WO2023199454A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2023199454A1
WO2023199454A1 PCT/JP2022/017758 JP2022017758W WO2023199454A1 WO 2023199454 A1 WO2023199454 A1 WO 2023199454A1 JP 2022017758 W JP2022017758 W JP 2022017758W WO 2023199454 A1 WO2023199454 A1 WO 2023199454A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
period
ssb
measurement
Prior art date
Application number
PCT/JP2022/017758
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/017758 priority Critical patent/WO2023199454A1/en
Publication of WO2023199454A1 publication Critical patent/WO2023199454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a terminal, a base station, and a communication method in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • the terminal may not be able to properly measure the downlink signal.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technology for a terminal to appropriately measure downlink signals periodically transmitted from a base station in a wireless communication system. shall be.
  • a receiving unit receives from a base station setting information of a measurement gap with a cycle longer than a predetermined cycle; and a control unit that measures a downlink signal using the measurement gap.
  • a technique for a terminal to appropriately measure a downlink signal periodically transmitted from a base station in a wireless communication system.
  • FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an SSB transmission cycle.
  • FIG. 3 is a diagram illustrating a setting example of an SMTC window.
  • FIG. 3 is a diagram illustrating an example of measurement gap settings.
  • FIG. 2 is a diagram for explaining an overview of the first embodiment.
  • FIG. 7 is a diagram for explaining an overview of a second embodiment.
  • FIG. 2 is a diagram for explaining an overview of an operation using a timer.
  • FIG. 3 is a diagram for explaining an example of an operation using a timer.
  • FIG. 3 is a diagram for explaining an outline of an operation using a pause period.
  • FIG. 3 is a diagram for explaining an example of an operation using a pause period.
  • FIG. 2 is a diagram for explaining an overview of an operation using a timer.
  • FIG. 3 is a diagram for explaining an example of an operation using a timer.
  • FIG. 3 is a diagram for explaining an outline of an operation using a pause period.
  • FIG. 3 is a diagram for explaining an example of an operation using a pause period.
  • 1 is a diagram showing a configuration example of a base station 10.
  • FIG. 2 is a diagram showing a configuration example of a terminal 20.
  • FIG. FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention.
  • 1 is a diagram showing an example of the configuration of a vehicle.
  • Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technology is, for example, existing LTE or existing NR, but is not limited to existing LTE or NR.
  • the SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical broadcast channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc.
  • NR- the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc.
  • NR- the signal is used for NR, it is not necessarily specified as "NR-".
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
  • FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system according to an embodiment of the present invention.
  • a wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too.
  • Base station 10 transmits a synchronization signal and system information to terminal 20.
  • the synchronization signals are, for example, NR-PSS and NR-SSS.
  • System information is transmitted, for example, on NR-PBCH, and is also referred to as broadcast information.
  • the synchronization signal and system information may be called SSB (SS/PBCH block). As shown in FIG.
  • the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell) and a primary cell (PCell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary SCG cell (PSCell) of another base station 10 using DC (Dual Connectivity).
  • SCell secondary cell
  • PCell primary cell
  • DC Direct Connectivity
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Furthermore, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the channel quality based on the reception results of the reference signals.
  • a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
  • M2M Machine-to-Machine
  • the terminal 20 is capable of performing carrier aggregation in which multiple cells (multiple CCs (Component Carriers)) are bundled to communicate with the base station 10.
  • multiple CCs Component Carriers
  • carrier aggregation one PCell (Primary cell) and one or more SCells (Secondary cells) are used.
  • SCells Secondary cells
  • PUCCH-SCell with PUCCH may be used.
  • FIG. 2 is a diagram for explaining an example (2) of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 shows an example of the configuration of a wireless communication system when dual connectivity (DC) is implemented.
  • a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
  • Base station 10A and base station 10B are each connected to a core network.
  • Terminal 20 can communicate with both base station 10A and base station 10B.
  • the cell group provided by the base station 10A, which is an MN, is called an MCG (Master Cell Group), and the cell group provided by the base station 10B, which is an SN, is called an SCG (Secondary Cell Group).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the MCG is composed of one PCell and one or more SCells
  • the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
  • the processing operations in this embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
  • Base station and terminal techniques to improve network energy savings from both base station transmission and reception perspectives are discussed.
  • base stations may use support/feedback and assistance information from terminals to provide network energy savings in one or more of the time, frequency, space, and power domains.
  • periodic downlink (DL) transmission such as SSB constantly consumes power of the base station 10. Therefore, in order to reduce power consumption of the base station 10, it is important to reduce SSB transmission occasions.
  • the base station 10 may transmit SSB at a longer cycle than in the conventional technology.
  • the terminal 20 performs radio resource management (RRM) by measuring the reception quality or reception power of its own cell or another cell by receiving the SSB.
  • RRM radio resource management
  • the terminal 20 may not be able to properly measure the SSB.
  • SSB is an abbreviation for Synchronization Signal Block. Further, SSB may be called Synchronization/PBCH block or SS/PBCH block.
  • NR SSB is basically transmitted periodically within a time resource of the first half or the second half of one frame (10 ms).
  • FIG. 3 is a diagram showing a case where four SSBs are transmitted per cycle in a certain cell (cell A) with a cycle of Xms.
  • One SSB is, for example, four symbols long, and each SSB starts at a defined position.
  • One SSB includes a PBCH and synchronization signals (PSS, SSS).
  • the terminal 20 When the terminal 20 performs a handover to another cell, when adding a new CC during CA, etc., the terminal 20 needs to maintain communication quality while maintaining the communication quality of its own cell or another cell. Measure reception quality (e.g. RSRP, RSRQ). Control related to such measurements is called RRM. Moreover, such a measurement may be called an RRM measurement. RRM measurement is performed using SSB or CSI-RS, and below, measurement using SSB will be explained as an example. As will be described later, in this embodiment, it is assumed that SSB is transmitted at a longer period than in the past.
  • Measure reception quality e.g. RSRP, RSRQ
  • RRM Radio Resource Management Function
  • RRM measurement is performed using SSB or CSI-RS, and below, measurement using SSB will be explained as an example. As will be described later, in this embodiment, it is assumed that SSB is transmitted at a longer period than in the past.
  • the NR is equipped with a function of notifying the terminal 20 from the base station 10 of information indicating the cycle and time width (window) in which the terminal 20 measures SSB.
  • This window is called the SMTC window (SSB based RRM Measurement Timing Configuration window).
  • the terminal 20 When the terminal 20 is notified of the SMTC window from the base station 10, it detects and measures SSB within the window and reports the results to the base station 10.
  • the time length of the SMTC window is set from the base station 10 to the terminal 20 according to the duration in the SSB-MTC.
  • the value of the time length is one of ⁇ sf1, sf2, sf3, sf4, sf5 ⁇ . That is, it is any one of 1 ms, 2 ms, 3 ms, 4 ms, and 5 ms.
  • the periodicity of the SMTC window is set from the base station 10 to the terminal 20 by periodicityAndOffset in the SSB-MTC.
  • the value of the period is one of ⁇ sf5, sf10, sf20, sf40, sf80, sf160 ⁇ . That is, it is any one of 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms.
  • the frequency range for measurement is set from the base station 10 to the terminal 20 by ssbFrequency in MeasObjectNR.
  • the terminal 20 does not assume SSB transmission in subframes outside the SMTC window.
  • Figure 4 shows an example of SMTC window settings.
  • the SMTC window is set according to the SSB transmission cycle and time length (time width).
  • the SSB transmission cycle and measurement cycle do not have to be the same.
  • the SMTC window cycle is longer than the SSB transmission cycle.
  • ⁇ Measurement gap in RRM measurement> When the terminal 20 measures another cell with a frequency different from that of its own cell, or another cell with a RAT different from that of its own cell, it stops transmission and reception in the current cell (its own cell), and measures other cells with a different RAT than its own cell. (different cell) starts RRM measurement. When the RRM measurement is completed, the terminal 20 resumes transmission and reception in its own cell.
  • the time from when transmission/reception is stopped until transmission/reception is resumed is defined as the measurement gap.
  • Measurement gap length is set by mgl in GapConfig in MeasGapConfig.
  • the value of the MGL is one of ⁇ ms1dot5, ms3, ms3dot5, ms4, ms5dot5, ms6 ⁇ . That is, it is any one of 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, and 6ms.
  • Measurement gap repetition period is set by mgrp in GapConfig in MeasGapConfig.
  • the value of the MGRP is one of ⁇ ms20, ms40, ms80, ms160 ⁇ . That is, it is any one of 20ms, 40ms, 80ms, and 160ms.
  • the measurement gap repetition period may also be referred to as measurement gap periodicity.
  • Figure 5 shows an example of measurement gap settings in NR.
  • the portion shown by (1) in FIG. 5(3) is shown in (1) in the upper row of FIG.
  • it is shown that measurement using the SMTC window is possible in 3 ms out of 4 ms excluding the time for RF retuning.
  • FIG. 5(2) shows an example of measurement gap settings in NR.
  • the terminal 20 transmits capability information to the base station 10.
  • This capability information is, for example, information indicating that measurement using a long-cycle SMTC window is supported.
  • the base station 10 transmits configuration information (or instruction information) to the terminal 20.
  • This setting information is, for example, setting information of the SMTC window.
  • the terminal 20 executes a measurement operation using the SMTC window based on the configuration information received from the base station 10.
  • Terminal 20 transmits the measurement results to base station 10.
  • Base station 10 receives the measurement results.
  • the terminal 20 transmits capability information to the base station 10.
  • This capability information is, for example, information indicating that measurement using a long cycle measurement gap is supported.
  • the base station 10 transmits configuration information (or instruction information) to the terminal 20.
  • This setting information is, for example, measurement gap setting information.
  • the terminal 20 performs a measurement operation using the measurement gap based on the configuration information received from the base station 10.
  • Terminal 20 transmits the measurement results to base station 10.
  • Base station 10 receives the measurement results.
  • the base station 10 can notify the terminal 20 of a cycle (which may be referred to as an "extended SSB cycle") that is longer than the predetermined cycle (for example, 160 ms) in the conventional technology as the SSB cycle to be transmitted. .
  • a cycle which may be referred to as an "extended SSB cycle”
  • the predetermined cycle for example, 160 ms
  • the base station 10 notifies (sets) the SSB period to the terminal 20 using ssb-periodicityServingCell in ServingCellConfigCommon. Furthermore, the base station 10 may notify (set) the extended SSB period to the terminal 20 using a new parameter (eg, ssb-periodicityServingCell-r18) in ServingCellConfigCommon.
  • a new parameter eg, ssb-periodicityServingCell-r18
  • a value selected from ⁇ ms5, ms10, ms20, ms40, ms80, ms160, ms320, ms640 ⁇ is set to ssb-periodicityServingCell or ssb-periodicityServingCell-r18.
  • the value range ⁇ ms5, ms10, ms20, ms40, ms80, ms160, ms320, ms640 ⁇ is an example.
  • a value other than these may be notified from the base station 10 to the terminal 20.
  • the terminal 20 that receives the SSB cycle through ssb-periodicityServingCell or ssb-periodicityServingCell-r18 assumes that SSB is being transmitted from the base station 10 in that cycle.
  • the terminal 20 assumes that the SSB cycle is a specific value (e.g. 5ms). You may.
  • the terminal 20 supporting the extended SSB cycle may assume that a half frame having SS/PBCH blocks occurs at a cycle of Y frames (Y frames).
  • Y frames Y frames
  • the value of Y may be, for example, a fixed value defined in the specifications.
  • the value of Y may be 4, 8, 16, 32, or 64. However, these values are examples, and the value of Y may be a value other than these values. Further, the value of Y may be different for each cell (each base station).
  • the terminal 20 that receives ssb-periodicityServingCell-r18 with a period longer than a predetermined value (e.g., the existing value of 160ms) monitors SSB with a period longer than the predetermined value based on the setting information. It can be performed.
  • a predetermined value e.g., the existing value of 160ms
  • the base station 10 can operate assuming that SSB will be monitored at a period set by itself. For example, the base station 10 can determine that the terminal 20 can receive signals or data other than SSB because the terminal 20 does not monitor SSB at a timing that does not correspond to the SSB transmission timing.
  • first embodiment and the second embodiment will be described below. Multiple options in the first embodiment can be implemented in combination. Multiple options in the second embodiment can be implemented in combination. Further, each option of the first embodiment can be implemented in combination with any option of the second embodiment.
  • the base station 10 can notify the terminal 20 of a period (also referred to as a "long period") that is longer than a predetermined period (eg, 160 ms) in the conventional technology as the period of the SMTC window.
  • a period also referred to as a "long period”
  • a predetermined period eg, 160 ms
  • the base station 10 notifies (sets) the period of the SMTC window to the terminal 20 using a new parameter in SSB-MTC (eg periodicityAndOffset-r18).
  • a new parameter in SSB-MTC eg periodicityAndOffset-r18.
  • a value selected from ⁇ sf5, sf10, sf20, sf40, sf80, sf160, sf320, sf640 ⁇ is set in periodicityAndOffset-r18.
  • the value range ⁇ sf5, sf10, sf20, sf40, sf80, sf160, sf320, sf640 ⁇ is an example.
  • a value other than these may be notified from the base station 10 to the terminal 20.
  • the long period may be applied only to a specific terminal 20.
  • the specific terminal 20 is, for example, a terminal 20 that has reported specific capability information (UE capability) to the base station 10.
  • Specific capability information includes, for example, capability information indicating that long-cycle SSB is supported, capability information indicating that long-cycle SSB measurement is supported, and capability information indicating that long-cycle measurement gaps are supported. It is any one of the indicated ability information, a combination of any two, or a combination of all three.
  • Option 2 In option 2 of the first embodiment, the terminal 20 performs operations using a timer. The basic operation will be explained with reference to FIG.
  • a certain timer value is set (or notified) from the base station 10 to the terminal 20.
  • the terminal 20 executes an operation related to the SMTC window based on the state (in operation, expired, etc.) of a timer that has the timer value as an initial value.
  • the unit of the timer value may be any one of ms, symbol, slot, subframe, and frame. Further, units other than these may be used as the unit of the timer value.
  • the setting/notification in S301 of FIG. 8 may be performed by any one of RRC, MAC CE, and DCI. Further, the setting/notification in S301 of FIG. 8 may be performed by a combination of any two or three of RRC, MAC CE, and DCI.
  • the base station 10 sets a plurality of timer values in RRC and notifies the terminal 20 of information specifying any one of the plurality of timer values in DCI. .
  • the terminal 20 uses the timer value instructed by the DCI.
  • the base station 10 may set a timer value to the terminal 20 using RRC or MAC CE, and may instruct the terminal 20 to activate a timer having the timer value as an initial value using MAC CE or DCI. After that, when the timer expires and there is a restart instruction, the timer may be started from the initial value.
  • notifying the terminal 20 from the base station 10 of a timer value using MAC CE or DCI may be an instruction to start a timer using that value as an initial value.
  • Option 2-1 and Option 2-2 will be explained as specific operation examples of the terminal 20 in Option 2.
  • Option 2-1 the terminal 20 does not assume that an SSB will be transmitted from the base station 10 while the timer is running. Even if the base station 10 has set the SMTC window for RRM measurement, the terminal 20 does not assume that SSB will be transmitted from the base station 10 while the timer is running. The base station 10 may not transmit the SSB while the timer is operating.
  • the terminal 20 When the timer expires, the terminal 20 performs RRM measurement during the SMTC window set by the base station 10.
  • the settings of the SMTC window (duration and periodicity) here may be settings based on the conventional technology, or may be settings for a long period as described in Option 1.
  • the terminal 20 starts the timer by receiving a timer start instruction from the base station 10, and at a time point indicated by B, the timer expires.
  • the terminal 20 assumes that no SSB is transmitted from the base station 10.
  • the terminal 20 does not need to perform the SSB monitoring operation.
  • the base station 10 does not need to transmit SSB during this period.
  • the terminal 20 performs RRM measurement in the set SMTC window.
  • Base station 10 receives measurement results from terminal 20.
  • the operation of the terminal 20/base station 10 during the timer operation described above and the operation of the terminal 20/base station 10 after the timer expires may be reversed.
  • the terminal 20 performs RRM measurement in the configured SMTC window in the period A to B and the period C to D, and in the period B to C, the terminal 20 performs RRM measurement in the configured SMTC window.
  • SSB is not sent.
  • Option 2-2 the terminal 20 performs the following during the SMTC window set by duration and periodicityAndOffset-r18 (long period described in option 1) in SSB-MTC while the timer is running. Perform RRM measurements.
  • the terminal 20 When the timer expires, the terminal 20 performs RRM measurement during the period of the SMTC window set by the base station 10 based on the conventional technology.
  • the terminal 20 starts the timer by receiving a timer start instruction from the base station 10, and at a time point indicated by B, the timer expires.
  • the terminal 20 performs RRM measurement in a long-period SMTC window.
  • Base station 10 receives measurement results from terminal 20. The same applies to the periods C to D.
  • the terminal 20 performs RRM measurement in the SMTC window set according to the parameters of the conventional technology.
  • Base station 10 receives measurement results from terminal 20.
  • the terminal 20/base station 10 performs RRM measurement in the SMTC window set with the parameters of the conventional technology in the period A to B and the period C to D, and in the period B to C. Then, the terminal 20 performs RRM measurement in a long-period SMTC window.
  • Option 3 In option 3 of the first embodiment, the base station 10 sets or notifies the terminal 20 of a pause period, and the terminal 20 performs operations using the pause period.
  • the rest period may be replaced with any one of a suspension period, a discontinuation period, a pause period, and a pause period. The basic operation will be explained with reference to FIG.
  • the base station 10 sets (or notifies) the terminal 20 of a certain idle period value.
  • the terminal 20 performs operations related to SSB monitoring based on the dormant period.
  • the unit of the pause period may be any one of ms, symbol, slot, subframe, and frame. Further, units other than these may be used as the unit of the pause period.
  • the setting/notification in S401 of FIG. 10 may be performed by any one of RRC, MAC CE, and DCI. Further, the setting/notification in S401 of FIG. 10 may be performed by a combination of any two or three of RRC, MAC CE, and DCI.
  • the base station 10 sets multiple dormant periods for the terminal 20 using RRC, and provides information specifying any one of the multiple dormant periods using MAC CE or DCI. Notify. Terminal 20 uses the instructed rest period.
  • the base station 10 may set a dormant period for the terminal 20 using RRC or MAC CE, and may instruct the terminal 20 to start the dormant period using MAC CE or DCI.
  • notifying the terminal 20 of the suspension period from the base station 10 using MAC CE or DCI may be an instruction to start the suspension period.
  • Option 3-1 and Option 3-2 will be explained as specific operation examples of the terminal 20 in Option 3.
  • Option 3-1 the terminal 20 does not assume that SSB will be transmitted from the base station 10 during the idle period. That is, the terminal 20 does not assume (expect) to monitor or receive SSB during the idle period. Even if the terminal 20 is configured with an SMTC window for RRM measurement from the base station 10, the terminal 20 does not assume that SSB will be transmitted from the base station 10 during the idle period. Do not take measurements.
  • the base station 10 does not transmit SSB during the idle period. However, the base station 10 may transmit SSB during the idle period.
  • the terminal 20 After the pause period ends, the terminal 20 performs RRM measurement during the SMTC window set by the base station 10.
  • the settings of the SMTC window (duration and periodicity) here may be settings based on the conventional technology, or may be settings for a long period as described in Option 1.
  • the terminal 20 starts the idle period by receiving an instruction to start the idle period from the base station 10, and at the time indicated by B the terminal 20 ends the idle period.
  • the terminal 20 assumes that no SSB is transmitted from the base station 10.
  • the terminal 20 does not need to perform the SSB monitoring operation.
  • the base station 10 does not need to transmit SSB during this period.
  • the terminal 20 assumes that SSB is being transmitted from the base station 10 at a set period, and monitors the SSB.
  • Option 3-2 the terminal 20 performs RRM measurement during the SMTC window set by the duration and periodicityAndOffset-r18 (long period described in option 1) in the SSB-MTC during the idle period.
  • the terminal 20 When the idle period ends, the terminal 20 performs RRM measurement during the SMTC window period based on the conventional technology set by the base station 10.
  • the terminal 20 receives an instruction to start the idle period from the base station 10, so that the idle period starts, and at the time indicated by B, the idle period ends.
  • the terminal 20 performs RRM measurement in a long-period SMTC window.
  • Base station 10 receives measurement results from terminal 20. The same applies to the periods C to D.
  • the terminal 20 performs RRM measurement in the SMTC window set according to the parameters of the conventional technology.
  • Base station 10 receives measurement results from terminal 20.
  • the terminal 20 when there is a period in which the base station 10 does not transmit SSB, or when the base station 10 transmits SSB at a cycle longer than a predetermined cycle, the terminal 20 can appropriately perform RRM. It becomes possible to carry out measurements.
  • the base station 10 can notify the terminal 20 of a period (also referred to as a "long period") that is longer than a predetermined period (eg, 160 ms) in the conventional technology as the period of the measurement gap.
  • a period also referred to as a "long period”
  • a predetermined period eg, 160 ms
  • the base station 10 notifies (sets) the measurement gap cycle to the terminal 20 using a new parameter (eg mgrp-r18) in GapConfig in MeasGapConfig.
  • a new parameter eg mgrp-r18
  • a value selected from ⁇ ms20, ms40, ms80, ms160, ms320, ms640 ⁇ is set to mgrp-r18.
  • the value range ⁇ ms20, ms40, ms80, ms160, ms320, ms640 ⁇ is an example.
  • a value other than these may be notified from the base station 10 to the terminal 20.
  • the long-period measurement gap may be applied only to a specific terminal 20.
  • the specific terminal 20 is, for example, a terminal 20 that has reported specific capability information (UE capability) to the base station 10.
  • Specific capability information includes, for example, capability information indicating that long-cycle SSB is supported, capability information indicating that long-cycle SSB measurement is supported, and capability information indicating that long-cycle measurement gaps are supported. It is any one of the indicated ability information, a combination of any two, or a combination of all three.
  • Option 2 the terminal 20 performs operations using a timer. The basic operation will be explained with reference to FIG.
  • a certain timer value is set (or notified) from the base station 10 to the terminal 20.
  • the terminal 20 performs an operation related to the measurement gap based on the state of the timer (in operation, expired, etc.) having the timer value as an initial value.
  • the unit of the timer value may be any one of ms, symbol, slot, subframe, and frame. Further, units other than these may be used as the unit of the timer value.
  • the setting/notification in S501 of FIG. 12 may be performed by any one of RRC, MAC CE, and DCI. Further, the setting/notification in S501 of FIG. 12 may be performed by a combination of any two or three of RRC, MAC CE, and DCI.
  • the base station 10 sets a plurality of timer values in RRC and notifies the terminal 20 of information specifying any one of the plurality of timer values in DCI. .
  • the terminal 20 uses the timer value instructed by the DCI.
  • the base station 10 may set a timer value to the terminal 20 using RRC or MAC CE, and may instruct the terminal 20 to activate a timer having the timer value as an initial value using MAC CE or DCI. After that, when the timer expires and there is a restart instruction, the timer may be started from the initial value.
  • notifying the terminal 20 from the base station 10 of a timer value using MAC CE or DCI may be an instruction to start a timer using that value as an initial value.
  • Option 2-1 and Option 2-2 will be explained as specific operation examples of the terminal 20 in Option 2.
  • Option 2-1 the terminal 20 does not consider the measurement gap while the timer is running. That is, the terminal 20 assumes that the SSB to be measured in the measurement gap is not transmitted, and does not perform measurement using the measurement gap. Even if a measurement gap for RRM measurement is set by the base station 10, the terminal 20 does not perform measurement using the measurement gap while the timer is running. The base station 10 does not assume that the measurement result using the measurement gap will be received from the terminal 20 while the timer is in operation.
  • the terminal 20 When the timer expires, the terminal 20 performs RRM measurement (eg, measuring SSB of other cells) during the measurement gap period set by the base station 10.
  • the measurement gap setting here (setting by MeasGapConfig) may be a setting based on the conventional technology, or may be a long-cycle setting as described in option 1.
  • the terminal 20 starts the timer by receiving a timer start instruction from the base station 10, and at a time point indicated by B, the timer expires. During the period A to B, the terminal 20 does not consider the measurement gap. The same applies to the periods C to D. The base station 10 does not assume that it will receive measurement results in the measurement gap.
  • the terminal 20 performs RRM measurement with the set measurement gap.
  • Base station 10 receives measurement results from terminal 20.
  • the operation of the terminal 20/base station 10 during the timer operation described above and the operation of the terminal 20/base station 10 after the timer expires may be reversed.
  • the terminal 20 performs RRM measurement at the set measurement gap in the period A to B and the period C to D, and in the period B to C, the terminal 20 performs RRM measurement in the period B to C. , does not consider the measurement gap.
  • Option 2-2 the terminal 20 determines the measurement gap set in mgrp-r18 (long period described in option 1) and other existing parameters in GapConfig in MeasGapConfig during the period when the timer is running. is applied to perform RRM measurement.
  • the terminal 20 When the timer expires, the terminal 20 performs RRM measurement by applying the measurement gap set by the base station 10 and based on the conventional technology.
  • the terminal 20 starts the timer by receiving a timer start instruction from the base station 10, and at a time point indicated by B, the timer expires. During the period A to B, the terminal 20 performs RRM measurement with a long period measurement gap. Base station 10 receives measurement results from terminal 20. The same applies to the periods C to D.
  • the terminal 20 performs RRM measurement by applying the measurement gap set by the parameters of the conventional technology.
  • Base station 10 receives measurement results from terminal 20.
  • the terminal 20/base station 10 performs RRM measurement at the measurement gap set with the parameters of the prior art in the period A to B and the period C to D, and in the period B to C. Then, the terminal 20 performs RRM measurement with a long period measurement gap.
  • the base station 10 sets or notifies the terminal 20 of a pause period, and the terminal 20 performs operations using the pause period.
  • the rest period may be replaced with any one of a suspension period, a discontinuation period, a pause period, and a pause period. The basic operation will be explained with reference to FIG.
  • the base station 10 sets (or notifies) the terminal 20 of a certain idle period value.
  • the terminal 20 performs operations related to SSB monitoring based on the dormant period.
  • the unit of the pause period may be any one of ms, symbol, slot, subframe, and frame. Further, units other than these may be used as the unit of the pause period.
  • the setting/notification in S601 of FIG. 14 may be performed by any one of RRC, MAC CE, and DCI. Further, the setting/notification in S601 of FIG. 14 may be performed by a combination of any two or three of RRC, MAC CE, and DCI.
  • the base station 10 sets multiple dormant periods for the terminal 20 using RRC, and provides information specifying any one of the multiple dormant periods using MAC CE or DCI. Notify. Terminal 20 uses the instructed rest period.
  • the base station 10 may set a dormant period for the terminal 20 using RRC or MAC CE, and may instruct the terminal 20 to start the dormant period using MAC CE or DCI.
  • the base station 10 may notify the terminal 20 of the value of the dormant period using MAC CE or DCI as an instruction to start the dormant period.
  • Option 3-1 and Option 3-2 will be explained as specific operation examples of the terminal 20 in Option 3.
  • Option 3-1 the terminal 20 does not assume that SSB will be transmitted from the base station 10 during the idle period. In other words, the terminal 20 does not consider the measurement gap. Further, the terminal 20 assumes that the SSB to be measured in the measurement gap is not transmitted during the idle period, and does not perform measurement using the measurement gap. Even if a measurement gap for RRM measurement is set by the base station 10, the terminal 20 performs measurement using the measurement gap without considering the measurement gap while the timer is running. do not have. The base station 10 does not assume that the measurement result using the measurement gap will be received from the terminal 20 while the timer is in operation.
  • the terminal 20 After the idle period ends, the terminal 20 performs RRM measurement (eg, measuring SSB of other cells) during the measurement gap period set by the base station 10.
  • the measurement gap setting here (setting by MeasGapConfig) may be a setting based on the conventional technology, or may be a long-cycle setting as described in option 1.
  • the terminal 20 starts the idle period by receiving an instruction to start the idle period from the base station 10, and at the time indicated by B the terminal 20 ends the idle period. During the period A to B, the terminal 20 does not consider the measurement gap. The same applies to the periods C to D.
  • the terminal 20 performs RRM measurement with the set measurement gap.
  • Base station 10 receives measurement results from terminal 20.
  • Option 3-2 the terminal 20 performs RRM measurement during the idle period by applying the measurement gap configured with mgrp-r18 (long period described in option 1) and other existing parameters in GapConfig in MeasGapConfig. Execute.
  • the terminal 20 When the idle period ends, the terminal 20 performs RRM measurement by applying the measurement gap set by the base station 10 and based on the conventional technology.
  • the terminal 20 receives an instruction to start the idle period from the base station 10, so that the idle period starts, and at the time indicated by B, the idle period ends.
  • the terminal 20 performs RRM measurement with a long period measurement gap.
  • Base station 10 receives measurement results from terminal 20. The same applies to the periods C to D.
  • the terminal 20 performs RRM measurement by applying the measurement gap set by the parameters of the conventional technology.
  • Base station 10 receives measurement results from terminal 20.
  • the terminal 20 when there is a period in which the adjacent base station 10 does not transmit SSB, or when the adjacent base station 10 transmits SSB at a cycle longer than a predetermined cycle, the terminal 20 , it becomes possible to appropriately perform RRM measurement.
  • the transmission time length per SSB cycle (or the number of SSBs per cycle) can be improved compared to the conventional technology.
  • Shorter transmission time lengths (fewer SSBs than prior art) may be used.
  • an SSB with a shorter transmission time length than the conventional technique or a smaller number of SSBs than the conventional technique per cycle will be referred to as a shortened SSB.
  • the number of SSBs per period of the shortened SSB may be one.
  • the time length per period of the shortened SSB may be smaller than 4 symbols.
  • a value shorter than a predetermined value (eg, 1 ms) may be used as the duration value for setting the time length of the SMTC window.
  • a value shorter than a predetermined value (eg, 1.5 ms) may be used as the value of MGL for setting the time length of the measurement gap.
  • Variation 2 will be described as an example applicable to any of the first to second embodiments and variation 1.
  • the RRC setting from the base station 10 to the terminal 20 determines which operation the terminal 20 performs among the plurality of operations (each option, etc.) described in the first to second embodiments and variation 1. It may be determined by a notification/instruction of MAC CE, DCI, UCI, etc., or it may be determined according to the capability of the terminal 20.
  • capability information (UE capability) shown in (1) to (3) below may be defined and reported from the terminal 20 to the base station 10.
  • Capability information indicating whether to support extended SSB cycles (SSB cycles longer than conventional technology) (2) Whether to support SSB measurement in the long-cycle SMTC window described in the first embodiment (3) Capability information indicating whether to support the long-period measurement gap described in the second embodiment (Other)
  • the SSB-MTC shown in this specification may be replaced with any one, a combination of any two, or a combination of three of SSB-MTC1, SSB-MTC2, and SSB-MTC3.
  • FIG. 16 is a diagram showing an example of the functional configuration of the base station 10.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 16 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 110 and the receiving section 120 may be collectively referred to as a communication section.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals.
  • the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI using PDCCH, data using PDSCH, etc. to the terminal 20.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
  • the control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. Further, the control unit 140 includes a function to perform LBT. Further, the control unit 140 includes a timer function. A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the transmitting section 110 may be called a transmitter, and the receiving section 120 may be called a receiver.
  • FIG. 17 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 17 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 210 and the receiving section 220 may be collectively referred to as a communication section.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, etc. transmitted from the base station 10.
  • the transmitting unit 210 transmits a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH to another terminal 20 as D2D communication.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Shared Channel
  • the receiving unit 220 may receive the PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20. Further, the transmitter 210 includes the antenna port described in this embodiment.
  • the setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device included in the setting unit 230, and reads the information from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the control unit 240 controls the terminal 20. Further, the control unit 240 includes a timer function. Further, the control unit 240 includes a measurement function. A functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220. Further, the transmitter 210 may be called a transmitter, and the receiver 220 may be called a receiver.
  • At least the terminal, base station, and communication method described in Appendix 1 and Appendix 2 below are provided.
  • Additional note 1 a receiving unit that receives setting information for a measurement window with a cycle longer than a predetermined cycle from a base station; A terminal comprising: a control unit that measures a downlink signal using the measurement window.
  • a terminal comprising: a control unit that measures a downlink signal using the measurement window.
  • a receiving unit that receives a timer value from a base station; and a control unit that assumes that a downlink signal to be measured using a measurement window is not being transmitted while the timer is in operation after the timer having the timer value is started.
  • a receiving unit that receives a timer value from a base station; A control unit that measures a downlink signal using a measurement window with a cycle longer than a predetermined cycle while the timer is in operation after the timer having the timer value starts.
  • a receiving unit that receives an idle period value from a base station; and a control unit that assumes that a downlink signal that is a target of measurement using a measurement window is not being transmitted during the idle period.
  • a transmitter that transmits setting information of a measurement window with a cycle longer than a predetermined cycle to the terminal; a receiving unit that receives a result of a downlink signal measurement performed by the terminal using the measurement window.
  • Receive setting information for a measurement window with a cycle longer than a predetermined cycle from the base station A communication method performed by a terminal, comprising: measuring a downlink signal using the measurement window.
  • Supplementary Notes 1 to 6 provides a technique for a terminal to appropriately measure a downlink signal periodically transmitted from a base station in a wireless communication system.
  • Additional note 2 a receiving unit that receives setting information of a measurement gap with a cycle longer than a predetermined cycle from a base station; A terminal comprising: a control unit that measures a downlink signal using the measurement gap.
  • a terminal comprising: a control unit that measures a downlink signal using the measurement gap.
  • a receiving unit that receives a timer value from a base station; and a control unit that does not perform measurement of a downlink signal using a measurement gap while the timer is in operation after the timer having the timer value is started.
  • a receiving unit that receives a timer value from a base station; A control unit that measures a downlink signal using a measurement gap with a cycle longer than a predetermined cycle while the timer is in operation after the timer having the timer value starts.
  • a receiving unit that receives an idle period value from a base station; and a control unit that does not perform downlink signal measurement using a measurement gap during the idle period.
  • a transmitting unit that transmits setting information of a measurement gap with a cycle longer than a predetermined cycle to the terminal; a receiving unit that receives a result of a downlink signal measurement performed by the terminal using the measurement gap.
  • Receive configuration information for a measurement gap with a cycle longer than a predetermined cycle from a base station A communication method performed by a terminal, comprising: measuring a downlink signal using the measurement gap.
  • Supplementary Notes 1 to 6 provides a technique for a terminal to appropriately measure a downlink signal periodically transmitted from a base station in a wireless communication system.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 18 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • the control unit 140 of the base station 10 shown in FIG. 16 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 17 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • FIG. 19 shows an example of the configuration of vehicle 2001.
  • a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the functions of the terminal 20 may be installed in the communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal acquired by the sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FRA Fluture Radio Access
  • NR new Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Universal Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 UWB (Ultra-WideBand
  • Bluetooth registered trademark
  • a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, receiving device, communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a terminal.
  • a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • a terminal in the present disclosure may be replaced by a base station.
  • a configuration may be adopted in which the base station has the functions that the above-described terminal has.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” mean that resolving, selecting, choosing, establishing, comparing, etc. are considered to be “judgement” and “decision.” may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • one slot may be called a unit time. The unit time may be different for each cell depending on the numerology.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Abstract

This terminal comprises a reception unit for receiving from a base station, setting information about a measurement gap having a period that is longer than a prescribed period, and a control unit for using the measurement gap to measure a downlink signal.

Description

端末、基地局、及び通信方法Terminal, base station, and communication method
 本発明は、無線通信システムにおける端末、基地局、及び通信方法に関する。 The present invention relates to a terminal, a base station, and a communication method in a wireless communication system.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。 The requirements for NR (New Radio) (also referred to as "5G"), which is the successor system to LTE (Long Term Evolution), are a large capacity system, high data transmission speed, low latency, and the simultaneous use of a large number of terminals. Techniques that satisfy connectivity, low cost, power saving, etc. are being considered (for example, Non-Patent Document 1).
 NRリリース18では、基地局のエネルギー節約仕様について検討されている。詳細については、今後の検討課題となっている。 In NR Release 18, energy saving specifications for base stations are being considered. The details are a subject for future consideration.
 カーボンニュートラルとSDGsを達成するために、基地局の消費電力を節約することの重要性が高まっている。しかし、従来技術では、基地局の消費電力を節約する標準化された適切な手法は存在しない。 In order to achieve carbon neutrality and SDGs, it is becoming increasingly important to save power consumption of base stations. However, in the prior art, there is no standardized and appropriate method for saving power consumption of base stations.
 基地局の消費電力を節約するために、SSB等の周期的に送信するダウンリンク信号の送信周期を長くすることが考えられる。しかし、周期的に送信するダウンリンク信号の送信周期を長くした場合、端末がダウンリンク信号の測定を適切に実行できない可能性がある。 In order to save power consumption of the base station, it is conceivable to lengthen the transmission period of periodically transmitted downlink signals such as SSB. However, if the transmission period of the periodically transmitted downlink signal is lengthened, the terminal may not be able to properly measure the downlink signal.
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、端末が、基地局から周期的に送信されるダウンリンク信号の測定を適切に行うための技術を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a technology for a terminal to appropriately measure downlink signals periodically transmitted from a base station in a wireless communication system. shall be.
 開示の技術によれば、所定の周期よりも長い周期の測定ギャップの設定情報を基地局から受信する受信部と、
 前記測定ギャップを用いて、ダウンリンク信号を測定する制御部と
 を備える端末が提供される。
According to the disclosed technology, a receiving unit receives from a base station setting information of a measurement gap with a cycle longer than a predetermined cycle;
and a control unit that measures a downlink signal using the measurement gap.
 開示の技術によれば、無線通信システムにおいて、無線通信システムにおいて、端末が、基地局から周期的に送信されるダウンリンク信号の測定を適切に行うための技術が提供される。 According to the disclosed technique, a technique is provided for a terminal to appropriately measure a downlink signal periodically transmitted from a base station in a wireless communication system.
本発明の実施の形態における無線通信システムを説明するための図である。FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention. 本発明の実施の形態における無線通信システムを説明するための図である。FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention. SSBの送信周期を説明するための図である。FIG. 2 is a diagram for explaining an SSB transmission cycle. SMTC windowの設定例を示す図である。FIG. 3 is a diagram illustrating a setting example of an SMTC window. measurement gapの設定例を示す図である。FIG. 3 is a diagram illustrating an example of measurement gap settings. 第1実施形態の概要を説明するための図である。FIG. 2 is a diagram for explaining an overview of the first embodiment. 第2実施形態の概要を説明するための図である。FIG. 7 is a diagram for explaining an overview of a second embodiment. タイマを用いた動作の概要を説明するための図である。FIG. 2 is a diagram for explaining an overview of an operation using a timer. タイマを用いた動作の例を説明するための図である。FIG. 3 is a diagram for explaining an example of an operation using a timer. 休止期間を用いた動作の概要を説明するための図である。FIG. 3 is a diagram for explaining an outline of an operation using a pause period. 休止期間を用いた動作の例を説明するための図である。FIG. 3 is a diagram for explaining an example of an operation using a pause period. タイマを用いた動作の概要を説明するための図である。FIG. 2 is a diagram for explaining an overview of an operation using a timer. タイマを用いた動作の例を説明するための図である。FIG. 3 is a diagram for explaining an example of an operation using a timer. 休止期間を用いた動作の概要を説明するための図である。FIG. 3 is a diagram for explaining an outline of an operation using a pause period. 休止期間を用いた動作の例を説明するための図である。FIG. 3 is a diagram for explaining an example of an operation using a pause period. 基地局10の構成例を示す図である。1 is a diagram showing a configuration example of a base station 10. FIG. 端末20の構成例を示す図である。2 is a diagram showing a configuration example of a terminal 20. FIG. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention. 車両の構成例を示す図である。1 is a diagram showing an example of the configuration of a vehicle.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEあるいは既存のNRであるが、既存のLTE、NRに限られない。 Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, existing LTE or existing NR, but is not limited to existing LTE or NR.
 また、以下で説明する本発明の実施の形態では、既存のLTEあるいはNRで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 In addition, in the embodiment of the present invention described below, the SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), and PRACH used in existing LTE or NR will be used. (Physical random access channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), PUCCH (Physical Uplink Control Channel), PUSCH (Physical Uplink Shared Channel), etc. are used. This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Also, the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc. However, even if the signal is used for NR, it is not necessarily specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 Furthermore, in the embodiment of the present invention, "configure" the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
 図1は、本発明の実施の形態における無線通信システムの構成例(1)を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。 FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system according to an embodiment of the present invention. A wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。同期信号及びシステム情報は、SSB(SS/PBCH block)と呼ばれてもよい。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセルグループセル(PSCell:Primary SCG Cell)を介して通信を行ってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too. Base station 10 transmits a synchronization signal and system information to terminal 20. The synchronization signals are, for example, NR-PSS and NR-SSS. System information is transmitted, for example, on NR-PBCH, and is also referred to as broadcast information. The synchronization signal and system information may be called SSB (SS/PBCH block). As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell) and a primary cell (PCell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary SCG cell (PSCell) of another base station 10 using DC (Dual Connectivity).
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。また、端末20は、基地局10から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。 The terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Furthermore, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the channel quality based on the reception results of the reference signals.
 端末20は、複数のセル(複数のCC(Component Carrier, コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(Primary cell, プライマリセル)と1以上のSCell(Secondary cell, セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。 The terminal 20 is capable of performing carrier aggregation in which multiple cells (multiple CCs (Component Carriers)) are bundled to communicate with the base station 10. In carrier aggregation, one PCell (Primary cell) and one or more SCells (Secondary cells) are used. Also, a PUCCH-SCell with PUCCH may be used.
 図2は、本発明の実施の形態における無線通信システムの例(2)を説明するための図である。図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。 FIG. 2 is a diagram for explaining an example (2) of a wireless communication system according to an embodiment of the present invention. FIG. 2 shows an example of the configuration of a wireless communication system when dual connectivity (DC) is implemented. As shown in FIG. 2, a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided. Base station 10A and base station 10B are each connected to a core network. Terminal 20 can communicate with both base station 10A and base station 10B.
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCG Cell)と1以上のSCellから構成される。 The cell group provided by the base station 10A, which is an MN, is called an MCG (Master Cell Group), and the cell group provided by the base station 10B, which is an SN, is called an SCG (Secondary Cell Group). Furthermore, in the DC, the MCG is composed of one PCell and one or more SCells, and the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
 本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。 The processing operations in this embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
 (省電力化について)
 次に、NRリリース18における基地局の省電力化の議論状況について説明する。基地局の送信と受信の両方の観点からネットワークのエネルギー節約を改善するための基地局および端末の手法について検討されている。例えば、基地局が、端末からのサポート/フィードバック、および支援情報を使用して、時間、周波数、空間、および電力ドメインのうちの1つ以上のネットワークエネルギーの節約を行うことが検討されている。
(About power saving)
Next, the status of discussions regarding power saving of base stations in NR Release 18 will be explained. Base station and terminal techniques to improve network energy savings from both base station transmission and reception perspectives are discussed. For example, it is contemplated that base stations may use support/feedback and assistance information from terminals to provide network energy savings in one or more of the time, frequency, space, and power domains.
 カーボンニュートラルとSDGsを達成するために、基地局の消費電力を節約することの重要性が高まっている。しかし、従来は、基地局の消費電力を節約する適切な手法は提案されていない。 In order to achieve carbon neutrality and SDGs, it is becoming increasingly important to save power consumption of base stations. However, conventionally, no suitable method for saving power consumption of a base station has been proposed.
 特に、無線通信システムにおいて、SSB等の周期的なダウンリンク(DL)送信は、基地局10の電力をコンスタントに消費する。そのため、基地局10の消費電力を削減するために、SSBの送信機会(transmission occasion)を削減することが重要である。 In particular, in a wireless communication system, periodic downlink (DL) transmission such as SSB constantly consumes power of the base station 10. Therefore, in order to reduce power consumption of the base station 10, it is important to reduce SSB transmission occasions.
 SSBの送信機会を削減するために、基地局10は、従来技術よりも長い周期でSSBを送信することが考えられる。 In order to reduce SSB transmission opportunities, the base station 10 may transmit SSB at a longer cycle than in the conventional technology.
 端末20は、SSBを受信することで、自セルあるいは他セルの受信品質あるいは受信電力を測定することにより、無線リソース制御(RRM:radio Resource Management)を行っている。無線リソース制御により、端末20はモビリティ性能を担保している。 The terminal 20 performs radio resource management (RRM) by measuring the reception quality or reception power of its own cell or another cell by receiving the SSB. The terminal 20 ensures mobility performance through radio resource control.
 しかし、上記のように、基地局10が長い周期でSSBを送信する場合、端末20は、SSBの測定を適切に行うことができなくなる可能性がある。 However, as described above, when the base station 10 transmits SSB in a long cycle, the terminal 20 may not be able to properly measure the SSB.
 なお、SSBは、Synchronization Signal Block(同期信号ブロック)の略称である。また、SSBをSynchronization/PBCH blockあるいはSS/PBCH blockと呼ぶ場合もある。 Note that SSB is an abbreviation for Synchronization Signal Block. Further, SSB may be called Synchronization/PBCH block or SS/PBCH block.
 以降の説明では、上記の課題を解決する仕組みを、SSBを例に取り上げて説明するが、SSBは、基地局10が周期的に送信するDL信号(DL情報と呼んでもよい)の例であり、SSB以外のDL信号に対して以下で説明する技術が適用されてもよい。 In the following explanation, a mechanism for solving the above problem will be explained using SSB as an example. , the technology described below may be applied to DL signals other than SSB.
 (SSBを用いたRRMに関わる基本的な動作について)
 まず、SSBを用いたRRMに関する基本的な動作を説明する。NRのSSBは、基本的に、1フレーム(10ms)の前半又は後半の半分(half frame:半フレーム)の時間リソース内で周期的に送信される。図3は、あるセル(セルA)において、周期Xmsで、1周期あたり4個のSSBが送信される場合を示す図である。SSB1個は、例えば4シンボル長であり、個々のSSBは、規定された位置から開始する。1個のSSBには、PBCH、及び同期信号(PSS,SSS)が含まれる。
(About basic operations related to RRM using SSB)
First, the basic operation regarding RRM using SSB will be explained. NR SSB is basically transmitted periodically within a time resource of the first half or the second half of one frame (10 ms). FIG. 3 is a diagram showing a case where four SSBs are transmitted per cycle in a certain cell (cell A) with a cycle of Xms. One SSB is, for example, four symbols long, and each SSB starts at a defined position. One SSB includes a PBCH and synchronization signals (PSS, SSS).
 端末20が他セルにハンドオーバする場合、CA時にCCを新たに追加する場合などにおいて、端末20は、通信品質を維持しながら、これらの処理を適切に実施するために、自セルあるいは他セルの受信品質(例:RSRP、RSRQ)を測定する。このような測定に係る制御はRRMと呼ばれる。また、このような測定をRRM測定と呼んでもよい。RRM測定は、SSBあるいはCSI-RSにより行われるが、以下では、SSBを用いた測定を例にとって説明する。後述するように、本実施の形態では、従来よりも長い周期でSSBが送信されることが想定される。 When the terminal 20 performs a handover to another cell, when adding a new CC during CA, etc., the terminal 20 needs to maintain communication quality while maintaining the communication quality of its own cell or another cell. Measure reception quality (e.g. RSRP, RSRQ). Control related to such measurements is called RRM. Moreover, such a measurement may be called an RRM measurement. RRM measurement is performed using SSB or CSI-RS, and below, measurement using SSB will be explained as an example. As will be described later, in this embodiment, it is assumed that SSB is transmitted at a longer period than in the past.
 <SMTC window)
 NRでは、端末20がSSBの測定を行う周期及び時間幅(window)等を示す情報を基地局10から端末20へ通知する機能が備えられている。このwindowは、SMTC window(SSB based RRM Measurement Timing Configuration window)と呼ばれる。端末20は、SMTC windowを基地局10から通知された場合、window内でSSBの検出及び測定を実施し、その結果を基地局10に報告する。
<SMTC window)
The NR is equipped with a function of notifying the terminal 20 from the base station 10 of information indicating the cycle and time width (window) in which the terminal 20 measures SSB. This window is called the SMTC window (SSB based RRM Measurement Timing Configuration window). When the terminal 20 is notified of the SMTC window from the base station 10, it detects and measures SSB within the window and reports the results to the base station 10.
 SMTC windowの時間長は、SSB-MTCの中のdurationにより基地局10から端末20に設定される。従来技術では、当該時間長の値は、{sf1, sf2, sf3, sf4, sf5}のうちのいずれかである。すなわち、1ms、2ms、3ms、4ms、5msのうちのいずれかである。 The time length of the SMTC window is set from the base station 10 to the terminal 20 according to the duration in the SSB-MTC. In the prior art, the value of the time length is one of {sf1, sf2, sf3, sf4, sf5}. That is, it is any one of 1 ms, 2 ms, 3 ms, 4 ms, and 5 ms.
 SMTC windowの周期(periodicity)は、SSB-MTCの中のperiodicityAndOffsetにより基地局10から端末20に設定される。従来技術では、当該周期の値は、{sf5, sf10, sf20, sf40, sf80, sf160}のうちのいずれかである。すなわち、5ms、10ms、20ms、40ms、80ms、160msのうちのいずれかである。 The periodicity of the SMTC window is set from the base station 10 to the terminal 20 by periodicityAndOffset in the SSB-MTC. In the prior art, the value of the period is one of {sf5, sf10, sf20, sf40, sf80, sf160}. That is, it is any one of 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms.
 また、測定を行う周波数範囲は、MeasObjectNRの中のssbFrequencyにより基地局10から端末20に設定される。ssbFrequencyで示される周波数範囲において、端末20は、SMTC windowの外側のサブフレームでは、SSB送信を想定しない。 Furthermore, the frequency range for measurement is set from the base station 10 to the terminal 20 by ssbFrequency in MeasObjectNR. In the frequency range indicated by ssbFrequency, the terminal 20 does not assume SSB transmission in subframes outside the SMTC window.
 図4に、SMTC windowの設定例を示す。図4の例において、セルAでは、SSBの送信周期と時間長(時間幅)に合わせてSMTC windowが設定されている。 Figure 4 shows an example of SMTC window settings. In the example of FIG. 4, in cell A, the SMTC window is set according to the SSB transmission cycle and time length (time width).
 SSB送信周期と測定周期は同じでなくてもよい。図4のセルBの例では、SMTC windowの周期がSSB送信周期よりも長い。 The SSB transmission cycle and measurement cycle do not have to be the same. In the example of cell B in FIG. 4, the SMTC window cycle is longer than the SSB transmission cycle.
 <RRM測定におけるMeasurement gap(測定ギャップ)>
 端末20は、自セルと異なる周波数の他セル、あるいは、自セルのRATと異なるRATの他セルを測定する際に、現在のセル(自セル)での送信と受信を停止して、他セル(異セル)のRRM測定を開始する。RRM測定が終了すると、端末20は、自セルでの送信と受信を再開する。
<Measurement gap in RRM measurement>
When the terminal 20 measures another cell with a frequency different from that of its own cell, or another cell with a RAT different from that of its own cell, it stops transmission and reception in the current cell (its own cell), and measures other cells with a different RAT than its own cell. (different cell) starts RRM measurement. When the RRM measurement is completed, the terminal 20 resumes transmission and reception in its own cell.
 送信/受信を停止してから、送信/受信を再開するまでの時間がMeasurement gapとして定義されている。 The time from when transmission/reception is stopped until transmission/reception is resumed is defined as the measurement gap.
 Measurement gap length(測定ギャップ長、MGL)は、MeasGapConfigにおけるGapConfigの中のmglにより設定される。従来技術では、当該MGLの値は、{ms1dot5, ms3, ms3dot5, ms4, ms5dot5, ms6}のうちのいずれかである。すなわち、1.5ms、3ms、3.5ms、4ms、5.5ms、6msのうちのいずれかである。 Measurement gap length (MGL) is set by mgl in GapConfig in MeasGapConfig. In the prior art, the value of the MGL is one of {ms1dot5, ms3, ms3dot5, ms4, ms5dot5, ms6}. That is, it is any one of 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, and 6ms.
 Measurement gap repetition period(測定ギャップの繰り返し周期、MGRP)は、MeasGapConfigにおけるGapConfigの中のmgrpにより設定される。従来技術では、当該MGRPの値は、{ms20, ms40, ms80, ms160}のうちのいずれかである。すなわち、20ms、40ms、80ms、160msのうちのいずれかである。なお、Measurement gap repetition periodを、measurement gap periodicity(測定ギャップ周期)と呼んでもよい。 Measurement gap repetition period (MGRP) is set by mgrp in GapConfig in MeasGapConfig. In the prior art, the value of the MGRP is one of {ms20, ms40, ms80, ms160}. That is, it is any one of 20ms, 40ms, 80ms, and 160ms. Note that the measurement gap repetition period may also be referred to as measurement gap periodicity.
 図5に、NRにおけるMeasurement gapの設定例を示す。図5の(3)は、MGL=4msとMGRP=20msの場合と、MGL=6msとMGRP=160msの場合を示している。図5(3)の(1)で示す部分が、図5の上段の(1)に示されている。ここでは、4msのうち、RF retuningのための時間を除いた3msにて、SMTC windowを用いた測定が可能であることが示されている。図5(2)も同様である。 Figure 5 shows an example of measurement gap settings in NR. (3) in FIG. 5 shows a case where MGL=4ms and MGRP=20ms and a case where MGL=6ms and MGRP=160ms. The portion shown by (1) in FIG. 5(3) is shown in (1) in the upper row of FIG. Here, it is shown that measurement using the SMTC window is possible in 3 ms out of 4 ms excluding the time for RF retuning. The same applies to FIG. 5(2).
 (実施の形態の概要、基本的な動作)
 本実施の形態では、基地局10の消費電力削減のために、基地局10が従来よりも長い周期でSSBを送信する場合でも、端末20が適切にRRM測定を行うことを可能とする技術について説明する。具体的には、SMTC windowについての技術を第1実施形態として説明し、Measurement Gapについての技術を第2実施形態として説明する。
(Summary of embodiment, basic operation)
In this embodiment, in order to reduce the power consumption of the base station 10, a technology that enables the terminal 20 to appropriately perform RRM measurement even when the base station 10 transmits SSB at a longer cycle than before will be described. explain. Specifically, the technology regarding the SMTC window will be described as a first embodiment, and the technology regarding the measurement gap will be described as a second embodiment.
 図6を参照して第1実施形態の基本的な動作について説明する。S101において、端末20は基地局10に対して能力情報を送信する。この能力情報は、例えば、長い周期のSMTC windowを用いた測定をサポートしていることを示す情報である。S102において、基地局10は端末20に対して設定情報(あるいは指示情報)を送信する。この設定情報は、例えば、SMTC windowの設定情報である。S103において、端末20は、基地局10から受信した設定情報に基づいて、SMTC windowを用いた測定動作を実行する。端末20は、測定結果を基地局10に送信する。基地局10は測定結果を受信する。 The basic operation of the first embodiment will be explained with reference to FIG. In S101, the terminal 20 transmits capability information to the base station 10. This capability information is, for example, information indicating that measurement using a long-cycle SMTC window is supported. In S102, the base station 10 transmits configuration information (or instruction information) to the terminal 20. This setting information is, for example, setting information of the SMTC window. In S103, the terminal 20 executes a measurement operation using the SMTC window based on the configuration information received from the base station 10. Terminal 20 transmits the measurement results to base station 10. Base station 10 receives the measurement results.
 図7を参照して第2実施形態の基本的な動作について説明する。S201において、端末20は基地局10に対して能力情報を送信する。この能力情報は、例えば、長い周期のmeasurement gapを用いた測定をサポートしていることを示す情報である。S202において、基地局10は端末20に対して設定情報(あるいは指示情報)を送信する。この設定情報は、例えば、measurement gapの設定情報である。S203において、端末20は、基地局10から受信した設定情報に基づいて、measurement gapを用いた測定動作を実行する。端末20は、測定結果を基地局10に送信する。基地局10は測定結果を受信する。 The basic operation of the second embodiment will be explained with reference to FIG. In S201, the terminal 20 transmits capability information to the base station 10. This capability information is, for example, information indicating that measurement using a long cycle measurement gap is supported. In S202, the base station 10 transmits configuration information (or instruction information) to the terminal 20. This setting information is, for example, measurement gap setting information. In S203, the terminal 20 performs a measurement operation using the measurement gap based on the configuration information received from the base station 10. Terminal 20 transmits the measurement results to base station 10. Base station 10 receives the measurement results.
 (SSBの周期について)
 本実施の形態で想定されるSSBの周期に関する事項を説明する。基地局10は端末20に対して、送信するSSBの周期として、従来技術での所定の周期(例:160ms)よりも長い周期(「拡張SSB周期」と呼んでもよい)を通知することができる。
(About the SSB cycle)
Matters related to the SSB cycle assumed in this embodiment will be explained. The base station 10 can notify the terminal 20 of a cycle (which may be referred to as an "extended SSB cycle") that is longer than the predetermined cycle (for example, 160 ms) in the conventional technology as the SSB cycle to be transmitted. .
 例えば、基地局10は、端末20に対して、ServingCellConfigCommonにおけるssb-periodicityServingCellにより、SSBの周期を通知(設定)する。また、基地局10は、端末20に対して、ServingCellConfigCommonにおける新たなパラメータ(例:ssb-periodicityServingCell-r18)により、拡張SSB周期を通知(設定)してもよい。 For example, the base station 10 notifies (sets) the SSB period to the terminal 20 using ssb-periodicityServingCell in ServingCellConfigCommon. Furthermore, the base station 10 may notify (set) the extended SSB period to the terminal 20 using a new parameter (eg, ssb-periodicityServingCell-r18) in ServingCellConfigCommon.
 ssb-periodicityServingCellあるいはssb-periodicityServingCell-r18には、例えば、{ms5, ms10, ms20, ms40, ms80, ms160, ms320, ms640}から選択された値がセットされる。なお、{ms5, ms10, ms20, ms40, ms80, ms160, ms320, ms640}という値の範囲は一例である。これら以外の値(例えば、640msよりも大きな値)が、基地局10から端末20に通知されてもよい。 For example, a value selected from {ms5, ms10, ms20, ms40, ms80, ms160, ms320, ms640} is set to ssb-periodicityServingCell or ssb-periodicityServingCell-r18. Note that the value range {ms5, ms10, ms20, ms40, ms80, ms160, ms320, ms640} is an example. A value other than these (for example, a value larger than 640 ms) may be notified from the base station 10 to the terminal 20.
 ssb-periodicityServingCellあるいはssb-periodicityServingCell-r18によりSSB周期を受信した端末20は、その周期でSSBが基地局10から送信されていると想定する。 The terminal 20 that receives the SSB cycle through ssb-periodicityServingCell or ssb-periodicityServingCell-r18 assumes that SSB is being transmitted from the base station 10 in that cycle.
 もしも、ServingCellConfigCommonの中に拡張SSB周期を通知し得るフィールド(ssb-periodicityServingCell、ssb-periodicityServingCell-r18)が存在しない場合、端末20は、SSBの周期が特定の値(例:5ms)であると想定してもよい。 If there is no field (ssb-periodicityServingCell, ssb-periodicityServingCell-r18) that can notify the extended SSB cycle in ServingCellConfigCommon, the terminal 20 assumes that the SSB cycle is a specific value (e.g. 5ms). You may.
 また、上記フィールドが存在しない場合において、拡張SSB周期をサポートする端末20は、SS/PBCH blocksを有する半フレームがYフレーム(Y個のフレーム)の周期で発生すると想定してもよい。Yの値は、例えば、仕様書で規定された固定値であってもよい。Yの値は、4、8、16、32、又は、64であってもよい。ただし、これらの値は例であり、Yの値がこれらの値以外の値であってもよい。また、Yの値はセル毎(基地局毎)に異なっていてもよい。 Furthermore, in the case where the above field does not exist, the terminal 20 supporting the extended SSB cycle may assume that a half frame having SS/PBCH blocks occurs at a cycle of Y frames (Y frames). The value of Y may be, for example, a fixed value defined in the specifications. The value of Y may be 4, 8, 16, 32, or 64. However, these values are examples, and the value of Y may be a value other than these values. Further, the value of Y may be different for each cell (each base station).
 所定の値(例:既存の値である160ms)よりも長い周期をセットしたssb-periodicityServingCell-r18を受信した端末20は、当該設定情報に基づいて、所定の値よりも長い周期でSSBのモニタを行うことができる。 The terminal 20 that receives ssb-periodicityServingCell-r18 with a period longer than a predetermined value (e.g., the existing value of 160ms) monitors SSB with a period longer than the predetermined value based on the setting information. It can be performed.
 基地局10は、自身が設定した周期でSSBのモニタがなされることを想定して動作することができる。例えば、基地局10は、SSBの送信タイミングに該当しないタイミングでは、端末20は、SSBをモニタしないので、SSB以外の信号あるいはデータを受信可能であると判断できる。 The base station 10 can operate assuming that SSB will be monitored at a period set by itself. For example, the base station 10 can determine that the terminal 20 can receive signals or data other than SSB because the terminal 20 does not monitor SSB at a timing that does not correspond to the SSB transmission timing.
 以下、第1実施形態と第2実施形態を説明する。第1実施形態内の複数のオプションは組み合わせて実施可能である。第2実施形態内の複数のオプションは組み合わせて実施可能である。また、第1実施形態の各オプションは、第2実施形態のいずれのオプションとも組み合わせて実施可能である。 The first embodiment and the second embodiment will be described below. Multiple options in the first embodiment can be implemented in combination. Multiple options in the second embodiment can be implemented in combination. Further, each option of the first embodiment can be implemented in combination with any option of the second embodiment.
 (第1実施形態)
 第1実施形態ではオプション1~3を説明する。
(First embodiment)
In the first embodiment, options 1 to 3 will be explained.
 <第1実施形態:オプション1>
 基地局10は端末20に対して、SMTC windowの周期として、従来技術での所定の周期(例:160ms)よりも長い周期(「長周期」と呼んでもよい)を通知することができる。
<First embodiment: Option 1>
The base station 10 can notify the terminal 20 of a period (also referred to as a "long period") that is longer than a predetermined period (eg, 160 ms) in the conventional technology as the period of the SMTC window.
 例えば、基地局10は、端末20に対して、SSB-MTCにおける新規なパラメータ(例:periodicityAndOffset-r18)により、SMTC windowの周期を通知(設定)する。 For example, the base station 10 notifies (sets) the period of the SMTC window to the terminal 20 using a new parameter in SSB-MTC (eg periodicityAndOffset-r18).
 periodicityAndOffset-r18には、例えば、{sf5, sf10, sf20, sf40, sf80, sf160, sf320, sf640}から選択された値がセットされる。なお、{sf5, sf10, sf20, sf40, sf80, sf160, sf320, sf640}という値の範囲は一例である。これら以外の値(例えば、640msよりも大きな値)が、基地局10から端末20に通知されてもよい。 For example, a value selected from {sf5, sf10, sf20, sf40, sf80, sf160, sf320, sf640} is set in periodicityAndOffset-r18. Note that the value range {sf5, sf10, sf20, sf40, sf80, sf160, sf320, sf640} is an example. A value other than these (for example, a value larger than 640 ms) may be notified from the base station 10 to the terminal 20.
 長周期は、特定の端末20のみに適用されることとしてもよい。特定の端末20とは、例えば、特定の能力情報(UE capability)を基地局10に報告した端末20である。特定の能力情報とは、例えば、前述した長い周期のSSBをサポートすることを示す能力情報、長周期のSSB測定をサポートすることを示す能力情報、及び、長周期の測定ギャップをサポートすることを示す能力情報のうちのいずれか1つ、いずれか2つの組み合わせ、又は3つ全部の組み合わせである。 The long period may be applied only to a specific terminal 20. The specific terminal 20 is, for example, a terminal 20 that has reported specific capability information (UE capability) to the base station 10. Specific capability information includes, for example, capability information indicating that long-cycle SSB is supported, capability information indicating that long-cycle SSB measurement is supported, and capability information indicating that long-cycle measurement gaps are supported. It is any one of the indicated ability information, a combination of any two, or a combination of all three.
 <第1実施形態:オプション2>
 第1実施形態のオプション2では、端末20は、タイマを使用した動作を実施する。図8を参照して基本的な動作を説明する。
<First embodiment: Option 2>
In option 2 of the first embodiment, the terminal 20 performs operations using a timer. The basic operation will be explained with reference to FIG.
 S301において、基地局10から端末20に対して、あるタイマ値が設定(あるいは通知)される。S302において、端末20は、そのタイマ値を初期値として有するタイマの状態(動作中、満了など)に基づいて、SMTC windowに関わる動作を実行する。 In S301, a certain timer value is set (or notified) from the base station 10 to the terminal 20. In S302, the terminal 20 executes an operation related to the SMTC window based on the state (in operation, expired, etc.) of a timer that has the timer value as an initial value.
 タイマ値の単位は、ms、シンボル、スロット、サブフレーム、及びフレームのうちのいずれであってもよい。また、これら以外の単位をタイマ値の単位として使用してもよい。また、図8のS301における設定/通知は、RRC、MAC CE、及び、DCIのうちのいずれで行われてもよい。また、図8のS301における設定/通知が、RRC、MAC CE、及び、DCIのうちのいずれか2つの組み合わせ、又は、3つの組み合わせで行われてもよい。 The unit of the timer value may be any one of ms, symbol, slot, subframe, and frame. Further, units other than these may be used as the unit of the timer value. Further, the setting/notification in S301 of FIG. 8 may be performed by any one of RRC, MAC CE, and DCI. Further, the setting/notification in S301 of FIG. 8 may be performed by a combination of any two or three of RRC, MAC CE, and DCI.
 2つの組み合わせの例として、例えば、基地局10は端末20に対して、RRCで複数のタイマ値を設定し、DCIで当該複数のタイマ値のうちのいずれか1つを指定する情報を通知する。端末20は、DCIで指示されたタイマ値を使用する。 As an example of a combination of the two, for example, the base station 10 sets a plurality of timer values in RRC and notifies the terminal 20 of information specifying any one of the plurality of timer values in DCI. . The terminal 20 uses the timer value instructed by the DCI.
 また、例えば、基地局10は端末20に対して、RRCあるいはMAC CEでタイマ値を設定し、MAC CEあるいはDCIで、当該タイマ値を初期値に持つタイマの起動を指示してもよい。その後、タイマが満了し、再度の起動指示があった場合、タイマは初期値から開始することとしてもよい。 Further, for example, the base station 10 may set a timer value to the terminal 20 using RRC or MAC CE, and may instruct the terminal 20 to activate a timer having the timer value as an initial value using MAC CE or DCI. After that, when the timer expires and there is a restart instruction, the timer may be started from the initial value.
 また、例えば、基地局10から端末20に対して、MAC CEあるいはDCIでタイマ値を通知することが、その値を初期値としてタイマを起動することの指示であってもよい。 Furthermore, for example, notifying the terminal 20 from the base station 10 of a timer value using MAC CE or DCI may be an instruction to start a timer using that value as an initial value.
 オプション2における端末20の具体的な動作例として、オプション2-1とオプション2-2を説明する。 Option 2-1 and Option 2-2 will be explained as specific operation examples of the terminal 20 in Option 2.
 <第1実施形態:オプション2-1>
 オプション2-1において、端末20は、タイマが動作中(running)の期間、基地局10からSSBが送信されることを想定しない。端末20は、基地局10からRRM測定用のSMTC windowを設定されている場合であっても、タイマが動作中(running)の期間、基地局10からSSBが送信されることを想定しない。基地局10は、当該タイマが動作中の間、SSBを送信しないこととしてもよい。
<First embodiment: Option 2-1>
In option 2-1, the terminal 20 does not assume that an SSB will be transmitted from the base station 10 while the timer is running. Even if the base station 10 has set the SMTC window for RRM measurement, the terminal 20 does not assume that SSB will be transmitted from the base station 10 while the timer is running. The base station 10 may not transmit the SSB while the timer is operating.
 タイマが満了すると、端末20は、基地局10から設定されたSMTC windowの期間において、RRM測定を行う。ここでのSMTC windowの設定(durationとperiodicity)は、従来技術に基づく設定であってもよいし、オプション1で説明した長周期の設定であってもよい。 When the timer expires, the terminal 20 performs RRM measurement during the SMTC window set by the base station 10. The settings of the SMTC window (duration and periodicity) here may be settings based on the conventional technology, or may be settings for a long period as described in Option 1.
 オプション2-1における動作例を、図9を参照して説明する。Aで示す時点で、端末20は、基地局10からタイマ起動指示を受信することで、タイマを起動し、Bで示す時点でタイマが満了する。A~Bの期間において、端末20は、基地局10からSSBが送信されていないと想定する。この期間では、端末20は、SSBモニタ動作を行わなくてよい。また、基地局10は、この期間において、SSBを送信しなくてもよい。C~Dの期間も同様である。 An example of the operation in option 2-1 will be explained with reference to FIG. 9. At a time point indicated by A, the terminal 20 starts the timer by receiving a timer start instruction from the base station 10, and at a time point indicated by B, the timer expires. During the period A to B, the terminal 20 assumes that no SSB is transmitted from the base station 10. During this period, the terminal 20 does not need to perform the SSB monitoring operation. Furthermore, the base station 10 does not need to transmit SSB during this period. The same applies to the periods C to D.
 B~Cの期間では、端末20は、設定されたSMTC windowでRRM測定を行う。基地局10は、端末20から測定結果を受信する。 During periods B to C, the terminal 20 performs RRM measurement in the set SMTC window. Base station 10 receives measurement results from terminal 20.
 なお、上記で説明したタイマ動作中の端末20/基地局10の動作と、タイマ満了後の端末20/基地局10の動作を逆にしてもよい。この場合、例えば、図9の例において、A~Bの期間、及びC~Dの期間において、端末20は、設定されたSMTC windowでRRM測定を行い、B~Cの期間では、端末20は、SSBが送信されていないと想定する。 Note that the operation of the terminal 20/base station 10 during the timer operation described above and the operation of the terminal 20/base station 10 after the timer expires may be reversed. In this case, for example, in the example of FIG. 9, the terminal 20 performs RRM measurement in the configured SMTC window in the period A to B and the period C to D, and in the period B to C, the terminal 20 performs RRM measurement in the configured SMTC window. , SSB is not sent.
 <第3実施形態:オプション2-2>
 オプション2-2において、端末20は、タイマが動作中(running)の期間、SSB-MTCの中のdurationとperiodicityAndOffset-r18(オプション1で説明した長周期)で設定されたSMTC windowの期間中にRRM測定を実行する。
<Third Embodiment: Option 2-2>
In option 2-2, the terminal 20 performs the following during the SMTC window set by duration and periodicityAndOffset-r18 (long period described in option 1) in SSB-MTC while the timer is running. Perform RRM measurements.
 タイマが満了すると、端末20は、基地局10から設定された、従来技術に基づくSMTC windowの期間において、RRM測定を行う。 When the timer expires, the terminal 20 performs RRM measurement during the period of the SMTC window set by the base station 10 based on the conventional technology.
 オプション2-2における動作例を、図9を参照して説明する。Aで示す時点で、端末20は、基地局10からタイマ起動指示を受信することで、タイマを起動し、Bで示す時点でタイマが満了する。A~Bの期間において、端末20は、長周期のSMTC windowでRRM測定を実行する。基地局10は、端末20から測定結果を受信する。C~Dの期間も同様である。 An example of the operation in option 2-2 will be explained with reference to FIG. At a time point indicated by A, the terminal 20 starts the timer by receiving a timer start instruction from the base station 10, and at a time point indicated by B, the timer expires. During the period A to B, the terminal 20 performs RRM measurement in a long-period SMTC window. Base station 10 receives measurement results from terminal 20. The same applies to the periods C to D.
 B~Cの期間では、端末20は、従来技術のパラメータにより設定されたSMTC windowでRRM測定を行う。基地局10は、端末20から測定結果を受信する。 During periods B to C, the terminal 20 performs RRM measurement in the SMTC window set according to the parameters of the conventional technology. Base station 10 receives measurement results from terminal 20.
 なお、上記で説明したタイマ動作中の端末20/基地局10の動作と、タイマ満了後の端末20/基地局10の動作を逆にしてもよい。この場合、例えば、図9の例において、A~Bの期間、及びC~Dの期間において、端末20は、従来技術のパラメータで設定されたSMTC windowでRRM測定を行い、B~Cの期間では、端末20は、長周期のSMTC windowでRRM測定を行う。 Note that the operation of the terminal 20/base station 10 during the timer operation described above and the operation of the terminal 20/base station 10 after the timer expires may be reversed. In this case, for example, in the example of FIG. 9, the terminal 20 performs RRM measurement in the SMTC window set with the parameters of the conventional technology in the period A to B and the period C to D, and in the period B to C. Then, the terminal 20 performs RRM measurement in a long-period SMTC window.
 <第1実施形態:オプション3>
 第1実施形態のオプション3では、基地局10は端末20に対して、休止期間(pause period)を設定又は通知し、端末20は、休止期間を使用した動作を実施する。休止期間を、中断期間、中止期間、一時停止期間、ポーズ期間のうちのいずれかに言い換えてもよい。図10を参照して基本的な動作を説明する。
<First embodiment: Option 3>
In option 3 of the first embodiment, the base station 10 sets or notifies the terminal 20 of a pause period, and the terminal 20 performs operations using the pause period. The rest period may be replaced with any one of a suspension period, a discontinuation period, a pause period, and a pause period. The basic operation will be explained with reference to FIG.
 S401において、基地局10から端末20に対して、ある休止期間の値が設定(あるいは通知)される。S402において、端末20は、その休止期間に基づいて、SSBモニタに関わる動作を実行する。 In S401, the base station 10 sets (or notifies) the terminal 20 of a certain idle period value. In S402, the terminal 20 performs operations related to SSB monitoring based on the dormant period.
 休止期間の単位は、ms、シンボル、スロット、サブフレーム、及びフレームのうちのいずれであってもよい。また、これら以外の単位を休止期間の単位として使用してもよい。また、図10のS401における設定/通知は、RRC、MAC CE、及び、DCIのうちのいずれで行われてもよい。また、図10のS401における設定/通知が、RRC、MAC CE、及び、DCIのうちのいずれか2つの組み合わせ、又は、3つの組み合わせで行われてもよい。 The unit of the pause period may be any one of ms, symbol, slot, subframe, and frame. Further, units other than these may be used as the unit of the pause period. Furthermore, the setting/notification in S401 of FIG. 10 may be performed by any one of RRC, MAC CE, and DCI. Further, the setting/notification in S401 of FIG. 10 may be performed by a combination of any two or three of RRC, MAC CE, and DCI.
 2つの組み合わせの例として、例えば、基地局10は端末20に対して、RRCで複数の休止期間を設定し、MAC CE又はDCIで当該複数の休止期間のうちのいずれか1つを指定する情報を通知する。端末20は、指示された休止期間を使用する。 As an example of a combination of the two, for example, the base station 10 sets multiple dormant periods for the terminal 20 using RRC, and provides information specifying any one of the multiple dormant periods using MAC CE or DCI. Notify. Terminal 20 uses the instructed rest period.
 また、例えば、基地局10は端末20に対して、RRCあるいはMAC CEで休止期間を設定し、MAC CEあるいはDCIで、当該休止期間の開始を指示してもよい。 Furthermore, for example, the base station 10 may set a dormant period for the terminal 20 using RRC or MAC CE, and may instruct the terminal 20 to start the dormant period using MAC CE or DCI.
 また、例えば、基地局10から端末20に対して、MAC CEあるいはDCIで休止期間を通知することが、その休止期間を開始することの指示であってもよい。 Furthermore, for example, notifying the terminal 20 of the suspension period from the base station 10 using MAC CE or DCI may be an instruction to start the suspension period.
 オプション3における端末20の具体的な動作例として、オプション3-1とオプション3-2を説明する。 Option 3-1 and Option 3-2 will be explained as specific operation examples of the terminal 20 in Option 3.
 <第1実施形態:オプション3-1>
 オプション3-1において、端末20は、休止期間において、基地局10からSSBが送信されることを想定しない。つまり、端末20は、休止期間において、SSBをモニタあるいは受信することを想定(期待)しない。端末20は、基地局10からRRM測定用のSMTC windowを設定されている場合であっても、休止期間においては、基地局10からSSBが送信されることを想定しないので、SMTC windowを用いた測定を行わない。
<First embodiment: Option 3-1>
In option 3-1, the terminal 20 does not assume that SSB will be transmitted from the base station 10 during the idle period. That is, the terminal 20 does not assume (expect) to monitor or receive SSB during the idle period. Even if the terminal 20 is configured with an SMTC window for RRM measurement from the base station 10, the terminal 20 does not assume that SSB will be transmitted from the base station 10 during the idle period. Do not take measurements.
 基地局10は、休止期間においてSSBを送信しない。ただし、休止期間において基地局10がSSBを送信する場合があってもよい。 The base station 10 does not transmit SSB during the idle period. However, the base station 10 may transmit SSB during the idle period.
 休止期間の終了後は、端末20は、基地局10から設定されたSMTC windowの期間において、RRM測定を行う。ここでのSMTC windowの設定(durationとperiodicity)は、従来技術に基づく設定であってもよいし、オプション1で説明した長周期の設定であってもよい。 After the pause period ends, the terminal 20 performs RRM measurement during the SMTC window set by the base station 10. The settings of the SMTC window (duration and periodicity) here may be settings based on the conventional technology, or may be settings for a long period as described in Option 1.
 オプション3-1における動作例を、図11を参照して説明する。Aで示す時点で、端末20は、基地局10から休止期間開始指示を受信することで、休止期間を開始し、Bで示す時点で休止期間が終了する。A~Bの期間において、端末20は、基地局10からSSBが送信されていないと想定する。この期間では、端末20は、SSBモニタ動作を行わなくてよい。また、基地局10は、この期間において、SSBを送信しなくてもよい。C~Dの期間も同様である。 An example of the operation in option 3-1 will be explained with reference to FIG. At the time indicated by A, the terminal 20 starts the idle period by receiving an instruction to start the idle period from the base station 10, and at the time indicated by B the terminal 20 ends the idle period. During the period A to B, the terminal 20 assumes that no SSB is transmitted from the base station 10. During this period, the terminal 20 does not need to perform the SSB monitoring operation. Furthermore, the base station 10 does not need to transmit SSB during this period. The same applies to the periods C to D.
 B~Cの期間では、端末20は、例えば設定された周期で基地局10からSSBが送信されていると想定し、SSBのモニタを行う。 During periods B to C, the terminal 20 assumes that SSB is being transmitted from the base station 10 at a set period, and monitors the SSB.
 <第1実施形態:オプション3-2>
 オプション3-2において、端末20は、休止期間において、SSB-MTCの中のdurationとperiodicityAndOffset-r18(オプション1で説明した長周期)で設定されたSMTC windowの期間中にRRM測定を実行する。
<First embodiment: Option 3-2>
In option 3-2, the terminal 20 performs RRM measurement during the SMTC window set by the duration and periodicityAndOffset-r18 (long period described in option 1) in the SSB-MTC during the idle period.
 休止期間が終了すると、端末20は、基地局10から設定された、従来技術に基づくSMTC windowの期間において、RRM測定を行う。 When the idle period ends, the terminal 20 performs RRM measurement during the SMTC window period based on the conventional technology set by the base station 10.
 オプション3-2における動作例についても、図11を参照して説明する。Aで示す時点で、端末20は、基地局10から休止期間開始指示を受信することで、休止期間が開始し、Bで示す時点で休止期間が終了する。A~Bの期間において、端末20は、長周期のSMTC windowでRRM測定を実行する。基地局10は、端末20から測定結果を受信する。C~Dの期間も同様である。 An example of the operation in option 3-2 will also be explained with reference to FIG. 11. At the time indicated by A, the terminal 20 receives an instruction to start the idle period from the base station 10, so that the idle period starts, and at the time indicated by B, the idle period ends. During the period A to B, the terminal 20 performs RRM measurement in a long-period SMTC window. Base station 10 receives measurement results from terminal 20. The same applies to the periods C to D.
 B~Cの期間では、端末20は、従来技術のパラメータにより設定されたSMTC windowでRRM測定を行う。基地局10は、端末20から測定結果を受信する。 During periods B to C, the terminal 20 performs RRM measurement in the SMTC window set according to the parameters of the conventional technology. Base station 10 receives measurement results from terminal 20.
 以上説明した第1実施形態により、基地局10がSSBを送信しない期間がある場合、あるいは、基地局10が所定の周期よりも長い周期でSSBを送信する場合において、端末20は、適切にRRM測定を実行することが可能となる。 According to the first embodiment described above, when there is a period in which the base station 10 does not transmit SSB, or when the base station 10 transmits SSB at a cycle longer than a predetermined cycle, the terminal 20 can appropriately perform RRM. It becomes possible to carry out measurements.
 (第2実施形態)
 次に、第2実施形態を説明する。第2実施形態ではオプション1~3を説明する。
(Second embodiment)
Next, a second embodiment will be described. In the second embodiment, options 1 to 3 will be explained.
 <第2実施形態:オプション1>
 基地局10は端末20に対して、Measurement gapの周期として、従来技術での所定の周期(例:160ms)よりも長い周期(「長周期」と呼んでもよい)を通知することができる。
<Second embodiment: Option 1>
The base station 10 can notify the terminal 20 of a period (also referred to as a "long period") that is longer than a predetermined period (eg, 160 ms) in the conventional technology as the period of the measurement gap.
 例えば、基地局10は、端末20に対して、MeasGapConfigの中のGapConfigにおける新規なパラメータ(例:mgrp-r18)により、Measurement gapの周期を通知(設定)する。 For example, the base station 10 notifies (sets) the measurement gap cycle to the terminal 20 using a new parameter (eg mgrp-r18) in GapConfig in MeasGapConfig.
 mgrp-r18には、例えば、{ms20, ms40, ms80, ms160, ms320, ms640}から選択された値がセットされる。なお、{ms20, ms40, ms80, ms160, ms320, ms640}という値の範囲は一例である。これら以外の値(例えば、640msよりも大きな値)が、基地局10から端末20に通知されてもよい。 For example, a value selected from {ms20, ms40, ms80, ms160, ms320, ms640} is set to mgrp-r18. Note that the value range {ms20, ms40, ms80, ms160, ms320, ms640} is an example. A value other than these (for example, a value larger than 640 ms) may be notified from the base station 10 to the terminal 20.
 長周期のMeasurement gapは、特定の端末20のみに適用されることとしてもよい。特定の端末20とは、例えば、特定の能力情報(UE capability)を基地局10に報告した端末20である。特定の能力情報とは、例えば、前述した長い周期のSSBをサポートすることを示す能力情報、長周期のSSB測定をサポートすることを示す能力情報、及び、長周期の測定ギャップをサポートすることを示す能力情報のうちのいずれか1つ、いずれか2つの組み合わせ、又は3つ全部の組み合わせである。 The long-period measurement gap may be applied only to a specific terminal 20. The specific terminal 20 is, for example, a terminal 20 that has reported specific capability information (UE capability) to the base station 10. Specific capability information includes, for example, capability information indicating that long-cycle SSB is supported, capability information indicating that long-cycle SSB measurement is supported, and capability information indicating that long-cycle measurement gaps are supported. It is any one of the indicated ability information, a combination of any two, or a combination of all three.
 <第2実施形態:オプション2>
 第2実施形態のオプション2では、端末20は、タイマを使用した動作を実施する。図12を参照して基本的な動作を説明する。
<Second embodiment: Option 2>
In option 2 of the second embodiment, the terminal 20 performs operations using a timer. The basic operation will be explained with reference to FIG.
 S501において、基地局10から端末20に対して、あるタイマ値が設定(あるいは通知)される。S502において、端末20は、そのタイマ値を初期値として有するタイマの状態(動作中、満了など)に基づいて、Measurement gapに関わる動作を実行する。 In S501, a certain timer value is set (or notified) from the base station 10 to the terminal 20. In S502, the terminal 20 performs an operation related to the measurement gap based on the state of the timer (in operation, expired, etc.) having the timer value as an initial value.
 タイマ値の単位は、ms、シンボル、スロット、サブフレーム、及びフレームのうちのいずれであってもよい。また、これら以外の単位をタイマ値の単位として使用してもよい。また、図12のS501における設定/通知は、RRC、MAC CE、及び、DCIのうちのいずれで行われてもよい。また、図12のS501における設定/通知が、RRC、MAC CE、及び、DCIのうちのいずれか2つの組み合わせ、又は、3つの組み合わせで行われてもよい。 The unit of the timer value may be any one of ms, symbol, slot, subframe, and frame. Further, units other than these may be used as the unit of the timer value. Furthermore, the setting/notification in S501 of FIG. 12 may be performed by any one of RRC, MAC CE, and DCI. Further, the setting/notification in S501 of FIG. 12 may be performed by a combination of any two or three of RRC, MAC CE, and DCI.
 2つの組み合わせの例として、例えば、基地局10は端末20に対して、RRCで複数のタイマ値を設定し、DCIで当該複数のタイマ値のうちのいずれか1つを指定する情報を通知する。端末20は、DCIで指示されたタイマ値を使用する。 As an example of a combination of the two, for example, the base station 10 sets a plurality of timer values in RRC and notifies the terminal 20 of information specifying any one of the plurality of timer values in DCI. . The terminal 20 uses the timer value instructed by the DCI.
 また、例えば、基地局10は端末20に対して、RRCあるいはMAC CEでタイマ値を設定し、MAC CEあるいはDCIで、当該タイマ値を初期値に持つタイマの起動を指示してもよい。その後、タイマが満了し、再度の起動指示があった場合、タイマは初期値から開始することとしてもよい。 Further, for example, the base station 10 may set a timer value to the terminal 20 using RRC or MAC CE, and may instruct the terminal 20 to activate a timer having the timer value as an initial value using MAC CE or DCI. After that, when the timer expires and there is a restart instruction, the timer may be started from the initial value.
 また、例えば、基地局10から端末20に対して、MAC CEあるいはDCIでタイマ値を通知することが、その値を初期値としてタイマを起動することの指示であってもよい。 Furthermore, for example, notifying the terminal 20 from the base station 10 of a timer value using MAC CE or DCI may be an instruction to start a timer using that value as an initial value.
 オプション2における端末20の具体的な動作例として、オプション2-1とオプション2-2を説明する。 Option 2-1 and Option 2-2 will be explained as specific operation examples of the terminal 20 in Option 2.
 <第2実施形態:オプション2-1>
 オプション2-1において、端末20は、タイマが動作中(running)の期間、measurement gapを考慮しない。つまり、端末20は、measurement gapでの測定対象となるSSBが送信されていないと想定して、measurement gapを用いた測定を行わない。端末20は、基地局10からRRM測定用のmeasurement gapを設定されている場合であっても、タイマが動作中(running)の期間、measurement gapを使用した測定を行わない。基地局10は、当該タイマが動作中の間、measurement gapを使用した測定の結果を端末20から受信することを想定しない。
<Second embodiment: Option 2-1>
In option 2-1, the terminal 20 does not consider the measurement gap while the timer is running. That is, the terminal 20 assumes that the SSB to be measured in the measurement gap is not transmitted, and does not perform measurement using the measurement gap. Even if a measurement gap for RRM measurement is set by the base station 10, the terminal 20 does not perform measurement using the measurement gap while the timer is running. The base station 10 does not assume that the measurement result using the measurement gap will be received from the terminal 20 while the timer is in operation.
 タイマが満了すると、端末20は、基地局10から設定されたmeasurement gapの期間において、RRM測定(例:他セルのSSBの測定)を行う。ここでのmeasurement gapの設定(MeasGapConfigによる設定)は、従来技術に基づく設定であってもよいし、オプション1で説明した長周期の設定であってもよい。 When the timer expires, the terminal 20 performs RRM measurement (eg, measuring SSB of other cells) during the measurement gap period set by the base station 10. The measurement gap setting here (setting by MeasGapConfig) may be a setting based on the conventional technology, or may be a long-cycle setting as described in option 1.
 オプション2-1における動作例を、図13を参照して説明する。Aで示す時点で、端末20は、基地局10からタイマ起動指示を受信することで、タイマを起動し、Bで示す時点でタイマが満了する。A~Bの期間において、端末20は、measurement gapを考慮しない。C~Dの期間も同様である。基地局10は、measurement gapでの測定結果を受信することを想定しない。 An example of the operation in option 2-1 will be described with reference to FIG. 13. At a time point indicated by A, the terminal 20 starts the timer by receiving a timer start instruction from the base station 10, and at a time point indicated by B, the timer expires. During the period A to B, the terminal 20 does not consider the measurement gap. The same applies to the periods C to D. The base station 10 does not assume that it will receive measurement results in the measurement gap.
 B~Cの期間では、端末20は、設定されたmeasurement gapでRRM測定を行う。基地局10は、端末20から測定結果を受信する。 During periods B to C, the terminal 20 performs RRM measurement with the set measurement gap. Base station 10 receives measurement results from terminal 20.
 なお、上記で説明したタイマ動作中の端末20/基地局10の動作と、タイマ満了後の端末20/基地局10の動作を逆にしてもよい。この場合、例えば、図13の例において、A~Bの期間、及びC~Dの期間において、端末20は、設定されたmeasurement gapでRRM測定を行い、B~Cの期間では、端末20は、measurement gapを考慮しない。 Note that the operation of the terminal 20/base station 10 during the timer operation described above and the operation of the terminal 20/base station 10 after the timer expires may be reversed. In this case, for example, in the example of FIG. 13, the terminal 20 performs RRM measurement at the set measurement gap in the period A to B and the period C to D, and in the period B to C, the terminal 20 performs RRM measurement in the period B to C. , does not consider the measurement gap.
 <第2実施形態:オプション2-2>
 オプション2-2において、端末20は、タイマが動作中(running)の期間、MeasGapConfigにおけるGapConfigの中のmgrp-r18(オプション1で説明した長周期)及びその他の既存のパラメータで設定されたmeasurement gapを適用してRRM測定を実行する。
<Second embodiment: Option 2-2>
In option 2-2, the terminal 20 determines the measurement gap set in mgrp-r18 (long period described in option 1) and other existing parameters in GapConfig in MeasGapConfig during the period when the timer is running. is applied to perform RRM measurement.
 タイマが満了すると、端末20は、基地局10から設定された、従来技術に基づくmeasurement gapを適用して、RRM測定を行う。 When the timer expires, the terminal 20 performs RRM measurement by applying the measurement gap set by the base station 10 and based on the conventional technology.
 オプション2-2における動作例を、図13を参照して説明する。Aで示す時点で、端末20は、基地局10からタイマ起動指示を受信することで、タイマを起動し、Bで示す時点でタイマが満了する。A~Bの期間において、端末20は、長周期のmeasurement gapでRRM測定を実行する。基地局10は、端末20から測定結果を受信する。C~Dの期間も同様である。 An example of the operation in option 2-2 will be explained with reference to FIG. 13. At a time point indicated by A, the terminal 20 starts the timer by receiving a timer start instruction from the base station 10, and at a time point indicated by B, the timer expires. During the period A to B, the terminal 20 performs RRM measurement with a long period measurement gap. Base station 10 receives measurement results from terminal 20. The same applies to the periods C to D.
 B~Cの期間では、端末20は、従来技術のパラメータにより設定されたmeasurement gapを適用してRRM測定を行う。基地局10は、端末20から測定結果を受信する。 During periods B to C, the terminal 20 performs RRM measurement by applying the measurement gap set by the parameters of the conventional technology. Base station 10 receives measurement results from terminal 20.
 なお、上記で説明したタイマ動作中の端末20/基地局10の動作と、タイマ満了後の端末20/基地局10の動作を逆にしてもよい。この場合、例えば、図13の例において、A~Bの期間、及びC~Dの期間において、端末20は、従来技術のパラメータで設定されたmeasurement gapでRRM測定を行い、B~Cの期間では、端末20は、長周期のmeasurement gapでRRM測定を行う。 Note that the operation of the terminal 20/base station 10 during the timer operation described above and the operation of the terminal 20/base station 10 after the timer expires may be reversed. In this case, for example, in the example of FIG. 13, the terminal 20 performs RRM measurement at the measurement gap set with the parameters of the prior art in the period A to B and the period C to D, and in the period B to C. Then, the terminal 20 performs RRM measurement with a long period measurement gap.
 <第2実施形態:オプション3>
 第2実施形態のオプション3では、基地局10は端末20に対して、休止期間(pause period)を設定又は通知し、端末20は、休止期間を使用した動作を実施する。休止期間を、中断期間、中止期間、一時停止期間、ポーズ期間のうちのいずれかに言い換えてもよい。図14を参照して基本的な動作を説明する。
<Second embodiment: Option 3>
In option 3 of the second embodiment, the base station 10 sets or notifies the terminal 20 of a pause period, and the terminal 20 performs operations using the pause period. The rest period may be replaced with any one of a suspension period, a discontinuation period, a pause period, and a pause period. The basic operation will be explained with reference to FIG.
 S601において、基地局10から端末20に対して、ある休止期間の値が設定(あるいは通知)される。S602において、端末20は、その休止期間に基づいて、SSBモニタに関わる動作を実行する。 In S601, the base station 10 sets (or notifies) the terminal 20 of a certain idle period value. In S602, the terminal 20 performs operations related to SSB monitoring based on the dormant period.
 休止期間の単位は、ms、シンボル、スロット、サブフレーム、及びフレームのうちのいずれであってもよい。また、これら以外の単位を休止期間の単位として使用してもよい。また、図14のS601における設定/通知は、RRC、MAC CE、及び、DCIのうちのいずれで行われてもよい。また、図14のS601における設定/通知が、RRC、MAC CE、及び、DCIのうちのいずれか2つの組み合わせ、又は、3つの組み合わせで行われてもよい。 The unit of the pause period may be any one of ms, symbol, slot, subframe, and frame. Further, units other than these may be used as the unit of the pause period. Furthermore, the setting/notification in S601 of FIG. 14 may be performed by any one of RRC, MAC CE, and DCI. Further, the setting/notification in S601 of FIG. 14 may be performed by a combination of any two or three of RRC, MAC CE, and DCI.
 2つの組み合わせの例として、例えば、基地局10は端末20に対して、RRCで複数の休止期間を設定し、MAC CE又はDCIで当該複数の休止期間のうちのいずれか1つを指定する情報を通知する。端末20は、指示された休止期間を使用する。 As an example of a combination of the two, for example, the base station 10 sets multiple dormant periods for the terminal 20 using RRC, and provides information specifying any one of the multiple dormant periods using MAC CE or DCI. Notify. Terminal 20 uses the instructed rest period.
 また、例えば、基地局10は端末20に対して、RRCあるいはMAC CEで休止期間を設定し、MAC CEあるいはDCIで、当該休止期間の開始を指示してもよい。 Furthermore, for example, the base station 10 may set a dormant period for the terminal 20 using RRC or MAC CE, and may instruct the terminal 20 to start the dormant period using MAC CE or DCI.
 また、例えば、基地局10から端末20に対して、MAC CEあるいはDCIで休止期間の値を通知することが、その休止期間を開始することの指示であってもよい。 Furthermore, for example, the base station 10 may notify the terminal 20 of the value of the dormant period using MAC CE or DCI as an instruction to start the dormant period.
 オプション3における端末20の具体的な動作例として、オプション3-1とオプション3-2を説明する。 Option 3-1 and Option 3-2 will be explained as specific operation examples of the terminal 20 in Option 3.
 <第2実施形態:オプション3-1>
 オプション3-1において、端末20は、休止期間において、基地局10からSSBが送信されることを想定しない。つまり、端末20は、measurement gapを考慮しない。また、端末20は、休止期間において、measurement gapでの測定対象となるSSBが送信されていないと想定して、measurement gapを用いた測定を行わない。端末20は、基地局10からRRM測定用のmeasurement gapを設定されている場合であっても、タイマが動作中(running)の期間、measurement gapを考慮せず、measurement gapを使用した測定を行わない。基地局10は、当該タイマが動作中の間、measurement gapを使用した測定の結果を端末20から受信することを想定しない。
<Second embodiment: Option 3-1>
In option 3-1, the terminal 20 does not assume that SSB will be transmitted from the base station 10 during the idle period. In other words, the terminal 20 does not consider the measurement gap. Further, the terminal 20 assumes that the SSB to be measured in the measurement gap is not transmitted during the idle period, and does not perform measurement using the measurement gap. Even if a measurement gap for RRM measurement is set by the base station 10, the terminal 20 performs measurement using the measurement gap without considering the measurement gap while the timer is running. do not have. The base station 10 does not assume that the measurement result using the measurement gap will be received from the terminal 20 while the timer is in operation.
 休止期間の終了後は、端末20は、基地局10から設定されたmeasurement gapの期間において、RRM測定(例:他セルのSSBの測定)を行う。ここでのmeasurement gapの設定(MeasGapConfigによる設定)は、従来技術に基づく設定であってもよいし、オプション1で説明した長周期の設定であってもよい。 After the idle period ends, the terminal 20 performs RRM measurement (eg, measuring SSB of other cells) during the measurement gap period set by the base station 10. The measurement gap setting here (setting by MeasGapConfig) may be a setting based on the conventional technology, or may be a long-cycle setting as described in option 1.
 オプション3-1における動作例を、図15を参照して説明する。Aで示す時点で、端末20は、基地局10から休止期間開始指示を受信することで、休止期間を開始し、Bで示す時点で休止期間が終了する。A~Bの期間において、端末20は、measurement gapを考慮しない。C~Dの期間も同様である。 An example of the operation in option 3-1 will be explained with reference to FIG. 15. At the time indicated by A, the terminal 20 starts the idle period by receiving an instruction to start the idle period from the base station 10, and at the time indicated by B the terminal 20 ends the idle period. During the period A to B, the terminal 20 does not consider the measurement gap. The same applies to the periods C to D.
 B~Cの期間では、端末20は、設定されたmeasurement gapでRRM測定を行う。基地局10は、端末20から測定結果を受信する。 During periods B to C, the terminal 20 performs RRM measurement with the set measurement gap. Base station 10 receives measurement results from terminal 20.
 <第2実施形態:オプション3-2>
 オプション3-2において、端末20は、休止期間において、MeasGapConfigにおけるGapConfigの中のmgrp-r18(オプション1で説明した長周期)及びその他の既存のパラメータで設定されたmeasurement gapを適用してRRM測定を実行する。
<Second embodiment: Option 3-2>
In option 3-2, the terminal 20 performs RRM measurement during the idle period by applying the measurement gap configured with mgrp-r18 (long period described in option 1) and other existing parameters in GapConfig in MeasGapConfig. Execute.
 休止期間が終了すると、端末20は、基地局10から設定された、従来技術に基づくmeasurement gapを適用して、RRM測定を行う。 When the idle period ends, the terminal 20 performs RRM measurement by applying the measurement gap set by the base station 10 and based on the conventional technology.
 オプション3-2における動作例についても、図15を参照して説明する。Aで示す時点で、端末20は、基地局10から休止期間開始指示を受信することで、休止期間が開始し、Bで示す時点で休止期間が終了する。A~Bの期間において、端末20は、長周期のmeasurement gapでRRM測定を実行する。基地局10は、端末20から測定結果を受信する。C~Dの期間も同様である。 An example of the operation in option 3-2 will also be explained with reference to FIG. 15. At the time indicated by A, the terminal 20 receives an instruction to start the idle period from the base station 10, so that the idle period starts, and at the time indicated by B, the idle period ends. During the period A to B, the terminal 20 performs RRM measurement with a long period measurement gap. Base station 10 receives measurement results from terminal 20. The same applies to the periods C to D.
 B~Cの期間では、端末20は、従来技術のパラメータにより設定されたmeasurement gapを適用してRRM測定を行う。基地局10は、端末20から測定結果を受信する。 During periods B to C, the terminal 20 performs RRM measurement by applying the measurement gap set by the parameters of the conventional technology. Base station 10 receives measurement results from terminal 20.
 以上説明した第2実施形態により、隣接する基地局10がSSBを送信しない期間がある場合、あるいは、隣接する基地局10が所定の周期よりも長い周期でSSBを送信する場合において、端末20は、適切にRRM測定を実行することが可能となる。 According to the second embodiment described above, when there is a period in which the adjacent base station 10 does not transmit SSB, or when the adjacent base station 10 transmits SSB at a cycle longer than a predetermined cycle, the terminal 20 , it becomes possible to appropriately perform RRM measurement.
 (バリエーション1)
 以上説明した第1実施形態~第2実施形態においては、SSBの周期について、従来技術よりも長い周期を使用することを可能とする動作について説明した。このように、長い周期を用いることに加えて(あるいは、長い周期を用いることとは独立に)、SSBの1周期当たりの送信時間長(あるいは1周期当たりのSSB数)について、従来技術よりも短い送信時間長(従来技術よりも少ないSSB数)を使用してもよい。説明の便宜上、1周期当たりで、従来技術よりも短い送信時間長のSSBあるいは従来技術よりも少ない数のSSBを、短縮SSBと呼ぶことにする。ここで、短縮SSBの1周期当たりのSSB数は1であってもよい。また、短縮SSBの1周期当たりの時間長が4シンボルよりも小さい時間長であってもよい。
(Variation 1)
In the first to second embodiments described above, the operation that enables the use of a longer SSB cycle than in the prior art has been described. In this way, in addition to using a long cycle (or independently of using a long cycle), the transmission time length per SSB cycle (or the number of SSBs per cycle) can be improved compared to the conventional technology. Shorter transmission time lengths (fewer SSBs than prior art) may be used. For convenience of explanation, an SSB with a shorter transmission time length than the conventional technique or a smaller number of SSBs than the conventional technique per cycle will be referred to as a shortened SSB. Here, the number of SSBs per period of the shortened SSB may be one. Further, the time length per period of the shortened SSB may be smaller than 4 symbols.
 このようなケースにおいて、第1実施形態では、SMTC windowの時間長を設定するdurationの値として、所定の値(例:1ms)よりも短い値を使用してもよい。また、第2実施形態では、measurement gapの時間長を設定するMGLの値として、所定の値(例:1.5ms)よりも短い値を使用してもよい。 In such a case, in the first embodiment, a value shorter than a predetermined value (eg, 1 ms) may be used as the duration value for setting the time length of the SMTC window. Further, in the second embodiment, a value shorter than a predetermined value (eg, 1.5 ms) may be used as the value of MGL for setting the time length of the measurement gap.
 (バリエーション2)
 第1実施形態~第2実施形態、及びバリエーション1のいずれにも適用可能な例としてバリエーション2を説明する。
(Variation 2)
Variation 2 will be described as an example applicable to any of the first to second embodiments and variation 1.
 第1実施形態~第2実施形態、及びバリエーション1で説明した複数の動作(各オプション等)のうちのどの動作を端末20が実施するかについて、基地局10から端末20へのRRC設定で決定されてもよいし、MAC CE、DCI、UCI等の通知/指示で決定されてもよいし、端末20の能力に応じて決定されてもよい。 The RRC setting from the base station 10 to the terminal 20 determines which operation the terminal 20 performs among the plurality of operations (each option, etc.) described in the first to second embodiments and variation 1. It may be determined by a notification/instruction of MAC CE, DCI, UCI, etc., or it may be determined according to the capability of the terminal 20.
 また、下記の(1)~(3)に示す能力情報(UE capability)が規定され、端末20から基地局10に報告されてもよい。 Furthermore, capability information (UE capability) shown in (1) to (3) below may be defined and reported from the terminal 20 to the base station 10.
 (1)拡張SSB周期(従来技術よりも長いSSB周期)をサポートするか否かを示す能力情報
 (2)第1実施形態で説明した長周期のSMTC windowでのSSB測定をサポートするか否かを示す能力情報
 (3)第2実施形態で説明した長周期のmeasurement gapをサポートするか否かを示す能力情報
 (その他)
 なお、本明細書に示したSSB-MTCを、SSB-MTC1、SSB-MTC2、及びSSB-MTC3のうちのいずれか1つ、いずれか2つの組み合わせ、又は、3つの組み合わせと置き換えてもよい。
(1) Capability information indicating whether to support extended SSB cycles (SSB cycles longer than conventional technology) (2) Whether to support SSB measurement in the long-cycle SMTC window described in the first embodiment (3) Capability information indicating whether to support the long-period measurement gap described in the second embodiment (Other)
Note that the SSB-MTC shown in this specification may be replaced with any one, a combination of any two, or a combination of three of SSB-MTC1, SSB-MTC2, and SSB-MTC3.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。
(Device configuration)
Next, an example of the functional configuration of the base station 10 and terminal 20 that execute the processes and operations described above will be described.
 <基地局10>
 図16は、基地局10の機能構成の一例を示す図である。図16に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図16に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、送信部110と、受信部120とをまとめて通信部と称してもよい。
<Base station 10>
FIG. 16 is a diagram showing an example of the functional configuration of the base station 10. As shown in FIG. 16, base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 16 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. Furthermore, the transmitting section 110 and the receiving section 120 may be collectively referred to as a communication section.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、PDCCHによるDCI、PDSCHによるデータ等を送信する機能を有する。 The transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI using PDCCH, data using PDSCH, etc. to the terminal 20.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を設定部130が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。 The setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
 制御部140は、送信部110を介して端末20のDL受信あるいはUL送信のスケジューリングを行う。また、制御部140は、LBTを行う機能を含む。また、制御部140はタイマ機能を含む。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110を送信機と呼び、受信部120を受信機と呼んでもよい。 The control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. Further, the control unit 140 includes a function to perform LBT. Further, the control unit 140 includes a timer function. A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the transmitting section 110 may be called a transmitter, and the receiving section 120 may be called a receiver.
 <端末20>
 図17は、端末20の機能構成の一例を示す図である。図17に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図17に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と、受信部220をまとめて通信部と称してもよい。
<Terminal 20>
FIG. 17 is a diagram showing an example of the functional configuration of the terminal 20. As shown in FIG. 17, the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240. The functional configuration shown in FIG. 17 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. The transmitting section 210 and the receiving section 220 may be collectively referred to as a communication section.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号、PDCCHによるDCI、PDSCHによるデータ等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信することとしてもよい。また、送信部210には、本実施形態で説明したアンテナポートが含まれる。 The transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, etc. transmitted from the base station 10. For example, the transmitting unit 210 transmits a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH to another terminal 20 as D2D communication. (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc., and the receiving unit 220 may receive the PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20. Further, the transmitter 210 includes the antenna port described in this embodiment.
 設定部230は、受信部220により基地局10又は他の端末から受信した各種の設定情報を設定部230が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。 The setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device included in the setting unit 230, and reads the information from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance.
 制御部240は、端末20の制御を行う。また、制御部240はタイマ機能を含む。また、制御部240は測定機能を含む。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210を送信機と呼び、受信部220を受信機と呼んでもよい。 The control unit 240 controls the terminal 20. Further, the control unit 240 includes a timer function. Further, the control unit 240 includes a measurement function. A functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220. Further, the transmitter 210 may be called a transmitter, and the receiver 220 may be called a receiver.
 本実施の形態により、少なくとも、下記の付記1と付記2のそれぞれに記載の端末、基地局、及び通信方法が提供される。 According to this embodiment, at least the terminal, base station, and communication method described in Appendix 1 and Appendix 2 below are provided.
 <付記1>
(付記項1)
 所定の周期よりも長い周期の測定用ウィンドウの設定情報を基地局から受信する受信部と、
 前記測定用ウィンドウを用いて、ダウンリンク信号を測定する制御部と
 を備える端末。
(付記項2)
 基地局からタイマ値を受信する受信部と、
 前記タイマ値を有するタイマが開始した後、前記タイマが動作中の間、測定用ウィンドウを用いた測定の対象であるダウンリンク信号が送信されていないと想定する制御部と
 を備える端末。
(付記項3)
 基地局からタイマ値を受信する受信部と、
 前記タイマ値を有するタイマが開始した後、前記タイマが動作中の間、所定の周期よりも長い周期の測定用ウィンドウを用いてダウンリンク信号を測定する制御部と
 を備える端末。
(付記項4)
 基地局から休止期間の値を受信する受信部と、
 前記休止期間において、測定用ウィンドウを用いた測定の対象であるダウンリンク信号が送信されていないと想定する制御部と
 を備える端末。
(付記項5)
 所定の周期よりも長い周期の測定用ウィンドウの設定情報を端末へ送信する送信部と、
 前記端末により前記測定用ウィンドウを用いて実行されたダウンリンク信号の測定の結果を受信する受信部と
 を備える基地局。
(付記項6)
 所定の周期よりも長い周期の測定用ウィンドウの設定情報を基地局から受信し、
 前記測定用ウィンドウを用いて、ダウンリンク信号を測定する
 端末が実行する通信方法。
<Additional note 1>
(Additional note 1)
a receiving unit that receives setting information for a measurement window with a cycle longer than a predetermined cycle from a base station;
A terminal comprising: a control unit that measures a downlink signal using the measurement window.
(Additional note 2)
a receiving unit that receives a timer value from a base station;
and a control unit that assumes that a downlink signal to be measured using a measurement window is not being transmitted while the timer is in operation after the timer having the timer value is started.
(Additional note 3)
a receiving unit that receives a timer value from a base station;
A control unit that measures a downlink signal using a measurement window with a cycle longer than a predetermined cycle while the timer is in operation after the timer having the timer value starts.
(Additional note 4)
a receiving unit that receives an idle period value from a base station;
and a control unit that assumes that a downlink signal that is a target of measurement using a measurement window is not being transmitted during the idle period.
(Additional note 5)
a transmitter that transmits setting information of a measurement window with a cycle longer than a predetermined cycle to the terminal;
a receiving unit that receives a result of a downlink signal measurement performed by the terminal using the measurement window.
(Additional note 6)
Receive setting information for a measurement window with a cycle longer than a predetermined cycle from the base station,
A communication method performed by a terminal, comprising: measuring a downlink signal using the measurement window.
 付記項1~6のいずれによっても、無線通信システムにおいて、端末が、基地局から周期的に送信されるダウンリンク信号の測定を適切に行うための技術が提供される。 Any of Supplementary Notes 1 to 6 provides a technique for a terminal to appropriately measure a downlink signal periodically transmitted from a base station in a wireless communication system.
 <付記2>
(付記項1)
 所定の周期よりも長い周期の測定ギャップの設定情報を基地局から受信する受信部と、
 前記測定ギャップを用いて、ダウンリンク信号を測定する制御部と
 を備える端末。
(付記項2)
 基地局からタイマ値を受信する受信部と、
 前記タイマ値を有するタイマが開始した後、前記タイマが動作中の間、測定ギャップを用いたダウンリンク信号の測定を実行しない制御部と
 を備える端末。
(付記項3)
 基地局からタイマ値を受信する受信部と、
 前記タイマ値を有するタイマが開始した後、前記タイマが動作中の間、所定の周期よりも長い周期の測定ギャップを用いてダウンリンク信号を測定する制御部と
 を備える端末。
(付記項4)
 基地局から休止期間の値を受信する受信部と、
 前記休止期間において、測定ギャップを用いたダウンリンク信号の測定を実行しない制御部と
 を備える端末。
(付記項5)
 所定の周期よりも長い周期の測定ギャップの設定情報を端末へ送信する送信部と、
 前記端末により前記測定ギャップを用いて実行されたダウンリンク信号の測定の結果を受信する受信部と
 を備える基地局。
(付記項6)
 所定の周期よりも長い周期の測定ギャップの設定情報を基地局から受信し、
 前記測定ギャップを用いて、ダウンリンク信号を測定する
 端末が実行する通信方法。
<Additional note 2>
(Additional note 1)
a receiving unit that receives setting information of a measurement gap with a cycle longer than a predetermined cycle from a base station;
A terminal comprising: a control unit that measures a downlink signal using the measurement gap.
(Additional note 2)
a receiving unit that receives a timer value from a base station;
and a control unit that does not perform measurement of a downlink signal using a measurement gap while the timer is in operation after the timer having the timer value is started.
(Additional note 3)
a receiving unit that receives a timer value from a base station;
A control unit that measures a downlink signal using a measurement gap with a cycle longer than a predetermined cycle while the timer is in operation after the timer having the timer value starts.
(Additional note 4)
a receiving unit that receives an idle period value from a base station;
and a control unit that does not perform downlink signal measurement using a measurement gap during the idle period.
(Additional note 5)
a transmitting unit that transmits setting information of a measurement gap with a cycle longer than a predetermined cycle to the terminal;
a receiving unit that receives a result of a downlink signal measurement performed by the terminal using the measurement gap.
(Additional note 6)
Receive configuration information for a measurement gap with a cycle longer than a predetermined cycle from a base station,
A communication method performed by a terminal, comprising: measuring a downlink signal using the measurement gap.
 付記項1~6のいずれによっても、無線通信システムにおいて、端末が、基地局から周期的に送信されるダウンリンク信号の測定を適切に行うための技術が提供される。 Any of Supplementary Notes 1 to 6 provides a technique for a terminal to appropriately measure a downlink signal periodically transmitted from a base station in a wireless communication system.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図16及び図17)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 16 and 17) used to explain the above embodiments show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 18 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure. The base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured with a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, the above-described control unit 140, control unit 240, etc. may be implemented by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図16に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図17に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 140 of the base station 10 shown in FIG. 16 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 17 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured. The storage device 1002 may be called a register, cache, main memory, or the like. The storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. The above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission path interface, etc. may be realized by the communication device 1004. The transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 また、端末20あるいは基地局10を車両2001に備えてもよい。図19に車両2001の構成例を示す。図19に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。端末20の機能が通信モジュール2013に搭載されてもよい。 Additionally, the terminal 20 or the base station 10 may be provided in the vehicle 2001. FIG. 19 shows an example of the configuration of vehicle 2001. As shown in FIG. 19, a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013. The functions of the terminal 20 may be installed in the communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカー、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. In addition, the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever. A shift lever operation signal acquired by the sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary information on the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The classification of items in the above explanation is not essential to the present invention, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems and systems expanded based on these. It may be applied to at least one next generation system. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this specification, specific operations performed by the base station 10 may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station 10, various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to). Although the case where there is one network node other than the base station 10 is illustrated above, the other network node may be a combination of multiple other network nodes (for example, MME and S-GW). .
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)," "wireless base station," "base station," "fixed station," "NodeB," "eNodeB (eNB)," and "gNodeB ( gNB)”, “access point”, “transmission point”, “reception point”, “transmission/reception point”, “cell”, “sector”, Terms such as "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, receiving device, communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a terminal. For example, a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.) Each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions that the base station 10 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。 Similarly, a terminal in the present disclosure may be replaced by a base station. In this case, a configuration may be adopted in which the base station has the functions that the above-described terminal has.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (e.g., accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" mean that resolving, selecting, choosing, establishing, comparing, etc. are considered to be "judgement" and "decision." may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。また、1スロットが単位時間と呼ばれてもよい。単位時間は、ニューメロロジに応じてセル毎に異なっていてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. It's okay. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe. Furthermore, one slot may be called a unit time. The unit time may be different for each cell depending on the numerology.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on newerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)

Claims (6)

  1.  所定の周期よりも長い周期の測定ギャップの設定情報を基地局から受信する受信部と、
     前記測定ギャップを用いて、ダウンリンク信号を測定する制御部と
     を備える端末。
    a receiving unit that receives setting information of a measurement gap with a cycle longer than a predetermined cycle from a base station;
    A terminal comprising: a control unit that measures a downlink signal using the measurement gap.
  2.  基地局からタイマ値を受信する受信部と、
     前記タイマ値を有するタイマが開始した後、前記タイマが動作中の間、測定ギャップを用いたダウンリンク信号の測定を実行しない制御部と
     を備える端末。
    a receiving unit that receives a timer value from a base station;
    A control unit that does not perform measurement of a downlink signal using a measurement gap while the timer is in operation after the timer having the timer value is started.
  3.  基地局からタイマ値を受信する受信部と、
     前記タイマ値を有するタイマが開始した後、前記タイマが動作中の間、所定の周期よりも長い周期の測定ギャップを用いてダウンリンク信号を測定する制御部と
     を備える端末。
    a receiving unit that receives a timer value from a base station;
    A control unit that measures a downlink signal using a measurement gap with a cycle longer than a predetermined cycle while the timer is in operation after the timer having the timer value starts.
  4.  基地局から休止期間の値を受信する受信部と、
     前記休止期間において、測定ギャップを用いたダウンリンク信号の測定を実行しない制御部と
     を備える端末。
    a receiving unit that receives an idle period value from a base station;
    and a control unit that does not perform downlink signal measurement using a measurement gap during the idle period.
  5.  所定の周期よりも長い周期の測定ギャップの設定情報を端末へ送信する送信部と、
     前記端末により前記測定ギャップを用いて実行されたダウンリンク信号の測定の結果を受信する受信部と
     を備える基地局。
    a transmitting unit that transmits setting information of a measurement gap with a cycle longer than a predetermined cycle to the terminal;
    a receiving unit that receives a result of a downlink signal measurement performed by the terminal using the measurement gap.
  6.  所定の周期よりも長い周期の測定ギャップの設定情報を基地局から受信し、
     前記測定ギャップを用いて、ダウンリンク信号を測定する
     端末が実行する通信方法。
    Receive configuration information for a measurement gap with a cycle longer than a predetermined cycle from a base station,
    A communication method performed by a terminal, comprising: measuring a downlink signal using the measurement gap.
PCT/JP2022/017758 2022-04-13 2022-04-13 Terminal, base station, and communication method WO2023199454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017758 WO2023199454A1 (en) 2022-04-13 2022-04-13 Terminal, base station, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017758 WO2023199454A1 (en) 2022-04-13 2022-04-13 Terminal, base station, and communication method

Publications (1)

Publication Number Publication Date
WO2023199454A1 true WO2023199454A1 (en) 2023-10-19

Family

ID=88329335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017758 WO2023199454A1 (en) 2022-04-13 2022-04-13 Terminal, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2023199454A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509688A (en) * 2012-03-06 2015-03-30 サムスン エレクトロニクス カンパニー リミテッド Method and system for minimizing user terminal power consumption during cell detection
JP2021515457A (en) * 2018-02-23 2021-06-17 アイディーエーシー ホールディングス インコーポレイテッド Systems and methods for bandwidth partial operation
WO2021152674A1 (en) * 2020-01-27 2021-08-05 株式会社Nttドコモ Terminal, wireless communication method, and base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509688A (en) * 2012-03-06 2015-03-30 サムスン エレクトロニクス カンパニー リミテッド Method and system for minimizing user terminal power consumption during cell detection
JP2021515457A (en) * 2018-02-23 2021-06-17 アイディーエーシー ホールディングス インコーポレイテッド Systems and methods for bandwidth partial operation
WO2021152674A1 (en) * 2020-01-27 2021-08-05 株式会社Nttドコモ Terminal, wireless communication method, and base station

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Enhancements to initial access procedure", 3GPP TSG RAN WG1 #99, R1-1912710, 9 November 2019 (2019-11-09), XP051823554 *
ZTE CORPORATION, SANECHIPS: "Consideration on the measurement configuration and reporting in NTN", 3GPP TSG RAN WG2 #112-E, R2-2009804, 23 October 2020 (2020-10-23), XP051942620 *

Similar Documents

Publication Publication Date Title
WO2023199454A1 (en) Terminal, base station, and communication method
WO2023199453A1 (en) Terminal, base station, and communication method
WO2023199451A1 (en) Terminal, base station, and communication method
WO2023199452A1 (en) Terminal, base station, and communication method
WO2024034033A1 (en) Terminal, base station, and communication method
WO2024034034A1 (en) Terminal, base station, and communication method
WO2023199392A1 (en) Terminal, base station, and communication method
WO2023195187A1 (en) Terminal, base station, and communication method
WO2024034137A1 (en) Terminal, base station, and communication method
WO2023195186A1 (en) Terminal, base station, and communication method
WO2023195184A1 (en) Terminal, base station, and communication method
WO2023195185A1 (en) Terminal, base station, and communication method
WO2024057463A1 (en) Terminal and communication method
WO2023195182A1 (en) Terminal, base station, and communication method
WO2023209906A1 (en) Terminal and base station
WO2023195183A1 (en) Terminal, base station, and communication method
WO2023188440A1 (en) Terminal, base station, and communication method
WO2023209907A1 (en) Terminal and base station
WO2023209908A1 (en) Terminal and base station
WO2023170976A1 (en) Terminal, base station, and communication method
WO2023199498A1 (en) Terminal, base station, and communication method
WO2023195142A1 (en) Terminal, base station, and communication method
WO2023170977A1 (en) Terminal, base station, and communication method
WO2023195141A1 (en) Terminal, base station, and communication method
WO2024004109A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937433

Country of ref document: EP

Kind code of ref document: A1