired values of smtc periodicity (smtc2 periodicity, smtc2 periodicity or smtc2-LP periodicity) from a plurality of terminals 20, the base station 10 selects the minimum value of the plurality of desired values, It is notified within the cell as a setting value that applies to all terminals 20 in the cell of the base station 10.
 また、基地局10は、smtc periodicityを変更した場合に、セル内で周期的に送信しているSSBの送信周期をsmtc periodicityに合わせて変更してもよい。例えば、変更前のSSBの周期が40msである状態において、smtc periodicityを320msに変更した場合に、基地局10は、SSBの周期を320msに変更してもよい。基地局10は、変更後のSSBの送信周期を、S104において、例えばssb-periodicityServingCellあるいはssb-periodicityServingCell-r18によりセル内の端末20に通知する。基地局10は、変更後の周期でSSBの送信を行う。 Furthermore, when changing the smtc periodicity, the base station 10 may change the transmission cycle of SSB that is periodically transmitted within the cell to match the smtc periodicity. For example, if the SSB period before change is 40 ms and the smtc periodicity is changed to 320 ms, the base station 10 may change the SSB period to 320 ms. The base station 10 notifies the terminal 20 within the cell of the changed SSB transmission cycle using, for example, ssb-periodicityServingCell or ssb-periodicityServingCell-r18 in S104. The base station 10 transmits SSB at the changed period.
 また、例えば、基地局10は、複数の端末20から、SSBの送信周期の異なる複数の希望値を受信した場合、複数の希望値のうちの最小値を、基地局10のセルにおける全体の端末20に適用する設定値としてセル内に通知することとしてもよい。例えば、変更前のSSBの周期が40msである状態において、SSBの送信周期の希望値の最小値が160msであった場合、基地局10は、SSBの周期を160msに変更し、セル内の端末20に通知する。基地局10は、変更後の周期でSSBの送信を行う。 Further, for example, when the base station 10 receives a plurality of desired values with different SSB transmission cycles from a plurality of terminals 20, the base station 10 assigns the minimum value of the plurality of desired values to all terminals in the cell of the base station 10. It is also possible to notify within the cell as a setting value applied to 20. For example, if the SSB period before the change is 40 ms and the minimum desired value of the SSB transmission period is 160 ms, the base station 10 changes the SSB period to 160 ms, and Notify 20. The base station 10 transmits SSB at the changed period.
 なお、smtc periodicityあるいはSSBの送信周期に関して、基地局10の自セル内の端末20が他セルからのSSBにより送受信トラフィックの要件を満足できる場合等においては、複数の希望値のうちの最小値を適用しない場合があってもよい。つまり、基地局10は、複数の端末20から受信した複数の希望値のうちの、最小値よりも大きな値を、変更後の設定値として端末20に通知してもよい。 Regarding the smtc periodicity or SSB transmission period, in cases where the terminal 20 in the own cell of the base station 10 can satisfy the transmission/reception traffic requirements by SSB from other cells, the minimum value among multiple desired values is set. There may be cases where it does not apply. That is, the base station 10 may notify the terminal 20 of a value larger than the minimum value among the plurality of desired values received from the plurality of terminals 20 as the changed setting value.
  <その他の例>
 図6のS102において、端末20は、「周期的なSSBを受信しない」ことを希望することを示す情報(これは希望値の例である)を端末支援情報に含めて通知してもよい。
<Other examples>
In S102 of FIG. 6, the terminal 20 may include information indicating that it wishes to "not receive periodic SSB" (this is an example of a desired value) in the terminal support information and notify it.
 前述したように、本実施の形態では、オンデマンドSSBを使用することが可能である。そのため、端末20は、例えば、あまり移動しないので周期的なSSB受信を必要ないと判断した場合に、「周期的なSSBを受信しない」ことを希望することを示す情報を基地局10に通知する。また、端末20は、他セルからの情報により同期等の制御を実行できるので、自セルの周期的SSB受信が不要と判断した場合に、「周期的なSSBを受信しない」ことを希望することを示す情報を基地局10に通知してもよい。 As mentioned above, in this embodiment, it is possible to use on-demand SSB. Therefore, for example, if the terminal 20 determines that it does not need periodic SSB reception because it does not move much, it notifies the base station 10 of information indicating that it wishes not to receive periodic SSB. . Furthermore, since the terminal 20 can perform control such as synchronization based on information from other cells, if the terminal 20 determines that the periodic SSB reception of its own cell is unnecessary, it can request to "not receive periodic SSB". The base station 10 may be notified of information indicating.
 端末20から、「周期的なSSBを受信しない」ことを希望することを示す情報を受信した基地局10は、例えば、「周期的なSSBを受信しない」ことを確認したことを示す通知をS104において端末20に通知する。この通知を受信した端末20は、例えば、基地局10から周期的に送信されるSSBを受信しない。端末20は、SSB受信の必要が生じた場合(例:基地局10との同期をとる場合)に、SSBの送信を基地局10に要求する。 The base station 10, which has received the information indicating that it wishes not to receive periodic SSB from the terminal 20, sends a notification indicating that it has confirmed that it does not wish to receive periodic SSB, for example, in step S104. The terminal 20 is notified at the time. The terminal 20 that has received this notification does not receive the SSB periodically transmitted from the base station 10, for example. When the terminal 20 needs to receive SSB (for example, when synchronizing with the base station 10), it requests the base station 10 to transmit the SSB.
 また、基地局10は、自セルにおける複数の端末20(例えば、全端末のうちのある閾値以上の割合の端末)から、「周期的なSSBを受信しない」ことを希望することを示す情報を受信した場合には、当該セルにおいて、周期的なSSB送信を停止してもよい。 Furthermore, the base station 10 receives information indicating that it wishes not to receive periodic SSB from a plurality of terminals 20 in its own cell (for example, a proportion of terminals equal to or higher than a certain threshold among all terminals). If received, periodic SSB transmission may be stopped in the cell.
 以上説明した第1実施形態により、端末20及び基地局10の省電力化を実現できる。 According to the first embodiment described above, power saving of the terminal 20 and the base station 10 can be realized.
 (第2実施形態)
 <概要>
 続いて、第2実施形態を説明する。第2実施形態では、基地局10と端末20との間でキャリアアグリゲーション(デュアルコネクティビティでもよい)による通信(アップリンク、ダウンリンク、又は、アップリンクとダウンリンクの両方)が行われることを想定する。端末20には、1つのPCell(PSCellでもよい)と、1つ以上のSCellが設定されている。
(Second embodiment)
<Summary>
Next, a second embodiment will be described. In the second embodiment, it is assumed that communication (uplink, downlink, or both uplink and downlink) is performed between the base station 10 and the terminal 20 by carrier aggregation (dual connectivity may be possible). . One PCell (or PSCell) and one or more SCells are configured in the terminal 20.
 従来技術では、基地局10は、タイマを用いて、端末20のトラフィックが所定時間だけ発生しないと判断した場合に、SCellを非有効化(Deactivate)する制御を行うことができる。これにより、基地局10と端末20において省電力化を図れる。 In the conventional technology, the base station 10 can use a timer to perform control to deactivate the SCell when it is determined that the traffic of the terminal 20 does not occur for a predetermined period of time. This allows the base station 10 and the terminal 20 to save power.
 一方で、端末20のトラフィックがあるにもかかわらず、省電力状態が続く場合には、ユーザ観点でスループットの低下や遅延といった問題が発生する可能性がある。従来技術では、SCellが非有効化された状態から、端末20のトラフィックの発生状況に応じて迅速にSCellを有効化(Activate)する制御はできなかった。また、従来技術では、タイマを用いて非有効化の判断を行うので、非有効化が遅れ、トラフィックが全くない状態でも非有効化がされない状態が生じるという課題もあった。 On the other hand, if the power saving state continues despite the traffic of the terminal 20, problems such as throughput reduction and delay may occur from the user's perspective. In the conventional technology, it is not possible to quickly activate the SCell from a deactivated state depending on the traffic generation status of the terminal 20. In addition, in the conventional technology, since a timer is used to determine whether to deactivate, deactivation is delayed, and there is a problem that deactivation may not be performed even when there is no traffic.
 上記の課題を解決するために、第2実施形態では、端末20が基地局10に対して端末20におけるトラフィックに関する予測値の情報を送信することで、基地局10が端末20のトラフィックのパターンを把握する。基地局10は、端末20のトラフィックのパターンに基づいて、SCellの有効化/非有効化の制御を迅速に行うことが可能となる。 In order to solve the above problem, in the second embodiment, the terminal 20 transmits information on the predicted value regarding the traffic at the terminal 20 to the base station 10, so that the base station 10 can predict the traffic pattern of the terminal 20. grasp. The base station 10 can quickly control activation/deactivation of the SCell based on the traffic pattern of the terminal 20.
 <第1実施形態の動作例1>
 第2実施形態の動作例1を図7のシーケンス図を参照して説明する。
<Operation example 1 of the first embodiment>
Operation example 1 of the second embodiment will be described with reference to the sequence diagram of FIG. 7.
  <S201>
 S201において、端末20における送受信トラフィックに関する情報を取得(算出)する。S201で取得する情報は特定の情報に限られないが、例えば、下記の(1)~(3)のうちのいずれか1つ又はいずれか2つ又は全てを取得する。
<S201>
In S201, information regarding transmission and reception traffic at the terminal 20 is acquired (calculated). The information acquired in S201 is not limited to specific information, but for example, any one, any two, or all of the following (1) to (3) are acquired.
 (1)端末20における送受信トラフィックの統計量
 (2)端末20においてユーザが使用するアプリケーションから予想される送受信トラフィックの量
 (3)端末20において使用されているOSから予想される送受信トラフィックの量
 上記の(1)における送受信トラフィックの統計量とは、例えば、過去のある時点から現在までの平均値であってもよいし、過去のある時点から現在までの送受信トラフィックの量の時系列の推移から推定される将来の送受信トラフィックの量(例:現在から将来のある時点までの時系列の送受信トラフィックの推定量)であってもよいし、これら両方(過去から現在までの平均値と、将来の推定値)であってもよいし、これら以外でもよい。
(1) Statistics of sent and received traffic on the terminal 20 (2) Amount of sent and received traffic expected from applications used by the user on the terminal 20 (3) Amount of sent and received traffic expected from the OS used on the terminal 20 The above The statistical amount of sent/received traffic in (1) may be, for example, the average value from a certain point in the past to the present, or it may be based on the chronological change in the amount of sent/received traffic from a certain point in the past to the present. It can be an estimated amount of future inbound and outbound traffic (e.g., an estimated amount of time-series inbound and outbound traffic from the present to a certain point in the future), or both (an average from past to present and an estimate of future inbound and outbound traffic). estimated value) or other values may be used.
 なお、第2実施形態における将来の推定量の算出は、端末20の制御部が実行するが、どのような手法を用いて算出してもよい。例えば、回帰分析を用いてもよいし、DNN(深層学習)を用いてもよい。 Although the calculation of the future estimated amount in the second embodiment is executed by the control unit of the terminal 20, any method may be used for calculation. For example, regression analysis or DNN (deep learning) may be used.
 上記(2)のアプリから予想される送受信トラフィックの量は、例えば、そのアプリの特性から推定される将来の送受信トラフィックの量(例:現在から将来のある時点までの時系列の送受信トラフィックの推定量)であってもよいし、これ以外の情報であってもよい。上記(3)についても同様である。なお、「将来の推定量」を予測値と呼んでもよい。 The amount of sent/received traffic expected from an app in (2) above is, for example, the amount of future sent/received traffic estimated from the characteristics of the app (e.g., estimated time-series sent/received traffic from the present to a certain point in the future). amount) or other information. The same applies to (3) above. Note that the "future estimated amount" may also be referred to as a predicted value.
 より具体的には、S201において、端末20は、例えば、端末20の送受信トラフィックの「平均データレート、平均パケットサイズ、平均パケット数、最大バーストサイズ」のうちのいずれか1つ又はいずれか複数又は全部についての、将来の推定量(例:現在から将来のある時点までの時系列の推定量)を取得する。上記の「平均」は、例えば、ある一定時間あたりの平均である。上記の「最大」は、例えば、ある一定時間における最大である。 More specifically, in S201, the terminal 20 determines, for example, any one or more of "average data rate, average packet size, average number of packets, maximum burst size" of the transmission/reception traffic of the terminal 20. Obtain future estimators (e.g., time series estimators from now to some point in the future) for all. The above-mentioned "average" is, for example, an average over a certain period of time. The above-mentioned "maximum" is, for example, the maximum in a certain period of time.
  <S202>
 S202において、端末20は、S201で取得した情報を含む端末支援情報を基地局10に送信する。端末支援情報はRRCにて送信することを想定しているが、RRC以外の信号(例:MAC CE、UCI)で端末支援情報を送信してもよい。なお、端末支援情報を「UE assistance information」又は「UEAsistanceInfo」と呼んでもよい。
<S202>
In S202, the terminal 20 transmits terminal support information including the information acquired in S201 to the base station 10. Although it is assumed that the terminal support information is transmitted using RRC, the terminal support information may be transmitted using signals other than RRC (eg, MAC CE, UCI). Note that the terminal assistance information may be referred to as "UE assistance information" or "UEAsistanceInfo."
  <S203、S204>
 S203において、基地局10は、S202において端末20から受信した情報に基づいて、端末20における送受信トラフィックが発生しない時刻(もしくは端末20における送受信トラフィック量が閾値よりも少ない時刻)を推測し、その時刻になったら(あるいはその時刻の直前に)、端末20に対してSCellを非有効化する指示を送信する(S204)。これにより、そのSCellでのデータ送受信が行われなくなるので、端末20と基地局10の両方の省電力化を図ることができる。また、従来よりも迅速にSCellを非有効化することができる。
<S203, S204>
In S203, the base station 10 estimates a time when no transmission/reception traffic occurs at the terminal 20 (or a time when the amount of transmission/reception traffic at the terminal 20 is less than a threshold value) based on the information received from the terminal 20 in S202, and determines the time when the transmission/reception traffic at the terminal 20 is less than the threshold. When (or just before that time), an instruction to deactivate the SCell is transmitted to the terminal 20 (S204). As a result, data transmission/reception is no longer performed in that SCell, so it is possible to save power in both the terminal 20 and the base station 10. Furthermore, the SCell can be deactivated more quickly than before.
 なお、基地局10は、自エリアにおける複数の端末20から受信する情報に基づき、ある時刻(及びその時刻以降のある時間長)において、エリア全体の送受信トラフィック量が閾値よりも小さくなると判断した場合に、SCellで使用する電波を停波してもよい。つまり、自エリアの全端末20におけるSCellを非有効化してもよい。 Note that when the base station 10 determines that the amount of transmitted and received traffic in the entire area will be smaller than a threshold value at a certain time (and a certain length of time after that time) based on information received from multiple terminals 20 in its own area. Additionally, the radio waves used in the SCell may be stopped. In other words, the SCell in all terminals 20 in the own area may be deactivated.
 また、端末20のSCellが非有効化になっている状態において、基地局10は、端末20から受信した情報に基づいて、端末20における送受信トラフィック量が閾値よりも大きくなる時刻を推測し、その時刻になったら(あるいはその時刻の直前に)、端末20に対してSCellを有効化する指示を送信する。これにより、SCellの有効化制御に関して、従来よりも遅延を少なくすることができる。 Furthermore, while the SCell of the terminal 20 is disabled, the base station 10 estimates the time when the amount of transmitted and received traffic at the terminal 20 becomes larger than the threshold based on the information received from the terminal 20, and When the time comes (or just before the time), an instruction to enable the SCell is transmitted to the terminal 20. As a result, it is possible to reduce the delay in SCell validation control compared to the conventional technology.
 <第2実施形態の動作例2>
 第2実施形態の動作例2を図8のシーケンス図を参照して説明する。
<Operation example 2 of the second embodiment>
Operation example 2 of the second embodiment will be described with reference to the sequence diagram of FIG. 8.
 端末20は、S301において、前述したS201で説明した情報を取得し、取得した情報を、Buffer Status Report MAC CEまたは新規MAC CEで基地局10に通知してもよい(S302)。 In S301, the terminal 20 may acquire the information described in S201 above, and may notify the base station 10 of the acquired information using Buffer Status Report MAC CE or new MAC CE (S302).
 また、S301において取得する送受信トラフィックに関する情報は、通知に使用するMAC CEに対応するLCG(Logical Channel Group)における送受信トラフィックの情報であってもよい。 Further, the information regarding the transmission/reception traffic acquired in S301 may be information on the transmission/reception traffic in the LCG (Logical Channel Group) corresponding to the MAC CE used for notification.
 S302で送信する情報の内容は、S202と同じであってもよく、例えば、端末20の送受信トラフィックの「平均データレート、平均パケットサイズ、平均パケット数、最大バーストサイズ」のうちのいずれか1つ又はいずれか複数又は全部についての、将来の推定量(例:現在から将来のある時点までの時系列の推定量)であってもよい。 The content of the information transmitted in S302 may be the same as that in S202, for example, any one of "average data rate, average packet size, average number of packets, maximum burst size" of the transmission/reception traffic of the terminal 20. Alternatively, it may be a future estimator (for example, a time-series estimator from the present to a certain point in the future) for any plurality or all of them.
 また、S302において、端末20は、Buffer Status Report MAC CEまたは新規MAC CEを用いて、端末20における現時点のULバッファの滞留量を通知してもよい。このULバッファの滞留量は、RLCバッファの滞留量でもよいし、PDCPバッファの滞留量でもよいし、端末20全体のULバッファの滞留量の合計値でもよい。 Furthermore, in S302, the terminal 20 may notify the current amount of UL buffer retention in the terminal 20 using the Buffer Status Report MAC CE or the new MAC CE. The UL buffer retention amount may be the RLC buffer retention amount, the PDCP buffer retention amount, or the total value of the UL buffer retention amount of the entire terminal 20.
 また、端末20は、現時点のULバッファの滞留量に代えて、又は、現時点のULバッファの滞留量に加えて、ULバッファの滞留量の将来の推定量(例:現在から将来のある時点までの時系列の推定量)を基地局10に通知してもよい。S303~S304の動作は、S203~S204の動作と同じである。 In addition, instead of or in addition to the current UL buffer retention amount, the terminal 20 also calculates an estimated future amount of the UL buffer retention amount (for example, from the present to a certain point in the future). may be notified to the base station 10. The operations in S303 to S304 are the same as the operations in S203 to S204.
 以上説明した第2実施形態により、端末20及び基地局10の省電力化を実現できる。 According to the second embodiment described above, power saving of the terminal 20 and the base station 10 can be realized.
 (その他の例)
 第1実施形態で説明した希望値を通知する動作を端末20がサポートしていることを示す能力情報(UE Capability)が、端末20から基地局10に通知された場合にのみ、第1実施形態の動作が実施されることとしてもよい。
(Other examples)
Only when the terminal 20 notifies the base station 10 of capability information (UE Capability) indicating that the terminal 20 supports the operation of notifying the desired value described in the first embodiment, the first embodiment The following operations may be performed.
 第2実施形態で説明したトラフィックに関する情報を通知する動作を端末20がサポートしていることを示す能力情報(UE Capability)が、端末20から基地局10に通知された場合にのみ、第2実施形態の動作が実施されることとしてもよい。 Only when the terminal 20 notifies the base station 10 of capability information (UE Capability) indicating that the terminal 20 supports the operation of notifying information regarding traffic described in the second embodiment, the second embodiment The operation of the form may be performed.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。
(Device configuration)
Next, an example of the functional configuration of the base station 10 and terminal 20 that execute the processes and operations described above will be described.
 <基地局10>
 図9は、基地局10の機能構成の一例を示す図である。図9に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図9に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、送信部110と、受信部120とをまとめて通信部と称してもよい。
<Base station 10>
FIG. 9 is a diagram showing an example of the functional configuration of the base station 10. As shown in FIG. As shown in FIG. 9, base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 9 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. Furthermore, the transmitting section 110 and the receiving section 120 may be collectively referred to as a communication section.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、PDCCHによるDCI、PDSCHによるデータ等を送信する機能を有する。 The transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI using PDCCH, data using PDSCH, etc. to the terminal 20.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を設定部130が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。 The setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
 制御部140は、送信部110を介して端末20のDL受信あるいはUL送信のスケジューリングを行う。また、制御部140は、第1実施形態及び第2実施形態で説明した基地局における判断(端末20から受信した情報に基づく設定値/指示の決定等)を実行する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110を送信機と呼び、受信部120を受信機と呼んでもよい。 The control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. Further, the control unit 140 executes the determination at the base station described in the first embodiment and the second embodiment (determination of setting values/instructions based on information received from the terminal 20, etc.). A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the transmitting section 110 may be called a transmitter, and the receiving section 120 may be called a receiver.
 <端末20>
 図10は、端末20の機能構成の一例を示す図である。図10に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図10に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と、受信部220をまとめて通信部と称してもよい。
<Terminal 20>
FIG. 10 is a diagram illustrating an example of the functional configuration of the terminal 20. As shown in FIG. 10, the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240. The functional configuration shown in FIG. 10 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. The transmitting section 210 and the receiving section 220 may be collectively referred to as a communication section.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号、PDCCHによるDCI、PDSCHによるデータ等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信することとしてもよい。 The transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, etc. transmitted from the base station 10. Further, for example, the transmitter 210 transmits a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH (PSDCH) to another terminal 20 as D2D communication. physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc., and the receiving unit 220 may receive the PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20.
 設定部230は、受信部220により基地局10又は他の端末から受信した各種の設定情報を設定部230が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。 The setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device included in the setting unit 230, and reads the information from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance.
 制御部240は、端末20の制御を行う。また、制御部240は、第1実施形態において、端末20における送受信トラフィックの特徴を示す情報、端末20の省電力設定、端末20の移動に関する情報、端末20における電波伝搬に関する情報のうちの少なくともいずれか1つに基づいて希望値を取得(算出)することができる。また、制御部240は、第2実施形態において、端末20における過去のトラフィック量、端末20において使用されるアプリケーション、端末20において使用されるOSのうちの少なくともいずれか1つに基づいて、端末20のトラフィック量の予測値を取得(算出)する。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210を送信機と呼び、受信部220を受信機と呼んでもよい。 The control unit 240 controls the terminal 20. Further, in the first embodiment, the control unit 240 includes at least one of information indicating the characteristics of transmission and reception traffic in the terminal 20, power saving settings of the terminal 20, information regarding movement of the terminal 20, and information regarding radio wave propagation in the terminal 20. The desired value can be obtained (calculated) based on one of the following. Furthermore, in the second embodiment, the control unit 240 controls the terminal 20 based on at least one of the past traffic volume in the terminal 20, the application used in the terminal 20, and the OS used in the terminal 20. Obtain (calculate) the predicted value of traffic volume. A functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220. Further, the transmitter 210 may be called a transmitter, and the receiver 220 may be called a receiver.
 本実施の形態により、少なくとも、下記の付記1と付記2のそれぞれに記載の端末、基地局、及び通信方法が提供される。 According to this embodiment, at least the terminal, base station, and communication method described in Appendix 1 and Appendix 2 below are provided.
 <付記1>
(付記項1)
 同期信号を周期的に送信する基地局に対して、前記同期信号の受信に関する希望値を送信する送信部と、
 前記希望値に基づいて決定された設定値を、前記基地局から受信する受信部と
 を備える端末。
(付記項2)
 前記希望値は、前記同期信号の受信周期、測定ギャップの周期、及び、周期的な同期信号を受信しないことを示す情報、のうちの少なくともいずれか1つを含む
 付記項1に記載の端末。
(付記項3)
 前記端末におけるトラフィックの特徴を示す情報、前記端末の省電力設定、前記端末の移動に関する情報、及び、前記端末における電波伝搬に関する情報、のうちの少なくともいずれか1つに基づいて、前記希望値を取得する制御部
 を更に備える付記項1又は2に記載の端末。
(付記項4)
 同期信号を周期的に送信する送信部と、
 前記同期信号の受信に関する希望値を端末から受信する受信部と、を備え、
 前記送信部は、前記希望値に基づいて決定された設定値を前記端末に送信する
 基地局。
(付記項5)
 同期信号を周期的に送信する基地局に対して、前記同期信号の受信に関する希望値を送信するステップと、
 前記希望値に基づいて決定された設定値を、前記基地局から受信するステップと
 を備える、端末が実行する通信方法。
<Additional note 1>
(Additional note 1)
a transmitter that transmits a desired value regarding reception of the synchronization signal to a base station that periodically transmits the synchronization signal;
A terminal comprising: a receiving unit that receives a setting value determined based on the desired value from the base station.
(Additional note 2)
The terminal according to supplementary note 1, wherein the desired value includes at least one of a reception period of the synchronization signal, a measurement gap period, and information indicating not to receive a periodic synchronization signal.
(Additional note 3)
The desired value is determined based on at least one of information indicating characteristics of traffic in the terminal, power saving settings of the terminal, information regarding movement of the terminal, and information regarding radio wave propagation in the terminal. The terminal according to Supplementary Note 1 or 2, further comprising: a control unit for acquiring information.
(Additional note 4)
a transmitter that periodically transmits a synchronization signal;
a receiving unit that receives a desired value regarding reception of the synchronization signal from a terminal,
The transmitting unit transmits a setting value determined based on the desired value to the terminal. A base station.
(Additional note 5)
transmitting a desired value regarding reception of the synchronization signal to a base station that periodically transmits the synchronization signal;
A communication method performed by a terminal, comprising: receiving a setting value determined based on the desired value from the base station.
 付記項1~5のいずれによっても、無線通信システムにおいて、端末と基地局の少なくともいずれかの省電力化を実現できる。特に付記項2によれば希望値として適切な値を通知できる。付記項3によれば、適切な希望値を取得できる。 According to any of Supplementary Notes 1 to 5, it is possible to realize power saving of at least one of a terminal and a base station in a wireless communication system. In particular, according to Additional Note 2, an appropriate value can be notified as the desired value. According to Additional Note 3, an appropriate desired value can be obtained.
 <付記2>
(付記項1)
 トラフィック量の予測値を基地局に送信する送信部と、
 前記予測値に基づいて決定された指示である、セルを非有効化する指示又はセルを有効化する指示を、前記基地局から受信する受信部と
 を備える端末。
(付記項2)
 前記予測値は、平均データレート、平均パケットサイズ、平均パケット数、最大バーストサイズのうちの少なくともいずれか1つを含む
 付記項1に記載の端末。
(付記項3)
 前記端末における過去のトラフィック量、前記端末において使用されるアプリケーション、及び、前記端末において使用されるOS、のうちの少なくともいずれか1つに基づいて、前記予測値を取得する制御部
 を更に備える付記項1又は2に記載の端末。
(付記項4)
 トラフィック量の予測値を端末から受信する受信部と、
 前記予測値に基づいて決定された指示である、セルを非有効化する指示又はセルを有効化する指示を、前記端末に送信する送信部と
 を備える基地局。
(付記項5)
 トラフィック量の予測値を基地局に送信するステップと、
 前記予測値に基づいて決定された指示である、セルを非有効化する指示又はセルを有効化する指示を、前記基地局から受信するステップと
 を備える、端末が実行する通信方法。
<Additional note 2>
(Additional note 1)
a transmitting unit that transmits a predicted value of traffic volume to a base station;
a receiving unit that receives from the base station an instruction to disable a cell or an instruction to enable a cell, which is an instruction determined based on the predicted value.
(Additional note 2)
The terminal according to supplementary note 1, wherein the predicted value includes at least one of an average data rate, an average packet size, an average number of packets, and a maximum burst size.
(Additional note 3)
Supplementary note further comprising: a control unit that obtains the predicted value based on at least one of a past traffic amount in the terminal, an application used in the terminal, and an OS used in the terminal. Terminal according to item 1 or 2.
(Additional note 4)
a receiving unit that receives a predicted value of traffic volume from the terminal;
and a transmitting unit that transmits to the terminal an instruction to disable a cell or an instruction to enable a cell, which is an instruction determined based on the predicted value.
(Additional note 5)
transmitting a predicted value of traffic volume to a base station;
A communication method performed by a terminal, comprising: receiving from the base station an instruction to deactivate a cell or an instruction to activate a cell, which is an instruction determined based on the predicted value.
 付記項1~5のいずれによっても、無線通信システムにおいて、端末と基地局の少なくともいずれかの省電力化を実現できる。特に付記項2によれば予測値として適切な値を通知できる。付記項3によれば、適切な予測値を取得できる。 According to any of Supplementary Notes 1 to 5, it is possible to realize power saving of at least one of a terminal and a base station in a wireless communication system. In particular, according to Additional Note 2, an appropriate value can be notified as a predicted value. According to Additional Note 3, an appropriate predicted value can be obtained.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図9及び図10)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 9 and 10) used to explain the above embodiments show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 11 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure. The base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured with a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, the above-described control unit 140, control unit 240, etc. may be implemented by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図9に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図10に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 140 of the base station 10 shown in FIG. 9 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 10 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured. The storage device 1002 may be called a register, cache, main memory, or the like. The storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg card, stick, key drive), floppy disk, magnetic strip, etc. The above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission path interface, etc. may be realized by the communication device 1004. The transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device. The base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 また、端末20あるいは基地局10を車両2001に備えてもよい。図12に車両2001の構成例を示す。図12に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態に係る端末20あるいは基地局10は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 Additionally, the terminal 20 or the base station 10 may be provided in the vehicle 2001. FIG. 12 shows an example of the configuration of the vehicle 2001. As shown in FIG. 12, a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. The terminal 20 or base station 10 according to each aspect/embodiment described in this disclosure may be applied to a communication device mounted on the vehicle 2001, for example, may be applied to the communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal acquired by vehicle speed sensor 2024, acceleration signal acquired by acceleration sensor 2025, accelerator pedal depression amount signal acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like. The information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。通信モジュール2013は、基地局10又は端末20であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like. Communication module 2013 may be base station 10 or terminal 20.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. The information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary information on the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The classification of items in the above explanation is not essential to the present invention, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this specification, specific operations performed by the base station 10 may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station 10, various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to). Although the case where there is one network node other than the base station 10 is illustrated above, the other network node may be a combination of multiple other network nodes (for example, MME and S-GW). .
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)," "wireless base station," "base station," "fixed station," "NodeB," "eNodeB (eNB)," and "gNodeB ( gNB)”, “access point”, “transmission point”, “reception point”, “transmission/reception point”, “cell”, “sector”, Terms such as "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet  of  Things)機器であってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft. , including, but not limited to, airplanes, rockets, artificial satellites, drones (registered trademarks), multicopters, quadcopters, balloons, and objects mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good. Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a terminal. For example, a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.) Each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions that the base station 10 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。 Similarly, a terminal in the present disclosure may be replaced by a base station. In this case, a configuration may be adopted in which the base station has the functions that the above-described terminal has.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (e.g., accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" mean that resolving, selecting, choosing, establishing, comparing, etc. are considered to be "judgement" and "decision." may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。また、1スロットが単位時間と呼ばれてもよい。単位時間は、ニューメロロジに応じてセル毎に異なっていてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. It's okay. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe. Furthermore, one slot may be called a unit time. The unit time may be different for each cell depending on the numerology.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on newerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control section 2012 Information service section 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)

Claims (5)

  1.  トラフィック量の予測値を基地局に送信する送信部と、
     前記予測値に基づいて決定された指示である、セルを非有効化する指示又はセルを有効化する指示を、前記基地局から受信する受信部と
     を備える端末。
    a transmitting unit that transmits a predicted value of traffic volume to a base station;
    a receiving unit that receives from the base station an instruction to disable a cell or an instruction to enable a cell, which is an instruction determined based on the predicted value.
  2.  前記予測値は、平均データレート、平均パケットサイズ、平均パケット数、最大バーストサイズのうちの少なくともいずれか1つを含む
     請求項1に記載の端末。
    The terminal according to claim 1, wherein the predicted value includes at least one of an average data rate, an average packet size, an average number of packets, and a maximum burst size.
  3.  前記端末における過去のトラフィック量、前記端末において使用されるアプリケーション、及び、前記端末において使用されるOS、のうちの少なくともいずれか1つに基づいて、前記予測値を取得する制御部
     を更に備える請求項1に記載の端末。
    Claim further comprising: a control unit that acquires the predicted value based on at least one of a past traffic volume in the terminal, an application used in the terminal, and an OS used in the terminal. Terminal according to item 1.
  4.  トラフィック量の予測値を端末から受信する受信部と、
     前記予測値に基づいて決定された指示である、セルを非有効化する指示又はセルを有効化する指示を、前記端末に送信する送信部と
     を備える基地局。
    a receiving unit that receives a predicted value of traffic volume from the terminal;
    and a transmitting unit that transmits to the terminal an instruction to disable a cell or an instruction to enable a cell, which is an instruction determined based on the predicted value.
  5.  トラフィック量の予測値を基地局に送信するステップと、
     前記予測値に基づいて決定された指示である、セルを非有効化する指示又はセルを有効化する指示を、前記基地局から受信するステップと
     を備える、端末が実行する通信方法。
     
     
    transmitting a predicted value of traffic volume to a base station;
    A communication method performed by a terminal, comprising: receiving from the base station an instruction to deactivate a cell or an instruction to activate a cell, which is an instruction determined based on the predicted value.

PCT/JP2022/030504 2022-08-09 2022-08-09 Terminal, base station, and communication method WO2024034034A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030504 WO2024034034A1 (en) 2022-08-09 2022-08-09 Terminal, base station, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030504 WO2024034034A1 (en) 2022-08-09 2022-08-09 Terminal, base station, and communication method

Publications (1)

Publication Number Publication Date
WO2024034034A1 true WO2024034034A1 (en) 2024-02-15

Family

ID=89851279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030504 WO2024034034A1 (en) 2022-08-09 2022-08-09 Terminal, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2024034034A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005055A (en) * 2011-06-13 2013-01-07 Ricoh Co Ltd Communication device, communication method, and communication program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005055A (en) * 2011-06-13 2013-01-07 Ricoh Co Ltd Communication device, communication method, and communication program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Other aspects related to network energy saving", 3GPP DRAFT; R1-2204883, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Electronic meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052144100 *
NEC: "Discussion on network energy saving techniques", 3GPP DRAFT; R1-2203936, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153270 *

Similar Documents

Publication Publication Date Title
WO2024034034A1 (en) Terminal, base station, and communication method
WO2024034033A1 (en) Terminal, base station, and communication method
WO2023199454A1 (en) Terminal, base station, and communication method
WO2023199453A1 (en) Terminal, base station, and communication method
WO2024034137A1 (en) Terminal, base station, and communication method
WO2023199392A1 (en) Terminal, base station, and communication method
WO2024004109A1 (en) Terminal and communication method
WO2024034084A1 (en) Terminal, base station, and communication method
WO2023209906A1 (en) Terminal and base station
WO2023209908A1 (en) Terminal and base station
WO2023209907A1 (en) Terminal and base station
WO2023203623A1 (en) Terminal, base station, and communication method
WO2024057463A1 (en) Terminal and communication method
WO2023199452A1 (en) Terminal, base station, and communication method
WO2023199451A1 (en) Terminal, base station, and communication method
WO2024013903A1 (en) Terminal, base station, and communication method
WO2023199528A1 (en) Terminal, base station, and communication method
WO2024013909A1 (en) Terminal and communication method
WO2024013908A1 (en) Terminal, base station, and communication method
WO2024009510A1 (en) Terminal, base station, and communication method
WO2024062578A1 (en) Terminal and communication method
WO2023199526A1 (en) Terminal, base station, and communication method
WO2024034101A1 (en) Terminal and communication method
WO2023203735A1 (en) Terminal and communication method
WO2023248399A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954953

Country of ref document: EP

Kind code of ref document: A1