WO2024082114A1 - 一种功放设备、射频拉远单元及基站 - Google Patents

一种功放设备、射频拉远单元及基站 Download PDF

Info

Publication number
WO2024082114A1
WO2024082114A1 PCT/CN2022/125795 CN2022125795W WO2024082114A1 WO 2024082114 A1 WO2024082114 A1 WO 2024082114A1 CN 2022125795 W CN2022125795 W CN 2022125795W WO 2024082114 A1 WO2024082114 A1 WO 2024082114A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
coupler
signal
power
output
Prior art date
Application number
PCT/CN2022/125795
Other languages
English (en)
French (fr)
Inventor
陈金虎
索海雷
俞雪明
孙益军
曾志雄
孙捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/125795 priority Critical patent/WO2024082114A1/zh
Publication of WO2024082114A1 publication Critical patent/WO2024082114A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the technical field of communication equipment, and in particular to a power amplifier device, a radio remote unit and a base station.
  • the 5G NR (5G New Radio) standard defines the N77 frequency band from 3.3 GHz to 4.2 GHz, that is, 900 MHz bandwidth for concurrent broadband signals.
  • CFR crest factor reduction
  • the peak-to-average ratio is still as high as 9 dB.
  • PAPR peak-to-average power ratio
  • PA power amplifier
  • the power amplifier of the base station needs to achieve ultra-wideband characteristics while meeting high efficiency.
  • the present application provides a power amplifier device, a radio frequency remote unit and a base station, which can achieve ultra-wideband characteristics while meeting high efficiency.
  • the present application provides a power amplifier device, which includes, in addition to the following three power amplifier circuits, namely, a first power amplifier circuit, a second power amplifier circuit, and a third power amplifier circuit, a first coupler and a circulator; wherein the circulator serves as a last-stage power synthesis unit; wherein the first power amplifier circuit, the second power amplifier circuit, and the third power amplifier circuit have their input ends respectively input with a first signal, a second signal, and a third signal, the output end of the first power amplifier circuit and the output end of the second power amplifier circuit are both connected to the input end of the first coupler, and the first coupler outputs a power-synthesized signal; the output end of the first coupler and the output end of the third power amplifier circuit are connected to the circulator, and the circulator synthesizes the power of the signal output by the third power amplifier circuit with the signal output by the coupler and outputs the resultant signal.
  • the power amplifier device provided in the present application is suitable for the input of up to three signals, and adopts a mixed cascade method of a coupler and a circulator for power synthesis.
  • the coupler can be used as the last-stage power synthesis unit, and the circulator can be used as the last-stage power synthesis unit.
  • the power amplifier device can generate at least three high-efficiency points. Since there are more high-efficiency points, the efficiency pit problem during large back-off can be improved, and the modulation wave efficiency of the RF power amplifier device can be improved.
  • the operating bandwidth of the power amplifier device depends on the operating bandwidth of the first power amplifier circuit and the coupler and circulator, and an ultra-wideband high-power design can be realized.
  • the last-stage power synthesis unit of the power amplifier is realized by a circulator, and the circulator is more suitable for use in scenarios with larger power capacity. Therefore, the power amplifier is suitable for high-power ultra-wideband scenarios.
  • the present application also provides a power amplifier device, which includes, in addition to the following three power amplifier circuits, namely, a first power amplifier circuit, a second power amplifier circuit, and a third power amplifier circuit, a first coupler and a circulator; wherein the coupler serves as a last-stage power synthesis unit; wherein the first power amplifier circuit, the second power amplifier circuit, and the third power amplifier circuit have their input ends input with a first signal, a second signal, and a third signal, respectively, and the output end of the first power amplifier circuit and the output end of the second power amplifier circuit are both connected to the circulator, which is used to output a power-synthesized signal; the output end of the circulator and the output end of the third power amplifier circuit are connected to the first coupler, which is used to synthesize the power of the signal output by the third power amplifier circuit with the signal output by the circulator and then output it.
  • the coupler serves as a last-stage power synthesis unit
  • the present application does not specifically limit the characteristic impedance of the circulator, which may be 50 ohms, for example.
  • the present application does not specifically limit the implementation form of the first power amplifier circuit, which may be a single-tube power amplifier or an integrated amplifier.
  • the first power amplifier circuit may include any one of the following: a single-tube power amplifier, a Doherty power amplifier, a Chireix power amplifier, a load modulated balanced amplifier (LMBA, Load Modulated Balanced Amplifier) or a circulator load modulated amplifier (CLMA, Circulator Load Modulated Amplifier) amplifier.
  • LMBA load modulated balanced amplifier
  • CLMA Circulator Load Modulated Amplifier
  • the second power amplifier circuit includes a first amplifying branch and a second amplifying branch; the third power amplifier circuit includes a third amplifying branch; the first amplifying branch and the second amplifying branch are the same and are both biased in shallow class C; the third amplifying branch is biased in deep class C.
  • the first amplifying branch, the second amplifying branch and the third amplifying branch can all be peak power amplifiers, referred to as Peak.
  • the power amplifier device also includes: a second coupler and a matching circuit; the input end of the carrier power amplifier is used to input the first signal, and the output end of the carrier power amplifier is connected to the isolation port of the first coupler; the first input port of the second coupler is used to input the second signal, and the second input port of the second coupler is connected to the load; the first input port of the second coupler is used to connect the second signal, and the second input port of the second coupler is used to connect the load; the two output ends of the second coupler are respectively connected to the input end of the first amplification branch and the input end of the second amplification branch, and the output end of the first amplification branch and the output end of the second amplification branch are respectively connected to the two balanced ports of the first coupler; the output port of the first coupler
  • the load-pull ratio of the first power amplifier circuit is 1, that is, as the power of the power amplifier device changes, the load of the first power amplifier circuit remains unchanged. Therefore, the operating bandwidth of the power amplifier device depends only on the operating bandwidth of the single-tube power amplifier and the operating bandwidth of the coupler and circulator, and ultra-wideband can be achieved by design.
  • the power amplifier has three high efficiency points, which can improve the problem of large pits when the power is backed off.
  • the last-stage power synthesis unit of the power amplifier is realized by a circulator, which is more suitable for scenarios with larger power capacity. Therefore, the power amplifier is suitable for high-power ultra-wideband scenarios.
  • the coupler can be designed with integrated passive components.
  • the circulator can be designed as a three-port circulator.
  • the circulator can be designed as a four-port circulator in combination with an isolator connected to the output end.
  • the power amplifier device provided in the present application can also input two signals.
  • it also includes: a first power division circuit and a first phase compensation network; the first power division circuit is used to output the first signal and the second signal, and one end of the first power division circuit outputting the first signal is connected to the input end of the first phase compensation network, the output end of the first phase compensation network is connected to the input end of the carrier power amplifier, and one end of the first power division circuit outputting the second signal is connected to the first input port of the second coupler.
  • the power amplifier device provided in the present application can also input a signal.
  • it also includes: a second power division circuit and a second phase compensation network; the two output ends of the second power division circuit are respectively connected to the input end of the first power division circuit and the input end of the second phase compensation network; the output end of the second phase compensation network is connected to the input end of the third amplification branch.
  • the first power amplifier circuit is a single-tube power amplifier, which is a carrier power amplifier when biased in class AB or class B;
  • the second power amplifier circuit includes a fourth amplifying branch;
  • the third power amplifier circuit includes a fifth amplifying branch and a sixth amplifying branch;
  • the fourth amplifying branch is biased in shallow class C, the fifth amplifying branch and the sixth amplifying branch are the same and are both biased in deep class C.
  • the power amplifier device also includes: a second coupler, a first matching circuit and a second matching circuit; the input end of the first power amplifier circuit is used to input the first signal, and the output end of the first power amplifier circuit is connected to the isolation port of the circulator; the input end of the fourth amplifying branch is used to connect the second signal, the output end of the fourth amplifying branch is connected to the input port of the circulator, the output port of the circulator is connected to the first end of the first matching circuit, and the second end of the first matching circuit is connected to the isolation port of the first coupler; the first input port of the second coupler is used to connect the third signal, and the second input port of the second coupler is connected to the load; the first input port of the second coupler is used to connect the third signal, and the second input port of the second coupler is used to connect the load; the input end of the fifth amplifying branch and the input end of the sixth amplifying branch are
  • the first power amplifier circuit works first, the second power amplifier circuit works later, and the third power amplifier circuit works last.
  • the first power amplifier circuit reaches saturation first, then the second power amplifier circuit reaches protection, and finally the third power amplifier circuit reaches protection.
  • the present application also provides a radio frequency remote unit, including the power amplifier device introduced above, and also including: a duplexer; one end of the power amplifier device is connected to the duplexer, and the duplexer can both send and receive radio frequency signals.
  • the present application also provides a base station, including the radio frequency remote unit introduced above, and also including: an antenna; the radio frequency remote unit is connected to the antenna; the radio frequency remote unit is used to process the transmit and receive signals of the antenna.
  • FIG1 is a schematic diagram of a radio remote unit RRU
  • FIG2 is a schematic diagram of a power amplifier device provided in an embodiment of the present application.
  • FIG3 is a current diagram of a power amplifier device provided in an embodiment of the present application.
  • FIG4 is a voltage schematic diagram of a power amplifier device provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of impedance of a power amplifier device provided in an embodiment of the present application.
  • FIG6 is an efficiency curve diagram corresponding to FIG2 provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a power amplifier corresponding to two signals provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a power amplifier corresponding to one signal provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of an efficiency curve provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of another power amplifier device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of an efficiency curve corresponding to FIG10 ;
  • FIG12 is a schematic diagram of another power amplifier device provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of an efficiency curve corresponding to FIG12;
  • FIG14 is a schematic diagram of a base station provided in an embodiment of the present application.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • coupling can be a way of achieving electrical connection for signal transmission.
  • Coupling can be a direct electrical connection or an indirect electrical connection through an intermediate medium.
  • the present application provides a power amplifier device, which is suitable for the input of up to three signals, and uses a hybrid cascade of a coupler and a circulator for power synthesis, which can generate three high-efficiency points and solve the problem of efficiency pits during large back-off.
  • the efficiency pit refers to the trough on the efficiency curve when the power is backed off.
  • the power amplifier device is suitable for use in high-power power amplifier scenarios.
  • the power amplifier device provided in the embodiment of the present application is introduced by taking the radio remote unit (RRU, Radio Remote Unit) used in the base station as an example.
  • RRU Radio Remote Unit
  • the RRU generally includes many radio frequency modules, and the power amplifier device is an important component thereof. After the wireless signal is amplified by the power amplifier, it is transmitted through the antenna. Since the power amplifier device processes radio frequency signals, it is a radio frequency power amplifier device.
  • the embodiment of the present application specifically relates to a power amplifier device inside the RRU, and the power amplifier device includes a power amplifier. For the convenience of description, the power amplifier is referred to as a power amplifier below.
  • FIG1 is a schematic diagram of an RRU.
  • the RRU1000 provided in the embodiment of the present application may be applied to a base station for wireless communication.
  • the base station may also include other components, for example, an antenna Ant, which will not be described in detail here.
  • the RRU 1000 includes a power amplifier device 200, a low noise amplifier (LNA, Low Noise Amplifier) and a duplexer 100.
  • the power amplifier device 200 includes a power amplifier PA.
  • the radio frequency signal amplified by the PA is sent to the antenna Ant through the duplexer 100.
  • the radio frequency signal received by the antenna Ant is sent to the LNA via the duplexer 100 .
  • the power amplifier device 200 provided in the embodiment of the present application, the final power synthesis unit in the power amplifier device can be a coupler or a circulator, which is described in detail below with reference to the accompanying drawings. First, the implementation method of the final signal being output by the circulator is introduced.
  • the power amplifier device includes: a first power amplifier circuit, a second power amplifier circuit, a third power amplifier circuit, a coupler and a circulator; a first signal and a second signal are respectively amplified by the first power amplifier circuit and the second power amplifier circuit and then input into the coupler, and the coupler power synthesizes the first signal into a signal output; the third signal is amplified by the third power amplifier circuit and then output, and the circulator synthesizes the power of the signal output by the third power amplifier circuit and the signal output by the coupler and then outputs the result.
  • the first power amplifier circuit works first
  • the second power amplifier circuit works later
  • the third power amplifier circuit works last.
  • the first power amplifier circuit may be implemented in a variety of forms, for example, may include any one of the following: a single-tube power amplifier, a Doherty power amplifier, a Chireix power amplifier, an LMBA or a CLMA.
  • the single-tube power amplifier is biased in class AB or class B, and can be called a carrier power amplifier, also called a main power amplifier, represented by Main.
  • Main a carrier power amplifier
  • FIG. 2 is a schematic diagram of a power amplifier device provided in an embodiment of the present application.
  • the first power amplifier circuit is a single-tube power amplifier, called the carrier power amplifier Main, and the carrier power amplifier is also called the main power amplifier.
  • the second power amplifier circuit includes a first amplifying branch and a second amplifying branch; the first amplifying branch and the second amplifying branch are the same and are both biased at shallow class C, so they are both represented by Peak1.
  • the amplifying branch provided in the embodiment of the present application may include a peak power amplifier, which is also called an auxiliary power amplifier.
  • the third power amplifier circuit includes a third amplifying branch, and the third amplifying branch is biased in deep class C, which is represented by Peak2.
  • the first signal Input1 is input to the input end of the carrier power amplifier Main, and the output end of the carrier power amplifier Main is connected to the isolation port of the first coupler Cou2;
  • the second signal Input2 is input to the first input port of the second coupler Cou1, and the second input port of the second coupler Cou1 is connected to the load; the second signal Input2 is input to the input end of the first amplifying branch Peak1 and the input end of the second amplifying branch Peak1 respectively after being power-divided by the second coupler Cou1, and the output end of the first amplifying branch Peak1 and the output end of the second amplifying branch Peak1 are respectively connected to the two balanced ports of the first coupler Cou2;
  • the output port of the first coupler Cou2 is connected to the isolation port 3 of the circulator Cir through the matching circuit MN;
  • the third signal Input3 is input to the input end of the third amplifying branch Peak2, and the output end of the third amplifying branch Peak2 is connected to the input port 1 of the circulator Cir.
  • the output port 2 of the circulator Cir is used to output the signal after the signal power of the circulator isolation port and the circulator input port is synthesized, that is, Output outputs the final amplified signal.
  • the characteristic impedance of the first coupler Cou2 is Z01.
  • the characteristic impedance of the circulator Cir is Z02. It should be noted that the characteristic impedance Z02 of the circulator is generally 50 ohms.
  • the function of the matching resistor MN is to realize the conversion of the impedance Z01 to Z02, thereby achieving impedance matching between the first coupler Cou2 and the circulator Cir.
  • the abscissas in FIG. 3 and FIG. 4 are both normalized voltages (V0/Vdd), the ordinates in FIG. 3 represent currents (Current), and the ordinates in FIG. 4 represent voltages (Voltage).
  • the working bandwidth of the power amplifier device shown in Figure 2 only depends on the working bandwidth of the single-tube power amplifier and the working bandwidth of the coupler and circulator.
  • the horizontal axis of FIG. 5 represents the normalized voltage (V0/Vdd), and the vertical axis of FIG. 5 represents the impedance (Impedance).
  • the impedance Zmain of Main remains constant, that is, a straight line parallel to the horizontal axis, so the load-pull ratio of Main is equal to 1.
  • the power amplifier device provided in the embodiment of the present application can reach three high efficiency points, which are described in detail below in conjunction with the efficiency curve.
  • FIG. 6 is an efficiency curve diagram corresponding to FIG. 2 provided in an embodiment of the present application.
  • the horizontal axis of FIG6 is the normalized voltage (V0/Vdd), and the vertical axis of FIG6 represents efficiency (DE, Efficiency).
  • Main reaches saturation at the first high efficiency point.
  • Peak1 reaches saturation at the second high efficiency point.
  • Main, Peak1 and Peak2 all reach saturation, so the power amplifier provided in the embodiment of the present application can generate three high efficiency points.
  • the power amplifier device provided in the embodiment of the present application is in the LMBA working state between the first high efficiency point and the second high efficiency point, and is in the CLMA working state between the second high efficiency point and the third high efficiency point.
  • the power amplifier device provided in this embodiment has a load-pull ratio of 1. Therefore, the bandwidth of the power amplifier is related to the Main, the coupler and the circulator, and ultra-wideband can be achieved by design.
  • the power amplifier device has three high efficiency points, which can improve the problem of large pits when the power is backed off.
  • the last-stage power synthesis unit of the power amplifier device is implemented by a circulator, which is more suitable for use in scenarios with larger power capacity. Therefore, the power amplifier device is suitable for high-power ultra-wideband scenarios.
  • the characteristic impedance of the above coupler and circulator can be set according to actual needs. For example, when the impedance of the circulator is not 50 ohms, in order to achieve a 50 ohm effect, an impedance transformation network Z02 to 50 ohms can be added at the output end Output as needed.
  • the coupler can adopt an integrated passive device (IPD, Integrated Passive Device) design.
  • IPD integrated Passive Device
  • the circulator shown in Figure 2 is a three-port design.
  • the circulator can be designed as a four-port circulator in combination with an isolator connected to the output stage.
  • the power amplifier device introduced in FIG2 takes a three-channel signal input power amplifier as an example. It should be understood that the power amplifier device provided in the embodiment of the present application can also be applied to a one-channel signal input or a two-channel signal input scenario, which is described in detail below in conjunction with the accompanying drawings.
  • FIG. 7 is a schematic diagram of a power amplifier device corresponding to two signals provided in an embodiment of the present application.
  • FIG. 7 includes, in addition to the components of FIG. 2 , a first power dividing circuit Sp1 and a first phase compensation network Comp1;
  • the first signal and the second signal in FIG. 2 can be regarded as two signals after power division by the first power division circuit Sp1.
  • the first signal is connected to the input end of the carrier power amplifier Main through the first phase compensation network Comp1.
  • the function of the first phase compensation network Comp1 is to achieve phase compensation.
  • the power amplifier device provided in the embodiment of the present application adds a first power division circuit Sp1 and a first phase compensation network Comp1 on the basis of FIG. 2 .
  • the power amplifier device provided in the embodiment of the present application can also be applied to the scenario of single-channel signal input.
  • a second power division circuit and a second phase compensation network are added to achieve power amplification of the single-channel input signal.
  • FIG. 8 is a schematic diagram of a power amplifier device corresponding to one signal provided in an embodiment of the present application.
  • the power amplifier device of FIG. 8 includes, in addition to the components of FIG. 7 , further includes: a second power dividing circuit Sp2 and a second phase compensation network Comp2;
  • the third signal is connected to the input end of the third amplifying branch Peak2 through the second phase compensation network Comp2;
  • the third signal and the input signal of the first power dividing circuit Sp1 are two signals after power division by the second power dividing circuit Sp2.
  • FIG. 9 shows the efficiency Eff of the power amplifier device.
  • the abscissa in FIG. 9 represents the output power of the power amplifier device, and the ordinate represents the efficiency DE.
  • the three high efficiency points of the power amplifier device provided in this embodiment appear at the full power 0dB, the first power back-off point BO1, and the second power back-off point BO2, where the calculation of BO1 and BO2 is as follows:
  • Psat main represents the saturated power of Main
  • Psat peak1 represents the saturated power of Peak
  • Psat peak2 represents the saturated power of Peak2.
  • the first power amplifier circuit in the power amplifier device described in the above embodiment is implemented by a single-tube power amplifier.
  • the following describes the situation where the first power amplifier circuit is implemented by a Doherty power amplifier. It should be understood that in addition to the Doherty power amplifier, the first power amplifier circuit can also be implemented by a Chireix power amplifier, an LMBA power amplifier or a CLMA power amplifier.
  • FIG. 10 is a schematic diagram of another power amplifier device provided in an embodiment of the present application.
  • FIG. 2 By comparing FIG. 2 and FIG. 10 , it can be seen that the Main in FIG. 2 is replaced by a Doherty (DHT) amplifier, and the rest of the structure remains unchanged and will not be described in detail here.
  • DHT Doherty
  • the Doherty power amplifier includes: a second coupler Cou3, a carrier power amplifier Main and a peak power amplifier Peak, and also includes an impedance inversion network INT and a matching network DHT_MN.
  • the first signal Input1 is input to the first input port of the second coupler Cou3, and the second input port of the second coupler Cou3 is connected to the load.
  • the first signal is input to Main and Peak respectively after power division by the second coupler Cou3, wherein the signal output by Main is synthesized with the signal output by Peak after INT, and then input to the isolation port 4 of the first coupler Cou2 through DHTMN.
  • the Doherty amplifier is used to replace the Main in FIG. 2 , so that the design of the ultra-large back-off amplifier architecture can be realized.
  • the back-off amount thereof is increased by the back-off amount of the DHT amplifier compared with FIG. 2 , that is, the back-off amount is further increased.
  • the power amplifier device shown in FIG10 can generate many high efficiency points.
  • FIG2 can generate three high efficiency points, and
  • FIG10 can generate four high efficiency points, thereby further preventing the problem of large pits occurring during power fallback.
  • FIG. 11 is a schematic diagram of the efficiency curve corresponding to FIG. 10 .
  • the horizontal axis is the output power Pout, in dB m, and the vertical axis is the efficiency DE.
  • Main:Peak:Peak2:Peak2:Peak3 50w:50w:200w:200w:1000w
  • four high efficiency points are generated at 61.77dBm, 57dBm, 50dBm, and 44dBm, respectively, achieving a back-off of 17.77dB.
  • the output power of 44dBm ⁇ 50dBm is DHT traction
  • the output power of 50dBm ⁇ 57dBm is LMBA traction
  • the output power of 57dBm ⁇ 61.77dBm is CLMA traction.
  • the power amplifier circuit connected to the isolation port of the first coupler Cou2 can be independently set, and can be a single-tube power amplifier; it can also be a DHT, and can also be an asymmetric DHT, a three-way DHT or a four-way DHT, a Chireix amplifier, an LMBA amplifier or a CLMA amplifier, and the corresponding broadband characteristics are further determined by the broadband characteristics of the independently set power amplifier unit.
  • the final output signals of the power amplifier devices described in the above embodiments are all synthesized by the circulator.
  • the circulator is more suitable as the final power synthesizer in high-power scenarios and can solve the power capacity problem of high-power broadband power amplifiers.
  • FIG. 12 is a schematic diagram of another power amplifier device provided in an embodiment of the present application.
  • the power amplifier device provided in the embodiment of the present application first synthesizes two amplified signals by a circulator, and then synthesizes the output signal of the circulator with the third amplified signal by a coupler, and finally outputs a signal after power synthesis.
  • the first power amplifier circuit is a single-tube power amplifier, which is biased in class AB or class B and is called a carrier power amplifier, i.e., Main;
  • the second power amplifier circuit includes a fourth amplifying branch;
  • the third power amplifier circuit includes a fifth amplifying branch and a sixth amplifying branch;
  • the fourth amplifying branch is biased at the shallow C class and is represented by Peak1; the fifth amplifying branch and the sixth amplifying branch are the same and are both biased at the deep C class, so they are both represented by Peak2.
  • the first signal Input1 is input to the input end of the first power amplifier circuit Main, and the output end of the first power amplifier circuit Main is connected to the isolation port of the circulator Cir.
  • the second signal Input2 is input to the input end of the fourth amplifying branch Peak1, the output end of the fourth amplifying branch Peak1 is connected to the input port of the circulator Cir, and the output port of the circulator Cir is connected to the isolation port of the first coupler Cou2 through the matching circuit MN.
  • the impedance of the circulator Cir is Z01
  • the impedance of the first coupler Cou2 is Z02
  • the matching circuit MN realizes the impedance conversion of Z01 and Z02, so that the impedances of the circulator Cir and the first coupler Cou2 are matched.
  • the third signal Input3 is input to the first input port of the second coupler Cou1, and the second input port of the second coupler Cou1 is connected to the load; after power division by the second coupler Cou1, the third signal Input3 is respectively input to the input end of the fifth amplifying branch Peak2 and the input end of the sixth amplifying branch Peak2, and the output end of the fifth amplifying branch Peak2 and the output end of the sixth amplifying branch Peak2 are respectively connected to the two balanced ports of the first coupler Cou2.
  • the output port of the first coupler Cou2 outputs the power synthesized signal through the matching circuit Post MN.
  • the output port of the first coupler Cou2 realizes impedance conversion from Z02 to 50 ohms through the matching circuit Post MN.
  • the power amplifier device provided in this embodiment can generate three high efficiency points, which are described in detail below in conjunction with the efficiency curve diagram.
  • FIG. 13 is a schematic diagram of the efficiency curve corresponding to FIG. 12 .
  • the first power amplifier circuit can be implemented by a single-tube power amplifier, or can be a DHT, Chireix, LMBA or CLMA power amplifier, and the broadband characteristics further depend on the broadband characteristics of the power amplifier connected to the isolation port 3 of the circulator Cir.
  • an embodiment of the present application further provides a radio remote unit.
  • FIG. 1 is a schematic diagram of a radio remote unit provided in an embodiment of the present application.
  • the radio remote unit provided in this embodiment includes the power amplifier device described in the above embodiment, and further includes: a duplexer 100;
  • duplexer 100 One end of the power amplifier PA is connected to the duplexer 100. Specifically, the duplexer 100 is connected between the antenna Ant and the base station power amplifier PA, and at the same time, the duplexer 100 is connected between the antenna Ant and the low noise amplifier LNA.
  • the radio remote unit 1000 may further include an LNA, an ADC, and a DAC.
  • the radio frequency remote unit provided in the embodiment of the present application includes the power amplifier device introduced in the above embodiment, which is suitable for the input of up to three signals, and adopts a mixed cascade method of a coupler and a circulator for power synthesis.
  • the coupler can be used as the unit of the last stage of power synthesis
  • the circulator can be used as the unit of the last stage of power synthesis.
  • the power amplifier device can generate at least three high efficiency points. Since there are many high efficiency points, the efficiency pit problem during large back-off can be improved.
  • the working bandwidth of the power amplifier device depends on the working bandwidth of the first power amplifier circuit and the coupler and circulator, which can realize ultra-wideband high-power signal processing.
  • the embodiments of the present application further provide a base station, which will be described in detail below in conjunction with the accompanying drawings.
  • FIG 14 is a schematic diagram of a base station provided in an embodiment of the present application.
  • the embodiment of the present application further provides a base station 2000, comprising the radio remote unit 1000 described in the above embodiment, and further comprising: an antenna Ant;
  • the radio remote unit 1000 is connected to the antenna Ant;
  • the radio remote unit 1000 is used to process the transmit and receive signals of the antenna Ant.
  • the base station provided in the embodiment of the present application since it includes the power amplifier device 200 introduced in the above embodiment, can achieve multiple high efficiency points, improve the large pits during back-off, and is suitable for high-power scenarios, and can realize ultra-wideband high-power signal processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本申请公开了一种功放设备、射频拉远单元及基站,该功放设备最多可以适用于三路信号的输入,采用耦合器和环形器混合级联的方式进行功率合成,可以由耦合器作为最后一级功率合成单元,也可以由环形器作为最后一级功率合成单元,该功放设备可以产生至少三个高效率点,由于高效率点比较多,因此,可以改善大回退时的效率凹坑问题,提升射频的功放设备的调制波效率。而且功放设备的工作带宽取决于第一功放电路和耦合器及环形器的工作带宽,可以实现超宽带大功率的设计。

Description

一种功放设备、射频拉远单元及基站 技术领域
本申请涉及通信设备技术领域,尤其涉及一种功放设备、射频拉远单元及基站。
背景技术
目前,无线通信系统需要宽带宽和高频谱效率。例如,5G NR(5G New Radio)标准定义从3.3GHz到4.2GHz的N77频段,即900MHz带宽用于并发宽带信号。此外,5G NR中高效频谱信号波形即使采用波峰系数削减(CFR,Crest Factor Reduction)削峰技术,峰均比仍然高达9dB。高峰值平均功率比(PAPR,Peak to Average Power Ratio)和宽瞬时带宽对基站的功率放大器(PA,Power Amplifier)带来新的挑战。
因此,随着无线通信系统的发展,基站的功率放大器需要实现超宽带特性的同时满足高效率。
发明内容
为了解决以上技术问题,本申请提供一种功放设备、射频拉远单元及基站,能够实现超宽带特性的同时满足高效率。
本申请提供一种功放设备,除了包括以下三个功放电路第一功放电路、第二功放电路、第三功放电路以外,还包括第一耦合器和环形器;其中,环形器作为最后一级功率合成单元;其中,第一功放电路、第二功放电路、第三功放电路的输入端分别输入第一路信号、第二路信号和第三路信号,第一功放电路的输出端和第二功放电路的输出端均连接第一耦合器的输入端,第一耦合器输出功率合成后的信号;第一耦合器的输出端和第三功放电路的输出端连接环形器,环形器将第三功放电路输出的信号与耦合器输出的信号功率合成后输出。
本申请提供的功放设备,最多适用于三路信号的输入,采用耦合器和环形器混合级联的方式进行功率合成,可以由耦合器作为最后一级功率合成单元,也可以由环形器作为最后一级功率合成单元,该功放设备可以产生至少三个高效率点,由于高效率点比较多,因此,可以改善大回退时的效率凹坑问题,提升射频的功放设备调制波效率。而且功放设备的工作带宽取决于第一功放电路和耦合器及环形器的工作带宽,可以实现超宽带大功率的设计。而且该功放的最后一级功率合成单元由环形器实现,环形器更适合应用于功率容量较大的场景,因此,该功放适用于大功率超宽带的场景。
本申请还提供一种功放设备,除了包括以下三个功放电路第一功放电路、第二功放电路、第三功放电路以外,还包括第一耦合器和环形器;其中,耦合器作为最后一级功率合成单元;其中,第一功放电路、第二功放电路、第三功放电路的输入端分别输入第一路信号、第二路信号和第三路信号,第一功放电路的输出端和第二功放电路的输出端均连接环形器,环形器用于输出功率合成后的信号;环形器的输出端和第三功放电路的输出端连接第一耦合器,第一耦合器用于将第三功放电路输出的信号与环形器输出的信号功率合成后输出。
本申请不具体限定环形器的特征阻抗,例如可以为50欧姆。
本申请具体不限定第一功放电路的实现形式,可以为单管功放,也可以为集成功放,例如第一功放电路可以包括以下任意一种:单管功放、Doherty功放、Chireix功放、负载调制平衡放大器(LMBA,Load Modulated Balanced Amplifier)或环形器负载调制放大器(CLMA,Circulator Load Modulated Amplifier)功放。
第二功放电路包括第一放大支路和第二放大支路;第三功放电路包括第三放大支路;第一放大支路和第二放大支路相同,且均偏置在浅C类;第三放大支路偏置在深C类。例如,第一放大支路、第二放大支路和第三放大支路均可以为峰值功放,简称Peak。
下面以第一功放电路单管功放为例进行介绍,单管功放偏置在AB类或B类时为载波功放,简称Main;功放设备还包括:第二耦合器和匹配电路;载波功放的输入端用于输入第一路信号,载波功放的输出端连接第一耦合器的隔离端口;第二耦合器的第一输入端口用于输入第二路信号,第二耦合器的第二输入端口连接负载;第二耦合器的第一输入端口用于连接第二路信号,第二耦合器的第二输入端口用于连接负载;第二耦合器的两个输出端分别连接第一放大支路的输入端和第二放大支路的输入端,第一放大支路的输出端和第二放大支路的输出端分别连接第一耦合器的两个平衡端口;第一耦合器的输出端口连接匹配电路的第一端,匹配电路的第二端连接环形器的隔离端口;第三放大支路的输入端用于输入第三路信号,第三放大支路的输出端连接环形器的输入端口,环形器的输出端口用于输出隔离端口和输入端口的信号功率合成后的信号。
第一功放电路的负载牵引比为1,即随着功放设备的功率变化,第一功放电路的负载不变。因此,功放设备的工作带宽仅取决于单管功放的工作带宽以及耦合器和环形器的工作带宽,可以通过设计实现超宽带。而且该功放具有三个高效率点,从而可以改善功率回退时出现较大的凹坑问题。而且该功放的最后一级功率合成单元由环形器实现,环形器更适合应用于功率容量较大的场景,因此,该功放适用于大功率超宽带的场景。
为了实现功放的小型化,其中耦合器可以采用集成无源器件设计。环形器可以为三端口设计。另外,环形器可以结合输出端后级连接的隔离器一起设计为四端口的环形器。
本申请提供的功放设备还可以输入两路信号,除了以上包括的器件以外,还包括:第一功分电路和第一相位补偿网络;第一功分电路,用于输出第一路信号和第二路信号,第一功分电路输出第一路信号的一端连接第一相位补偿网络的输入端,第一相位补偿网络的输出端连接载波功放的输入端,第一功分电路输出第二路信号的一端连接第二耦合器的第一输入端口。
本申请提供的功放设备还可以输入一路信号,除了以上包括的器件以外,还包括:第二功分电路和第二相位补偿网络;第二功分电路的两个输出端分别连接第一功分电路的输入端和第二相位补偿网络的输入端;第二相位补偿网络的输出端连接第三放大支路的输入端。
第一功放电路为单管功放,单管功放偏置在AB类或B类时为载波功放;第二功放电路包括第四放大支路;第三功放电路包括第五放大支路和第六放大支路;第四放大支路偏置在浅C类,第五放大支路和第六放大支路相同,且均偏置在深C类。
下面介绍当环形器作为最后一级功率合成单元时的一种具体实现方式,该功放设备,还包括:第二耦合器、第一匹配电路和第二匹配电路;第一功放电路的输入端用于输入第一路信号,第一功放电路的输出端连接环形器的隔离端口;第四放大支路的输入端用于连接第二路信号,第四放大支路的输出端连接环形器的输入端口,环形器的输出端口连接第一匹配电路的第一端,第一匹配电路的第二端连接第一耦合器的隔离端口;第二耦合器的第一输入端口用于连接第三路信号,第二耦合器的第二输入端口连接负载;第二耦合器的第一输入端口用于连接第三路信号,第二耦合器的第二输入端口用于连接负载;第五放大支路的输入端和第六放大支路的输入端分别连接第二耦合器的两个输出端,第五放大支路的输出端和第六放大支路的输出端分别连接第一耦合器的两个平衡端口;第一耦合器的输出端口连接第二匹配电路的第一端,第二匹配电路的输出端用于输出功率合成后的信号。
本申请提供的功放设备,第一功放电路先工作,第二功放电路后工作,第三功放电路最后工作,第一功放电路先达到饱和,然后,第二功放电路达到保护,最后第三功放电路达到保护。
基于以上提供的一种功放设备,本申请还提供一种射频拉远单元,包括以上介绍的功放设备,还包括:双工器;功放设备的一端连接双工器,双工器既可以发送射频信号,又可以接收射频信号。
基于以上提供的射频拉远单元,本申请还提供一种基站,包括以上介绍的射频拉远单元,还包括:天线;射频拉远单元连接天线;射频拉远单元用于处理天线的收发信号。
附图说明
图1为一种射频拉远单元RRU的示意图;
图2为本申请实施例提供的一种功放设备的示意图;
图3为本申请实施例提供的一种功放设备的电流示意图;
图4为本申请实施例提供的一种功放设备的电压示意图;
图5为本申请实施例提供的一种功功放设备的阻抗示意图;
图6为本申请实施例提供的图2对应的效率曲线图;
图7为本申请实施例提供的两路信号对应的功放示意图;
图8为本申请实施例提供的一路信号对应的功放示意图;
图9为本申请实施例提供的一种效率曲线示意图;
图10为本申请实施例提供的又一种功放设备的示意图;
图11为图10对应的效率曲线示意图;
图12为本申请实施例提供的再一种功放设备的示意图;
图13为图12对应的效率曲线示意图;
图14为本申请实施例提供的一种基站的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
以下说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“耦接”可以是实现信号传输的电性连接的方式。“耦接”可以是直接的电性连接,也可以通过中间媒介间接电性连接。
为了对输入信号实现超宽带高效率的功率放大,本申请提供一种功放设备,最多适用于三路信号的输入,采用耦合器和环形器混合级联的方式进行功率合成,可以产生三个高效率点,可以解决大回退时效率凹坑的问题。效率凹坑是指在效率曲线上,当功率回退时,效率曲线上存在的低谷。该功放设备适合应用于大功率功放场景。
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面先结合附图介绍该技术方案的应用场景。
本申请实施例提供的功放设备以应用于基站中的射频拉远单元(RRU,Radio Remote Unit)为例进行介绍。
RRU一般包括很多射频模块,功放设备是其重要组成部分,无线信号经过功率放大器放大后,通过天线进行发射,由于该功放设备处理的为射频信号,因此为射频功放设备。本申请实施例具体涉及一种RRU内部的功放设备,功放设备包括功率放大器,为了方便描述,以下将功率放大器简称为功放。
参见图1,该图为一种RRU的示意图。
本申请实施例提供的RRU1000可以应用于无线通信的基站,基站除了RRU1000还可以包括其他组成部分,例如,还可以包括天线Ant,在此不再赘述。
RRU1000包括功放设备200、低噪声放大器(LNA,Low Noise Amplifier)和双工器100。其中功放设备200包括功率放大器PA。
PA放大后的射频信号经过双工器100发送给天线Ant。
天线Ant接收的射频信号经过双工器100送给LNA。
本申请实施例提供的功放设备200,功放设备中最终的功率合成单元可以为耦合器,也可以为环形器,下面结合附图进行详细介绍。首先介绍,最终的信号由环形器输出的实现方式。
本实施例提供的功放设备,包括:第一功放电路、第二功放电路、第三功放电路、耦合器和环形器;第一路信号和第二路信号分别经过第一功放电路和第二功放电路放大后输入耦合器,由耦合器功率合成为一路信号输出;第三路信号经过第三功放电路放大后输出,环形器将第三功放电路输出的信号与耦合器输出的信号功率合成后输出。
其中,第一功放电路先工作,第二功放电路后工作,第三功放电路最后工作。
第一功放电路可以有多种实现形式,例如,可以包括以下任意一种:单管功放、Doherty功放、Chireix功放、LMBA或CLMA。
当第一功放电路由单管功放实现时,单管功放偏置在AB类或B类,可以称为载波功放,又称为主功放,用Main表示。下面介绍第一功放电路由单管功放实现的情况。
参见图2,该图为本申请实施例提供的一种功放设备的示意图。
第一功放电路为单管功放,称之为载波功放Main,载波功放又称为主功放。
第二功放电路包括第一放大支路和第二放大支路;第一放大支路和第二放大支路相同,且均偏置在浅C类,因此均用Peak1来表示,应该理解,本申请实施例提供的放大支路可以包括峰值功放,峰值功放又称为辅助功放。
第三功放电路包括第三放大支路,第三放大支路偏置在深C类,用Peak2表示。
如图2所示,第一路信号Input1输入载波功放Main的输入端,载波功放Main的输出端连接第一耦合器Cou2的隔离端口;
第二路信号Input2输入第二耦合器Cou1的第一输入端口,第二耦合器Cou1的第二输入端口连接负载;第二路信号Input2经过第二耦合器Cou1功分后分别输入第一放大支路Peak1的输入端和第二放大支路Peak1的输入端,第一放大支路Peak1的输出端和第二放大支路Peak1的输出端分别连接第一耦合器Cou2的两个平衡端口;
第一耦合器Cou2的输出端口经过匹配电路MN连接环形器Cir的隔离端口3;
第三路信号Input3输入第三放大支路Peak2的输入端,第三放大支路Peak2的输出端连接环形器Cir的输入端口1,环形器Cir的输出端口2用于输出环形器隔离端口和环形器输入端口的信号功率合成后的信号,即Output输出最终的放大信号。
其中,第一耦合器Cou2的特征阻抗为Z01。环形器Cir的特征阻抗为Z02。需要说明的是,环形器的特征阻抗Z02一般为50欧姆(Ohm)。
匹配电阻MN的作用是实现阻抗Z01到Z02的转换,从而实现第一耦合器Cou2与环形器Cir之间的阻抗匹配。
当输入信号的功率较小时,由于Main工作在AB类或B类,因此,Main先工作,即仅Main工作,直到Main达到饱和后,随后两个Peak1打开工作,此时Peak2仍处于关闭状态,此时Main路保持饱和状态,直到两个Peak1达到饱和状态,Peak1达到饱和后,随后Peak2打开工作,Main和Peak1保持饱和状态,直到Main、两个Peak1均和Peak 2达到饱和。
例如,Main:Peak1:Peak1:Peak2=1:2:2:10时,将电压归一化时,其Main、两个Peak1和Peak2的电流示意图和电压示意图分别参见图3和图4。
图3和图4中的横坐标均为归一化的电压(V0/Vdd),图3的纵坐标表示电流(Current),图4的纵坐标表示电压(Voltage)。
从图3所示的电流图可以看出,Main先工作,然后Peak1工作,最后Peak2工作。图3中的Imain早于Ipeak1达到电流饱和,Ipeak1早于Ipeak2达到电流饱和。
从图4所示的电压图可以看出,Main先饱和,然后Peak1饱和,最后Peak2饱和, 即图3中的Vmain早于Vpeak1达到电压饱和,Vpeak1早于Vpeak2达到电压饱和,最后Vpeak2达到电压饱和。
Main与Peak1之间不存在负载牵引,Main和Peak1又与Peak2之间不存在负载牵引,Main路的负载牵引比为1。因此图2所示的功放设备的工作带宽仅取决于单管功放的工作带宽以及耦合器和环形器的工作带宽。
图5所示Main:Peak1:Peak1:Peak2=1:2:2:10时,电压归一化情况,Main、两个Peak1和Peak2之间的阻抗关系示意图。
图5的横坐标均为归一化的电压(V0/Vdd),图5的纵坐标表示阻抗(Impedance)。
从图5可以看出,Main的阻抗Zmain始终保持不变,即为一条平行于横轴的直线,故Main的负载牵引比等于1。
本申请实施例提供的功放设备可以达到三个高效率点,下面结合效率曲线来进行详细介绍。
参见图6,该图为本申请实施例提供的图2对应的效率曲线图。
图6继续以Main:Peak1:Peak1:Peak2=1:2:2:10,电压归一化情况下进行介绍,图6的横坐标均为归一化的电压(V0/Vdd),图6的纵坐标表示效率(DE,Efficiency)。
Main在第1个高效率点处达到饱和。Peak1在第2个高效率点处达到饱和。第三个高效率点Main,Peak1以及Peak2均达到饱和状态,因此本申请实施例提供的功放可以产生三个高效率点。
本申请实施例提供的功放设备在第一个高效率点和第二个高效率点之间为LMBA工作状态,在第二个高效率点和第三个高效率点之间为CLMA工作状态。
本实施例提供的功放设备,由于Main的负载牵引比为1,因此,功放的带宽均与Main、耦合器和环形器相关,可以通过设计实现超宽带。而且该功放设备具有三个高效率点,从而可以改善功率回退时出现较大的凹坑问题。而且该功放设备的最后一级功率合成单元由环形器实现,环形器更适合应用于功率容量较大的场景,因此,该功放设备适用于大功率超宽带的场景。
以上耦合器和环形器的特征阻抗可以根据实际需求来设置,例如,当环形器的阻抗不为50欧姆时,为了达到50欧姆的效果,可以根据需要在输出端Output增加Z02到50欧姆的阻抗变换网络。
另外,为了实现功放的小型化,其中耦合器可以采用集成无源器件(IPD,Integrated Passive Device)设计。
图2所示的环形器为三端口设计。
环形器可以结合Output后级连接的隔离器一起设计为四端口的环形器。
图2介绍的功放设备是以三路信号输入功放为例,应该理解,本申请实施例提供的功放设备也可以应用于一路信号输入,或者应用于两路信号输入的场景,下面结合附图进行详细介绍。
参见图7,该图为本申请实施例提供的两路信号对应的功放设备示意图。
本实施例提供的功放设备的输入端可以连接两路信号,比较图2和图7可以发现, 图7除了包括图2的各个器件以外,还包括:第一功分电路Spl和第一相位补偿网络Comp1;
图2中的第一路信号和第二路信号可以看作是第一功分电路Spl功分后的两路信号,第一路信号经过第一相位补偿网络Comp1连接载波功放Main的输入端。
其中,第一相位补偿网络Comp1的作用是实现相位补偿。
由此可见,为了实现对两路输入信号的功率放大,本申请实施例提供的功放设备在图2的基础上增加第一功分电路Spl和第一相位补偿网络Comp1。
另外,本申请实施例提供的功放设备还可以应用于单路信号输入的场景,在图7的基础上,再增加第二功分电路和第二相位补偿网络,便可以实现对单路输入信号的功率放大。
参见图8,该图为本申请实施例提供的一路信号对应的功放设备示意图。
比较图7和图8可以发现,图8的功放设备除了包括图7的各个器件以外,还包括:第二功分电路Sp2和第二相位补偿网络Comp2;
第三路信号经过第二相位补偿网络Comp2连接第三放大支路Peak2的输入端;
第三路信号和第一功分电路Spl的输入信号为第二功分电路Sp2功分后的两路信号。
为了充分理解本申请实施例提供的功放设备的高效率以及回退量,下面结合附图进行详细介绍。
参见图9,该图为本申请实施例提供的一种效率曲线示意图。
图9为功放设备的效率Eff图9中的横坐标为功放设备的输出功率,纵坐标为效率DE。
例如,本实施例提供的功放设备的三个高效率点分别出现在满功率0dB,第一功率回退点BO1,第二功率回退点BO2三个功率点,其中BO1和BO2的计算入下所示:
Figure PCTCN2022125795-appb-000001
Figure PCTCN2022125795-appb-000002
其中,Psat main表示Main的饱和功率,Psat peak1表示Peak1的饱和功率,Psat peak2表示Peak2的饱和功率。
假设Main:Peak1:Peak1:Peak2=100w:200w:200w:1000w;则BO1=11.76;BO2=4.77dB;其效率曲线如图9所示,分别在61.77dBm、57dBm、50dBm产生三个高效率点,即曲线波峰的位置为高效率点,功率回退量可达11.76dB,即功率回退量比较大,凹坑比较小。
以上实施例介绍的功放设备中的第一功放电路是由单管功放实现的,下面介绍第一功放电路由Doherty功放实现的情况,应该理解,除了Doherty功放以外,第一功放电路还可以由Chireix功放、LMBA功放或CLMA功放来实现。
参见图10,该图为本申请实施例提供的又一种功放设备的示意图。
对比图2和图10可以看出,图2中的Main被Doherty(简称DHT)功放替代, 其余结构不变,在此不再赘述。
Doherty功放包括:第二耦合器Cou3,载波功放Main和峰值功放Peak,另外,还包括阻抗逆变网络INT和匹配网络DHT_MN。
第一路信号Input1输入第二耦合器Cou3的第一输入端口,第二耦合器Cou3的第二输入端口连接负载,第一路信号经过第二耦合器Cou3功分后分别输入Main和Peak,其中Main输出的信号经过INT后与Peak输出的信号合成,再经过DHTMN输入到第一耦合器Cou2的隔离端口4。
图10中,Main先工作,然后Peak工作,再两个Peak1工作,最后Peak2工作。
本实施例中用Doherty功放替代图2中的Main,可以实现超大回退功放架构的设计,其回退量相比较图2增加了DHT功放的回退量,即回退量得到进一步增加。
图10所示的功放设备相对比图2所示的功放设备,可以产生很多的高效率点,图2可以产生三个高效率点,图10可以产生四个高效率点,从而进一步防止功率回退时出现较大凹坑的问题。
参见图11,该图为图10对应的效率曲线示意图。
图11中横坐标为输出功率Pout,单位为dB m,纵坐标为效率DE。
例如,Main:Peak:Peak2:Peak2:Peak3=50w:50w:200w:200w:1000w,分别在61.77dBm、57dBm、50dBm、44dBm处产生四个高效率点,实现17.77dB的回退。
输出功率44dBm~50dBm为DHT牵引,输出功率50dBm~57dBm为LMBA牵引,输出功率57dBm~61.77dBm为CLMA牵引。
应该理解,连接在第一耦合器Cou2的隔离端口的功放电路可以独立设置,可以为单管功放;也可以为DHT,同样可以是非对称DHT,三路DHT或者四路DHT、Chireix功放、LMBA功放或CLMA功放,对应的宽带特性则进一步由该独立设置的功放单元的宽带特性决定。
以上实施例介绍的功放设备,最终的输出信号均是由环形器合成的,环形器更适合大功率场景时作为最终的功率合成器件,可以解决大功率宽带功放的功率容量问题。
下面介绍最终的输出信号由耦合器合成的实现方式。
参见图12,该图为本申请实施例提供的再一种功放设备的示意图。
本申请实施例提供的功放设备,由环形器先进行两路放大信号的合成,再由耦合器将环形器的输出信号与第三路放大信号进行合成,最终输出功率合成后的信号。
本申请实施例提供的功放设备,第一功放电路为单管功放,单管功放偏置在AB类或B类,称为载波功放,即Main;第二功放电路包括第四放大支路;第三功放电路包括第五放大支路和第六放大支路;
第四放大支路偏置在浅C类,用Peak1表示;第五放大支路和第六放大支路相同,且均偏置在深C类,因此均用Peak2表示。
第一路信号Input1输入第一功放电路Main的输入端,第一功放电路Main的输出端连接环形器Cir的隔离端口。
第二路信号Input2输入第四放大支路Peak1的输入端,第四放大支路Peak1的输 出端连接环形器Cir的输入端口,环形器Cir的输出端口通过匹配电路MN连接第一耦合器Cou2的隔离端口。
其中,环形器Cir的阻抗为Z01,第一耦合器Cou2的阻抗为Z02,匹配电路MN实现Z01和Z02的阻抗转换,使环形器Cir和第一耦合器Cou2的阻抗匹配。
第三路信号Input3输入第二耦合器Cou1的第一输入端口,第二耦合器Cou1的第二输入端口连接负载;第三路信号Input3经过第二耦合器Cou1功分后分别输入第五放大支路Peak2的输入端和第六放大支路Peak2的输入端,第五放大支路Peak2的输出端和第六放大支路Peak2的输出端分别连接第一耦合器Cou2的两个平衡端口。
第一耦合器Cou2的输出端口通过匹配电路Post MN输出功率合成后的信号。
第一耦合器Cou2的输出端口经过匹配电路Post MN实现Z02到50欧姆的阻抗转换。
功率较小时,仅Main工作,直到Main饱和,Peak1才工作,Main保持饱和状态不变,直到Main和Peak1均达到饱和,Peak2再工作,Main和Peak1保持饱和状态不变,直到Main、Peak1和Peak2均到达饱和,因此Main的负载调制比等于1,本实施例提供的功放设备可以产生三个高效率点,下面结合效率曲线图进行详细说明。
参见图13,该图为图12对应的效率曲线示意图。
例如,Main:Peak1:Peak2:Peak2=100w:300w:600w:600w为例,如图13所示,分别在62dBm、56dBm和50dBm处产生三个高效率点,实现了12dB的较大回退。
同理,图12中,第一功放电路除了可以由单管功放实现以外,还可以为DHT、Chireix、LMBA或CLMA等功放,宽带特性则进一步取决于环形器Cir的隔离端口3连接的功放的宽带特性。
基于以上实施例提供的一种功放设备,本申请实施例还提供一种射频拉远单元,具体可以继续参见图1,该图为本申请实施例提供的一种射频拉远单元的示意图。
本实施例提供的射频拉远单元,包括以上实施例介绍的功放设备,还包括:双工器100;
功率放大器PA的一端连接双工器100。具体地,双工器100连接在天线Ant和基站功率放大器PA之间,同时,双工器100连接在天线Ant和低噪声放大器LNA之间。
另外,继续参见图1,射频拉远单元1000还可以包括LNA、ADC和DAC。
本申请实施例提供的射频拉远单元,包括以上实施例介绍的功放设备,最多适用于三路信号的输入,采用耦合器和环形器混合级联的方式进行功率合成,可以由耦合器作为最后一级功率合成的单元,也可以由环形器作为最后一级功率合成的单元,该功放设备可以产生至少三个高效率点,由于高效率点比较多,因此,可以改善大回退时的效率凹坑问题。而且功放设备的工作带宽取决于第一功放电路和耦合器及环形器的工作带宽,可以实现超宽带大功率的信号处理。
基于以上实施例提供的一种功放设备及射频拉远单元,本申请实施例还提供一种基站,下面结合附图进行详细介绍。
参见图14,该图为本申请实施例提供的一种基站的示意图。
本申请实施例还提供一种基站2000,包括以上实施例介绍的射频拉远单元1000,还包括:天线Ant;
射频拉远单元1000连接天线Ant;
射频拉远单元1000用于处理天线Ant的收发信号。
本申请实施例提供的基站,由于包括以上实施例介绍的功放设备200,可以实现多个高效率点,改善回退时的较大凹坑,而且适用于大功率的场景,可以实现超宽带大功率的信号处理。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (13)

  1. 一种功放设备,其特征在于,包括:第一功放电路、第二功放电路、第三功放电路、第一耦合器和环形器;
    所述第一功放电路的输入端用于连接第一路信号,所述第二功放电路的输入端用于连接第二路信号,所述第一功放电路的输出端和所述第二功放电路的输出端均连接所述第一耦合器的输入端,所述第一耦合器用于输出功率合成后的信号;
    所述第三功放电路的输入端用于连接第三路信号,所述第一耦合器的输出端和所述第三功放电路的输出端连接所述环形器,所述环形器用于将所述第三功放电路输出的信号与所述耦合器输出的信号功率合成后输出。
  2. 一种功放设备,其特征在于,包括:第一功放电路、第二功放电路、第三功放电路、第一耦合器和环形器;
    所述第一功放电路的输入端用于连接第一路信号,所述第二功放电路的输入端用于连接第二路信号,所述第一功放电路的输出端和所述第二功放电路的输出端均连接所述环形器,所述环形器用于输出功率合成后的信号;
    所述第三功放电路的输入端用于连接第三路信号,所述环形器的输出端和所述第三功放电路的输出端连接所述第一耦合器,所述第一耦合器用于将所述第三功放电路输出的信号与所述环形器输出的信号功率合成后输出。
  3. 根据权利要求1所述的功放设备,其特征在于,所述第二功放电路包括第一放大支路和第二放大支路;所述第三功放电路包括第三放大支路;
    所述第一放大支路和所述第二放大支路相同,且均偏置在浅C类;
    所述第三放大支路偏置在深C类。
  4. 根据权利要求3所述的功放设备,其特征在于,所述第一功放电路包括单管功放,所述单管功放偏置在AB类或B类时为载波功放;还包括:第二耦合器和匹配电路;
    所述载波功放的输入端用于输入所述第一路信号,所述载波功放的输出端连接所述第一耦合器的隔离端口;
    所述第二耦合器的第一输入端口用于输入所述第二路信号,所述第二耦合器的第二输入端口连接负载;所述第二耦合器的第一输入端口用于连接所述第二路信号,所述第二耦合器的第二输入端口用于连接负载;所述第二耦合器的两个输出端分别连接所述第一放大支路的输入端和所述第二放大支路的输入端,所述第一放大支路的输出端和所述第二放大支路的输出端分别连接所述第一耦合器的两个平衡端口;
    所述第一耦合器的输出端口连接所述匹配电路的第一端,所述匹配电路的第二端连接所述环形器的隔离端口;
    所述第三放大支路的输入端用于输入所述第三路信号,所述第三放大支路的输出端连接所述环形器的输入端口,所述环形器的输出端口用于输出所述隔离端口和所述输入端口的信号功率合成后的信号。
  5. 根据权利要求3或4所述的功放设备,其特征在于,所述第一功放电路的负载 牵引比为1。
  6. 根据权利要求3-5所述的功放设备,其特征在于,还包括:第一功分电路和第一相位补偿网络;
    所述第一功分电路,用于输出所述第一路信号和所述第二路信号,所述第一功分电路输出所述第一路信号的一端连接所述第一相位补偿网络的输入端,所述第一相位补偿网络的输出端连接所述载波功放的输入端,所述第一功分电路输出所述第二路信号的一端连接所述第二耦合器的第一输入端口。
  7. 根据权利要求6所述的功放设备,其特征在于,还包括:第二功分电路和第二相位补偿网络;
    所述第二功分电路的两个输出端分别连接所述第一功分电路的输入端和所述第二相位补偿网络的输入端;
    所述第二相位补偿网络的输出端连接所述第三放大支路的输入端。
  8. 根据权利要求2所述的功放设备,其特征在于,所述第一功放电路为单管功放,所述单管功放偏置在AB类或B类时为载波功放;所述第二功放电路包括第四放大支路;所述第三功放电路包括第五放大支路和第六放大支路;
    所述第四放大支路偏置在浅C类,所述第五放大支路和所述第六放大支路相同,且均偏置在深C类。
  9. 根据权利要求2所述的功放设备,其特征在于,还包括:第二耦合器、第一匹配电路和第二匹配电路;
    所述第一功放电路的输入端用于输入所述第一路信号,所述第一功放电路的输出端连接所述环形器的隔离端口;
    所述第四放大支路的输入端用于连接所述第二路信号,所述第四放大支路的输出端连接所述环形器的输入端口,所述环形器的输出端口连接所述第一匹配电路的第一端,所述第一匹配电路的第二端连接所述第一耦合器的隔离端口;
    第二耦合器的第一输入端口用于连接所述第三路信号,第二耦合器的第二输入端口连接负载;所述第二耦合器的第一输入端口用于连接所述第三路信号,所述第二耦合器的第二输入端口用于连接负载;所述第五放大支路的输入端和所述第六放大支路的输入端分别连接所述第二耦合器的两个输出端,所述第五放大支路的输出端和所述第六放大支路的输出端分别连接所述第一耦合器的两个平衡端口;
    所述第一耦合器的输出端口连接所述第二匹配电路的第一端,所述第二匹配电路的输出端用于输出功率合成后的信号。
  10. 根据权利要求1或2所述的功放设备,其特征在于,所述第一功放电路包括以下任意一种:Doherty功放、Chireix功放、LMBA功放或CLMA功放。
  11. 根据权利要求1-4任一项所述的功放设备,其特征在于,所述第一功放电路先工作,所述第二功放电路后工作,所述第三功放电路最后工作。
  12. 一种射频拉远单元,其特征在于,包括权利要求1-11任一项所述的功放设备,还包括:双工器;
    所述功放设备的一端连接所述双工器。
  13. 一种基站,其特征在于,包括权利要求12所述的射频拉远单元,还包括:天线;
    所述射频拉远单元连接所述天线;
    所述射频拉远单元用于处理所述天线的收发信号。
PCT/CN2022/125795 2022-10-18 2022-10-18 一种功放设备、射频拉远单元及基站 WO2024082114A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125795 WO2024082114A1 (zh) 2022-10-18 2022-10-18 一种功放设备、射频拉远单元及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125795 WO2024082114A1 (zh) 2022-10-18 2022-10-18 一种功放设备、射频拉远单元及基站

Publications (1)

Publication Number Publication Date
WO2024082114A1 true WO2024082114A1 (zh) 2024-04-25

Family

ID=90736584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125795 WO2024082114A1 (zh) 2022-10-18 2022-10-18 一种功放设备、射频拉远单元及基站

Country Status (1)

Country Link
WO (1) WO2024082114A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534093A (zh) * 2009-04-14 2009-09-16 武汉正维电子技术有限公司 用于移动通信基站系统功率放大器的末级三路功率合成放大电路
US20160226450A1 (en) * 2015-01-30 2016-08-04 Mitsubishi Electric Research Laboratories, Inc. Three-Way Sequential Power Amplifier System for Wideband RF Signal
CN111740703A (zh) * 2020-05-25 2020-10-02 杭州电子科技大学 伪Doherty式自输入控制的负载调制平衡类功率放大器及其实现方法
CN213879768U (zh) * 2020-09-30 2021-08-03 中国航空工业集团公司雷华电子技术研究所 一种用于提高输出功率的固态功放模块
CN114513173A (zh) * 2022-01-14 2022-05-17 清华大学 一种射频功率放大器及其应用
US20220255506A1 (en) * 2021-02-08 2022-08-11 University Of Central Florida Research Foundation, Inc. Reconfigurable asymmetrical load-modulated balanced amplifiers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534093A (zh) * 2009-04-14 2009-09-16 武汉正维电子技术有限公司 用于移动通信基站系统功率放大器的末级三路功率合成放大电路
US20160226450A1 (en) * 2015-01-30 2016-08-04 Mitsubishi Electric Research Laboratories, Inc. Three-Way Sequential Power Amplifier System for Wideband RF Signal
CN111740703A (zh) * 2020-05-25 2020-10-02 杭州电子科技大学 伪Doherty式自输入控制的负载调制平衡类功率放大器及其实现方法
CN213879768U (zh) * 2020-09-30 2021-08-03 中国航空工业集团公司雷华电子技术研究所 一种用于提高输出功率的固态功放模块
US20220255506A1 (en) * 2021-02-08 2022-08-11 University Of Central Florida Research Foundation, Inc. Reconfigurable asymmetrical load-modulated balanced amplifiers
CN114513173A (zh) * 2022-01-14 2022-05-17 清华大学 一种射频功率放大器及其应用

Similar Documents

Publication Publication Date Title
US9614480B2 (en) Wide-band multi stage doherty power amplifier
JP4715994B2 (ja) ドハティ増幅器並列運転回路
EP2442442B1 (en) Power amplifier and transmitter
US8988147B2 (en) Multi-way Doherty amplifier
US7521995B1 (en) Inverted doherty amplifier with increased off-state impedence
TW200400689A (en) N-way RF power amplifier with increased backoff power and power added efficiency
WO2010118645A1 (zh) 用于移动通信基站系统功率放大器的末级三路功率合成放大电路
JP2006525751A (ja) 選択された位相長および出力インピーダンスを用いた増加されたバックオフ能力および電力付加効率を持つnウェイrf電力増幅器回路
US9698731B2 (en) Power amplifier, transceiver, and base station
US10804856B2 (en) Power amplifier
US9673761B2 (en) Power amplifier and power amplification method
Zhao et al. A 60GHz outphasing transmitter in 40nm CMOS with 15.6 dBm output power
Gajadharsing et al. Analysis and design of a 200 W LDMOS based Doherty amplifier for 3 G base stations
CN210053382U (zh) 一种连续逆F类和J类混合的宽带Doherty功率放大器
KR101066640B1 (ko) 2단 연결 바이어스 혼합 전력 증폭 장치
CN113904628A (zh) 宽带Doherty功率放大器和实现方法
WO2024082114A1 (zh) 一种功放设备、射频拉远单元及基站
WO2015180064A1 (zh) 多赫蒂功率放大器和发射机
EP3255791B1 (en) Power amplifying equipment
CN107005200B (zh) 用于放大通信信号的放大系统
KR101066639B1 (ko) 바이어스 혼합 전력 증폭 장치
Abdulkhaleq et al. A compact load-modulation amplifier for improved efficiency next generation mobile
Zhou et al. Design of an S-band two-way inverted asymmetrical Doherty power amplifier for long term evolution applications
Kumaran et al. A 26GHz Balun-First Three-Way Doherty PA in 40nm CMOS with 20.7 dBm Psat and 20dB Power Gain
CN107634724A (zh) 一种Doherty功率放大器