WO2024032542A1 - 发射通道切换的处理方法、终端及网络侧设备 - Google Patents

发射通道切换的处理方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2024032542A1
WO2024032542A1 PCT/CN2023/111434 CN2023111434W WO2024032542A1 WO 2024032542 A1 WO2024032542 A1 WO 2024032542A1 CN 2023111434 W CN2023111434 W CN 2023111434W WO 2024032542 A1 WO2024032542 A1 WO 2024032542A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmissions
information
channel switching
time
Prior art date
Application number
PCT/CN2023/111434
Other languages
English (en)
French (fr)
Inventor
李�灿
纪子超
刘思綦
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024032542A1 publication Critical patent/WO2024032542A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a processing method for transmitting channel switching, a terminal and network side equipment.
  • the protocol supports user equipment (User Equipment, UE) to switch transmission channels (Tx) between two frequency bands (bands). Since Tx switching triggered by uplink transmission will cause additional processing time and transmission behavior restrictions of the UE, the current standardization organization Discussions are ongoing on supporting UEs to perform Tx switching between 3 or 4 bands in the future. If the additional processing time mechanism in related technologies and the UE's transmission behavior restrictions are applied, the UE will not be able to perform transmission and Tx switching in some cases. This affects the flexibility and throughput improvement of uplink transmission.
  • User Equipment User Equipment
  • Embodiments of the present application provide a processing method, terminal and network-side device for transmitting channel switching, which can solve the problem of how to implement Tx switching between 3 bands or 4 bands and perform normal uplink transmission.
  • a processing method for transmitting channel switching is provided, which is applied to a terminal.
  • the method includes:
  • the terminal determines the first time domain position corresponding to the N transmissions based on the first transmission among the N transmissions;
  • N is an integer greater than or equal to 2
  • the N transmissions are transmissions that trigger transmission channel switching
  • the first time domain position corresponding to each of the N transmissions is the same.
  • a processing method for transmitting channel switching is provided, which is applied to network side equipment.
  • the method includes:
  • the network side device configures and/or schedules N transmissions
  • N is an integer greater than or equal to 2
  • the N transmissions are transmissions that trigger transmission channel switching
  • the first time domain position corresponding to each of the N transmissions is the same.
  • a processing device for transmitting channel switching which device includes:
  • a first determining unit configured to determine the first time domain position corresponding to the N transmissions based on the first transmission among the N transmissions;
  • N is an integer greater than or equal to 2
  • the N transmissions are transmissions that trigger transmission channel switching
  • the first time domain position corresponding to each of the N transmissions is the same.
  • a processing device for transmitting channel switching which device includes:
  • a first processing unit configured to configure and/or schedule N transmissions
  • N is an integer greater than or equal to 2
  • the N transmissions are transmissions that trigger transmission channel switching
  • the first time domain position corresponding to each of the N transmissions is the same.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to determine the first time domain position corresponding to the N transmissions based on the first transmission among the N transmissions; wherein, N is an integer greater than or equal to 2, the N transmissions are transmissions that trigger transmission channel switching, and the first time domain positions corresponding to each of the N transmissions are the same.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the processor is used to configure and/or schedule N transmissions; where N is an integer greater than or equal to 2, and the N transmissions In order to trigger transmission channel switching, the first time domain position corresponding to each of the N transmissions is the same.
  • a ninth aspect provides a processing system for transmitting channel switching, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the processing method for transmitting channel switching as described in the first aspect.
  • the network side device The steps may be used to perform the processing method for transmitting channel switching as described in the second aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the processing method of transmitting channel switching as described in the first aspect is implemented. Steps, or steps to implement the processing method for transmitting channel switching as described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect The steps of the processing method for transmitting channel switching.
  • a transmission device/device which includes the steps of the device/device (configured to) perform to implement the processing method for transmitting channel switching as described in the first aspect.
  • the terminal determines the first time domain positions corresponding to the N transmissions that trigger transmission channel switching based on the first transmission among the N transmissions, and the first time domain positions corresponding to each transmission are the same. Starting another transmission during the Tx switching process of one transmission can ensure normal transmission during the Tx switching process, reduce terminal complexity, and improve throughput.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of a terminal performing UL Tx switching on four bands in related technologies
  • Figure 3 is a schematic diagram of a terminal performing UL Tx switching on three bands in related technologies
  • Figure 4 is one of the schematic flow diagrams of a processing method for transmitting channel switching provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of UL Tx switching using the transmission channel switching processing method provided by the embodiment of the present application.
  • Figure 6 is a schematic flowchart 2 of a processing method for transmitting channel switching provided by an embodiment of the present application
  • Figure 7 is one of the structural schematic diagrams of a processing device for transmitting channel switching provided by an embodiment of the present application.
  • Figure 8 is a second structural schematic diagram of a processing device for transmitting channel switching provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computers, PC), teller machines or self-service Terminal devices
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment 12 may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home B-Node, Home Evolved B-Node, Transmitting Receiving Point (TRP) or all
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home B-Node Home Evolved B-Node
  • TRP Transmitting Receiving Point
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Services Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data warehousing (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • R16 introduces the mechanism of uplink Tx switching (or UL Tx switching), that is A UE can transmit on up to 2 Tx at the same time.
  • One carrier supports one uplink transmission channel (Carrier 1), and the other carrier supports two transmission channels (Carrier 2).
  • Carrier 1 and Carrier 2 are in different bands. They can be supported by switching Tx. Switching between two modes, mode one: uplink dual-stream transmission on carrier 2, mode two: single-stream transmission on carrier 1 and/or carrier 2.
  • carrier 1 and carrier 2 are supported for simultaneous uplink transmission, it is divided into option1 (network configuration high-level parameter uplinkTxSwitchingOption-r16 is switchedUL, indicating that carrier 1 and carrier 2 cannot perform uplink transmission at the same time) and option2 (dualUL, network configuration high-level parameter uplinkTxSwitchingOption- r16 is switchedUL, indicating that carrier 1 and carrier 2 can perform uplink transmission at the same time).
  • option1 network configuration high-level parameter uplinkTxSwitchingOption-r16 is switchedUL, indicating that carrier 1 and carrier 2 cannot perform uplink transmission at the same time
  • option2 dualUL, network configuration high-level parameter uplinkTxSwitchingOption- r16 is switchedUL, indicating that carrier 1 and carrier 2 can perform uplink transmission at the same time.
  • the UL Tx switching conditions supported by R16 are as follows:
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC NR dual connectivity
  • option1 and option2 are supported, and the protocol stipulates E-UTRA
  • the uplink carrier is carrier 1, and the NR carrier is carrier 2;
  • inter-band CA Inter-band Carrier Aggregation
  • option1 and option2 configures the two carriers of carrier aggregation through the network as carrier 1 or carrier 2;
  • SUL auxiliary uplink
  • OPTION 1 Only OPTION 1 is supported, and SUL or UL is configured as carrier 1 or carrier 2 through the network.
  • the UE reporting capability is reported through the parameter uplinkTxSwitching-OptionSupport to support option1, option2, or both.
  • the time switching gap required for UL Tx switching is reported through the parameter uplinkTxSwitchingPeriod. Report the band that supports downlink interruption through the parameter uplinkTxSwitching-DL-Interruption.
  • the high-level network parameter uplinkTxSwitchingOption is used to configure the UE to support option1 or option2.
  • uplinkTxSwitching is used to configure whether the serving cell is used for UL Tx switching.
  • uplinkTxSwitchingPeriodLocation is used to configure the cell associated with the switching time and to determine the location of the switching time.
  • uplinkTxSwitchingCarrier is used to configure the carrier as carrier1 or carrier 2, and is used to determine the number of supported ports and switching cases.
  • the R17 phase expands inter-CA and SUL handover situations.
  • 2Tx-2Tx handover that is, it supports handover between two Tx situations for both carriers.
  • Tx switching between one carrier on band A and two consecutive carriers on band B (these two carriers can be sent with the same Tx) is also supported.
  • RRC Radio Resource Control
  • One parameter is used to indicate the 1Tx-2Tx switching mode or the 2Tx-2Tx switching mode, thereby determining whether to use 1Tx-2Tx or 2Tx-2Tx.
  • Switching parameter when the Tx status after UL Tx switching is not unique, a parameter is used to indicate that the Tx status is 1Tx+1Tx, or the Tx status is 0Tx+2Tx.
  • uplinkTxSwitchingPeriod2T2T-r17 when uplinkTxSwitchingPeriod2T2T-r17 is configured, the UE supports 2Tx-2Tx switching, and the configured switching time is determined by uplinkTxSwitchingPeriod2T2T-r17. If this parameter is not configured (that is, the value of this parameter is empty), the configured switching time is determined by uplinkTxSwitchingPeriod. -r16 OK.
  • PUSCH physical uplink shared channel
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • CSI Channel State Information
  • the terminal has the following restrictions:
  • the terminal does not expect to transmit on the carrier or band undergoing handover during the handover time.
  • T_offset is the processing time of the uplink transmission.
  • the subcarrier spacing of transmission, ⁇ UL, carrier2 is the subcarrier spacing of uplink transmission after the switching time.
  • the related technology only performs UL Tx switching on 2 bands, and R18 introduces UL Tx switching of more than 2 bands (3 or 4 bands).
  • R18 introduces UL Tx switching of more than 2 bands (3 or 4 bands).
  • the additional UL Tx switching time for uplink transmission especially option 2 of inter-band CA, how to determine T proc,2 needs to be determined, and the terminal is in the UL Tx switching process
  • the limit will change as the number of bands increases.
  • FIG. 2 is a schematic diagram of a terminal performing UL Tx switching on four bands in related technologies.
  • the carriers of the two Tx before and after the switching are different.
  • One Tx switches from CC1 to CC3, and one Tx switches from CC2 Switch to CC4.
  • the UE cannot transmit during switching period 1 and switching period 2, so the transmission of CC3 will be affected.
  • FIG 3 is a schematic diagram of a terminal performing UL Tx switching on three bands in the related art.
  • T_offset,1 is obtained based on the SCS of CC1 and CC3
  • T_offset, 2 is obtained based on the SCS of CC2 and CC3.
  • UL Tx switching is performed twice in the switching gap (assumed to be 35us), which is contrary to the existing technology's requirement that more than one UL Tx switching cannot be performed in one slot (assumed to be 71us corresponding to 15kHz).
  • embodiments of the present application provide a processing method for transmitting channel switching, a terminal, and a network side device.
  • FIG. 4 is a schematic flowchart of a processing method for transmitting channel switching provided by an embodiment of the present application. As shown in Figure 4, the method includes:
  • Step 400 The terminal determines the first time domain position corresponding to the N transmissions based on the first transmission among the N transmissions;
  • N is an integer greater than or equal to 2
  • the N transmissions are transmissions that trigger transmission channel switching
  • the first time domain position corresponding to each of the N transmissions is the same.
  • transmission may include data channel/control channel/reference signal/random access channel, etc.
  • the terminal determines the first time domain positions corresponding to the N transmissions that trigger transmission channel switching based on the first transmission among the N transmissions, and the first time domain positions corresponding to each transmission are the same, and will not be used in one transmission. Starting another transmission during the Tx switching process can ensure normal transmission during the Tx switching process, reduce terminal complexity, and improve throughput.
  • the method provided by the embodiment of the present application is not limited to 3 or 4 bands, and can also be applied to a larger number of bands, and can realize the Tx switching process between 3, 4 or more bands. normal transmission.
  • the first time domain position is the start moment of the first transmission, or the starting position of the time unit in which the first transmission is located.
  • the time unit includes slot/subframe/sub-slot, etc.
  • the N transmissions include at least one of the following:
  • N 1 scheduled transmissions and N 2 configured transmissions, where N 1 +N 2 N.
  • configured grant configured grant
  • the N transmissions satisfy a first condition, and the first condition includes at least one of the following:
  • the time range of the first transmission is [T1, T2]
  • the time range of other transmissions is [T1- ⁇ T1, T2+ ⁇ T2]
  • ⁇ T1 and ⁇ T2 are the first duration and the second duration respectively, ⁇ T1 and ⁇ T2 It can be determined by protocol agreement or network configuration or terminal.
  • the second information is received within the first time window after the first information reception moment or within the first time window that at least includes the first information, wherein the first information is used to schedule or configure the The first transmission, the second information is used to schedule or configure any transmission among the N transmissions except the first transmission.
  • the terminal receives the first information, where the first information is used to schedule or configure the first transmission, for example, DCI
  • the following description takes the information as DCI as an example, including but not limited to DCI, and may also include RRC signaling or SideLink control information (SideLink control information) SCI, etc., determine the first time window, that is, the first time domain position T0 of the information scheduled or configured transmission within the first time window is the same.
  • the first time window may be after the first information reception moment, or may be a time window including at least the first information.
  • the length of the first time window is specified by the protocol or network configuration or reported by the terminal.
  • the protocol stipulates that the value of the first time window is different for different SCSs.
  • the SCS may be the SCS of the carrier where the first information is located, or the SCS of the carrier where the transmission of the first information is scheduled or configured.
  • the network configuration or the UE reports the number of antenna ports scheduled for different first information, or the number of carriers scheduled for the first information, or the configured Tx switching mode, and the value of the first time window is different.
  • the starting position of the first time window is the reception moment of the first information, that is, the starting position of the first information
  • the end position of the first time window is the third time corresponding to the first transmission.
  • a time domain position is shifted forward by the duration of the preparation process corresponding to the first transmission, that is, T0-T_offset, where T0 is the first time domain position corresponding to the first transmission, which can be the starting time of the first transmission, Or, the starting position of the time unit where the first transmission is located, T_offset is the duration of the preparation process corresponding to the first transmission.
  • the length of the first time window is determined according to at least one of the following:
  • the length of the first time window is related to the SCS of the carrier where the first DCI is located, or the SCS of the carrier where the transmission scheduled by the first DCI (ie, the first transmission) is located.
  • the parameters of the first information scheduling include at least one of the following: the number of antenna ports, the number of carriers, the number of frequency bands, etc. of the first information scheduling.
  • the length of the first time window is also related to the type of transmission channel switching.
  • the types can include the following:
  • Type 1 similar to R16/17 UL Tx switches between 2 frequency bands, such as 1Tx-2Tx switches between the first frequency band 1Tx and the second frequency band 2Tx, including Tx switching between the following situations:
  • Type 2 similar to R16/17 UL Tx switching between 2 frequency bands, such as 2Tx-2Tx switching, where 2Tx switches from the first frequency band to the second frequency band, including Tx switching between the following situations:
  • Type three, UL Tx switches on 3 or 4 frequency bands, for example, 1 Tx switches from the first frequency band to the second frequency band, while the other Tx remains on the third frequency band:
  • Type four, UL Tx switches on 3 or 4 frequency bands, for example, 1 Tx and another TX switch from the first frequency band and the second frequency band to the third frequency band respectively, and vice versa:
  • the configured transmit channel switching modes include: switchedUL, dualUL.
  • the first transmission is the transmission with the earliest start time among the N transmissions, or the first transmission is the transmission scheduled or configured by the first information received before the first time window.
  • the first transmission is the transmission with the earliest start time among the N transmissions
  • the first time domain position corresponding to the first transmission is the start time of the transmission with the earliest start time among the N transmissions
  • the N The first time domain position corresponding to each of the transmissions is the start time of the first transmission.
  • the first time domain position corresponding to each of the N transmissions is the start time of the transmission scheduled or configured by the first information received before the first time window.
  • the method also includes:
  • the terminal determines the preparation process duration corresponding to the N transmissions based on the first transmission among the N transmissions;
  • the preparation process duration corresponding to any of the other transmissions among the N transmissions except the first transmission is the same as the preparation process duration corresponding to the first transmission.
  • the terminal determines the first time domain position T0 and the preparation process duration T_offset corresponding to the N transmissions that trigger transmission channel switching, and the first time domain position corresponding to each transmission is the same.
  • the preparation process duration corresponding to each transmission is also the same, which can ensure normal transmission during the Tx switching process, reduce terminal complexity, and improve throughput.
  • the duration of the preparation process is related to at least one of the following:
  • the subcarrier spacing within the first time window used to schedule or configure the carrier on which the information transmitted in each of the N transmissions is located;
  • the value of the preparation process duration T_offset is related to the configured Tx switching mode. For example, only when configured as dualUL, the uplink SCS of the carrier where the DCI scheduled transmission (after Tx switching) is located is the SCS of all configured carriers. the minimum or maximum value.
  • the preparation process duration T_offset is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information in the first time window.
  • the maximum value of T_offset obtained for each information in the at least part of the information/ minimum value is determined by the SCS of the carrier before and after Tx switching corresponding to at least part of the information in the first time window.
  • the duration of the preparation process is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information in the first time window, including:
  • the duration of the preparation process is determined based on the subcarrier spacing of the downlink carrier where each information in the at least part of the information is located, and the uplink subcarrier spacing of the carrier where the transmission of each information in the at least part of the information is scheduled or configured.
  • the preparation process duration is based on the SCS of the downlink carrier where each information in at least part of the information is located, and the uplink SCS of the carrier where the scheduled/configured transmission (after Tx switching) of each information in at least part of the information is located (if multiple carrier, it is determined by the maximum or minimum SCS value of multiple carriers).
  • the determined preparation process duration T_offset is the maximum value/minimum value of the T_offset obtained by each DCI.
  • Each DCI that satisfies the first condition within the first time window obtains a T_offset value based on the SCS of the carrier before and after Tx switching. Specifically, it is determined by the SCS of the downlink carrier where the DCI is located, and the uplink SCS of the carrier where the DCI scheduled transmission (after Tx switching) is located (if multiple carriers are scheduled, it is the maximum or minimum value of the SCS of multiple carriers).
  • T proc,2 max((N 2 +d 2,1 )(2048+144) ⁇ 2 - ⁇ ⁇ TC +T switch ,d 2,2 )
  • the UE shall send the transport block.
  • DM-RS UE-specific DeModulation Reference Signal
  • a PDCCH candidate is associated with a search space set configured with searchSpaceLinking, in order to determine the last symbol of the PDCCH carrying the DCI that schedules the PUSCH, the PDCCH candidate that ends later in time among the two configured PDCCH candidates is used.
  • N2 is based on ⁇ of UE processing capabilities 1 and 2 in Table 6.4-1 and Table 6.4-2 respectively, where ⁇ corresponds to one ( ⁇ DL, ⁇ UL) when T proc,2 is maximum, where ⁇ DL corresponds to the transmission bearer DCI scheduling PUSCH
  • ⁇ DL corresponds to the transmission bearer DCI scheduling PUSCH
  • the subcarrier spacing of the downlink of the PDCCH, ⁇ UL corresponds to the subcarrier spacing of the uplink channel on which the PUSCH is to be transmitted, and, ⁇ is defined in Section 4.1 of [4, TS 38.211].
  • the first uplink symbol in the PUSCH allocation also includes the effect of the time difference between component carriers as given in [11, TS 38.133].
  • Table 6.4-2 PUSCH preparation time for PUSCH timing capability 2
  • the at least part of the information is information used to schedule or configure at least part of the N transmissions.
  • At least part of the DCI is UL DCI that is not related to the dynamic switching of transmit channels, or if it is DCI that is not used for scheduled transmission, it may not need to be counted.
  • the at least part of the information is information used to schedule or configure the N transmissions.
  • the duration of the preparation process is determined based on the first uplink subcarrier interval and the first downlink subcarrier interval, and the first uplink subcarrier interval and the first downlink subcarrier interval are determined based on information within the first time window.
  • the first uplink subcarrier spacing includes at least one of the following:
  • the first downlink subcarrier spacing is the maximum value/minimum value of the subcarrier spacing used for scheduling or configuring the N transmission downlink carriers within the first time window.
  • the preparation process duration includes a first time component, and the first time component is a time component caused by transmission channel switching;
  • the first time component is determined based on the physical unit where the transmission channel is located before and after the transmission channel is switched, or based on the physical unit where the transmission channel is switched before and after the transmission channel is switched, or based on the physical unit configured by the terminal.
  • the first time component included in T_offset includes the extra time (switching period) caused by Tx switching, which is determined according to the physical unit before and after Tx switching, or according to the physical unit (carrier/resource pool) configured by the terminal. /band/partial bandwidth BWP) determined.
  • the physical unit includes carrier/resource pool/frequency band/partial bandwidth BWP, etc.
  • the terminal does not cancel the transmission channel switching within the first time window after the second time domain position, which is the preparation process for shifting the first time domain position forward. duration position.
  • the start time is determined to be T0. After T0-T_offset, the terminal does not expect to cancel the Tx switching triggered within the window.
  • the terminal is not scheduled to trigger transmission channel switching after the first time domain position, and the second time domain position is not scheduled.
  • the first time domain position is shifted forward by the duration of the preparation process.
  • the start time is determined to be T0, then after T0-T_offset or the first time window, the terminal does not expect to be scheduled for a new transmission after T0, and this transmission triggers Tx switch.
  • the terminal does not receive more than a preset number of transmission channel switching trigger instructions within the first time window, and the preset number of times is related to the subcarrier interval.
  • the transmission channel switching trigger instruction is information used to schedule or configure transmission that triggers transmission channel switching.
  • the preset number of times is related to the subcarrier spacing.
  • the subcarrier spacing here can be:
  • Figure 5 is a schematic diagram of UL Tx switching using the transmission channel switching processing method provided by the embodiment of the present application.
  • the terminal determines the first time domain position T0 and the preparation process duration T_offset corresponding to the N transmissions based on the first transmission (DCI1) among the N transmissions.
  • the first time domain position corresponding to each transmission is the same.
  • the preparation process duration corresponding to each transmission is the same, and the transmission on CC3 and CC4 can proceed normally.
  • the processing method for transmitting channel switching provided by the embodiment of the present application can ensure normal transmission during the Tx switching process, reduce terminal complexity, and improve throughput.
  • FIG. 6 is a second schematic flowchart of a processing method for transmitting channel switching provided by an embodiment of the present application. As shown in Figure 6, the method includes:
  • Step 600 The network side device configures and/or schedules N transmissions
  • N is an integer greater than or equal to 2
  • the N transmissions are transmissions that trigger transmission channel switching
  • the first time domain position corresponding to each of the N transmissions is the same.
  • transmission may include data channel/control channel/reference signal/random access channel, etc.
  • the network side device configures and/or schedules N transmissions to the terminal, and the terminal determines the first time domain position corresponding to the N transmissions that trigger transmission channel switching based on the first transmission among the N transmissions, and the corresponding first time domain position of each transmission
  • the first time domain positions are all the same, and another transmission will not be started during the Tx switching process of one transmission, which can ensure normal transmission during the Tx switching process, reduce terminal complexity, and improve throughput.
  • the first time domain position is the start time of the first transmission among the N transmissions, or the starting position of the time unit where the first transmission among the N transmissions is located.
  • time units include slot/subframe/sub-slot, etc.
  • the N transmissions include at least one of the following:
  • the N transmissions satisfy a first condition, and the first condition includes at least one of the following:
  • the time range of the first transmission is [T1, T2]
  • the time range of other transmissions is [T1- ⁇ T1, T2+ ⁇ T2]
  • ⁇ T1 and ⁇ T2 are the first duration and the second duration respectively.
  • the second information is used for scheduling or configuring the first information.
  • the second information is used to schedule or configure any transmission among the N transmissions except the first transmission.
  • the network side device sends the second information within the first time window after sending the first information or at least within the first time window that includes the first information, that is, the information scheduling or configuration within the first time window
  • the first time domain position T0 of the transmission is the same.
  • the length of the first time window is specified by the protocol or network configuration or reported by the terminal.
  • the protocol stipulates that the value of the first time window is different for different SCSs.
  • the SCS may be the SCS of the carrier where the first information is located, or the SCS of the carrier where the transmission of the first information is scheduled or configured.
  • the network configuration or the UE reports the number of antenna ports scheduled for different first information, or the number of carriers scheduled for the first information, or the configured Tx switching mode, and the value of the first time window is different.
  • the starting position of the first time window is the reception moment of the first information
  • the end position of the first time window is the forward shift of the first time domain position corresponding to the first transmission.
  • the position of the preparation process duration corresponding to the first transmission that is, T0-T_offset, where T0 is the first time domain position corresponding to the first transmission, which can be the starting time of the first transmission, or the location of the first transmission.
  • T_offset is the preparation process duration corresponding to the first transmission.
  • the length of the first time window is determined according to at least one of the following:
  • the length of the first time window is related to the SCS of the carrier where the first DCI is located, or the SCS of the carrier where the transmission scheduled by the first DCI (ie, the first transmission) is located.
  • the parameters of the first information scheduling include at least one of the following: the number of antenna ports, the number of carriers, the number of frequency bands, etc. of the first information scheduling.
  • the configured transmit channel switching modes include: switchedUL, dualUL.
  • the first transmission is the transmission with the earliest start time among the N transmissions, or the first transmission is the transmission scheduled or configured by the first information received before the first time window.
  • the first transmission is the transmission with the earliest start time among the N transmissions
  • the first time domain position corresponding to the first transmission is the start time of the transmission with the earliest start time among the N transmissions
  • the N The first time domain position corresponding to each of the transmissions is the start time of the first transmission.
  • the first time domain position corresponding to each of the N transmissions is the start time of the transmission scheduled or configured by the first information received before the first time window.
  • the preparation process duration corresponding to any of the N transmissions except the first transmission is the same as the preparation process duration corresponding to the first transmission.
  • the duration of the preparation process is related to at least one of the following:
  • the subcarrier spacing within the first time window used to schedule or configure the carrier where the information transmitted in each of the N transmissions is located;
  • the duration of the preparation process is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information sent within the first time window.
  • the duration of the preparation process is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information sent within the first time window, including:
  • the duration of the preparation process is based on the subcarrier spacing of the downlink carrier where each information in the at least part of the information is located, and determining the uplink subcarrier spacing of the carrier where the transmission of each information in the at least part of the information is scheduled or configured.
  • the preparation process duration is based on the SCS of the downlink carrier where each information in at least part of the information is located, and the uplink SCS of the carrier where the scheduled/configured transmission (after Tx switching) of each information in at least part of the information is located (if multiple carrier, it is determined by the maximum or minimum SCS value of multiple carriers).
  • the at least part of the information is instruction information for scheduling or configuring at least part of the N transmissions.
  • the duration of the preparation process is determined based on the first uplink subcarrier interval and the first downlink subcarrier interval, and the first uplink subcarrier interval and the first downlink subcarrier interval are determined based on information within the first time window.
  • the first uplink subcarrier spacing includes at least one of the following:
  • the first downlink subcarrier spacing is the maximum value/minimum value of the subcarrier spacing used for scheduling or configuring the N transmission downlink carriers within the first time window.
  • the preparation process duration includes a first time component, and the first time component is a time component caused by transmission channel switching;
  • the first time component is determined based on the physical unit where the transmission channel is located before and after the transmission channel is switched, or based on the physical unit where the transmission channel is switched before and after the transmission channel is switched, or based on the physical unit configured by the terminal.
  • the first time component included in T_offset includes the extra time (switching period) caused by Tx switching, which is determined according to the physical unit before and after Tx switching, or according to the physical unit (carrier/resource pool) configured by the terminal. /band/partial bandwidth BWP) determined.
  • the physical unit includes carrier/resource pool/frequency band/partial bandwidth BWP, etc.
  • the network side device does not schedule or configure transmission that triggers transmission channel switching after the first time domain position
  • the third time domain position is The second time domain position is a position shifted forward by the first time domain position by the duration of the preparation process.
  • the network side device sends transmission channel switching trigger instructions no more than a preset number of times within the first time window, and the preset number of times is related to the subcarrier interval.
  • the processing method for transmitting channel switching provided by the embodiment of the present application can ensure normal transmission during the Tx switching process, reduce terminal complexity, and improve throughput.
  • the execution subject may be a processing device for transmitting channel switching.
  • the processing method of the transmission channel switching performed by the transmission channel switching processing device is taken as an example to illustrate the processing device of the transmission channel switching provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a processing device for transmitting channel switching provided by an embodiment of the present application. As shown in Figure 7 As shown, the transmission channel switching processing device 700 includes:
  • the first determining unit 710 is configured to determine the first time domain position corresponding to the N transmissions based on the first transmission among the N transmissions;
  • N is an integer greater than or equal to 2
  • the N transmissions are transmissions that trigger transmission channel switching
  • the first time domain position corresponding to each of the N transmissions is the same.
  • the first time domain position is the start moment of the first transmission, or the starting position of the time unit in which the first transmission is located.
  • time units include slot/subframe/sub-slot, etc.
  • the N transmissions include at least one of the following:
  • N 1 scheduled transmissions and N 2 configured transmissions, where N 1 +N 2 N.
  • the N transmissions satisfy a first condition, and the first condition includes at least one of the following:
  • the difference between the start or end position of the other transmissions among the N transmissions except the first transmission and the start or end position of the first transmission is within the first range
  • the difference between the start or end position of the other transmissions in the N transmissions except the first transmission and the starting position of the time unit where the start or end position of the first transmission is located is within the first range;
  • the second information is received within a first time window after the first information reception moment or within a first time window that at least includes the first information, wherein the first information is used to schedule or configure the first Transmission, the second information is used to schedule or configure any transmission among the N transmissions except the first transmission.
  • the length of the first time window is specified by the protocol or network configuration or reported by the terminal.
  • the starting position of the first time window is the reception moment of the first information
  • the end position of the first time window is the forward shift of the first time domain position corresponding to the first transmission.
  • the position of the preparation process duration corresponding to the first transmission is the position of the preparation process duration corresponding to the first transmission.
  • the length of the first time window is determined according to at least one of the following:
  • the first transmission is the transmission with the earliest start time among the N transmissions, or the first transmission is the transmission scheduled or configured by the first information received before the first time window.
  • the device also includes:
  • a second determination unit configured to determine the preparation process duration corresponding to the N transmissions based on the first transmission among the N transmissions
  • the preparation process duration corresponding to any of the other transmissions among the N transmissions except the first transmission is the same as the preparation process duration corresponding to the first transmission.
  • the duration of the preparation process is related to at least one of the following:
  • the subcarrier spacing within the first time window used to schedule or configure the carrier on which the information transmitted in each of the N transmissions is located;
  • the duration of the preparation process is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information in the first time window.
  • the duration of the preparation process is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information in the first time window, including:
  • the duration of the preparation process is determined based on the subcarrier spacing of the downlink carrier where each information in the at least part of the information is located, and the uplink subcarrier spacing of the carrier where the transmission of each information in the at least part of the information is scheduled or configured.
  • the at least part of the information is information used to schedule or configure at least part of the N transmissions.
  • the duration of the preparation process is determined based on the first uplink subcarrier interval and the first downlink subcarrier interval, and the first uplink subcarrier interval and the first downlink subcarrier interval are determined based on information within the first time window.
  • the first uplink subcarrier spacing includes at least one of the following:
  • the first downlink subcarrier spacing is the maximum value/minimum value of the subcarrier spacing used for scheduling or configuring the N transmission downlink carriers within the first time window.
  • the preparation process duration includes a first time component, and the first time component is a time component caused by transmission channel switching;
  • the first time component is determined based on the physical unit where the transmission channel is located before and after the transmission channel is switched, or based on the physical unit where the transmission channel is switched before and after the transmission channel is switched, or based on the physical unit configured by the terminal.
  • the physical unit includes carrier/resource pool/frequency band/partial bandwidth BWP, etc.
  • the transmission channel switching within the first time window is not canceled after the second time domain position, which is the first time domain position shifted forward by the preparation process duration. s position.
  • transmissions that trigger transmission channel switching after the first time domain position are not scheduled after the end position of the first time domain or after the second time domain position, and the second time domain position is The first time domain position is shifted forward by the duration of the preparation process.
  • no transmission channel switching trigger instructions exceeding a preset number of times are received within the first time window, and the preset number of times is related to the subcarrier interval.
  • the processing method for transmitting channel switching provided by the embodiment of the present application can ensure normal transmission during the Tx switching process, reduce terminal complexity, and improve throughput.
  • the processing device for transmitting channel switching in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the processing device for transmitting channel switching provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figures 4 to 5 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • FIG. 8 is a second structural schematic diagram of a processing device for transmitting channel switching provided by an embodiment of the present application. As shown in Figure 8, the transmission channel switching processing device 800 includes:
  • the first processing unit 810 is used to configure and/or schedule N transmissions
  • N is an integer greater than or equal to 2
  • the N transmissions are transmissions that trigger transmission channel switching
  • the first time domain position corresponding to each of the N transmissions is the same.
  • the first time domain position is the start time of the first transmission among the N transmissions, or the starting position of the time unit where the first transmission among the N transmissions is located.
  • the N transmissions include at least one of the following:
  • the N transmissions satisfy a first condition, and the first condition includes at least one of the following:
  • the difference between the start or end position of the other transmissions among the N transmissions except the first transmission and the start or end position of the first transmission is within the first range
  • the difference between the start or end position of the other transmissions in the N transmissions except the first transmission and the starting position of the time unit where the start or end position of the first transmission is located is within the first range;
  • the second information is sent within a first time window after the first information sending moment or within a first time window that at least includes the first information, wherein the first information is used to schedule or configure the first transmission , the second information is used to schedule or configure any transmission among the N transmissions except the first transmission.
  • the length of the first time window is specified by the protocol or network configuration or reported by the terminal.
  • the starting position of the first time window is the reception moment of the first information
  • the end position of the first time window is the forward shift of the first time domain position corresponding to the first transmission.
  • the position of the preparation process duration corresponding to the first transmission is the position of the preparation process duration corresponding to the first transmission.
  • the length of the first time window is determined according to at least one of the following:
  • the first transmission is the transmission with the earliest start time among the N transmissions, or the first transmission is the transmission scheduled or configured by the first information received before the first time window.
  • the preparation process duration corresponding to any of the N transmissions except the first transmission is the same as the preparation process duration corresponding to the first transmission.
  • the duration of the preparation process is related to at least one of the following:
  • the subcarrier spacing within the first time window used to schedule or configure the carrier where the information transmitted in each of the N transmissions is located;
  • the duration of the preparation process is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information sent within the first time window.
  • the duration of the preparation process is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information sent within the first time window, including:
  • the duration of the preparation process is determined based on the subcarrier spacing of the downlink carrier where each information in the at least part of the information is located, and the uplink subcarrier spacing of the carrier where the transmission of each information in the at least part of the information is scheduled or configured.
  • the at least part of the information is instruction information for scheduling or configuring at least part of the N transmissions.
  • the duration of the preparation process is determined based on the first uplink subcarrier interval and the first downlink subcarrier interval, and the first uplink subcarrier interval and the first downlink subcarrier interval are determined based on information within the first time window.
  • the first uplink subcarrier spacing includes at least one of the following:
  • the first downlink subcarrier spacing is the maximum value/minimum value of the subcarrier spacing used for scheduling or configuring the N transmission downlink carriers within the first time window.
  • the preparation process duration includes a first time component, and the first time component is a time component caused by transmission channel switching;
  • the first time component is determined based on the physical unit where the transmission channel is located before and after the transmission channel is switched, or based on the physical unit where the transmission channel is switched before and after the transmission channel is switched, or based on the physical unit configured by the terminal.
  • transmission that triggers transmission channel switching after the first time domain position is not scheduled or configured, and the second time domain The position is the position shifted forward by the duration of the preparation process from the first time domain position.
  • transmitting channel switching triggering instructions no more than a preset number of times are sent within the first time window, and the preset number of times is related to the subcarrier interval.
  • the processing method for transmitting channel switching provided by the embodiment of the present application can ensure normal transmission during the Tx switching process, reduce terminal complexity, and improve throughput.
  • the processing device for transmitting channel switching in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the processing device for transmitting channel switching provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 6 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 900, which includes a processor 901 and a memory 902.
  • the memory 902 stores programs or instructions that can be run on the processor 901, for example.
  • the communication device 900 is a terminal, when the program or instruction is executed by the processor 901, each step of the processing method embodiment of switching the transmission channel is implemented, and the same technical effect can be achieved.
  • the communication device 900 is a network-side device, when the program or instruction is executed by the processor 901, each step of the processing method embodiment of the above-mentioned transmission channel switching is implemented, and the same technical effect can be achieved. To avoid duplication, no details are given here. .
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the processor is configured to determine the first time domain position corresponding to the N transmissions based on the first transmission among the N transmissions; where N is greater than or equal to is an integer of 2, the N transmissions are transmissions that trigger transmission channel switching, and the first time domain positions corresponding to each of the N transmissions are the same.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 10 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010, etc. At least some parts.
  • the terminal 1000 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1010 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1004 may include a graphics processing unit (Graphics Processing Unit, GPU) 10041 and a microphone 10042.
  • the graphics processor 10041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes at least one of a touch panel 10071 and other input devices 10072 .
  • Touch panel 10071 also known as touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1001 after receiving downlink data from the network side device, can transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 can send uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or memory 1009 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • enhanced SDRAM synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, where the application processor mainly processes information related to the operating system, user interface, application programs, etc. In operation, the modem processor mainly processes wireless communication signals, such as the baseband processor. It can be understood that the above modem processor may not be integrated into the processor 1010.
  • the processor 1010 is configured to determine the first time domain position corresponding to the N transmissions based on the first transmission among the N transmissions;
  • N is an integer greater than or equal to 2
  • the N transmissions are transmissions that trigger transmission channel switching
  • the first time domain position corresponding to each of the N transmissions is the same.
  • the first time domain position is the start moment of the first transmission, or the starting position of the time unit in which the first transmission is located.
  • time units include slot/subframe/sub-slot, etc.
  • the N transmissions include at least one of the following:
  • N 1 scheduled transmissions and N 2 configured transmissions, where N 1 +N 2 N.
  • the N transmissions satisfy a first condition, and the first condition includes at least one of the following:
  • the difference between the start or end position of the other transmissions among the N transmissions except the first transmission and the start or end position of the first transmission is within the first range
  • the difference between the start or end position of the other transmissions in the N transmissions except the first transmission and the starting position of the time unit where the start or end position of the first transmission is located is within the first range;
  • the second information is received within a first time window after the first information reception moment or within a first time window that at least includes the first information, wherein the first information is used to schedule or configure the first Transmission, the second information is used to schedule or configure any transmission among the N transmissions except the first transmission.
  • the length of the first time window is specified by the protocol or network configuration or reported by the terminal.
  • the starting position of the first time window is the reception moment of the first information
  • the end position of the first time window is the forward shift of the first time domain position corresponding to the first transmission.
  • the position of the preparation process duration corresponding to the first transmission is the position of the preparation process duration corresponding to the first transmission.
  • the length of the first time window is determined according to at least one of the following:
  • the first transmission is the transmission with the earliest start time among the N transmissions, or the first transmission
  • the input is a scheduled or configured transmission of the first message received before the first time window.
  • processor 1010 is also used to:
  • the preparation process duration corresponding to any of the other transmissions among the N transmissions except the first transmission is the same as the preparation process duration corresponding to the first transmission.
  • the duration of the preparation process is related to at least one of the following:
  • the subcarrier spacing within the first time window used to schedule or configure the carrier on which the information transmitted in each of the N transmissions is located;
  • the duration of the preparation process is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information in the first time window.
  • the duration of the preparation process is determined based on the subcarrier spacing of the carrier before and after the transmission channel switching corresponding to at least part of the information in the first time window, including:
  • the duration of the preparation process is determined based on the subcarrier spacing of the downlink carrier where each information in the at least part of the information is located, and the uplink subcarrier spacing of the carrier where the transmission of each information in the at least part of the information is scheduled or configured.
  • the at least part of the information is information used to schedule or configure at least part of the N transmissions.
  • the duration of the preparation process is determined based on the first uplink subcarrier interval and the first downlink subcarrier interval, and the first uplink subcarrier interval and the first downlink subcarrier interval are determined based on information within the first time window.
  • the first uplink subcarrier spacing includes at least one of the following:
  • the first downlink subcarrier spacing is the maximum value/minimum value of the subcarrier spacing used for scheduling or configuring the N transmission downlink carriers within the first time window.
  • the preparation process duration includes a first time component, and the first time component is a time component caused by transmission channel switching;
  • the first time component is determined based on the physical unit where the transmission channel is located before and after the transmission channel is switched, or based on the physical unit where the transmission channel is switched before and after the transmission channel is switched, or based on the physical unit configured by the terminal.
  • the physical unit includes carrier/resource pool/frequency band/partial bandwidth BWP, etc.
  • the terminal does not cancel the transmission channel switching within the first time window after the second time domain position, which is the preparation process for shifting the first time domain position forward. Duration position.
  • the terminal is not scheduled to trigger transmission channel switching after the first time domain position, and the second time domain position is not scheduled.
  • the first time domain position is shifted forward by the duration of the preparation process.
  • the terminal does not receive more than a preset number of transmission channel switching trigger instructions within the first time window, and the preset number of times is related to the subcarrier interval.
  • the terminal provided by the embodiment of this application can ensure normal transmission during the Tx switching process, reduce terminal complexity, and improve throughput.
  • Embodiments of the present application also provide a network side device, including a processor and a communication interface.
  • the processor is used to configure and/or schedule N transmissions; where N is an integer greater than or equal to 2, and the N transmissions are trigger transmission channels. For switched transmission, the first time domain position corresponding to each of the N transmissions is the same.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1100 includes: an antenna 1101, a radio frequency device 1102, a baseband device 1103, a processor 1104 and a memory 1105.
  • the antenna 1101 is connected to the radio frequency device 1102.
  • the radio frequency device 1102 receives information through the antenna 1101 and sends the received information to the baseband device 1103 for processing.
  • the baseband device 1103 processes the information to be sent and sends it to the radio frequency device 1102.
  • the radio frequency device 1102 processes the received information and then sends it out through the antenna 1101.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 1103, which includes a baseband processor.
  • the baseband device 1103 may include, for example, at least one baseband board, which is provided with multiple chips, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1106, which is, for example, a common public radio interface (CPRI).
  • a network interface 1106, which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1100 in this embodiment of the present invention also includes: instructions or programs stored in the memory 1105 and executable on the processor 1104.
  • the processor 1104 calls the instructions or programs in the memory 1105 to execute each of the steps shown in Figure 8. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium, which stores a program or instructions.
  • a program or instructions When the program or instructions are executed by a processor, each process of the above-mentioned processing method embodiment of transmitting channel switching is implemented, and can achieve the same technical effect, so to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or CD etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above processing method of transmitting channel switching.
  • Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above-mentioned transmission channel switching process.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a processing system for transmitting channel switching, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the processing method for transmitting channel switching as described above.
  • the network side device can be used for Execute the steps of the processing method for transmitting channel switching as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种发射通道切换的处理方法、终端及网络侧设备,属于通信技术领域,本申请实施例的发射通道切换的处理方法包括:终端基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。

Description

发射通道切换的处理方法、终端及网络侧设备
相关申请的交叉引用
本申请要求在2022年08月12日提交中国专利局、申请号为202210970525.2、名称为“发射通道切换的处理方法、终端及网络侧设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种发射通道切换的处理方法、终端及网络侧设备。
背景技术
协议支持用户设备(User Equipment,UE)在两个频带(band)之间进行发射通道(Tx)切换,由于上行传输触发的Tx切换会导致额外的处理时间以及UE的传输行为限制,目前标准化组织正在讨论未来支持UE在3个或4个band之间进行Tx切换,如果应用相关技术中的额外的处理时间的机制和UE的传输行为限制,在一些情况下UE将无法进行传输和Tx切换,对实现上行传输的灵活性和吞吐量提升造成影响。
发明内容
本申请实施例提供一种发射通道切换的处理方法、终端及网络侧设备,能够解决如何实现3个band或4个band之间的Tx切换并进行正常的上行传输的问题。
第一方面,提供了一种发射通道切换的处理方法,应用于终端,该方法包括:
终端基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;
其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
第二方面,提提供了一种发射通道切换的处理方法,应用于网络侧设备,该方法包括:
网络侧设备配置和/或调度N个传输;
其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
第三方面,提供了一种发射通道切换的处理装置,该装置包括:
第一确定单元,用于基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;
其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
第四方面,提供了一种发射通道切换的处理装置,该装置包括:
第一处理单元,用于配置和/或调度N个传输;
其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于配置和/或调度N个传输;其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
第九方面,提供了一种发射通道切换的处理系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的发射通道切换的处理方法的步骤,所述网络侧设备可用于执行如第二方面所述的发射通道切换的处理方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的发射通道切换的处理方法的步骤,或者实现如第二方面所述的发射通道切换的处理方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的发射通道切换的处理方法,或实现如第二方面所述的发射通道切换的处理方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的发射通道切换的处理方法的步骤。
第十三方面,提供了一种传输装置/设备,其中,包括所述装置/设备(被配置成)用于执行以实现如第一方面所述的发射通道切换的处理方法的步骤。
在本申请实施例中,终端基于N个传输中的第一传输,确定N个触发发射通道切换的传输对应的第一时域位置,且各个传输对应的第一时域位置均相同,不会在一个传输的Tx切换过程中开始另一个传输,可以保证Tx切换过程中的正常传输,减少终端复杂度,提高吞吐量。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2为相关技术中终端在4个band上进行UL Tx switching的示意图;
图3为相关技术中终端在3个band上进行UL Tx switching的示意图;
图4为本申请实施例提供的发射通道切换的处理方法的流程示意图之一;
图5为采用本申请实施例提供的发射通道切换的处理方法进行UL Tx switching的示意图;
图6为本申请实施例提供的发射通道切换的处理方法的流程示意图之二;
图7为本申请实施例提供的发射通道切换的处理装置的结构示意图之一;
图8为本申请实施例提供的发射通道切换的处理装置的结构示意图之二;
图9为本申请实施例提供的通信设备的结构示意图;
图10为实现本申请实施例的一种终端的硬件结构示意图;
图11为本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
首先对本申请涉及的相关内容进行介绍。
一、上行发射通道切换
R16引入上行发射通道切换(uplink Tx switching,或UL Tx switching)的机制,即 一个UE最多同时在2个Tx发送,一个载波支持一个上行发射通道(载波1),另一个载波支持两个发射通道(载波2),载波1和载波2在不同的band,通过切换Tx从而支持两种模式的切换,模式一:在载波2上进行上行双流传输,模式二:在载波1和、或载波2进行单流传输。
根据是否支持载波1和载波2同时进行上行传输分为option1(网络配置高层参数uplinkTxSwitchingOption-r16为switchedUL,表示载波1和载波2不可以同时进行上行传输)和option2(dualUL,网络配置高层参数uplinkTxSwitchingOption-r16为switchedUL,表示载波1和载波2可以同时进行上行传输)。
R16支持的UL Tx switching情况如下:
1.对演进型全球地面无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)到NR的双连接(E-UTRA-NR Dual Connectivity,EN-DC),支持option1和option2,协议规定E-UTRA上行载波为载波1,NR载波为载波2;
2.支持带外载波聚合(inter-band Carrier Aggregation,inter-band CA),支持option1和option2,通过网络配置载波聚合的两个载波为载波1或载波2;
3.支持辅助上行链路(supplementary uplink,SUL),只支持OPTION 1,通过网络配置SUL或UL为载波1或载波2。
UE上报能力,通过参数uplinkTxSwitching-OptionSupport上报支持option1,option2,或者两者都支持。通过参数uplinkTxSwitchingPeriod上报UL Tx switching需要的时间switching gap。通过参数uplinkTxSwitching-DL-Interruption上报支持下行中断的band。
网络高层参数uplinkTxSwitchingOption用于配置UE支持option1或option2。uplinkTxSwitching用于配置该服务小区(serving cell)是否用于UL Tx switching。uplinkTxSwitchingPeriodLocation用于配置切换时间关联的小区,用于确定切换时间的位置。uplinkTxSwitchingCarrier用于配置载波为carrier1或carrier 2,用于确定支持的port数目和切换案例(case)。
R17阶段扩展了inter-CA和SUL的切换情况。首先支持2Tx-2Tx的切换,即对两个载波都支持两个Tx的情况之间的切换。进一步,还支持在band A上有一个载波和band B上有两个连续载波(这两个载波可以用同一个Tx发送)之间的Tx切换。并且引入了两个新的无线资源控制(Radio Resource Control,RRC)参数,一个参数用于指示1Tx-2Tx的切换模式还是2Tx-2Tx的切换模式,从而确定是采用1Tx-2Tx或2Tx-2Tx的切换参数;当UL Tx切换后的Tx状态不唯一,一个参数用于指示Tx状态是1Tx+1Tx,或者Tx状态是0Tx+2Tx。例如,当配置了uplinkTxSwitchingPeriod2T2T-r17,则UE支持2Tx-2Tx切换,且配置的切换时间通过uplinkTxSwitchingPeriod2T2T-r17确定,如果没有配置该参数(即该参数的值为空),则配置的切换时间通过uplinkTxSwitchingPeriod-r16确定。值得注意的是,1Tx-2Tx和2Tx-2Tx两种模式支持的切换case是有部分交叠的,即有的切换case既可以属于1Tx-2Tx,也可以属于2Tx-2Tx,不同在于切换参数根据模式会不同。
当触发了uplink Tx switching,对以下case需要额外的UL Tx switching的时间,包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输、非周期的探测参考信号(Sounding Reference Signal,SRS)传输、物理下行控制信道(Physical Downlink Control Channel,PDCCH)触发的物理随机接入信道(Physical Random Access Channel,PRACH)传输和信道状态信息(Channel State Information,CSI)的传输的处理过程时间。其中PUSCH传输的准备过程时间为Tproc,2=max((N2+d2,1)(2048+144)·κ2·TC+Tswitch,d2,2),N2由承载调度下行控制信息(Downlink Control Information,DCI)的PDCCH的μDL和传输的PUSCH的μUL对应的较大的处理时间确定(不同的子载波间隔(sub-carrier space,SCS)对应不同的处理时间),Tswitch为UE上报的UL Tx switching的时间;值得注意的是,对于inter-band CA的option2,μUL=min(μUL,carrier1,μUL,carrier2)。
二、在UL Tx switching过程中终端的限制
在UL Tx switching过程中,终端有如下的限制:
终端在切换时间内不期待在进行切换的carrier或band上进行传输。
当一个开始时间为T0的上行传输触发UL Tx switching,那么在T0-T_offset后,终端不期待取消该UL Tx switching,或者T0-T_offset后调度其他的上行传输且触发在T0之前开始的任意其他新的上行切换,T_offset为上行传输的处理过程时间。
终端不期待在子载波间隔SCS为μUL=max(μUL,carrier1UL,carrier2)的一个时隙(slot)内执行超过一次UL Tx switching,其中μUL,carrier1,为切换时间前上行传输的子载波间隔,μUL,carrier2为切换时间后上行传输的子载波间隔。
相关技术只在2个band上进行UL Tx switching,R18引入大于2个band(3个、4个band)的UL Tx switching。当上行传输触发了大于2个band的UL Tx switching,对上行传输额外的UL Tx switching的时间尤其是inter-band CA的option2,如何确定Tproc,2需要确定,并且终端在UL Tx switching过程中的限制会随着band数目的增多有所变化。
图2为相关技术中终端在4个band上进行UL Tx switching的示意图。如图2所示,从(1Tx)CC1+(1Tx)CC2切换到(1Tx)CC3+(1Tx)CC4,两个Tx的切换前后的载波皆不同,1个Tx从CC1切换到CC3,一个Tx从CC2切换到CC4,根据现有技术,UE不能在切换周期(switching period)1和switching period 2传输,因此CC3的传输会受到影响。
图3为相关技术中终端在3个band上进行UL Tx switching的示意图。如图3所示,从(1Tx)CC1+(1Tx)CC2切换到(2Tx)CC3,T_offset,1根据CC1、CC3的SCS得到,T_offset, 2根据CC2、CC3的SCS得到。在switching gap(假设为35us)里执行了两次UL Tx switching,与现有技术的一个slot(假设为15kHz对应的71us)内不能执行超过一次UL Tx switching的规定相悖。
因此,如何实现3个band或4个band的Tx切换并进行正常的上行传输是需要解决的。为了解决上述问题,本申请实施例提供了发射通道切换的处理方法、终端及网络侧设备。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的发射通道切换的处理方法、终端及网络侧设备进行详细地说明。
图4为本申请实施例提供的发射通道切换的处理方法的流程示意图之一。如图4所示,该方法包括:
步骤400、终端基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;
其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
在本申请实施例中,传输可以包括数据信道/控制信道/参考信号/随机接入信道等。
可以理解,终端基于N个传输中的第一传输,确定N个触发发射通道切换的传输对应的第一时域位置,且各个传输对应的第一时域位置均相同,不会在一个传输的Tx切换过程中开始另一个传输,可以保证Tx切换过程中的正常传输,减少终端复杂度,提高吞吐量。
需要说明的是,本申请实施例提供的方法并不限于3个或4个band,也可以应用于更多的band数目,可实现3个或4个或更多band之间的Tx切换过程中的正常传输。
可选地,所述第一时域位置为所述第一传输的开始时刻,或者,所述第一传输所在的时间单元的起始位置。
其中,时间单元包括时隙slot/子帧subframe/子时隙sub-slot等。
可选地,所述N个传输包括以下至少一项:
N个上行传输;
N个旁链路传输;
N个调度的传输;
N个配置的传输;
N1个调度的传输和N2个配置的传输,其中,N1+N2=N。
可以理解,N个传输可以是N个上行传输,N个SL(SideLink,旁链路)传输,N个调度的传输(例如,N个调度的上行传输,N个调度的旁链路传输),N个配置的传输(例如,N个配置的上行传输,N个配置的旁链路传输),或者,N1个调度的传输和N2个配置的传输,其中,N1+N2=N,例如,N个传输包括调度的UL与特定/限制的某些UL传输(例如配置的授权(configured grant)PUSCH,SRS,PUCCH,PRACH,etc)。
可选地,所述N个传输满足第一条件,所述第一条件包括以下至少一项:
a)所述N个传输中除了所述第一传输的其他传输与所述第一传输在时域上有交叠;
b)所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的 开始或结束位置的差值在第一范围内;
c)所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置所在时间单元的起始位置的差值在所述第一范围内;
例如,第一传输的时间范围为[T1,T2],那么其他传输的时间范围为[T1-ΔT1,T2+ΔT2],其中,ΔT1,ΔT2分别为第一时长,第二时长,ΔT1,ΔT2可以由协议约定或网络配置或终端确定。
d)在第一信息接收时刻之后的第一时间窗口内或在至少包括所述第一信息的第一时间窗口内接收到第二信息,其中,所述第一信息用于调度或配置所述第一传输,所述第二信息用于调度或配置所述N个传输中除了所述第一传输的其他传输中的任意传输。
可以理解的是,当终端接收到第一信息,其中,第一信息用于调度或配置第一传输,例如,DCI,下面以信息为DCI为例进行说明,包括但不限于DCI,还可以包括RRC信令或旁链路控制信息(SideLink control information)SCI等,确定第一时间窗口,即第一时间窗口内的信息调度或配置的传输的第一时域位置T0为同一个。
第一时间窗口在第一信息接收时刻之后,也可以是至少包括第一信息的时间窗口。
可选地,所述第一时间窗口的长度为协议规定或网络配置或终端上报。
例如,协议规定对不同的SCS,第一时间窗口的值不同,所述SCS可以为第一信息所在的载波的SCS,或第一信息调度或配置的传输所在载波的SCS。
又例如,网络配置或者UE上报对不同的第一信息调度的天线端口数目,或第一信息调度的载波数目,或配置的Tx切换模式,第一时间窗口的值不同。
可选地,所述第一时间窗口的起始位置为所述第一信息的接收时刻,即第一信息的开始位置,所述第一时间窗口的结束位置为所述第一传输对应的第一时域位置往前偏移所述第一传输对应的准备过程时长的位置,即T0-T_offset,其中,T0为第一传输对应的第一时域位置,可以是第一传输的开始时刻,或者,所述第一传输所在的时间单元的起始位置,T_offset为第一传输对应的准备过程时长。
可选地,所述第一时间窗口的长度根据以下至少一项确定:
所述第一信息所在的载波的子载波间隔;
所述第一传输所在的载波的子载波间隔;
所述第一信息调度的参数;
发射通道切换的类型;
配置的发射通道切换的模式。
例如,第一时间窗口的长度与第一DCI所在的载波的SCS,或者,第一DCI调度的传输(即第一传输)所在载波的SCS有关。
其中,所述第一信息调度的参数包括以下至少一项:第一信息调度的天线端口数目、载波数目、频带数目等。
第一时间窗口的长度和发射通道切换类型也有关,类型可以包括以下:
类型一,类似于R16/17 UL Tx在2频段之间切换,例如1Tx-2Tx在第一频段1Tx和第二频段2Tx之间切换,包括以下情况之间的Tx切换:





类型二,类似于R16/17 UL Tx在2个频段之间切换,例如2Tx-2Tx切换,其中2Tx从第一个频段切换到第二个频段,包括以下情况之间的Tx切换:
类型三,UL Tx在3或4个频段上切换,例如,1个Tx从第一个频段切换到第二个频段,而另一个Tx保持在第三个频段:
类型四,UL Tx在3个或4个频段上切换,例如,1个Tx和另一个TX分别从第一频段和第二频段切换到第三频段,反之亦然:


类型五,特定于4个频段的UL Tx切换,例如,TX切换涉及两个源频段和另外两个目标频段:


配置的发射通道切换的模式包括:switchedUL,dualUL。
可选地,所述第一传输为所述N个传输中开始时刻最早的传输,或者,所述第一传输为第一时间窗口前接收的第一信息调度或配置的传输。
可以理解,所述第一传输为所述N个传输中开始时刻最早的传输,那么第一传输对应的第一时域位置即为N个传输中开始时刻最早的传输的开始时刻,所述N个传输中的各个传输对应的第一时域位置均为所述第一传输的开始时刻。
例如,第一时间窗口包括DCI1,DCI2,DCI1、DCI2调度的传输的开始时刻分别为T1,T2,且T1>T2,则第一时域位置T0=T2。
或者,N个传输中的各个传输对应的第一时域位置均为第一时间窗口前接收的第一信息调度或配置的传输的开始时刻。
可选地,所述方法还包括:
所述终端基于N个传输中的第一传输,确定所述N个传输对应的准备过程时长;
其中,所述N个传输中除了所述第一传输的其他传输中的任意传输对应的准备过程时长均与所述第一传输对应的准备过程时长相同。
可以理解,终端基于N个传输中的第一传输,确定N个触发发射通道切换的传输对应的第一时域位置T0和准备过程时长T_offset,且各个传输对应的第一时域位置均相同,各个传输对应的准备过程时长也相同,从而可以保证Tx切换过程中的正常传输,减少终端复杂度,提高吞吐量。
可选地,所述准备过程时长与以下至少一项有关:
所述第一传输所在的载波的子载波间隔;
调度或配置所述第一传输的第一信息所在的载波的子载波间隔;
第一时间窗口内的用于调度或配置所述N个传输中各个传输的信息所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输对应的天线端口数量;
配置的发射通道切换的模式。
可选地,所述准备过程时长T_offset的值和配置的Tx切换模式有关,例如只有当配置为dualUL时,DCI调度的传输(Tx切换后)所在的载波的上行SCS为配置的所有载波的SCS的最小值或最大值。
可选地,所述准备过程时长T_offset根据所述第一时间窗口内的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定。
可选地,根据所述第一时间窗口内的至少部分信息对应的Tx切换前后的载波的SCS确定的准备过程时长T_offset,为所述至少部分信息中每个信息得到的T_offset中的最大值/最小值。
可选地,所述准备过程时长根据所述第一时间窗口内的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定,包括:
所述准备过程时长根据所述至少部分信息中各信息所在的下行载波的子载波间隔,以及所述至少部分信息中各信息调度或配置的传输所在的载波的上行子载波间隔确定。
可以理解的是,准备过程时长根据至少部分信息中各信息所在的下行载波的SCS,和至少部分信息中各信息调度/配置的传输(Tx切换后)所在的载波的上行SCS(如果调度多个载波,则为多个载波的SCS的最大值或最小值)确定。
例如,所述确定的准备过程时长T_offset为每个DCI得到的T_offset中的最大值/最小值。第一时间窗口内满足第一条件的每个DCI根据Tx切换前后的载波的SCS,得到一个T_offset的值。具体为由DCI所在的下行载波的SCS,和DCI调度的传输(Tx切换后)所在的载波的上行SCS(如果调度多个载波,则为多个载波的SCS的最大值或最小值)确定,参考如下公式,求得Tproc,2的值即T_offset的值:
Tproc,2=max((N2+d2,1)(2048+144)·κ2·TC+Tswitch,d2,2)
如果传输块的PUSCH分配中的第一个上行链路符号,包括UE专用解调参考信号(UE-specific DeModulation Reference Signal,DM-RS),由时隙偏移K2和Koffset(如果已配置)定义,并且PUSCH分配的开始S和长度L由“时域资源”指示调度DCI的分配,包括时间提前的影响,不早于符号L2,其中L2定义为下一个上行符号,其CP在接收到承载调度PUSCH的DCI的PDCCH的最后一个符号结束之后开始,则UE应发送传输块。当PDCCH候选与配置了searchSpaceLinking的搜索空间集合相关联时,为了确定承载调度PUSCH的DCI的PDCCH的最后一个符号,使用配置的两个PDCCH候选中时间较晚结束的PDCCH候选。
N2分别基于表6.4-1和表6.4-2中UE处理能力1和2的μ,其中,μ对应于Tproc,2最大时的一个(μDL,μUL),其中μDL对应于传输承载DCI调度PUSCH的PDCCH的下行链路的子载波间隔,μUL对应于要传输PUSCH的上行链路信道的子载波间隔,并且,κ在[4,TS 38.211]的第4.1节中定义。
如果PUSCH分配的第一个符号仅包含DM-RS,则d2,1=0,否则,d2,1=1。
如果UE配置有多个活动分量载波,则PUSCH分配中的第一个上行链路符号还包括在[11,TS 38.133]中给出的分量载波之间的时间差的影响。
如果调度DCI触发了BWP的切换,则d2,2等于[11,TS 38.133]中定义的切换时间,否则d2,2=0。
如果按照第6.1.6节的定义触发上行链路切换间隙,Tswitch等于切换间隙持续时间并且对于配置了更高层参数的UE,uplinkTxSwitchingOption设置为“dualUL”以进行上行链路载波聚合,μUL=min(μUL,carrier1,μUL,carrier2),否则,Tswitch=0。
表6.4-1:PUSCH时序能力1的PUSCH准备时间
表6.4-2:PUSCH时序能力2的PUSCH准备时间
可选地,所述至少部分信息为用于调度或配置所述N个传输中至少部分传输的信息。
例如,至少部分DCI为发射通道动态切换无关的UL DCI,或者,如果是非用于调度传输的DCI,可能不需要算在内。
在一个实施例中,所述至少部分信息为用于调度或配置所述N个传输的信息。
可选地,所述准备过程时长根据第一上行子载波间隔和第一下行子载波间隔确定,所述第一上行子载波间隔和第一下行子载波间隔根据第一时间窗口内的信息确定;
其中,所述第一上行子载波间隔包括以下至少一项:
配置的上行载波的子载波间隔的最大值/最小值;
所述N个传输的上行载波的子载波间隔的最大值/最小值;
第一时间窗口内触发的发射通道切换前和/或后的上行载波的子载波间隔的最大值/最小值;
其中,所述第一下行子载波间隔为第一时间窗口内用于调度或配置所述N个传输的下行载波的子载波间隔的最大值/最小值。
可选地,所述准备过程时长包括第一时间分量,所述第一时间分量为由发射通道切换带来的时间分量;
所述第一时间分量根据发射通道切换前后发射通道所在的物理单元,或者,根据发射通道切换前后进行切换的发射通道所在的物理单元确定,或者,根据终端配置的物理单元确定。
可以理解的是,T_offset中包含的第一时间分量包括由于Tx切换带来的额外的时间(switching period),根据Tx切换前后的物理单元确定的,或根据终端配置的物理单元(载波/资源池/频带/部分带宽BWP)确定的。
其中,物理单元包括载波/资源池/频带/部分带宽BWP等。
可选地,在第二时域位置之后,终端不取消所述第一时间窗口内的发射通道切换,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
可以理解的是,对第一时间窗口触发的Tx切换,开始时间确定为T0,在T0-T_offset后,终端不期待取消该窗口内触发的Tx切换。
可选地,在所述第一时间窗口的结束位置之后或者第二时域位置之后,终端不被调度所述第一时域位置之后的触发发射通道切换的传输,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
可以理解的是,对第一时间窗口触发的Tx切换,开始时间确定为T0,那么在T0-T_offset或第一时间窗口后,终端不期待被调度新的T0后的传输,且该传输触发Tx切换。
可选地,所述终端不在所述第一时间窗口内接收超过预设次数的发射通道切换触发指令,所述预设次数与子载波间隔有关。
发射通道切换触发指令是用于调度或配置触发发射通道切换的传输的信息。
预设次数与子载波间隔有关,此处的子载波间隔可以为:
第一时间窗口内调度触发的Tx切换前和/或后的上行载波的子载波间隔的最大值/最小值;
或第一时间窗口内调度触发的Tx切换的下行载波的子载波间隔的最大值/最小值。
图5为采用本申请实施例提供的发射通道切换的处理方法进行UL Tx switching的示意图。如图5所示,终端基于N个传输中的第一传输(DCI1),确定所述N个传输对应的第一时域位置T0和准备过程时长T_offset,各个传输对应的第一时域位置相同,各个传输对应的准备过程时长相同,CC3和CC4上的传输可以正常进行。
本申请实施例提供的发射通道切换的处理方法,可以保证Tx切换过程中的正常传输,减少终端复杂度,提高吞吐量。
图6为本申请实施例提供的发射通道切换的处理方法的流程示意图之二。如图6所示,该方法包括:
步骤600、网络侧设备配置和/或调度N个传输;
其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
在本申请实施例中,传输可以包括数据信道/控制信道/参考信号/随机接入信道等。
可以理解,网络侧设备向终端配置和/或调度N个传输,终端基于N个传输中的第一传输,确定N个触发发射通道切换的传输对应的第一时域位置,且各个传输对应的第一时域位置均相同,不会在一个传输的Tx切换过程中开始另一个传输,可以保证Tx切换过程中的正常传输,减少终端复杂度,提高吞吐量。
可选地,所述第一时域位置为所述N个传输中的第一传输的开始时刻,或者,所述N个传输中的第一传输所在的时间单元的起始位置。
其中,时间单元包括slot/subframe/sub-slot等。
可选地,所述N个传输包括以下至少一项:
N个上行传输;
N个旁链路传输。
可选地,所述N个传输满足第一条件,所述第一条件包括以下至少一项:
a)所述N个传输中除了所述第一传输的其他传输与所述第一传输在时域上有交叠;
b)所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置的差值在第一范围内;
c)所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置所在时间单元的起始位置的差值在所述第一范围内;
例如,第一传输的时间范围为[T1,T2],那么其他传输的时间范围为[T1-ΔT1,T2+ΔT2],其中,ΔT1,ΔT2分别为第一时长,第二时长。
d)在第一信息发送时刻之后的第一时间窗口内或在至少包括所述第一信息的第一时间窗口内发送第二信息,其中,所述第一信息用于调度或配置所述第一传输,所述第二信息用于调度或配置所述N个传输中除了所述第一传输的其他传输中的任意传输。
可以理解的是,网络侧设备在发送第一信息之后的第一时间窗口内或至少包括所述第一信息的第一时间窗口内发送第二信息,即第一时间窗口内的信息调度或配置的传输的第一时域位置T0为同一个。
可选地,所述第一时间窗口的长度为协议规定或网络配置或终端上报。
例如,协议规定对不同的SCS,第一时间窗口的值不同,所述SCS可以为第一信息所在的载波的SCS,或第一信息调度或配置的传输所在载波的SCS。
又例如,网络配置或者UE上报对不同的第一信息调度的天线端口数目,或第一信息调度的载波数目,或配置的Tx切换模式,第一时间窗口的值不同。
可选地,所述第一时间窗口的起始位置为所述第一信息的接收时刻,所述第一时间窗口的结束位置为所述第一传输对应的第一时域位置往前偏移所述第一传输对应的准备过程时长的位置,即T0-T_offset,其中,T0为第一传输对应的第一时域位置,可以是第一传输的开始时刻,或者,所述第一传输所在的时间单元的起始位置,T_offset为第一传输对应的准备过程时长。
可选地,所述第一时间窗口的长度根据以下至少一项确定:
所述第一信息所在的载波的子载波间隔;
所述第一传输所在的载波的子载波间隔;
所述第一信息调度或配置的参数;
发射通道切换的类型;
配置的发射通道切换的模式。
例如,第一时间窗口的长度与第一DCI所在的载波的SCS,或者,第一DCI调度的传输(即第一传输)所在载波的SCS有关。
其中,所述第一信息调度的参数包括以下至少一项:第一信息调度的天线端口数目、载波数目、频带数目等。
配置的发射通道切换的模式包括:switchedUL,dualUL。
可选地,所述第一传输为所述N个传输中开始时刻最早的传输,或者,所述第一传输为第一时间窗口前接收的第一信息调度或配置的传输。
可以理解,所述第一传输为所述N个传输中开始时刻最早的传输,那么第一传输对应的第一时域位置即为N个传输中开始时刻最早的传输的开始时刻,所述N个传输中的各个传输对应的第一时域位置均为所述第一传输的开始时刻。
例如,第一时间窗口包括DCI1,DCI2,DCI1、DCI2调度的传输的开始时刻分别为T1,T2,且T1>T2,则第一时域位置T0=T2。
或者,N个传输中的各个传输对应的第一时域位置均为第一时间窗口前接收的第一信息调度或配置的传输的开始时刻。
可选地,所述N个传输中除了所述第一传输的其他传输中的任意传输对应的准备过程时长均与所述第一传输对应的准备过程时长相同。
可选地,所述准备过程时长与以下至少一项有关:
所述第一传输所在的载波的子载波间隔;
调度或配置所述第一传输的第一信息所在的载波的子载波间隔;
所述第一时间窗口内的用于调度或配置所述N个传输中各个传输的信息所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输对应的天线端口数量;
配置的发射通道切换的模式。
可选地,所述准备过程时长根据所述第一时间窗口内发送的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定。
可选地,所述准备过程时长根据所述第一时间窗口内发送的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定,包括:
所述准备过程时长根据所述至少部分信息中各信息所在的下行载波的子载波间隔, 以及所述至少部分信息中各信息调度或配置的传输所在的载波的上行子载波间隔确定。
可以理解的是,准备过程时长根据至少部分信息中各信息所在的下行载波的SCS,和至少部分信息中各信息调度/配置的传输(Tx切换后)所在的载波的上行SCS(如果调度多个载波,则为多个载波的SCS的最大值或最小值)确定。
可选地,所述至少部分信息为用于调度或配置所述N个传输中至少部分传输的指示信息。
可选地,所述准备过程时长根据第一上行子载波间隔和第一下行子载波间隔确定,所述第一上行子载波间隔和第一下行子载波间隔根据第一时间窗口内的信息确定;
其中,所述第一上行子载波间隔包括以下至少一项:
配置的上行载波的子载波间隔的最大值/最小值;
所述N个传输的上行载波的子载波间隔的最大值/最小值;
第一时间窗口内触发的发射通道切换前和/或后的上行载波的子载波间隔的最大值/最小值;
其中,所述第一下行子载波间隔为第一时间窗口内用于调度或配置所述N个传输的下行载波的子载波间隔的最大值/最小值。
可选地,所述准备过程时长包括第一时间分量,所述第一时间分量为由发射通道切换带来的时间分量;
所述第一时间分量根据发射通道切换前后发射通道所在的物理单元,或者,根据发射通道切换前后进行切换的发射通道所在的物理单元确定,或者,根据终端配置的物理单元确定。
可以理解的是,T_offset中包含的第一时间分量包括由于Tx切换带来的额外的时间(switching period),根据Tx切换前后的物理单元确定的,或根据终端配置的物理单元(载波/资源池/频带/部分带宽BWP)确定的。
其中,物理单元包括载波/资源池/频带/部分带宽BWP等。
可选地,在所述第一时间窗口的结束位置之后或者第二时域位置之后,网络侧设备不调度或不配置所述第一时域位置之后的触发发射通道切换的传输,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
可选地,网络侧设备在所述第一时间窗口内发送不超过预设次数的发射通道切换触发指令,所述预设次数与子载波间隔有关。
本申请实施例提供的发射通道切换的处理方法,可以保证Tx切换过程中的正常传输,减少终端复杂度,提高吞吐量。
本申请实施例提供的发射通道切换的处理方法,执行主体可以为发射通道切换的处理装置。本申请实施例中以发射通道切换的处理装置执行发射通道切换的处理方法为例,说明本申请实施例提供的发射通道切换的处理装置。
图7为本申请实施例提供的发射通道切换的处理装置的结构示意图之一。如图7所 示,该发射通道切换的处理装置700包括:
第一确定单元710,用于基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;
其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
可选地,所述第一时域位置为所述第一传输的开始时刻,或者,所述第一传输所在的时间单元的起始位置。
其中,时间单元包括slot/subframe/sub-slot等。
可选地,所述N个传输包括以下至少一项:
N个上行传输;
N个旁链路传输;
N个调度的传输;
N个配置的传输;
N1个调度的传输和N2个配置的传输,其中,N1+N2=N。
可选地,所述N个传输满足第一条件,所述第一条件包括以下至少一项:
所述N个传输中除了所述第一传输的其他传输与所述第一传输在时域上有交叠;
所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置的差值在第一范围内;
所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置所在时间单元的起始位置的差值在所述第一范围内;
在第一信息接收时刻之后的第一时间窗口内或在至少包括所述第一信息的第一时间窗口内接收到第二信息,其中,所述第一信息用于调度或配置所述第一传输,所述第二信息用于调度或配置所述N个传输中除了所述第一传输的其他传输中的任意传输。
可选地,所述第一时间窗口的长度为协议规定或网络配置或终端上报。
可选地,所述第一时间窗口的起始位置为所述第一信息的接收时刻,所述第一时间窗口的结束位置为所述第一传输对应的第一时域位置往前偏移所述第一传输对应的准备过程时长的位置。
可选地,所述第一时间窗口的长度根据以下至少一项确定:
所述第一信息所在的载波的子载波间隔;
所述第一传输所在的载波的子载波间隔;
所述第一信息调度的参数;
发射通道切换的类型;
配置的发射通道切换的模式。
可选地,所述第一传输为所述N个传输中开始时刻最早的传输,或者,所述第一传输为第一时间窗口前接收的第一信息调度或配置的传输。
可选地,所述装置还包括:
第二确定单元,用于基于N个传输中的第一传输,确定所述N个传输对应的准备过程时长;
其中,所述N个传输中除了所述第一传输的其他传输中的任意传输对应的准备过程时长均与所述第一传输对应的准备过程时长相同。
可选地,所述准备过程时长与以下至少一项有关:
所述第一传输所在的载波的子载波间隔;
调度或配置所述第一传输的第一信息所在的载波的子载波间隔;
第一时间窗口内的用于调度或配置所述N个传输中各个传输的信息所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输对应的天线端口数量;
配置的发射通道切换的模式。
可选地,所述准备过程时长根据所述第一时间窗口内的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定。
可选地,所述准备过程时长根据所述第一时间窗口内的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定,包括:
所述准备过程时长根据所述至少部分信息中各信息所在的下行载波的子载波间隔,以及所述至少部分信息中各信息调度或配置的传输所在的载波的上行子载波间隔确定。
可选地,所述至少部分信息为用于调度或配置所述N个传输中至少部分传输的信息。
可选地,所述准备过程时长根据第一上行子载波间隔和第一下行子载波间隔确定,所述第一上行子载波间隔和第一下行子载波间隔根据第一时间窗口内的信息确定;
其中,所述第一上行子载波间隔包括以下至少一项:
配置的上行载波的子载波间隔的最大值/最小值;
所述N个传输的上行载波的子载波间隔的最大值/最小值;
第一时间窗口内触发的发射通道切换前和/或后的上行载波的子载波间隔的最大值/最小值;
其中,所述第一下行子载波间隔为第一时间窗口内用于调度或配置所述N个传输的下行载波的子载波间隔的最大值/最小值。
可选地,所述准备过程时长包括第一时间分量,所述第一时间分量为由发射通道切换带来的时间分量;
所述第一时间分量根据发射通道切换前后发射通道所在的物理单元,或者,根据发射通道切换前后进行切换的发射通道所在的物理单元确定,或者,根据终端配置的物理单元确定。
其中,物理单元包括载波/资源池/频带/部分带宽BWP等。
可选地,在第二时域位置之后,不取消所述第一时间窗口内的发射通道切换,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
可选地,在所述第一时间窗口的结束位置之后或者第二时域位置之后,不被调度所述第一时域位置之后的触发发射通道切换的传输,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
可选地,不在所述第一时间窗口内接收超过预设次数的发射通道切换触发指令,所述预设次数与子载波间隔有关。
本申请实施例提供的发射通道切换的处理方法,可以保证Tx切换过程中的正常传输,减少终端复杂度,提高吞吐量。
本申请实施例中的发射通道切换的处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的发射通道切换的处理装置能够实现图4至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图8为本申请实施例提供的发射通道切换的处理装置的结构示意图之二。如图8所示,该发射通道切换的处理装置800包括:
第一处理单元810,用于配置和/或调度N个传输;
其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
可选地,所述第一时域位置为所述N个传输中的第一传输的开始时刻,或者,所述N个传输中的第一传输所在的时间单元的起始位置。
可选地,所述N个传输包括以下至少一项:
N个上行传输;
N个旁链路传输。
可选地,所述N个传输满足第一条件,所述第一条件包括以下至少一项:
所述N个传输中除了所述第一传输的其他传输与所述第一传输在时域上有交叠;
所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置的差值在第一范围内;
所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置所在时间单元的起始位置的差值在所述第一范围内;
在第一信息发送时刻之后的第一时间窗口内或在至少包括所述第一信息的第一时间窗口内发送第二信息,其中,所述第一信息用于调度或配置所述第一传输,所述第二信息用于调度或配置所述N个传输中除了所述第一传输的其他传输中的任意传输。
可选地,所述第一时间窗口的长度为协议规定或网络配置或终端上报。
可选地,所述第一时间窗口的起始位置为所述第一信息的接收时刻,所述第一时间窗口的结束位置为所述第一传输对应的第一时域位置往前偏移所述第一传输对应的准备过程时长的位置。
可选地,所述第一时间窗口的长度根据以下至少一项确定:
所述第一信息所在的载波的子载波间隔;
所述第一传输所在的载波的子载波间隔;
所述第一信息调度或配置的参数;
发射通道切换的类型;
配置的发射通道切换的模式。
可选地,所述第一传输为所述N个传输中开始时刻最早的传输,或者,所述第一传输为第一时间窗口前接收的第一信息调度或配置的传输。
可选地,所述N个传输中除了所述第一传输的其他传输中的任意传输对应的准备过程时长均与所述第一传输对应的准备过程时长相同。
可选地,所述准备过程时长与以下至少一项有关:
所述第一传输所在的载波的子载波间隔;
调度或配置所述第一传输的第一信息所在的载波的子载波间隔;
所述第一时间窗口内的用于调度或配置所述N个传输中各个传输的信息所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输对应的天线端口数量;
配置的发射通道切换的模式。
可选地,所述准备过程时长根据所述第一时间窗口内发送的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定。
可选地,所述准备过程时长根据所述第一时间窗口内发送的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定,包括:
所述准备过程时长根据所述至少部分信息中各信息所在的下行载波的子载波间隔,以及所述至少部分信息中各信息调度或配置的传输所在的载波的上行子载波间隔确定。
可选地,所述至少部分信息为用于调度或配置所述N个传输中至少部分传输的指示信息。
可选地,所述准备过程时长根据第一上行子载波间隔和第一下行子载波间隔确定,所述第一上行子载波间隔和第一下行子载波间隔根据第一时间窗口内的信息确定;
其中,所述第一上行子载波间隔包括以下至少一项:
配置的上行载波的子载波间隔的最大值/最小值;
所述N个传输的上行载波的子载波间隔的最大值/最小值;
第一时间窗口内触发的发射通道切换前和/或后的上行载波的子载波间隔的最大值/最小值;
其中,所述第一下行子载波间隔为第一时间窗口内用于调度或配置所述N个传输的下行载波的子载波间隔的最大值/最小值。
可选地,所述准备过程时长包括第一时间分量,所述第一时间分量为由发射通道切换带来的时间分量;
所述第一时间分量根据发射通道切换前后发射通道所在的物理单元,或者,根据发射通道切换前后进行切换的发射通道所在的物理单元确定,或者,根据终端配置的物理单元确定。
可选地,在所述第一时间窗口的结束位置之后或者第二时域位置之后,不调度或不配置所述第一时域位置之后的触发发射通道切换的传输,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
可选地,在所述第一时间窗口内发送不超过预设次数的发射通道切换触发指令,所述预设次数与子载波间隔有关。
本申请实施例提供的发射通道切换的处理方法,可以保证Tx切换过程中的正常传输,减少终端复杂度,提高吞吐量。
本申请实施例中的发射通道切换的处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的发射通道切换的处理装置能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901和存储器902,存储器902上存储有可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述发射通道切换的处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述发射通道切换的处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的 操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,处理器1010,用于基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;
其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
可选地,所述第一时域位置为所述第一传输的开始时刻,或者,所述第一传输所在的时间单元的起始位置。
其中,时间单元包括slot/subframe/sub-slot等。
可选地,所述N个传输包括以下至少一项:
N个上行传输;
N个旁链路传输;
N个调度的传输;
N个配置的传输;
N1个调度的传输和N2个配置的传输,其中,N1+N2=N。
可选地,所述N个传输满足第一条件,所述第一条件包括以下至少一项:
所述N个传输中除了所述第一传输的其他传输与所述第一传输在时域上有交叠;
所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置的差值在第一范围内;
所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置所在时间单元的起始位置的差值在所述第一范围内;
在第一信息接收时刻之后的第一时间窗口内或在至少包括所述第一信息的第一时间窗口内接收到第二信息,其中,所述第一信息用于调度或配置所述第一传输,所述第二信息用于调度或配置所述N个传输中除了所述第一传输的其他传输中的任意传输。
可选地,所述第一时间窗口的长度为协议规定或网络配置或终端上报。
可选地,所述第一时间窗口的起始位置为所述第一信息的接收时刻,所述第一时间窗口的结束位置为所述第一传输对应的第一时域位置往前偏移所述第一传输对应的准备过程时长的位置。
可选地,所述第一时间窗口的长度根据以下至少一项确定:
所述第一信息所在的载波的子载波间隔;
所述第一传输所在的载波的子载波间隔;
所述第一信息调度的参数;
发射通道切换的类型;
配置的发射通道切换的模式。
可选地,所述第一传输为所述N个传输中开始时刻最早的传输,或者,所述第一传 输为第一时间窗口前接收的第一信息调度或配置的传输。
可选地,所述处理器1010还用于:
基于N个传输中的第一传输,确定所述N个传输对应的准备过程时长;
其中,所述N个传输中除了所述第一传输的其他传输中的任意传输对应的准备过程时长均与所述第一传输对应的准备过程时长相同。
可选地,所述准备过程时长与以下至少一项有关:
所述第一传输所在的载波的子载波间隔;
调度或配置所述第一传输的第一信息所在的载波的子载波间隔;
第一时间窗口内的用于调度或配置所述N个传输中各个传输的信息所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输所在的载波的子载波间隔;
所述第一时间窗口内调度或配置的所述N个传输对应的天线端口数量;
配置的发射通道切换的模式。
可选地,所述准备过程时长根据所述第一时间窗口内的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定。
可选地,所述准备过程时长根据所述第一时间窗口内的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定,包括:
所述准备过程时长根据所述至少部分信息中各信息所在的下行载波的子载波间隔,以及所述至少部分信息中各信息调度或配置的传输所在的载波的上行子载波间隔确定。
可选地,所述至少部分信息为用于调度或配置所述N个传输中至少部分传输的信息。
可选地,所述准备过程时长根据第一上行子载波间隔和第一下行子载波间隔确定,所述第一上行子载波间隔和第一下行子载波间隔根据第一时间窗口内的信息确定;
其中,所述第一上行子载波间隔包括以下至少一项:
配置的上行载波的子载波间隔的最大值/最小值;
所述N个传输的上行载波的子载波间隔的最大值/最小值;
第一时间窗口内触发的发射通道切换前和/或后的上行载波的子载波间隔的最大值/最小值;
其中,所述第一下行子载波间隔为第一时间窗口内用于调度或配置所述N个传输的下行载波的子载波间隔的最大值/最小值。
可选地,所述准备过程时长包括第一时间分量,所述第一时间分量为由发射通道切换带来的时间分量;
所述第一时间分量根据发射通道切换前后发射通道所在的物理单元,或者,根据发射通道切换前后进行切换的发射通道所在的物理单元确定,或者,根据终端配置的物理单元确定。
其中,物理单元包括载波/资源池/频带/部分带宽BWP等。
可选地,在第二时域位置之后,终端不取消所述第一时间窗口内的发射通道切换,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
可选地,在所述第一时间窗口的结束位置之后或者第二时域位置之后,终端不被调度所述第一时域位置之后的触发发射通道切换的传输,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
可选地,所述终端不在所述第一时间窗口内接收超过预设次数的发射通道切换触发指令,所述预设次数与子载波间隔有关。
本申请实施例提供的终端,可以保证Tx切换过程中的正常传输,减少终端复杂度,提高吞吐量。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于配置和/或调度N个传输;其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络侧设备1100包括:天线1101、射频装置1102、基带装置1103、处理器1104和存储器1105。天线1101与射频装置1102连接。在上行方向上,射频装置1102通过天线1101接收信息,将接收的信息发送给基带装置1103进行处理。在下行方向上,基带装置1103对要发送的信息进行处理,并发送给射频装置1102,射频装置1102对收到的信息进行处理后经过天线1101发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1103中实现,该基带装置1103包括基带处理器。
基带装置1103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1105连接,以调用存储器1105中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1106,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1100还包括:存储在存储器1105上并可在处理器1104上运行的指令或程序,处理器1104调用存储器1105中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述发射通道切换的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者 光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述发射通道切换的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述发射通道切换的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种发射通道切换的处理系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的发射通道切换的处理方法的步骤,所述网络侧设备可用于执行如上所述的发射通道切换的处理方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (40)

  1. 一种发射通道切换的处理方法,其中,包括:
    终端基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;
    其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
  2. 根据权利要求1所述的方法,其中,所述第一时域位置为所述第一传输的开始时刻,或者,所述第一传输所在的时间单元的起始位置。
  3. 根据权利要求1所述的方法,其中,所述N个传输包括以下至少一项:
    N个上行传输;
    N个旁链路传输;
    N个调度的传输;
    N个配置的传输;
    N1个调度的传输和N2个配置的传输,其中,N1+N2=N。
  4. 根据权利要求1-3中任一项所述的方法,其中,所述N个传输满足第一条件,所述第一条件包括以下至少一项:
    所述N个传输中除了所述第一传输的其他传输与所述第一传输在时域上有交叠;
    所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置的差值在第一范围内;
    所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置所在时间单元的起始位置的差值在所述第一范围内;
    在第一信息接收时刻之后的第一时间窗口内或在至少包括所述第一信息的第一时间窗口内接收到第二信息,其中,所述第一信息用于调度或配置所述第一传输,所述第二信息用于调度或配置所述N个传输中除了所述第一传输的其他传输中的任意传输。
  5. 根据权利要求4所述的方法,其中,所述第一时间窗口的长度为协议规定或网络配置或终端上报。
  6. 根据权利要求4所述的方法,其中,所述第一时间窗口的起始位置为所述第一信息的接收时刻,所述第一时间窗口的结束位置为所述第一传输对应的第一时域位置往前偏移所述第一传输对应的准备过程时长的位置。
  7. 根据权利要求4所述的方法,其中,所述第一时间窗口的长度根据以下至少一项确定:
    所述第一信息所在的载波的子载波间隔;
    所述第一传输所在的载波的子载波间隔;
    所述第一信息调度的参数;
    发射通道切换的类型;
    配置的发射通道切换的模式。
  8. 根据权利要求1-7中任一项所述的方法,其中,所述第一传输为所述N个传输中开始时刻最早的传输,或者,所述第一传输为第一时间窗口前接收的第一信息调度或配置的传输。
  9. 根据权利要求1-8中任一项所述的方法,其中,所述方法还包括:
    所述终端基于N个传输中的第一传输,确定所述N个传输对应的准备过程时长;
    其中,所述N个传输中除了所述第一传输的其他传输中的任意传输对应的准备过程时长均与所述第一传输对应的准备过程时长相同。
  10. 根据权利要求9所述的方法,其中,所述准备过程时长与以下至少一项有关:
    所述第一传输所在的载波的子载波间隔;
    调度或配置所述第一传输的第一信息所在的载波的子载波间隔;
    第一时间窗口内的用于调度或配置所述N个传输中各个传输的信息所在的载波的子载波间隔;
    所述第一时间窗口内调度或配置的所述N个传输所在的载波的子载波间隔;
    所述第一时间窗口内调度或配置的所述N个传输对应的天线端口数量;
    配置的发射通道切换的模式。
  11. 根据权利要求9所述的方法,其中,所述准备过程时长根据所述第一时间窗口内的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定。
  12. 根据权利要求11所述的方法,其中,所述准备过程时长根据所述第一时间窗口内的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定,包括:
    所述准备过程时长根据所述至少部分信息中各信息所在的下行载波的子载波间隔,以及所述至少部分信息中各信息调度或配置的传输所在的载波的上行子载波间隔确定。
  13. 根据权利要求11所述的方法,其中,所述至少部分信息为用于调度或配置所述N个传输中至少部分传输的信息。
  14. 根据权利要求9所述的方法,其中,所述准备过程时长根据第一上行子载波间隔和第一下行子载波间隔确定,所述第一上行子载波间隔和第一下行子载波间隔根据第一时间窗口内的信息确定;
    其中,所述第一上行子载波间隔包括以下至少一项:
    配置的上行载波的子载波间隔的最大值/最小值;
    所述N个传输的上行载波的子载波间隔的最大值/最小值;
    第一时间窗口内触发的发射通道切换前和/或后的上行载波的子载波间隔的最大值/最小值;
    其中,所述第一下行子载波间隔为第一时间窗口内用于调度或配置所述N个传输的下行载波的子载波间隔的最大值/最小值。
  15. 根据权利要求9所述的方法,其中,所述准备过程时长包括第一时间分量,所述第一时间分量为由发射通道切换带来的时间分量;
    所述第一时间分量根据发射通道切换前后发射通道所在的物理单元,或者,根据发射通道切换前后进行切换的发射通道所在的物理单元确定,或者,根据终端配置的物理单元确定。
  16. 根据权利要求1-15中任一项所述的方法,其中,在第二时域位置之后,终端不取消所述第一时间窗口内的发射通道切换,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
  17. 根据权利要求1-15中任一项所述的方法,其中,在所述第一时间窗口的结束位置之后或者第二时域位置之后,终端不被调度所述第一时域位置之后的触发发射通道切换的传输,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
  18. 根据权利要求4-15中任一项所述的方法,其中,所述终端不在所述第一时间窗口内接收超过预设次数的发射通道切换触发指令,所述预设次数与子载波间隔有关。
  19. 一种发射通道切换的处理方法,其中,包括:
    网络侧设备配置和/或调度N个传输;
    其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
  20. 根据权利要求19所述的方法,其中,所述第一时域位置为所述N个传输中的第一传输的开始时刻,或者,所述N个传输中的第一传输所在的时间单元的起始位置。
  21. 根据权利要19所述的方法,其中,所述N个传输包括以下至少一项:
    N个上行传输;
    N个旁链路传输。
  22. 根据权利要求20或21所述的方法,其中,所述N个传输满足第一条件,所述第一条件包括以下至少一项:
    所述N个传输中除了所述第一传输的其他传输与所述第一传输在时域上有交叠;
    所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置的差值在第一范围内;
    所述N个传输中除了所述第一传输的其他传输的开始或结束位置,和第一传输的开始或结束位置所在时间单元的起始位置的差值在所述第一范围内;
    在第一信息发送时刻之后的第一时间窗口内或在至少包括所述第一信息的第一时间窗口内发送第二信息,其中,所述第一信息用于调度或配置所述第一传输,所述第二信息用于调度或配置所述N个传输中除了所述第一传输的其他传输中的任意传输。
  23. 根据权利要求22所述的方法,其中,所述第一时间窗口的长度为协议规定或网络配置或终端上报。
  24. 根据权利要求22所述的方法,其中,所述第一时间窗口的起始位置为所述第一信息的接收时刻,所述第一时间窗口的结束位置为所述第一传输对应的第一时域位置往 前偏移所述第一传输对应的准备过程时长的位置。
  25. 根据权利要求22所述的方法,其中,所述第一时间窗口的长度根据以下至少一项确定:
    所述第一信息所在的载波的子载波间隔;
    所述第一传输所在的载波的子载波间隔;
    所述第一信息调度或配置的参数;
    发射通道切换的类型;
    配置的发射通道切换的模式。
  26. 根据权利要求20所述的方法,其中,所述第一传输为所述N个传输中开始时刻最早的传输,或者,所述第一传输为第一时间窗口前接收的第一信息调度或配置的传输。
  27. 根据权利要求20-26中任一项所述的方法,其中,所述N个传输中除了所述第一传输的其他传输中的任意传输对应的准备过程时长均与所述第一传输对应的准备过程时长相同。
  28. 根据权利要求27所述的方法,其中,所述准备过程时长与以下至少一项有关:
    所述第一传输所在的载波的子载波间隔;
    调度或配置所述第一传输的第一信息所在的载波的子载波间隔;
    所述第一时间窗口内的用于调度或配置所述N个传输中各个传输的信息所在的载波的子载波间隔;
    所述第一时间窗口内调度或配置的所述N个传输所在的载波的子载波间隔;
    所述第一时间窗口内调度或配置的所述N个传输对应的天线端口数量;
    配置的发射通道切换的模式。
  29. 根据权利要求27所述的方法,其中,所述准备过程时长根据所述第一时间窗口内发送的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定。
  30. 根据权利要求29所述的方法,其中,所述准备过程时长根据所述第一时间窗口内发送的至少部分信息对应的发射通道切换前后的载波的子载波间隔确定,包括:
    所述准备过程时长根据所述至少部分信息中各信息所在的下行载波的子载波间隔,以及所述至少部分信息中各信息调度或配置的传输所在的载波的上行子载波间隔确定。
  31. 根据权利29所述的方法,其中,所述至少部分信息为用于调度或配置所述N个传输中至少部分传输的指示信息。
  32. 根据权利要求27所述的方法,其中,所述准备过程时长根据第一上行子载波间隔和第一下行子载波间隔确定,所述第一上行子载波间隔和第一下行子载波间隔根据第一时间窗口内的信息确定;
    其中,所述第一上行子载波间隔包括以下至少一项:
    配置的上行载波的子载波间隔的最大值/最小值;
    所述N个传输的上行载波的子载波间隔的最大值/最小值;
    第一时间窗口内触发的发射通道切换前和/或后的上行载波的子载波间隔的最大值/最小值;
    其中,所述第一下行子载波间隔为第一时间窗口内用于调度或配置所述N个传输的下行载波的子载波间隔的最大值/最小值。
  33. 根据权利要求27所述的方法,其中,所述准备过程时长包括第一时间分量,所述第一时间分量为由发射通道切换带来的时间分量;
    所述第一时间分量根据发射通道切换前后发射通道所在的物理单元,或者,根据发射通道切换前后进行切换的发射通道所在的物理单元确定,或者,根据终端配置的物理单元确定。
  34. 根据权利要求19-33中任一项所述的方法,其中,在所述第一时间窗口的结束位置之后或者第二时域位置之后,网络侧设备不调度或不配置所述第一时域位置之后的触发发射通道切换的传输,所述第二时域位置为所述第一时域位置往前偏移所述准备过程时长的位置。
  35. 根据权利要求22-33中任一项所述的方法,其中,网络侧设备在所述第一时间窗口内发送不超过预设次数的发射通道切换触发指令,所述预设次数与子载波间隔有关。
  36. 一种发射通道切换的处理装置,其中,包括:
    第一确定单元,用于基于N个传输中的第一传输,确定所述N个传输对应的第一时域位置;
    其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
  37. 一种发射通道切换的处理装置,其中,包括:
    第一处理单元,用于配置和/或调度N个传输;
    其中,N为大于等于2的整数,所述N个传输为触发发射通道切换的传输,所述N个传输中的各个传输对应的第一时域位置均相同。
  38. 一种终端,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至18任一项所述的发射通道切换的处理方法的步骤。
  39. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求19至35任一项所述的发射通道切换的处理方法的步骤。
  40. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至18任一项所述的发射通道切换的处理方法,或者实现如权利要求19至35任一项所述的发射通道切换的处理方法的步骤。
PCT/CN2023/111434 2022-08-12 2023-08-07 发射通道切换的处理方法、终端及网络侧设备 WO2024032542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210970525.2A CN117676747A (zh) 2022-08-12 2022-08-12 发射通道切换的处理方法、终端及网络侧设备
CN202210970525.2 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032542A1 true WO2024032542A1 (zh) 2024-02-15

Family

ID=89850818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111434 WO2024032542A1 (zh) 2022-08-12 2023-08-07 发射通道切换的处理方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117676747A (zh)
WO (1) WO2024032542A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567773A (zh) * 2018-08-15 2021-03-26 Oppo广东移动通信有限公司 无线通信方法、终端设备发射上行信号的方法及设备
WO2022017409A1 (zh) * 2020-07-21 2022-01-27 维沃移动通信有限公司 上行传输方法、装置及相关设备
CN114374486A (zh) * 2020-10-14 2022-04-19 维沃移动通信有限公司 Harq-ack的传输方法、终端及网络侧设备
CN114641013A (zh) * 2020-12-15 2022-06-17 维沃移动通信有限公司 信息传输方法、装置、终端及网络侧设备
WO2022152254A1 (zh) * 2021-01-14 2022-07-21 维沃移动通信有限公司 上行传输的方法、终端及网络侧设备
WO2022152176A1 (zh) * 2021-01-13 2022-07-21 维沃移动通信有限公司 传输处理方法及相关设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567773A (zh) * 2018-08-15 2021-03-26 Oppo广东移动通信有限公司 无线通信方法、终端设备发射上行信号的方法及设备
WO2022017409A1 (zh) * 2020-07-21 2022-01-27 维沃移动通信有限公司 上行传输方法、装置及相关设备
CN114374486A (zh) * 2020-10-14 2022-04-19 维沃移动通信有限公司 Harq-ack的传输方法、终端及网络侧设备
CN114641013A (zh) * 2020-12-15 2022-06-17 维沃移动通信有限公司 信息传输方法、装置、终端及网络侧设备
WO2022152176A1 (zh) * 2021-01-13 2022-07-21 维沃移动通信有限公司 传输处理方法及相关设备
WO2022152254A1 (zh) * 2021-01-14 2022-07-21 维沃移动通信有限公司 上行传输的方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Discussion on physical layer impacts for NR beyond 52.6 GHz", 3GPP DRAFT; R1-2007558, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting; 20201026 - 20201113, 16 October 2020 (2020-10-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939377 *

Also Published As

Publication number Publication date
CN117676747A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN114337947A (zh) 确定传输模式的方法、装置和通信设备
US20240022460A1 (en) Guard period determination method and apparatus, terminal and storage medium
WO2023116591A1 (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2023125906A1 (zh) 资源传输方向确定方法、装置及终端
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2024032542A1 (zh) 发射通道切换的处理方法、终端及网络侧设备
EP4195522A1 (en) Data transmission method, terminal device, and network device
JP2024510589A (ja) 上りリンク伝送方法、装置及び端末
JP2024510233A (ja) 伝送処理方法、装置及び端末
WO2024001952A1 (zh) 参数确定方法、终端及网络侧设备
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2023179618A1 (zh) 传输方法、装置、终端及存储介质
WO2023246583A1 (zh) 频域资源确定方法、终端及网络侧设备
WO2022237680A1 (zh) 上行传输时间窗的确定方法、装置、终端及网络侧设备
WO2024001985A1 (zh) 通信方法及终端
WO2023198044A1 (zh) 信息接收方法、信息发送方法、装置及设备
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2022253271A1 (zh) Srs资源发送方法、装置、用户设备及存储介质
WO2023280275A1 (zh) 传输方法、终端及网络侧设备
WO2023179753A1 (zh) 波束信息指示方法、装置、终端及网络侧设备
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2023198173A1 (zh) 确定sl定位参考信号资源的方法、终端及网络侧设备
WO2023011286A1 (zh) 反馈方法、相关设备及可读存储介质
WO2023246774A1 (zh) Sl数据传输方法、第一终端及第二终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851763

Country of ref document: EP

Kind code of ref document: A1