WO2024032522A1 - 基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法 - Google Patents

基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法 Download PDF

Info

Publication number
WO2024032522A1
WO2024032522A1 PCT/CN2023/111377 CN2023111377W WO2024032522A1 WO 2024032522 A1 WO2024032522 A1 WO 2024032522A1 CN 2023111377 W CN2023111377 W CN 2023111377W WO 2024032522 A1 WO2024032522 A1 WO 2024032522A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
foundation pit
layer
surface wave
piles
Prior art date
Application number
PCT/CN2023/111377
Other languages
English (en)
French (fr)
Inventor
牛永效
王官超
祁晓雨
李国和
齐春雨
刘占峰
许广春
黄潘
黄大中
陈承申
Original Assignee
中国铁路设计集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国铁路设计集团有限公司 filed Critical 中国铁路设计集团有限公司
Publication of WO2024032522A1 publication Critical patent/WO2024032522A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the field of engineering geological survey, and in particular to a method for calculating the soil-to-pile side pressure between double rows of piles in a foundation pit based on natural source surface waves.
  • Double-row piles are a commonly used support structure for foundation pits in railways, industrial and civil construction and other engineering projects.
  • the pressure of the soil between the piles on the pile sides is a key parameter in the design of double-row piles. At present, it is mainly done through drilling sampling, indoor testing and pre-drilling.
  • the compression modulus is calculated through in-situ testing methods such as side pressure and static cone testing or based on regional experience.
  • the present invention provides a simple, fast and highly accurate calculation method for calculating the pressure between double rows of piles in foundation pits based on natural source surface waves. Method of soil pressure on pile side.
  • a method for calculating the lateral pressure of soil on piles between double rows of piles in a foundation pit based on natural source surface waves including the following steps:
  • S1 site natural source surface wave exploration: multiple three-component node seismometers are arranged linearly at equal intervals to collect natural source surface wave data for a certain period of time;
  • S3 determine the influence coefficient ⁇ of double row piles: Among them, s is the initial row spacing of double row piles, in m; d is the diameter of the pile, in m;
  • is the influence coefficient of double row piles
  • a i and b i are soil layer influencing factors
  • v i is the surface wave velocity of the i-th layer of soil above the bottom of the foundation pit, in m/s;
  • ⁇ x is the change in horizontal distance between double rows of piles, in m;
  • is the initial stress influence coefficient
  • k is the influence coefficient of foundation pit depth
  • is the equivalent internal friction angle
  • p a is the standard value of the active earth pressure strength of the calculation point in the i-th layer of soil outside the double row pile, and the unit is kPa a .
  • step S6 the calculation formula of the foundation pit depth influence coefficient k is: Among them, ⁇ is the influence coefficient of double row piles; H is the burial depth of the foundation pit, in m.
  • step S7 the method for determining the equivalent internal friction angle ⁇ above the bottom surface of the foundation pit is:
  • v R is the equivalent surface wave velocity weighted by thickness of each soil layer above the bottom of the foundation pit, in m/s.
  • the equivalent surface wave velocity v R is calculated by the following formula:
  • vi is the surface wave velocity of the i-th layer of soil above the bottom of the foundation pit, in m/s;
  • Z i is the thickness of the i-th layer of soil above the bottom of the foundation pit, in m;
  • n is the thickness of the i-th layer of soil above the bottom of the foundation pit, in m;
  • the certain time is 1 hour.
  • step S2 with the node seismograph at the measuring point as the center, the natural source surface wave data collected by three three-component node seismometers are selected forward and backward along the direction of the observation system.
  • the method of the present invention for calculating the soil-to-pile side pressure between double rows of piles in a foundation pit is based on natural source surface waves.
  • the natural source surface wave data is collected, and the thickness of the stratum above the bottom of the foundation pit is obtained through data processing. , the number of stratum layers and surface wave velocity, and then determine the influence coefficient of double row piles, the influence factors of each soil layer above the bottom of the foundation pit, the change value of the horizontal distance between double row piles, the influence coefficient of foundation pit depth, the soil layer above the bottom of the foundation pit, etc.
  • the effective internal friction angle and initial stress influence coefficient are calculated, and then the pressure between the soil between the double row piles in the foundation pit and the pile side is calculated.
  • the present invention has the following beneficial effects:
  • the present invention directly uses the natural source surface wave survey results to calculate the soil pressure on the pile side between the double row piles in the foundation pit.
  • the calculation process is simple and fast.
  • the parameters required for the calculation are derived from the natural source surface wave survey, and no drilling or contact is required. This avoids the problems of inaccurate test results due to soil disturbance in drilling sampling and indoor geotechnical testing, difficulty in penetrating coarse-grained strata by penetration penetration, and large errors in the soil-to-pile side pressure between piles calculated based on regional experience.
  • This method has strong site adaptability, is non-destructive testing, causes little damage to the site, uses simple equipment, has low survey cost and high survey efficiency. It still has high calculation accuracy and application prospects without using empirical correction coefficients. broad.
  • This method makes full use of the advantages of natural source surface wave exploration equipment, such as being lightweight, non-destructive, high-efficiency, and not affected by site and human interference factors. It does not require hole formation, is convenient and fast in calculation, and has low cost. It can be used for clay, It has different types of soil such as sand and gravel soil, and has strong site adaptability. It has obvious advantages in areas where drilling, pre-drilling side pressure, and static cone penetration are difficult to implement in densely built cities, and has great use and promotion value. .
  • Figure 1 is a flow chart of the method of calculating the pile side pressure between soil and piles in a double row of foundation pits based on natural source surface waves according to the present invention.
  • the method of calculating the soil-to-pile side pressure between double-row piles in a foundation pit based on natural source surface waves of the present invention includes the following steps:
  • S1 Site natural source surface wave exploration: Use three-component node type seismometers, arranged linearly at equal intervals, to collect 1 hour of natural source surface wave data.
  • S2 Natural source surface wave data processing: Centering on the three-component nodal seismograph at the measuring point, select the natural source surface wave data collected by 3 seismometers before and after the direction of the observation system, and use the nodal seismometer at the measuring point to For the virtual shot point position, the measuring point position dispersion curve is extracted through interference theory, and the thickness Z i of each layer of soil above the bottom of the foundation pit, the number of stratigraphic layers n and the surface wave velocity v i are obtained by inversion, and the type of each layer of soil is determined. .
  • s is the initial row spacing of double row piles, the unit is m;
  • d is the diameter of the pile in m.
  • is the influence coefficient of double row piles
  • H is the depth of the foundation pit, the unit is m.
  • v i is the surface wave velocity of the i-th layer of soil above the bottom of the foundation pit, in m/s;
  • Z i is the thickness of the i-th layer of soil above the bottom of the foundation pit, in m;
  • n is the number of soil layers above the bottom of the foundation pit.
  • is the influence coefficient of double row piles
  • a i and b i are soil layer influencing factors, which are related to soil type
  • v i is the surface wave velocity of the i-th layer of soil above the bottom of the foundation pit, in m/s;
  • ⁇ x is the change in horizontal distance between double rows of piles, in m;
  • is the initial stress influence coefficient
  • k is the influence coefficient of foundation pit depth
  • is the equivalent internal friction angle
  • p a is the standard value of the active earth pressure strength of the calculation point in the i-th layer of soil outside the double row pile, and the unit is kPa a .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Structural Engineering (AREA)
  • Algebra (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法,包括:采集天然源面波数据,通过数据处理得到基坑底面以上地层厚度、地层层数和面波速度,进而确定双排桩影响系数、基坑底面以上各土层影响因子、双排桩间水平距离的变化值、基坑深度影响系数、基坑底面以上土层等效内摩擦角、初始应力影响系数,再利用公式直接计算基坑双排桩桩间土对桩侧的压力。该方法充分利用了天然源面波勘探设备轻便、无损、效率高、不受场地和人文干扰因素影响等优点,无需成孔、计算方便快捷、成本低,可用于粘土、砂土、碎石土等不同类型的土体且场地适应性强,在钻探、预钻式旁压、静力触探实施困难地区优势明显,具有较大使用推广价值。

Description

基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法 技术领域
本发明涉及工程地质勘察领域,尤其是涉及一种基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法。
背景技术
双排桩是铁路、工民建等工程基坑常用的一种支护结构,桩间土对桩侧的压力是双排桩设计的关键参数,目前主要是通过钻探取样室内试验及预钻式旁压、静力触探等原位测试方法获取压缩模量计算或者根据地区经验获得。
城市地区由于建筑密集,环保要求和赔偿费高,钻探取样实施难度大,粗颗粒土地层取样困难,且通过室内试验获取的压缩模量离散性较高;预钻式旁压同样需成孔,成本高;静力触探主要适合于细颗粒土,在砂土、碎石土等粗颗粒土层勘察效果较差;同时,根据地区经验计算的双排桩桩间土对桩侧的压力误差较大。
发明内容
针对现有基坑双排桩桩间土对桩侧压力计算方法存在的困难,本发明提供一种计算过程简单、快捷且计算精度较高的基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法。
为此,本发明采用以下技术方案:
一种基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法,包括以下步骤:
S1,场地天然源面波勘探:将多个三分量节点式地震仪等间距线性排列布置,用于采集一定时间的天然源面波数据;
S2,天然源面波数据处理:以测点处节点式地震仪为中心,沿观测系统方向前后各选取相同数量的多个三分量节点式地震仪采集的天然源面波数据,并以测点处的三分量节点式地震仪为虚拟炮点位置,通过干涉理论提取测点位置频散曲线,反演得到基坑底面以上每层土的厚度Zi、地层层数n和面波速度vi,并确定 每层土的类型;
S3,确定双排桩影响系数λ:其中,s为双排桩的初始排间距,单位为m;d为桩的直径,单位为m;
S4,确定基坑底面以上各土层的影响因子ai和bi
S5,测量双排桩间的当前排间距,得到排间距的变化值Δx:当排间距减小时Δx为正值,当排间距增加时,取Δx=0;
S6,计算基坑深度影响系数k;
S7,计算基坑底面以上土层等效内摩擦角φ;
S8,计算初始应力影响系数ψ;
S9,通过公式计算第i层土中计算点处双排桩桩间土对桩侧的压力,其中:
λ为双排桩影响系数;
ai、bi为土层影响因子;
vi为基坑底面以上第i层土体的面波速度,单位为m/s;
Δx为双排桩间水平距离的变化值,单位为m;
ψ为初始应力影响系数;
k为基坑深度影响系数;
φ为等效内摩擦角;
pa为双排桩外侧第i层土中计算点的主动土压力强度标准值,单位为kPa
其中,步骤S4中土体类型影响因子ai和bi的确定方法为:当第i层土为粘土时,ai=0.000068,bi=2.194692;当第i层土为砂土时,ai=0.0145,bi=1.2098;当第i层土为碎石土时,ai=0.3378,bi=0.8078。
步骤S6中,基坑深度影响系数k的计算公式为其中,λ为双排桩影响系数;H为基坑埋深,单位为m。
步骤S7中,基坑底面以上等效内摩擦角φ的确定方法为, 其中vR为基坑底面以上各土层按厚度加权的等效面波速度,单位为m/s。所述等效面波速度vR通过下式计算:
其中,vi为基坑底面以上第i层土体的面波速度,单位为m/s;Zi为基坑底面以上第i层土体的厚度,单位为m;n为基坑底面以上土层的层数。
步骤S8中,初始应力影响系数ψ根据地区观测资料及经验确定,无经验地区按ψ=1.0计算。
优选的是,步骤S1中,所述一定时间为1小时。
在本发明的一个实施例中,步骤S2中,以测点处节点式地震仪为中心,沿观测系统方向前后各选取3个三分量节点式地震仪采集的天然源面波数据。
本发明的基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法,通过在地面设计合理的观测系统,采集天然源面波数据,通过数据处理得到基坑底面以上地层厚度、地层层数和面波速度,进而确定双排桩影响系数、基坑底面以上各土层影响因子、双排桩间水平距离的变化值、基坑深度影响系数、基坑底面以上土层等效内摩擦角、初始应力影响系数,然后计算基坑双排桩桩间土对桩侧的压力。
与现有技术相比,本发明具有以下有益效果:
1.本发明直接应用天然源面波勘探结果进行基坑双排桩桩间土对桩侧压力的计算,计算过程简单、快捷,计算所需参数来源于天然源面波勘察,无需钻探、触探等,从而避免了钻探取样、室内土工试验由于土体扰动导致测试结果不准、触探难以穿透粗颗粒地层以及根据地区经验计算的桩间土对桩侧压力误差较大的问题。
2.该方法场地适应性强,为无损检测,对场地破坏小,所用设备简单,勘察成本低,勘察效率高,在不利用经验修正系数的情况下,仍然具有较高的计算精度,应用前景广阔。
3.该方法充分利用了天然源面波勘探设备轻便、无损、效率高、不受场地和人文干扰因素影响等优点,无需成孔、计算方便快捷、成本低,可用于粘土、 砂土、碎石土等不同类型的土体,且场地适应性强,在建筑密集的城市等钻探、预钻式旁压、静力触探实施困难地区优势明显,具有较大的使用推广价值。
附图说明
图1为本发明的基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法的流程图。
具体实施方式
下面结合附图和实施例对本发明的计算方法进行详细说明。
实施例一
如图1所示,本发明的基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法包括以下步骤:
S1:场地天然源面波勘探:采用三分量节点式地震仪,等间距线性排列布置,采集1小时的天然源面波数据。
S2:天然源面波数据处理:以测点处三分量节点式地震仪为中心,沿观测系统方向前后各选取3个地震仪采集的天然源面波数据,并以测点处节点式地震仪为虚拟炮点位置,通过干涉理论提取测点位置频散曲线,反演得到基坑底面以上每层土的厚度Zi、地层层数n和面波速度vi,并确定每层土的类型。
S3:利用公式计算双排桩影响系数λ,其中:
s为双排桩的初始排间距,单位为m;
d为桩的直径,单位为m。
S4:确定基坑底面以上各土层影响因子ai和bi,当第i层土为粘土时,ai=0.000068,bi=2.194692;当第i层土为砂土时,ai=0.0145,bi=1.2098;当第i层土为碎石土时,ai=0.3378,bi=0.8078。
S5:测量双排桩间的当前排间距,得到排间距的变化值Δx:当排间距减小时Δx为正值,当排间距增加时,取Δx=0。
S6:计算基坑深度影响系数k,根据公式计算,其中:
λ为双排桩影响系数;
H为基坑埋深,单位为m。
S7:计算基坑底面以上土层等效内摩擦角φ,根据公式计算,其中,vR为基坑底面以上各土层按厚度加权的等效面波速度,根据公式计算,其中:
vi为基坑底面以上第i层土体的面波速度,单位为m/s;
Zi为基坑底面以上第i层土体的厚度,单位为m;
n为基坑底面以上土层的层数。
S8:计算初始应力影响系数ψ,根据地区观测资料及经验确定,无经验地区按ψ=1.0计算。
S9:通过将上述各参数的值代入公式计算第i层土中计算点处双排桩桩间土对桩侧的压力,其中:
λ为双排桩影响系数;
ai、bi为土层影响因子,其与土体类型有关;
vi为基坑底面以上第i层土体的面波速度,单位为m/s;
Δx为双排桩间水平距离的变化值,单位为m;
ψ为初始应力影响系数;
k为基坑深度影响系数;
φ为等效内摩擦角;
pa为双排桩外侧第i层土中计算点的主动土压力强度标准值,单位为kPa

Claims (8)

  1. 一种基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法,其特征在于,包括以下步骤:
    S1,场地天然源面波勘探:将多个三分量节点式地震仪等间距线性排列布置,用于采集一定时间的天然源面波数据;
    S2,天然源面波数据处理:以测点处节点式地震仪为中心,沿观测系统方向前后各选取相同数量的多个三分量节点式地震仪采集的天然源面波数据,并以测点处的三分量节点式地震仪为虚拟炮点位置,通过干涉理论提取测点位置频散曲线,反演得到基坑底面以上每层土的厚度Zi、地层层数n和面波速度vi,并确定每层土的类型;
    S3,确定双排桩影响系数λ:其中,s为双排桩的初始排间距,单位为m;d为桩的直径,单位为m;
    S4,确定基坑底面以上各土层的影响因子ai和bi
    S5,测量双排桩间的当前排间距,得到排间距的变化值Δx:当排间距减小时Δx为正值,当排间距增加时,取Δx=0;
    S6,计算基坑深度影响系数k;
    S7,计算基坑底面以上土层等效内摩擦角φ;
    S8,计算初始应力影响系数ψ;
    S9,通过公式计算第i层土中计算点处双排桩桩间土对桩侧的压力,其中:
    λ为双排桩影响系数;
    ai、bi为土层影响因子;
    vi为基坑底面以上第i层土体的面波速度,单位为m/s;
    Δx为双排桩间水平距离的变化值,单位为m;
    ψ为初始应力影响系数;
    k为基坑深度影响系数;
    φ为等效内摩擦角;
    pa为双排桩外侧第i层土中计算点的主动土压力强度标准值,单位为kPa
  2. 根据权利要求1所述的方法,其特征在于,步骤S4中,土体类型影响因子ai和bi的确定方法为:当第i层土为粘土时,ai=0.000068,bi=2.194692;当第i层土为砂土时,ai=0.0145,bi=1.2098;当第i层土为碎石土时,ai=0.3378,bi=0.8078。
  3. 根据权利要求1所述的方法,其特征在于:步骤S6中,基坑深度影响系数k通过下式计算:
    其中,λ为双排桩影响系数;H为基坑埋深,单位为m。
  4. 根据权利要求1所述的方法,其特征在于,步骤S7中,基坑底面以上等效内摩擦角φ的确定方法为,其中vR为基坑底面以上各土层按厚度加权的等效面波速度,单位为m/s。
  5. 根据权利要求4所述的方法,其特征在于,所述等效面波速度vR通过下式计算:
    其中,vi为基坑底面以上第i层土体的面波速度,单位为m/s;Zi为基坑底面以上第i层土体的厚度,单位为m;n为基坑底面以上土层的层数。
  6. 根据权利要求1所述的方法,其特征在于:步骤S8中,初始应力影响系数ψ根据地区观测资料及经验确定,无经验地区按ψ=1.0计算。
  7. 根据权利要求1所述的方法,其特征在于:步骤S1中,所述一定时间为1小时。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,步骤S2中,以测点处三分量节点式地震仪为中心,沿观测系统方向前后各选取3个地震仪采集的天然源面波数据。
PCT/CN2023/111377 2022-08-11 2023-08-07 基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法 WO2024032522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210958055.8A CN115033973B (zh) 2022-08-11 2022-08-11 基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法
CN202210958055.8 2022-08-11

Publications (1)

Publication Number Publication Date
WO2024032522A1 true WO2024032522A1 (zh) 2024-02-15

Family

ID=83130295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111377 WO2024032522A1 (zh) 2022-08-11 2023-08-07 基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法

Country Status (2)

Country Link
CN (1) CN115033973B (zh)
WO (1) WO2024032522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033973B (zh) * 2022-08-11 2022-10-25 中国铁路设计集团有限公司 基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109794A1 (en) * 2007-10-25 2009-04-30 Schlumberger Technology Corporation In-situ determination of yield stress state of earth formations
CN111239798A (zh) * 2020-03-16 2020-06-05 中油奥博(成都)科技有限公司 光纤声波传感井地地震数据联采系统和井驱数据处理方法
CN111722281A (zh) * 2020-06-10 2020-09-29 中国铁路设计集团有限公司 基于面波勘探技术的基础沉降计算方法
CN113640877A (zh) * 2021-08-11 2021-11-12 中国铁路设计集团有限公司 一种计算土水平反力系数的比例系数的方法及系统
CN115033973A (zh) * 2022-08-11 2022-09-09 中国铁路设计集团有限公司 基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2004073C2 (nl) * 2010-01-07 2011-07-11 Geoconsult B V Werkwijze voor het plaatsen van een schroefboorpaal.
CN106021753B (zh) * 2016-05-27 2019-01-11 中南勘察设计院(湖北)有限责任公司 一种双排桩支护结构抗倾覆稳定性计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109794A1 (en) * 2007-10-25 2009-04-30 Schlumberger Technology Corporation In-situ determination of yield stress state of earth formations
CN111239798A (zh) * 2020-03-16 2020-06-05 中油奥博(成都)科技有限公司 光纤声波传感井地地震数据联采系统和井驱数据处理方法
CN111722281A (zh) * 2020-06-10 2020-09-29 中国铁路设计集团有限公司 基于面波勘探技术的基础沉降计算方法
CN113640877A (zh) * 2021-08-11 2021-11-12 中国铁路设计集团有限公司 一种计算土水平反力系数的比例系数的方法及系统
CN115033973A (zh) * 2022-08-11 2022-09-09 中国铁路设计集团有限公司 基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法

Also Published As

Publication number Publication date
CN115033973B (zh) 2022-10-25
CN115033973A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN102866417A (zh) 一种地下溶洞地震跨孔ct探测及层析成像装置及方法
Mucciarelli et al. Peculiar earthquake damage on a reinforced concrete building in San Gregorio (L’Aquila, Italy): site effects or building defects?
CN111273375B (zh) 一种应用于缺水地区浅埋地下工程的地质勘察方法
WO2024032522A1 (zh) 基于天然源面波计算基坑双排桩桩间土对桩侧压力的方法
Cox et al. A Direct-Push Crosshole (DPCH) test method for the in situ evaluation of high-resolution P-and S-wave velocities
Zhang et al. Crustal structure across the Three Gorges area of the Yangtze platform, central China, from seismic refraction/wide-angle reflection data
CN107065014A (zh) 一种基于微动探测结合地质钻探的地铁区间孤石群探测方法
CN111856551A (zh) 浅层横向高分辨率瑞雷波勘探方法及系统
CN105093314B (zh) 一种测定微地震震源的方法
CN104749630B (zh) 构建微地震监测速度模型的方法
CN106324682A (zh) 一种应用于冻土层地区的表层结构调查方法
Massimiliano et al. Integrated subsoil model for seismic microzonation in the Central Archaeological Area of Rome (Italy)
CN106149770A (zh) 灌注桩桩基施工期间同步进行的大直径灌注桩孔壁岩体完整性探测方法
Khan et al. Correlations between SPT, CPT, and Vs for reclaimed lands near Dubai
Pegah et al. Evaluating the overconsolidation ratios and peak friction angles of granular soil deposits using noninvasive seismic surveying
Sazal et al. Geophysical characterization of the Carl Blackwell earth-fill dam: Stillwater, Oklahoma, USA
Sugimoto et al. RESEARCH OF DAMAGED CONDITION BY THE 2016 KUMAMOTO EARTHQUAKE AND GROUND INVESTIGATION ON STONE WALLS AND ERATH STRUCTURES IN KUMAMOTO CASTLE
HASAN et al. Correlation of Shear Wave Velocity with SPT-N for a Tower-Building Site at Erbil City
JP5330662B2 (ja) 地質構造調査システム及びその方法
Egwuonwu et al. 2D near-surface litho-structural geophysical investigation at the Vicinities of two gully-erosion/landslide sites in South—Eastern Nigeria
Larsson et al. Settlements and shear strength increase below embankments-long-term observations and measurement of shear strength increase by seismic cross-hole tomography
Molnar et al. Comparison of geophysical shear-wave velocity methods
Karaman et al. Identification of karst features using seismic P-wave tomography and resistivity anisotropy measurements
CN113759422B (zh) 一种地下异常体探测方法
Buckley et al. Multi-method In Situ Geophysical Testing in a High Porosity Chalk Mass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851743

Country of ref document: EP

Kind code of ref document: A1