WO2024032553A1 - 宽带功率放大器、放大宽带功率的方法及可读存储介质 - Google Patents

宽带功率放大器、放大宽带功率的方法及可读存储介质 Download PDF

Info

Publication number
WO2024032553A1
WO2024032553A1 PCT/CN2023/111495 CN2023111495W WO2024032553A1 WO 2024032553 A1 WO2024032553 A1 WO 2024032553A1 CN 2023111495 W CN2023111495 W CN 2023111495W WO 2024032553 A1 WO2024032553 A1 WO 2024032553A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
balanced
coupler
radio frequency
frequency signal
Prior art date
Application number
PCT/CN2023/111495
Other languages
English (en)
French (fr)
Inventor
丁冲
秦天银
余敏德
李朋军
卫东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024032553A1 publication Critical patent/WO2024032553A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/04Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers
    • H03F1/06Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers to raise the efficiency of amplifying modulated radio frequency waves; to raise the efficiency of amplifiers acting also as modulators
    • H03F1/07Doherty-type amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present application relate to, but are not limited to, the field of signal processing technology, and in particular, to a broadband power amplifier, a method for amplifying broadband power, electronic equipment, and a computer-readable storage medium.
  • the load modulation balancing amplifier is an architecture with broadband application potential, which uses electricity
  • the bridge is the core, using a dual-input method.
  • Embodiments of the present application provide a broadband power amplifier, a method for amplifying broadband power, electronic equipment, and a computer-readable storage medium.
  • embodiments of the present application provide a broadband power amplifier, including: a first balanced power amplifier configured to receive a first radio frequency signal; a second balanced power amplifier configured to receive a second radio frequency signal, the The control input end of the second balanced power amplifier is connected to the output end of the first balanced power amplifier; in the case of load pull, the first balanced power amplifier enables the second balanced power amplifier to achieve multiple power rollbacks .
  • embodiments of the present application also provide a method for amplifying broadband power, which is applied to the broadband power amplifier as described above.
  • the method includes: obtaining the amplitude of the second radio frequency signal.
  • the second balanced power amplifier is triggered to amplify the second radio frequency signal; when the second balanced power amplifier reaches the first
  • the first balanced power amplifier is triggered to amplify the first radio frequency signal, so that the first balanced power amplifier performs the first active load pulling on the second balanced power amplifier, And causing the second balanced power amplifier to perform power backoff multiple times.
  • embodiments of the present application also provide a method of amplifying broadband power, applied to the broadband power amplifier as described above, the first power amplifier, the second power amplifier, the third power amplifier and The fourth power amplifier is provided with different gate trigger voltages, and the method includes: obtaining an amplitude of a second radio frequency signal, when the amplitude of the second radio frequency signal is greater than the gate trigger voltage of the third power amplifier.
  • the third power amplifier and the fourth power amplifier are started to amplify the second radio frequency signal; when the third power amplifier and the fourth power amplifier When the second efficiency point is reached, the first power amplifier is started to perform a second active load pull on the third power amplifier and the fourth power amplifier; when the first power amplifier reaches the third In the case of the efficiency point, the second power amplifier is started to perform a third active load pull on the first power amplifier until the first power amplifier, the second power amplifier, the third power amplifier and The fourth power amplifier has reached a saturated output state.
  • embodiments of the present application also provide a method of amplifying broadband power, applied to the broadband power amplifier as described above, the first power amplifier, the second power amplifier, the third power amplifier and The fourth power amplifier is provided with different gate trigger voltages, and the method includes: obtaining an amplitude of a second radio frequency signal, when the amplitude of the second radio frequency signal is greater than the gate trigger voltage of the third power amplifier.
  • the third power amplifier When the trigger voltage is extremely high, the third power amplifier is started to amplify the second radio frequency signal; when the third power amplifier reaches the fourth efficiency point, the first power amplifier is started Starting to perform fourth active load pull on the third power amplifier; when the first power amplifier reaches the fifth efficiency point, causing the second power amplifier and the fourth power amplifier to start on The first power amplifier and the third power amplifier perform fifth active load pulling until the first power amplifier, the second power amplifier, the third power amplifier and the fourth power amplifier all reach saturation. Output status.
  • embodiments of the present application further provide an electronic device, including one of the following: a broadband power amplifier as described above; or, a memory, a processor, and a device stored on the memory and capable of being processed on the processor.
  • a computer program is run, and when the processor executes the computer program, the method for amplifying broadband power as described above is implemented.
  • embodiments of the present application further provide a computer-readable storage medium storing computer-executable instructions, wherein the computer-executable instructions are used to execute the method of amplifying broadband power as described above.
  • Figure 1 is a schematic structural diagram of a broadband power amplifier provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a broadband power amplifier provided by another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a broadband power amplifier provided by another embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a broadband power amplifier provided by another embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a broadband power amplifier provided by another embodiment of the present application.
  • Figure 6 is a flow chart of a method for amplifying broadband power provided by an embodiment of the present application.
  • Figure 7 is a flow chart of a method for amplifying broadband power provided by another embodiment of the present application.
  • Figure 8 is a flow chart of a method for amplifying broadband power provided by another embodiment of the present application.
  • Figure 9 is an efficiency comparison curve between a broadband power amplifier and a traditional load balancing power amplifier provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the present application provides a broadband power amplifier, a method for amplifying broadband power, electronic equipment and a computer-readable storage medium.
  • the broadband power amplifier includes a first balanced power amplifier and a second balanced power amplifier, wherein the first balanced power amplifier is configured To receive the first radio frequency signal; the second balanced power amplifier is configured to receive the second radio frequency signal, and the control input terminal of the second balanced power amplifier is connected to the output terminal of the first balanced power amplifier.
  • the second balanced power amplifier A balanced power amplifier enables the second balanced power amplifier to reach multiple peak efficiency points and perform multiple power rollbacks to improve the power rollback efficiency.
  • FIG. 1 is a broadband power amplifier provided by an embodiment of the present application.
  • the broadband power amplifier includes a first balanced power amplifier 100 and a second balanced power amplifier 200, wherein the first power amplifier 100 is configured to receive the first balanced power amplifier 100 and the second balanced power amplifier 200. a radio frequency signal; the second power amplifier 200 is configured to receive the second radio frequency signal, and the control input end of the second balanced power amplifier 200 is connected to the output end of the first balanced power amplifier 100; in the case of load pull, the first The balanced power amplifier enables the second balanced power amplifier to achieve multiple power rollbacks.
  • the broadband power amplifier at least includes a first balanced power amplifier 100 and a second balanced power amplifier 200; wherein the first balanced power amplifier 100 is configured to receive a first radio frequency signal, and the second power amplifier 200 is configured to receive the second radio frequency signal, and the control input end of the second balanced power amplifier 200 is connected to the output end of the first balanced power amplifier 100, so that the first balanced power amplifier 100 can implement load pull for the second balanced power amplifier 200 , the first balanced power amplifier 100 enables the second balanced power amplifier 200 to reach multiple peak efficiency points, realize multiple power rollbacks, and improve the power rollback efficiency.
  • first balanced power amplifier 100 and the second balanced power amplifier 200 are only used to distinguish different balanced power amplifiers to facilitate the subsequent clear explanation of the embodiment, and do not mean that the two are different types of balance. power amplifier, both can have the same architecture.
  • both the first balanced power amplifier 100 and the second balanced power amplifier 200 may include two orthogonal couplers and two power amplifiers, and the two power amplifiers are disposed between the two orthogonal couplers. between.
  • An orthogonal coupler refers to a coupler that can provide two output ports with signals of specific amplitude and orthogonal phase. It uses waveguides as transmission lines to transmit signals; the function of an orthogonal coupler is to distribute one signal to multiple channels and isolate it. The mutual influence between the front and rear stages; among them, the orthogonal coupler includes four ports, namely input port, output port, coupling port and isolation port. Coupling degree and insertion loss are the two main indicators of orthogonal couplers.
  • Coupling degree is the ratio of the power of the input port and the coupling port. Insertion loss is defined as the ratio of the output port power of the coupler to the power of the input port.
  • the power amplifier is the main part of the transmitting system. In the front-end circuit of the transmitter, the radio frequency signal generated by the modulated oscillation circuit has very small power and needs to go through a series of amplification.
  • the amplification includes the buffer stage, the intermediate amplification stage and the final power stage. The amplification stage can obtain sufficient radio frequency power before it can be fed to the antenna for radiation; in order to obtain sufficient radio frequency output power, a power amplifier must be used.
  • Radio frequency signals are modulated radio waves with a certain emission frequency; when the electromagnetic wave frequency is lower than 100kHz, the electromagnetic wave will be absorbed by the surface and cannot form effective transmission. Once the electromagnetic wave frequency is higher than 100kHz, the electromagnetic wave can propagate in the air. and ionized by the outer edge of the atmosphere layer reflection, forming long-distance transmission capabilities.
  • the broadband power amplifier can be used in high-power broadband radio remote unit (RRU) base stations to amplify the power of radio frequency signals to facilitate subsequent transmission and processing of communication signals.
  • RRU radio remote unit
  • power backoff is a common technique for linearizing radio frequency power amplifiers; the power backoff method is to roll back the input power of the power amplifier from the 1dB compression point (equivalent to the critical point between the amplifier's linear region and nonlinear region). 6-10 decibels, working at a level far less than the 1dB compression point, keeping the power amplifier away from the saturation zone and operating in a linear area, thus improving the third-order intermodulation coefficient of the power amplifier. Generally, when the fundamental wave power is reduced by 1dB When, the third-order intermodulation distortion is improved by 2dB.
  • the power backoff method is simple and easy to implement and does not require any additional equipment. It is an effective method to improve the linearity of the amplifier.
  • the first balanced power amplifier 100 includes a first orthogonal coupler 110, a second orthogonal coupler 120, a first power amplifier 210 and a second power amplifier 220.
  • the first The output terminal of the quadrature coupler 110 is connected to the input terminal of the first power amplifier 210.
  • the coupling terminal of the first quadrature coupler 110 is connected to the input terminal of the second power amplifier 220.
  • the output terminal of the first power amplifier 210 is connected to the input terminal of the second power amplifier 220.
  • the input terminals of the two quadrature couplers 120 are connected, the output terminal of the second power amplifier 220 is connected to the coupling terminal of the second quadrature coupler 120 , and the output terminal of the second quadrature coupler 120 is connected to the second balanced power amplifier 200 .
  • the first balanced power amplifier 100 includes a first quadrature coupler 110, a second quadrature coupler 120, a first power amplifier 210 and a second power amplifier 220; wherein, the first quadrature coupler
  • the input end of the coupler may be configured to receive the first radio frequency signal;
  • the output end of the first orthogonal coupler 110 is connected to the input end of the first power amplifier 210, so that the signal output by the output end of the first orthogonal coupler 110 can be transmitted to the first power amplifier 210 for power amplification processing;
  • the coupling end of the first orthogonal coupler 110 is connected to the input end of the second power amplifier 220, so that the signal output by the coupling end of the first orthogonal coupler 110 can pass through
  • the second power amplifier 220 performs power amplification processing;
  • the output end of the first power amplifier 210 is connected to the input end of the second orthogonal coupler 120, and the output end of the second power amplifier 220 is connected to the coupling end of the second orthogon
  • connection is through the first orthogonal coupler 110 and the second orthogonal coupler 120, so that an active load pull is formed between the first power amplifier 210 and the second power amplifier 220; the output end of the second orthogonal coupler 120 is connected to The second balanced power amplifier 200 is connected such that the output signal of the second quadrature coupler 120 can be used as an active load pull of the second balanced power amplifier 200, thereby further improving the efficiency of power backoff.
  • both the first orthogonal coupler 110 and the second orthogonal coupler 120 include four ports, which are respectively an input port, an output port, a coupling port and an isolation port.
  • the four ports can be represented by numbers 1 to 4. , then the characteristics that each port needs to meet are as follows:
  • S parameters are usually used to describe port networks operating at high frequencies similar to radio frequencies and microwave frequencies.
  • S parameters are expressed in various ways; in mathematical expression, they are in the form of a matrix, and each value in the matrix represents certain physical meaning.
  • S12 represents the reverse transmission gain of the signal entering from port 2 and outputting from port 1
  • S34 represents the reverse transmission gain of the signal entering from port 4 and outputting from port 3.
  • the power from port 3 to ports 1 and 2, or from port 4 to ports 1 and 2, includes equal or non-equal sharing; from port 3 to ports 1 and 2, or from port 4 to ports 1 and 2, the power is equally divided. In this case, there is:
  • represents the modulus size of
  • represents the modulus size of
  • ; and both of them need to satisfy ⁇ 2 + ⁇ 2 1.
  • phase difference When the signal enters ports 1 and 2 from port 3, the phase difference is 90°; when the signal enters port 1 and 2 from port 4, the phase difference is also 90°, that is:
  • the second balanced power amplifier 200 includes a third orthogonal coupler 410, a fourth orthogonal coupler 420, a third power amplifier 510 and a fourth power amplifier 520.
  • the third The input end of the orthogonal coupler 410 is configured to receive the second radio frequency signal, the output end of the third orthogonal coupler 410 is connected to the input end of the third power amplifier 510, and the coupling end of the third orthogonal coupler 410 is connected to the third power amplifier 510.
  • the input terminals of the four power amplifiers 520 are connected, the output terminal of the third power amplifier 510 is connected to the input terminal of the fourth quadrature coupler 420 , and the output terminal of the fourth power amplifier 520 is connected to the coupling terminal of the fourth quadrature coupler 420 , the isolation terminal of the fourth quadrature coupler 420 is connected to the output terminal of the first balanced power amplifier 100 .
  • the second balanced power amplifier 200 includes a third quadrature coupler 410, a fourth quadrature coupler 420, a third power amplifier 510 and a fourth power amplifier 520; wherein, the third quadrature coupler
  • the input end of the coupler 410 may be configured to receive the second radio frequency signal; the output end of the third orthogonal coupler 410 is connected to the input end of the third power amplifier 510, so that the output end of the third orthogonal coupler 410 outputs
  • the signal can be transmitted to the third power amplifier 510 for power amplification processing; the coupling end of the third orthogonal coupler 410 is connected to the input end of the fourth power amplifier 520, so that the signal output by the coupling end of the third orthogonal coupler 410 can
  • the power amplification process is performed through the fourth power amplifier 520; the output end of the third power amplifier 510 is connected to the input end of the fourth orthogonal coupler 420, and the output end of the fourth power amplifier 520 is coupled to the fourth orthogon
  • the terminals are connected through the third orthogonal coupler 410 and the fourth orthogonal coupler 420, so that active load pulling is formed between the third power amplifier 510 and the fourth power amplifier 520; the isolated end of the fourth orthogonal coupler 420 is connected to the output end of the first balanced power amplifier 100, so that the output signal of the first balanced power amplifier 100
  • the signal can be used as an active load puller of the second balanced power amplifier 200, thereby improving the efficiency of power backoff.
  • the isolation terminal of the fourth orthogonal coupler is the control input terminal of the second balanced power amplifier.
  • the third orthogonal coupler 410 and the fourth orthogonal coupler 420 in the embodiment of the present application also meet the characteristics of the first orthogonal coupler 110 and the second orthogonal coupler 120 .
  • the first balanced power amplifier 100 further includes a resonant circuit 300 , and the resonant circuit 300 is connected to the isolation end of the second orthogonal coupler 120 .
  • the resonant circuit 300 is a circuit structure composed of a resistor, an inductor and a capacitor.
  • the resonant circuit 300 generally has two structures, namely a series type and a parallel type, which can be used as a harmonic oscillation. filter, bandpass or bandstop filter; the resonant circuit 300 is actually a second-order circuit.
  • the resonant circuit 300 is connected to the isolation end of the second orthogonal coupler 120, so that an active load pull can be formed between the first power amplifier 210 and the second power amplifier 220, thereby improving the back-off efficiency.
  • the broadband power amplifier further includes a fifth power amplifier 600.
  • the input end of the fifth power amplifier 600 is configured to receive a third radio frequency signal, and the output end of the fifth power amplifier 600 is connected to The isolated end of the second quadrature coupler 120 is connected.
  • the fifth power amplifier 600 can receive the third radio frequency signal, amplify the third radio frequency signal, and input the amplified signal to the second orthogonal coupler 120 to implement the third radio frequency signal. Active load pulling of the first power amplifier 210 and the second power amplifier 220; through the above method, the number of power amplifier tubes is increased, thereby improving the power level of the broadband power amplifier, and at the same time, a more complex load pulling effect can be achieved, and the power back-off efficiency can be improved .
  • the broadband power amplifier further includes a third balanced power amplifier.
  • the third balanced power amplifier includes a fifth orthogonal coupler 710, a sixth orthogonal coupler 720, and a sixth power amplifier. 810 and the seventh power amplifier 820, the input end of the fifth orthogonal coupler 710 is configured to receive the fourth radio frequency signal, the output end of the fifth orthogonal coupler 710 is connected to the input end of the sixth power amplifier 810, the fifth The coupling end of the orthogonal coupler 710 is connected to the input end of the seventh power amplifier 820, the output end of the sixth power amplifier 810 is connected to the input end of the sixth orthogonal coupler 720, and the output end of the seventh power amplifier 820 is connected to the input end of the seventh power amplifier 820.
  • the coupling ends of the six orthogonal couplers 720 are connected, and the isolation end of the sixth orthogonal coupler 720 is connected to the output end of the fourth orthogonal coupler 420 .
  • the third balanced power amplifier includes a fifth quadrature coupler 710, a sixth quadrature coupler 720, a sixth power amplifier 810 and a seventh power amplifier 820; wherein the fifth quadrature coupling
  • the input end of the amplifier 710 may be configured to receive the fourth radio frequency signal; the output end of the fifth orthogonal coupler 710 is connected to the input end of the sixth power amplifier 810, so that the output end of the fifth orthogonal coupler 710 outputs a signal can be transmitted to the sixth power amplifier 810 for power amplification processing; the coupling end of the fifth orthogonal coupler 710 is connected to the input end of the seventh power amplifier 820, so that the signal output by the coupling end of the fifth orthogonal coupler 710 can pass through
  • the seventh power amplifier 820 performs power amplification processing; the output end of the sixth power amplifier 810 is connected to the input end of the fourth orthogonal coupler 420, and the output end of the seventh power amplifier 820 is connected to the coupling end
  • connection is through the fifth orthogonal coupler 710 and the fourth orthogonal coupler 420, so that an active load pull is formed between the sixth power amplifier 810 and the seventh power amplifier 820; the isolated end of the sixth orthogonal coupler 720 is connected to The output end of the fourth orthogonal coupler 420 is connected so that the output signal of the fourth orthogonal coupler 420 can be used as an active load pull of the third balanced power amplifier, thereby improving the efficiency of power backoff; by increasing the third balanced power amplifier to further enhance the power capacity of the broadband power amplifier.
  • the first balanced power amplifier 100 also includes a seventh quadrature coupler 910, a phase compensation module 920 and an eighth power amplifier 930.
  • the input end of the seventh quadrature coupler 910 is set to receive first For radio frequency signals, the output end of the seventh orthogonal coupler 910 is connected to the input end of the phase compensation module 920, the output end of the phase compensation module 920 is connected to the input end of the eighth power amplifier 930, and the output end of the eighth power amplifier 930 is connected to The isolation end of the second orthogonal coupler 120 is connected, and the coupling end of the seventh orthogonal coupler 910 is connected to the input end of the first orthogonal coupler 110 .
  • the three-port input is changed to a two-port input, while active load pulling of the first power amplifier 210, the second power amplifier 220, the third power amplifier 510 and the fourth power amplifier 520 is achieved.
  • the phase compensation module 920 can be a phase delay line, a bandpass filter or other circuit structures with phase compensation functions; wherein, in the method of realizing phase compensation, for the phase compensation line in the form of a microstrip line, since the microstrip line has Dispersion characteristics, the same section of microstrip line has different phase delay characteristics at different frequency points, thereby achieving compensation at different frequency points; for the bandpass filter, the difference in phase delay required at different frequency points of the bandwidth working structure can be constructed. Filters with specific orders to achieve compensation at different frequency points.
  • Figure 6 is a flow chart of a method for amplifying broadband power provided by an embodiment of the present application. It is applied to the broadband power amplifier as described above.
  • the method includes but is not limited to step S100 and step S200:
  • Step S100 obtain the amplitude of the second radio frequency signal, and trigger the second balanced power amplifier to amplify the second radio frequency signal when the amplitude of the second radio frequency signal meets the triggering start condition of the second balanced power amplifier;
  • Step S200 When the second balanced power amplifier reaches the first efficiency point, the first balanced power amplifier is triggered to amplify the first radio frequency signal, so that the first balanced power amplifier performs the first active operation on the second balanced power amplifier. load pull, and causes the second balanced power amplifier to perform multiple power backoffs.
  • the amplitude of the second radio frequency signal is first obtained, and when the amplitude of the second radio frequency signal meets the trigger start condition of the second balanced power amplifier, the second balanced power amplifier is triggered to The radio frequency signal is amplified; then, when the second balanced power amplifier reaches the first efficiency point, the first balanced power amplifier is triggered to amplify the first radio frequency signal, so that the first balanced power amplifier performs amplification on the second balanced power amplifier.
  • the first active load pull allows the second balanced power amplifier to reach multiple peak efficiency points, so that the second balanced power amplifier can perform multiple power rollbacks to improve the efficiency of power rollback.
  • the second balanced power amplifier will start amplifying the second radio frequency signal only when the amplitude of the second radio frequency signal meets the triggering conditions of the second balanced power amplifier; in some embodiments, A trigger voltage threshold is set in the second balanced power amplifier. When the amplitude of the second radio frequency signal is greater than the trigger voltage threshold, the second balanced power amplifier will be triggered to start.
  • Figure 7 is a flow chart of a method for amplifying broadband power provided by an embodiment of the present application, which is applied to the broadband power amplifier as described above, the first power amplifier, the second power amplifier, the third power amplifier and The fourth power amplifier is provided with different gate trigger voltages, and the method includes but is not limited to step S300, step S400 and step S500:
  • Step S300 Obtain the amplitude of the second radio frequency signal.
  • the amplitude of the second radio frequency signal is greater than the gate trigger voltage of the third power amplifier and the gate trigger voltage of the fourth power amplifier, the third power amplifier and The fourth power amplifier is started to amplify the second radio frequency signal;
  • Step S400 When the third power amplifier and the fourth power amplifier reach the second efficiency point, the first power amplifier is started to perform second active load pulling on the third power amplifier and the fourth power amplifier;
  • Step S500 When the first power amplifier reaches the third efficiency point, the second power amplifier is started to perform a third active load pull on the first power amplifier until the first power amplifier, the second power amplifier, and the third Both the power amplifier and the fourth power amplifier reach a saturated output state.
  • the amplitude of the second radio frequency signal is first obtained.
  • the amplitude of the second radio frequency signal is greater than the gate trigger voltage of the third power amplifier and the gate trigger voltage of the fourth power amplifier, such that The third power amplifier and the fourth power amplifier are started to amplify the second radio frequency signal; then, when the third power amplifier and the fourth power amplifier reach the second efficiency point, the first power amplifier is started to amplify the third radio frequency signal.
  • the power amplifier and the fourth power amplifier perform a second active load pull; when the first power amplifier reaches the second efficiency point, the second power amplifier is started to perform a third active load pull on the first power device until The first power amplifier, the second power amplifier, the third power amplifier and the fourth power amplifier all reach the saturated output state, achieving multiple load pulls and improving the efficiency of power rollback.
  • one embodiment of the present application provides an efficiency comparison curve between a broadband power amplifier and a traditional load balancing power amplifier, in which the abscissa represents the input power and the ordinate represents the output power; it can be seen that in the curve In the first half of the curve, the traditional load-balanced power amplifier and the wideband power amplifier of the embodiment of the present application have the same amplification efficiency. In the second half of the curve, the amplification efficiency of the wideband power amplifier of the embodiment of the present application is higher than that of the traditional load-balanced The power amplifier is high.
  • the first power amplifier, the second power amplifier, the third power amplifier and the fourth power amplifier are set with different gate trigger voltages, so that the turn-on sequence of the four power amplifiers at different power levels can be flexibly controlled. This can achieve flexible load pulling effects and improve retraction efficiency.
  • the turn-on sequence of the power amplifier can also be controlled by controlling the amplitude of the input radio frequency signal.
  • the embodiment of the present application only enumerates a situation of power amplification, and triggers and starts different power amplifiers according to the obtained amplitude of the second radio frequency signal.
  • this is not the only triggering and starting method.
  • Other phase triggers can also be used. Similar triggering and starting methods should also be considered to fall within the protection scope of this application; in other embodiments, it is only necessary to reset the gate triggering voltages of different power amplifiers, and other triggering and starting methods can also be implemented. ;
  • the amplitude of the first radio frequency signal can be obtained first, and then different power amplifiers in the entire broadband power amplifier can be triggered and started based on the amplitude of the first radio frequency signal.
  • Figure 8 is a flow chart of a method for amplifying broadband power provided by an embodiment of the present application, which is applied to the broadband power amplifier as described above, the first power amplifier, the second power amplifier, the third power amplifier and The fourth power amplifier is provided with different gate trigger voltages, and the method includes but is not limited to step S600, step S700 and step S800:
  • Step S600 obtain the amplitude of the second radio frequency signal, and when the amplitude of the second radio frequency signal is greater than the gate trigger voltage of the third power amplifier, start the third power amplifier to amplify the second radio frequency signal;
  • Step S700 when the third power amplifier reaches the fourth efficiency point, start the first power amplifier to perform the fourth active load pulling on the third power amplifier;
  • Step S800 When the first power amplifier reaches the fifth efficiency point, the second power amplifier and the fourth power amplifier are started to perform the fifth active load pulling on the first power amplifier and the third power amplifier until the first power amplifier reaches the fifth efficiency point.
  • the power amplifier, the second power amplifier, the third power amplifier and the fourth power amplifier all reach a saturated output state.
  • the amplitude of the second radio frequency signal is first obtained.
  • the third power amplifier is started to respond to the second radio frequency signal.
  • the signal is amplified; then, when the third power amplifier reaches the fourth efficiency point, the first power amplifier is started to perform the fourth active load pulling on the third power amplifier; finally, when the first power amplifier reaches the fifth efficiency point, the second power amplifier and the fourth power amplifier are started to perform fifth active load pulling on the first power amplifier and the third power amplifier until the first power amplifier, the second power amplifier, the third power amplifier and the fourth power amplifier have reached the saturated output state; through the above method, multiple load pulls can also be achieved to improve the efficiency of power rollback.
  • one embodiment of the present application also provides an electronic device 800.
  • the electronic device 800 includes one of the following:
  • a broadband power amplifier as described above or,
  • the processor 810 and the memory 820 may be connected through a bus or other means.
  • the non-transient software programs and instructions required to implement the method of amplifying broadband power in the above embodiment are stored in the memory 820.
  • the method of amplifying broadband power in the above embodiment is performed. For example, perform the above Method steps S100 to S200 in FIG. 6 , method steps S300 to S500 in FIG. 7 and method steps S600 to S800 in FIG. 8 are described.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor 810, for example, by the above-mentioned electronic device.
  • Execution by a processor 810 in the embodiment 800 can cause the above-mentioned processor 810 to perform the method of amplifying broadband power in the above embodiment, for example, perform the above-described method steps S100 to S200 in Figure 6 and the method in Figure 7 Steps S300 to S500 and method steps S600 to S800 in FIG. 8 .
  • Embodiments of the present application include: a broadband power amplifier including a first balanced power amplifier and a second balanced power amplifier, wherein the first balanced power amplifier is configured to receive a first radio frequency signal; the second balanced power amplifier is configured to receive a second radio frequency signal. signal, and the control input terminal of the second balanced power amplifier is connected to the output terminal of the first balanced power amplifier, and in the case of load pull, the first balanced power amplifier causes the second balanced power amplifier to reach multiple peak efficiency points, Perform power rollback multiple times to improve power rollback efficiency.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

一种宽带功率放大器、放大宽带功率的方法、电子设备及计算机可读存储介质。宽带功率放大器包括:第一平衡功率放大器(100),用于接收第一射频信号;第二平衡功率放大器(200),用于接收第二射频信号,第二平衡功率放大器(200)的控制输入端与第一平衡功率放大器(100)的输出端连接;在负载牵引的情况下,第一平衡功率放大器(100)使得第二平衡功率放大器(200)进行多次功率回退。

Description

宽带功率放大器、放大宽带功率的方法及可读存储介质
相关申请的交叉引用
本申请基于申请号为202210960144.6、申请日为2022年08月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于信号处理技术领域,尤其涉及一种宽带功率放大器、放大宽带功率的方法、电子设备及计算机可读存储介质。
背景技术
随着5G商用落地,各运营商的可用频谱越来越多,如果采用单频基站,为了实现单一站点各个频段的覆盖,需要的基站数量越多,造成部署和运营成本上升;而宽带和多带功放将能够有效解决这一问题,在带宽足够宽的情况下,采用一个基站即可以实现所有可用频段的工作;其中,负载调制平衡放大器是一种具有宽带应用潜力的架构,该架构以电桥为核心,采用双输入的方式,通过对控制路信号的幅度和相位进行控制,对平衡路的负载进行调制处理,从而保证较宽的带宽;但是传统的负载调制平衡放大器架构对平衡路只能够实现一次负载调制,在回退区域中只有一个效率峰值点,使得回退效率较低。
发明内容
本申请实施例提供了一种宽带功率放大器、放大宽带功率的方法、电子设备及计算机可读存储介质。
第一方面,本申请实施例提供了一种宽带功率放大器,包括:第一平衡功率放大器,被设置为接收第一射频信号;第二平衡功率放大器,被设置为接收第二射频信号,所述第二平衡功率放大器的控制输入端与所述第一平衡功率放大器的输出端连接;在负载牵引的情况下,所述第一平衡功率放大器使得所述第二平衡功率放大器实现多次功率回退。
第二方面,本申请实施例还提供了一种放大宽带功率的方法,应用于如上所述的宽带功率放大器,所述方法包括:获取所述第二射频信号的幅值,在所述第二射频信号的幅值满足所述第二平衡功率放大器的触发启动条件的情况下,触发所述第二平衡功率放大器对所述第二射频信号进行放大处理;在所述第二平衡功率放大器达到第一效率点的情况下,触发所述第一平衡功率放大器对所述第一射频信号进行放大处理,使得所述第一平衡功率放大器对所述第二平衡功率放大器进行第一有源负载牵引,并且使得所述第二平衡功率放大器进行多次功率回退。
第三方面,本申请实施例还提供了一种放大宽带功率的方法,应用于如上所述的宽带功率放大器,所述第一功率放大器、所述第二功率放大器、所述第三功率放大器和所述第四功率放大器设置有不同的栅极触发电压,所述方法包括:获取第二射频信号的幅值,在所述第二射频信号的幅值大于所述第三功率放大器的所述栅极触发电压和所述第四功率放大器的所 述栅极触发电压的情况下,使得所述第三功率放大器和所述第四功率放大器启动以对所述第二射频信号进行放大处理;在所述第三功率放大器和所述第四功率放大器达到第二效率点的情况下,使得所述第一功率放大器启动以对所述第三功率放大器和所述第四功率放大器进行第二有源负载牵引;在所述第一功率放大器达到第三效率点的情况下,使得所述第二功率放大器启动以对所述第一功率放大器进行第三有源负载牵引,直至所述第一功率放大器、所述第二功率放大器、第三功率放大器和所述第四功率放大器均达到饱和输出状态。
第四方面,本申请实施例还提供了一种放大宽带功率的方法,应用于如上所述的宽带功率放大器,所述第一功率放大器、所述第二功率放大器、所述第三功率放大器和所述第四功率放大器设置有不同的栅极触发电压,所述方法包括:获取第二射频信号的幅值,在所述第二射频信号的幅值大于所述第三功率放大器的所述栅极触发电压的情况下,使得所述第三功率放大器启动以对所述第二射频信号进行放大处理;在所述第三功率放大器达到第四效率点的情况下,使得所述第一功率放大器启动以对所述第三功率放大器进行第四有源负载牵引;在所述第一功率放大器达到第五效率点的情况下,使得所述第二功率放大器和所述第四功率放大器启动以对所述第一功率放大器和所述第三功率放大器进行第五有源负载牵引,直至所述第一功率放大器、所述第二功率放大器、第三功率放大器和所述第四功率放大器均达到饱和输出状态。
第五方面,本申请实施例还提供了一种电子设备,包括如下之一:如上所述的宽带功率放大器;或,存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的放大宽带功率的方法。
第六方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行如上所述的放大宽带功率的方法。
附图说明
图1是本申请一个实施例提供的宽带功率放大器的架构示意图;
图2是本申请另一个实施例提供的宽带功率放大器的架构示意图;
图3是本申请另一个实施例提供的宽带功率放大器的架构示意图;
图4是本申请另一个实施例提供的宽带功率放大器的架构示意图;
图5是本申请另一个实施例提供的宽带功率放大器的架构示意图;
图6是本申请一个实施例提供的放大宽带功率的方法的流程图;
图7是本申请另一个实施例提供的放大宽带功率的方法的流程图;
图8是本申请另一个实施例提供的放大宽带功率的方法的流程图;
图9是本申请一个实施例提供的宽带功率放大器和传统负载平衡功率放大器的效率对比曲线图;
图10是本申请一个实施例提供的电子设备的构造示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种宽带功率放大器、放大宽带功率的方法、电子设备及计算机可读存储介质,宽带功率放大器包括第一平衡功率放大器和第二平衡功率放大器,其中,第一平衡功率放大器被设置为接收第一射频信号;第二平衡功率放大器被设置为接收第二射频信号,并且第二平衡功率放大器的控制输入端与第一平衡功率放大器的输出端连接,在负载牵引的情况下,第一平衡功率放大器使得所述第二平衡功率放大器达到多个峰值效率点,进行多次功率回退,提升功率的回退效率。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的宽带功率放大器,宽带功率放大器包括第一平衡功率放大器100和第二平衡功率放大器200,其中,第一功率放大器100被设置为接收第一射频信号;第二功率放大器200被设置为接收第二射频信号,并且第二平衡功率放大器200的控制输入端与第一平衡功率放大器100的输出端连接;在负载牵引的情况下,第一平衡功率放大器使得第二平衡功率放大器实现多次功率回退。
在本申请的一个实施例中,宽带功率放大器至少包括第一平衡功率放大器100和第二平衡功率放大器200;其中,第一平衡功率放大器100被设置为接收第一射频信号,第二功率放大器200被设置为接收第二射频信号,并且第二平衡功率放大器200的控制输入端与第一平衡功率放大器100的输出端连接,使得第一平衡功率放大器100能够对第二平衡功率放大器200实现负载牵引,第一平衡功率放大器100使得第二平衡功率放大器200达到多个峰值效率点,实现多次功率回退,提升功率的回退效率。
值得注意的是,第一平衡功率放大器100和第二平衡功率放大器200只是用于区分不同的平衡功率放大器,以便于后续清晰地进行实施例的阐述说明,并不代表两者是不同类型的平衡功率放大器,两者可以具有相同的架构。
在本申请的一个实施例中,第一平衡功率放大器100和第二平衡功率放大器200均可以包括两个正交耦合器和两个功率放大器,两个功率放大器设置在两个正交耦合器之间。正交耦合器是指能为两个输出端口提供幅度特定且相位正交的信号的耦合器,它以波导作为传输线传输信号;正交耦合器的作用是将一路信号分配给多路,并且隔离前后级的相互影响;其中,正交耦合器包括四个端口,分别为输入端口、输出端口、耦合端口和隔离端口。耦合度和插损是正交耦合器的两个主要指标,耦合度是输入端口和耦合端口的功率之比,插损定义为耦合器的输出端口功率与输入端口的功率之比。功率放大器是发射系统中的主要部分,在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大,放大包括缓冲级、中间放大级和末级功率放大级,以获得足够的射频功率以后,才可以馈送到天线上辐射出去;为了获得足够大的射频输出功率,必须采用功率放大器。
值得注意的是,第一射频信号和第二射频信号只是对射频信号进行区分,以便于后续进行是实力的展开说明,并不应当认定两者为不同类型的信号。射频信号是经过调制的,拥有一定发射频率的电波;在电磁波频率低于100kHz时,电磁波会被地表吸收,不能形成有效的传输,一旦电磁波频率高于100kHz时,电磁波就可以在空气中传播,并经大气层外缘的电离 层反射,形成远距离传输能力。
值得注意的是,宽带功率放大器可以应用于大功率宽带射频拉远单元(Radio Remote Unit,RRU)基站,对射频信号进行功率放大处理,以便于后续进行通信信号的发射处理。
值得注意的是,功率回退是射频功放线性化的常用技术;功率回退法是将功率放大器的输入功率从1dB压缩点(相当于放大器线性区和非线性区的临界点)向后回退6-10个分贝,工作在远小于1dB压缩点的电平上,使得功率放大器远离饱和区,进行线性工作区,从而改善功率放大器的三阶交调系数,一般情况,当基波功率降低1dB时,三阶交调失真改善2dB。功率回退法简单且易实现,不需要增加任何附加设备,是改善放大器线性度的有效方法。
如图2所示,本申请的一个实施例,第一平衡功率放大器100包括第一正交耦合器110、第二正交耦合器120、第一功率放大器210和第二功率放大器220,第一正交耦合器110的输出端与第一功率放大器210的输入端连接,第一正交耦合器110的耦合端与第二功率放大器220的输入端连接,第一功率放大器210的输出端与第二正交耦合器120的输入端连接,第二功率放大器220的输出端与第二正交耦合器120的耦合端连接,第二正交耦合器120的输出端与第二平衡功率放大器200连接。
在本申请的一个实施例中,第一平衡功率放大器100包括第一正交耦合器110、第二正交耦合器120、第一功率放大器210和第二功率放大器220;其中,第一正交耦合器的输入端可以被设置为接收第一射频信号;第一正交耦合器110的输出端与第一功率放大器210的输入端连接,使得第一正交耦合器110的输出端输出的信号能够传输到第一功率放大器210进行功率放大处理;第一正交耦合器110的耦合端与第二功率放大器220的输入端连接,使得第一正交耦合器110的耦合端输出的信号能够通过第二功率放大器220进行功率放大处理;第一功率放大器210的输出端与第二正交耦合器120的输入端连接,第二功率放大器220的输出端与第二正交耦合器120的耦合端连接,通过第一正交耦合器110和第二正交耦合器120,使得第一功率放大器210和第二功率放大器220之间形成有源负载牵引;第二正交耦合器120的输出端与第二平衡功率放大器200连接,使得第二正交耦合器120的输出信号可以作为第二平衡功率放大器200的有源负载牵引,从而进一步提升功率回退的效率。
值得注意的是,第一正交耦合器110和第二正交耦合器120均包括四个端口,分别为输入端口、输出端口、耦合端口和隔离端口,四个端口可以用编号1到4表示,则各个端口需要满足的特性如下:
在1、2、3和4端口均为匹配情况下,各个端口没有反射,即有:
S11=S22=S33=S44=0
其中,S参数通常用来描述工作在类似于射频和微波频率的高频下的端口网络,S参数的表达方式多种多样;在数学表达上是一个矩阵形式,矩阵中的每个数值代表了一定的物理意义。在一些实施例中,S11表示在输出端端接匹配情况下的输入端反射系数,通常被称为回波损耗,在没有发射的情况下,S11=0。
在各端口均为匹配情况下,1、2端口和3、4端口之间彼此隔离,即有:
S12=S34=0
其中,S12表示信号从2端口进入从1端口输出的反向传输增益;S34表示信号从4端口进入从3端口输出的反向传输增益。
3端口到1、2端口,或者4端口到1、2端口功率包括均分或者非均分的形式;在3端口到1、2端口,或者4端口到1、2端口功率为均分形式的情况下,即有:

在3端口到1、2端口,或者4端口到1、2端口功率为非均分形式的情况下,即有:
|S13|=|S23|=α
|S14|=|S24|=β
其中,α表示|S13|和|S23|的模值大小,β表示|S14|和|S24|的模值大小;并且两者需要满足α22=1。
当信号由3端口进入1、2端口,相位相差90°;由4端口进入1、2端口相位也相差90°,即有:

由此得到四个端口需要满足的S矩阵为
其中,α22=1。
如图2所示,本申请的一个实施例,第二平衡功率放大器200包括第三正交耦合器410、第四正交耦合器420、第三功率放大器510和第四功率放大器520,第三正交耦合器410的输入端被设置为接收第二射频信号,第三正交耦合器410的输出端与第三功率放大器510的输入端连接,第三正交耦合器410的耦合端与第四功率放大器520的输入端连接,第三功率放大器510的输出端与第四正交耦合器420的输入端连接,第四功率放大器520的输出端与第四正交耦合器420的耦合端连接,第四正交耦合器420的隔离端与第一平衡功率放大器100的输出端连接。
在本申请的一个实施例中,第二平衡功率放大器200包括第三正交耦合器410、第四正交耦合器420、第三功率放大器510和第四功率放大器520;其中,第三正交耦合器410的输入端可以被设置为接收第二射频信号;第三正交耦合器410的输出端与第三功率放大器510的输入端连接,使得第三正交耦合器410的输出端输出的信号能够传输到第三功率放大器510进行功率放大处理;第三正交耦合器410的耦合端与第四功率放大器520的输入端连接,使得第三正交耦合器410的耦合端输出的信号能够通过第四功率放大器520进行功率放大处理;第三功率放大器510的输出端与第四正交耦合器420的输入端连接,第四功率放大器520的输出端与第四正交耦合器420的耦合端连接,通过第三正交耦合器410和第四正交耦合器420,使得第三功率放大器510和第四功率放大器520之间形成有源负载牵引;第四正交耦合器420的隔离端与第一平衡功率放大器100的输出端连接,使得第一平衡功率放大器100的输出信 号可以作为第二平衡功率放大器200的有源负载牵引,从而提升功率回退的效率。其中,第四正交耦合器的隔离端为第二平衡功率放大器的控制输入端。
值得注意的是,本申请实施例中的第三正交耦合器410和第四正交耦合器420同样满足第一正交耦合器110和第二正交耦合器120的特性。
如图2所示,第一平衡功率放大器100还包括谐振电路300,谐振电路300与第二正交耦合器120的隔离端连接。
在本申请的一些实施例中,谐振电路300是一种由电阻、电感和电容组成的电路结构,谐振电路300的组成结构一般有两种,分别为串联型和并联型,可以作为谐波振荡器、带通或者带阻滤波器;谐振电路300其实就是一个二阶电路。在第二正交耦合器120的隔离端接入谐振电路300,使得第一功率放大器210和第二功率放大器220之间可以形成一次有源负载牵引,实现回退效率的提升。
如图3所示,本申请的一个实施例,宽带功率放大器还包括第五功率放大器600,第五功率放大器600的输入端被设置为接收第三射频信号,第五功率放大器600的输出端与第二正交耦合器120的隔离端连接。
在本申请的一些实施例中,第五功率放大器600可以接收第三射频信号,并且对第三射频信号进行放大处理,并且将放大后的信号输入到第二正交耦合器120,实现对第一功率放大器210和第二功率放大器220的有源负载牵引;通过上述方式,增加功放管数量,从而提升宽带功率放大器的功率等级,同时可以实现更为复杂的负载牵引效果,提升功率回退效率。
如图4所示,本申请的一个实施例,宽带功率放大器还包括第三平衡功率放大器,第三平衡功率放大器包括第五正交耦合器710、第六正交耦合器720、第六功率放大器810和第七功率放大器820,第五正交耦合器710的输入端被设置为接收第四射频信号,第五正交耦合器710的输出端与第六功率放大器810的输入端连接,第五正交耦合器710的耦合端与第七功率放大器820的输入端连接,第六功率放大器810的输出端与第六正交耦合器720的输入端连接,第七功率放大器820的输出端与第六正交耦合器720的耦合端连接,第六正交耦合器720的隔离端与第四正交耦合器420的输出端连接。
在本申请的一些实施例中,第三平衡功率放大器包括第五正交耦合器710、第六正交耦合器720、第六功率放大器810和第七功率放大器820;其中,第五正交耦合器710的输入端可以被设置为接收第四射频信号;第五正交耦合器710的输出端与第六功率放大器810的输入端连接,使得第五正交耦合器710的输出端输出的信号能够传输到第六功率放大器810进行功率放大处理;第五正交耦合器710的耦合端与第七功率放大器820的输入端连接,使得第五正交耦合器710的耦合端输出的信号能够通过第七功率放大器820进行功率放大处理;第六功率放大器810的输出端与第四正交耦合器420的输入端连接,第七功率放大器820的输出端与第四正交耦合器420的耦合端连接,通过第五正交耦合器710和第四正交耦合器420,使得第六功率放大器810和第七功率放大器820之间形成有源负载牵引;第六正交耦合器720的隔离端与第四正交耦合器420的输出端连接,使得第四正交耦合器420的输出信号可以作为第三平衡功率放大器的有源负载牵引,从而提升功率回退的效率;通过增加第三平衡功率放大器,进一步提升宽带功率放大器的功率容量。
如图5所示,本申请的一个实施例,第一平衡功率放大器100还包括第七正交耦合器910、相位补偿模块920和第八功率放大器930,第七正交耦合器910的输入端被设置为接收第一 射频信号,第七正交耦合器910的输出端与相位补偿模块920的输入端连接,相位补偿模块920的输出端与第八功率放大器930的输入端连接,第八功率放大器930的输出端与第二正交耦合器120的隔离端连接,第七正交耦合器910的耦合端与第一正交耦合器110的输入端连接。
在本申请的一些实施例中,将三端口输入改为两端口输入,同时实现对第一功率放大器210、第二功率放大器220、第三功率放大器510和第四功率放大器520的有源负载牵引;相位补偿模块920可以为相位延迟线、带通滤波器或者其他具有相位补偿功能的电路结构;其中,在实现相位补偿的方法中,对于微带线形式的相位补偿线,由于微带线具有色散特性,同一段微带线在不同频点具有的相位延迟特性不一样,从而实现不同频点的补偿;对于带通滤波器,可以针对带宽工作架构不同频点需要的相位延迟的差异,构造具有特定阶数的滤波器,从而实现不同频点的补偿。
如图6所示,图6是本申请一个实施例提供的放大宽带功率的方法的流程图,应用于如上所述的宽带功率放大器,所述方法包括但不限于步骤S100和步骤S200:
步骤S100,获取第二射频信号的幅值,在第二射频信号的幅值满足第二平衡功率放大器的触发启动条件的情况下,触发第二平衡功率放大器对第二射频信号进行放大处理;
步骤S200,在第二平衡功率放大器达到第一效率点的情况下,触发第一平衡功率放大器对第一射频信号进行放大处理,使得第一平衡功率放大器对第二平衡功率放大器进行第一有源负载牵引,并且使得第二平衡功率放大器进行多次功率回退。
在本申请的一些实施例中,首先获取第二射频信号的幅值,在第二射频信号的幅值满足第二平衡功率放大器的触发启动条件的情况下,触发第二平衡功率放大器对第二射频信号进行放大处理;接着在第二平衡功率放大器达到第一效率点的情况下,触发第一平衡功率放大器对第一射频信号进行放大处理,使得第一平衡功率放大器对第二平衡功率放大器进行第一有源负载牵引,使得第二平衡功率放大器可以达到多个峰值效率点,从而第二平衡功率放大器可以进行多次功率回退,提升功率回退的效率。
值得注意的是,第二射频信号的幅值满足第二平衡功率放大器的触发启动条件的情况下,第二平衡功率放大器才会启动对第二射频信号进行放大处理;在一些实施例中,可以在第二平衡功率放大器中设定一个触发电压阈值,在第二射频信号的幅值大于触发电压阈值的情况下,第二平衡功率放大器才会触发启动。
如图7所示,图7是本申请一个实施例提供的放大宽带功率的方法的流程图,应用于如上所述的宽带功率放大器,第一功率放大器、第二功率放大器、第三功率放大器和第四功率放大器设置有不同的栅极触发电压,所述方法包括但不限于步骤S300、步骤S400和步骤S500:
步骤S300,获取第二射频信号的幅值,在第二射频信号的幅值大于第三功率放大器的栅极触发电压和第四功率放大器的栅极触发电压的情况下,使得第三功率放大器和第四功率放大器启动以对第二射频信号进行放大处理;
步骤S400,在第三功率放大器和第四功率放大器达到第二效率点的情况下,使得第一功率放大器启动以对第三功率放大器和第四功率放大器进行第二有源负载牵引;
步骤S500,在第一功率放大器达到第三效率点的情况下,使得第二功率放大器启动以对第一功率放大器进行第三有源负载牵引,直至第一功率放大器、第二功率放大器、第三功率放大器和第四功率放大器均达到饱和输出状态。
本申请一实施例中,首先获取第二射频信号的幅值,在第二射频信号的幅值大于第三功率放大器和栅极触发电压和第四功率放大器的栅极触发电压的情况下,使得第三功率放大器和第四功率放大器启动以对第二射频信号进行放大处理;接着在第三功率放大器和第四功率放大器达到第二效率点的情况下,使得第一功率放大器启动以对第三功率放大器和第四功率放大器进行第二有源负载牵引;在第一功率放大器达到第二效率点的情况下,使得第二功率放大器启动以对第一功率器进行第三有源负载牵引,直至第一功率放大器、第二功率放大器、第三功率放大器和第四功率放大器均达到饱和输出状态,实现多次负载牵引,提升功率回退的效率。如图9所示,本申请一个实施例提供了宽带功率放大器和传统负载平衡功率放大器的效率对比曲线图,其中,横坐标表示输入功率的大小,纵坐标表示输出功率的大小;可见,在曲线的前半段,传统的负载平衡功率放大器和本申请实施例的宽带功率放大器具有相同的放大效率,在曲线的后半段,本申请实施例的宽带功率放大器的放大效率就会比传统的负载平衡功率放大器高。
值得注意的是,第一功率放大器、第二功率放大器、第三功率放大器和第四功率放大器设置有不同的栅极触发电压,进而可以灵活控制四个功率放大器在不同功率等级下的开启顺序,进而可以实现灵活的负载牵引效果,提升回退效率。另外,通过控制输入的射频信号的幅值大小也可以对功率放大器的开启顺序进行控制处理。
可以理解的是,本申请实施例只是列举一种功率实现放大的情况,根据获取得到的第二射频信号的幅值而触发启动不同的功率放大器,但这并不是唯一的触发启动方式,其他相类似的触发启动方式也应该认定为落入本申请的保护范围;在另外的一些实施例中,只需要对不同的功率放大器的栅极触发电压进行重新设定,也可以实现另外的触发启动方式;例如,可以先获取第一射频信号的幅值,接着整个宽带功率放大器中的不同功率放大器可以根据第一射频信号的幅值而进行触发启动。
如图8所示,图8是本申请一个实施例提供的放大宽带功率的方法的流程图,应用于如上所述的宽带功率放大器,第一功率放大器、第二功率放大器、第三功率放大器和第四功率放大器设置有不同的栅极触发电压,所述方法包括但不限于步骤S600、步骤S700和步骤S800:
步骤S600,获取第二射频信号的幅值,在第二射频信号的幅值大于第三功率放大器的栅极触发电压的情况下,使得第三功率放大器启动以对第二射频信号进行放大处理;
步骤S700,在第三功率放大器达到第四效率点的情况下,使得第一功率放大器启动以对第三功率放大器进行第四有源负载牵引;
步骤S800,在第一功率放大器达到第五效率点的情况下,使得第二功率放大器和第四功率放大器启动以对第一功率放大器和第三功率放大器进行第五有源负载牵引,直至第一功率放大器、第二功率放大器、第三功率放大器和第四功率放大器均达到饱和输出状态。
本申请一实施例中,首先获取第二射频信号的幅值,在第二射频信号的幅值大于第三功率放大器的栅极触发电压的情况下,使得第三功率放大器启动以对第二射频信号进行放大处理;接着在第三功率放大器达到第四效率点的情况下,使得第一功率放大器启动以对第三功率放大器进行第四有源负载牵引;最后在第一功率放大器达到第五效率点的情况下,使得第二功率放大器和第四功率放大器启动以对第一功率放大器和第三功率放大器进行第五有源负载牵引,直至第一功率放大器、第二功率放大器、第三功率放大器和第四功率放大器均达到饱和输出状态;通过上述方式,也可以实现多次负载牵引,提升功率回退的效率。
另外,如图10所示,本申请的一个实施例还提供了一种电子设备800,该电子设备800包括如下之一:
如上所述的宽带功率放大器;或,
存储器820、处理器810及存储在存储器820上并可在处理器810上运行的计算机程序。
处理器810和存储器820可以通过总线或者其他方式连接。
需要说明的是,本实施例中的电子设备800和上述实施例中的放大宽带功率的方法属于相同的构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的放大宽带功率的方法所需的非暂态软件程序以及指令存储在存储器820中,当被处理器810执行时,执行上述实施例中的放大宽带功率的方法,例如,执行以上描述的图6中的方法步骤S100至S200、图7中的方法步骤S300至S500和图8中的方法步骤S600至S800。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器810执行,例如,被上述电子设备800实施例中的一个处理器810执行,可使得上述处理器810执行上述实施例中的放大宽带功率的方法,例如,执行以上描述的图6中的方法步骤S100至S200、图7中的方法步骤S300至S500和图8中的方法步骤S600至S800。
本申请实施例包括:宽带功率放大器包括第一平衡功率放大器和第二平衡功率放大器,其中,第一平衡功率放大器被设置为接收第一射频信号;第二平衡功率放大器被设置为接收第二射频信号,并且第二平衡功率放大器的控制输入端与第一平衡功率放大器的输出端连接,在负载牵引的情况下,第一平衡功率放大器使得所述第二平衡功率放大器达到多个峰值效率点,进行多次功率回退,提升功率的回退效率。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (12)

  1. 一种宽带功率放大器,包括:
    第一平衡功率放大器,被设置为接收第一射频信号;
    第二平衡功率放大器,被设置为接收第二射频信号,所述第二平衡功率放大器的控制输入端与所述第一平衡功率放大器的输出端连接;其中,在负载牵引的情况下,所述第一平衡功率放大器使得所述第二平衡功率放大器进行多次功率回退。
  2. 根据权利要求1所述的宽带功率放大器,其中,所述第一平衡功率放大器包括第一正交耦合器、第二正交耦合器、第一功率放大器和第二功率放大器,所述第一正交耦合器的输出端与所述第一功率放大器的输入端连接,所述第一正交耦合器的耦合端与所述第二功率放大器的输入端连接,所述第一功率放大器的输出端与所述第二正交耦合器的输入端连接,所述第二功率放大器的输出端与所述第二正交耦合器的耦合端连接,所述第二正交耦合器的输出端与所述第二平衡功率放大器连接。
  3. 根据权利要求2所述的宽带功率放大器,其中,所述第二平衡功率放大器包括第三正交耦合器、第四正交耦合器、第三功率放大器和第四功率放大器,所述第三正交耦合器的输入端被设置为接收所述第二射频信号,所述第三正交耦合器的输出端与所述第三功率放大器的输入端连接,所述第三正交耦合器的耦合端与所述第四功率放大器的输入端连接,所述第三功率放大器的输出端与所述第四正交耦合器的输入端连接,所述第四功率放大器的输出端与所述第四正交耦合器的耦合端连接,所述第四正交耦合器的隔离端与所述第一平衡功率放大器的输出端连接。
  4. 根据权利要求2所述的宽带功率放大器,其中,所述第一平衡功率放大器还包括谐振电路,所述谐振电路与所述第二正交耦合器的隔离端连接。
  5. 根据权利要求2所述的宽带功率放大器,其中,所述放大器还包括第五功率放大器,所述第五功率放大器的输入端被设置为接收第三射频信号,所述第五功率放大器的输出端与所述第二正交耦合器的隔离端连接。
  6. 根据权利要求3所述的宽带功率放大器,其中,所述放大器还包括第三平衡功率放大器,所述第三平衡功率放大器包括第五正交耦合器、第六正交耦合器、第六功率放大器和第七功率放大器,所述第五正交耦合器的输入端被设置为接收所述第四射频信号,所述第五正交耦合器的输出端与所述第六功率放大器的输入端连接,所述第五正交耦合器的耦合端与所述第七功率放大器的输入端连接,所述第六功率放大器的输出端与所述第六正交耦合器的输入端连接,所述第七功率放大器的输出端与所述第六正交耦合器的耦合端连接,所述第六正交耦合器的隔离端与所述第四正交耦合器的输出端连接。
  7. 根据权利要求2所述的宽带功率放大器,其中,所述第一平衡功率放大器还包括第七正交耦合器、相位补偿模块和第八功率放大器,所述第七正交耦合器的输入端被设置为接收所述第一射频信号,所述第七正交耦合器的输出端与所述相位补偿模块的输入端连接,所述相位补偿模块的输出端与所述第八功率放大器的输入端连接,所述第八功率放大器的输出端与所述第二正交耦合器的隔离端连接,所述第七正交耦合器的耦合端与所述第一正交耦合器的输入端连接。
  8. 一种放大宽带功率的方法,应用于权利要求1至7任意一项所述的宽带功率放大器,所述方法包括:
    获取所述第二射频信号的幅值,在所述第二射频信号的幅值满足所述第二平衡功率放大器的触发启动条件的情况下,触发所述第二平衡功率放大器对所述第二射频信号进行放大处理;
    在所述第二平衡功率放大器达到第一效率点的情况下,触发所述第一平衡功率放大器对所述第一射频信号进行放大处理,使得所述第一平衡功率放大器对所述第二平衡功率放大器进行第一有源负载牵引,并且使得所述第二平衡功率放大器进行多次功率回退。
  9. 一种放大宽带功率的方法,应用于权利要求3所述的宽带功率放大器,所述第一功率放大器、所述第二功率放大器、所述第三功率放大器和所述第四功率放大器设置有不同的栅极触发电压,所述方法包括:
    获取所述第二射频信号的幅值,在所述第二射频信号的幅值大于所述第三功率放大器的所述栅极触发电压和所述第四功率放大器的所述栅极触发电压的情况下,使得所述第三功率放大器和所述第四功率放大器启动以对所述第二射频信号进行放大处理;
    在所述第三功率放大器和所述第四功率放大器达到第二效率点的情况下,使得所述第一功率放大器启动以对所述第三功率放大器和所述第四功率放大器进行第二有源负载牵引;
    在所述第一功率放大器达到第三效率点的情况下,使得所述第二功率放大器启动以对所述第一功率放大器进行第三有源负载牵引,直至所述第一功率放大器、所述第二功率放大器、所述第三功率放大器和所述第四功率放大器均达到饱和输出状态。
  10. 一种放大宽带功率的方法,应用于权利要求3所述的宽带功率放大器,所述第一功率放大器、所述第二功率放大器、所述第三功率放大器和所述第四功率放大器设置有不同的栅极触发电压,所述方法包括:
    获取所述第二射频信号的幅值,在所述第二射频信号的幅值大于所述第三功率放大器的所述栅极触发电压的情况下,使得所述第三功率放大器启动以对所述第二射频信号进行放大处理;
    在所述第三功率放大器达到第四效率点的情况下,使得所述第一功率放大器启动以对所述第三功率放大器进行第四有源负载牵引;
    在所述第一功率放大器达到第五效率点的情况下,使得所述第二功率放大器和所述第四功率放大器启动以对所述第一功率放大器和所述第三功率放大器进行第五有源负载牵引,直至所述第一功率放大器、所述第二功率放大器、所述第三功率放大器和所述第四功率放大器均达到饱和输出状态。
  11. 一种电子设备,包括如下之一:
    如权利要求1至7中任意一项所述的宽带功率放大器;或,
    存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求8至10任意一项所述的放大宽带功率的方法。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求8至10任意一项所述的放大宽带功率的方法。
PCT/CN2023/111495 2022-08-11 2023-08-07 宽带功率放大器、放大宽带功率的方法及可读存储介质 WO2024032553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210960144.6A CN117639684A (zh) 2022-08-11 2022-08-11 宽带功率放大器、放大宽带功率的方法及可读存储介质
CN202210960144.6 2022-08-11

Publications (1)

Publication Number Publication Date
WO2024032553A1 true WO2024032553A1 (zh) 2024-02-15

Family

ID=89850843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111495 WO2024032553A1 (zh) 2022-08-11 2023-08-07 宽带功率放大器、放大宽带功率的方法及可读存储介质

Country Status (2)

Country Link
CN (1) CN117639684A (zh)
WO (1) WO2024032553A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889162A (zh) * 2019-01-23 2019-06-14 杭州电子科技大学 一种自输入控制的负载调制类功率放大器及其实现方法
CN109921750A (zh) * 2019-01-24 2019-06-21 杭州电子科技大学 一种基于有源负载调制的宽带功率放大器及其设计方法
WO2021051232A1 (zh) * 2019-09-16 2021-03-25 华为技术有限公司 功率放大电路、发射器以及网络设备
CN113364417A (zh) * 2021-06-22 2021-09-07 苏州悉芯射频微电子有限公司 一种可调节的负载平衡功放结构
US20220006428A1 (en) * 2018-10-31 2022-01-06 Leonardo UK Ltd Radio frequency power amplifier
CN114268280A (zh) * 2021-12-20 2022-04-01 北京邮电大学 一种具有谐波抑制功能的宽带负载调制平衡放大器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220006428A1 (en) * 2018-10-31 2022-01-06 Leonardo UK Ltd Radio frequency power amplifier
CN109889162A (zh) * 2019-01-23 2019-06-14 杭州电子科技大学 一种自输入控制的负载调制类功率放大器及其实现方法
CN109921750A (zh) * 2019-01-24 2019-06-21 杭州电子科技大学 一种基于有源负载调制的宽带功率放大器及其设计方法
WO2021051232A1 (zh) * 2019-09-16 2021-03-25 华为技术有限公司 功率放大电路、发射器以及网络设备
CN113364417A (zh) * 2021-06-22 2021-09-07 苏州悉芯射频微电子有限公司 一种可调节的负载平衡功放结构
CN114268280A (zh) * 2021-12-20 2022-04-01 北京邮电大学 一种具有谐波抑制功能的宽带负载调制平衡放大器

Also Published As

Publication number Publication date
CN117639684A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US9614480B2 (en) Wide-band multi stage doherty power amplifier
EP3054589B1 (en) Doherty amplifier
US8653889B1 (en) Doherty amplifier having compact output matching and combining networks
US8193857B1 (en) Wideband doherty amplifier circuit
US6774717B2 (en) Transmitter including a composite amplifier
US8872583B2 (en) Power amplifier with advanced linearity
ITRM960329A1 (it) Amplificatore di potenza lineare per prestazioni in multi-portante ad alta efficienza.
US10084413B2 (en) Doherty power amplifier and transmitter
CN206149219U (zh) 一种q频段卫星通信100w固态功率放大器链路
WO2024032553A1 (zh) 宽带功率放大器、放大宽带功率的方法及可读存储介质
EP3255791B1 (en) Power amplifying equipment
EP3043469A1 (en) Doherty amplifier
CN116015320A (zh) 射频发射装置及其实现方法
CN210327509U (zh) 一种新型的反向doherty放大器
US5990750A (en) Amplifier and driver system with multichannel operation
WO2020107390A1 (zh) 功率放大器电路
EP2761740B1 (en) Amplifying system
WO2024082114A1 (zh) 一种功放设备、射频拉远单元及基站
CN102882475A (zh) 射频功放电路的带宽扩展方法和装置
KR102581784B1 (ko) 광대역 도허티 증폭기
CN217957036U (zh) 一种c波段高增益低噪声放大器
US6781454B1 (en) Linearized traveling wave tube circuit with pre-distortion linearizer
CN220440677U (zh) 一种射频功率放大器
WO2023024785A1 (zh) 一种功率放大电路及功率放大器
CN212572483U (zh) 一种特高频功率放大装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851774

Country of ref document: EP

Kind code of ref document: A1