WO2024032792A1 - 信道状态信息报告传输方法与装置、终端设备和网络设备 - Google Patents

信道状态信息报告传输方法与装置、终端设备和网络设备 Download PDF

Info

Publication number
WO2024032792A1
WO2024032792A1 PCT/CN2023/112715 CN2023112715W WO2024032792A1 WO 2024032792 A1 WO2024032792 A1 WO 2024032792A1 CN 2023112715 W CN2023112715 W CN 2023112715W WO 2024032792 A1 WO2024032792 A1 WO 2024032792A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
measurement result
information
report
csi report
Prior art date
Application number
PCT/CN2023/112715
Other languages
English (en)
French (fr)
Inventor
王化磊
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2024032792A1 publication Critical patent/WO2024032792A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communication technology, and in particular to a channel state information report transmission method and device, terminal equipment and network equipment.
  • CSI channel state information
  • the CSI architecture may involve CSI Resource Configuration (CSI Resource Configuration), CSI Report Configuration (CSI Report Configuration), the priority of the CSI report, the CSI processing unit occupied by the CSI report (CSI processing unit, CPU), the CSI of the CSI report Computation time requirement (computation time requirement), etc.
  • CSI reports may need to contain (carry/carry, etc.) some new information in order to enhance CSI reporting, and the current CSI architecture may not be suitable for such CSI reports (i.e., include CSI report with new information), so how to enhance the CSI architecture to adapt to this type of CSI report requires further research.
  • This application provides a channel state information report transmission method and device, terminal equipment and network equipment, in order to solve the problem of enhanced CSI reporting, thereby ensuring CSI performance.
  • the first aspect is a channel state information report transmission method of the present application, including:
  • the second measurement result is a measurement result obtained by measuring based on one or more channel state information reference signal CSI-RS transmission timings.
  • the CSI report needs to include the measurement result obtained by measuring based on TRS resources (ie, the first measurement result) and/or measuring based on one or more CSI-RS transmission opportunities. Obtain the measurement result (ie the second measurement result).
  • the CSI report including the first measurement result and/or the second measurement result may be called a first CSI report.
  • this application uses the first CSI report to include the first measurement results for reporting/feedback, thereby achieving reporting/feedback of measurement results based on TRS resources.
  • the first CSI report contains the more/new CSI information for reporting/feedback, thereby achieving enhanced CSI reporting/feedback. And because more/new CSI information will help improve the accuracy of downlink channel quality assessment, thereby improving transmission performance and meeting complex and diverse transmission requirements.
  • the second aspect is a channel state information report transmission method of the present application, including:
  • the second measurement result is a measurement result obtained by measuring based on one or more channel state information reference signal CSI-RS transmission timings.
  • the third aspect is a channel state information report transmission device of the present application, including:
  • a sending unit configured to send a first channel state information CSI report, where the first CSI report includes a first measurement result and/or a second measurement result, where the first measurement result is measured based on the tracking reference signal TRS resource.
  • the second measurement result is a measurement result obtained by measuring based on one or more channel state information reference signal CSI-RS transmission timings.
  • the fourth aspect is a channel state information report transmission device of the present application, including:
  • a receiving unit configured to receive a first channel state information CSI report, where the first CSI report includes a first measurement result and/or a second measurement result, where the first measurement result is measured based on a tracking reference signal TRS resource.
  • the second measurement result is a measurement result obtained by measuring based on one or more channel state information reference signal CSI-RS transmission timings.
  • the steps in the method designed in the first aspect are applied to terminal equipment or terminal equipment.
  • the steps in the method designed in the second aspect are applied to network equipment or network equipment.
  • the seventh aspect is a terminal device of the present application, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the first aspect. Steps in the designed method.
  • the eighth aspect is a network device of the present application, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the second aspect. Steps in the designed method.
  • a ninth aspect is a chip of the present application, including a processor and a communication interface, wherein the processor executes the above first aspect or Steps in the method designed in the second aspect.
  • a tenth aspect is a chip module of the present application, including a transceiver component and a chip.
  • the chip includes a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • the eleventh aspect is a computer-readable storage medium of the present application, wherein it stores a computer program or instructions, and when the computer program or instructions are executed, the method designed in the first aspect or the second aspect is implemented. A step of.
  • the computer program or instructions are executed by a processor.
  • a twelfth aspect is a computer program product of the present application, including a computer program or instructions, wherein when the computer program or instructions are executed, the steps in the method designed in the first aspect or the second aspect are implemented.
  • the computer program or instructions are executed by a processor.
  • a thirteenth aspect is a communication system of the present application, including the terminal device in the seventh aspect and the network device in the eighth aspect.
  • Figure 1 is an architectural schematic diagram of a communication system according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a CSI measurement window and a CSI report window according to an embodiment of the present application
  • Figure 3 is a schematic flow chart of a channel state information report transmission method according to an embodiment of the present application.
  • Figure 4 is a functional unit block diagram of a channel state information report transmission device according to an embodiment of the present application.
  • Figure 5 is a functional unit block diagram of a channel state information report transmission device according to an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • a and/or B in the embodiment of this application describes the association relationship of associated objects, indicating that three relationships can exist.
  • a and/or B can represent the following three situations: A exists alone; A and B exist simultaneously; B exists alone. Among them, A and B can be singular or plural.
  • the symbol “/" can indicate that the related objects are an “or” relationship.
  • the symbol “/” can also represent the division sign, that is, performing division operations.
  • A/B can mean A divided by B.
  • At least one item (item) refers to any combination of these items, including any combination of single item (items) or plural items (items), and refers to one or more, Multiple means two or more.
  • at least one of a, b or c can represent the following seven situations: a, b, c, a and b, a and c, b and c, a, b and c.
  • each of a, b, and c can be an element or a set containing one or more elements.
  • Equal in the embodiments of this application can be used in conjunction with greater than, and is applicable to the technical solution adopted when it is greater than, and can also be used in conjunction with less than, and is applicable to the technical solution adopted when it is less than. When equal is used with greater than, do not use it with less than; when equal to is used with less than, do not use it with greater than.
  • Connection in the embodiments of this application refers to various connection methods such as direct connection or indirect connection to realize communication between devices, and there is no limitation on this.
  • the “network” in the embodiment of this application can be expressed as the same concept as the "system", and the communication system is the communication network.
  • Size in the embodiment of the present application can be expressed as the same concept as “length”.
  • the “network” in the embodiment of this application can be expressed as the same concept as the "system", and the communication system is the communication network.
  • Reporting in the embodiment of this application can be expressed as the same concept as “reporting” or “feedback”.
  • CSI report can be expressed as the same concept as “CSI report”, “CSI feedback”, etc.
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • Advanced Long Term Evolution Advanced Long Term Evolution
  • LTE-A New Radio
  • NR New Radio
  • evolution system of NR system LTE (LTE-based Access to Unlicensed Spectrum, LTE-U) system on unlicensed spectrum, NR on unlicensed spectrum (NR-based Access to Unlicensed Spectrum, NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks, WLAN), Wireless Fidelity (Wi-Fi), 6th-Generation (6G) communication system or other communication systems, etc.
  • communication systems can not only support traditional communication systems, but also support device-to-device (D2D) communication, machine-to-machine (M2M) communication, and machine-type communication.
  • D2D device-to-device
  • M2M machine-to-machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • NB-IoT narrowband internet of things
  • the spectrum used for communication between the terminal device and the network device, or the spectrum used for communication between the terminal device and the terminal device may be a licensed spectrum or an unlicensed spectrum, which is not limited.
  • unlicensed spectrum can be understood as shared spectrum
  • licensed spectrum can be understood as unshared spectrum.
  • Terminal equipment can be a device with receiving and/or transmitting functions, and can also be called terminal, user equipment (UE), remote terminal equipment (remote UE), relay equipment (relay UE), interface Input terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote station, mobile equipment, user terminal equipment, intelligent terminal equipment, wireless communication equipment, user agent or user device.
  • a relay device is a terminal device that can provide relay and forwarding services for other terminal devices (including remote terminal devices).
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in unmanned autonomous driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, and transportation safety Wireless terminal equipment, wireless terminal equipment in smart city (smart city) or wireless terminal equipment in smart home (smart home), etc.
  • a mobile phone mobile phone
  • a tablet computer Pad
  • a computer with wireless transceiver functions a virtual reality (VR) terminal device
  • AR augmented reality
  • an industrial control Wireless terminal equipment in industrial control, wireless terminal equipment in unmanned autonomous driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, and transportation safety Wireless terminal equipment, wireless terminal equipment in smart city (smart city) or wireless terminal equipment in smart home (smart home), etc.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), Handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in next-generation communication systems (such as NR communication systems, 6G communication systems) or public utilities in future evolutions Terminal equipment in the land mobile communication network (public land mobile network, PLMN), etc., are not specifically limited.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in next-generation communication systems such as NR communication systems, 6G communication systems
  • public utilities in future evolutions Terminal equipment in the land mobile communication network (public land mobile network, PLMN), etc.
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; can be deployed on water (such as ships, etc.); can be deployed in the air (such as aircraft, balloons, satellites, etc.) .
  • the terminal device may include a device with a wireless communication function, such as a chip system, a chip, and a chip module.
  • a device with a wireless communication function such as a chip system, a chip, and a chip module.
  • the chip system may include a chip and may also include other discrete devices.
  • a network device may be a device with receiving and/or sending functions, used for communicating with terminal devices.
  • network equipment can be responsible for radio resource management (RRM), quality of service (QoS) management, data compression and encryption, data sending and receiving, etc. on the air interface side.
  • RRM radio resource management
  • QoS quality of service
  • data compression and encryption data sending and receiving, etc. on the air interface side.
  • the network device may be a base station (BS) in the communication system or a device deployed in a radio access network (RAN) to provide wireless communication functions.
  • BS base station
  • RAN radio access network
  • the network device may be an evolved node B (eNB or eNodeB) in the LTE communication system, a next generation evolved node B (ng-eNB) in the NR communication system, NR The next generation node B (gNB) in the communication system, the master node (MN) in the dual connection architecture, the second node or secondary node (SN) in the dual connection architecture, etc., There are no specific restrictions on this.
  • eNB evolved node B
  • ng-eNB next generation evolved node B
  • gNB next generation node B
  • MN master node
  • SN secondary node
  • the network equipment can also be equipment in the core network (core network, CN), such as access and mobility management function (AMF), user plane function (UPF) ), etc.; it can also be access point (AP), relay station in WLAN, communication equipment in the future evolved PLMN network, communication equipment in NTN network, etc.
  • core network CN
  • AMF access and mobility management function
  • UPF user plane function
  • AP access point
  • WLAN wireless local area network
  • communication equipment in the future evolved PLMN network communication equipment in NTN network, etc.
  • the network device may include a device that provides wireless communication functions for terminal devices, such as a chip system, a chip, and a chip module.
  • the chip system may include a chip, or may include other discrete devices.
  • network devices can communicate with Internet Protocol (IP) networks.
  • IP Internet Protocol
  • the Internet can be any Internet Protocol (IP) network.
  • private IP network can be any IP network.
  • the network device may be an independent node to implement the functions of the above-mentioned base station, or the network device may include two or more independent nodes to implement the functions of the above-mentioned base station.
  • network equipment includes centralized units (CU) and distributed units (DU), such as gNB-CU and gNB-DU.
  • DU distributed units
  • the network device may also include an active antenna unit (active antenna unit, AAU).
  • CU implements part of the functions of network equipment
  • DU implements another part of the functions of network equipment.
  • CU is responsible for processing non-real-time protocols and services, implementing the radio resource control (RRC) layer, service data adaptation protocol (SDAP) layer, and packet data convergence protocol (PDCP) layer function.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the wireless link control (radio link control, RLC) layer, the media access control (medium access control, MAC) layer and the physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • AAU can realize some physical layer processing functions, radio frequency processing and active antenna related functions.
  • the network device may include at least one of CU, DU, and AAU.
  • the CU may be divided into network devices in the RAN, or the CU may be divided into network devices in the core network, without specific limitations.
  • the network device can be any site in a multi-site that performs coherent joint transmission (CJT) with the terminal device, or other sites outside the multi-site, or other sites that are related to the terminal device.
  • CJT coherent joint transmission
  • Network equipment for network communication there are no specific restrictions on this.
  • multi-site coherent cooperative transmission can be joint coherent transmission for multiple sites, or different data belonging to the same physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) is sent from different sites to the terminal equipment, or multiple sites are virtualized.
  • PDSCH Physical Downlink Shared Channel
  • names with the same meaning specified in other standards are also applicable to this application, that is, this application does not limit the names of these parameters.
  • the sites in multi-site coherent cooperative transmission can be radio frequency remote heads (Remote Radio Head, RRH), transmission and reception points (transmission and reception point, TRP), network equipment, etc., and there are no specific restrictions on this.
  • the network device may be any one of the multiple sites that perform non-coherent cooperative transmission with the terminal device, or other sites outside the multi-site, or other network devices that perform network communication with the terminal device. , there is no specific restriction on this.
  • multi-site non-coherent cooperative transmission can be multiple sites joint non-coherent transmission, or different data belonging to the same PDSCH is sent from different sites to the terminal equipment, or different data belonging to the same PDSCH is sent from different sites to the terminal Equipment, names with the same meaning specified in other standards are also applicable to this application, that is, this application does not limit the names of these parameters.
  • the stations in multi-site non-coherent cooperative transmission can be RRH, TRP, network equipment, etc., and there is no specific limitation on this.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment in the cell can communicate with the network equipment through transmission resources (such as spectrum resources).
  • the cell can be a macro cell, a small cell, a metro cell, a micro cell, a pico cell, a femto cell, etc.
  • the communication system 10 may include a network device 110 and a terminal device 120 .
  • the terminal device 120 may communicate with the network device 110 wirelessly.
  • FIG. 1 is only an illustration of the network architecture of a communication system, and does not limit the network architecture of the communication system in the embodiment of the present application.
  • the communication system may also include a server or other devices.
  • the communication system may include multiple network devices and/or multiple terminal devices.
  • the transmitter has a antennas and the receiver has b antennas.
  • r is the received signal vector after passing through the MIMO channel
  • s is the transmitted signal vector at the transmitter
  • H is the b ⁇ a order channel matrix for the MIMO channel
  • n0 is the additive noise vector.
  • the transmitter can use the precoding mode to optimize the spatial characteristics of the transmitted signal vector s according to the channel matrix H, so that the spatial distribution characteristics of the transmitted signal vector s match the channel matrix H, thereby effectively reducing Dependence on the receiver algorithm and simplify the receiver algorithm.
  • precoding system performance can be effectively improved.
  • Precoding can use linear or nonlinear methods. Due to complexity and other reasons, only linear precoding is generally considered in current wireless communication systems.
  • W is the precoding matrix.
  • the receiver cannot perform channel estimation on signals sent to other devices, so transmitter precoding can effectively suppress multi-user interference. It can be seen that it is beneficial to the system that the transmitter knows the channel matrix and uses appropriate precoding to process it.
  • the precoding matrix W and the channel matrix H jointly determine the equivalent channel matrix (such as HW), and the equivalent channel matrix determines the channel characteristics/characteristics, etc.
  • the precoding matrix W can be derived from the channel matrix H.
  • the precoding matrix W can be a matrix under a certain transformation of the channel matrix H.
  • the singular value decomposition of the channel matrix H can be:
  • the column vectors in V can be called right-singular vectors of the channel matrix H;
  • is a diagonal matrix of order a ⁇ a.
  • ⁇ i represents the eigenvalue of the square matrix H T H
  • vi represents the eigenvector of the square matrix H T H.
  • the eigenvectors of H T H also represent the column vectors in V above. That is to say, all the eigenvectors of H T H can form the above V, and the eigenvectors of the square matrix H T H can be the right singular vector of the channel matrix H.
  • the terminal equipment performs channel measurement (evaluation/detection/estimation, etc.) through the downlink reference signal to obtain the channel matrix H.
  • the downlink reference signal may include channel state information reference signal (Channel State Information Reference Signal, CSI-RS), synchronization information block (SSB) or physical broadcast channel demodulation reference signal (PBCH DMRS).
  • CSI-RS Channel State Information Reference Signal
  • SSB synchronization information block
  • PBCH DMRS physical broadcast channel demodulation reference signal
  • the terminal device can perform downlink channel measurement on the current channel according to the CSI-RS to obtain the channel matrix, thereby obtaining the channel matrix through the CSI-RS.
  • the terminal equipment can perform downlink channel measurement on the current channel according to SSB or PBCH DMRS to obtain the channel matrix, Thereby obtaining the channel matrix through SSB or PBCH DMRS.
  • the standard protocols specified by 3GPP standardize the CSI architecture.
  • the CSI architecture may involve CSI Resource Configuration (CSI Resource Configuration), CSI Report Configuration (CSI Report Configuration), CSI report priority (priority), CSI report occupied (occupied) CSI processing unit (CPU) ), CSI calculation time requirement (computation time requirement) of CSI report, etc.
  • CSI Resource Configuration CSI Resource Configuration
  • CSI Report Configuration CSI Report Configuration
  • CSI report priority priority
  • CSI calculation time requirement computation time requirement
  • CSI-MeasConfig can include the following two high-level parameters: CSI resource configuration (CSI-ResourceConfig) and CSI report configuration (CSI-ReportConfig).
  • CSI-ResourceConfig can be used to configure the channel state information reference signal resource (CSI-RS Resource) for CSI measurement.
  • the CSI measurement may be channel measurement and/or interference measurement using CSI-RS resources.
  • CSI-ReportConfig can be used to configure CSI reporting, that is, configure CSI reporting.
  • CSI-ReportConfig will indicate/contain the CSI resource configuration identifier (CSI-ResourceConfigId)
  • CSI-ResourceConfig will be associated (corresponding/mapped) to CSI-ReportConfig through CSI-ResourceConfigId.
  • CSI-ResourceConfig can configure resource sets (such as ResourceSet), and ResourceSet can contain the most basic CSI-RS resources.
  • the CSI-RS resource may include at least one of the following: non-zero power CSI-RS (NZP-CSI-RS) resource set (NZP-CSI-RS-ResourceSet), CSI Interference Measurement (CSI-IM) resource Set (CSI-IM-ResourceSet), synchronization signal block (SSB) resource set (CSI-SSB-ResourceSet).
  • NZP-CSI-RS non-zero power CSI-RS
  • NZP-CSI-RS-RS-ResourceSet CSI Interference Measurement
  • CSI-IM-ResourceSet CSI Interference Measurement resource Set
  • SSB synchronization signal block
  • NZP-CSI-RS-ResourceSet can be used for channel measurement and/or interference measurement; CSI-IM-ResourceSet can be used for interference measurement; CSI-SSB-ResourceSet can be used for channel measurement.
  • the resource type (resourceType) in CSI-ResourceConfig can be used to configure the type of CSI-RS resource.
  • Types of CSI-RS resources may include: periodic (periodic) CSI-RS resources, semi-persistent (semi-persistent) CSI-RS resources, and aperiodic (aperiodic) CSI-RS resources.
  • CSI-RS resources can be configured as tracking reference signal (tracking reference signal, TRS) resources.
  • TRS tracking reference signal
  • the types of TRS resources may include: periodic TRS resources and aperiodic TRS resources.
  • CSI reports can be transmitted through the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the report configuration type (reportConfigType) in CSI-ReportConfig can be used to configure the report type of the CSI report.
  • Report types of CSI reports may include: periodic CSI reports, aperiodic CSI reports, semi-persistent CSI reports carried on PUCCH, and semi-persistent CSI reports carried on PUSCH.
  • the CSI report may be wideband CSI or subband CSI.
  • the bandwidth can be defined as the configured bandwidth part (BWP) size
  • the subband can be defined as A continuous physical resource block (PRB)
  • PRB physical resource block
  • the subband size (size) depends on the total number of PRBs in the BWP.
  • the correspondence between the total number of PRBs in BWP and the subband size is shown in Table 2.
  • the CSI report may contain at least one of the following: layer 1 reference signal received power (L1-RSRP), layer 1 signal-to-noise and interference ratio (L1-SINR) ), CSI-related quantities/CSI parameters, etc.
  • L1-RSRP layer 1 reference signal received power
  • L1-SINR layer 1 signal-to-noise and interference ratio
  • the CSI related parameters/CSI parameters may include at least one of the following: CSI reference signal resource indicator index (CSI-RS Resource Indicator, CRI), synchronization signal block resource indicator index (SS/PBCH block resource indicator, SSBRI), Rank indicator index (rank indicator, RI), precoding matrix indicator index (precoding matrix indicator, PMI), channel quality indicator index (channel quality indicator, CQI), layer indicator index (layer indicator, LI), etc.
  • CSI-RS Resource Indicator CRI
  • SS/PBCH block resource indicator SSBRI
  • Rank indicator index rank indicator, RI
  • precoding matrix indicator index precoding matrix indicator index
  • channel quality indicator index channel quality indicator, CQI
  • layer indicator index layer indicator, LI
  • the CRI may represent the CSI-RS (or SSB) resources recommended (or selected) by the terminal device.
  • a CSI-RS (or SSB) resource can represent a beam or antenna direction.
  • RI can represent the number of layers recommended (or selected) by the terminal device, and the number of layers can determine which codebook. Among them, each layer corresponds to a codebook, and a codebook consists of one or more codewords. For example, a codebook with a level of 2 or a codebook with a level of 1. In addition, in MIMO technology, the number of layers can be used to represent the number of transmission links between the sending end and the receiving end.
  • PMI can represent the index of the codeword in the codebook recommended (or selected) by the terminal device, or the quantized precoding information. Among them, one codeword corresponds to one precoding matrix. RI and PMI can collectively represent the number of layers and precoding matrix recommended by the terminal device.
  • CQI can indicate the channel quality of the current channel that the terminal device feeds back to the network device. Among them, the terminal device needs to calculate CQI.
  • the standard protocols specified by 3GPP can support Type I (Type I) CSI feedback (feedback), Type II CSI feedback, Enhanced (Enhanced) Type II CSI feedback, and Further Enhanced (Further Enhanced) Type II CSI feedback.
  • Type I CSI feedback The basic principle of Type I CSI feedback is that the terminal device can match the codebook specified by the protocol with the estimated channel, select the codebook that best matches the channel, and then feed back the index corresponding to the codebook to the network device.
  • Type II CSI feedback uses high-resolution CSI feedback to perform certain processing on the estimated channel, thereby feeding back the processed information, including amplitude and Phase quantization, etc.
  • the CSI report on PUSCH can support Type I CSI feedback, Type II CSI feedback, enhanced Type II CSI feedback, and further enhanced Type II CSI feedback.
  • a CSI report can be composed of two parts (part), namely Part 1 (Part 1) and Part 2 (Part 2).
  • the payload size of Part 1 may be fixed, and Part 1 may be used to determine the number of information bits in Part 2.
  • Part 1 and Part 2 may be different in different circumstances. details as follows:
  • Part 1 can include RI (if reported), CRI (if reported), CQI of the first codeword (if reported); Part 2 can include PMI (if reported) reported), the CQI of the second codeword (if reported), LI (if reported) when RI (if reported) is greater than 4.
  • Part 1 may contain an indication of the RI (if reported), CQI, and the number of non-zero wideband amplitude coefficients for each layer of Type II CSI. Among them, the fields of part 1 (RI, CQI, indication of the number of non-zero wideband amplitude coefficients per layer) may be coded separately.
  • Part 2 may contain Type II CSI PMI, LI (if reported). Part 1 and part 2 may be encoded separately.
  • Part 1 may contain an indication of the total number of non-zero amplitude coefficients of RI (if reported), CQI, all layers of enhanced Type II CSI). Wherein, the fields of part 1 (RI, CQI, indication of the total number of non-zero amplitude coefficients) may be coded separately.
  • Part 2 may include PMI that enhances Type II CSI. Part 1 and part 2 may be encoded separately.
  • parameter y can be 0;
  • parameter y For semi-persistent CSI reports scheduled to be carried on PUSCH, the value of parameter y can be 1;
  • the value of parameter y can be 2;
  • the value of y may be 3; and so on.
  • the value of reference k may be determined by the type of information contained in the CSI report indicated by the information in CSI-ReportConfig (such as the report parameter (reportQuantity)).
  • parameter k can be 0;
  • the value of parameter k can be 1; and so on.
  • the value of parameter c can be the serving cell index value.
  • the value of parameter s can be the value of the report configuration index (reportConfigID) in CSI-ReportConfig.
  • the value of the parameter N cells can be the value of the high-level parameter maximum number of serving cells (maxNrofServingCells).
  • the value of parameter Ms can be the value of the maximum number of high-level parameter CSI report configurations (maxNrofCSI-ReportConfigurations).
  • the name of the maximum number of serving cells specified in the standard protocol is maxNrofServingCells
  • the name of the CSI report configuration index is reportConfigID
  • the name of the maximum number of CSI report configurations is maxNrofCSIReportConfigurations.
  • the names with the same meaning specified in other standards are also the same. Applicable to this application, that is, this application does not limit the names of these parameters.
  • a CSI report can be associated with a priority value, if the priority value Pri CSI (y,k,c,s) associated with a CSI report is less than the priority value Pri CSI (y,k,c,s) associated with another CSI report y, k, c, s), then the priority of this CSI report is higher than the priority of the other CSI report.
  • the terminal device does not transmit CSI reports with a higher priority value Pri CSI (y,k,c,s);
  • the two CSI reports can be multiplexed or discarded based on the priority value.
  • the terminal device can indicate the number of simultaneous CSI calculations (simultaneous CSI calculations) it supports through high-level parameters (such as simultaneous CSI reports per component carrier (simultaneousCSI-ReportsPerCC)), N CPU .
  • simultaneous CSI calculations simultaneous CSI calculations
  • high-level parameters such as simultaneous CSI reports per component carrier (simultaneousCSI-ReportsPerCC)
  • the terminal device can indicate the number of simultaneous CSI calculations it supports, N CPU , through high-level parameters (such as simultaneous CSI reports for all component carriers (simultaneousCSI-ReportsAllCC)).
  • the terminal device If the terminal device supports simultaneous CSI calculation, the terminal device is said to have N CPU CSI processing units for processing CSI reports.
  • the CSI processing unit occupied by the CSI report can represent the terminal device's ability to process CSI.
  • N CPU can be understood as the maximum number or total number of CPUs supported by the terminal device.
  • the N CPU can be reported by the terminal device to the network device through high-level parameters (such as simultaneousCSI-ReportsPerCC and/or simultaneousCSI-ReportsAllCC).
  • the terminal device has N CPU -L unoccupied CSI processing units.
  • the network device configures three CSI reports for the terminal device, namely CSI report 0, CSI report 1 and CSI report 2.
  • the priority of CSI report 0 is higher than the priority of CSI report 1
  • the priority of CSI report 1 is higher than the priority of CSI report 2.
  • the terminal device has 10 unoccupied CSI processing units, if CSI report 0 occupies 5 CSI processing units (i.e. ), CSI report 1 occupies 3 CSI processing units (i.e. ), CSI report 2 occupies 5 CSI processing units (i.e. ), then since 5+3+5>10, the terminal device does not need to update CSI report 2.
  • the number of CSI processing units O CPU occupied by a CSI report can exist as follows:
  • the number of CSI processing units occupied by the CSI report is the total number of CSI processing units reported by the terminal device.
  • ⁇ PDCCH corresponds to the subcarrier of the PDCCH that transmits DCI interval
  • ⁇ UL corresponds to the subcarrier interval of PUSCH carrying CSI
  • ⁇ CSI-RS corresponds to the subcarrier interval of DCI-triggered aperiodic CSI-RS.
  • the codebookType in the CSI-ReportConfig corresponding to a CSI report is set to 'typeI-SinglePanel', and the corresponding CSI-RS resource set used for channel measurement is configured with 2 resource groups, including N resource pairs, M
  • O CPU 2N+M. That is to say, the number of CSI processing units occupied by the CSI report is 2N+M.
  • O CPU K s , where K s is the number of NZP-CSI-RS resources (which may also be called channel measurement resources) used for channel measurement in the NZP-CSI-RS-ResourceSet. That is to say, the number of CSI processing units occupied by the CSI report may be the number of channel measurement resources associated with the CSI report.
  • the number of OFDM symbols occupied by the CSI processing unit occupied by the CSI report can exist as follows:
  • the OFDM symbols occupied by the CSI processing unit occupied by the periodic CSI report or the semi-persistent CSI report are:
  • the corresponding CSI reference resource is up to the last symbol of the reported resource, where the reported resource is the PUSCH/PUCCH used to carry the periodic CSI report or semi-persistent CSI report.
  • the reporting resource is the PUSCH used to carry the aperiodic CSI report.
  • the reported resource is the PUSCH used to carry the first semi-persistent CSI report.
  • the number of OFDM symbols occupied by the CSI processing unit occupied by the CSI report can exist as follows:
  • the measurement resource is the latest one among the CSI-RS/SSB resources used for channel measurement in L1-RSRP calculation.
  • the terminal device can provide a valid CSI report.
  • Z ref is defined as the next uplink symbol
  • CP cyclic prefix
  • Z' ref (n) is defined as the next uplink symbol.
  • the measurement resources are aperiodic CSI-RS resources used for channel measurement (when aperiodic CSI-RS is used for channel measurement of the nth triggered CSI report), aperiodic CSI-RS resources used for interference measurement IM, used for interference measurement The latest one of the non-periodic NZP CSI-RS.
  • the terminal device may ignore the DCI. In other words, the terminal device does not need to report the CSI report triggered by the DCI.
  • the terminal device may ignore the DCI.
  • the terminal device does not need to update the CSI for the nth triggered CSI report.
  • is the subcarrier spacing configuration and corresponds to min( ⁇ PDCCH , ⁇ CSI-RS , ⁇ UL ).
  • ⁇ PDCCH corresponds to the subcarrier spacing of PDCCH that transmits DCI
  • ⁇ UL corresponds to the subcarrier spacing of PUSCH that carries CSI
  • ⁇ CSI-RS corresponds to the subcarrier spacing of aperiodic CSI-RS triggered by DCI.
  • is the subcarrier spacing configuration and corresponds to min( ⁇ PDCCH , ⁇ CSI-RS , ⁇ UL ).
  • (Z(m), Z′(m)) can be defined as (Z1 of Table 4 ,Z′ 1 ). or,
  • (Z(m), Z′(m)) can be defined as (Z 3 , Z′ 3 ) in Table 4.
  • X ⁇ can be determined based on the beam reporting time (beamReportTiming) capability reported by the terminal equipment. Determined, KB l is determined based on the beam switching time (beamSwitchTiming) capability reported by the terminal equipment. or,
  • (Z(m), Z′(m)) can be defined as (Z 2 , Z′ 2 ) of Table 4.
  • CSI calculation time requirements for CSI reports can be found in the corresponding chapters of the standard protocol (such as 3GPP 38.214), and there are no specific restrictions on this.
  • the relevant content/concepts/definitions/explanations in "10. CSI calculation time requirements for CSI reports” may also be adapted to the modifications/changes of standard protocols (such as 3GPP 38.214).
  • Those skilled in the art can also deduce/obtain the modified content by combining the relevant content/concepts/definitions/explanations, etc. in "10. CSI calculation time requirements for CSI reports”. Therefore, the modified content is also within the scope of protection claimed by this application and will not be described again.
  • the terminal device can perform channel measurement and/or interference measurement through CSI-RS resources to obtain measurement results, and then carry these measurement results through CSI reports to implement CSI reporting.
  • the CSI report may need to include the measurement results obtained by measuring based on TRS resources (for ease of distinction and description, the measurement results are called “first measurement results”) and /Or the measurement result obtained by measuring based on one or more CSI-RS transmission occasions (for ease of distinction and description, the measurement result is called the "second measurement result").
  • the inclusion of the first measurement result in the CSI report can be regarded as an enhancement of the CSI reporting/feedback, because:
  • reportQuantity in CSI-ReportConfig may be set to 'none'.
  • the terminal device does not need to perform CSI reporting/feedback, that is, it will not report/feedback any measurement results.
  • the current standard protocol does not support periodic TRS resources associated with CSI-ReportConfig, so there is no CSI reporting/feedback.
  • the current measurement results obtained by measuring based on TRS resources are only used by terminal devices, and the measurement results are not reported/feedback to network devices.
  • the measurement results i.e., the first measurement results
  • the measurement results obtained by the terminal equipment in the embodiment of the present application based on TRS resources need to be reported/feedback to the network equipment, so that the CSI
  • the report needs to include the first measurement result to achieve enhanced CSI reporting/feedback.
  • the inclusion of the second measurement result in the CSI report can be regarded as an enhancement of the CSI reporting/feedback, because:
  • the CSI-RS transmission timing may be CSI-RS resources in the time domain, and the terminal device in the embodiment of the present application may perform measurements based on one or more CSI-RS transmission timings to obtain the measurement result (i.e., the second measurement result),
  • the second measurement result can contain more/new CSI information, and then the CSI report contains these more/new CSI information for reporting/feedback, thereby achieving enhanced CSI reporting/feedback.
  • more/new CSI information will help improve the accuracy of downlink channel quality assessment, thereby improving transmission performance and meeting complex and diverse transmission requirements.
  • CSI architecture described in "3. CSI Architecture" above may not be suitable for this type of CSI report (that is, a CSI report containing the first measurement result and/or the second measurement result). Therefore, this application also needs to perform CSI
  • the architecture is enhanced to accommodate this type of CSI reporting.
  • the embodiment of the present application needs to discuss that the CSI report contains the first measurement result and/or the second measurement result, in order to facilitate distinction and description, the embodiment of the present application refers to the CSI report containing the first measurement result and/or the second measurement result. It is the "first CSI report”. Of course, other terms can also be used to describe it, and there is no specific limitation on this.
  • the first CSI report may be a CSI report including the first measurement result and/or the second measurement result.
  • the first CSI report may also include at least one of the following: L1-RSRP, L1-SINR, CSI related parameters/CSI parameters, etc.
  • the CSI related parameters/CSI parameters may include at least one of the following: CRI, SSBRI, RI, PMI, CQI, LI, etc.
  • CSI-RS resources can be configured as TRS resources through higher layer parameters.
  • the embodiment of the present application can introduce information (such as trs-Info) into CSI-ResourceConfig, that is, CSI-ResourceConfig contains this information, and this information can be used to configure TRS resources.
  • information such as trs-Info
  • CSI-ResourceConfig contains this information, and this information can be used to configure TRS resources.
  • first configuration information In order to facilitate distinction and description, this information may be called "first configuration information”. Of course, other terms may also be used to describe it, such as TRS configuration information, TRS information, etc., without specific limitations.
  • TRS resources may be periodic or aperiodic.
  • the embodiment of the present application can introduce information (such as resourceType) into CSI-ResourceConfig, that is, CSI-ResourceConfig contains this information, and this information can be used to configure TRS resources to be periodic or aperiodic.
  • information such as resourceType
  • CSI-ResourceConfig contains this information, and this information can be used to configure TRS resources to be periodic or aperiodic.
  • this information can be called "second configuration information”.
  • TRS configuration information TRS information
  • TRS information TRS information
  • the first measurement result may be a measurement result obtained by measuring based on TRS resources.
  • the terminal equipment of the present application can perform measurements based on TRS resources to obtain the first measurement result, and then report/feedback the first measurement result by including the first measurement result in the CSI report, thereby achieving enhanced CSI reporting/feedback.
  • the first measurement result can be used to represent/characterize/describe the change characteristics of the downlink channel in the time domain (or the time domain change characteristics of the downlink channel), or the time domain characteristics of the downlink channel, etc.
  • the measurement results obtained by the terminal equipment when measuring the downlink channel based on the TRS resources can characterize the change characteristics of the downlink channel in the time domain, etc.
  • the first measurement result may include time-domain channel properties (TDCP).
  • TDCP time-domain channel properties
  • time domain channel attributes may include at least one of the following: Doppler shift, Doppler spread, delay spread, average delay ), differential Doppler shift, differential Doppler spread, differential delay spread, differential average delay, Doppler shift change rate, Doppler spread change rate, delay spread change rate, average delay change rate, cross-correlation in time, relative Doppler shift, Doppler domain vector, Doppler domain codebook/codeword, time domain vector, time domain codebook/codeword.
  • the time domain channel attributes may include other information used to characterize the time domain variation characteristics/time domain characteristics of the downlink channel in addition to the information described above, or the time domain channel attributes may include the above described information. Information and the remaining information used to characterize the time domain variation characteristics/time domain characteristics of the downlink channel are not specifically limited.
  • the CSI-RS transmission timing can be understood as the CSI-RS resource in the time domain, or the time domain position of the CSI-RS resource, or the location/corresponding/occupied/associated location of the CSI-RS.
  • the time unit can be understood as the communication granularity in the time domain.
  • the time unit can be a subframe, a slot, a symbol, a mini slot, etc., and there is no specific restriction on this. That is to say, the time unit described in this application may be one of subframes, time slots, symbols or mini-slots.
  • one or more CSI-RS transmission timings may include multiple CSI-RS resources with different time domain locations, or may include Multiple time domain positions/times/moments/time units used to transmit CSI-RS.
  • multiple CSI-RS resources each have different time domain locations, or multiple CSI-RS resources corresponding to/occupied/associated with different time domain locations, or CSI-RS resources at different time domain locations.
  • multiple CSI-RS resources with different time domain locations can also be described as one of the following:
  • Multiple CSI-RS resources with different times/times/timings it can be understood as multiple CSI-RS resources corresponding to/occupied/associated with different times/times/timings, or CSI-RS transmitted at different times. resource;
  • ⁇ Multiple CSI-RS resources with different time units can be understood as multiple CSI-RS resources corresponding to/occupying/associated with different time units, or CSI-RS resources transmitted in different time units; for example, Taking the time unit as a time slot as an example, if the first CSI resource is transmitted in time slot 1 and the second CSI resource is transmitted in time slot 2, it means that the first CSI resource has time slot 1 and the second CSI resource has time slot 2;
  • ⁇ Different moments/times/time domain positions correspond to the same CSI-RS resource; it can be understood that the same CSI-RS resource is repeated multiple times at different moments/times/time domain positions;
  • the CSI-RS transmission timing can be understood as the time when the CSI-RS is/corresponds to/occupies/is associated with, or the time when the CSI-RS is/corresponds to/occupies/is associated with, or The time unit where the CSI-RS is/corresponds to/occupies/is associated with, or the time domain position where the CSI-RS is/corresponds to/occupies/is associated with, or the time/moment used for transmitting the CSI-RS. Time unit/time domain position, etc., there are no specific restrictions on this.
  • multiple CSI-RS resources with different time domain locations may include multiple repetitions of one CSI-RS resource at different time domain locations, or may include multiple CSI-RS resources in the time domain.
  • RS resources etc. Detailed explanation is given below.
  • multiple repetitions of a CSI-RS resource at different time domain positions can be understood as one CSI-RS being repeated in the time domain, and these repeated CSI-RSs must have different characteristics in the time domain. time domain position, but can have the same frequency domain position in the frequency domain. The number of repetitions may be 1 or more than 1, and there is no specific limit to this.
  • the repetition described in this application can be considered as the repeated transmission of signals in the time domain; however, at different time domain positions, the air domain information (such as beams) of the signal can be the same or different, and this application does not impose specific restrictions on this. .
  • this application can configure a CSI-RS resource according to CSI-ResourceConfig, and configure/indicate the number of repetitions of the CSI-RS resource and/or the CSI-RS resource in the time domain according to high-layer signaling/high-layer parameters, etc.
  • CSI-RS resources in the time domain can be understood as: these CSI-RS resources must have different time domain positions in the time domain, but they can have the same frequency domain position in the frequency domain, or they can have There are no specific restrictions on different frequency domain resource locations.
  • this application can configure multiple CSI-RS resources in the time domain based on CSI-ResourceConfig, thereby determining multiple CSI-RS transmission opportunities; finally, this application can configure multiple CSI-RS resources in the time domain based on the CSI-ReportConfig and CSI-ResourceConfig.
  • the association relationship determines that one CSI report is associated with the multiple CSI-RS transmission opportunities.
  • the second measurement result may be a measurement result obtained by measuring based on one or more CSI-RS transmission opportunities.
  • the terminal equipment of the present application can perform measurements based on one or more CSI-RS transmission opportunities to obtain the second measurement result, and the second measurement result can include more/new CSI information, and then include these through the CSI report. Report/feedback more/new CSI information to achieve enhanced CSI reporting/feedback.
  • the second measurement result may include at least one of the following: compression information, prediction information, and multiple sets of information.
  • the second measurement result may also include at least one of the following: CRI, SSBRI, RI, PMI, CQI, LI, etc.
  • the compressed information may be channel information corresponding to one or more CSI-RS transmission opportunities or information after compression processing of CSI parameters.
  • compressed information can be regarded as information after compression processing.
  • compressed information or “CSI parameters” can be regarded as information before compression processing.
  • the channel information may characterize the channel characteristics/characteristics of the downlink channel corresponding to one or more CSI-RS transmission opportunities;
  • the CSI parameters may include at least one of the following: CRI, SSBRI, RI, PMI , CQI, LI, etc.
  • the channel information in the embodiment of the present application may include at least one of the following: channel matrix H, equivalent channel matrix, and precoding matrix W (precoding matrix W can be derived from the channel matrix H out), the right singular vector V of the channel matrix H, the eigenvector v i of the square matrix H T H (the eigenvector of the matrix obtained by multiplying the conjugate transpose H T of the channel matrix H by the channel matrix H), the channel matrix H correlation vector (such as the vector of the channel matrix H under certain deformation, etc.).
  • precoding matrix W can be derived from the channel matrix H out
  • the right singular vector V of the channel matrix H the eigenvector v i of the square matrix H T H (the eigenvector of the matrix obtained by multiplying the conjugate transpose H T of the channel matrix H by the channel matrix H)
  • the channel matrix H correlation vector such as the vector of the channel matrix H under certain deformation, etc.
  • the channel information may also include time domain information of the channel, channel information in the delay-doppler domain, etc., which are not specifically limited.
  • the channel information may also include CRI, SSBRI, RI, PMI, CQI, LI, etc., without specific limitations.
  • channel information can be obtained by measuring the downlink reference signals corresponding to one or more CSI-RS transmission opportunities.
  • channel information may have characteristics such as a large number of bits
  • directly feeding back channel information will lead to problems such as more occupied resources and high signaling overhead. Therefore, the method of not directly feeding back channel information is usually adopted.
  • embodiments of the present application adopt a method of compressing channel information, so that the compressed channel information has characteristics such as a smaller number of bits.
  • the CSI information described in this application may include information/measurement results obtained through CSI measurement and/or information obtained by performing related processing (such as compression, prediction, etc.) on these information/measurement results.
  • the CSI information may Contains at least one of the following: CSI parameters, channel information, compression information, prediction information, multi-group information, CRI, SSBRI, RI, PMI, CQI, LI, etc., without specific restrictions.
  • the compression process may include at least one of compression, quantization, encoding, etc.
  • the terminal equipment in the embodiment of the present application can use the compression processing module to compress the channel information or CSI parameters, and the compressed channel information has the characteristics of smaller number of bits, higher precision, etc., so that the occupied It has fewer resources, small signaling overhead, and high accuracy.
  • the compression processing module may be a software unit and/or a hardware unit that uses AI models/AI algorithms (such as convolutional neural network algorithms, deep neural network algorithms, etc.) to perform information processing.
  • AI models/AI algorithms such as convolutional neural network algorithms, deep neural network algorithms, etc.
  • the terminal device can input channel information into the AI module to obtain compressed information.
  • the compressed information is the information after the channel information or CSI parameters have been compressed by the AI module, thereby utilizing the AI module's ability to process large amounts of complex information/data and its ability to process with high accuracy to achieve compression of channel information or CSI parameters and Ensure the accuracy of compressed information, etc.
  • the terminal device can use the correlation of the channel information corresponding to one or more CSI-RS transmission opportunities in the Doppler domain or time domain to determine the channel information corresponding to the one or more CSI-RS transmission opportunities.
  • the information is jointly processed (such as compression processing) to obtain compressed information.
  • the terminal device can also compress and process channel information or CSI parameters through other methods to obtain compressed information.
  • the other method may be a lossy compression method, a lossless compression method, etc.
  • lossy compression is mainly some quantization algorithms, such as a rate, u rate, Lloyds and other optimal quantization.
  • Lossless compression mainly involves some coding algorithms, such as subband coding, differential coding, Huffman coding, etc.
  • the terminal device can perform measurements based on one or more CSI-RS transmission opportunities to obtain channel information or CSI parameters, compress the channel information or CSI parameters to obtain compressed information, and report the compressed information through CSI Report to the network device.
  • the network device can perform corresponding decompression processing on the compressed information to obtain channel information or CSI parameters.
  • the terminal device performs measurements based on one or more CSI-RS transmission opportunities to obtain channel information or CSI parameters, and inputs the channel information or CSI parameters into the AI module for compression to obtain the compressed information. Then send it to the network device through PUSCH or PUCCH.
  • the network device inputs the compressed information to the AI module and decompresses it to obtain the channel information.
  • the terminal device performs measurements based on one or more CSI-RS transmission timings to obtain channel information or CSI parameters, inputs the channel information or CSI parameters into the AI module for compression, and then quantizes , encoding and other processing to obtain compressed information, and finally sent to the network device through PUSCH or PUCCH.
  • the network device performs corresponding decoding, dequantization and other processing on the compressed information, and then inputs it to the AI module for decompression to obtain channel information or CSI parameters.
  • the terminal equipment performs measurements based on one or more CSI-RS transmission opportunities to obtain channel information or CSI parameters, and performs joint processing (such as compression) on the channel information or CSI parameters in the Doppler domain or time domain to obtain Compress the information and send it to the network device through PUSCH or PUCCH.
  • the network device processes the compressed information to obtain channel information or CSI parameters.
  • the current CSI measurement is that the terminal equipment performs channel measurement and/or on the CSI-RS resources at a certain time domain position no later than the CSI reference resource (CSI reference resource) or the CSI-RS resources at multiple time domain positions. Or interference measurement is performed to obtain CSI parameters, but the terminal device does not predict CSI parameters after the time domain position where the CSI reference resource is located or after the one or more time domain positions.
  • the terminal device can predict one or more CSI-RS transmission opportunities or one or more time domain positions after the one or more CSI-RS transmission opportunities.
  • Channel information or CSI parameters corresponding to time/moment/time unit/time domain position, etc., or the terminal device can predict one or more times/moments/time units/time domain positions, etc. after the time domain position where the CSI reference resource is located.
  • Corresponding channel information or CSI parameters, and these channel information or CSI parameters can be regarded as prediction information predicted by the terminal device.
  • the terminal device can perform measurements based on the one or more CSI-RS transmission opportunities to obtain channel information or CSI parameters, and then interpolate the channel information or CSI parameters to obtain the one or more CSI-RS transmission opportunities.
  • the channel matrix H corresponding to one or more times/moments/time units/time domain positions, etc. is finally processed to obtain prediction information.
  • the prediction information may be one or more times/times/time units/times after the one or more CSI-RS transmission opportunities or the time domain position of the one or more CSI-RS transmission opportunities.
  • the channel information or CSI parameters corresponding to the domain position, etc. may also be the channel information or CSI parameters corresponding to one or more times/times/time units/time domain positions, etc. after the time domain position where the CSI reference resource is located.
  • the current CSI measurement is that the terminal equipment performs channel measurement and/or interference measurement through CSI-RS resources at a certain time domain location to obtain CSI parameters
  • CSI measurement is that the terminal equipment uses CSI-RS resources at multiple time domain locations.
  • the RS resources are jointly processed by channel measurement and/or interference measurement to obtain CSI parameters, and these CSI parameters can be regarded as a set of CSI parameters.
  • the terminal device can perform measurements through the multiple CSI-RS transmission opportunities to obtain channel information or CSI parameters, and these channel information or CSI parameters can be regarded as multiple groups. information.
  • the multiple sets of information may be multiple sets of channel information or multiple sets of CSI parameters corresponding to one or more CSI-RS transmission opportunities.
  • one set of information among the multiple sets of information may correspond to one CSI-RS transmission opportunity or may correspond to multiple CSI-RS transmission opportunities, and there is no specific limitation on this.
  • one set of information corresponds to one CSI-RS transmission opportunity, which can be understood as the set of information is obtained by the terminal device measuring the one CSI-RS transmission opportunity, and the rest can be understood in the same way.
  • multiple sets of information may correspond to one CSI-RS transmission opportunity or multiple CSI-RS transmission opportunities, and there is no specific restriction on this.
  • multiple sets of information correspond to one CSI-RS transmission opportunity. It can be understood that the multiple sets of information are obtained by measurement by the terminal device through the one CSI-RS transmission opportunity, and the rest can be understood in the same way.
  • the first CSI report is associated with one or more CSI-RS transmission opportunities
  • this application can determine that the first CSI report is associated with one or more CSI-RS transmission opportunities based on network configuration, network instructions, pre-configuration, protocol regulations, etc., so as to associate one or more CSI-RS transmission opportunities with the first CSI report.
  • the CSI-RS transmission timing allows the terminal device to report measurement results based on one or more CSI-RS transmission timings through the first CSI report, which not only realizes the related configuration of enhanced CSI, but also realizes enhanced CSI reporting/feedback.
  • this application can determine that a CSI report is associated with one or more CSI-RS transmission opportunities based on high-layer parameters/configuration information/high-layer signaling, etc.
  • this application can determine that the first CSI report is associated with one or more CSI-RSs based on the association between CSI-ReportConfig and CSI-ResourceConfig. Transmission timing.
  • CSI-ReportConfig can be used to configure the first CSI report
  • CSI-ResourceConfig can be used to configure one or more CSI-RS transmission opportunities.
  • this application can configure CSI-ReportConfig and CSI-ResourceConfig through high-level parameters or configuration information, and configure the association between CSI-ReportConfig and CSI-ResourceConfig, so that the CSI-ResourceConfig can be determined based on the association.
  • the first CSI report configured by ReportConfig will be associated with the CSI-RS transmission timing configured by CSI-ResourceConfig in the time domain, so that CSI related configuration enhancement can be achieved by associating one CSI report with multiple CSI-RS transmission timings.
  • the CSI measurement window may represent the duration or time domain location where the terminal device performs measurements. That is to say, the terminal device needs to measure the CSI-RS within the duration corresponding to the CSI measurement window.
  • the network device can configure the CSI measurement window to the terminal device through high-level parameters/high-level signaling/high-level information. In this way, the terminal device needs to measure the TRS resources and/or CSI-RS resources within the duration corresponding to the CSI measurement window to obtain the first measurement result and/or measure based on one or more CSI-RS transmission opportunities to obtain the first measurement result. Second measurement result.
  • the time domain location of the TRS resource in this embodiment of the present application may be located within the CSI measurement window; the one or more CSI-RS transmission opportunities may be located within the CSI measurement window.
  • the CSI report window may represent duration and/or time domain location, etc.
  • the corresponding time of the information reported/feedback by the terminal device (such as channel information, CSI parameters, etc.) must be within the duration or time domain position corresponding to the CSI report window. That is to say, the terminal device needs to report/feed back channel information or CSI parameters corresponding to a certain time or multiple times corresponding to the CSI report window.
  • the information reported/feedback by the terminal device (such as channel information, CSI parameters, etc.) is associated with the CSI report window.
  • the time corresponding to this information can be understood as that the terminal device obtains the information by measuring the CSI-RS within that time, or by predicting the channel information corresponding to the time based on the measurement results obtained before the time. this information.
  • the network device can configure the CSI report window to the terminal device through high-level parameters/high-level signaling/high-level information/downlink control information, etc.
  • the time corresponding to the first measurement result and/or the second measurement result reported/feedback by the terminal device is within the duration or time domain position corresponding to the CSI report window. That is to say, the first measurement result and/or the second measurement result correspond to the CSI report window.
  • the starting position of the CSI measurement window may be before the starting position of the CSI reporting window, or may overlap with the starting position of the CSI reporting window.
  • the end position of the CSI measurement window may be before the end position of the CSI report window, or overlap with the end position of the CSI report window.
  • the duration corresponding to the CSI measurement window can completely or partially overlap with the duration corresponding to the CSI report window, and the measurement results corresponding to the non-overlapping portion of the CSI report window can be regarded as prediction information predicted by the terminal device.
  • the starting position of the CSI measurement window is A
  • the ending position of the CSI measurement window is C
  • the starting position of the CSI reporting window is B
  • the ending position of the CSI reporting window is D. Therefore, duration AB and duration CD are non-overlapping parts. Among them, the measurement results corresponding to the duration CD can be prediction information.
  • CSI-ResourceConfig contains the first configuration information, it means that the network device configures TRS resources to the terminal device, so that the terminal device can perform operations based on the TRS resources. Measure to obtain the first measurement result, and the first measurement result needs to be reported/feedback, so that the first CSI report needs to include the first measurement result.
  • the first CSI report may include the first measurement result.
  • CSI-ResourceConfig contains information for configuring one or more CSI-RS transmission opportunities (for ease of distinction and description, this information may be called "third configuration information" or other terms)
  • this information may be called "third configuration information" or other terms
  • the network device configures one or more CSI-RS transmission opportunities for the terminal device, so that the terminal device can perform measurements based on the one or more CSI-RS transmission opportunities to obtain the second measurement result, and the second measurement result is required Reporting/feedback is performed so that the first CSI report needs to include the second measurement result.
  • the first CSI report may include the second measurement result.
  • the first CSI report may include the first measurement result and the second measurement result.
  • the CSI-ReportConfig may include information used to indicate that the first CSI report contains the first measurement result and/or the second measurement result (for ease of distinction and description, this information may be called "first indication information"). ” or other terms).
  • the network may configure the first CSI report through CSI-ReportConfig, and indicate that the first CSI report needs to include the first measurement result and/or the second measurement result through the first indication information in CSI-ReportConfig.
  • the first CSI report in the embodiment of this application may be composed of Part 1 and Part 2.
  • the payload size of part 1 is fixed, and part 1 can be used to determine the number of information bits in part 2.
  • part 1 is of fixed size and part 2 has a variable size and depends on part 1, this application can be implemented as follows:
  • part 1 Put some important information in part 1, so that when part 2 is discarded, the terminal device can still report the important information to the network device through part 1 as a relevant reference, thus avoiding the loss of important information;
  • part 1 may contain all or part of the information in the first measurement result and/or the second measurement result.
  • the second measurement result may include compression information, prediction information, multiple sets of information, and may include CRI, SSBRI, RI, PMI, CQI, LI and other information. Since in compressed information, prediction information, multi-group information, CRI, SSBRI, RI, PMI, CQI, LI and other information, there may be some information (such as CRI, CQI, etc.) that may need to be located in part 1, and there may be other Information (such as PMI, etc.) may need to be located in part 2, so part 1 may contain all or part of the information in the second measurement result. Similarly, part 2 may also contain all or part of the information in the second measurement result.
  • part 2 may contain all or part of the information in the first measurement result and/or the second measurement result. In this way, by putting all or part of the information in the first measurement result and/or the second measurement result into part 2, it is beneficial to improve the flexibility of transmitting all or part of the information in the first measurement result and/or the second measurement result. sex and possibility.
  • Part 1 and Part 2 the content contained in Part 1 and Part 2 is different. For example, if part 1 contains the first measurement result, then part 2 does not contain the first measurement result; if part 1 contains all or part of the information in the second measurement result, then part 2 does not contain all of the second measurement result. or partial information.
  • part 1 may contain the first measurement result
  • part 2 may contain all or part of the information in the second measurement result. In this way, the first measurement result is transmitted as important information.
  • part 1 may contain all or part of the information in the second measurement result
  • part 2 may contain the first measurement result. In this way, all or part of the information in the second measurement result is transmitted as important information.
  • part 2 of the embodiment of the present application may include at least one of group 0, group 1, and group 2.
  • Group 0 of Part 2 may contain all or part of the information in the first measurement and/or the second measurement.
  • Group 1 of Part 2 may contain all or part of the information in the first measurement and/or the second measurement.
  • Group 2 of Part 2 may contain all or part of the information in the first measurement and/or the second measurement.
  • Group 0 and Group 2 are different from each other. For example, if group 0 contains the first measurement result, then group 1 and group 2 do not contain the first measurement result; if group 0 contains the first part of the second measurement result, then group 1 and group 2 do not contain the first part. information.
  • group 0, group 1 and group 2 may respectively contain mutually different partial information in the second measurement result.
  • group 0 may contain the first part of the information in the second measurement result
  • group 1 may contain the second part of the information in the second measurement result
  • group 2 may contain the third part of the information in the second measurement result.
  • the first part of information, the second part of information and the third part of information are different from each other.
  • Group 0 of Part 2 may contain the first measurement result, and Group 1 or Group 2 of Part 2 may contain all or part of the information in the second measurement result.
  • group 0 of part 2 may contain all or part of the information in the second measurement result, and group 1 or group 2 of part 2 may contain the first measurement result.
  • all or part of the information in the first measurement result and/or the second measurement result may be located in one of the following: Part 1, Group 0 of Part 2, Group 1 of Part 2 , Group 2 of Part 2.
  • the value of parameter y' may be determined based on the report type of the first CSI report.
  • the value of parameter y′ may be the same as or different from the value of y mentioned above.
  • the value of parameter y′ may be 0;
  • the value of parameter y′ may be 1;
  • the value of parameter y′ may be 2;
  • the value of parameter y′ may be 3; and so on.
  • the value of parameter k' may be determined according to the type of information contained in the first CSI report.
  • parameter k' may be determined according to the type of information contained in the first CSI report indicated by reportQuantity in CSI-ReportConfig.
  • First CSI report “3. First measurement result” and “7. Second measurement result”
  • the information contained in the first CSI report may include the first measurement
  • the result and/or the second measurement result may also include at least one of L1-RSRP, L1-SINR, CSI related parameters/CSI parameters, etc.
  • the first measurement result may include time domain channel attributes, and the time domain channel attributes may include at least one of the following: Doppler shift, Doppler spread, delay spread, average delay, and differential Doppler shift , differential Doppler spread, differential delay spread, differential average delay, Doppler shift change rate, Doppler spread change rate, delay spread change rate, average delay change rate, time domain cross-correlation, relative Doppler shift, Doppler domain vector, Doppler domain codebook/codeword, time domain vector, time domain codebook/codeword.
  • the second measurement result may include at least one of the following: compression information, prediction information, and multiple sets of information.
  • the value of parameter k′ may be the same as or different from the value of k mentioned above.
  • the value of parameter k′ can be one of 0, 0.5, 1, 2, 3, etc.
  • the embodiment of the present application may refer to parameter k′ as the “first parameter”. Therefore, the first parameter may be used to determine the priority value of the first CSI report, and the value of the first parameter may be determined by the type of information contained in the first CSI report.
  • the value of the first parameter may be a first value (such as 0, 0.5, 1, 2, 3, etc.), and the first value may be defined by network configuration, preconfiguration, or protocol.
  • the first value can be understood as a fixed value, which is specified by pre-configuration, network configuration or protocol.
  • the first value can also be described using other terms, and there is no specific limitation on this.
  • the value of parameter c′ may be the same as the value of parameter c mentioned above, that is, the value of parameter c′ is the serving cell index value.
  • the value of parameter s' may be determined according to the configuration identifier of the first CSI report.
  • parameter s′ is the same as the value of parameter s mentioned above, that is, the value of parameter s′ is the value of reportConfigID in CSI-ReportConfig.
  • the value of the parameter N' cells can be determined based on the maximum number of serving cells.
  • parameter N' cells can be the same as the value of N cells mentioned above, that is, the value of parameter N' cells is the value of maxNrofServingCells in CSI-ReportConfig.
  • the value of the parameter N′ cells may also be determined by the maximum number of serving cells configured with the first CSI report.
  • the value of parameter M′ s may be determined based on the maximum number of configurations of the first CSI report.
  • the value of parameter M′ s may be determined by the maximum number of first CSI reports.
  • the value of parameter M′ s may be consistent with the value of parameter M s , that is, the value of parameter M′ s is the value of maxNrofCSI-ReportConfigurations in CSI-ReportConfig.
  • the value of parameter a can be determined according to the value range of parameter k′. For example, if the value of parameter k' is 0 or 1, then the value of parameter a can be 2; if the value of parameter k' is one of 0, 0.5, 1, 2, and 3, then the value of parameter a can be The value can be 5.
  • the value of parameter a can be an integer greater than 1.
  • priority value Pri′ CSI (a,y′,k′,c′,s′) associated with a first CSI report is less than the priority value Pri′ CSI (a,y) associated with another first CSI report ', k', c', s'), then the priority of this first CSI report is higher than the priority of the other first CSI report.
  • a first CSI report association Pri′ CSI (a,y′,k′,c′,s′) is less than the priority value of the second CSI report association Pri ′ CSI (y,k,c, s)
  • the priority of the first CSI report is higher than the priority of the second CSI report
  • the second CSI report is a CSI report that does not include the first measurement result and/or the second measurement result.
  • the number of CPUs O' CPUs occupied by the first CSI report can exist as follows:
  • the O′ CPU is the same as the O CPU described above. Therefore, it can exist as follows:
  • O′ CPU K s
  • K s may be the number of NZP-CSI-RS resources used for channel measurement in addition to TRS resources in the NZP-CSI-RS-ResourceSet (ie, channel measurement resources other than TRS resources). That is to say, the number of CSI processing units occupied by the first CSI report may be the number of channel measurement resources associated with the first CSI report.
  • the O′ CPU may be different from the above-mentioned O CPU .
  • 3O′ CPU can be determined based on K s
  • K s may be the number of channel measurement resources in the NZP-CSI-RS-ResourceSet except TRS resources.
  • O′ CPU may be determined according to the number of channel measurement resources other than TRS resources associated with the first CSI report.
  • is a preconfigured, network configured, or protocol-defined offset value.
  • 4O′ CPU can be determined based on K′ s
  • K′ s may be the number of channel measurement resources in the NZP-CSI-RS-ResourceSet (the channel measurement resources include TRS resources).
  • O′ CPU may be determined according to the number of channel measurement resources associated with the first CSI report.
  • 5O′ CPU can be the second value
  • the second value may be preconfigured, network configured or protocol defined.
  • the second value can be understood as a fixed value, which is specified by preconfiguration, network configuration or protocol.
  • the O′ CPU is preconfigured, network configured, or specified by the protocol.
  • the second value can also be described using other terms, and there is no specific limitation on this.
  • 6O′ CPU can be determined based on the CSI measurement window and/or CSI report window.
  • O′ CPU may also be determined based on the duration corresponding to the CSI measurement window and/or the CSI report window.
  • O' CPU may also be determined based on the duration corresponding to the CSI measurement window.
  • O' CPU may also be determined based on the duration corresponding to the CSI report window.
  • CSI measurement window, CSI report window a certain number of channel measurement resources may be corresponding/configured within the duration corresponding to the CSI measurement window and/or CSI report window. Therefore, this The application can determine the number of channel measurement resources based on the CSI measurement window and/or CSI report window, and the number of channel measurement resources can determine O' CPU , thereby determining O' CPU based on the CSI measurement window and/or CSI report window.
  • the number of OFDM symbols occupied by the CSI processing unit occupied by the first CSI report may be consistent with the content in "9. CSI processing unit occupied by the CSI report" above, and will not be described again.
  • the number of OFDM symbols occupied by the CSI processing unit occupied by the first CSI report can exist as follows:
  • the CSI processing unit occupied by the first CSI report is a periodic CSI report or a semi-persistent CSI report (excluding the first (initial) semi-persistent CSI report on the PUSCH after the report is triggered by the PDCCH), the CSI processing unit occupied by the first CSI report
  • the occupied OFDM symbols are:
  • the corresponding CSI reference resource is up to the last symbol of the reported resource, where the reported resource is the PUSCH/PUCCH used to carry the periodic CSI report or semi-persistent CSI report.
  • the CSI calculation time requirements of the first CSI report (Z CSI , Z′ CSI ) can exist as follows:
  • (Z CSI ,Z′ CSI ) is different from the above (Z(m), Z′(m)).
  • (Z CSI , Z′ CSI ) is different from the above (Z(m), Z′(m)).
  • (Z CSI ,Z′ CSI ) is different from the above (Z(m), Z′(m)).
  • (Z CSI , Z′ CSI ) is the same as (Z(m), Z′(m)) described above.
  • (Z CSI , Z′ CSI ) may have an associated (corresponding/mapping, etc.) relationship with (Z(m), Z′(m)).
  • (Z CSI , Z′ CSI ) (Z 1 + ⁇ z, Z′ 1 + ⁇ z′).
  • ⁇ z and ⁇ z′ may be positive or negative values, the same or different, and ⁇ z and ⁇ z′ may be preconfigured, network configured or defined by the protocol.
  • determining (Z CSI , Z′ CSI ) according to the CSI calculation time requirement 1 can be understood as determining the value of (Z CSI , Z′ CSI ) based on the value of (Z 1 , Z′ 1 ), As shown in Table 5.
  • the determination of (Z CSI , Z′ CSI ) in this application based on the CSI calculation time requirement 2 can be understood as determining the value of (Z CSI , Z′ CSI ) based on the values of (Z 1 , Z′ 1 ), And/or determine the value of (Z CSI , Z′ CSI ) based on the value of (Z 2 , Z′ 2 ), and/or determine the value of (Z CSI , Z′ based on the value of (Z 3 , Z′ 3 )
  • Table 6 The value of CSI ) is shown in Table 6.
  • ⁇ r m and ⁇ r′ m can be positive or negative, the same or different, and ⁇ r m and ⁇ r′ m can be preconfigured, network configured or protocol defined;
  • ⁇ s m and ⁇ s′ m can be positive or negative, the same or different, and ⁇ s m and ⁇ s′ m can be preconfigured, network configured or protocol defined;
  • ⁇ k m , ⁇ r m , and ⁇ s m may be the same or different, and ⁇ k′ m , ⁇ r′ m , and ⁇ s′ m may be the same or different.
  • CSI calculation time requirement 1 or CSI calculation time requirement 2 can be understood as the CSI calculation time requirement of the second CSI report, or the CSI calculation time requirement of the CSI report defined without considering the TRS resource, or without considering the CSI calculation time requirement of the second CSI report.
  • One or more CSI The CSI calculation time requirements of the CSI report defined under the transmission opportunity, etc.
  • the second CSI report is a CSI report that does not include the first measurement result and/or the second measurement result.
  • the CSI calculation time requirement of the first CSI report may be determined based on the CSI calculation time requirement 1 or the CSI calculation time requirement 2.
  • 5Z CSI can be the third value, and Z′ CSI can be the fourth value
  • the third value and the fourth value may be preconfigured, network configured or protocol defined.
  • the third value can be understood as a fixed value, which is defined by preconfiguration, network configuration or protocol.
  • the fourth value can be understood as a fixed value, which is defined by preconfiguration, network configuration or protocol.
  • the third value and the fourth value can also be described using other terms, and there is no specific limitation on this.
  • CSI calculation time requirements of the first CSI report” ′ 3 can be seen as defined without considering TRS resources, while Z CSI and Z′ CSI can be seen as defined with TRS resources in mind.
  • the network device may be a chip, a chip module, a communication module, etc.
  • the terminal device may be a chip, a chip module, a communication module, etc. That is to say, this method is applied to network equipment or terminal equipment, and there is no specific restriction on this.
  • FIG. 3 it is a schematic flow chart of a channel state information report transmission method according to an embodiment of the present application, which specifically includes the following steps:
  • the terminal device sends a first channel state information CSI report.
  • the first CSI report includes a first measurement result and/or a second measurement result.
  • the first measurement result is a measurement result obtained by measuring based on the tracking reference signal TRS resource.
  • the second measurement result is a measurement result obtained by measuring based on one or more channel state information reference signal CSI-RS transmission timings.
  • the network device receives the first CSI report.
  • the CSI report needs to include the measurement result obtained by measuring based on TRS resources (ie, the first measurement result) and/or measuring based on one or more CSI-RS transmission opportunities. Obtain the measurement result (ie the second measurement result).
  • the CSI report including the first measurement result and/or the second measurement result may be called a first CSI report.
  • this application uses the first CSI report to include the first measurement results for reporting/feedback, thereby achieving reporting/feedback of measurement results based on TRS resources.
  • the first CSI report contains the more/new CSI information for reporting/feedback, thereby achieving enhanced CSI reporting/feedback. And because more/new CSI information will help improve the accuracy of downlink channel quality assessment, thereby improving transmission performance and meeting complex and diverse transmission requirements.
  • the first measurement result may include time domain channel properties.
  • the first measurement result can be used to represent/characterize/describe the time domain change characteristics/time domain characteristics of the downlink channel, etc.
  • the first measurement result can be Includes time domain channel attributes.
  • the time domain channel attributes may include at least one of the following:
  • the second measurement result may include at least one of the following: compressed information, prediction information, and multiple sets of information;
  • Compressed information can be channel information corresponding to one or more CSI-RS transmission opportunities or information after compression processing of CSI parameters;
  • the prediction information may be channel information or CSI parameters corresponding to one or more CSI-RS transmission opportunities or one or more time domain positions after the time domain position where the one or more CSI-RS transmission opportunities are located;
  • the multiple sets of information may be multiple sets of channel information or multiple sets of CSI parameters corresponding to one or more CSI-RS transmission opportunities.
  • the second measurement result can contain more/new CSI information, and these more/new CSI information will help improve the quality of the downlink channel. Accuracy when making assessments, thereby improving transmission performance and meeting complex and diverse transmission needs.
  • these more/new CSI information may include compression information, prediction information, multiple sets of information at least one of them.
  • one or more CSI-RS transmission opportunities may include multiple CSI-RS resources with different time domain locations.
  • one or more CSI-RS transmission opportunities may include multiple CSI-RS resources with different time domain locations. It can be understood that multiple CSI-RS resources each have different time domain locations, or multiple CSI-RS resources corresponding to/occupied/associated with different time domain locations, or CSI-RS resources at different time domain locations. .
  • the first CSI report may be associated with one or more CSI-RS transmission opportunities.
  • the first CSI report is associated with one or more CSI-RS transmission opportunities" above, this application can determine the first CSI report based on network configuration, network instructions, pre-configuration, protocol regulations, etc.
  • the CSI report is associated with one or more CSI-RS transmission opportunities, so that the first CSI report is associated with one or more CSI-RS transmission opportunities, so that the terminal device can report transmission based on the one or more CSI-RS through the first CSI report.
  • the measurement results obtained at the right time not only enable enhanced CSI related configuration, but also enable enhanced CSI reporting/feedback.
  • the time domain location of the TRS resource may be located within the CSI measurement window
  • One or more CSI-RS transmission opportunities may be located within the CSI measurement window.
  • the terminal device needs to measure the TRS resources and/or CSI-RS resources within the duration corresponding to the CSI measurement window to obtain the first
  • the measurement result and/or measurement is performed based on one or more CSI-RS transmission opportunities to obtain the second measurement result.
  • the first measurement result and/or the second measurement result may correspond to the CSI reporting window.
  • the time corresponding to the first measurement result and/or the second measurement result reported/feedback by the terminal device is located in the CSI report window. within the duration or time domain position. That is to say, the first measurement result and/or the second measurement result correspond to the CSI report window.
  • the first CSI report may include the first measurement result, and the first configuration information may be used to configure TRS resources.
  • this application can determine the first CSI according to whether the CSI resource configuration contains the first configuration information. Whether the report contains the first measurement result. This is because, if the CSI-ResourceConfig contains the first configuration information, it means that the network device configures TRS resources for the terminal device, so that the terminal device can perform measurements based on the TRS resources to obtain the first measurement result, and needs to measure the first measurement result. Reporting/feedback is performed so that the first CSI report needs to include the first measurement result.
  • the CSI report configuration may include first indication information, and the first indication information may be used to indicate that the first CSI report includes the first measurement result and/or the second measurement result.
  • this application can introduce the first indication information into the CSI-ReportConfig and use the CSI-
  • the first indication information in ReportConfig indicates that the first CSI report needs to include the first measurement result and/or the second measurement result.
  • the CSI resource configuration may include second configuration information, and the second configuration information may be used to configure the TRS resources to be periodic or aperiodic.
  • this application can introduce the second configuration information into the CSI-ResourceConfig, and configure the type of TRS resources through the second configuration information.
  • the first CSI report may consist of Part 1 and Part 2;
  • All or part of the information in the first measurement result or the second measurement result may be located in one of the following: Part 1, Group 0 of Part 2, Group 1 of Part 2, Group 2 of Part 2.
  • the first CSI report may be composed of part 1 and part 2, and part 2 may include at least one of group 0, group 1, and group 2.
  • One item, and this application can carry the first measurement result or the second measurement result through one of the group 0 of part 1, part 2, group 1 of part 2, and group 2 of part 2, thereby realizing the first measurement result.
  • the measurement results or second measurement results are reported.
  • the value of the first parameter associated with the priority of the first CSI report may be a first value.
  • the first value may be preconfigured, network configured, or defined by the protocol.
  • the first parameter may be used for Determine the priority value of the first CSI report.
  • the first parameter can be called parameter k', and the parameter k' can be used to determine the priority value Pri of the first CSI report.
  • ′ CSI (a,y′,k′,c′,s′).
  • the value of parameter k' can be taken in a variety of flexible ways, and the specific method can be determined according to the requirements of the communication scenario. For example, the value of parameter k' is the first value.
  • the number of CSI processing units occupied by the first CSI report may be a second value, and the second value may be Preconfigured, network configured, or protocol defined.
  • the number of CPUs occupied by the first CSI report O' CPU can have a variety of flexible value methods, and the specific method is Which method can be determined according to the requirements of the communication scenario, for example, O′ CPU is the second value.
  • the number of CSI processing units occupied by the first CSI report may be determined based on the number of channel measurement resources associated with the first CSI report, or may be determined based on the number of channel measurement resources associated with the first CSI report. The number of channel measurement resources outside the TRS resources is determined.
  • the number of CPUs occupied by the first CSI report O' CPU can have a variety of flexible value methods, and the specific method is Which method can be determined based on the requirements of the communication scenario. For example, O′ CPU is determined based on K s or K′ s .
  • the number of CSI processing units occupied by the first CSI report may be determined based on the CSI measurement window and/or the CSI report window.
  • the number of CPUs occupied by the first CSI report O' CPU can have a variety of flexible value methods, and the specific method is Which method can be determined according to the requirements of the communication scenario. For example, the O' CPU determines according to the duration corresponding to the CSI measurement window and/or the CSI report window.
  • the CSI calculation time requirement of the first CSI report may be determined based on the CSI calculation time requirement 1.
  • the CSI calculation time requirements of the first CSI report can have multiple flexible value methods. , and the specific method to be used can be determined according to the requirements of the communication scenario. For example, (Z CSI , Z' CSI ) is determined according to the CSI calculation time requirement 1.
  • the CSI calculation time requirement of the first CSI report may be determined based on the CSI calculation time requirement 2.
  • the CSI calculation time requirements of the first CSI report can have multiple flexible value methods. , and the specific method to be used can be determined according to the requirements of the communication scenario, for example, (Z CSI , Z' CSI ) is determined according to the CSI calculation time requirement 2.
  • the terminal device or network device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functionality for each specific application, but such implementations should not be considered to be beyond the scope of this application.
  • Embodiments of the present application can divide the terminal device or network device into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing unit.
  • the above integrated units can be implemented in the form of hardware or software program modules. It should be noted that the division of units in the embodiment of the present application is schematic and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 4 is a functional unit block diagram of a channel state information report transmission device according to an embodiment of the present application.
  • the channel state information report transmission device 400 includes: a sending unit 401.
  • the sending unit 401 may be a module unit used to process signals, data, information, etc., which is not specifically limited.
  • the channel status information report transmission device 400 may further include a storage unit for storing computer program codes or instructions executed by the channel status information report transmission device 400 .
  • the storage unit may be a memory.
  • the channel status information report transmission device 400 may be a chip or a chip module.
  • the sending unit 401 may be integrated in other units.
  • the sending unit 401 can be integrated in the communication unit.
  • the communication unit may be a communication interface, a transceiver, a transceiver circuit, etc.
  • the sending unit 401 may be a processor or a controller, for example, it may be a baseband processor, a baseband chip, a central processing unit (CPU), a general-purpose processor, a digital signal processor (digital signal processor) processor (DSP), application-specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can be implemented The various illustrative logical blocks, modules, and circuits described in connection with this disclosure are present or implemented.
  • the processing unit may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the sending unit 401 is used to perform any step performed by the terminal device/chip/chip module, etc. in the above method embodiment, such as sending or receiving data, etc. Detailed explanation below.
  • the sending unit 401 is used to perform any step in the above method embodiments, and when performing actions such as sending, it can optionally call other units to complete corresponding operations. Detailed explanation below.
  • Sending unit 401 configured to send a first channel state information CSI report.
  • the first CSI report includes a first measurement result and/or a second measurement result.
  • the first measurement result is measured based on the tracking reference signal TRS resource.
  • the second measurement result is a measurement result obtained by measuring based on one or more channel state information reference signal CSI-RS transmission timings.
  • the CSI report needs to include the measurement result obtained by measuring based on TRS resources (ie, the first measurement result) and/or measuring based on one or more CSI-RS transmission opportunities. Obtain the measurement result (ie the second measurement result).
  • the CSI report including the first measurement result and/or the second measurement result may be called a first CSI report.
  • this application uses the first CSI report to include the first measurement results for reporting/feedback, thereby achieving reporting/feedback of measurement results based on TRS resources.
  • the first CSI report contains the more/new CSI information for reporting/feedback, thereby achieving enhanced CSI reporting/feedback. And because more/new CSI information will help improve the accuracy of downlink channel quality assessment, thereby improving transmission performance and meeting complex and diverse transmission requirements.
  • the first measurement result may include time domain channel properties.
  • the time domain channel attributes may include at least one of the following:
  • the second measurement result may include at least one of the following: compressed information, prediction information, and multiple sets of information;
  • Compressed information can be channel information corresponding to one or more CSI-RS transmission opportunities or information after compression processing of CSI parameters;
  • the prediction information may be channel information or CSI parameters corresponding to one or more CSI-RS transmission opportunities or one or more time domain positions after the time domain position where the one or more CSI-RS transmission opportunities are located;
  • Multiple sets of information may be channel information or CSI parameters corresponding to one or more CSI-RS transmission opportunities.
  • one or more CSI-RS transmission opportunities may include multiple CSI-RS resources with different time domain locations.
  • the first CSI report may be associated with one or more CSI-RS transmission opportunities.
  • the time domain location of the TRS resource may be located within the CSI measurement window
  • One or more CSI-RS transmission opportunities may be located within the CSI measurement window.
  • the first measurement result and/or the second measurement result may correspond to the CSI reporting window.
  • the first CSI report may include the first measurement result, and the first configuration information may be used to configure TRS resources.
  • the CSI report configuration may include first indication information, and the first indication information may be used to indicate that the first CSI report includes the first measurement result and/or the second measurement result.
  • the CSI resource configuration may include second configuration information, and the second configuration information may be used to configure the TRS resources to be periodic or aperiodic.
  • the first CSI report may consist of Part 1 and Part 2;
  • All or part of the information in the first measurement and/or the second measurement may be located in one of the following: Part 1, Group 0 of Part 2, Group 1 of Part 2, Group 2 of Part 2.
  • the value of the first parameter associated with the priority of the first CSI report may be a first value.
  • the first value may be preconfigured, network configured, or defined by the protocol.
  • the first parameter may be used for Determine the priority value of the first CSI report.
  • the number of CSI processing units occupied by the first CSI report may be a second value, and the second value may be Preconfigured, network configured, or protocol defined.
  • the number of CSI processing units occupied by the first CSI report may be determined based on the number of channel measurement resources associated with the first CSI report, or may be determined based on the number of channel measurement resources associated with the first CSI report. The number of channel measurement resources outside the TRS resources is determined.
  • the number of CSI processing units occupied by the first CSI report may be determined based on the CSI measurement window and/or the CSI report window.
  • the CSI calculation time requirement of the first CSI report may be determined based on the CSI calculation time requirement 1.
  • the CSI calculation time requirement of the first CSI report may be determined based on the CSI calculation time requirement 2.
  • FIG. 5 is a functional unit block diagram of a channel state information report transmission device according to an embodiment of the present application.
  • the channel state information report transmission device 500 includes: a receiving unit 501.
  • the receiving unit 501 may be a module unit used to process signals, data, information, etc., which is not specifically limited.
  • the channel status information report transmission device 500 may further include a storage unit for storing computer program codes or instructions executed by the channel status information report transmission device 500 .
  • the storage unit may be a memory.
  • the channel status information report transmission device 500 may be a chip or a chip module.
  • the receiving unit 501 may be integrated in other units.
  • the receiving unit 501 can be integrated in the communication unit.
  • the communication unit may be a communication interface, a transceiver, a transceiver circuit, etc.
  • the receiving unit 501 may be a processor or a controller, such as a baseband processor, a baseband chip, a central processing unit (CPU), a general-purpose processor, a digital signal processor (digital signal processor) processor, DSP), application-specific integrated circuit (application-specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processing unit may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the receiving unit 501 is configured to perform any step performed by the terminal device/chip/chip module, etc. in the above method embodiment, such as sending or receiving data, etc. Detailed explanation below.
  • the receiving unit 501 is used to perform any step in the above method embodiments, and when performing actions such as sending, it can optionally call other units to complete corresponding operations. Detailed explanation below.
  • the receiving unit 501 is configured to receive a first channel state information CSI report.
  • the first CSI report includes a first measurement result and/or a second measurement result.
  • the first measurement result is measured based on the tracking reference signal TRS resource.
  • the second measurement result is a measurement result obtained by measuring based on one or more channel state information reference signal CSI-RS transmission timings.
  • the CSI report needs to include the measurement result obtained by measuring based on TRS resources (ie, the first measurement result) and/or measuring based on one or more CSI-RS transmission opportunities. Obtain the measurement result (ie the second measurement result).
  • the CSI report including the first measurement result and/or the second measurement result may be called a first CSI report.
  • this application uses the first CSI report to include the first measurement results for reporting/feedback, thereby achieving reporting/feedback of measurement results based on TRS resources.
  • the first CSI report contains the more/new CSI information for reporting/feedback, thereby achieving enhanced CSI reporting/feedback. And because more/new CSI information will help improve the accuracy of downlink channel quality assessment, thereby improving transmission performance and meeting complex and diverse transmission requirements.
  • the first measurement result may include time domain channel properties.
  • the time domain channel attributes may include at least one of the following:
  • Doppler shift Doppler spread, delay spread, average delay, differential Doppler shift, differential Doppler spread, differential delay spread, differential average delay, Doppler shift rate of change, Doppler spread change rate, delay spread change rate, average delay change rate, time domain Cross-correlation, relative Doppler shift, Doppler domain vector, Doppler domain codebook/codeword, time domain vector, time domain codebook/codeword.
  • the second measurement result may include at least one of the following: compressed information, prediction information, and multiple sets of information;
  • Compressed information can be channel information corresponding to one or more CSI-RS transmission opportunities or information after compression processing of CSI parameters;
  • the prediction information may be channel information or CSI parameters corresponding to one or more time domain positions after one or more CSI-RS transmission opportunities or the time domain position of the one or more CSI-RS transmission opportunities;
  • the multiple sets of information may be multiple sets of channel information or multiple sets of CSI parameters corresponding to one or more CSI-RS transmission opportunities.
  • one or more CSI-RS transmission opportunities may include multiple CSI-RS resources with different time domain locations.
  • the first CSI report may be associated with one or more CSI-RS transmission opportunities.
  • the time domain location of the TRS resource may be located within the CSI measurement window
  • One or more CSI-RS transmission opportunities may be located within the CSI measurement window.
  • the first measurement result and/or the second measurement result may correspond to the CSI reporting window.
  • the first CSI report may include the first measurement result, and the first configuration information may be used to configure TRS resources.
  • the CSI report configuration may include first indication information, and the first indication information may be used to indicate that the first CSI report includes the first measurement result and/or the second measurement result.
  • the CSI resource configuration may include second configuration information, and the second configuration information may be used to configure the TRS resources to be periodic or aperiodic.
  • the first CSI report may consist of Part 1 and Part 2;
  • All or part of the information in the first measurement and/or the second measurement may be located in one of the following: Part 1, Group 0 of Part 2, Group 1 of Part 2, Group 2 of Part 2.
  • the value of the first parameter associated with the priority of the first CSI report may be a first value.
  • the first value may be preconfigured, network configured, or defined by the protocol.
  • the first parameter may be used for Determine the priority value of the first CSI report.
  • the number of CSI processing units occupied by the first CSI report may be a second value, and the second value may be preconfigured, network configured, or protocol defined.
  • the number of CSI processing units occupied by the first CSI report may be determined based on the number of channel measurement resources associated with the first CSI report, or may be determined based on the number of channel measurement resources associated with the first CSI report. The number of channel measurement resources outside the TRS resources is determined.
  • the number of CSI processing units occupied by the first CSI report may be determined based on the CSI measurement window and/or the CSI report window.
  • the CSI calculation time requirement of the first CSI report may be determined based on the CSI calculation time requirement 1.
  • the CSI calculation time requirement of the first CSI report may be determined based on the CSI calculation time requirement 2.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 600 includes a processor 610, a memory 620, and a communication bus used to connect the processor 610 and the memory 620.
  • memory 620 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (erasable programmable read) -only memory, EPROM) or portable read-only memory (compact disc read-only memory, CD-ROM), the memory 620 is used to store program codes executed by the terminal device 600 and transmitted data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • portable read-only memory compact disc read-only memory, CD-ROM
  • the terminal device 600 also includes a communication interface for receiving and sending data.
  • the processor 610 may be one or more central processing units (CPUs).
  • the central processing unit (CPU) may be a single core.
  • the processor 610 can be a baseband chip, a chip, a central processing unit (CPU), a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the processor 610 in the terminal device 600 is used to execute the computer program or instructions 621 stored in the memory 620 to perform the following operations:
  • the first CSI report includes a first measurement result and/or a second measurement result
  • the first The measurement result is a measurement result obtained based on the tracking reference signal TRS resource
  • the second measurement result is a measurement result obtained based on one or more channel state information reference signal CSI-RS transmission timings.
  • the CSI report needs to include the measurement result obtained by measuring based on TRS resources (ie, the first measurement result) and/or measuring based on one or more CSI-RS transmission opportunities. Obtain the measurement result (ie the second measurement result).
  • the CSI report including the first measurement result and/or the second measurement result may be called a first CSI report.
  • this application uses the first CSI report to include the first measurement results for reporting/feedback, thereby achieving reporting/feedback of measurement results based on TRS resources. to network equipment to achieve enhanced CSI reporting/feedback.
  • the first CSI report contains the more/new CSI information for reporting/feedback, thereby achieving enhanced CSI reporting/feedback. And because more/new CSI information will help improve the accuracy of downlink channel quality assessment, thereby improving transmission performance and meeting complex and diverse transmission requirements.
  • the network device 700 includes a processor 710, a memory 720, and a communication bus used to connect the processor 710 and the memory 720.
  • the memory 720 includes but is not limited to RAM, ROM, EPROM or CD-ROM, and the memory 720 is used to store related instructions and data.
  • network device 700 also includes a communication interface for receiving and sending data.
  • the processor 710 may be one or more central processing units (CPUs).
  • the central processing unit (CPU) may be a single core.
  • Central processing unit (CPU) which can also be a multi-core central processing unit (CPU).
  • the processor 710 can be a baseband chip, a chip, a central processing unit (CPU), a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the processor 710 in the network device 700 is configured to execute the computer program or instructions 721 stored in the memory 720 to perform the following operations:
  • the first CSI report includes a first measurement result and/or a second measurement result
  • the first measurement result is a measurement result obtained based on a tracking reference signal TRS resource
  • the second The measurement results are measurement results obtained based on one or more channel state information reference signal CSI-RS transmission timings.
  • the CSI report needs to include the measurement result obtained by measuring based on TRS resources (ie, the first measurement result) and/or measuring based on one or more CSI-RS transmission opportunities. Obtain the measurement result (ie the second measurement result).
  • the CSI report including the first measurement result and/or the second measurement result may be called a first CSI report.
  • this application uses the first CSI report to include the first measurement results for reporting/feedback, thereby achieving reporting/feedback of measurement results based on TRS resources. to network equipment to achieve enhanced CSI reporting/feedback.
  • the first CSI report contains the more/new CSI information for reporting/feedback, thereby achieving enhanced CSI reporting/feedback. And because more/new CSI information will help improve the accuracy of downlink channel quality assessment, thereby improving transmission performance and meeting complex and diverse transmission requirements.
  • the above method embodiments may be applied to or in terminal devices. That is to say, the execution subject of the above method embodiment can be a terminal device, a chip, a chip module or a module, etc., and there is no specific limitation on this.
  • the above method embodiments may be applied to or among network devices. That is to say, the execution subject of the above method embodiment can be a network device, a chip, a chip module or a module, etc., and there is no specific limitation on this.
  • An embodiment of the present application also provides a chip, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the steps described in the above method embodiments.
  • Embodiments of the present application also provide a chip module, including a transceiver component and a chip.
  • the chip includes a processor, a memory, and a computer program or instructions stored on the memory.
  • the processor executes the computer program or instructions to Implement the steps described in the above method embodiment.
  • Embodiments of the present application also provide a computer-readable storage medium, which stores computer programs or instructions.
  • the computer program or instructions When executed, the steps described in the above method embodiments are implemented.
  • Embodiments of the present application also provide a computer program product, which includes a computer program or instructions. When the computer program or instructions are executed, the steps described in the above method embodiments are implemented.
  • An embodiment of the present application also provides a communication system, including the above-mentioned terminal device and network device.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in hardware, or may be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in RAM, flash memory, ROM, EPROM, electrically erasable programmable read-only memory (EPROM, EEPROM), registers, hard disks, removable hard disks, and read-only disks ( CD-ROM) or any other form of storage media well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the terminal device or management device.
  • the processor and the storage medium may also exist as discrete components in the terminal device or management device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means Transmission to another website, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)) wait.
  • Each module/unit included in each device and product described in the above embodiments may be a software module/unit or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit included therein can be implemented in the form of hardware such as circuits, or at least some of the modules/units can be implemented in the form of a software program.
  • the software program Running on the processor integrated inside the chip, the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for various devices and products applied to or integrated into the chip module, each module/unit included in it can They are all implemented in the form of hardware such as circuits.
  • Different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components. Alternatively, at least some modules/units can be implemented in the form of software programs. The software program runs on the processor integrated inside the chip module, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for each device and product that is applied or integrated into the terminal equipment, the various modules/units it contains Modules/units can all be implemented in the form of hardware such as circuits. Different modules/units can be located in the same component (for example, chip, circuit module, etc.) or in different components within the terminal device, or at least some of the modules/units can use software programs. This software program runs on the processor integrated inside the terminal device, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了信道状态信息报告传输方法与装置、终端设备和网络设备,涉及通信技术领域;该方法包括:终端设备发送第一信道状态信息CSI报告,该第一CSI报告包含第一测量结果和/或第二测量结果,该第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,该第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果,从而通过第一CSI报告包含第一测量结果和/或第二测量结果实现CSI上报增强。

Description

信道状态信息报告传输方法与装置、终端设备和网络设备 技术领域
本申请涉及通信技术领域,尤其涉及一种信道状态信息报告传输方法与装置、终端设备和网络设备。
背景技术
第三代合作伙伴计划组织(3rd Generation Partnership Project,3GPP)所规定的标准协议规范了信道状态信息(channel state information,CSI)架构(framework)。
其中,CSI架构可能涉及到CSI资源配置(CSI Resource Configuration)、CSI报告配置(CSI Report Configuration)、CSI报告的优先级、CSI报告占用的CSI处理单元(CSI processing unit,CPU)、CSI报告的CSI计算时间要求(computation time requirement)等。
然而,随着不断复杂且多样的通信需求,CSI报告可能需要包含(携带/承载等)一些新增信息,以便增强CSI上报,而目前的CSI架构可能不适配于这类CSI报告(即包含新增信息的CSI报告),因此如何针对CSI架构进行增强以适配这类CSI报告,还需要进一步研究。
发明内容
本申请提供了一种信道状态信息报告传输方法与装置、终端设备和网络设备,以期望解决的CSI上报增强的问题,从而保证CSI性能。
第一方面,为本申请的一种信道状态信息报告传输方法,包括:
发送第一信道状态信息CSI报告,所述第一CSI报告包含第一测量结果和/或第二测量结果,所述第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,所述第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
可见,为了实现增强CSI上报/反馈,本申请考虑CSI报告需要包含基于TRS资源进行测量以得到的测量结果(即第一测量结果)和/或基于一个或多个CSI-RS传输时机进行测量以得到测量结果(即第二测量结果)。其中,包含第一测量结果和/或第二测量结果的CSI报告可以称为第一CSI报告。
由于目前基于TRS资源进行测量所得到的测量结果仅仅是面向终端设备使用,而本申请通过第一CSI报告包含第一测量结果进行上报/反馈,从而实现将基于TRS资源的测量结果上报给/反馈给网络设备,进而实现增强CSI上报/反馈,提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
由于第二测量结果可以包含更多/新的CSI信息,再通过第一CSI报告包含这些更多/新的CSI信息进行上报/反馈,从而实现增强CSI上报/反馈。又由于更多/新的CSI信息将有利于提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
第二方面,为本申请的一种信道状态信息报告传输方法,包括:
接收第一信道状态信息CSI报告,所述第一CSI报告包含第一测量结果或者第二测量结果,所述第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,所述第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
第三方面,为本申请的一种信道状态信息报告传输装置,包括:
发送单元,用于发送第一信道状态信息CSI报告,所述第一CSI报告包含第一测量结果和/或第二测量结果,所述第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,所述第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
第四方面,为本申请的一种信道状态信息报告传输装置,包括:
接收单元,用于接收第一信道状态信息CSI报告,所述第一CSI报告包含第一测量结果和/或第二测量结果,所述第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,所述第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
第五方面,上述第一方面所设计的方法中的步骤应用于终端设备或者终端设备之中。
第六方面,上述第二方面所设计的方法中的步骤应用于网络设备或者网络设备之中。
第七方面,为本申请的一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第一方面所设计的方法中的步骤。
第八方面,为本申请的一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第二方面所设计的方法中的步骤。
第九方面,为本申请的一种芯片,包括处理器和通信接口,其中,所述处理器执行上述第一方面或 第二方面所设计的方法中的步骤。
第十方面,为本申请的一种芯片模组,包括收发组件和芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。
第十一方面,为本申请的一种计算机可读存储介质,其中,其存储有计算机程序或指示,所述计算机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。例如,所述计算机程序或指令被处理器执行。
第十二方面,为本申请的一种计算机程序产品,包括计算机程序或指令,其中,该计算机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。例如,所述计算机程序或指令被处理器执行。
第十三方面,为本申请的一种通信系统,包括第七方面中的终端设备和第八方面中的网络设备。
第二方面至第十三方面的技术方案所带来的有益效果可以参见第一方面的技术方案所带来的技术效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例的一种通信系统的架构示意图;
图2是本申请实施例的一种CSI测量窗口和CSI报告窗口的结构示意图;
图3是本申请实施例的一种信道状态信息报告传输方法的流程示意图;
图4是本申请实施例的一种信道状态信息报告传输装置的功能单元组成框图;
图5是本申请实施例的一种信道状态信息报告传输装置的功能单元组成框图;
图6是本申请实施例的一种终端设备的结构示意图;
图7是本申请实施例的一种网络设备的结构示意图。
具体实施方式
应理解,本申请实施例中涉及的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
本申请实施例中涉及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示如下三种情况:单独存在A;同时存在A和B;单独存在B。其中,A、B可以是单数或者复数。
本申请实施例中,符号“/”可以表示前后关联对象是一种“或”的关系。另外,符号“/”也可以表示除号,即执行除法运算。例如,A/B,可以表示A除以B。
本申请实施例中的“至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合,是指一个或多个,多个指的是两个或两个以上。例如,a、b或c中的至少一项(个),可以表示如下七种情况:a,b,c,a和b,a和c,b和c,a、b和c。其中,a、b、c中的每一个可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中的“等于”可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案。当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
本申请实施例中涉及“的(of)”、“相应的(corresponding/relevant)”、“对应的(corresponding)”、“指示的(indicated)”有时可以混用。应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,对此不做任何限定。
本申请实施例中的“网络”可以与“系统”表达为同一概念,通信系统即为通信网络。
本申请实施例中的“大小(size)”可以与“长度(length)”等表达为同一概念。
本申请实施例中的“网络”可以与“系统”表达为同一概念,通信系统即为通信网络。
本申请实施例中的“个数”可以与“数目数量(number)”或“数目”可以表达为同一概念。
本申请实施例中的“报告(reporting)”可以与“上报(report)”或“反馈(feedback)”等表达为同一概念。也就是说,“CSI报告”可以与“CSI上报”、“CSI反馈”等表达为同一概念。
本申请实施例中的“包含”可以与“携带”或“承载”表达为同一概念。
本申请实施例中的“关联”可以与“对应”或“映射”等表达为同一概念。
下面对本申请实施例所涉及的相关内容、概念、含义、技术问题、技术方案、有益效果等进行说明。
一、通信系统、终端设备和网络设备
1、通信系统
本申请实施例的技术方案可以应用于各种通信系统,例如:通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based Access to Unlicensed Spectrum,LTE-U)系统、非授权频谱上的NR(NR-based Access to Unlicensed Spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,Wi-Fi)、第6代(6th-Generation,6G)通信系统或者其他通信系统等。
需要说明的是,传统的通信系统所支持的连接数有限,且易于实现。然而,随着通信技术的发展,通信系统不仅可以支持传统的通信系统,还可以支持如设备到设备(device to device,D2D)通信、机器到机器(machine to machine,M2M)通信、机器类型通信(machine type communication,MTC)、车辆间(vehicle to vehicle,V2V)通信、车联网(vehicle to everything,V2X)通信、窄带物联网(narrow band internet of things,NB-IoT)通信等,因此本申请实施例的技术方案也可以应用于上述通信系统。
此外,本申请实施例的技术方案可以应用于波束赋形(beamforming)、载波聚合(carrier aggregation,CA)、双连接(dual connectivity,DC)或者独立(standalone,SA)部署场景等。
本申请实施例中,终端设备和网络设备之间通信所使用的频谱,或者终端设备和终端设备之间通信所使用的频谱可以为授权频谱,也可以为非授权频谱,对此不做限定。另外,非授权频谱可以理解为共享频谱,授权频谱可以理解为非共享频谱。
由于本申请实施例结合终端设备和网络设备描述了各个实施例,因此下面将对涉及的终端设备和网络设备进行具体描述。
2、终端设备
终端设备,可以为一种具有收和/或发功能的设备,又可以称之为终端、用户设备(user equipment,UE)、远程终端设备(remote UE)、中继设备(relay UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、移动设备、用户终端设备、智能终端设备、无线通信设备、用户代理或用户装置。需要说明的是,中继设备是能够为其他终端设备(包括远程终端设备)提供中继转发服务的终端设备。
例如,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人自动驾驶中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或者智慧家庭(smart home)中的无线终端设备等。
又例如,终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统(例如NR通信系统、6G通信系统)中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,对此不作具体限定。
在一些可能的实现中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);可以部署在空中(如飞机、气球和卫星等)。
在一些可能的实现中,终端设备可以包括无线通信功能的装置,例如芯片系统、芯片、芯片模组。示例的,该芯片系统可以包括芯片,还可以包括其它分立器件。
3、网络设备
网络设备,可以为一种具有收和/或发功能的设备,用于与终端设备之间进行通信。
在一些可能的实现中,网络设备可以负责空口侧的无线资源管理(radio resource management,RRM)、服务质量(quality of service,QoS)管理、数据压缩和加密、数据收发等。
在一些可能的实现中,网络设备可以是通信系统中的基站(base station,BS)或者部署于无线接入网(radio access network,RAN)用于提供无线通信功能的设备。
例如,网络设备可以是LTE通信系统中的演进型节点B(evolutional node B,eNB或eNodeB)、NR通信系统中的下一代演进型的节点B(next generation evolved node B,ng-eNB)、NR通信系统中的下一代节点B(next generation node B,gNB)、双连接架构中的主节点(master node,MN)、双连接架构中的第二节点或辅节点(secondary node,SN)等,对此不作具体限制。
在一些可能的实现中,网络设备还可以是核心网(core network,CN)中的设备,如访问和移动性管理功能(access and mobility management function,AMF)、用户面功能(user plane function,UPF)等;还可以是WLAN中的接入点(access point,AP)、中继站、未来演进的PLMN网络中的通信设备、NTN网络中的通信设备等。
在一些可能的实现中,网络设备可以包括具有为终端设备提供无线通信功能的装置,例如芯片系统、芯片、芯片模组。示例的,该芯片系统可以包括芯片,或者,可以包括其它分立器件。
在一些可能的实现中,网络设备可以与互联网协议(Internet Protocol,IP)网络进行通信。例如,因特网(internet)、私有的IP网或者其他数据网等。
在一些可能的实现中,网络设备可以是一个独立的节点以实现上述基站的功能或者,网络设备可以包括两个或多个独立的节点以实现上述基站的功能。例如,网络设备包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),如gNB-CU和gNB-DU。进一步的,在本申请的另一些实施例中,网络设备还可以包括有源天线单元(active antenna unit,AAU)。其中,CU实现网络设备的一部分功能,DU实现网络设备的另一部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层、服务数据适配(service data adaptation protocol,SDAP)层、分组数据汇聚(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。另外,AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者由PHY层的信息转变而来,因此,在该网络部署下,高层信令(如RRC信令)可以认为是由DU发送的,或者由DU和AAU共同发送的。可以理解的是,网络设备可以包括CU、DU、AAU中的至少一个。另外,可以将CU划分为RAN中的网络设备,或者,也可以将CU划分为核心网中的网络设备,对此不做具体限定。
在一些可能的实现中,网络设备可以是与终端设备进行相干协作传输(coherent joint transmission,CJT)的多站点中的任一站点,或者是该多站点外的其他站点,或者是其他与终端设备进行网络通信的网络设备,对此不作具体限制。其中,多站点相干协作传输可以为多个站点联合相干传输,或者属于同一个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的不同数据从不同的站点发送到终端设备,或者多个站点虚拟成一个站点进行传输,其他标准中规定相同含义的名称也同样适用于本申请,即本申请并不限制这些参数的名称。多站点相干协作传输中的站点可以为射频拉远头(Remote Radio Head,RRH)、传输接收点(transmission and reception point,TRP)、网络设备等,对此不作具体限定。
在一些可能的实现中,网络设备可以是与终端设备进行非相干协作传输的多站点中的任一站点,或者是该多站点外的其他站点,或者是其他与终端设备进行网络通信的网络设备,对此不作具体限制。其中,多站点非相干协作传输可以为多个站点联合非相干传输,或者属于同一个PDSCH的不同数据从不同的站点发送到终端设备,或者属于同一个PDSCH的不同数据从不同的站点发送到终端设备,其他标准中规定相同含义的名称也同样适用于本申请,即本申请并不限制这些参数的名称。多站点非相干协作传输中的站点可以为RRH、TRP、网络设备等,对此不作具体限定。
在一些可能的实现中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(high elliptical orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在一些可能的实现中,网络设备可以为小区提供服务,而该小区中的终端设备可以通过传输资源(如频谱资源)与网络设备进行通信。其中,该小区可以为宏小区(macro cell)、小小区(small cell)、城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)和毫微微小区(femto cell)等。
4、示例说明
下面对本申请实施例的通信系统做一个示例性说明。
示例性的,本申请实施例的一种通信系统的网络架构,可以参阅图1。如图1所示,通信系统10可以包括网络设备110和终端设备120。终端设备120可以通过无线方式与网络设备110进行通信。
图1仅为一种通信系统的网络架构的举例说明,对本申请实施例的通信系统的网络架构并不构成限定。例如,本申请实施例中,通信系统中还可以包括服务器或其它设备。再例如,本申请实施例中,通信系统中可以包括多个网络设备和/或多个终端设备。
二、信道矩阵
1、信道模型
在多输入多输出(Multiple Input Multiple Output,MIMO)系统中,对于发射机有a根天线,接收机有b根天线,MIMO信道的信道模型可以表示为:
r=Hs+n0
其中,r为经过MIMO信道后的接收信号向量;s为发射端的发送信号向量;H为针对MIMO信道的b×a阶的信道矩阵;n0为加性噪声向量。
在预编码方式中,该发射机可以根据信道矩阵H以采用预编码方式对发送信号向量s的空间特性进行优化,使得发送信号向量s的空间分布特性与信道矩阵H相匹配,从而可以有效降低对接收机算法的依赖程度,简化接收机算法。通过预编码,可以有效提升系统性能。
预编码可以采用线性或非线性方法。由于复杂度等方面的原因,因此在目前的无线通信系统中一般只考虑线性预编码。经过预编码之后,MIMO信号的信道模型可以表示为:
r=HWs+n0
其中,W为预编码矩阵。
对于MU-MIMO,接收机无法对发给其他设备的信号进行信道估计,因此发射机预编码能有效抑制多用户干扰。可见,发射机知道信道矩阵并采用合适的预编码对其进行处理是对系统有益的。
另外,在预编码方式中,预编码矩阵W和信道矩阵H共同决定了等效信道矩阵(如HW),而等效信道矩阵决定了信道特性/特征等。另外,在一些情况下,预编码矩阵W可以由信道矩阵H推导出来,比如预编码矩阵W可以是信道矩阵H某个变换下的矩阵。
2、信道矩阵H的奇异值分解(Singular Value Decomposition,SVD)
信道矩阵H的奇异值分解可以为:
H=U∑VT
其中,U=[u1,u2,…,ub]为b×b阶的正交矩阵(orthogonal matrix)或者酋矩阵(unitary matrix),即满足UTU=I;
V=[v1,v2,…,va]是a×a阶的正交矩阵或者酋矩阵,即满足VTV=I。V中的列向量可以称为信道矩阵H的右奇异向量(right-singular vectors);
∑为a×a阶的对角阵,对角线上的元素是信道矩阵H的p=min(b,a)个奇异值σ12,...,σp,将其按递减的顺序排列,即σ12>...>σp
3、信道矩阵H的处理
将信道矩阵的共轭转置HT和信道矩阵H进行矩阵乘法,得到a×a阶的方阵HTH。通过对方阵HTH进行特征分解,得到的特征值和特征向量存在如下:
(HTH)vi=λivi,i∈[1,a];
其中,λi表示方阵HTH的特征值;vi表示方阵HTH的特征向量。
由H=U∑VT可得,(HTH)=V∑2VT
因此,HTH的特征向量也表示上述V中的列向量。也就是说,HTH的所有特征向量能够组成上述V,且方阵HTH的特征向量可以为信道矩阵H的右奇异向量。
4、信道矩阵H的获取
在本申请实施例中,终端设备通过下行参考信号进行信道测量(评估/检测/估计等)以获取信道矩阵H。其中,下行参考信号可以包括信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、同步信息块(SSB)或物理广播系信道解调参考信号(PBCH DMRS)。
例如,终端设备可以根据CSI-RS对当前信道进行下行信道测量以获取信道矩阵,从而通过CSI-RS获取信道矩阵。
又例如,终端设备可以根据SSB或PBCH DMRS对当前信道进行下行信道测量以获取信道矩阵, 从而通过SSB或PBCH DMRS获取信道矩阵。
三、CSI架构
3GPP所规定的标准协议规范了CSI架构。其中,CSI架构可能涉及到CSI资源配置(CSI Resource Configuration)、CSI报告配置(CSI Report Configuration)、CSI报告的优先级(priority)、CSI报告占用的(occupied)CSI处理单元(CSI processing unit,CPU)、CSI报告的CSI计算时间要求(computation time requirement)等。下面分别进行说明。
1、CSI的相关配置
针对CSI的相关配置可以由高层参数(如CSI测量配置(CSI-MeasConfig))所定义。其中,CSI-MeasConfig可以包含如下两个高层参数:CSI资源配置(CSI-ResourceConfig)和CSI报告配置(CSI-ReportConfig)。
CSI-ResourceConfig可以用于配置CSI测量的信道状态信息参考信号资源(CSI-RS Resource)。其中,CSI测量可以是通过CSI-RS资源进行信道测量和/或干扰测量。
CSI-ReportConfig可以用于CSI上报的配置,即配置CSI报告。
由于CSI-ReportConfig会指示/包含CSI资源配置标识(CSI-ResourceConfigId),因此通过CSI-ResourceConfigId,CSI-ResourceConfig会关联(对应/映射)CSI-ReportConfig。
2、CSI-RS资源
CSI-ResourceConfig可以配置资源集(如ResourceSet),ResourceSet可以包含最基本的CSI-RS资源。
CSI-RS资源可以包含以下至少之一项:非零功率CSI-RS(NZP-CSI-RS)资源集(NZP-CSI-RS-ResourceSet)、CSI干扰测量(CSI Interference Measurement,CSI-IM)资源集(CSI-IM-ResourceSet)、同步信号块(SSB)资源集(CSI-SSB-ResourceSet)。
NZP-CSI-RS-ResourceSet可以用于信道测量和/或干扰测量;CSI-IM-ResourceSet可以用于干扰测量;CSI-SSB-ResourceSet可以用于信道测量。
CSI-ResourceConfig中的资源类型(resourceType)可以用于配置CSI-RS资源的类型。
CSI-RS资源的类型可以包括:周期(periodic)CSI-RS资源、半持续(semi-persistent)CSI-RS资源、非周期(aperiodic)CSI-RS资源。
另外,CSI-RS资源可以配置为跟踪参考信号(tracking reference signal,TRS)资源。其中,TRS资源的类型可以包括:周期TRS资源、非周期TRS资源。
3、CSI报告
CSI报告可以通过物理上行链路控制信道(physical uplink control channel,PUCCH)或物理上行链路共享信道(physical uplink shared channel,PUSCH)进行传输。
CSI-ReportConfig中的报告配置类型(reportConfigType)可以用于配置CSI报告的报告类型。
CSI报告的报告类型可以包括:周期CSI报告、非周期CSI报告、承载在PUCCH上的半持续(semi-persistent on PUCCH)CSI报告、承载在PUSCH上的半持续CSI报告。
4、CSI报告配置和CSI-RS资源配置的组合
需要说明的是,CSI报告配置和CSI-RS资源配置的组合,如表1所示。
表1

5、CSI报告的上报方式
CSI报告可以是宽带(wideband)CSI或者子带(subband)CSI。其中,宽带可以定义为所配置的带宽部分(bandwidth part,BWP)大小,而子带可以定义为个连续的物理资源块(physical resource block,PRB),并且子带大小(size)取决于BWP中PRB的总个数。其中,BWP中PRB的总个数与子带大小之间的对应关系,如表2所示。
表2
6、CSI报告所包含的信息类型
CSI报告可以包含以下至少之一项:层1参考信号接收功率(layer 1reference signal received power,L1-RSRP)、层1信号与干扰加噪声比(layer 1signal-to-noise and interference ratio,L1-SINR)、CSI相关参数(CSI-related quantities)/CSI参数等。
具体的,CSI相关参数/CSI参数可以包含以下至少之一项:CSI参考信号资源指示索引(CSI-RS Resource Indicator,CRI)、同步信号块资源指示索引(SS/PBCH block resource indicator,SSBRI)、秩指示索引(rank indicator,RI)、预编码矩阵指示索引(precoding matrix indicator,PMI)、信道质量指示索引(channel quality indicator,CQI)、层指示索引(layer indicator,LI)等。
需要说明的是,CRI(或SSBRI)可以表示终端设备所推荐(或所选)的CSI-RS(或SSB)资源。其中,一个CSI-RS(或SSB)资源可以表示一个波束或天线方向。
RI可以表示终端设备所推荐(或所选)的层数,而层数可以决定哪个码本。其中,每个层数对应一个码本,一个码本由一个或多个码字组成。比如,层数为2的码本或者层数为1的码本。另外,在MIMO技术中,层数可以用于表示发送端与接收端之间的传输链路的数量。
PMI可以表示终端设备所推荐(或所选)的码本里的码字的索引,或者量化的预编码信息。其中,一个码字对应一个预编码矩阵。RI和PMI可以整体表示终端设备所推荐的层数和预编码矩阵。
CQI可以表示终端设备向网络设备反馈当前信道的信道质量的好坏。其中,终端设备需要计算CQI。
7、PUSCH上的CSI报告
3GPP所规定的标准协议(如NR R15/16/17)可以支持类型I(Type I)CSI反馈(feedback)、Type II CSI反馈、增强(Enhanced)Type II CSI反馈、进一步增强(Further Enhanced)Type II CSI反馈。
Type I CSI反馈的基本原理是:终端设备可以将协议规定的码本与估计的信道进行匹配,选出与信道最匹配的码本,而后将该码本对应的索引反馈至网络设备。
Type II CSI反馈、增强Type II CSI反馈以及进一步增强Type II CSI反馈的基本原理是:采用高分辨率的CSI反馈,对估计的信道进行一定的处理,从而反馈处理后的信息,包括幅值和相位的量化等。
PUSCH上的CSI报告可以支持Type I CSI反馈、Type II CSI反馈、增强Type II CSI反馈以及进一步增强Type II CSI反馈。
对于PUSCH上的Type I CSI反馈、Type II CSI反馈、增强Type II CSI反馈以及进一步增强Type II CSI反馈,一个CSI报告可以由两个部分(part)组成,即部分1(Part 1)和部分2(Part 2)。
部分1的负荷大小(payload size)可以是固定的,且部分1可以用于确定部分2中的信息比特数量。
另外,在不同情况下部分1和部分2所包含的信息类型可能是不同的。具体如下:
◆对于Type I CSI反馈:部分1可以包含RI(如果被上报)、CRI(如果被上报)、第一个码字(first codeword)的CQI(如果被上报);部分2可以包含PMI(如果被上报)、当RI(如果被上报)大于4时的第二个码字的CQI(如果被上报)、LI(如果被上报)。
◆对于Type II CSI反馈:部分1可以包含RI(如果被上报)、CQI、Type II CSI的每层非零宽带幅值系数(non-zero wideband amplitude coefficient)的数量的指示。其中,部分1的字段(RI、CQI、每层非零宽带幅值系数的数量的指示)可以是分别编码的。部分2可以包含Type II CSI的PMI、LI(如果被上报)。其中,部分1和部分2可以是分别编码的。
◆对于增强Type II CSI反馈:部分1可以包含RI(如果被上报)、CQI、增强Type II CSI的所有层)非零幅值系数的总数量的指示。其中,部分1的字段(RI、CQI、非零幅值系数的总数量的指示)可以是分别编码的。部分2可以包含增强Type II CSI的PMI。其中,部分1和部分2可以是分别编码的。
需要说明的是,“7、PUSCH上的CSI报告”中的相关内容/概念/定义/解释等可以详见标准协议(如3GPP 38.214)中的对应章节,对此不作具体限制。另外,“7、PUSCH上的CSI报告”中的相关内容/概念/定义/解释等也可能会随着标准协议(如3GPP 38.214)的修改/变动而适配的修改。在本领域技术人员结合“7、PUSCH上的CSI报告”中的相关内容/概念/定义/解释等也能推导/获取修改后的内容。因此,修改后的内容也在本申请所要求保护的范围内,对此不再赘述。
8、CSI报告的优先级
1)描述
一个CSI报告可以关联一个优先级取值PriCSI(y,k,c,s):
PriCSI(y,k,c,s)=2·Ncells·Ms·y+Ncells·Ms·k+Ms·c+s;
其中,PriCSI(y,k,c,s)中的各个参数描述如下:
-参数y:
对于被调度承载在PUSCH上的非周期CSI报告,参数y的取值可以为0;
对于被调度承载在PUSCH上的半持续CSI报告,参数y的取值可以为1;
对于被调度承载在PUCCH上的半持续CSI报告,参数y的取值可以为2;
对于被调度承载在PUCCH上的周期CSI报告,y的取值可以为3;等等。
-参数k:
参考k的取值可以由CSI-ReportConfig中的信息(如报告参数(reportQuantity))所指示的CSI报告所包含的信息类型确定。
例如,对于包含L1-RSRP或者L1-SINR的CSI报告,参数k的取值可以为0;
对于未包含L1-RSRP或者L1-SINR的CSI报告,参数k的取值可以为1;等等。
-参数c:
参数c的取值可以为服务小区索引值(serving cell index)。
-参数s:
参数s的取值可以为CSI-ReportConfig中报告配置索引(reportConfigID)的取值。
-参数Ncells
参数Ncells的取值可以为高层参数服务小区最大数量(maxNrofServingCells)的取值。
-参数Ms
参数Ms的取值可以为高层参数CSI报告配置的最大数量(maxNrofCSI-ReportConfigurations)的取值。
需要说明的是,标准协议中规定的服务小区最大数量的名称为maxNrofServingCells、CSI报告配置索引的名称为reportConfigID、CSI报告配置的最大数量的名称为maxNrofCSIReportConfigurations,但其他标准中规定相同含义的名称也同样适用于本申请,即本申请并不限制这些参数的名称。
2)CSI报告的优先级比较
由于一个CSI报告可以关联一个优先级取值,若某个CSI报告所关联的优先级取值PriCSI(y,k,c,s)小于另一个CSI报告所关联的优先级取值PriCSI(y,k,c,s),则这个CSI报告的优先级高于该另一个CSI报告的优先级。
3)CSI报告的冲突(collide)机制
如果两个CSI报告在同一载波上传输,并且在时域上有至少一个符号(symbol)相互重叠,则该两个CSI报告在传输时存在冲突。
当终端设备被配置为传输存在冲突的两个CSI报告时,
-如果该两个CSI报告之间的参数y的取值不同,并且除了其中一个参数y的取值为2而另一个参数y的取值为3的情况之外,以下规则适用:
◆终端设备不传输优先级取值PriCSI(y,k,c,s)更高的CSI报告;
-否则,该两个CSI报告可以复用,或者基于优先级取值被丢弃。
需要说明的是,上述“8、CSI报告的优先级”中的相关内容/概念/定义/解释等可以详见标准协议(如3GPP 38.214)中的对应章节,对此不作具体限制。另外,“8、CSI报告的优先级”中的相关内容/概念/定义/解释等也可能会随着标准协议(如3GPP 38.214)的修改/变动而适配的修改。在本领域技术人员结合“8、CSI报告的优先级”中的相关内容/概念/定义/解释等也能推导/获取修改后的内容。因此,修改后的内容也在本申请所要求保护的范围内,对此不再赘述。
9、CSI报告占用的CSI处理单元
1)描述
在一个分量载波(Component Carrier,CC)中,终端设备可以通过高层参数(如每个分量载波同时CSI报告(simultaneousCSI-ReportsPerCC))指示自身支持的同时CSI计算(simultaneous CSI calculation)的数量,NCPU
在所有分量载波中,终端设备可以通过高层参数(如所有分量载波同时CSI报告(simultaneousCSI-ReportsAllCC))指示自身支持的同时CSI计算的数量,NCPU
若终端设备支持同时CSI计算,则称终端设备具有用于处理CSI报告的NCPU个CSI处理单元。
需要说明的是,CSI报告所占用的CSI处理单元,可以表征终端设备处理CSI的能力。NCPU,可以理解为,终端设备支持的CPU的最大数量或总数量。另外,NCPU可以由终端设备通过高层参数(如simultaneousCSI-ReportsPerCC和/或simultaneousCSI-ReportsAllCC)上报给网络设备。
若在一个给定符号中CSI的计算已占用了L个CSI处理单元,则终端设备具有NCPU-L个未占用的CSI处理单元。
在NCPU-L个未占用的CSI处理单元中,如果N个CSI报告在同一个符号上依次占用它们各自的CSI处理单元,且第n(n=0,…,N-1)个CSI报告所占用的CSI处理单元的数量为则终端设备不需要更新(update)N-M1个具有低优先级的CSI报告,M1(0≤M1≤N)是使 成立的最大值。
例如,网络设备给终端设备配置了3个CSI报告,分别为CSI报告0、CSI报告1和CSI报告2。其中,在该3个CSI报告各自对应的优先级中,CSI报告0的优先级高于CSI报告1的优先级,CSI报告1的优先级高于CSI报告2的优先级。在终端设备具有10个未占用的CSI处理单元的情况下,若CSI报告0占用5个CSI处理单元(即),CSI报告1占用3个CSI处理单元(即),CSI报告2占用5个CSI处理单元(即),则由于5+3+5>10,因此终端设备不需要更新CSI报告2。
2)一个CSI报告所占用的CSI处理单元的数量
一个CSI报告所占用的CSI处理单元的数量OCPU,可以存在如下:
◆如果CSI-ReportConfig中的reportQuantity设置为'没有(none)',且CSI-RS-ResourceSet中配置了高层参数trs-Info,则PCPU=0。也就是说,CSI报告所占用的CPU的数量为0。
◆如果CSI-ReportConfig中的reportQuantity设置为'cri-RSRP'、'ssb-Index-RSRP'、'cri-SINR'、'ssb-Index-SINR'或者'none'(此时CSI-RS-ResourceSet未配置trs-Info),则OCPU=1。也就是说,CSI报告所占用的CPU的数量为1。
◆如果CSI-ReportConfig中的高层参数reportQuantity设置为'cri-RI-PMI-CQI'、'cri-RI-i1'、'cri-RI-i1-CQI'、'cri-RI-CQI'或者'cri-RI-LI-PMI-CQI',则:
-如果max(μPDCCHCSI-RSUL)<3,一个CSI报告被非周期触发,L=0个CSI处理单元被占用,终端设备不发送带有传输块(或HARQ-ACK或两者)的PUSCH,且该CSI对应于具有宽带频率粒度的单个CSI,以及对应于单个资源中的最多4个CSI-RS端口,其中codebookType设置为'typeI-SinglePanel”或reportQuantity设置为'cri-RI-CQI',则OCPU=NCPU。也就是说,CSI报告所占用的CSI处理单元的数量为终端设备上报的CSI处理单元的总数量。其中,μPDCCH对应传输DCI的PDCCH的子载波间隔,μUL对应承载CSI的PUSCH的子载波间隔,μCSI-RS对应DCI触发的非周期CSI-RS的子载波间隔。
-如果一个CSI报告对应的CSI-ReportConfig中codebookType设置为'typeI-SinglePanel”,且相应的用于信道测量的CSI-RS资源集被配置了2个资源组,其中包含N个资源对,M个用于单站点传输假设下的资源,则OCPU=2N+M。也就是说,CSI报告所占用的CSI处理单元的数量为2N+M。
-否则,OCPU=Ks,Ks是NZP-CSI-RS-ResourceSet中用于信道测量的NZP-CSI-RS资源(也可以称为信道测量资源)的数量。也就是说,CSI报告所占用的CSI处理单元的数量可以为该CSI报告所关联的信道测量资源的数量。
3)CSI处理单元所占用的OFDM符号的数量
●对于CSI-ReportConfig中的reportQuantity未设置为‘none’的CSI报告,该CSI报告占用的CSI处理单元所占用的OFDM符号的数量,可以存在如下:
-周期CSI报告或半持续CSI报告(不包括由PDCCH触发报告之后在PUSCH上的第一次(initial)半持续CSI报告)占用的CSI处理单元所占用的OFDM符号为:
从用于信道测量或干扰测量的CSI-RS/CSI-IM/SSB资源中最早的一个的第一个符号开始,且各自最近(latest)的CSI-RS/CSI-IM/SSB时机不晚于相应的CSI参考资源,直到上报资源的最后一个符号,其中,该上报资源为用于承载该周期CSI报告或半持续CSI报告的PUSCH/PUCCH。
-非周期CSI报告占用的CSI处理单元所占用的OFDM符号为:
从触发该非周期CSI报告的PDCCH之后的第一个符号开始,直到上报资源的最后一个符号,其中,该上报资源为用于承载该非周期CSI报告的PUSCH。
-由PDCCH触发报告之后在PUSCH上的第一次半持续CSI报告占用的CSI处理单元所占用的OFDM符号为:
从该PDCCH之后的第一个符号开始,直到上报资源的最后一个符号,其中,该上报资源为用于承载该第一次半持续CSI报告的PUSCH。
●对于CSI-ReportConfig中的reportQuantity设置为‘none’以及CSI-RS-ResourceSet未配置trs-Info的CSI报告,该CSI报告占用的CSI处理单元所占用的OFDM符号的数量,可以存在如下:
-半持续CSI报告(不包括由PDCCH触发报告之后在PUSCH上的第一次(initial)半持续CSI报告)占用的CSI处理单元所占用的OFDM符号为:
从用于L1-RSRP计算的信道测量的周期或半持续CSI-RS/SSB资源的每个传输时机(transmission occasion)中的最早(earliest)一个的第一个符号开始,直到每个传输时机中用于L1-RSRP计算的信道测量的CSI-RS/SSB资源中的最近(latest)一个的的最后一个符号之后的Z′3个符号。
-非周期CSI报告占用的CSI处理单元所占用的OFDM符号为:
从触发该CSI报告的PDCCH之后的第一个符号到触发该CSI报告的PDCCH之后的第一个符号之后的Z3个符号和测量资源之后的Z′3个符号之间的最后一个符号;其中,该测量资源为用于L1-RSRP计算的信道测量的CSI-RS/SSB资源中的最近(latest)一个。
需要说明的是,上述“9、CSI报告占用的CSI处理单元”中的相关内容/概念/定义/解释等可以详见标准协议(如3GPP 38.214)中的对应章节,对此不作具体限制。另外,“9、CSI报告占用的CSI处理单元”中的相关内容/概念/定义/解释等也可能会随着标准协议(如3GPP 38.214)的修改/变动而适配的修改。在本领域技术人员结合“9、CSI报告占用的CSI处理单元”中的相关内容/概念/定义/解释等也能推导/获取修改后的内容。因此,修改后的内容也在本申请所要求保护的范围内,对此不再赘述。
10、CSI报告的CSI计算时间要求
◆当DCI上的CSI请求字段触发PUSCH上的CSI报告时,若用于携带CSI报告(包括时间提前的影响)的第一个上行符号的开始时间不早于符号Zref,以及用于携带第n个CSI报告(包括时间提前的影响)的第一个上行符号的开始时间不早于符号Z'ref(n),则对于第n个被触发的报告,终端设备可以提供有效的CSI报告。
其中,Zref定义为下一个上行符号,该下一个上行符号的循环前缀(Cyclic Prefix,CP)在触发该CSI报告的PDCCH的最后一个符号结束后的T=(Z)(2048+144)·κ2·TC+Tswitch开始。
其中,Z'ref(n)定义为下一个上行符号,该下一个上行符号的CP在测量资源的最后一个符号结束后的T′=(Z′)(2048+144)·κ2·TC开始,该测量资源为用于信道测量的非周期CSI-RS资源(当非周期CSI-RS用于第n个被触发的CSI报告的信道测量时)、用于干扰测量的非周期CSI-IM、用于干扰测量 的非周期NZP CSI-RS中最近(latest)一个。
◆当DCI上的CSI请求字段触发PUSCH上的CSI报告,若用于携带CSI报告(包括时间提前影响)的第一个上行符号的开始时间早于符号Zref,则:
-若在该PUSCH上没有复用HARQ-ACK或传输块,则终端设备可以忽略该DCI。也就是说,终端设备可以不上报该DCI所触发的CSI报告。
◆当DCI上的CSI请求字段触发PUSCH上的CSI报告时,若用于携带第n个CSI报告(包括时间提前影响)的第一个上行符号的开始时间早于符号Z'ref(n),则:
-若触发的CSI报告的数量为1,且在PUSCH上没有复用HARQ-ACK或传输块,则终端设备可以忽略该DCI。
-否则,终端设备不需要为第n个被触发的CSI报告更新CSI。
◆Z和Z′的定义
在本申请实施例中,CSI报告的CSI计算时间要求,可以根据(Z,Z′)确定。其中,Z=maxm=0,…,M-1(Z(m)),Z′=maxm=0,…,M-1(Z′(m)),M为更新的CSI报告的数量。
(Z(m),Z′(m))对应第m个更新的CSI报告,具体可以定义如下:
-如果max(μPDCCHCSI-RSUL)<3,一个CSI报告被非周期触发,L=0个CPU被占用,终端设备不发送带有传输块(或HARQ-ACK或两者)的PUSCH,且该CSI对应于具有宽带频率粒度的单个CSI,以及对应于单个资源中的最多4个CSI-RS端口,其中codebookType设置为'typeI-SinglePanel”或reportQuantity设置为'cri-RI-CQI',则(Z(m),Z′(m))可以定义为表3的(Z1,Z′1)。或者,
表3 CSI计算时间要求1
其中,μ为子载波间隔配置,并对应min(μPDCCHCSI-RSUL)。其中,μPDCCH对应传输DCI的PDCCH的子载波间隔,μUL对应承载CSI的PUSCH的子载波间隔,μCSI-RS对应DCI触发的非周期CSI-RS的子载波间隔。
-如果要传输的CSI对应于宽带频率粒度,以及对应于单个资源中的最多4个CSI-RS端口,其中codebookType设置为'typeI-SinglePanel'或reportQuantity设置为'cri-RI-CQI',则(Z(m),Z′(m))可以定义为表4的(Z1,Z′1)。或者,
表4 CSI计算时间要求2
其中,μ为子载波间隔配置,并对应min(μPDCCHCSI-RSUL)。
-如果传输的CSI对应于宽带频率粒度,其中reportQuantity设置为'ssb-Index-SINR'或者'cri-SINR',则(Z(m),Z′(m))可以定义为表4的(Z1,Z′1)。或者,
-如果reportQuantity设置为'cri-RSRP'或者'ssb-Index-RSRP',则(Z(m),Z′(m))可以定义为表4的(Z3,Z′3)。其中,Xμ可以是根据终端设备报告的波束报告时间(beamReportTiming)能力确 定的,KBl是根据终端设备报告的波束切换时间(beamSwitchTiming)能力确定的。或者,
-否则,(Z(m),Z′(m))可以定义为表4的(Z2,Z′2)。
需要说明的是,上述“10、CSI报告的CSI计算时间要求”中的相关内容/概念/定义/解释等可以详见标准协议(如3GPP 38.214)中的对应章节,对此不作具体限制。另外,“10、CSI报告的CSI计算时间要求”中的相关内容/概念/定义/解释等也可能会随着标准协议(如3GPP 38.214)的修改/变动而适配的修改。在本领域技术人员结合“10、CSI报告的CSI计算时间要求”中的相关内容/概念/定义/解释等也能推导/获取修改后的内容。因此,修改后的内容也在本申请所要求保护的范围内,对此不再赘述。
四、增强CSI架构
结合上述内容,终端设备可以通过CSI-RS资源进行信道测量和/或干扰测量以得到测量结果,再通过CSI报告携带这些测量结果以实现CSI上报。
然而,随着不断复杂且多样的通信需求,本申请考虑CSI报告可能需要包含基于TRS资源进行测量所得到的测量结果(为了便于区分和描述,该测量结果称为“第一测量结果”)和/或基于一个或多个CSI-RS传输时机(transmission occasion)进行测量所得到的测量结果(为了便于区分和描述,该测量结果称为“第二测量结果”)。
在本申请实施例中,CSI报告包含第一测量结果可以看做是对CSI上报/反馈进行增强,这是因为:
目前,在将CSI-RS资源配置为非周期的TRS资源时,CSI-ReportConfig中的reportQuantity可能设置为'none'。此时,终端设备无需进行CSI上报/反馈,即不会对任何的测量结果进行上报/反馈。而将CSI-RS资源配置为周期的TRS资源时,目前标准协议并不支持周期的TRS资源关联CSI-ReportConfig,这样也就不存在CSI上报/反馈。
也就是说,目前基于TRS资源进行测量所得到的测量结果仅仅是面向终端设备使用,而不会将该测量结果上报/反馈给网络设备。
然而,本申请实施例的终端设备基于TRS资源(无论是非周期的TRS资源,还是周期的TRS资源)进行测量所得到的测量结果(即第一测量结果)需要上报/反馈给网络设备,这样CSI报告需要包含第一测量结果,从而实现增强CSI上报/反馈。
在本申请实施例中,CSI报告包含第二测量结果可以看做是对CSI上报/反馈进行增强,这是因为:
CSI-RS传输时机可以为在时域上的CSI-RS资源,而本申请实施例的终端设备可以基于一个或多个CSI-RS传输时机进行测量以得到测量结果(即第二测量结果),而第二测量结果可以包含更多/新的CSI信息,再通过CSI报告包含这些更多/新的CSI信息进行上报/反馈,从而实现增强CSI上报/反馈。又由于更多/新的CSI信息将有利于提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
另外,在上述“三、CSI架构”所描述的CSI架构可能不适配于这类CSI报告(即包含第一测量结果和/或第二测量结果的CSI报告),因此本申请还需要对CSI架构进行增强以适配这类CSI报告。
下面对本申请实施例所涉及的技术方案、有益效果、概念、增强CSI架构等进行具体说明。
1、第一CSI报告
由于本申请实施例需要讨论CSI报告包含第一测量结果和/或第二测量结果,因此为了便于区分和描述,本申请实施例将包含第一测量结果和/或第二测量结果的CSI报告称为“第一CSI报告”,当然也可以采用其他术语描述,对此不作具体限制。
也就是说,第一CSI报告可以为包含第一测量结果和/或第二测量结果的CSI报告。
在一些可能的实现中,第一CSI报告还可以包含以下至少之一项:L1-RSRP、L1-SINR、CSI相关参数/CSI参数等。
其中,CSI相关参数/CSI参数可以包含以下至少之一项:CRI、SSBRI、RI、PMI、CQI、LI等。
2、TRS资源
需要说明的是,本申请实施例可以通过高层参数将CSI-RS资源配置为TRS资源。
例如,本申请实施例可以在CSI-ResourceConfig中引入信息(如trs-Info),即CSI-ResourceConfig包含该信息,该信息可以用于配置TRS资源。
为了便于区分和描述,该信息可以称为“第一配置信息”,当然也可以采用其他术语描述,如TRS配置信息、TRS信息等,对此不作具体限制。
在一些可能的实现中,TRS资源可以为周期的或者非周期的。
例如,本申请实施例可以在CSI-ResourceConfig中引入信息(如resourceType),即CSI-ResourceConfig包含该信息,该信息可以用于配置TRS资源为周期的或者非周期的。
为了便于区分和描述,该信息可以称为“第二配置信息”,当然也可以采用其他术语描述,如TRS配置信息、TRS信息等,对此不作具体限制。
3、第一测量结果
在本申请实施例中,第一测量结果可以为基于TRS资源进行测量所得到的测量结果。
可以理解为,本申请的终端设备可以基于TRS资源进行测量以得到第一测量结果,再通过CSI报告包含第一测量结果进行上报/反馈,从而实现增强CSI上报/反馈。
在一些可能的实现中,第一测量结果可以用于表示/表征/描述下行信道在时域上的变化特征(或者说下行信道的时域变化特征),或者下行信道的时域特性等。
可以理解的是,终端设备在基于TRS资源对下行信道进行测量以得到的测量结果可以表征该下行信道在时域上的变化特征等。
在一些可能的实现中,第一测量结果可以包括时域信道属性(time-domain channel properties,TDCP)。
需要说明的是,时域信道属性可以包括以下至少之一项:多普勒偏移(doppler shift)、多普勒扩展(doppler spread)、时延拓展(delay spread)、平均时延(average delay)、差分多普勒偏移、差分多普勒拓展、差分时延拓展、差分平均时延、多普勒偏移变化率、多普勒扩展变化率、时延拓展变化率、平均时延变化率、时域互相关(cross-correlation in time)、相对多普勒偏移、多普勒域矢量、多普勒域码本/码字、时域矢量、时域码本/码字。
在一些可能的实现中,时域信道属性可以包括除上述所描述的信息之外其余用于表征下行信道的时域变化特性/时域特征的信息,或者时域信道属性可以包括上述所描述的信息和该其余用于表征下行信道的时域变化特性/时域特征的信息,对此不作具体限制。
4、CSI-RS传输时机
需要说明的是,CSI-RS传输时机,可以理解为,在时域上的CSI-RS资源,或者CSI-RS资源的时域位置,或者CSI-RS所在/所对应/所占用/所关联的时域位置,或者CSI-RS所在/所对应/所占用/所关联的时刻,或者CSI-RS所在/所对应/所占用/所关联的时间单元,或者一个CSI-RS资源,或者时域上某一时间的一个CSI-RS资源,或者时域上某一时间的多个CSI-RS资源等,对此不作具体限制。
在本申请实施例中,时间单元,可以理解为,在时域上的通信粒度。例如,时间单元可以为子帧(subframe)、时隙(slot)、符号(symbol)或者迷你时隙(mini slot)等,对此不作具体限制。也就是说,本申请所述的时间单元,可以为子帧、时隙、符号或者迷你时隙等中的之一项。
5、一个或多个CSI-RS传输时机
在本申请实施例中,结合上述“4、CSI-RS传输时机”中的内容,一个或多个CSI-RS传输时机,可以包括多个具有不同时域位置的CSI-RS资源,或者可以包括多个用于传输CSI-RS的时域位置/时间/时刻/时间单元。
可以理解为,多个CSI-RS资源各自具有不同的时域位置,或者说多个对应/占用/关联等不同时域位置的CSI-RS资源,或者说在不同时域位置的CSI-RS资源。
需要说明的是,多个具有不同时域位置的CSI-RS资源,也可以描述成如下之一项:
◆多个具有不同时刻/时间/时机的CSI-RS资源;可以理解为,多个对应/占用/关联等不同时刻/时间/时机的CSI-RS资源,或者说在不同时刻传输的CSI-RS资源;
◆多个具有不同时间单元的CSI-RS资源;可以理解为,多个对应/占用/关联等不同时间单元的CSI-RS资源,或者说在不同时间单元传输的CSI-RS资源;例如,以时间单元为时隙为例,若第一CSI资源在时隙1传输,第二CSI资源在时隙2传输,则说明第一CSI资源具有时隙1,第二CSI资源具有时隙2;
◆不同时刻/时间/时域位置对应于同一个CSI-RS资源;可以理解为,将同一个CSI-RS资源在不同时刻/时间/时域位置进行多次重复;
◆等等。
也就是说,CSI-RS传输时机,可以理解为,传输CSI-RS所在/所对应/所占用/所关联的时刻,或者传输CSI-RS所在/所对应/所占用/所关联的时间,或者传输CSI-RS所在/所对应/所占用/所关联的时间单元,或者传输CSI-RS所在/所对应/所占用/所关联的时域位置,或用于传输CSI-RS的时间/时刻/时间单元/时域位置等,对此不作具体限制。
下面本申请主要以多个具有不同时域位置的CSI-RS资源为例进行说明,其余同理可知。
6、多个具有不同时域位置的CSI-RS资源
在本申请实施例中,多个具有不同时域位置的CSI-RS资源,可以包括一个CSI-RS资源在不同时域位置上的多次重复,也可以包括在时域上的多个CSI-RS资源等。下面进行具体说明。
需要说明的是,一个CSI-RS资源在不同时域位置上的多次重复,可以理解为,一个CSI-RS在时域上重复,重复的这些CSI-RS在时域上一定是具有不同的时域位置,但在频域上可以具有相同的频域位置。其中,重复次数可以为1次,也可以大于1次,对此不作具体限制。本申请所述的重复,可以认为是信号在时域上的重复发送;但在不同的时域位置,该信号的空域信息(如波束)可以相同或者不同,对此本申请不做具体的限制。
例如,本申请可以根据CSI-ResourceConfig来配置一个CSI-RS资源,以及根据高层信令/高层参数等来配置/指示在时域上该CSI-RS资源的重复次数和/或该CSI-RS资源相邻重复的时间间隔等;其中,该高层信令/高层参数可以包括RRC信令、MAC信令(如MAC CE)、DCI等中的至少之一项。
在时域上的多个CSI-RS资源,可以理解为,这些CSI-RS资源在时域上一定是具有不同的时域位置,但在频域上可以具有相同的频域位置,也可以具有不同的频域资位置,对此不作具体限制。
例如,本申请可以根据CSI-ResourceConfig来配置在时域上的多个CSI-RS资源,从而确定出多个CSI-RS传输时机;最后,本申请可以根据CSI-ReportConfig和CSI-ResourceConfig之间的关联关系,确定出一个CSI报告关联该多个CSI-RS传输时机。
7、第二测量结果
在本申请实施例中,第二测量结果可以为基于一个或多个CSI-RS传输时机进行测量所得到的测量结果。
可以理解为,本申请的终端设备可以基于一个或多个CSI-RS传输时机进行测量以得到第二测量结果,而第二测量结果可以包含更多/新的CSI信息,再通过CSI报告包含这些更多/新的CSI信息进行上报/反馈,从而实现增强CSI上报/反馈。
在一些可能的实现中,第二测量结果可以包含以下至少之一项:压缩信息、预测信息、多组信息。
在一些可能的实现中,第二测量结果还可以包含以下至少之一项:CRI、SSBRI、RI、PMI、CQI、LI等。
1)压缩信息
压缩信息,可以为一个或多个CSI-RS传输时机所对应的信道信息或者CSI参数经过压缩处理之后的信息。
因此,在本申请实施例中,“压缩信息”可以看作是,压缩处理之后的信息。“信道信息”或“CSI参数”可以看作是,压缩处理之前的信息。
①信道信息、CSI参数、CSI信息
在本申请实施例中,该信道信息可以表征一个或多个CSI-RS传输时机所对应的下行信道的信道特征/特性;该CSI参数可以包含以下至少之一项:CRI、SSBRI、RI、PMI、CQI、LI等。
结合上述“二、信道矩阵”中的内容,本申请实施例的信道信息可以包括以下至少一项:信道矩阵H、等效信道矩阵、预编码矩阵W(预编码矩阵W可以由信道矩阵H推导出来)、信道矩阵H的右奇异向量V、方阵HTH的特征向量vi(信道矩阵的共轭转置HT乘以信道矩阵H所得到的矩阵的特征向量)、信道矩阵H关联的向量(如信道矩阵H在某种变形下的向量等)等。
在一些可能的实现中,信道信息还可以包括信道的时域信息、延时多普勒(delay-doppler)域的信道信息等,对此不作具体限制。
在一些可能的实现中,信道信息还可以包括CRI、SSBRI、RI、PMI、CQI、LI等,对此不做具体限制。
结合上述“4、信道矩阵H的获取”中的内容,在一些可能的实现中,信道信息可以通过一个或多个CSI-RS传输时机所对应的下行参考信号进行测量以得到。
需要说明的是,由于信道信息可能存在比特数量较大等特点,而直接对信道信息进行反馈,将导致占用的资源较多、信令开销大等问题,因此通常采用不直接反馈信道信息的方式。为了降低占用的资源以及信令开销等,本申请实施例采用对信道信息进行压缩处理的方式,使得压缩处理后的信道信息具有更小的比特数量等特点。
另外,本申请所描述的CSI信息,可以包含通过CSI测量所得到信息/测量结果和/或对这些信息/测量结果进行相关处理(如压缩、预测等)所得到的信息等,例如CSI信息可以包含以下中的至少之一项:CSI参数、信道信息、压缩信息、预测信息、多组信息、CRI、SSBRI、RI、PMI、CQI、LI等,对此不作具体限制。
②压缩处理
在本申请实施例中,压缩处理可以包括压缩、量化、编码等中的至少一项。
具体实现时,本申请实施例的终端设备可以利用压缩处理模块实现对信道信息或CSI参数进行压缩处理,而压缩处理后的信道信息具有更小的比特数量、更高精度等特点,使得占用的资源较少、信令开销小、精度高等。
在一些可能的实现中,压缩处理模块可以是利用AI模型/AI算法(如卷积神经网络算法、深度神经网络算法等)进行信息处理的软件单元和/或硬件单元。
示例的,终端设备可以将信道信息输入AI模块,得到压缩信息。即,压缩信息为信道信息或CSI参数经过AI模块压缩处理之后的信息,从而利用AI模块具有处理大量且复杂信息/数据的能力和处理精度高的能力等,实现信道信息或CSI参数的压缩以及保证压缩信息的精度等。
在一些可能的实现中,终端设备可以利用一个或多个CSI-RS传输时机相应的信道信息在多普勒域或者时域的相关性,对该一个或多个CSI-RS传输时机相应的信道信息进行联合处理(如压缩处理),得到压缩信息。
当然,在本申请实施例中,终端设备也可以通过其它方式来压缩处理信道信息或CSI参数,得到压缩信息。
例如,该其他方式可以为有损压缩方式、无损压缩方式等。其中,有损压缩主要是一些量化算法,比如a率、u率、劳埃德(lloyds)等最优量化。无损压缩主要是一些编码算法,比如子带编码、差分编码,哈夫曼编码等。
③示例说明
综上所述,终端设备可以基于一个或多个CSI-RS传输时机进行测量以得到信道信息或CSI参数,并对信道信息或CSI参数进行压缩处理以得到压缩信息,并将压缩信息通过CSI报告上报给网络设备。对应的,网络设备可以对压缩信息进行相应的解压处理以得到信道信息或CSI参数。
例如,以采用AI模块进行压缩处理为例,终端设备基于一个或多个CSI-RS传输时机进行测量以得到信道信息或CSI参数,将信道信息或CSI参数输入AI模块进行压缩以得到压缩信息,再通过PUSCH或PUCCH发送给网络设备。对应的,网络设备对压缩信息输入AI模块进行解压以得到信道信息。
又例如,以使用AI模块进行压缩处理为例,终端设备基于一个或多个CSI-RS传输时机进行测量以得到信道信息或CSI参数,将信道信息或CSI参数输入AI模块进行压缩,再经过量化、编码等处理以得到压缩信息,最后通过PUSCH或PUCCH发送给网络设备。对应的,网络设备对压缩信息进行相应的解码、解量化等处理,再输入AI模块进行解压以得到信道信息或CSI参数。
又例如,终端设备基于一个或多个CSI-RS传输时机进行测量以得到信道信息或CSI参数,将该信道信息或该CSI参数在多普勒域或者时域进行联合处理(如压缩)以得到压缩信息,再通过PUSCH或PUCCH发送给网络设备。对应的,网络设备对压缩信息进行处理以得到信道信息或CSI参数。
2)预测信息
需要说明的是,目前CSI测量是终端设备通过对不晚于CSI参考资源(CSI reference resource)的某一时域位置的CSI-RS资源或者多个时域位置的CSI-RS资源进行信道测量和/或干扰测量以得到CSI参数,但终端设备并不会预测该CSI参考资源所在时域位置之后或该一个或多个时域位置之后的CSI参数。
由于本申请考虑一个或多个CSI-RS传输时机,因此终端设备可以预测该一个或多个CSI-RS传输时机或该一个或多个CSI-RS传输时机所在时域位置之后的一个或多个时间/时刻/时间单元/时域位置等所对应的信道信息或CSI参数,或者,终端设备可以预测CSI参考资源所在时域位置之后的一个或多个时间/时刻/时间单元/时域位置等所对应的信道信息或CSI参数,而这些信道信息或CSI参数可以看做是终端设备预测的预测信息。
例如,终端设备可以基于该一个或多个CSI-RS传输时机进行测量以得到信道信息或CSI参数,再通过对这些信道信息或CSI参数进行插值运算出该一个或多个CSI-RS传输时机之后的一个或多个时间/时刻/时间单元/时域位置等对应的信道矩阵H,最后对该信道矩阵H进行处理,得到预测信息。
综上所述,预测信息,可以为在该一个或多个CSI-RS传输时机或该一个或多个CSI-RS传输时机所在时域位置之后的一个或多个时间/时刻/时间单元/时域位置等所对应的信道信息或CSI参数,也可以为在CSI参考资源所在时域位置之后的一个或多个时间/时刻/时间单元/时域位置等所对应的信道信息或CSI参数。
3)多组信息
需要说明的是,目前CSI测量是终端设备通过某一时域位置的CSI-RS资源进行信道测量和/或干扰测量以得到CSI参数,或者,CSI测量是终端设备通过多个时域位置的CSI-RS资源进行信道测量和/或干扰测量联合处理后以得到CSI参数,而这些CSI参数可以看做是一组CSI参数。
由于本申请考虑一个或多个CSI-RS传输时机,因此终端设备可以通过该多个CSI-RS传输时机进行测量以得到信道信息或CSI参数,而这些信道信息或CSI参数可以看做是多组信息。
综上所述,多组信息,可以为一个或多个CSI-RS传输时机对应的多组信道信息或多组CSI参数。
在一些可能的实现中,该多组信息中的一组信息可以对应一个CSI-RS传输时机,也可以对应多个CSI-RS传输时机,对此不作具体限制。其中,一组信息对应一个CSI-RS传输时机,可以理解为,该一组信息是终端设备通过该一个CSI-RS传输时机进行测量所得到的,其余同理可知。
在一些可能的实现中,多组信息可以对应一个CSI-RS传输时机,也可以对应多个CSI-RS传输时机,对此不作具体限制。其中,多组信息对应一个CSI-RS传输时机,可以理解为,该多组信息是终端设备通过该一个CSI-RS传输时机进行测量所得到的,其余同理可知。
8、第一CSI报告关联一个或多个CSI-RS传输时机
需要说明的是,本申请可以根据网络配置、网络指示、预配置、协议规定等方式来确定第一CSI报告关联一个或多个CSI-RS传输时机,从而通过第一CSI报告关联一个或多个CSI-RS传输时机,使得终端设备可以通过第一CSI报告来上报基于一个或多个CSI-RS传输时机所得到的测量结果,不仅实现增强CSI的相关配置,也实现增强CSI上报/反馈。
以网络配置为例,本申请可以根据高层参数/配置信息/高层信令等确定一个CSI报告关联一个或多个CSI-RS传输时机。
进一步的,以高层参数或配置信息包括CSI-ReportConfig和CSI-ResourceConfig为例,本申请可以根据CSI-ReportConfig和CSI-ResourceConfig之间的关联关系,确定第一CSI报告关联一个或多个CSI-RS传输时机。其中,CSI-ReportConfig可以用于配置第一CSI报告,CSI-ResourceConfig可以用于配置一个或多个CSI-RS传输时机。
可以理解的是,本申请可以通过高层参数或配置信息来配置CSI-ReportConfig和CSI-ResourceConfig,并配置CSI-ReportConfig和CSI-ResourceConfig之间的关联关系,从而根据该关联关系可以确定出由CSI-ReportConfig所配置的第一CSI报告会关联在时域上由CSI-ResourceConfig所配置的CSI-RS传输时机,以便通过一个CSI报告关联多个CSI-RS传输时机来实现CSI的相关配置增强。
9、CSI测量窗口和CSI报告窗口
1)CSI测量窗口
在本申请实施例中,CSI测量窗口,可以表示终端设备进行测量所在的时长(durarion)或时域位置等。也就是说,终端设备需要在该CSI测量窗口所对应的时长内的CSI-RS进行测量。
需要说明的是,网络设备可以通过高层参数/高层信令/高层信息向终端设备配置CSI测量窗口。这样,终端设备需要对该CSI测量窗口所对应的时长内的TRS资源和/或CSI-RS资源进行测量以得到第一测量结果和/或基于一个或多个CSI-RS传输时机进行测量以得到第二测量结果。
因此,本申请实施例的该TRS资源所在的时域位置可以位于该CSI测量窗口内;该一个或多个CSI-RS传输时机可以位于该CSI测量窗口内。
2)CSI报告窗口
在本申请实施例中,CSI报告窗口可以表示时长和/或时域位置等。对此,终端设备上报/反馈的信息(如信道信息、CSI参数等)所相应的时间需位于该CSI报告窗口所对应的时长或时域位置内。也就是说,终端设备需要上报/反馈该CSI报告窗口所对应的某一时间或者多个时间相应的信道信息或者CSI参数等。也可以理解为,终端设备上报/反馈的信息(如信道信息、CSI参数等)关联于该CSI报告窗口。
该信息所相应的时间,可以理解为,终端设备是根据该时间内的CSI-RS进行测量以得到该信息,或者是根据该时间之前所得到的测量结果来预测该时间对应的信道信息以得到该信息。
需要说明的是,网络设备可以通过高层参数/高层信令/高层信息/下行控制信息等向终端设备配置CSI报告窗口。这样,终端设备上报/反馈的第一测量结果和/或第二测量结果所相应的时间位于该CSI报告窗口所对应的时长或时域位置内。也就是说,第一测量结果和/或第二测量结果对应该CSI报告窗口。
3)CSI测量窗口与CSI报告窗口之间的位置关系
需要说明的是,CSI测量窗口的起始位置可以在CSI报告窗口的起始位置之前,或者与CSI报告窗口的起始位置重叠。
CSI测量窗口的结束位置可以在CSI报告窗口的结束位置之前,或者与CSI报告窗口的结束位置重叠。
可见,CSI测量窗口所对应的时长可以与CSI报告窗口所对应的时长完全重叠或者部分重叠,而CSI报告窗口中未重叠部分的时长对应的测量结果可以看做是终端设备预测的预测信息。
例如,如图2所示,CSI测量窗口的起始位置为A,CSI测量窗口的结束位置为C,CSI报告窗口的起始位置为B,CSI报告窗口的结束位置为D。因此,时长AB和时长CD为未重叠部分。其中,时长CD对应的测量结果就可以为预测信息。
10、如何确定第一CSI包含第一测量结果和/或第二测量结果
结合上述“2、TRS资源”中的内容,在一些可能的实现中,若CSI-ResourceConfig包含第一配置信息,则说明网络设备向终端设备配置有TRS资源,这样终端设备可以基于该TRS资源进行测量以得到第一测量结果,并需要对该第一测量结果进行上报/反馈,使得第一CSI报告需要包含该第一测量结果。
也就是说,若CSI-ResourceConfig包含第一配置信息,则第一CSI报告可以包含第一测量结果。
在一些可能的实现中,若CSI-ResourceConfig包含用于配置一个或多个CSI-RS传输时机的信息(为了便于区分和描述,该信息可以称为“第三配置信息”或者其他术语),则说明网络设备向终端设备配置有一个或多个CSI-RS传输时机,这样终端设备可以基于该一个或多个CSI-RS传输时机进行测量以得到第二测量结果,并需要对该第二测量结果进行上报/反馈,使得第一CSI报告需要包含该第二测量结果。
也就是说,若CSI-ResourceConfig包含第三配置信息,则第一CSI报告可以包含第二测量结果。
综上所述,若CSI-ResourceConfig包含第一配置信息和第三配置信息,则第一CSI报告可以包含第一测量结果和第二测量结果。
在一些可能的实现中,CSI-ReportConfig可以包含用于指示第一CSI报告包含第一测量结果和/或第二测量结果的信息(为了便于区分和描述,该信息可以称为“第一指示信息”或者其他术语)。
也就是说,网络可以通过CSI-ReportConfig来配置第一CSI报告,并通过CSI-ReportConfig中的第一指示信息来指示第一CSI报告需要包含第一测量结果和/或第二测量结果。
11、第一CSI报告的组成
1)部分1和部分2
结合上述“7、PUSCH上的CSI报告”中的内容,本申请实施例的第一CSI报告可以由部分1和部分2组成。其中,部分1的负荷大小(payload size)是固定的,且部分1可以用于确定部分2中的信息比特数量。
由于部分1是固定大小,而部分2的大小可变,且依赖于部分1,因此本申请可以实现如下:
把一些重要信息放在部分1,这样在丢弃部分2的情况下,终端设备还可以通过部分1将重要信息上报给网络设备以作为相关参考,而避免重要信息的丢失;
把一些决定部分2大小的信息放在部分1,这样网络设备可以利用该信息来检索部分2,而避免盲检部分2,从而提高检索效率。
在一些可能的实现中,部分1可以包含第一测量结果和/或第二测量结果中的全部或部分信息。
这是因为,由于第一测量结果和/或第二测量结果中的全部或部分信息可以作为重要信息或决定部分2大小的信息,因此第一测量结果和/或第二测量结果中的全部或部分信息位于部分1中,从而有利于避免重要信息的丢失,或避免盲检部分2。
需要说明的是,第二测量结果可能包含压缩信息、预测信息、多组信息,以及可能包含CRI、SSBRI、RI、PMI、CQI、LI等信息。由于在压缩信息、预测信息、多组信息、CRI、SSBRI、RI、PMI、CQI、LI等信息中,可能存在一些信息(如CRI、CQI等)可能需要位于部分1内,以及可能存在另一些信息(如PMI等)可能需要位于部分2内,因此部分1可能包含第二测量结果中的全部或者部分信息。类似,部分2也可能包含第二测量结果中的全部或者部分信息。
在一些可能的实现中,部分2可以包含第一测量结果和/或第二测量结果中的全部或部分信息。如此,通过将第一测量结果和/或第二测量结果中的全部或部分信息放入部分2中,有利于提高传输第一测量结果和/或第二测量结果中的全部或部分信息的灵活性和可能性。
需要说明的是,部分1和部分2包含的内容是不同的。例如,若部分1包含第一测量结果,则部分2不包含该第一测量结果;若部分1包含第二测量结果中的全部或部分信息,则部分2不包含该第二测量结果中的全部或部分信息。
在一些可能的实现中,部分1可以包含第一测量结果,部分2可以包含第二测量结果中的全部或部分信息。如此,通过将第一测量结果作为重要信息进行传输。
在一些可能的实现中,部分1可以包含第二测量结果中的全部或部分信息,部分2可以包含第一测量结果。如此,通过将第二测量结果中的全部或部分信息作为重要信息进行传输。
2)组0(group 0)和组1(group 1)
需要说明的是,本申请实施例的部分2可以包含组0、组1、组2中的至少之一项。
在一些可能的实现中,部分2的组0可以包含第一测量结果和/或第二测量结果中的全部或部分信息。
在一些可能的实现中,部分2的组1可以包含第一测量结果和/或第二测量结果中的全部或部分信息。
在一些可能的实现中,部分2的组2可以包含第一测量结果和/或第二测量结果中的全部或部分信息。
需要说明的是,组0、组1和组2包含的内容是互不相同的。例如,若组0包含第一测量结果,则组1和组2不包含该第一测量结果;若组0包含第二测量结果中的第一部分信息,则组1和组2不包含该第一部分信息。
另外,组0、组1和组2可以分别包含第二测量结果中的互不相同的部分信息。例如,组0可以包含第二测量结果中的第一部分信息,组1可以包含第二测量结果中的第二部分信息,组2可以包含第二测量结果中的第三部分信息。其中,第一部分信息、第二部分信息和第三部分信息互不相同。
在一些可能的实现中,部分2的组0可以包含第一测量结果,部分2的组1或组2可以包含第二测量结果中的全部或部分信息。
在一些可能的实现中,部分2的组0可以包含第二测量结果中的全部或部分信息,部分2的组1或组2可以包含第一测量结果。
综上所述,在一些可能的实现中,第一测量结果和/或第二测量结果中的全部或部分信息可以位于以下之一项:部分1、部分2的组0、部分2的组1、部分2的组2。
12、第一CSI报告的优先级
结合上述“8、CSI报告的优先级”中的内容,第一CSI报告可以关联一个优先级取值Pri′CSI(a,y′,k′,c′,s′):
Pri′CSI(a,y′,k,c′,s′)=a·N′cells·M′s·y′+N′cells·M′s·k′+M′s·c′+s′。
1)参数y′的取值
在本申请实施例中,参数y′的取值可以由基于第一CSI报告的报告类型确定。
在一些可能的实现中,参数y′的取值可以与上述y的取值相同或者不相同。
例如,以相同为例,若第一CSI报告为被调度承载在PUSCH上的非周期CSI报告,则参数y′的取值可以为0;
若第一CSI报告为被调度承载在PUSCH上的半持续CSI报告,则参数y′的取值可以为1;
若第一CSI报告为被调度承载在PUCCH上的半持续CSI报告,则参数y′的取值可以为2;
若第一CSI报告为被调度承载在PUCCH上的周期CSI报告,则参数y′的取值可以为3;等等。
2)参数k′的取值
在本申请实施例中,参数k′的取值可以根据第一CSI报告所包含的信息类型确定。
例如,参数k′的取值可以根据CSI-ReportConfig中的reportQuantity所指示的第一CSI报告所包含的信息类型确定。
需要说明的是,结合上述“1、第一CSI报告”、“3、第一测量结果”和“7、第二测量结果”中的内容,第一CSI报告所包含的信息可以包括第一测量结果和/或第二测量结果,还可以包括L1-RSRP、L1-SINR、CSI相关参数/CSI参数等中的至少之一项。
其中,第一测量结果可以包括时域信道属性,时域信道属性可以包括以下至少之一项:多普勒偏移、多普勒扩展、时延拓展、平均时延、差分多普勒偏移、差分多普勒拓展、差分时延拓展、差分平均时延、多普勒偏移变化率、多普勒扩展变化率、时延拓展变化率、平均时延变化率、时域互相关、相对多普勒偏移、多普勒域矢量、多普勒域码本/码字、时域矢量、时域码本/码字。
其中,第二测量结果可以包括以下至少之一项:压缩信息、预测信息、多组信息。
在一些可能的实现中,参数k′的取值可以与上述k的取值相同或者不相同。
在一些可能的实现中,参数k′的取值可以为0、0.5、1、2、3等中的之一。
需要说明的是,为了便于区分和描述,本申请实施例可以将参数k′称为“第一参数”。因此,第一参数可以用于确定第一CSI报告的优先级取值,第一参数的取值可以由第一CSI报告所包含的信息类型确定。
结合上述可知,第一参数的取值可以为第一值(如0、0.5、1、2、3等),该第一值可以是网络配置、预配置或协议定义的。
需要说明的是,第一值,可以理解为某一固定的值,该值是预配置、网络配置或者协议规定的。当然,第一值也可以采用其他术语描述,对此不作具体限制。
3)参数c′的取值
在本申请实施例中,参数c′的取值可以与上述参数c的取值相同,即参数c′的取值为服务小区索引值。
4)参数s′的取值
在本申请实施例中,参数s′的取值可以根据第一CSI报告的配置标识确定。
例如,参数s′的取值与上述参数s的取值相同,即参数s′的取值为CSI-ReportConfig中reportConfigID的取值。
5)参数N′cells的取值
在本申请实施例中,参数N′cells的取值可以根据服务小区的最大数量确定。
例如,参数N′cells的取值可以与上述Ncells的取值相同,即参数N′cells的取值为CSI-ReportConfig中maxNrofServingCells的取值。
另外,在本申请实施例中,参数N′cells的取值也可以由配置有第一CSI报告的服务小区的最大数量确定。
6)参数M′s的取值
在本申请实施例中,参数M′s的取值可以根据第一CSI报告的配置的最大数量确定。
另外,在本申请实施例中,参数M′s的取值可以由第一CSI报告的最大数量确定。
例如,参数M′s的取值可以与参数Ms的取值一致,即参数M′s的取值为CSI-ReportConfig中maxNrofCSI-ReportConfigurations的取值。
7)参数a的取值
在本申请实施例中,参数a的取值可以根据参数k′的取值范围确定。例如,若参数k′的取值为0或1,则参数a的取值可以为2;若参数k′的取值为0、0.5、1、2、3中的之一项,则参数a的取值可以为5。
在一些可能的实现中,参数a的取值可以为大于1的整数。
8)优先级比较
若一个第一CSI报告关联的优先级取值Pri′CSI(a,y′,k′,c′,s′)小于另一个第一CSI报告关联的优先级取值Pri′CSI(a,y′,k′,c′,s′),则这个第一CSI报告的优先级高于该另一个第一CSI报告的优先级。
若一个第一CSI报告关联的优先级取值Pri′CSI(a,y′,k′,c′,s′)小于第二CSI报告关联的优先级取值PriCSI(y,k,c,s),则第一CSI报告的优先级高于第二CSI报告的优先级,第二CSI报告为不包含第一测量结果和/或第二测量结果的CSI报告。
13、第一CSI报告占用的CSI处理单元
1)第一CSI报告所占用的CSI处理单元的数量
结合上述“9、CSI报告占用的CSI处理单元”中的内容,第一CSI报告所占用的CPU的数量O′CPU可以存在如下:
①O′CPU=OCPU
也就是说,O′CPU与上述OCPU相同。因此,可以存在如下:
◆如果CSI-ReportConfig中的高层参数reportQuantity设置为‘none’,且CSI-RS-ResourceSet中配置了高层参数trs-Info,则O′CPU=0。需要说明的是,这种方式可能存在,也可能不存在,对此不作具体限制。
◆如果CSI-ReportConfig中的高层参数reportQuantity设置为'cri-RSRP'、'ssb-Index-RSRP'、'cri-SINR'、'ssb-Index-SINR'或者'none'(此时CSI-RS-ResourceSet未配置高层参数trs-Info),则O′CPU=1。需要说明的是,这种方式可能存在,也可能不存在,对此不作具体限制。
◆如果CSI-ReportConfig中的高层参数reportQuantity设置为'cri-RI-PMI-CQI'、'cri-RI-i1'、'cri-RI-i1-CQI'、'cri-RI-CQI'或者'cri-RI-LI-PMI-CQI',则:
-如果max(μPDCCHCSI-RSUL)<3,第一CSI报告被非周期触发,L=0个CSI处理单元被占用,终端设备不发送带有传输块(或HARQ-ACK或两者)的PUSCH,且该CSI对应于具有宽带频率粒度的单个CSI,以及对应于单个资源中的最多4个CSI-RS端口,其中codebookType设置为'typeI-SinglePanel”(或reportQuantity设置为'cri-RI-CQI'),则O′CPU=NCPU。也就是说,第一CSI报告所占用的CSI处理单元的数量可以为终端设备上报的CPU的总数量。
-如果第一CSI报告对应的CSI-ReportConfig中codebookType设置为'typeI-SinglePanel”,且相应的用于信道测量的CSI-RS资源集被配置了2个资源组,其中包含N个资源对, M个用于单站点传输假设下的资源,则O′CPU=2N+M。也就是说,第一CSI报告所占用的CSI处理单元的数量为2N+M。
-否则,O′CPU=Ks,Ks可以是NZP-CSI-RS-ResourceSet中除TRS资源外用于信道测量的NZP-CSI-RS资源(即除TRS资源外的信道测量资源)的数量。也就是说,第一CSI报告所占用的CSI处理单元的数量可以为该第一CSI报告所关联的信道测量资源的数量。
②O′CPU≠OCPU
也就是说,O′CPU可以与上述OCPU不相同。
③O′CPU可以根据Ks确定
Ks可以是NZP-CSI-RS-ResourceSet中除TRS资源外的信道测量资源的数量。
也就是说,O′CPU可以根据第一CSI报告所关联的除TRS资源外的信道测量资源的数量确定。
例如,O′CPU=Ks、O′CPU>Ks、O′CPU<Ks或者O′CPU=Ks+σ。其中,σ是预配置、网络配置或协议定义的偏移值。
④O′CPU可以根据K′s确定
K′s可以是NZP-CSI-RS-ResourceSet中的信道测量资源(该信道测量资源包括TRS资源)的数量。
也就是说,O′CPU可以根据第一CSI报告所关联的信道测量资源的数量确定。
⑤O′CPU可以为第二值
其中,第二值可以是预配置、网络配置或者协议定义的。
需要说明的是,第二值,可以理解为某一固定的值,该值是预配置、网络配置或者协议规定的。也就是说,O′CPU是预配置、网络配置或者协议规定的。当然,第二值也可以采用其他术语描述,对此不作具体限制。
⑥O′CPU可以根据CSI测量窗口和/或CSI报告窗口确定。
可选地,O′CPU也可以根据CSI测量窗口和/或CSI报告窗口所对应的时长确定。
可选地,如果第一CSI报告包含第二测量结果,第二测量结果包括压缩信息和/或多组信息,则O′CPU也可以根据CSI测量窗口所对应的时长确定。
可选地,如果第一CSI报告包含第二测量结果,第二测量结果包括预测信息,则O′CPU也可以根据CSI报告窗口所对应的时长确定。
需要说明的是,结合上述“9、CSI测量窗口、CSI报告窗口”中的内容,CSI测量窗口和/或CSI报告窗口所对应的时长内可能对应/配置有一定数量的信道测量资源,因此本申请可以根据CSI测量窗口和/或CSI报告窗口确定信道测量资源的数量,而信道测量资源的数量又可以确定O′CPU,从而实现根据CSI测量窗口和/或CSI报告窗口来确定O′CPU
2)第一CSI报告占用的CSI处理单元所占用的OFDM符号的数量
需要说明的是,第一CSI报告占用的CSI处理单元所占用的OFDM符号的数量,可以与上述“9、CSI报告占用的CSI处理单元”中的内容一致,对此不再赘述。
例如,对于CSI-ReportConfig中的reportQuantity未设置为‘none’的第一CSI报告,第一CSI报告占用的CSI处理单元所占用的OFDM符号的数量,可以存在如下:
-若第一CSI报告为周期CSI报告或半持续CSI报告(不包括由PDCCH触发报告之后在PUSCH上的第一次(initial)半持续CSI报告),则第一CSI报告占用的CSI处理单元所占用的OFDM符号为:
从用于信道测量或干扰测量的CSI-RS/CSI-IM/SSB资源中最早的一个的第一个符号开始,且各自最近(latest)的CSI-RS/CSI-IM/SSB时机不晚于相应的CSI参考资源,直到上报资源的最后一个符号,其中,该上报资源为用于承载该周期CSI报告或半持续CSI报告的PUSCH/PUCCH。
14、第一CSI报告的CSI计算时间要求
结合上述“10、CSI报告的CSI计算时间要求”中的内容,第一CSI报告的CSI计算时间要求(ZCSI,Z′CSI),可以存在如下:
①(ZCSI,Z′CSI)≠(Z(m),Z′(m))
也就是说,(ZCSI,Z′CSI)不同于上述(Z(m),Z′(m))。或者说,(ZCSI,Z′CSI)与上述(Z(m),Z′(m))不相同。例如,(ZCSI,Z′CSI)≠(Z1,Z′1),或者(ZCSI,Z′CSI)≠(Z2,Z′2),或者(ZCSI,Z′CSI)≠(Z3,Z′3)。
②(ZCSI,Z′CSI)=(Z(m),Z′(m))
也就是说,(ZCSI,Z′CSI)与上述(Z(m),Z′(m))相同。
例如,(ZCSI,Z′CSI)=(Z1,Z′1),或者(ZCSI,Z′CSI)=(Z2,Z′2),或者(ZCSI,Z′CSI)=(Z3,Z′3)。
③(ZCSI,Z′CSI)可以根据(Z(m),Z′(m))确定
也就是说,(ZCSI,Z′CSI)可以与(Z(m),Z′(m))具有关联(对应/映射等)关系。
例如,(ZCSI,Z′CSI)=(Z1+Δz,Z′1+Δz′)。其中,Δz和Δz′可以为正值或负值,可以相同或者不同,且Δz和Δz′可以是预配置、网络配置或协议定义的。
④(ZCSI,Z′CSI)可以根据CSI计算时间要求1或者CSI计算时间要求2确定
需要说明的是,结合表3,CSI计算时间要求1,可以表示在不同μ的取值下(Z1,Z′1)的取值,例如若μ=0,则(Z1,Z′1)=(10,8)。
因此,本申请的根据CSI计算时间要求1确定(ZCSI,Z′CSI),可以理解为,根据(Z1,Z′1)的取值确定(ZCSI,Z′CSI)的取值,如表5所示。
表5第一CSI报告的CSI计算时间要求
在表5中,若μ=0,则(ZCSI,Z′CSI)=(10+Δz1,8+Δz′1),其余类似可知。
其中,Δzm(m=1,2,3,4)和Δz′m可以为正值或负值,可以相同或者不同,且Δzm和Δz′m可以是预配置、网络配置或协议定义的。
需要说明的是,结合表4,CSI计算时间要求2,可以表示在不同μ的取值下(Z1,Z′1)、(Z2,Z′2)和/或(Z3,Z′3)的取值,如若μ=0,则(Z1,Z′1)=(22,16)、(Z2,Z′2)=(40,37)、(Z3,Z′3)=(22,X0)。
因此,本申请的根据CSI计算时间要求2确定(ZCSI,Z′CSI),可以理解为,根据(Z1,Z′1)的取值确定(ZCSI,Z′CSI)的取值,和/或根据(Z2,Z′2)的取值确定(ZCSI,Z′CSI)的取值,和/或根据(Z3,Z′3)的取值确定(ZCSI,Z′CSI)的取值,如表6所示。
在表6中,若μ=0,则(ZCSI,Z′CSI)=(22+Δk1,16+Δk′1),或者(ZCSI,Z′CSI)=(40+Δr1,37+Δr′1),或者(ZCSI,Z′CSI)=(22+Δs1,X0+Δs′1);其余类似可知。
表6第一CSI报告的CSI计算时间要求
其中,Δkm(m=1,2,3,4)和Δk′m可以为正值或负值,可以相同或者不同,且Δkm和Δk′m可以是预配置、网络配置或协议定义的;
Δrm和Δr′m可以为正值或负值,可以相同或者不同,且Δrm和Δr′m可以是预配置、网络配置或协议定义的;
Δsm和Δs′m可以为正值或负值,可以相同或者不同,且Δsm和Δs′m可以是预配置、网络配置或协议定义的;
Δkm、Δrm、Δsm之间可以相同或者不同,Δk′m、Δr′m、Δs′m之间可以相同或不同。
另外,CSI计算时间要求1或CSI计算时间要求2,可以理解为,第二CSI报告的CSI计算时间要求,或者在不考虑TRS资源下所定义的CSI报告的CSI计算时间要求,或者在不考虑一个或多个CSI 传输时机下所定义的CSI报告的CSI计算时间要求等。其中,第二CSI报告为不包含第一测量结果和/或第二测量结果的CSI报告。
综上所述,结合表3和表4,第一CSI报告的CSI计算时间要求可以是根据CSI计算时间要求1或者CSI计算时间要求2确定的。
⑤ZCSI可以为第三值,且Z′CSI可以为第四值
其中,第三值和第四值可以是预配置、网络配置或者协议定义的。
需要说明的是,第三值,可以理解为某一固定的值,该值是预配置、网络配置或者协议定义的。第四值,可以理解为某一固定的值,该值是预配置、网络配置或者协议定义的。当然,第三值和第四值也可以采用其他术语描述,对此不作具体限制。
另外,在“14、第一CSI报告的CSI计算时间要求”中所提到的Z(m)、Z′(m)、Z1、Z′1、Z2、Z′2、Z3、Z′3可以看作是在不考虑TRS资源下定义的,而ZCSI和Z′CSI可以看作是在考虑了TRS资源下定义的。
15、一种信道状态信息报告传输方法的示例说明
结合上述内容,下面对本申请实施例的一种信道状态信息报告传输方法进行示例介绍。需要说明的是,网络设备可以是芯片、芯片模组或通信模块等,终端设备可以是芯片、芯片模组或通信模块等。也就是说,该方法应用于网络设备或者终端设备之中,对此不作具体限制。
如图3所示,为本申请实施例的一种信道状态信息报告传输方法的流程示意图,具体包括如下步骤:
S310、终端设备发送第一信道状态信息CSI报告,该第一CSI报告包含第一测量结果和/或第二测量结果,该第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,该第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
对应的,网络设备接收该第一CSI报告。
需要说明的是,“第一CSI报告”、“TRS资源”、“第一测量结果”、“第二测量结果”等,详见上述中的内容,对此不再赘述。
可见,为了实现增强CSI上报/反馈,本申请考虑CSI报告需要包含基于TRS资源进行测量以得到的测量结果(即第一测量结果)和/或基于一个或多个CSI-RS传输时机进行测量以得到测量结果(即第二测量结果)。其中,包含第一测量结果和/或第二测量结果的CSI报告可以称为第一CSI报告。
由于目前基于TRS资源进行测量所得到的测量结果仅仅是面向终端设备使用,而本申请通过第一CSI报告包含第一测量结果进行上报/反馈,从而实现将基于TRS资源的测量结果上报给/反馈给网络设备,进而实现增强CSI上报/反馈,提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
由于第二测量结果可以包含更多/新的CSI信息,再通过第一CSI报告包含这些更多/新的CSI信息进行上报/反馈,从而实现增强CSI上报/反馈。又由于更多/新的CSI信息将有利于提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
下面对一些可能存在的实现方式进行说明。
在一些可能的实现中,第一测量结果可以包括时域信道属性。
需要说明的是,上述“3、第一测量结果”中的内容,由于第一测量结果可以用于表示/表征/描述下行信道的时域变化特征/时域特性等,因此第一测量结果可以包括时域信道属性。
在一些可能的实现中,时域信道属性可以包括以下至少之一项:
多普勒偏移、多普勒扩展、时延拓展、平均时延、差分多普勒偏移、差分多普勒拓展、差分时延拓展、差分平均时延、多普勒偏移变化率、多普勒扩展变化率、时延拓展变化率、平均时延变化率、时域互相关、相对多普勒偏移、多普勒域矢量、多普勒域码本/码字、时域矢量、时域码本/码字。
需要说明的是,上述“3、第一测量结果”中的内容,本申请可以通过多普勒偏移等信息来具体表征下行信道的时域变化/时域特性等。
在一些可能的实现中,第二测量结果可以包括以下至少之一项:压缩信息、预测信息、多组信息;
压缩信息,可以为一个或多个CSI-RS传输时机所对应的信道信息或者CSI参数经过压缩处理之后的信息;
预测信息,可以为一个或多个CSI-RS传输时机或该一个或多个CSI-RS传输时机所在时域位置之后的一个或多个时域位置所对应的信道信息或CSI参数;
多组信息,可以为一个或多个CSI-RS传输时机所对应的多组信道信息或者多组CSI参数。
需要说明的是,结合上述“7、第二测量结果”中的内容,第二测量结果可以包含更多/新的CSI信息,而这些更多/新的CSI信息将有利于提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。其中,这些更多/新的CSI信息可以包括压缩信息、预测信息、多组信息 中的至少之一项。
在一些可能的实现中,一个或多个CSI-RS传输时机,可以包括多个具有不同时域位置的CSI-RS资源。
需要说明的是,结合上述“5、一个或多个CSI-RS传输时机”中的内容,一个或多个CSI-RS传输时机,可以包括多个具有不同时域位置的CSI-RS资源。可以理解为,多个CSI-RS资源各自具有不同的时域位置,或者说多个对应/占用/关联等不同时域位置的CSI-RS资源,或者说在不同时域位置的CSI-RS资源。
在一些可能的实现中,第一CSI报告可以关联一个或多个CSI-RS传输时机。
需要说明的是,结合上述“8、第一CSI报告关联一个或多个CSI-RS传输时机”中的内容,本申请可以根据网络配置、网络指示、预配置、协议规定等方式来确定第一CSI报告关联一个或多个CSI-RS传输时机,从而通过第一CSI报告关联一个或多个CSI-RS传输时机,使得终端设备可以通过第一CSI报告来上报基于一个或多个CSI-RS传输时机所得到的测量结果,不仅实现增强CSI的相关配置,也实现增强CSI上报/反馈。
在一些可能的实现中,TRS资源所在的时域位置可以位于CSI测量窗口内;
一个或多个CSI-RS传输时机可以位于CSI测量窗口内。
需要说明的是,结合上述“9、CSI测量窗口和CSI报告窗口”中的内容,终端设备需要对CSI测量窗口所对应的时长内的TRS资源和/或CSI-RS资源进行测量以得到第一测量结果和/或基于一个或多个CSI-RS传输时机进行测量以得到第二测量结果。
在一些可能的实现中,第一测量结果和/或第二测量结果可以对应CSI报告窗口。
需要说明的是,结合上述“9、CSI测量窗口和CSI报告窗口”中的内容,终端设备上报/反馈的第一测量结果和/或第二测量结果所相应的时间位于该CSI报告窗口所对应的时长或时域位置内。也就是说,第一测量结果和/或第二测量结果对应该CSI报告窗口。
在一些可能的实现中,若CSI资源配置包含第一配置信息,则第一CSI报告可以包含第一测量结果,第一配置信息可以用于配置TRS资源。
需要说明的是,结合上述“10、如何确定第一CSI包含第一测量结果和/或第二测量结果”中的内容,本申请可以根据CSI资源配置是否包含第一配置信息来确定第一CSI报告是否包含第一测量结果。这样因为,若CSI-ResourceConfig包含第一配置信息,则说明网络设备向终端设备配置有TRS资源,这样终端设备可以基于该TRS资源进行测量以得到第一测量结果,并需要对该第一测量结果进行上报/反馈,使得第一CSI报告需要包含该第一测量结果。
在一些可能的实现中,CSI报告配置可以包含第一指示信息,第一指示信息可以用于指示第一CSI报告包含第一测量结果和/或第二测量结果。
需要说明的是,结合上述“10、如何确定第一CSI包含第一测量结果和/或第二测量结果”中的内容,本申请可以在CSI-ReportConfig中引入第一指示信息,并通过CSI-ReportConfig中的第一指示信息来指示第一CSI报告需要包含第一测量结果和/或第二测量结果。
在一些可能的实现中,CSI资源配置可以包含第二配置信息,第二配置信息可以用于配置TRS资源为周期的或者非周期的。
需要说明的是,结合上述“2、TRS资源”中的内容,本申请可以在CSI-ResourceConfig中引入第二配置信息,并通过第二配置信息来配置TRS资源的类型。
在一些可能的实现中,第一CSI报告可以由部分1和部分2组成;
第一测量结果或者第二测量结果中的全部或部分信息可以位于以下之一项:部分1、部分2的组0、部分2的组1、部分2的组2。
需要说明的是,结合上述“11、第一CSI报告的组成”中的内容,第一CSI报告可以由部分1和部分2组成,部分2可以包括组0、组1、组2中的至少之一项,而本申请可以通过部分1、部分2的组0、部分2的组1、部分2的组2中的之一项来携带第一测量结果或者第二测量结果,从而实现对第一测量结果或者第二测量结果进行上报。
在一些可能的实现中,第一CSI报告的优先级所关联的第一参数的取值可以为第一值,第一值可以是预配置、网络配置或者协议定义的,第一参数可以用于确定第一CSI报告的优先级取值。
需要说明的是,结合上述“12、第一CSI报告的优先级”中的内容,第一参数可以称为参数k′,而参数k′可以用于确定第一CSI报告的优先级取值Pri′CSI(a,y′,k′,c′,s′)。其中,参数k′的取值可以存在多种灵活的取值方式,而具体采用哪种方式可以根据具有的通信场景需求确定,如参数k′的取值为第一值。
在一些可能的实现中,第一CSI报告所占用的CSI处理单元的数量可以为第二值,第二值可以是 预配置、网络配置或者协议定义的。
需要说明的是,结合上述“13、第一CSI报告占用的CSI处理单元”中的内容,第一CSI报告所占用的CPU的数量O′CPU可以存在多种灵活的取值方式,而具体采用哪种方式可以根据具有的通信场景需求确定,如O′CPU为第二值。
在一些可能的实现中,第一CSI报告所占用的CSI处理单元的数量,可以是根据第一CSI报告所关联的信道测量资源的数量确定的,或者可以是根据第一CSI报告所关联的除TRS资源外的信道测量资源的数量确定的。
需要说明的是,结合上述“13、第一CSI报告占用的CSI处理单元”中的内容,第一CSI报告所占用的CPU的数量O′CPU可以存在多种灵活的取值方式,而具体采用哪种方式可以根据具有的通信场景需求确定,如O′CPU根据Ks或K′s确定。
在一些可能的实现中,第一CSI报告所占用的CSI处理单元的数量,可以是根据CSI测量窗口和/或CSI报告窗口确定的。
需要说明的是,结合上述“13、第一CSI报告占用的CSI处理单元”中的内容,第一CSI报告所占用的CPU的数量O′CPU可以存在多种灵活的取值方式,而具体采用哪种方式可以根据具有的通信场景需求确定,如O′CPU根据CSI测量窗口和/或CSI报告窗口所对应的时长确定。
在一些可能的实现中,第一CSI报告的CSI计算时间要求,可以是根据CSI计算时间要求1确定的。
需要说明的是,结合上述“14、第一CSI报告的CSI计算时间要求”中的内容,第一CSI报告的CSI计算时间要求(ZCSI,Z′CSI)可以存在多种灵活的取值方式,而具体采用哪种方式可以根据具有的通信场景需求确定,如(ZCSI,Z′CSI)根据CSI计算时间要求1确定。
在一些可能的实现中,第一CSI报告的CSI计算时间要求,可以是根据CSI计算时间要求2确定的。
需要说明的是,结合上述“14、第一CSI报告的CSI计算时间要求”中的内容,第一CSI报告的CSI计算时间要求(ZCSI,Z′CSI)可以存在多种灵活的取值方式,而具体采用哪种方式可以根据具有的通信场景需求确定,如(ZCSI,Z′CSI)根据CSI计算时间要求2确定。
四、一种信道状态信息报告传输装置的示例说明
上述主要从方法侧的角度对本申请实施例的方案进行了介绍。可以理解的是,终端设备或网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件与计算机软件的结合形式来实现。某个功能究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或网络设备进行功能单元的划分。例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图4是本申请实施例的一种信道状态信息报告传输装置的功能单元组成框图。信道状态信息报告传输装置400包括:发送单元401。
在一些可能的实现中,发送单元401可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
在一些可能的实现中,信道状态信息报告传输装置400还可以包括存储单元,用于存储信道状态信息报告传输装置400所执行的计算机程序代码或者指令。存储单元可以是存储器。
在一些可能的实现中,信道状态信息报告传输装置400可以是芯片或者芯片模组。
在一些可能的实现中,发送单元401可以集成在其他单元中。
例如,发送单元401可以集成在通信单元中。需要说明的是,通信单元可以是通信接口、收发器、收发电路等。
在一些可能的实现中,发送单元401可以是处理器或控制器,例如可以是基带处理器、基带芯片、中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实 现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在一些可能的实现中,发送单元401用于执行如上述方法实施例中由终端设备/芯片/芯片模组等执行的任一步骤,如发送或接收数据等。下面进行详细说明。
具体实现时,发送单元401用于执行如上述方法实施例中的任一步骤,且在执行诸如发送等动作时,可选择的调用其他单元来完成相应操作。下面进行详细说明。
发送单元401,用于发送第一信道状态信息CSI报告,该第一CSI报告包含第一测量结果和/或第二测量结果,该第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,该第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
可见,为了实现增强CSI上报/反馈,本申请考虑CSI报告需要包含基于TRS资源进行测量以得到的测量结果(即第一测量结果)和/或基于一个或多个CSI-RS传输时机进行测量以得到测量结果(即第二测量结果)。其中,包含第一测量结果和/或第二测量结果的CSI报告可以称为第一CSI报告。
由于目前基于TRS资源进行测量所得到的测量结果仅仅是面向终端设备使用,而本申请通过第一CSI报告包含第一测量结果进行上报/反馈,从而实现将基于TRS资源的测量结果上报给/反馈给网络设备,进而实现增强CSI上报/反馈,提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
由于第二测量结果可以包含更多/新的CSI信息,再通过第一CSI报告包含这些更多/新的CSI信息进行上报/反馈,从而实现增强CSI上报/反馈。又由于更多/新的CSI信息将有利于提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
需要说明的是,图4所述实施例中各个操作的具体实现可以详见上述所示的方法实施例中的描述,在此不再具体赘述。
下面对一些可能存在的实现方式进行说明。其中,一些具体的描述可以详见上述,对此不再赘述。
在一些可能的实现中,第一测量结果可以包括时域信道属性。
在一些可能的实现中,时域信道属性可以包括以下至少之一项:
多普勒偏移、多普勒扩展、时延拓展、平均时延、差分多普勒偏移、差分多普勒拓展、差分时延拓展、差分平均时延、多普勒偏移变化率、多普勒扩展变化率、时延拓展变化率、平均时延变化率、时域互相关、相对多普勒偏移、多普勒域矢量、多普勒域码本/码字、时域矢量、时域码本/码字。
在一些可能的实现中,第二测量结果可以包括以下至少之一项:压缩信息、预测信息、多组信息;
压缩信息,可以为一个或多个CSI-RS传输时机所对应的信道信息或者CSI参数经过压缩处理之后的信息;
预测信息,可以为一个或多个CSI-RS传输时机或该一个或多个CSI-RS传输时机所在时域位置之后的一个或多个时域位置所对应的信道信息或CSI参数;
多组信息,可以为一个或多个CSI-RS传输时机所对应的信道信息或者CSI参数。
在一些可能的实现中,一个或多个CSI-RS传输时机,可以包括多个具有不同时域位置的CSI-RS资源。
在一些可能的实现中,第一CSI报告可以关联一个或多个CSI-RS传输时机。
在一些可能的实现中,TRS资源所在的时域位置可以位于CSI测量窗口内;
一个或多个CSI-RS传输时机可以位于CSI测量窗口内。
在一些可能的实现中,第一测量结果和/或第二测量结果可以对应CSI报告窗口。
在一些可能的实现中,若CSI资源配置包含第一配置信息,则第一CSI报告可以包含第一测量结果,第一配置信息可以用于配置TRS资源。
在一些可能的实现中,CSI报告配置可以包含第一指示信息,第一指示信息可以用于指示第一CSI报告包含第一测量结果和/或第二测量结果。
在一些可能的实现中,CSI资源配置可以包含第二配置信息,第二配置信息可以用于配置TRS资源为周期的或者非周期的。
在一些可能的实现中,第一CSI报告可以由部分1和部分2组成;
第一测量结果和/或第二测量结果中的全部或部分信息可以位于以下之一项:部分1、部分2的组0、部分2的组1、部分2的组2。
在一些可能的实现中,第一CSI报告的优先级所关联的第一参数的取值可以为第一值,第一值可以是预配置、网络配置或者协议定义的,第一参数可以用于确定第一CSI报告的优先级取值。
在一些可能的实现中,第一CSI报告所占用的CSI处理单元的数量可以为第二值,第二值可以是 预配置、网络配置或者协议定义的。
在一些可能的实现中,第一CSI报告所占用的CSI处理单元的数量,可以是根据第一CSI报告所关联的信道测量资源的数量确定的,或者可以是根据第一CSI报告所关联的除TRS资源外的信道测量资源的数量确定的。
在一些可能的实现中,第一CSI报告所占用的CSI处理单元的数量,可以是根据CSI测量窗口和/或CSI报告窗口确定的。
在一些可能的实现中,第一CSI报告的CSI计算时间要求,可以是根据CSI计算时间要求1确定的。
在一些可能的实现中,第一CSI报告的CSI计算时间要求,可以是根据CSI计算时间要求2确定的。
五、又一种信道状态信息报告传输装置的示例说明
在采用集成的单元的情况下,图5是本申请实施例的一种信道状态信息报告传输装置的功能单元组成框图。信道状态信息报告传输装置500包括:接收单元501。
在一些可能的实现中,接收单元501可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
在一些可能的实现中,信道状态信息报告传输装置500还可以包括存储单元,用于存储信道状态信息报告传输装置500所执行的计算机程序代码或者指令。存储单元可以是存储器。
在一些可能的实现中,信道状态信息报告传输装置500可以是芯片或者芯片模组。
在一些可能的实现中,接收单元501可以集成在其他单元中。
例如,接收单元501可以集成在通信单元中。需要说明的是,通信单元可以是通信接口、收发器、收发电路等。
在一些可能的实现中,接收单元501可以是处理器或控制器,例如可以是基带处理器、基带芯片、中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在一些可能的实现中,接收单元501用于执行如上述方法实施例中由终端设备/芯片/芯片模组等执行的任一步骤,如发送或接收数据等。下面进行详细说明。
具体实现时,接收单元501用于执行如上述方法实施例中的任一步骤,且在执行诸如发送等动作时,可选择的调用其他单元来完成相应操作。下面进行详细说明。
接收单元501,用于接收第一信道状态信息CSI报告,该第一CSI报告包含第一测量结果和/或第二测量结果,该第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,该第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
可见,为了实现增强CSI上报/反馈,本申请考虑CSI报告需要包含基于TRS资源进行测量以得到的测量结果(即第一测量结果)和/或基于一个或多个CSI-RS传输时机进行测量以得到测量结果(即第二测量结果)。其中,包含第一测量结果和/或第二测量结果的CSI报告可以称为第一CSI报告。
由于目前基于TRS资源进行测量所得到的测量结果仅仅是面向终端设备使用,而本申请通过第一CSI报告包含第一测量结果进行上报/反馈,从而实现将基于TRS资源的测量结果上报给/反馈给网络设备,进而实现增强CSI上报/反馈,提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
由于第二测量结果可以包含更多/新的CSI信息,再通过第一CSI报告包含这些更多/新的CSI信息进行上报/反馈,从而实现增强CSI上报/反馈。又由于更多/新的CSI信息将有利于提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
需要说明的是,图5所述实施例中各个操作的具体实现可以详见上述所示的方法实施例中的描述,在此不再具体赘述。
下面对一些可能存在的实现方式进行说明。其中,一些具体的描述可以详见上述,对此不再赘述。
在一些可能的实现中,第一测量结果可以包括时域信道属性。
在一些可能的实现中,时域信道属性可以包括以下至少之一项:
多普勒偏移、多普勒扩展、时延拓展、平均时延、差分多普勒偏移、差分多普勒拓展、差分时延拓展、差分平均时延、多普勒偏移变化率、多普勒扩展变化率、时延拓展变化率、平均时延变化率、时域 互相关、相对多普勒偏移、多普勒域矢量、多普勒域码本/码字、时域矢量、时域码本/码字。
在一些可能的实现中,第二测量结果可以包括以下至少之一项:压缩信息、预测信息、多组信息;
压缩信息,可以为一个或多个CSI-RS传输时机所对应的信道信息或者CSI参数经过压缩处理之后的信息;
预测信息,可以为一个或多个CSI-RS传输时机之后的一个或多个时域位置或该一个或多个CSI-RS传输时机所在时域位置所对应的信道信息或CSI参数;
多组信息,可以为一个或多个CSI-RS传输时机所对应的多组信道信息或者多组CSI参数。
在一些可能的实现中,一个或多个CSI-RS传输时机,可以包括多个具有不同时域位置的CSI-RS资源。
在一些可能的实现中,第一CSI报告可以关联一个或多个CSI-RS传输时机。
在一些可能的实现中,TRS资源所在的时域位置可以位于CSI测量窗口内;
一个或多个CSI-RS传输时机可以位于CSI测量窗口内。
在一些可能的实现中,第一测量结果和/或第二测量结果可以对应CSI报告窗口。
在一些可能的实现中,若CSI资源配置包含第一配置信息,则第一CSI报告可以包含第一测量结果,第一配置信息可以用于配置TRS资源。
在一些可能的实现中,CSI报告配置可以包含第一指示信息,第一指示信息可以用于指示第一CSI报告包含第一测量结果和/或第二测量结果。
在一些可能的实现中,CSI资源配置可以包含第二配置信息,第二配置信息可以用于配置TRS资源为周期的或者非周期的。
在一些可能的实现中,第一CSI报告可以由部分1和部分2组成;
第一测量结果和/或第二测量结果中的全部或部分信息可以位于以下之一项:部分1、部分2的组0、部分2的组1、部分2的组2。
在一些可能的实现中,第一CSI报告的优先级所关联的第一参数的取值可以为第一值,第一值可以是预配置、网络配置或者协议定义的,第一参数可以用于确定第一CSI报告的优先级取值。
在一些可能的实现中,第一CSI报告所占用的CSI处理单元的数量可以为第二值,第二值可以是预配置、网络配置或者协议定义的。
在一些可能的实现中,第一CSI报告所占用的CSI处理单元的数量,可以是根据第一CSI报告所关联的信道测量资源的数量确定的,或者可以是根据第一CSI报告所关联的除TRS资源外的信道测量资源的数量确定的。
在一些可能的实现中,第一CSI报告所占用的CSI处理单元的数量,可以是根据CSI测量窗口和/或CSI报告窗口确定的。
在一些可能的实现中,第一CSI报告的CSI计算时间要求,可以是根据CSI计算时间要求1确定的。
在一些可能的实现中,第一CSI报告的CSI计算时间要求,可以是根据CSI计算时间要求2确定的。
六、一种终端设备的示例说明
请参阅图6,图6是本申请实施例的一种终端设备的结构示意图。其中,终端设备600包括处理器610、存储器620以及用于连接处理器610和存储器620的通信总线。
在一些可能的实现中,存储器620包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器620用于存储终端设备600所执行的程序代码和所传输的数据。
在一些可能的实现中,终端设备600还包括通信接口,其用于接收和发送数据。
在一些可能的实现中,处理器610可以是一个或多个中央处理器(CPU),在处理器610是一个中央处理器(CPU)的情况下,该中央处理器(CPU)可以是单核中央处理器(CPU),也可以是多核中央处理器(CPU)。
在一些可能的实现中,处理器610可以为基带芯片、芯片、中央处理器(CPU)、通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。
具体实现时,终端设备600中的处理器610用于执行存储器620中存储的计算机程序或指令621,执行以下操作:
发送第一信道状态信息CSI报告,该第一CSI报告包含第一测量结果和/或第二测量结果,该第一 测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,该第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
可见,为了实现增强CSI上报/反馈,本申请考虑CSI报告需要包含基于TRS资源进行测量以得到的测量结果(即第一测量结果)和/或基于一个或多个CSI-RS传输时机进行测量以得到测量结果(即第二测量结果)。其中,包含第一测量结果和/或第二测量结果的CSI报告可以称为第一CSI报告。
由于目前基于TRS资源进行测量所得到的测量结果仅仅是面向终端设备使用,而本申请通过第一CSI报告包含第一测量结果进行上报/反馈,从而实现将基于TRS资源的测量结果上报给/反馈给网络设备,进而实现增强CSI上报/反馈。
由于第二测量结果可以包含更多/新的CSI信息,再通过第一CSI报告包含这些更多/新的CSI信息进行上报/反馈,从而实现增强CSI上报/反馈。又由于更多/新的CSI信息将有利于提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,终端设备600可以用于执行本申请上述方法实施例,对此不再赘述。
七、一种网络设备的示例说明
请参阅图7,图7是本申请实施例提供的一种网络设备的结构示意图。其中,网络设备700包括处理器710、存储器720以及用于连接处理器710、存储器720的通信总线。
在一些可能的实现中,存储器720包括但不限于是RAM、ROM、EPROM或CD-ROM,该存储器720用于存储相关指令及数据。
在一些可能的实现中,网络设备700还包括通信接口,其用于接收和发送数据。
在一些可能的实现中,处理器710可以是一个或多个中央处理器(CPU),在处理器710是一个中央处理器(CPU)的情况下,该中央处理器(CPU)可以是单核中央处理器(CPU),也可以是多核中央处理器(CPU)。
在一些可能的实现中,处理器710可以为基带芯片、芯片、中央处理器(CPU)、通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。
在一些可能的实现中,网络设备700中的处理器710用于执行存储器720中存储的计算机程序或指令721,执行以下操作:
接收第一信道状态信息CSI报告,该第一CSI报告包含第一测量结果和/或第二测量结果,该第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,该第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
可见,为了实现增强CSI上报/反馈,本申请考虑CSI报告需要包含基于TRS资源进行测量以得到的测量结果(即第一测量结果)和/或基于一个或多个CSI-RS传输时机进行测量以得到测量结果(即第二测量结果)。其中,包含第一测量结果和/或第二测量结果的CSI报告可以称为第一CSI报告。
由于目前基于TRS资源进行测量所得到的测量结果仅仅是面向终端设备使用,而本申请通过第一CSI报告包含第一测量结果进行上报/反馈,从而实现将基于TRS资源的测量结果上报给/反馈给网络设备,进而实现增强CSI上报/反馈。
由于第二测量结果可以包含更多/新的CSI信息,再通过第一CSI报告包含这些更多/新的CSI信息进行上报/反馈,从而实现增强CSI上报/反馈。又由于更多/新的CSI信息将有利于提升对下行信道质量进行评估时的准确性,从而提高传输性能,满足复杂且多样的传输需求。
需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,网络设备700可以用于执行本申请上述方法实施例,对此不再赘述。
八、其他相关的示例说明
在一些可能的实现中,上述方法实施例可以应用于终端设备或应用于终端设备之中。也就是说,上述方法实施例的执行主体,可以是终端设备,可以是芯片、芯片模组或模块等,对此不作具体限制。
在一些可能的实现中,上述方法实施例可以应用于网络设备或应用于网络设备之中。也就是说,上述方法实施例的执行主体,可以是网络设备,可以是芯片、芯片模组或模块等,对此不作具体限制。
本申请实施例还提供了一种芯片,包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,该芯片包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机可读存储介质,其存储有计算机程序或指令,该计算机程序或指 令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机程序产品,包括计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种通信系统,包括上述的终端设备和网络设备。
需要说明的是,对于上述的各个实施例,为了简单描述,将其都表述为一系列的动作组合。本领域技术人员应该知悉,本申请不受所描述的动作顺序的限制,因为本申请实施例中的某些步骤可以采用其他顺序或者同时进行。另外,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作、步骤、模块或单元等并不一定是本申请实施例所必须的。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备或管理设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备或管理设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端设备的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端设备内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端设备内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (43)

  1. 一种信道状态信息报告传输方法,其特征在于,包括:
    发送第一信道状态信息CSI报告,所述第一CSI报告包含第一测量结果和/或第二测量结果,所述第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,所述第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
  2. 根据权利要求1所述的方法,其特征在于,所述第一测量结果包括时域信道属性。
  3. 根据权利要求2所述的方法,其特征在于,所述时域信道属性包括以下至少之一项:
    多普勒偏移、多普勒扩展、时延拓展、平均时延、差分多普勒偏移、差分多普勒拓展、差分时延拓展、差分平均时延、多普勒偏移变化率、多普勒扩展变化率、时延拓展变化率、平均时延变化率、时域互相关、相对多普勒偏移、多普勒域矢量、多普勒域码本/码字、时域矢量、时域码本/码字。
  4. 根据权利要求1所述的方法,其特征在于,所述第二测量结果包括以下至少之一项:压缩信息、预测信息、多组信息;
    所述压缩信息,为所述一个或多个CSI-RS传输时机所对应的信道信息或者CSI参数经过压缩处理之后的信息;
    所述预测信息,为所述一个或多个CSI-RS传输时机或所述一个或多个CSI-RS传输时机所在时域位置之后的一个或多个时域位置所对应的信道信息或CSI参数;
    所述多组信息,为所述一个或多个CSI-RS传输时机所对应的多组信道信息或者多组CSI参数。
  5. 根据权利要求1所述的方法,其特征在于,所述一个或多个CSI-RS传输时机,包括多个具有不同时域位置的CSI-RS资源。
  6. 根据权利要求1所述的方法,其特征在于,所述第一CSI报告关联所述一个或多个CSI-RS传输时机。
  7. 根据权利要求1所述的方法,其特征在于,所述TRS资源所在的时域位置位于CSI测量窗口内;
    所述一个或多个CSI-RS传输时机位于所述CSI测量窗口内。
  8. 根据权利要求1所述的方法,其特征在于,所述第一测量结果和/或所述第二测量结果对应CSI报告窗口。
  9. 根据权利要求1所述的方法,其特征在于,若CSI资源配置包含第一配置信息,则所述第一CSI报告包含所述第一测量结果,所述第一配置信息用于配置所述TRS资源。
  10. 根据权利要求1所述的方法,其特征在于,CSI报告配置包含第一指示信息,所述第一指示信息用于指示所述第一CSI报告包含所述第一测量结果和/或所述第二测量结果。
  11. 根据权利要求1所述的方法,其特征在于,CSI资源配置包含第二配置信息,所述第二配置信息用于配置所述TRS资源为周期的或者非周期的。
  12. 根据权利要求1所述的方法,其特征在于,所述第一CSI报告由部分1和部分2组成;
    所述第一测量结果和/或所述第二测量结果中的全部或部分信息位于以下之一项:所述部分1、所述部分2的组0、所述部分2的组1、所述部分2的组2。
  13. 根据权利要求1所述的方法,其特征在于,所述第一CSI报告的优先级所关联的第一参数的取值为第一值,所述第一值是预配置、网络配置或者协议定义的,所述第一参数用于确定所述第一CSI报告的优先级取值。
  14. 根据权利要求1所述的方法,其特征在于,所述第一CSI报告所占用的CSI处理单元的数量为第二值,所述第二值是预配置、网络配置或者协议定义的。
  15. 根据权利要求1所述的方法,其特征在于,所述第一CSI报告所占用的CSI处理单元的数量,是根据所述第一CSI报告所关联的信道测量资源的数量确定的,或者是根据所述第一CSI报告所关联的除所述TRS资源外的信道测量资源的数量确定的。
  16. 根据权利要求1所述的方法,其特征在于,所述第一CSI报告所占用的CSI处理单元的数量,是根据CSI测量窗口和/或CSI报告窗口确定的。
  17. 根据权利要求1所述的方法,其特征在于,所述第一CSI报告的CSI计算时间要求,是根据CSI计算时间要求1确定的。
  18. 根据权利要求1所述的方法,其特征在于,所述第一CSI报告的CSI计算时间要求,是根据CSI计算时间要求2确定的。
  19. 一种信道状态信息报告传输方法,其特征在于,包括:
    接收第一信道状态信息CSI报告,所述第一CSI报告包含第一测量结果和/或第二测量结果,所述第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,所述第二测量结果为基于一 个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
  20. 根据权利要求19所述的方法,其特征在于,所述第一测量结果包括时域信道属性。
  21. 根据权利要求20所述的方法,其特征在于,所述时域信道属性包括以下至少之一项:
    多普勒偏移、多普勒扩展、时延拓展、平均时延、差分多普勒偏移、差分多普勒拓展、差分时延拓展、差分平均时延、多普勒偏移变化率、多普勒扩展变化率、时延拓展变化率、平均时延变化率、时域互相关、相对多普勒偏移、多普勒域矢量、多普勒域码本/码字、时域矢量、时域码本/码字。
  22. 根据权利要求19所述的方法,其特征在于,所述第二测量结果包括以下至少之一项:压缩信息、预测信息、多组信息;
    所述压缩信息,为所述一个或多个CSI-RS传输时机所对应的信道信息或者CSI参数经过压缩处理之后的信息;
    所述预测信息,为所述一个或多个CSI-RS传输时机或所述一个或多个CSI-RS传输时机所在时域位置之后的一个或多个时域位置所对应的信道信息或者CSI参数;
    所述多组信息,为所述一个或多个CSI-RS传输时机所对应的多组信道信息或者多组CSI参数。
  23. 根据权利要求19所述的方法,其特征在于,所述一个或多个CSI-RS传输时机,包括多个具有不同时域位置的CSI-RS资源。
  24. 根据权利要求19所述的方法,其特征在于,所述第一CSI报告关联所述一个或多个CSI-RS传输时机。
  25. 根据权利要求19所述的方法,其特征在于,所述TRS资源所在的时域位置位于CSI测量窗口内;
    所述一个或多个CSI-RS传输时机位于所述CSI测量窗口内。
  26. 根据权利要求19所述的方法,其特征在于,所述第一测量结果和/或所述第二测量结果对应CSI报告窗口。
  27. 根据权利要求19所述的方法,其特征在于,CSI报告配置包含第一指示信息,所述第一指示信息用于指示所述第一CSI报告包含所述第一测量结果和/或所述第二测量结果。
  28. 根据权利要求19所述的方法,其特征在于,若CSI资源配置包含第一配置信息,则所述第一CSI报告包含所述第一测量结果,所述第一配置信息用于配置所述TRS资源。
  29. 根据权利要求19所述的方法,其特征在于,CSI资源配置包含第二配置信息,所述第二配置信息用于配置所述TRS资源为周期的或者非周期的。
  30. 根据权利要求19所述的方法,其特征在于,所述第一CSI报告由部分1和部分2组成;
    所述第一测量结果和/或所述第二测量结果中的全部或部分信息位于以下之一项:所述部分1、所述部分2的组0、所述部分2的组1、所述部分2的组2。
  31. 根据权利要求19所述的方法,其特征在于,所述第一CSI报告的优先级所关联的第一参数的取值为第一值,所述第一值是预配置、网络配置或者协议定义的,所述第一参数用于确定所述第一CSI报告的优先级取值。
  32. 根据权利要求19所述的方法,其特征在于,所述第一CSI报告的优先级所关联的参数k的取值,是根据所述第一CSI报告所包含的信息类型确定的,所述参数k用于确定所述第一CSI报告的优先级取值。
  33. 根据权利要求19所述的方法,其特征在于,所述第一CSI报告所占用的CSI处理单元的数量为第二值,所述第二值是预配置、网络配置或者协议定义的。
  34. 根据权利要求19所述的方法,其特征在于,所述第一CSI报告所占用的CSI处理单元的数量,是根据所述第一CSI报告所关联的信道测量资源的数量确定的,或者是根据所述第一CSI报告所关联的除所述TRS资源外的信道测量资源的数量确定的。
  35. 根据权利要求19所述的方法,其特征在于,所述第一CSI报告所占用的CSI处理单元的数量,是根据CSI测量窗口和/或CSI报告窗口确定的。
  36. 根据权利要求19所述的方法,其特征在于,所述第一CSI报告的CSI计算时间要求,是根据CSI计算时间要求1确定的。
  37. 根据权利要求19所述的方法,其特征在于,所述第一CSI报告的CSI计算时间要求,是根据CSI计算时间要求2确定的。
  38. 一种信道状态信息报告传输装置,其特征在于,包括:
    发送单元,发送第一信道状态信息CSI报告,所述第一CSI报告包含第一测量结果和/或第二测量结果,所述第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,所述第二测量结 果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
  39. 一种信道状态信息报告传输装置,其特征在于,包括:
    接收单元,用于接收第一信道状态信息CSI报告,所述第一CSI报告包含第一测量结果和/或第二测量结果,所述第一测量结果为基于跟踪参考信号TRS资源进行测量所得到的测量结果,所述第二测量结果为基于一个或多个信道状态信息参考信号CSI-RS传输时机进行测量所得到的测量结果。
  40. 一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求1-18中任一项所述方法的步骤。
  41. 一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求19-38中任一项所述方法的步骤。
  42. 一种芯片,包括处理器和通信接口,其特征在于,所述处理器执行权利要求1-18、19-37中任一项所述方法的步骤。
  43. 一种计算机可读存储介质,其特征在于,其存储有计算机程序或指令,所述计算机程序或指令被执行时实现权利要求1-18、19-37中任一项所述方法的步骤。
PCT/CN2023/112715 2022-08-12 2023-08-11 信道状态信息报告传输方法与装置、终端设备和网络设备 WO2024032792A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210968182.6A CN117641424A (zh) 2022-08-12 2022-08-12 信道状态信息报告传输方法与装置、终端设备和网络设备
CN202210968182.6 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032792A1 true WO2024032792A1 (zh) 2024-02-15

Family

ID=89851039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112715 WO2024032792A1 (zh) 2022-08-12 2023-08-11 信道状态信息报告传输方法与装置、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN117641424A (zh)
WO (1) WO2024032792A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510262A (zh) * 2019-01-30 2020-08-07 华为技术有限公司 接收参考信号的方法、发送参考信号的方法和装置
CN112242887A (zh) * 2019-07-16 2021-01-19 中国移动通信有限公司研究院 处理方法及设备
CN113840324A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种测量上报方法及装置
WO2022082422A1 (en) * 2020-10-20 2022-04-28 Lenovo (Beijing) Limited Doppler shift estimation and reporting
CN114760654A (zh) * 2021-01-08 2022-07-15 北京紫光展锐通信技术有限公司 Csi的上报方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510262A (zh) * 2019-01-30 2020-08-07 华为技术有限公司 接收参考信号的方法、发送参考信号的方法和装置
CN112242887A (zh) * 2019-07-16 2021-01-19 中国移动通信有限公司研究院 处理方法及设备
CN113840324A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种测量上报方法及装置
WO2022082422A1 (en) * 2020-10-20 2022-04-28 Lenovo (Beijing) Limited Doppler shift estimation and reporting
CN114760654A (zh) * 2021-01-08 2022-07-15 北京紫光展锐通信技术有限公司 Csi的上报方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Maintenance on CSI acquisition", 3GPP DRAFT; R1-1812284_MAINTENANCE ON CSI ACQUISITION_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051478464 *

Also Published As

Publication number Publication date
CN117641424A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN105191462B (zh) 用于上行干扰对齐的Wi-Fi下行-上行协议设计的系统和方法
US20150029986A1 (en) Mu-mimo transmission method in wireless lan system
WO2020221118A1 (zh) 指示和确定预编码矩阵的方法以及通信装置
WO2020143577A1 (zh) 参数配置方法和通信装置
US20230164004A1 (en) Channel parameter obtaining method and apparatus
WO2021031871A1 (zh) 发送信道状态信息的方法和相关设备
WO2021203373A1 (zh) 一种信道测量方法和通信装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
WO2023273869A1 (zh) 信道状态信息报告的优先级确定方法与装置、相关设备
WO2024032792A1 (zh) 信道状态信息报告传输方法与装置、终端设备和网络设备
WO2022012256A1 (zh) 通信的方法及通信装置
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2021189302A1 (zh) 更新的方法和通信装置
WO2023186010A1 (zh) 信道状态信息报告传输方法与装置、终端设备和网络设备
EP4106246A1 (en) Channel state information feedback method and communication apparatus
WO2024022525A1 (zh) 信道状态信息报告传输方法与装置、终端设备和网络设备
WO2024017233A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2023125370A1 (zh) 信道质量指示计算或获取方法与装置、终端和网络设备
WO2022165668A1 (zh) 一种进行预编码的方法和装置
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置
WO2024012561A1 (zh) 解调参考信号端口确定方法与装置、终端设备和网络设备
WO2023222021A1 (zh) 一种信道测量方法及装置
WO2023160692A1 (zh) 一种通信方法及通信装置
WO2022083307A1 (zh) 信道测量的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852012

Country of ref document: EP

Kind code of ref document: A1