WO2024032451A1 - 通信的方法、装置和系统 - Google Patents

通信的方法、装置和系统 Download PDF

Info

Publication number
WO2024032451A1
WO2024032451A1 PCT/CN2023/110896 CN2023110896W WO2024032451A1 WO 2024032451 A1 WO2024032451 A1 WO 2024032451A1 CN 2023110896 W CN2023110896 W CN 2023110896W WO 2024032451 A1 WO2024032451 A1 WO 2024032451A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
configuration
indication information
srb
network device
Prior art date
Application number
PCT/CN2023/110896
Other languages
English (en)
French (fr)
Inventor
潘晓丹
彭文杰
王瑞
胡星星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032451A1 publication Critical patent/WO2024032451A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communication technology, and more specifically, to a communication method, device and system.
  • the user equipment In a scenario where the user equipment (user equipment, UE) can support the signaling radio bearer (SRB), the user equipment can transmit corresponding data through the SRB.
  • the user equipment switches to a scenario that cannot support the SRB, the user equipment cannot perform subsequent processing on the data that should be transmitted through the SRB, affecting the efficiency of the system.
  • the measurement results of the QoE measurement can be reported through SRB4.
  • the measurement results originally reported through SRB4 cannot be reported normally.
  • the network device delivers QoE measurement configuration to the UE and configures SRB4 for the UE.
  • the UE performs QoE measurement according to the QoE measurement configuration, and sends the QoE measurement results to the network device through SRB4.
  • the UE (such as a remote UE) later communicates with the network device through another UE (such as a relay UE), that is, the UE communicates with the network device through an indirect link, due to the The data of SRB4 cannot be relayed and transmitted through the relay UE, and the QoE measurement results originally reported through SRB4 cannot be reported normally at this time, affecting the efficiency of the system.
  • the present application provides a communication method, device and system, which improves system efficiency by configuring a first configuration and/or a first signaling wireless bearer improvement on a terminal device.
  • the first aspect provides a communication method.
  • the method can be executed by a device, or it can also be executed by a component of the device (such as a chip or a circuit). There is no limitation on this.
  • the first method is used below.
  • the terminal device execution is used as an example for explanation.
  • the method may include: the first terminal device receiving first indication information, the first indication information being used to indicate that the first terminal device no longer supports transmitting the first message generated according to the first configuration through the first signaling wireless bearer; the first terminal device The device receives second instruction information, and the second instruction information is used to instruct the first terminal device to configure the first configuration and/or the first signaling radio bearer; the first terminal device configures the first configuration and/or the first signaling radio bearer according to the second instruction information. Signaling radio bearer.
  • the first terminal device when the first terminal device cannot support transmitting the first message generated according to the first configuration through the first SRB, the first terminal device is configured to configure the first SRB and/or the first configuration to avoid the occurrence of the first message. It is necessary to overcome the contradiction between the first SRB transmission and the inability of the first terminal device to support the first SRB data transmission, thereby improving the efficiency of the system.
  • configuring the first configuration and/or the "configuration" in the first SRB may include: adding, modifying, retaining or releasing, etc.
  • Instructing the first terminal device to configure the first SRB can also be understood as instructing the first terminal device to configure the first SRB.
  • the second indication information may be generated by the first network device.
  • the second indication information may be indicated in a full configuration (full configuration) manner.
  • the first network device may generate RRC configuration information.
  • the RRC configuration information carries a full configuration indication and indicates the first configuration and/or the first SRB configuration.
  • the second indication information may be indicated through additional configuration (delta configuration).
  • the second indication information may be indicated in the form of one or more information elements.
  • the first network device may generate RRC configuration information and indicate adding, modifying, or releasing the first configuration and/or the first SRB through one or more information elements in the RRC configuration information. If the RRC configuration information does not carry any configuration indication about the first configuration and/or the first SRB, the terminal device will retain the original first configuration and/or the first SRB configuration information, and configure it accordingly.
  • the first indication information is used to instruct the first terminal device to switch from communicating through a direct link to communicating through an indirect link
  • the first configuration is a quality of experience QoE measurement configuration
  • the first signaling wireless bearer SRB4 is the signaling radio bearer.
  • the first message includes the measurement results of the QoE measurements.
  • the first terminal device configures the first configuration and/or the first signaling radio bearer according to the second instruction information, including: the first terminal device adds the first configuration according to the second instruction information, and the first terminal device The first configuration is modified according to the second instruction information, the first terminal device retains the first configuration according to the second instruction information, or the first terminal device releases the first configuration according to the second instruction information.
  • the first terminal device configures the first configuration and/or the first signaling radio bearer according to the second instruction information, including: the first terminal device adds the first signaling radio bearer according to the second instruction information; A terminal device modifies the first signaling radio bearer according to the second instruction information, the first terminal device reserves the first signaling radio bearer according to the second instruction information, or the first terminal device releases the first signaling radio bearer according to the second instruction information.
  • the first terminal device configuring the first configuration and/or the first signaling radio bearer according to the second indication information includes: the first terminal device releasing the first configuration and the first signaling radio bearer.
  • the first terminal device may release the first configuration and the first configuration.
  • the first signaling radio bearer If before the first terminal device receives the first indication information, the first terminal device has established the first SRB and stored the first configuration, after receiving the first indication information, the first terminal device may release the first configuration and the first configuration.
  • the first signaling radio bearer
  • the first terminal device can release the first configuration, no longer generate data according to the first configuration, and does not need to transmit the first message including the data through the first SRB, avoiding the need for the first message to be transmitted through the first SRB.
  • the first terminal device cannot support the contradiction between the first SRB data transmission, thereby improving the efficiency of the system.
  • the above solution can release the cache of the first terminal device and avoid waste of storage resources.
  • the first terminal device configuring the first configuration and/or the first signaling radio bearer according to the second instruction information includes: the first terminal device releases the first configuration according to the second instruction information, and the first terminal device Perform any of the following: the first terminal device adds the first signaling radio bearer according to the second instruction information, the first terminal device modifies the first signaling radio bearer according to the second instruction information, and the first terminal device retains the first signaling radio bearer according to the second instruction information.
  • the first signaling radio bearer includes: the first terminal device releases the first configuration according to the second instruction information, and the first terminal device Perform any of the following: the first terminal device adds the first signaling radio bearer according to the second instruction information, the first terminal device modifies the first signaling radio bearer according to the second instruction information, and the first terminal device retains the first signaling radio bearer according to the second instruction information.
  • the first signaling radio bearer includes: the first terminal device releases the first configuration according to the second instruction information, and the first terminal device Perform any of the following: the first terminal device add
  • the first terminal device may release the first configuration after receiving the first indication information.
  • the first terminal device can release the first configuration, no longer generate data according to the first configuration, and does not need to transmit the first message including the data through the first SRB, avoiding the need for the first message to be transmitted through the first SRB to communicate with the first terminal.
  • the device cannot support the contradiction between the first SRB data transmission, thus improving the efficiency of the system.
  • the above solution can release the cache of the first terminal device and avoid waste of storage resources.
  • the method further includes: the second protocol layer of the first terminal device sends the first configuration to the first protocol layer of the first terminal device; the first protocol layer obtains the first data according to the first configuration, and the first protocol layer obtains the first data according to the first configuration. One protocol layer does not submit the first data to the second protocol layer.
  • the second protocol layer of the first terminal device may send indication information to the first protocol layer of the first terminal device, instructing the first protocol layer not to submit the first data to the second protocol layer.
  • the first terminal device can obtain the first data according to the first configuration, and the first protocol layer does not submit the first data to the second protocol layer to avoid the situation where the first message needs to be transmitted through the first SRB and the first terminal device cannot Supports conflicting data transmission between the first SRB, thereby improving system efficiency.
  • the method further includes: the second protocol layer of the first terminal device sends the first configuration to the first protocol layer of the first terminal device; the first protocol layer obtains the first data according to the first configuration; The protocol layer submits the first data to the second protocol layer of the first terminal device, and the access layer does not report the first message, and the first message includes the first data.
  • the first protocol layer of the first terminal device may submit the acquired first data to the second protocol layer, and the second protocol layer does not report based on the fact that the first terminal device currently does not support the first SRB.
  • the first protocol layer of the first terminal device can obtain the first data according to the first configuration and submit it to the second protocol layer.
  • the second protocol layer does not report the first data, thereby avoiding the need for the first message to pass through
  • the contradiction between the first SRB transmission and the inability of the first terminal device to support the first SRB data transmission improves the efficiency of the system.
  • the method further includes: the first terminal device generates first data according to the first configuration, stores the first data, and A message includes first data.
  • the first terminal device when the first terminal device no longer supports the first SRB, the first terminal device can still obtain the first data according to the first configuration and save the first data. In this way, when the first terminal device switches from not supporting the first SRB to being able to support the first SRB In this scenario, the cached first data can be reported in time.
  • the first data is generated by the first protocol layer of the first terminal device according to the first configuration, the first configuration is submitted to the first protocol layer by the second protocol layer of the first terminal device, and the first Data is stored in the first protocol layer.
  • the first terminal device generates the first data according to the first configuration and stores the first data, including: the second protocol layer of the first terminal device sends the first configuration to the first protocol layer of the first terminal device, and the first protocol The layer generates first data according to the first configuration and stores the first data.
  • the first data is generated by the first protocol layer of the first terminal device according to the first configuration, the first configuration is submitted to the first protocol layer by the second protocol layer of the first terminal device, and the first The data is stored in the second protocol layer of the first terminal device, and the first data is submitted from the first protocol layer to the second protocol layer.
  • the first terminal device generates the first data according to the first configuration and stores the first data, including: the second protocol layer of the first terminal device sends the first configuration to the first protocol layer of the first terminal device, and the first protocol The first protocol layer generates first data according to the first configuration; the first protocol layer submits the first data to the second protocol layer; and the second protocol layer of the first terminal device stores the first data.
  • the first protocol layer includes an application layer.
  • the second protocol layer includes an access layer or a radio resource control layer.
  • the method further includes: discarding the first data when the storage duration of the first data exceeds the timing duration.
  • the timing duration may be determined by the first terminal device.
  • the scheduled duration can also be specified by the agreement.
  • the timing duration may also be indicated by the first network device.
  • the method further includes: the first terminal device receiving third indication information, the third indication information being used to indicate that the first terminal device can support transmission of the first message through the first signaling wireless bearer; the first terminal device Receive fourth instruction information, the fourth instruction information is used to instruct the first terminal device to add the first signaling radio bearer, modify the first signaling radio bearer, or retain the first signaling radio bearer; the first terminal device passes the first signaling The radio bearer transmits the first message.
  • the first terminal device when the first terminal device cannot support the first SRB, if the first terminal device stores data generated according to the first configuration, the first terminal device switches to a scenario that can support the first SRB. time, the data cached by the first terminal device can be uploaded in time, so that the data during the period that cannot be reported can be updated in time, which improves the efficiency of the system.
  • the third indication information is used to instruct the first terminal device to switch from communicating through an indirect link to communicating through a direct link.
  • the first message is generated by the second protocol layer, the first message includes first data, and the first data is submitted to the second protocol layer by the first protocol layer that stores the first data.
  • the first terminal device transmits the first message through the first signaling wireless bearer, including: the first protocol layer delivers the first data stored in the first protocol layer to the second protocol layer; the second protocol layer generates the first message , the first message includes the first data; the second protocol layer transmits the first message through the first signaling wireless bearer.
  • the first message is generated by the second protocol layer, the first message includes first data, and the first data is stored in the second protocol layer.
  • the first terminal device transmits the first message through the first signaling wireless bearer, including: the second protocol layer generates the first message, the first message includes the first data stored in the second protocol layer; the second protocol layer transmits the first message through the first signaling wireless bearer.
  • the first signaling radio bearer transmits the first message.
  • the second aspect provides a communication method.
  • the method can be executed by a device, or can also be executed by a component of the device (such as a chip or a circuit). There is no limitation on this.
  • the method will be described as follows: Network device execution is used as an example for explanation.
  • the method may include: the first network device receiving fifth indication information, the fifth indication information indicating that the first terminal device no longer supports transmitting the first message generated according to the first configuration through the first signaling wireless bearer; the first network device sends The second indication information is used to instruct the first terminal device to configure the first configuration and/or the first signaling radio bearer.
  • the first terminal device when the first terminal device cannot support transmitting the first message generated according to the first configuration through the first SRB, the first terminal device is configured to configure the first SRB and/or the first configuration to avoid the occurrence of the first message. It is necessary to overcome the contradiction between the first SRB transmission and the inability of the first terminal device to support the first SRB data transmission, thereby improving the efficiency of the system.
  • the first network device receives fifth indication information from the third network device.
  • the first network device sends second indication information to the third network device.
  • the third network device sends the second indication information to the first terminal device.
  • the fifth indication information is used to instruct the first terminal device to switch communication through the direct link to communication through the non-direct link.
  • the first configuration is the quality of experience QoE measurement configuration
  • the first signaling radio bearer is signaling radio bearer SRB4
  • the link between the first network device and the first terminal device is an indirect link road.
  • the second instruction information is used to instruct: the first terminal device adds the first configuration, the first terminal device modifies the first configuration, the first terminal device retains the first configuration, or the first terminal device releases the first configuration.
  • the first terminal device adds the first configuration
  • the first terminal device modifies the first configuration
  • the first terminal device retains the first configuration
  • the first terminal device releases the first configuration.
  • One configuration is used to instruct: the first terminal device adds the first configuration, the first terminal device modifies the first configuration, the first terminal device retains the first configuration, or the first terminal device releases the first configuration.
  • the second indication information is used to instruct: the first terminal device adds the first signaling radio bearer, the first terminal device modifies the first signaling radio bearer, and the first terminal device retains the first signaling radio bearer. , or the first terminal device releases the first signaling radio bearer.
  • the method further includes: the first network device sending sixth instruction information to the management device, where the sixth instruction information is used to instruct to stop reporting the first message.
  • a communication method is provided.
  • the method can be executed by a device, or can also be executed by a component of the device (such as a chip or a circuit). There is no limitation on this.
  • the second method is used below. Network device execution is used as an example for explanation.
  • the method may include: the second network device receiving seventh indication information, the seventh indication information being used to indicate that the first terminal device can support transmission of the first message generated according to the first configuration through the first signaling wireless bearer; the second network device Send fourth instruction information, the fourth instruction information is used to instruct the first terminal device to add the first signaling radio bearer, modify the first signaling radio bearer, or retain the first signaling radio bearer; the second network device receives the first signaling radio bearer from the first terminal device.
  • the device transmits a first message through a first signaling wireless bearer, the first message includes first data, and the first data is generated by the first terminal device according to the first configuration before receiving the fourth indication information.
  • the first terminal device when the first terminal device cannot support the first SRB, if the first terminal device stores data generated according to the first configuration, the first terminal device switches to a scenario that can support the first SRB. time, the data cached by the first terminal device can be uploaded in time, so that the data during the period that cannot be reported can be updated in time, which improves the efficiency of the system.
  • the second network device may receive seventh indication information from the fourth network device.
  • the second network device sends fourth indication information to the fourth network device.
  • the fourth network device may send the fourth indication information to the first terminal device through the relay terminal device.
  • the seventh instruction information is used to instruct the first terminal device to switch from communicating through an indirect link to communicating through a direct link. After the switching is completed, the communication between the second network device and the first terminal device The link between them is a direct link.
  • the method further includes: the second network device sending eighth instruction information to the management device, where the eighth instruction information is used to instruct to resume reporting of the first message.
  • the fourth aspect provides a communication method.
  • This method can be executed by a device, or can also be executed by a component of the device (such as a chip or a circuit). There is no limitation on this.
  • the third method will be used below. Network device execution is used as an example for explanation.
  • the method may include: the third network device sends fifth indication information to the first network device, and the fifth indication information indicates that the first terminal device no longer supports transmission of the first message generated according to the first configuration through the first signaling wireless bearer;
  • the third network device receives the second instruction information sent by the first network device, and the second instruction information is used to instruct the first terminal device to configure the first configuration and/or the first signaling wireless bearer; the third network device sends a message to the first terminal device. Send the second instruction message.
  • the fifth indication information is used to instruct the first terminal device to switch from communicating through a direct link to communicating through an indirect link
  • the first configuration is a quality of experience QoE measurement configuration
  • the first signaling wireless bearer It is the signaling radio bearer SRB4.
  • the link between the third network device and the first terminal device is a direct link.
  • the link between the first network device and the first terminal device It is an indirect link.
  • the second instruction information is used to instruct: the first terminal device adds the first configuration, the first terminal device modifies the first configuration, the first terminal device retains the first configuration, or the first terminal device releases the first configuration.
  • the first terminal device adds the first configuration
  • the first terminal device modifies the first configuration
  • the first terminal device retains the first configuration
  • the first terminal device releases the first configuration.
  • One configuration is used to instruct: the first terminal device adds the first configuration, the first terminal device modifies the first configuration, the first terminal device retains the first configuration, or the first terminal device releases the first configuration.
  • the second indication information is used to instruct: the first terminal device adds the first signaling radio bearer, the first terminal device modifies the first signaling radio bearer, and the first terminal device retains the first signaling radio bearer. , or the first terminal device releases the first signaling radio bearer.
  • the method further includes: the third network device sending sixth instruction information to the management device, where the sixth instruction information is used to instruct to stop reporting the first message.
  • a communication method is provided.
  • the method can be executed by a device, or can also be executed by a component of the device (such as a chip or a circuit).
  • a component of the device such as a chip or a circuit.
  • the method will be described as follows: Network device execution is used as an example for explanation.
  • the method may include: the first network device determines that the first terminal device no longer supports transmission of the first message generated according to the first configuration through the first signaling wireless bearer; the first network device sends second indication information to the first terminal device, The second indication information is used to instruct the first terminal device to configure the first configuration and/or the first signaling radio bearer.
  • the first network device receives a measurement report sent by the first terminal device, and the first network device may determine based on the measurement report that the first terminal device no longer supports transmission of the first signal generated according to the first configuration through the first signaling radio bearer. A message.
  • the first network device determines that the first terminal device switches from communicating through a direct link to communicating through an indirect link, the first configuration is a quality of experience QoE measurement configuration, and the first signaling wireless bearer is a signaling Let the radio bear SRB4.
  • the second instruction information is used to instruct: the first terminal device adds the first configuration, the first terminal device modifies the first configuration, the first terminal device retains the first configuration, or the first terminal device releases the first configuration.
  • the first terminal device adds the first configuration
  • the first terminal device modifies the first configuration
  • the first terminal device retains the first configuration
  • the first terminal device releases the first configuration.
  • One configuration is used to instruct: the first terminal device adds the first configuration, the first terminal device modifies the first configuration, the first terminal device retains the first configuration, or the first terminal device releases the first configuration.
  • the second indication information is used to instruct: the first terminal device adds the first signaling radio bearer, the first terminal device modifies the first signaling radio bearer, and the first terminal device retains the first signaling radio bearer. , or the first terminal device releases the first signaling radio bearer.
  • the method further includes: the first network device sending sixth instruction information to the management device, where the sixth instruction information is used to instruct to stop reporting the first message.
  • a communication method is provided.
  • the method can be executed by a device, or can also be executed by a component of the device (such as a chip or a circuit).
  • a component of the device such as a chip or a circuit.
  • the first communication method is used below.
  • Network device execution is used as an example for explanation.
  • the method may include: the fourth network device sending seventh indication information to the second network device, the seventh indication information being used to indicate that the first terminal device can support transmission of the first message generated according to the first configuration through the first signaling wireless bearer. ;
  • the fourth network device receives the fourth instruction information sent by the second network device.
  • the fourth instruction information is used to instruct the first terminal device to add the first signaling radio bearer, modify the first signaling radio bearer, or retain the first signaling radio bearer. Bearing; the fourth network device sends the fourth indication information to the first terminal device through the relay terminal device. In this way, the first terminal device can transmit the first message to the second network device through the first signaling wireless bearer.
  • the first message includes the first data, and the first data is the first terminal device according to the third instruction before receiving the fourth indication information. Generated by a configuration.
  • the seventh indication information is used to instruct the first terminal device to switch from communicating through an indirect link to communicating through a direct link. After the switching is completed, the communication between the second network device and the first terminal device The link between them is a direct link. Before the handover is completed, the link between the fourth network device and the first terminal device is an indirect link.
  • the method further includes: the fourth network device sending eighth instruction information to the management device, where the eighth instruction information is used to instruct to resume reporting of the first message.
  • the seventh aspect provides a communication method.
  • the method can be executed by a device, or can also be executed by a component of the device (such as a chip or a circuit). This is not limited.
  • the second method is used below. Network device execution is used as an example for explanation.
  • the method may include: the second network device determines that the first terminal device can support transmission of the first message generated according to the first configuration through the first signaling wireless bearer; the second network device sends fourth indication information, and the fourth indication information is used to Instruct the first terminal device to add the first signaling radio bearer, modify the first signaling radio bearer, or retain the first signaling radio bearer; the second network device receives the first signal transmitted by the first terminal device through the first signaling radio bearer.
  • message the first message includes first data, and the first data is generated by the first terminal device according to the first configuration before receiving the fourth indication information.
  • the second network device may determine that the first terminal device switches from communicating through an indirect link to communicating through a direct link.
  • the second network device receives the measurement report sent by the first terminal device through the relay terminal device, and the second network device can determine based on the measurement report that the first terminal device switches from communicating through the indirect link to communicating through the direct link. Link communication.
  • the method further includes: the second network device sending eighth instruction information to the management device, where the eighth instruction information is used to instruct to resume reporting of the first message.
  • An eighth aspect provides a communication device, which is used to perform the method in any of the possible implementation modes of the first to seventh aspects.
  • the device may include units and/or modules for performing the method in any possible implementation of the first to seventh aspects, such as a processing unit and/or a communication unit.
  • the device is a device (such as a network device or a terminal device).
  • the communication unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system or a circuit for a device such as a network device or a terminal device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit;
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a ninth aspect provides a communication device, which includes at least one processor for executing computer programs or instructions stored in a memory to perform the method in any of the possible implementations of the first to seventh aspects.
  • the device further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the device is a device (such as a network device or a terminal device).
  • the device is a chip, a chip system or a circuit for a device such as a network device or a terminal device.
  • this application provides a processor for executing the methods provided in the above aspects.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores a program code for device execution.
  • the program code includes a program code for executing any of the possible implementations of the above-mentioned first to seventh aspects. Methods.
  • a computer program product containing instructions is provided.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the method in any of the possible implementation modes of the above-mentioned first to seventh aspects.
  • a communication system including at least one of the aforementioned first terminal device, first network device, or second network device.
  • Figure 1 is a schematic diagram of a network architecture suitable for an embodiment of the present application.
  • Figure 2 is a schematic diagram of SL communication.
  • FIG. 3 is a schematic diagram of the control plane protocol stack architecture of SL radio resource control (RRC).
  • RRC radio resource control
  • Figure 4 is a schematic diagram of U2N relay.
  • Figure 5 is a schematic diagram of the protocol stack of L2 U2N relay.
  • Figure 6 is a schematic diagram of bearer multiplexing in L2 U2N relay.
  • Figure 7 is a schematic flow chart of QoE measurement.
  • Figure 8 is another schematic flow chart of QoE measurement.
  • Figure 9 is a schematic diagram of a communication scenario in which a direct link is switched to an indirect link.
  • Figure 10 is a schematic flow chart of a communication method according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of a communication scenario in which an indirect link is switched to a direct link.
  • Figure 12 is a schematic flow chart of another communication method according to an embodiment of the present application.
  • Figure 13 is a schematic flow chart of yet another communication method according to an embodiment of the present application.
  • Figure 14 is a schematic flow chart of yet another communication method according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of a communication device 1600 provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of another communication device 1700 according to an embodiment of the present application.
  • the technical solutions provided by this application can be applied to various communication systems, such as fifth generation (5th generation, 5G) or new radio (NR) systems, long term evolution (LTE) systems, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (TDD) system, etc.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation (6th generation, 6G) mobile communication system.
  • the technical solution provided by this application can also be applied to device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, machine-to-machine (M2M) communication, machine type Communication (machine type communication, MTC), and Internet of Things (Internet of things, IoT) communication systems or other communication systems.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine type Communication
  • Internet of Things Internet of things, IoT
  • the terminal equipment in the embodiment of the present application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communications equipment, user agent or user device.
  • UE user equipment
  • the terminal device may be a device that provides voice/data to users, for example, a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocols , SIP) telephone, wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, which can Wearable devices, terminal devices in the 5G network or terminal devices in the future evolved public land mobile communication network (public land mobile network, PLMN), etc., are not limited in the embodiments of this application.
  • MID mobile internet devices
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the device used to implement the functions of the terminal device may be a terminal device, or may be a device capable of supporting the terminal device to implement the function, such as a chip system or a chip, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), primary station, secondary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, interface Ingress node, wireless node, access point (AP), transmission node, transceiver node, baseband unit (BBU), remote radio unit (RRU), active antenna unit (active antenna) unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • transmission point transmitting and receiving
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and equipment that performs base station functions in D2D, V2X, and M2M communications, network-side equipment in 6G networks, equipment that performs base station functions in future communication systems, etc.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device mentioned in the embodiments of this application may be a device including a CU, or a DU, or a device including a CU and a DU, or a control plane CU node (central unit-control plane (CU- CP)) and user plane CU nodes (central unit user plane (CU-UP)) and DU node equipment.
  • CU- CP central unit-control plane
  • CU-UP central unit user plane
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • Figure 1 is a schematic diagram of a network architecture suitable for embodiments of the present application.
  • the network architecture may include terminal devices, such as a first terminal device and a second terminal device in (a) of Figure 1, or the terminal device in (b) of Figure 1.
  • the network architecture may also include network equipment.
  • the first terminal device in (a) of Figure 1 may be called a remote user equipment (remote UE), and the second terminal device may be called a remote user equipment (remote UE).
  • relay user equipment relay UE
  • the first terminal device and the second terminal device can communicate through the communication interface #1, the second terminal device and the network device can communicate through the communication interface #2, and the first terminal device can communicate with the network device through the second terminal device.
  • the network device sends data to the first terminal device, it can first send the data to the second terminal device, and then the second terminal device forwards the data. to the first terminal device.
  • the terminal device and the network device in (b) of Figure 1 can communicate through the communication interface 2#, and the terminal device and the network device can communicate directly.
  • communication interface #1 can be a proximity-based services communication 5 (PC5) interface, or it can be an interface not defined by the 3rd generation partnership project (3GPP), such as a private interface , wireless fidelity (WiFi), Bluetooth or wired interfaces, etc., are not restricted.
  • communication interface #2 may be a Uu interface.
  • the Uu interface refers to the interface for communication between the UE and the network device.
  • the link between the UE and the network device may be called a Uu link.
  • the communication interface can also have other names, which will not be described again here.
  • core network equipment may include: access and mobility management function (AMF) network elements, session management function (SMF) network elements, user plane function, UPF) network elements, policy control function (PCF) network elements, etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • PCF policy control function
  • data communication between UEs can be carried out through an operator network (for example, a base station), or communication between UEs can be carried out directly without going through the operator network.
  • the interface between UEs may be called PC5 interface.
  • the link between UEs may be called a sidelink, or the link between UEs may also be called a PC5 link (PC5 link).
  • PC5 link PC5 link
  • each vehicle can be considered as a UE, and communication between vehicles (that is, between UE and UE) can be carried out through the PC5 interface without going through the operator network, which can effectively Reduce communication delay significantly.
  • the embodiment of this application takes the link between UEs as SL and the link between UE and network equipment as Uu link as an example for explanatory description. It can be understood that the SL and Uu links are only named for differentiation, and their specific naming does not limit the protection scope of the present application. It can also be understood that SL and Uu links represent a connection relationship between devices and are a logical concept rather than a physical entity.
  • Figure 2 is a schematic diagram of SL communication.
  • the interface between UE1 and UE2 can be called the PC5 interface
  • the direct link between UE1 and UE2 can be called SL
  • UE1 and UE2 can communicate directly through the PC5 interface.
  • FIG. 3 is a schematic diagram of the control plane protocol stack architecture of SL radio resource control (RRC).
  • RRC radio resource control
  • the protocol stack of the control plane of SL RRC can include: physical (PHY) layer, media access control (media access control, MAC) layer, and radio link control (radio link control, RLC) layer , packet data convergence protocol (packet data convergence protocol, PDCP) layer, RRC layer.
  • PHY physical
  • media access control media access control
  • RLC radio link control
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • the PC5 interface can support broadcast, unicast, multicast and other communication methods. This application mainly involves unicast communication methods. Unicast communication is briefly introduced below.
  • a unicast connection is first established between two UEs. After the unicast connection is established, the two UEs can communicate data based on the negotiated identifier. The data may be encrypted or unencrypted. Unicast communication is similar to the data communication performed after the RRC connection is established between the UE and the network device. Compared with broadcast, in unicast communication, unicast communication can only be carried out between two UEs that have established a unicast connection.
  • the UE when it sends data, it can send the source identifier and destination identifier along with the data, such as source layer 2 identifier (source layer- 2identifier) and destination layer-2identifier (destination layer-2identifier), so that the data is transmitted to the correct receiving end.
  • the subheader of each SL media access control protocol data unit (MAC PDU) may contain the source layer 2 identifier and the destination layer 2 identifier.
  • the source identifier is used to identify the sending end, and may be allocated by the sending end UE itself.
  • the destination identifier is used to identify the receiving end, and may be an identifier assigned by the receiving end UE to the unicast connection.
  • UEs communicate with each other through the PC5 interface.
  • Wireless bearer is the general term for a series of protocol entities and configurations allocated by network equipment to UE. It is a service provided by layer 2 for transmitting user data between UE and network equipment, including PDCP protocol entities (or PDCP layer). , RLC protocol entity (or RLC layer), MAC protocol entity (or MAC layer) and PHY entity (PHY), etc.
  • PDCP protocol entities or PDCP layer
  • RLC protocol entity or RLC layer
  • MAC protocol entity or MAC layer
  • PHY entity PHY entity
  • Radio bearers can be divided into data radio bearers (DRB) and signaling radio bearers (signalling radio bearer, SRB).
  • DRB is used to carry data
  • SRB is used to carry signaling or messages.
  • the radio bearer corresponding to the communication between UE and UE is called sidelink radio bearer (SL RB).
  • the SL RB includes sidelink data radio bearer (sidelink data radio bearer, SL DRB) and sidelink signaling radio bearer (sidelink signaling radio bearer, SL SRB).
  • RB configuration generally includes configurations above the PDCP layer.
  • the protocol entities below the RLC layer are called RLC bearers, and the corresponding configurations are given in the RLC bearer configuration.
  • RLC bearer refers to the protocol entities and configurations below the RLC layer. It is the lower part corresponding to the RB, including a series of resources such as the RLC layer and logical channels.
  • An RLC bearer is associated with a logical channel at the MAC layer.
  • One RLC bearer is associated with one PDCP layer, that is, one RLC serves one RB.
  • the RLC bearer on the SL can also be called the sidelink RLC bearer.
  • UE access network relay (UE-to-network relay, U2N relay)
  • U2N relay may refer to an architecture in which UE provides access network services to UE.
  • one UE accesses the network through another UE, thereby achieving network coverage enhancement.
  • the node that performs the relay function can be called a relay UE (relay UE), and the node that accesses the network through the relay UE can be called a remote UE (remote UE).
  • relay UE relay UE
  • remote UE and relay UE are only named for differentiation, and their naming does not limit the scope of protection of the embodiments of the present application.
  • remote UE and relay UE can also be called the first device and the second device respectively; or they can also be called the first node and the second node; or they can also be called the first module and the second module, etc.
  • remote UE and relay UE are described below.
  • Figure 4 is a schematic diagram of the communication architecture of U2N relay.
  • remote UE can communicate with network equipment through the cooperation of relay UE, in which remote UE and relay UE communicate through SL, and the corresponding interface can be called PC5; relay UE and network equipment are directly connected, that is, through Uu interface for communication.
  • one relay UE can provide relay services for one remote UE, or it can also provide relay services for multiple remote UEs, and there is no restriction on this.
  • a remote UE can access the network through a one-hop path (that is, through one relay UE), or it can access the network through a multi-hop path (that is, through multiple relay UEs), and there is no restriction on this.
  • U2N relay technology mainly includes two designs: layer-2 (L2) U2N relay and layer-3 (layer-3, L3) U2N relay.
  • L2 U2N relay takes L2 U2N relay as an example to introduce the user plane protocol stack and control plane protocol stack during data transmission.
  • Figure 5 is a schematic diagram of the protocol stack of L2 U2N relay.
  • FIG. 5 is a schematic diagram of the protocol stack of the user plane of the L2 U2N relay (that is, the protocol stack of the user plane when the remote UE establishes a connection with the network device through the relay UE for data transmission);
  • (b) in Figure 5 is Schematic diagram of the protocol stack of the control plane of L2 U2N relay (that is, the protocol stack of the control plane when the remote UE establishes a connection with the network device through relay UE for data transmission).
  • the protocol stack of the user plane of the L2 U2N relay can include: PHY layer (such as PC5-PHY and Uu-PHY shown in (a) of Figure 5), MAC layer (e.g., PC5-MAC and Uu-MAC shown in (a) of Figure 5), RLC layer (e.g., PC5-RLC and Uu-RLC shown in (a) of Figure 5), side row The sidelink relay adaptation protocol (SRAP) layer (PC5-SRAP and Uu-SRAP shown in (a) in Figure 5), the PDCP layer (such as (a) in Figure 5 Uu-PDCP shown in Figure 5) and SDAP layer (e.g., Uu-SDAP shown in (a) of Figure 5).
  • the SRAP layer can also be called an adaptation layer.
  • the protocol stack of the control plane of the L2 U2N relay may include: PHY layer (such as (b) in Figure 5 PC5-PHY and Uu-PHY shown in Figure 5), MAC layer (e.g., PC5-MAC and Uu-MAC shown in (b) of Figure 5), RLC layer (e.g., (b) of Figure 5 PC5-RLC and Uu-RLC shown in Figure 5 (b)), SRAP layer (PC5-SRAP and Uu-SRAP shown in Figure 5 (b)), PDCP layer (such as Figure 5 (b) Uu-PDCP shown in Figure 5) and RRC layer (such as Uu-RRC shown in (b) of Figure 5).
  • PHY layer such as (b) in Figure 5 PC5-PHY and Uu-PHY shown in Figure 5
  • MAC layer e.g., PC5-MAC and Uu-MAC shown in (b) of Figure 5
  • RLC layer e.g., (b) of Figure 5 PC5-RLC and U
  • the remote UE's data packets are relayed and forwarded below the PDCP layer of the relay UE, that is, the relay UE maintains the RLC bearer of the relay, including the RLC layer (PC5-RLC and Uu-RLC in Figure 5) , MAC layer (PC5-MAC and Uu-MAC in Figure 5) and PHY layer (PC5-PHY and Uu-PHY in Figure 5).
  • RLC layer PC5-RLC and Uu-RLC in Figure 5
  • MAC layer PC5-MAC and Uu-MAC in Figure 5
  • PHY layer PC5-PHY and Uu-PHY in Figure 5
  • the RLC bearer between network equipment and relay UE can be called Uu RLC bearer or Uu relay RLC channel (Uu Relay RLC channel).
  • Uu RLC bearer or Uu relay RLC channel (Uu Relay RLC channel).
  • the RLC bearer between relay UE and remote UE is PC5 relay.
  • RLC bearer or PC5 relay RLC channel PC5 Relay RLC channel).
  • the SRAP layer (or adaptation layer) is between the RLC layer and the PDCP layer.
  • the SRAP layer in the protocol stack at both ends of the PC5 port is called the PC5-SRAP layer
  • the SRAP layer in the protocol stack at both ends of the Uu port is called the Uu-SRAP layer.
  • the main functions of the SRAP layer include bearer multiplexing and demultiplexing, that is, supporting the multiplexing of different bearers onto one bearer, or splitting a bearer into different bearers.
  • the SRAP layer of the network device can multiplex the data of one or more remote UEs arriving from the upper layer into an RLC bearer, that is, a Uu RLC bearer on the Uu link may contain one or more remote UEs. data (or radio bearers of one or more remote UEs).
  • the mapping relationship between the radio bearer and the RLC bearer of the remote UE can be configured by the network device.
  • the network device can also configure the mapping relationship between the remote UE's radio bearer and the remote UE's PC5 relay RLC bearer.
  • the remote UE identification also called local ID
  • RB ID such as DRB ID or SRB ID
  • the SRAP layer of the relay UE After the SRAP layer of the relay UE receives the downlink data sent by the network device, it can use the local ID and RB ID in the header of the SRAP PDU data packet. , correctly map the data on the Uu relay RLC bearer to different PC5 relay RLC bearers corresponding to the remote UE, thereby realizing the splitting of multiplexed data.
  • the SRAP layer of relay UE can multiplex the data on the PC5 relay RLC bearer of one or more remote UEs to a Uu RLC bearer, thereby realizing bearer multiplexing.
  • the SRAP layer of the network device will demultiplex, that is, submit it to the corresponding PDCP layer based on the local ID and DRB ID carried in the data.
  • the local ID can be assigned by the network device where the relay UE is located.
  • the relay UE sends an RRC message to the network device, for example, a sidelink UE information NR (SUI) message to request the network device to be the remote UE assigns local ID.
  • RRC radio resource control
  • Figure 6 is a schematic diagram of bearer multiplexing in L2 U2N relay.
  • remote UE 1 and remote UE 2 can reuse the Uu RLC bearer of relay UE to communicate with network equipment.
  • the network equipment and remote UE 1 and remote UE 2 have end-to-end SDAP layer and PDCP layer respectively, as well as end-to-end bearer configuration.
  • the network device sends downlink data to the remote UE.
  • the downlink data of the remote UE is submitted to the SRAP layer of the network device through SDAP and PDCP; the network device adds the local ID of the remote UE and the local ID of the remote UE to the corresponding data packet according to the upper-layer entity corresponding to the data.
  • the DRB ID is then submitted to the lower protocol layer for multiplexing on the Uu RLC bearer; after the SRAP layer of the relay UE receives the data from the Uu RLC bearer, it determines the corresponding data packet according to the local ID of the remote UE in the data packet.
  • relay UE then relies on the mapping relationship between the remote UE's local ID, DRB ID, and network device configuration in the data packet (that is, the mapping between the PC5 relay RLC bearer, DRB ID, and local ID relationship), submit the data to the PC5 relay RLC bearer on the correct remote UE; finally, the SRAP layer of the remote UE submits the data to the correct Uu PDCP and Uu SDAP layers based on the DRB ID carried in the data.
  • QoE measurement includes signaling-based QoE measurement and management-based QoE measurement.
  • Signaling-based QoE measurements are UE-specific.
  • the core network core network, CN
  • Management-based QoE is not UE-specific.
  • the gateway or operation, administration and maintenance (OAM) sends management-based QoE measurement configuration information to the network device, and the network device selects the part based on the capabilities of the UE currently accessing the network device and other information.
  • the UE performs QoE measurements.
  • Figure 7 is a schematic flow chart of QoE measurement.
  • the QoE measurement process may include the following steps.
  • Step 1 RAN receives the QoE measurement request (QoE measurement request).
  • RAN obtains QoE measurement configuration information.
  • the CN or OAM can initiate a QoE measurement request to the RAN.
  • the OAM can initiate a management-based QoE measurement request to the RAN
  • the CN can initiate a signal-based QoE measurement request to the RAN.
  • the QoE measurement configuration information includes application layer measurement configuration.
  • the QoE measurement configuration information includes a container (container), which contains the application layer measurement configuration, that is, the application layer measurement configuration container (container for application layer measurement configuration).
  • the QoE measurement configuration information also includes QoE reference (QoE reference), service type (service type), QoE measurement collection (QoE measurement collection, QMC) range (choice area scope of QMC), cell-based (cell based), the range based on tracking area (tracking area based, TA based), the range based on tracking area identity (tracking area identity based, TAI based), the range based on PLMN area (PLMN area based), the measurement collection entity ( Measurement collection entity (MCE) Internet protocol (IP) address (measurement collection entity IP address), slice support list for QMC (slice support list for QMC), and minimization of drive test (MDT) Alignment information (choice MDT alignment information), signaling-based MDT (S-based MDT) measurements
  • the CN can send the QoE measurement configuration information for a specific UE to the RAN through the interface with the RAN for the specific UE.
  • the RAN can obtain the QoE measurement configuration information from the OAM. It should be understood that the network elements in Figure 7 are only examples. For example, the RAN can also obtain the QoE measurement configuration information from the management network element (element management, EM). Measurement configuration information. What OAM or EM notifies is not QoE measurement configuration information for a specific UE.
  • the management network element element management, EM
  • the corresponding slice range can be configured in the container, that is, the container carries the identifier of the slice, and the UE only performs application layer measurements on the services of these slices. Measurement.
  • the CN or OAM can also notify the RAN, and the RAN can configure measurement indicators for the UE, such as RAN visible application layer indicators or available RAN visible QoE metrics.
  • the application layer measurement quantities in the application layer measurement configuration for the UE include application layer indicators visible to the RAN.
  • the application layer indicators can be the following indicators: average throughput, initial playback delay, buffering level, playback delay, deterioration duration, number of consecutive packet losses, jitter duration, out-of-sync duration, round-trip delay, average code rate, analog quality viewport switching latency (comparable quality viewport switching latency) or lagging.
  • the average throughput indicates the total number of bits received by the UE's application layer within a measurement interval.
  • the initial playback delay indicates the initial playback delay at the beginning of streaming media presentation.
  • the initial playback delay can be specifically defined as the time from the time when the first piece of media data is obtained to the time when the streaming media is extracted from the client buffer.
  • the buffering level indicates the duration for which media data can be played starting from the current playback moment.
  • the playback delay indicates the playback delay started by streaming media.
  • playback latency can be specifically defined as receiving a play/back/start from a dynamic adaptive streaming over HTTP (DASH) player transmitted by hypertext transfer protocol (HTTP).
  • DASH dynamic adaptive streaming over HTTP
  • HTTP hypertext transfer protocol
  • Deterioration duration indicates the time interval between the last good quality data frame before deterioration and the first subsequent good quality data frame.
  • a good quality data frame refers to a frame that is completely accepted, and all parts of the picture corresponding to the frame contain correct content or the frame is a new frame (that is, it does not depend on any previously decoded frame) or only depends on Frames of good quality that have been decoded before.
  • the number of consecutive packet losses indicates the number of consecutive lost real-time transport protocol (RTP) packets.
  • RTP real-time transport protocol
  • Jitter in jitter duration means that the difference between the actual playback time and the expected playback time of a frame exceeds a certain threshold.
  • Out-of-synchronization in out-of-synchronization duration means that the absolute time difference between a value A and a value B exceeds a certain threshold.
  • the value A refers to the difference between the playback time of the last playback frame of a video stream and the playback time of the last playback frame of the voice stream.
  • the value B refers to the difference between the expected playback time of the previous playback frame of the video stream and the expected playback time of the previous playback frame of the voice stream.
  • Round trip latency indicates the round trip time at the RTP level, plus additional delays in both directions due to buffering and other processing in the client (e.g., RTP level, speakers, microphones, RTP level).
  • the average bit rate indicates the bit rate at which valid media information was encoded during the measurement period.
  • Analog quality perspective switching delay reports the delay and quality-related factors when the perspective movement causes quality degradation.
  • Quality-related factors include quality ranking value and resolution.
  • Stuttering indicates whether stuttering occurs during video stream playback, or the length of time that stuttering occurs.
  • Vehicle means that the RAN can interpret the received information, and can also be replaced by sensing, learning, or detection.
  • the RAN After the RAN learns that the UE will measure the above application layer indicators, it can notify the UE to report the measurement results of the application layer indicators visible to the RAN. Alternatively, the RAN may notify the UE to report measurement results of application layer indicators visible to the RAN specified in the protocol. As long as the UE currently measures the application layer indicators visible to the RAN specified in the protocol, the measurement results of these application layer indicators will be reported.
  • the application-side measurement configuration in the QoE measurement configuration information may not be sent to the RAN in the form of a container. For example, it can be sent to the RAN in a form visible to the RAN.
  • the QoE measurement configuration information sent by the CN or OAM to the RAN may also include the QoE reference and the IP address of the MCE.
  • the QoE reference is used to identify this QoE measurement requested by the network, or is used to identify the QoE measurement collection task in the RAN and the measurement collection entity, which can be called a QoE measurement identification.
  • QoE reference is a globally unique identifier.
  • the QoE reference can be composed of a national mobile code (mobile country code, MMC), a mobile network code (mobile network code, MNC), and a QoE measurement collection identifier.
  • the QoE measurement collection identifier is assigned by the management system or the operator.
  • the IP address of the MCE is used to send the corresponding measurement results to the MCE after the RAN receives the measurement results reported by the UE.
  • Step 2 RAN sends the QoE measurement configuration information to the UE.
  • the RAN For signaling-based QoE measurement, the RAN sends the application layer measurement configuration (for example, application layer measurement configuration container) to the corresponding UE.
  • the RAN may also determine whether to configure QoE measurement for the UE based on whether the UE supports QoE measurement.
  • the RAN can select an appropriate UE based on the QoE measurement configuration information sent by OAM or EM, whether the UE supports the corresponding QoE measurement, and other factors, and send the application layer measurement configuration to the selected UE.
  • the RAN sends the application layer measurement configuration obtained from the CN, OAM or EM to the UE through the RRC message.
  • the RRC message carries the service type corresponding to the application layer measurement configuration.
  • the application layer measurement configuration is sent to the UE in a container form (container manner).
  • the RAN may also trigger configuration of the application layer measurement configuration for the UE without the request command in step 1.
  • the RAN can trigger on its own the application layer measurement configuration for the UE, that is, the RAN can generate the application layer configuration on its own and send it to the UE through an RRC message.
  • the RRC message may carry the service type corresponding to the application layer measurement configuration.
  • the RAN can also deliver some configuration information to the UE (for example, RAN-visible application layer measurement configuration), and notify the UE to report some application layer indicators in a RAN-visible form (such as information element form).
  • the application layer indicators may include the RAN-visible application layer indicators in step 1.
  • the application layer indicator may also include a comprehensive score of the application layer indicator, a comprehensive score of the access layer indicator, a comprehensive score obtained by combining the application layer indicator and the access layer indicator, or an indicator indicating the quality of the application layer indicator.
  • the RAN can deliver some thresholds to the UE, and the UE determines and reports the quality indicators corresponding to the measurement results of the application layer indicators based on the measurement results of the application layer indicators and the thresholds corresponding to the application layer indicators (for example, the value can be good , medium, poor).
  • the RAN can also configure the reporting period for the UE to report application layer indicators visible to the RAN. If the RAN does not configure this reporting period, the UE can report the application layer indicators visible to the RAN when reporting the application layer measurement results corresponding to the application layer measurement configuration.
  • the RAN may also not send and report some configuration information of application layer indicators visible to the RAN to the UE. After obtaining the application layer indicators, the UE can report to the RAN some application layer indicators specified by the protocol and currently obtainable by the UE.
  • the RAN can also deliver an application layer measurement identifier to the UE.
  • the application layer measurement identifier is generated by the RAN for the UE and corresponds to an application layer measurement configuration configured by the RAN for the UE.
  • the application layer measurement identifier corresponds to the QoE reference. RAN saves this correspondence.
  • the RAN can send the application layer measurement configuration and the RAN-visible application layer measurement configuration to the UE in the same RRC message, or it can send them in different messages, for example, first send the application layer measurement configuration, and then send the RAN-visible application layer measurement configuration.
  • Step 3 The UE's access stratum (AS) sends the received QoE measurement configuration information to the upper layer of the UE's AS.
  • AS access stratum
  • the upper layer of the UE's AS may be the UE's application layer (application, APP) in FIG. 7 .
  • the upper layer of the UE's AS may also be other layers capable of performing QoE measurements.
  • the AS of the UE may send the application layer measurement configuration and service type received from the RAN to the upper layer of the AS of the UE.
  • the upper layer of the UE's AS can perform QoE measurement according to the application layer measurement configuration.
  • step 2 the application layer measurement configuration is sent to the UE in a container form, in addition to sending the application layer measurement configuration to the upper layer of the AS, the UE's AS can also notify the UE of the information received from the RAN.
  • the configuration information of some application layer indicators reported in a form visible to the RAN is sent to the upper layer of the UE's AS.
  • the AS of the UE may send the application layer measurement identifier corresponding to each application layer measurement configuration to the upper layer of the AS of the UE.
  • the AS of the UE can send the above information to the upper layer of the AS through a method called AT (attention) command.
  • AT attention
  • Step 4 The upper layer of the UE's AS sends the QoE measurement result to the UE's AS (specifically, it may be the RRC layer of the AS).
  • the upper layer of the UE's AS can send the application layer measurement results to the UE's AS according to certain rules (the rules are included in the application layer measurement configuration). For example, the upper layer of the UE's AS periodically reports application layer measurement results, and the UE can report the application layer measurement results to the RAN after a session ends.
  • the upper layer of the UE's AS determines that it needs to report the application layer measurement results based on the application layer measurement configuration
  • the upper layer of the UE's AS sends the application layer measurement results to the UE's AS.
  • Application layer measurement results can be reported in the form of a container. If the application layer measurement configuration requires the UE to perform application layer measurements for certain slice services, the UE can carry the slice identifier in the application layer measurement results reported in the form of a container. The slice identifier can be used to indicate whether the current application layer measurement result is The measurement results obtained by performing application layer measurements on which slices.
  • the upper layer of the UE's AS can also report RAN-visible application layer indicator measurement results based on the RAN-visible application layer measurement configuration (for example, application layer indicators reported in the form of information elements). measurement results).
  • the upper layer of the UE's AS may report measurement results of application layer indicators invisible to the RAN and measurement results of application layer indicators visible to the RAN at different times.
  • the upper layer of the UE's AS reports the measurement results of the application layer indicators visible to the RAN, it also reports the PDU session ID.
  • the PDU session ID is used to indicate which PDU the measurement results of the application layer indicators visible to the RAN correspond to.
  • the upper layer of the UE's AS can also report the application layer measurement identifier corresponding to the measurement result.
  • the upper layer of the UE's AS can send indication information to the UE's AS to indicate that the application layer measurement has been started. Similarly, when an application layer measurement ends, the upper layer of the UE's AS can send indication information to the UE's AS to indicate that the application layer measurement has ended.
  • the AS of the UE can send the above information to the upper layer of the AS through a method called AT (attention) command.
  • AT attention
  • Step 5 The AS of the UE sends the QoE measurement results to the RAN.
  • the QoE measurement results are reported to the RAN through SRB4.
  • QoE measurement results include application layer measurement results.
  • the AS of the UE can send the application layer measurement results to the RAN through the uplink RRC message.
  • the RAN that delivers the QoE measurement configuration information and the RAN that receives the QoE measurement results may be the same RAN or may be different RANs.
  • the RAN accessed by the UE may change.
  • only the same RAN is used as an example.
  • the application layer measurement results may be sent to the RAN in the form of a container, or may not be sent to the RAN in the form of a container.
  • the UE's AS can not only report the application layer measurement results that are invisible to the RAN (that is, the content in the container), but also report the measurement results of the application layer indicators that are visible to the RAN. .
  • the UE may report RAN-invisible application layer measurement results and RAN-visible application layer measurement results at different times.
  • the UE's AS reports the measurement results of application layer indicators visible to the RAN, it can also report the PDU session ID.
  • the AS of the UE can also report application layer measurement identifiers corresponding to these measurement results.
  • Step 6 RAN sends the QoE measurement results to MCE.
  • the RAN obtains the QoE reference corresponding to the application-side measurement identifier based on the stored correspondence relationship between the application layer measurement identifier and the QoE reference and the application layer measurement identifier reported by the UE.
  • RAN finds the IP address of the corresponding MCE based on the QoE reference, and then sends the application layer measurement results to the corresponding MCE.
  • the RAN obtains the corresponding application layer measurement configuration based on the application layer measurement identification reported by the UE, obtains the IP address of the MCE corresponding to the application side measurement result based on the QoE measurement configuration information issued by the CN or OAM, and then sends the application layer measurement result. To the corresponding MCE.
  • the RAN can optimize radio resources based on the measurement results of application layer indicators visible to the RAN reported by the UE. example For example, when the measurement result of a certain application layer indicator is not ideal, the RAN can allocate more resources to the UE, or increase the scheduling priority of the UE.
  • the source base station will send the following application layer measurement related information to the target base station:
  • the UE can transmit corresponding data through the SRB.
  • the UE switches to a scenario that cannot support the SRB, the UE cannot perform subsequent processing on the data that should be transmitted through the SRB, which affects the efficiency of the system.
  • QoE quality of experience
  • Figure 8 is another schematic flow chart of QoE measurement.
  • Figure 8 shows the communication process between the network device and the UE in the QoE measurement process.
  • the network device can use RRC configuration signaling, for example, RRC reconfiguration (RRC reconfiguration) information, to deliver QoE measurement configuration information.
  • RRC reconfiguration RRC reconfiguration
  • the specific content of the QoE measurement configuration information can be included in the information element (IE) AppLayerMeasConfig.
  • the network device will also configure SRB4 for the UE, which is used to report the UE's QoE measurement results.
  • the UE can instruct the application layer to perform QoE measurement based on the QoE measurement configuration information issued by the network device, and report the QoE measurement results to the network device through the Measurement Report Application Layer (MeasurementReportAPPLayer) message, as described in detail See step 5 in Figure 7.
  • the MeasurementReportAPPLayer message is sent through SRB4.
  • remote UE can communicate with network equipment through relay UE.
  • the network equipment needs to perform relevant configurations for remote UE and relay UE.
  • the network device needs to send SRB configuration information, DRB configuration information and SRAP layer configuration information to the remote UE.
  • the configuration information of the SRAP layer includes the mapping relationship configuration information between SRB, DRB and PC5 RLC channel.
  • Relay UE also needs to receive the configuration information required to relay the SRB data and DRB data of the remote UE from the network device.
  • the configuration information includes the configuration information of the PC5 RLC channel, the configuration information of the Uu RLC channel, and the configuration information of the SRAP layer.
  • the configuration information of the SRAP layer includes the mapping relationship configuration information between SRB, DRB and PC5RLC channel and Uu RLC channel.
  • the current protocol supports indicating the mapping relationship between SRB0 ⁇ SRB3 and RLC bearers in the configuration information of the SRAP layer, so that the SRB0 ⁇ SRB3 data of the remote UE can be relayed and transmitted through the relay UE.
  • the current protocol supports the relay transmission of SRB0 ⁇ SRB3 data of remote UE through relay UE.
  • the UE's QoE measurement results need to be reported to the network device through SRB4.
  • network equipment cannot configure SRB4 for QoE measurement reporting for remote UE, and the SRB4 data of remote UE cannot be relayed and transmitted through relay UE.
  • remote UE does not support SRB4.
  • the UE's QoE measurement results cannot be reported normally.
  • the UE switches from a scenario that supports SRB4 configuration to a scenario that does not support SRB4 configuration, for example, the UE switches from communicating with the network device through a direct link to communicating with the network device through an indirect link (that is, relaying the UE and the network During device communication), QoE measurements cannot be processed normally, which reduces the efficiency of the system.
  • Embodiments of the present application provide a communication method.
  • the terminal device When the terminal device cannot support transmission of data generated according to the first configuration through SRB, the terminal device configures the first configuration and/or the SRB to improve system efficiency.
  • Figure 9 is a schematic diagram of a communication scenario in which a direct link is switched to an indirect link.
  • terminal device #1 (remote UE shown in (a) of Figure 9) is directly connected to network device #1 (shown in (a) of Figure 9) through Uu link gNB), and then switches to communication with network device #1 through terminal device #2 (relay UE as shown in (a) of Figure 9).
  • remote UE and relay UE can be connected to the same network device.
  • terminal device #1 (remote UE shown in (b) of Figure 9) directly communicates with network device #2 (shown in (b) of Figure 9) through Uu link
  • the source gNB communicates, and then switches to communication through the terminal device #2 (the relay UE shown in FIG. 9(b)) and the network device #1 (the target gNB shown in FIG. 9(b)).
  • remote UE and relay UE can connect to different network devices, that is, the case of inter-station handover.
  • Figure 10 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the method 1000 shown in Figure 10 can be applied to the network architecture shown in Figure 1 or Figure 9, without limitation.
  • the method 1000 may include the steps shown in (a) of FIG. 10 , or may also include the steps shown in (b) of FIG. 10 .
  • the method 1000 may include steps 1010a to 1040a.
  • the method 1000 may include steps 1010b to 1040b.
  • the method shown in (a) of FIG. 10 may be applied to the scenario of (a) of FIG. 9 .
  • the solution shown in (b) of FIG. 10 can be applied to the scenario shown in (b) of FIG. 9 .
  • the first network device determines that the first terminal device no longer supports transmission of the first message generated according to the first configuration through the first signaling radio bearer.
  • the first network device may determine based on the measurement report received from the first terminal device that the first terminal device no longer supports transmission of the first message generated according to the first configuration through the first signaling radio bearer.
  • the first network device receives fifth indication information from the third network device.
  • the fifth indication information is used to indicate that the first terminal device no longer supports transmission of the first message generated according to the first configuration through the first signaling radio bearer.
  • the first network device may know according to the fifth indication information that the first terminal device no longer supports transmission of the first message generated according to the first configuration through the first signaling radio bearer.
  • the terminal device can support data transmission through the first SRB, which means that the terminal device can transmit data that needs to be carried by the first SRB through the first SRB.
  • the terminal device has the ability to transmit data that needs to be carried by the first SRB through the first SRB or the link between the terminal device and the network device supports configuring the first SRB for transmitting data carried by the first SRB. This is not the case here. It is limited that the terminal device must perform the operation of transmitting data through the first SRB.
  • the terminal device may support data transmission through the first SRB, which may also be said that the terminal device may support the first SRB.
  • the terminal device does not support data transmission through the first SRB, which means that the terminal device cannot transmit data that needs to be carried by the first SRB through the first SRB.
  • the terminal device does not have the ability to transmit data that needs to be carried by the first SRB through the first SRB, or the link between the terminal device and the base station does not support configuring the first SRB for transmitting data transmitted through the first SRB.
  • the terminal device does not support data transmission through the first SRB, which can also be said that the terminal device does not support the first SRB.
  • Terminal device #1 (an example of the first terminal device) can generate the first message according to the first configuration.
  • the first message needs to be reported through the first SRB.
  • the terminal device #1 can support the first SRB, the first message can be reported through the first SRB.
  • the terminal device #1 switches from a scenario that can support the first SRB to a scenario that does not support the first SRB, and can no longer report the first message through the first SRB.
  • the method 1000 can be applied in the scenario of QoE measurement.
  • the embodiment of the present application mainly takes the QoE measurement scenario as an example to illustrate the method 1000, which does not limit the application scenarios of the embodiment of the present application.
  • the first configuration may be a QoE measurement configuration
  • the first SRB may be SRB4.
  • the QoE measurement configuration may also be called configuration of application layer measurements.
  • the terminal device #1 can perform QoE measurement according to the QoE measurement configuration and obtain the measurement result of the QoE measurement.
  • the first message may include the measurement results.
  • generating the first message according to the first configuration includes: terminal device #1 submits the QoE measurement configuration to the first protocol layer, the first protocol layer generates the QoE measurement result according to the first configuration, and submits the QoE measurement result to The second protocol layer generates a first message, and the first message contains the QoE measurement result.
  • the fifth indication information may be used to instruct terminal device #1 to switch from communicating through a direct link to communicating through an indirect link.
  • terminal device #1 When terminal device #1 switches from communicating through a direct link to communicating through an indirect link, as shown in Figure 9, terminal device #1 can no longer support SRB4.
  • the terminal device #1 communicates through a direct link, which may be that the terminal device #1 is directly connected to the network device.
  • terminal device #1 communicates with the network device through Uu link.
  • the terminal device #1 communicates through an indirect link, which may be that the terminal device #1 (such as a remote UE) is connected to the network device through a relay terminal device (such as a relay UE).
  • the remote UE and the relay UE can communicate through sidelink.
  • the terminal device #1 may be a remote UE, and the relay terminal device may be a relay UE.
  • Relay UE is a terminal device that can provide relay services.
  • Remote UE is a terminal device that accesses the network through the relay service provided by relay UE.
  • Relay UE Located within the cell coverage, the remote UE may be located within the cell coverage or may move outside the cell coverage.
  • the solution of the embodiment of the present application can be applied in a handover scenario.
  • terminal device #1 communicates with network device #1 (an example of the first network device) through an indirect link.
  • step 1010a network device #1 receives measurement reports (measurement reports) from terminal device #1, triggering network device #1 to determine handover. Before handover, terminal device #1 communicates with network device #1 through the direct link. After the handover is completed, terminal device #1 can communicate with network device #1 through the indirect link.
  • measurement reports measurement reports
  • terminal device #1 sends measurement reports (measurement reports) to network device #1 (gNB in Figure 9(a)) ).
  • This measurement report can trigger network device #1 to determine handover.
  • network device #1 decides to switch terminal device #1 from the first cell of network device #1 to the second cell.
  • Terminal device #1 is connected to the network through a relay device. Second cell of device #1. It should be noted that before the handover, there is a direct link between terminal equipment #1 and network equipment #1, and terminal equipment #1 has not yet become a remote UE.
  • network device #1 receives a handover request (handover request, HO request) #1 from network device #2 (an example of a third network device).
  • the handover request #1 carries the Five instructions.
  • terminal device #1 communicates with network device #2 through the direct link.
  • terminal device #1 can communicate with network device #1 through the indirect link.
  • switching request #1 may be a switching request in the scenario of inter-site switching.
  • Network device #1 is the destination network device, and network device #2 is the source network device.
  • handover request #1 may be a handover request sent by network device #2 (source gNB in FIG. 9(b)) to network device #1 (target gNB in FIG. 9(b)). It should be noted that before the handover, there is a direct link between terminal equipment #1 and network equipment #2, and terminal equipment #1 has not yet become a remote UE.
  • terminal device #1 and network device #2 communicate through link #1, and terminal device #1 can support SRB4. Afterwards, terminal device #1 switches to communicate with network device #1 through link #2, and terminal device #1 no longer supports SRB4.
  • handover request #1 can also be expressed as information in other forms.
  • the embodiment of the present application does not limit the specific form of handover request #1.
  • the embodiment of the present application mainly takes the switching scenario as an example to illustrate the method 1000, which does not limit the solution of the embodiment of the present application.
  • the solution of the embodiment of the present application can be applied in a reconnection scenario.
  • the fifth indication information may be a reconnection recovery request (RRCresumerequest).
  • RRCresumerequest a reconnection recovery request
  • terminal device #1 communicates with network device #1 through the indirect link.
  • RRCresumerequest a reconnection recovery request
  • the fifth indication information can also be other forms of information, which is not limited in the embodiments of the present application.
  • the first network device sends second instruction information, and the second instruction information is used to instruct the first terminal device to configure the first configuration and/or the first SRB.
  • the first network device sends second indication information to the first terminal device.
  • the first network device sends second indication information to the third network device.
  • the third network device may send the second indication information to the first terminal device.
  • network device #1 may determine a solution related to the first configuration and/or the first SRB of terminal device #1 (for example, solution 1, solution 2, solution 3, and solution 4 below. ), and indicate the determined solution through the second indication information.
  • the solution of the embodiment of the present application can be applied in a handover scenario. After the handover is completed, terminal device #1 communicates with network device #1 through an indirect link.
  • step 1020a network device #1 sends an RRC configuration message to terminal device #1, and the RRC configuration message carries second indication information.
  • terminal device #1 communicates with network device #1 through the direct link.
  • terminal device #1 can communicate with network device #1 through the indirect link.
  • step 1020b network device #1 sends a handover request acknowledgment (HO Ack) message to network device #2, and the handover request acknowledgment message carries the second indication information.
  • HO Ack handover request acknowledgment
  • terminal device #1 communicates with network device #2 through the direct link.
  • terminal device #1 can communicate with network device #1 through the indirect link.
  • the second indication information can also be sent through other messages, which is not limited in the embodiments of the present application.
  • the second indication information is used to instruct the terminal device #1 to configure the first configuration and/or the first SRB.
  • configure the first configuration And/or the "configuration" in the first SRB may include: adding, modifying, retaining or releasing, etc.
  • the second indication information may be full configuration mode indication information.
  • network device #1 may generate RRC configuration information.
  • the RRC configuration information carries a full configuration indication and indicates the first configuration and/or the first SRB configuration.
  • the second indication information may be delta configuration mode indication information.
  • the second indication information may be indicated in the form of one or more information elements.
  • network device #1 may generate RRC configuration information and indicate adding, modifying, or releasing the first configuration and/or the first SRB through one or more information elements in the RRC configuration information.
  • “retain” can be understood as, in the case of delta configuration, the second instruction information does not indicate any update to the original configuration of terminal device #1.
  • the terminal device will retain the original first configuration and/or the first SRB configuration information, and configure it accordingly.
  • the second indication information may be used to instruct terminal device #1 to configure the first configuration.
  • the second indication information may be used to instruct: terminal device #1 adds the first configuration, terminal device #1 modifies the first configuration, terminal device #1 retains the first configuration, or terminal device #1 releases the first configuration. .
  • the network device #1 can determine to add the first configuration to the terminal device #1, that is, the terminal device #1 Deliver the first configuration.
  • the network device #1 can determine to add the first configuration to the terminal device #1, that is, Terminal device #1 delivers the first configuration.
  • network device #1 can determine to deliver the QoE measurement configuration to terminal device #1.
  • the specific parameters of the first configuration may be indicated by the second indication information, or may also be indicated by other information.
  • Terminal device #1 can add the first configuration according to the specific parameters of the first configuration. For example, terminal device #1 may add the first configuration according to the second indication information.
  • the network device #1 may determine to release the first configuration, that is, instruct the terminal device #1 to release the first configuration.
  • terminal device #1 can determine to release the first configuration, that is, instruct terminal device #1 to release First configuration.
  • network device #1 may determine to instruct terminal device #1 to release the QoE measurement configuration.
  • the network device #1 can determine to modify the first configuration, that is, instruct the terminal device #1 to modify the first configuration. .
  • the network device #1 can determine to modify the first configuration, that is, instruct the terminal device #1 Modify the first configuration.
  • the network device #1 may determine to instruct terminal device #1 to modify the QoE measurement configuration.
  • the specific parameters of the first configuration may be indicated by the second indication information, or may also be indicated by other information.
  • Terminal device #1 can modify the first configuration according to specific parameters of the first configuration. For example, terminal device #1 can modify the first configuration according to the second indication information.
  • the network device #1 can determine to retain the first configuration, that is, instruct the terminal device #1 to retain the first configuration. .
  • the network device #1 can determine to retain the first configuration, that is, instruct the terminal device #1 Keep this first configuration.
  • network device #1 may determine to instruct terminal device #1 to retain the QoE measurement configuration.
  • Terminal device #1 retains the first configuration, that is, terminal device #1 may not perform any processing on the first configuration.
  • the second indication information may be used to instruct terminal device #1 to configure the first SRB.
  • the second indication information may be used to instruct: terminal device #1 adds the first SRB, terminal device #1 modifies the first SRB, terminal device #1 retains the first SRB, or, Terminal device #1 releases the first SRB.
  • the network device #1 may determine to add the first SRB to the terminal device #1, that is, establish the first SRB.
  • the network device #1 can determine to add the first SRB to the terminal device #1, that is, establish First SRB.
  • the network Device #1 may determine to instruct terminal device #1 to add SRB4.
  • the specific parameters of the first SRB may be indicated by the second indication information, or may be indicated by other information.
  • Terminal device #1 may add the first SRB according to specific parameters of the first SRB. For example, terminal device #1 may add the first SRB according to the second indication information.
  • the network device #1 can determine to release the first SRB, that is, instruct the terminal device #1 to release the first SRB.
  • the network device #1 can determine to release the first SRB, that is, instruct the terminal device #1 to release the first SRB.
  • One SRB One SRB.
  • terminal device #1 Take the QoE measurement in the scenario where terminal device #1 switches from a direct link to an indirect link as an example. If the network device that communicates with terminal device #1 through a direct link adds SRB4 to terminal device #1, the network Device #1 may determine to instruct terminal device #1 to release SRB4.
  • the network device #1 can determine to modify the first SRB, that is, instruct the terminal device #1 to modify the first SRB.
  • the network device #1 can determine to modify the first SRB, that is, instruct the terminal device #1 to modify the first SRB.
  • the first SRB is, instruct the terminal device #1 to modify the first SRB.
  • the network Device #1 may determine to instruct terminal device #1 to modify the SRB4.
  • the specific parameters of the first SRB may be indicated by the second indication information, or may be indicated by other information.
  • Terminal device #1 may modify the first SRB according to specific parameters of the first SRB. For example, terminal device #1 may modify the first SRB according to the second indication information.
  • the network device #1 can determine to retain the first SRB, that is, instruct the terminal device #1 to retain the first SRB.
  • the network device #1 can determine to retain the first SRB, that is, instruct the terminal device #1 to retain the first SRB.
  • the first SRB the first SRB.
  • the network Device #1 may determine to instruct terminal device #1 to reserve the SRB4.
  • Terminal device #1 retains the first SRB, that is, terminal device #1 may not perform any processing on the first SRB.
  • the second indication information may be indicated in the form of information elements.
  • network device #1 may generate RRC configuration information and indicate the first configuration and/or the first SRB through one or more information elements in the RRC configuration information.
  • the second indication information may be indicated in a full configuration manner.
  • network device #1 may generate RRC configuration information.
  • the RRC configuration information carries a full configuration indication, which may indicate the first configuration and/or the first SRB.
  • terminal device #1 can delete all AS-related configurations and reconfigure the AS-related configurations according to the configuration information carried in the RRC message.
  • the second indication information may be used to indicate related information of the first configuration or related information of the first SRB.
  • the second indication information may also be used to indicate the related information of the first configuration and the related information of the first SRB.
  • the second indication information will be exemplarily described below by taking four solutions as examples.
  • Network device #1 may determine that terminal device #1 does not have the first configuration and does not have the first SRB.
  • Network device #1 may determine to instruct terminal device #1 to release the first configuration. If the terminal device #1 does not have the first configuration before the network device #1 knows or determines that the terminal device #1 no longer supports the first SRB, the network device #1 may determine that the indication is not processed. Before network device #1 knows that terminal device #1 no longer supports the first SRB, it can also be understood as before network device #1 receives the fifth indication information.
  • network device #1 may determine to instruct terminal device #1 to release the first SRB. If the first SRB is no longer supported in the terminal device #1 and the terminal device #1 does not have the first SRB, the network device #1 may determine that the indication is not processed.
  • the network device #1 may determine to instruct the terminal device #1 to release the first configuration and the first SRB.
  • the second indication information is used to instruct the terminal device #1 to release the first configuration and the first SRB.
  • the terminal device #1 can release the first configuration, no longer generate data according to the first configuration without transmitting the first message including the data through the first SRB, and avoid the occurrence of the first message that needs to be transmitted through the first SRB with the terminal device #1 Unable to support the contradiction between the first SRB data transmission, thereby improving the efficiency of the system.
  • this solution can release the cache of terminal device #1 and avoid the waste of storage resources.
  • the following description takes QoE measurement in the scenario where terminal device #1 switches from a direct link to an indirect link as an example.
  • network device #2 which communicates with terminal device #1 through a direct link, delivers QoE measurement configuration and SRB4 configuration to terminal device #1.
  • the handover request #1 sent by network device #2 carries the QoE measurement configuration and SRB4 configuration of terminal device #1 on the network device #2 side.
  • network device #1 may determine to instruct terminal device #1 to release the QoE measurement configuration and SRB4 according to the handover request #1.
  • network device #1 delivers QoE measurement configuration and SRB4 configuration to terminal device #1.
  • network device #1 may determine to instruct terminal device #1 to release the QoE measurement configuration and SRB4.
  • the first network device may generate RRC configuration information for terminal device #1.
  • the RRC configuration information carries second indication information.
  • the QoE measurement configuration is released through the IE measconfigAPPLayerToReaseList in the RRC message.
  • IE measconfigAPPLayerToReaseList is located in IE AppLayerMeasConfig.
  • the release of SRB4 is indicated by setting IE srb4-ToRelease in the RRC message to true.
  • the RRC message carries a full configuration indication.
  • Terminal device #1 deletes all AS-related configurations according to the full configuration instruction, and reconfigures the AS-related configurations according to the configuration information carried in the RRC message, including releasing the QoE measurement configuration and SRB4.
  • Network device #1 may determine that terminal device #1 does not have the first configuration and has the first SRB.
  • the network device #1 may determine to instruct the terminal device #1 to release the first configuration. If terminal device #1 does not have the first configuration before terminal device #1 no longer supports the first SRB, network device #1 may determine that the indication is not processed.
  • network device #1 may determine to instruct terminal device #1 to retain or modify the first SRB. If terminal device #1 does not have the first SRB before terminal device #1 no longer supports the first SRB, network device #1 may determine to indicate adding the first SRB.
  • the second indication information can be used to instruct terminal device #1 to release the first configuration and modify the first SRB. SRB.
  • the second indication information can be used to instruct terminal device #1 to release the first configuration and retain the first SRB.
  • One SRB One SRB.
  • the terminal device #1 can release the first configuration, no longer generate data according to the first configuration, and does not need to transmit the first message including the data through the first SRB, thereby avoiding the need for the first message to be transmitted through the first SRB to the terminal device #1. 1 cannot support the contradiction between the first SRB data transmission, thereby improving the efficiency of the system. Moreover, this solution can release the cache of terminal device #1 and avoid the waste of storage resources.
  • network device #1 can indicate related operations through IE.
  • network device #1 may indicate the first configuration and related operations of the first SRB through IE#1 and IE#2 respectively.
  • the network device instructs to release the first configuration through IE#1, and instructs to retain or modify the first SRB through IE#2.
  • the terminal device #1 can release the first configuration according to the second instruction information, and does not process the first SRB or modify the first SRB.
  • network device #1 may only instruct to release the first configuration through IE#1.
  • the terminal device #1 can release the first configuration according to the IE #1 and do not process the first SRB. This situation can also be regarded as being instructed by the second indication information to release the first configuration and retain the first SRB.
  • the network device can indicate related actions in a fully configured manner.
  • the RRC message carries a full configuration indication to and the configuration parameters of the first SRB.
  • Network device #1 may instruct to release the first configuration and modify the first SRB in a full configuration manner. In this way, terminal device #1 can delete the relevant configurations of all ASs according to the second instruction information, and update the first SRB according to the configuration parameters of the first SRB.
  • the second indication information can be used to indicate other information so that the terminal device #1 does not have the first configuration and has the first SRB. This is not limited in the embodiments of the present application. .
  • Network device #1 may determine that terminal device #1 has the first configuration and does not have the first SRB.
  • network device #1 may determine to instruct terminal device #1 to retain or modify the first configuration. If terminal device #1 does not have the first configuration before terminal device #1 no longer supports the first SRB, network device #1 may determine to instruct terminal device #1 to add the first configuration.
  • network device #1 may determine to instruct terminal device #1 to release the first SRB. If terminal device #1 does not have the first SRB before terminal device #1 no longer supports the first SRB, network device #1 may determine that the instruction is not processed.
  • the second indication information can be used to instruct terminal device #1 to release the first SRB and modify the first SRB. configuration, or the second indication information may be used to instruct terminal device #1 to release the first SRB and retain the first configuration.
  • the second indication information may be used to instruct terminal device #1 to add the first configuration.
  • terminal device #1 before terminal device #1 no longer supports the first SRB, terminal device #1 does not have the first configuration and has the first SRB.
  • the second instruction information can be used to instruct terminal device #1 to add the first configuration and release the first SRB.
  • One SRB One SRB.
  • network device #1 can indicate related operations through IE.
  • network device #1 may indicate the first configuration and related operations of the first SRB through IE#1 and IE#2 respectively.
  • the network device indicates retention, modification and addition, or the first configuration through IE#1, and indicates release of the first SRB through IE#2.
  • the terminal device #1 can release the first SRB according to the second instruction information, do not process the first configuration, modify the first configuration, or add the first configuration.
  • the network device can indicate related actions in a fully configured manner.
  • the RRC message carries an indication of the full configuration and the configuration parameters of the first configuration.
  • terminal device #1 can delete the relevant configurations of all ASs according to the second instruction information, and update the first configuration according to the configuration parameters of the first configuration.
  • the second indication information can be used to indicate other information so that the terminal device #1 has the first configuration and does not have the first SRB. This is not limited in the embodiments of the present application. .
  • Network device #1 may determine that terminal device #1 has the first configuration and the first SRB.
  • network device #1 may determine to instruct terminal device #1 to retain or modify the first configuration. If terminal device #1 does not have the first configuration before terminal device #1 no longer supports the first SRB, network device #1 may determine to instruct terminal device #1 to add the first configuration.
  • network device #1 may determine to instruct terminal device #1 to retain or modify the first SRB. If terminal device #1 does not have the first SRB before terminal device #1 no longer supports the first SRB, network device #1 may determine to instruct terminal device #1 to add the first SRB.
  • the second indication information may indicate an index to instruct terminal device #1 to perform a corresponding operation according to the configuration scheme corresponding to the index.
  • configuration plan #1 is to release the first SRB and the first configuration
  • the corresponding index value is 1
  • configuration plan #2 is to release the first SRB and modify the first configuration
  • the corresponding index value is 2
  • configuration plan #3 is released
  • the first configured and reserved SRB, the corresponding index value is 3.
  • network device #1 determines to enable terminal device #1 to have the first configuration (for example, solution 3 and solution 4)
  • network device #1 can determine specific configuration parameters of the first configuration based on implementation.
  • network device #1 may determine the QoE measurement configuration based on implementation.
  • the network Device #1 may determine to retain some or all of the QoE measurement configuration.
  • the application layer of terminal device #1 can provide QoE measurements for data streaming, Internet protocol multimedia subsystem (IMS), multimedia telephony service for IMS (MTSI), and VR.
  • Network device #1 can determine to retain streaming-related QoE measurement configurations according to requirements.
  • network device #1 may determine a measurement configuration that retains measurement quantities visible to network device #1 as needed.
  • network device #1 may report the first configuration to the management device.
  • the management device may include: CN, OAM or MCE, etc.
  • Step 1010a and step 1020a are optional steps.
  • Steps 1010b and 1020b are optional steps.
  • the first terminal device receives the first indication information.
  • the first indication information is used to indicate that the first terminal device no longer supports transmission of the first message generated according to the first configuration through the first signaling radio bearer.
  • the first terminal device receives the first indication information from the first network device.
  • the first terminal device receives the first indication information from the third network device.
  • the terminal device #1 may determine based on the first indication information that the first SRB can no longer be supported.
  • the first indication information may be used to instruct the terminal device #1 to switch from communicating through a direct link to communicating through an indirect link.
  • the solution of the embodiment of the present application can be applied in a handover scenario. After the handover is completed, terminal device #1 communicates with network device #1 through an indirect link.
  • step 1030a network device #1 sends RRC configuration information to terminal device #1, and the RRC configuration information carries the first indication information, so that terminal device #1 passes through the direct link. Communication with network device #1 is switched to communication with network device #1 through an indirect link.
  • the terminal device #1 receives the RRC configuration information from the network device #1 (the gNB in Figure 9(a)), and the terminal device #1 performs the configuration according to the RRC configuration information. Switch to indirect link communication. It should be noted that before the handover, there is a direct link between terminal equipment #1 and network equipment #1, and terminal equipment #1 has not yet become a remote UE.
  • step 1030b the network device #2 sends a handover command (handover command, HO command) #1 to the terminal device #1, and the handover command #1 carries the first indication information.
  • handover command handover command, HO command
  • terminal device #1 communicates with network device #2 through the direct link.
  • terminal device #1 can communicate with network device #1 through the indirect link.
  • switching command #1 may be a switching command in the scenario of inter-site switching.
  • Network device #1 is the destination network device, and network device #2 is the source network device.
  • the handover command #1 may be a handover command sent by the network device #2 (the source gNB in Figure 9(b)) to the terminal device #1 (the remote UE in Figure 9(b)). It should be noted that before the handover, there is a direct link between terminal equipment #1 and network equipment #2, and terminal equipment #1 has not yet become a remote UE.
  • switching command #1 can also be expressed as other forms of information.
  • the embodiment of the present application does not limit the specific form of switching command #1.
  • the embodiment of the present application mainly takes the switching scenario as an example to illustrate the method 1000, which does not limit the solution of the embodiment of the present application.
  • the first indication information may also be other forms of information, which is not limited in the embodiments of the present application.
  • the first terminal device configures the first configuration and/or the first SRB.
  • Step 1040a in (a) of FIG. 10 and step 1040b in (b) of FIG. 10 are both step 1040.
  • terminal device #1 may receive the second indication information, and configure the first configuration and/or the first SRB according to the second indication information.
  • the first indication information and the second indication information may be carried by the same information, for example, RRC configuration information. Alternatively, the first indication information and the second indication information may be carried by different information.
  • the second indication information may be sent by network device #1 to terminal device #1.
  • the second indication information may also be sent by network device #1 to terminal device #1 through other devices.
  • terminal device #1 communicates with network device #2 through a direct link, and after the handover is completed, terminal device #1 communicates with network device #2 through an indirect link. 1 communication.
  • network device #1 can Device #2 sends the second instruction information to terminal device #1.
  • the terminal device #1 may determine to configure the first configuration and/or the first SRB on its own. Alternatively, after receiving the first indication information, the terminal device #1 may configure the first configuration and/or the first SRB according to the protocol provisions. In this implementation, step 1010a and step 1020a may be omitted. Step 1010b and step 1020b can be omitted.
  • the terminal device #1 configuring the first configuration may include: the terminal device #1 adds the first configuration, the terminal device #1 modifies the first configuration, the terminal device #1 retains the first configuration, or the terminal device #1 releases the first configuration.
  • the terminal device #1 adds the first configuration
  • the terminal device #1 modifies the first configuration
  • the terminal device #1 retains the first configuration
  • the terminal device #1 releases the first configuration.
  • One configuration is
  • terminal device #1 may add the first configuration according to specific parameters of the first configuration sent by network device #1.
  • terminal device #1 may modify the first configuration according to specific parameters of the first configuration sent by network device #1.
  • the specific parameters of the first configuration may be indicated by the second indication information, or the specific parameters of the first configuration may also be indicated by other indication information.
  • the first terminal device configuring the first SRB may include: terminal device #1 adds the first SRB, terminal device #1 modifies the first SRB, terminal device #1 retains the first SRB, or terminal device #1 releases the first SRB.
  • terminal device #1 adds the first SRB
  • terminal device #1 modifies the first SRB
  • terminal device #1 retains the first SRB
  • terminal device #1 releases the first SRB.
  • terminal device #1 may add the first SRB according to the specific parameters of the first SRB sent by network device #1.
  • terminal device #1 may modify the first SRB according to the specific parameters of the first SRB sent by network device #1.
  • the specific parameters of the first SRB may be indicated by the second indication information, or the specific parameters of the first SRB may also be indicated by other indication information.
  • method 1000 also includes: after terminal device #1 no longer supports the first SRB, if terminal device #1 has the first configuration, terminal device #1 can obtain the first data according to the first configuration, and store the first SRB. One data.
  • the terminal device #1 Since the terminal device #1 no longer supports the first SRB, the first data cannot be reported through the first SRB. In the above solution, when the terminal device #1 no longer supports the first SRB, the terminal device #1 can still obtain the first data according to the first configuration and save the first data. In this way, when the terminal device #1 switches from not supporting the first SRB to a scenario that can support the first SRB, the cached first data can be reported in a timely manner.
  • the first configuration may be a QoE measurement configuration
  • the first data may be a measurement result obtained by performing QoE measurement according to the QoE measurement configuration.
  • terminal device #1 communicates with network device #1 through an indirect link.
  • Terminal device #1 currently does not support SRB4.
  • Terminal device #1 can perform QoE measurements according to the QoE measurement configuration. To obtain the measurement result of the QoE measurement, and save the measurement result of the QoE measurement in the terminal device #1. In this way, when terminal device #1 later accesses the network through a direct link, the previously cached QoE measurement measurement results can be reported in a timely manner.
  • the method 1000 also includes: discarding the first data when the storage duration of the first data exceeds the timing duration.
  • the timing duration may be determined by terminal device #1.
  • the scheduled duration can also be specified by the agreement.
  • the timing duration may also be indicated by network device #1.
  • the first protocol layer of the terminal device #1 can obtain the first data according to the first configuration, and the terminal device #1 can instruct the first protocol layer not to AS submits the first data.
  • the first protocol layer may be an application layer.
  • the application layer of the terminal device #1 refers to the layer capable of obtaining the first data according to the first configuration. Taking the QoE measurement scenario as an example, the application layer of terminal device #1 refers to the layer capable of QoE measurement.
  • the second protocol layer may be the access layer or the RRC layer in the access layer.
  • the embodiments of this application mainly take the first protocol layer as the application layer and the second protocol layer as the access layer as examples for description, which does not limit the solution of the embodiments of this application.
  • the AS for example, RRC layer
  • the AS can send an indication information to the application layer, instructing the application layer to obtain the first data and do not need to transfer the first data to the application layer. Submit to AS.
  • the terminal device #1 can obtain the first data according to the first configuration, by instructing the application layer not to submit the first data to the AS, to avoid the situation where the first message needs to be transmitted through the first SRB and the terminal device #1 cannot support the first data. A contradiction between SRB data transmission, thereby improving the efficiency of the system.
  • the terminal device #1 can obtain the first data according to the first configuration and store the first data, including: in the case that the terminal device #1 has the first configuration and does not have the first SRB, the terminal device #1 The second protocol layer submits the first configuration to the first protocol layer, and the first protocol layer can obtain the first data according to the first configuration and save the first data in the first protocol layer.
  • the AS of terminal device #1 may send an indication to the application layer.
  • the application layer can save the first data and update the first data according to the first configuration.
  • the first protocol layer may discard the corresponding first data.
  • the application layer may discard the corresponding first data if the application layer does not receive an instruction to submit the first data to the AS within the range of the timing duration.
  • terminal device #1 does not receive an indication that terminal device #1 can support the first SRB, and may send an indication to the application layer, instructing the application layer to discard the corresponding first data.
  • the first protocol layer of the terminal device #1 can obtain the first data according to the first configuration and submit the first data to the second protocol layer.
  • the second protocol layer does not report the first data.
  • the terminal device #1 has the first SRB
  • the terminal device #1 because the terminal device #1 does not support the first SRB, the first data still cannot be reported through the first SRB.
  • the application layer of terminal device #1 submits the first data to the AS.
  • the RRC layer After receiving the first data, the RRC layer does not report the first data based on the first SRB configuration.
  • the application layer of the terminal device #1 can obtain the first data according to the first configuration and submit it to the AS.
  • the AS does not report the first data, thereby avoiding the need for the first message to be transmitted to the terminal device # through the first SRB. 1 cannot support the contradiction between the first SRB data transmission, thereby improving the efficiency of the system.
  • terminal device #1 can obtain the first data according to the first configuration and store the first data, including:
  • the first protocol layer of the terminal device #1 can obtain the first data according to the first configuration, and submit the first data to the second protocol layer.
  • the protocol layer stores the first data.
  • the application layer of terminal device #1 submits the first data to the AS.
  • the RRC layer does not report the first data based on the first SRB configuration.
  • the RRC layer stores the first data.
  • the AS can update the first data stored in the RRC layer based on the first data submitted by the application layer.
  • the second protocol layer cannot report the first data, and the corresponding first data can be discarded.
  • the terminal device #1 still cannot support the first SRB, and the AS may discard the corresponding first data.
  • network device #1 may send sixth indication information to the management device.
  • the sixth instruction information may be used to instruct to stop reporting the first data.
  • the sixth instruction information may be used to instruct terminal device #1 to stop reporting the first data.
  • the sixth indication information may be used to indicate that terminal device #1 does not support reporting the first data.
  • the sixth indication information may be used to instruct the network device not to report the first data of terminal device #1.
  • the sixth indication information may be used to indicate that the network device does not support reporting the first data of terminal device #1
  • the sixth indication information may be used to indicate that the terminal device #1 does not support the first SRB. Taking QoE measurement as an example, the sixth indication information may be used to instruct the terminal device #1 to switch from communicating through a direct link to communicating through an indirect link.
  • the network device #1 may send the sixth indication information to the management device.
  • the network device #1 can send the sixth instruction message.
  • the sixth indication information may also be sent by network device #2, that is, by the network device that communicates with terminal device #1 through a direct link.
  • the network device #2 may send the sixth indication information to the management device.
  • the terminal device #1 when the terminal device #1 cannot support transmitting the first message generated according to the first configuration through the first SRB, the terminal device #1 is caused to configure the first SRB and/or the first configuration to avoid There is a contradiction between the first message needing to be transmitted through the first SRB and the terminal device #1 being unable to support the first SRB data transmission, thereby improving the efficiency of the system.
  • the UE may release the first configuration and/or SRB.
  • the embodiment of the present application provides a communication method, so that when the UE switches from a scenario in which SRB cannot be supported to a scenario in which SRB can be supported, corresponding data can be transmitted through the SRB, so as to improve the efficiency of the system.
  • Figure 11 is a schematic diagram of a communication scenario in which an indirect link is switched to a direct link.
  • terminal device #3 passes terminal device #4 (relay UE shown in (a) of Figure 11) and Network Device #3 (gNB shown in (a) of Figure 11) communicates, and then switches to communicating directly with Network Device #3 through Uu link.
  • remote UE and relay UE can connect to the same network device.
  • terminal device #3 passes terminal device #4 (relay UE shown in (b) of Figure 11) and Network device #4 (the source gNB shown in Figure 11(b)) communicates, and then switches to communicating directly with the network device #3 (the target gNB shown in Figure 11(b)) through Uu link.
  • remote UE and relay UE can connect to different network devices, that is, the case of inter-station handover.
  • Figure 12 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the method 1200 shown in Figure 12 can be applied to the network architecture shown in Figure 1 or Figure 11, without limitation.
  • Method 1200 may include the following steps.
  • the method 1200 may include the steps shown in (a) of FIG. 12 , or may also include the steps shown in (b) of FIG. 12 .
  • the method 1200 may include steps 1210a to 1250a.
  • the method 1200 may include steps 1210b to 1250b.
  • the method shown in (a) of FIG. 12 may be applicable to the scenario of (a) of FIG. 11 .
  • the solution shown in (b) of FIG. 12 can be applied to the scenario shown in (b) of FIG. 11 .
  • the second network device determines that the first terminal device can support transmission of the first message generated according to the first configuration through the first SRB.
  • the second network device may determine according to the measurement report of the first terminal device that the first terminal device can support transmission of the first message generated according to the first configuration through the first SRB.
  • the second network device receives seventh indication information from the fourth network device.
  • the seventh indication information is used to indicate that the first terminal device can support transmission of the first message generated according to the first configuration through the first SRB.
  • the second network device may know according to the seventh indication information that the first terminal device may support transmission of the first message generated according to the first configuration through the first signaling radio bearer.
  • the first terminal device may be terminal device #3.
  • Terminal device #3 may be terminal device #1 in method 1000.
  • terminal device #3 may also be another terminal device.
  • the method 1200 can be applied in the scenario of QoE measurement.
  • the first configuration may be a QoE measurement configuration
  • the first SRB may be SRB4.
  • the seventh indication information may be used to instruct terminal device #3 to switch from communicating through an indirect link to communicating through a direct link.
  • network device #3 (an example of the second network device) communicates with terminal device #3 through a direct link.
  • terminal device #3 When terminal device #3 switches from communicating through an indirect link to communicating through a direct link, terminal device #3 can support SRB4.
  • the solution of the embodiment of the present application can be applied in a handover scenario. After the handover is completed, terminal device #3 communicates with network device #3 through the direct link.
  • step 1210a network device #3 receives the measurement report of terminal device #3 through terminal device 4#.
  • Network device #3 is triggered to determine the handover. Before the handover, terminal device #3 communicates with network device #3 through the indirect link. After the handover is completed, terminal device #3 can communicate with network device #3 through the direct link.
  • terminal equipment #3 communicates with network equipment #3 through terminal equipment #4 (relay UE in Figure 11(a)).
  • (gNB in (a) of Figure 11) sends measurement reports (measurement reports).
  • This measurement report can trigger network device #3 to determine handover.
  • network device #3 decides to switch terminal device #3 from the first cell of network device #3 to the second cell, and terminal device #3 is directly connected to network device #3. ’s second community. It should be noted that after the handover, there is a direct link between terminal equipment #3 and network equipment #3, and terminal equipment #1 is no longer a remote UE.
  • step 1210b network device #3 receives a handover request (handover request, HO request) #2 from network device #4 (an example of the fourth network device).
  • the handover request #2 carries the 7. Instructions.
  • terminal device #3 communicates with network device #4 through the indirect link. After the handover is completed, terminal device #3 can communicate with network device #3 through the indirect link.
  • switching request #2 may be a switching request in the scenario of inter-site switching.
  • Network device #3 is the destination network device, and network device #4 is the source network device.
  • handover request #2 may be a handover request sent by network device #4 (source gNB in FIG. 11(b)) to network device #3 (target gNB in FIG. 11(b)). It should be noted that after the handover, there is a direct link between terminal equipment #3 and network equipment #3, and terminal equipment #3 is no longer a remote UE.
  • terminal device #3 is the same as Network devices #4 communicate through link #3, and terminal device #3 does not support SRB4. Afterwards, terminal device #3 switches to communicate with network device #3 through link #4, and terminal device #3 can support SRB4.
  • handover request #2 can also be expressed as information in other forms.
  • the embodiment of this application does not limit the specific form of handover request #2.
  • the embodiment of the present application mainly takes the switching scenario as an example to illustrate the method 1200, which does not limit the solution of the embodiment of the present application. For other scenarios, please refer to the description in method 1000 and will not be described again here.
  • the seventh indication information can also be other forms of information, which is not limited in the embodiments of the present application.
  • the second network device sends fourth instruction information.
  • the fourth instruction information is used to instruct the first terminal device to add the first SRB, modify the first SRB, or retain the first SRB.
  • the second network device sends fourth indication information to the first terminal device.
  • the second network device may directly send the fourth indication information to the first terminal device.
  • the second network device may also send the fourth indication information (not shown in the figure) to the first terminal device through the relay terminal device.
  • network device #3 may determine a solution related to the first SRB of terminal device #3, and indicate the determined solution through the fourth indication information.
  • the second network device sends fourth indication information to the fourth network device.
  • the fourth network device may directly send the fourth indication information to the first terminal device.
  • the fourth network device may also send the fourth indication information to the first terminal device through the relay terminal device (not shown in the figure).
  • the solution of the embodiment of the present application can be applied in a handover scenario. After the handover is completed, terminal device #3 communicates with network device #3 through the direct link.
  • step 1220a network device #3 sends an RRC configuration message to terminal device #3 through terminal device #4.
  • the RRC configuration message carries fourth indication information.
  • terminal device #3 communicates with network device #3 through the indirect link. After the handover is completed, terminal device #3 can communicate with network device #3 through the direct link.
  • step 1220b network device #3 sends a handover request acknowledgment (HO Ack) message to network device #4, and the handover request acknowledgment message carries fourth indication information.
  • HO Ack handover request acknowledgment
  • terminal device #3 communicates with network device #4 through the indirect link.
  • terminal device #3 can communicate with network device #3 through the direct link.
  • the fourth indication information can also be sent through other messages, which is not limited in this embodiment of the present application.
  • the fourth instruction information may be full configuration mode instruction information.
  • network device #3 may generate RRC configuration information.
  • the RRC configuration information carries a full configuration indication and indicates the first SRB configuration.
  • the fourth indication information may be delta configuration mode indication information.
  • the fourth indication information may be indicated in the form of one or more information elements.
  • network device #3 may generate RRC configuration information and indicate adding or modifying the first SRB through information elements in the RRC configuration information.
  • “retain” can be understood as, in the case of delta configuration, the fourth instruction information does not indicate any update to the original configuration of terminal device #1.
  • the terminal device will retain the original first SRB configuration information and configure it accordingly.
  • the network device #3 can determine to enable the terminal device #3 to have the first SRB.
  • the terminal device #3 can support the first SRB, for example, before the network device #3 receives the seventh indication information, that is, before the network device #3 knows that the terminal device #3 can support the first SRB, or, Before network device #3 determines that terminal device #3 can support the first SRB, if terminal device #3 does not have the first SRB, then network device #3 can determine to add the first SRB for terminal device #3.
  • the fourth instruction information is used to instruct terminal device #3 to add the first SRB. Taking the QoE measurement in the scenario where terminal device #3 switches from an indirect link to a direct link as an example, if the network device communicating with terminal device #3 through the indirect link does not add SRB4 for terminal device #3, Network device #3 may determine to instruct terminal device #3 to add SRB4.
  • the specific parameters of the first SRB may be indicated by the fourth indication information, or may also be indicated by other information.
  • Terminal device #3 may add the first SRB according to specific parameters of the first SRB. For example, terminal device #3 may add the first SRB according to the fourth indication information.
  • network device #3 can determine to modify the first SRB, that is, instruct terminal device #3 to modify the first SRB. For example, terminal device #3 executes the method in method 1000 In case 3 or 4, the terminal device #3 has the first SRB. Network device #3 may determine to modify the first SRB, that is, instruct terminal device #3 to modify the first SRB. The fourth instruction information is used to instruct terminal device #3 to modify the first SRB.
  • Network device #3 may determine to instruct terminal device #3 to modify the SRB4.
  • Terminal device #3 may modify the first SRB according to specific parameters of the first SRB.
  • the specific parameters of the first SRB may be indicated by the fourth indication information, or may also be indicated by other information.
  • terminal device #3 may modify the first SRB according to the fourth indication information.
  • network device #3 can determine to retain the first SRB, that is, instruct terminal device #3 to retain the first SRB. For example, terminal device #3 executes solution 3 or solution 4 in method 1000, and terminal device #3 has the first SRB. Network device #3 may determine to reserve the first SRB, that is, instruct terminal device #3 to reserve the first SRB.
  • the fourth indication information is used to instruct terminal device #3 to reserve the first SRB.
  • Network device #3 may determine to instruct terminal device #3 to retain the SRB4.
  • Terminal device #3 retains the first SRB, that is, terminal device #3 may not perform any processing on the first SRB.
  • Network device #3 can also configure the first configuration for terminal device #3.
  • the fourth instruction information can also be used to instruct to configure the first configuration, which is not limited in the embodiment of the present application.
  • the fourth indication information may be indicated in the form of information elements.
  • network device #3 may generate RRC configuration information and indicate the first SRB through an information element in the RRC configuration information.
  • the fourth indication information may be indicated in a full configuration manner.
  • network device #3 may generate RRC configuration information.
  • the RRC configuration information carries a full configuration indication, which can indicate the first SRB.
  • terminal device #3 can delete all AS-related configurations and reconfigure the AS-related configurations according to the configuration information carried in the RRC message.
  • the first terminal device receives the third indication information.
  • the third indication information is used to indicate that the first terminal device can support transmission of the first message generated according to the first configuration through the first SRB.
  • the first terminal device receives third indication information from the second network device.
  • terminal device #3 may directly receive the third indication information sent by network device #3.
  • terminal device #3 may receive the third indication information (not shown in the figure) sent by network device #3 through terminal device #4.
  • the first terminal device receives third indication information from the fourth network device.
  • terminal device #3 may directly receive the third indication information sent by network device #4.
  • terminal device #3 may receive the third indication information (not shown in the figure) sent by network device #4 through terminal device #4.
  • terminal device #3 may determine that the first SRB can be supported according to the third indication information.
  • the third indication information may be used to instruct the terminal device #3 to switch from communicating through the indirect link to communicating through the direct link.
  • the solution of the embodiment of the present application can be applied in a handover scenario. After the handover is completed, terminal device #3 communicates with network device #3 through the direct link.
  • step 1230a network device #3 sends RRC configuration information to terminal device #3 through terminal device #4, and the configuration information carries third indication information, so that terminal device #3 does not Communication with network device #3 via the direct link is switched to communication with network device #3 through the direct link.
  • terminal device #3 receives data from network device #3 ( Figure 11(a)) through terminal device #4 (relay UE in Figure 11(a)).
  • the gNB in the terminal receives the new RRC configuration, and terminal device #3 switches to direct link communication according to the RRC configuration information. It should be noted that after the handover, there is a direct link between terminal equipment #3 and network equipment #3, and terminal equipment #3 is no longer a remote UE.
  • step 1230b network device #4 sends handover command (handover commond, HO command) #2 to terminal device #3 through terminal device 4#.
  • the handover command #2 carries the third instruction information.
  • terminal device #3 communicates with network device #4 through the indirect link. After the handover is completed, terminal device #3 can communicate with network device #3 through the direct link.
  • switching command #2 may be a switching command in the scenario of inter-site switching.
  • Network device #3 is the destination network device, and network device #4 is the source network device.
  • handover command #2 can be for network device #4 (source gNB in (b) of Figure 11) through the terminal device.
  • the handover command is sent by device #4 (relay UE in Figure 11(b)) to terminal device #3 (remote UE in Figure 9(b)). It should be noted that after the handover, there is a direct link between terminal equipment #3 and network equipment #3, and terminal equipment #3 is no longer a remote UE.
  • switching command #2 can also be expressed as other forms of information.
  • the embodiment of the present application does not limit the specific form of switching command #2.
  • the embodiment of the present application mainly takes the switching scenario as an example to illustrate the method 1200, which does not limit the solution of the embodiment of the present application.
  • the first terminal device adds the first SRB, modifies the first SRB, or reserves the first SRB.
  • Step 1240a in (a) of FIG. 12 and step 1240b in (b) of FIG. 12 are both step 1240.
  • terminal device #3 may receive the fourth instruction information and perform relevant operations according to the fourth instruction information.
  • the fourth indication information and the third indication information may be the same information, for example, RRC configuration information. Alternatively, the fourth indication information and the third indication information may be different information.
  • the fourth indication information may be sent by network device #3 to terminal device #3.
  • the fourth indication information may also be sent by network device #3 to terminal device #3 through other devices.
  • terminal device #3 communicates with network device #3 through an indirect link, and after the handover is completed, terminal device #3 communicates with network device #3 through a direct link. 3. Communication.
  • network device #3 may send the fourth indication information to terminal device #3 through terminal device #4.
  • terminal device #3 may determine to configure the first SRB on its own. Alternatively, after receiving the third indication information, terminal device #3 may configure the first SRB according to the protocol provisions. In this implementation, step 1210a and step 1220a may be omitted. Step 1210b and step 1220b can be omitted.
  • the terminal device #3 may add the first SRB to the first SRB of the terminal device #3 according to the specific parameters of the first SRB of the network device #3.
  • terminal device #3 may modify the first SRB according to the specific parameters of the first SRB given to terminal device #3 by network device #3.
  • the specific parameters of the first SRB may be indicated by fourth indication information, or the specific parameters of the first SRB may also be indicated by other indication information.
  • the terminal device #3 reserves the first SRB, and the terminal device #3 may not process the first SRB.
  • the first terminal device transmits the first message through the first SRB, and the first message includes the first data stored by the first terminal device.
  • the first terminal device sends the first message to the second network device. Specifically, before the terminal device #3 receives the third indication information, if the first data obtained according to the first configuration is stored in the terminal device #3, after the terminal device #3 can support the first SRB, the first SRB can be used. Transmit the first message.
  • the terminal device #3 switches from not supporting the first SRB to a scenario in which the first SRB is supported, the first data cached in the scenario in which the terminal device #3 does not support the first SRB can be reported in a timely manner.
  • terminal device #3 communicates with the network device through an indirect link.
  • Terminal device #3 currently does not support SRB4.
  • Terminal device #3 can perform QoE measurements according to the QoE measurement configuration to obtain The measurement result of the QoE measurement, and the measurement result of the QoE measurement is saved in the terminal device #3.
  • terminal device #3 accesses the network through a direct link, after terminal device #3 establishes SRB4, it can promptly report the previously cached QoE measurement measurement results.
  • the first terminal device transmits the first message through the first SRB, including: the first protocol layer of the first terminal device submits the first data stored in the first protocol layer to the second protocol layer of the first terminal device ;
  • the second protocol layer generates the first message, which includes the first data; the second protocol layer transmits the first message through the first SRB.
  • terminal device #3 does not support SRB
  • terminal device #3 obtains the first data according to the first configuration and saves the first data in the first protocol layer
  • the terminal device #3 is converted to support the third
  • the first protocol layer of terminal device #3 can submit the cached first data to the second protocol layer, triggering a report.
  • terminal device #3 when terminal device #3 communicates with the network device through an indirect link, if terminal device #3 obtains the measurement results according to the QoE measurement configuration and saves the measurement results in the application layer , when terminal device #3 accesses the network through a direct link, after terminal device #3 establishes SRB4, it can report the previously cached QoE measurement measurement results in a timely manner.
  • the first terminal device transmits the first message through the first SRB, including: the second protocol layer of the first terminal device generates the first message, the first message includes the first data stored in the second protocol layer;
  • the second protocol layer transmits the first message through the first SRB.
  • terminal device #3 does not support SRB
  • terminal device #3 if terminal device #3 obtains the first data according to the first configuration and saves the first data in the second protocol layer, the terminal device #3 converts to a state that can support the third protocol layer.
  • terminal device #3 has established the first SRB, and the second protocol layer of terminal device #3 can trigger a report, that is, report the cached first data.
  • terminal device #3 when terminal device #3 communicates with the network device through an indirect link, if terminal device #3 obtains the measurement results according to the QoE measurement configuration and saves the measurement results in the AS, When terminal device #3 accesses the network through a direct link, terminal device #3 has established SRB4, and the AS can immediately trigger the reporting of the measurement results of the previously cached QoE measurement.
  • the method 1200 further includes: the second network device sending eighth instruction information to the management device, where the eighth instruction information is used to instruct to resume reporting of the first message.
  • the eighth indication information may be used to instruct terminal device #3 to resume reporting the first data.
  • the eighth indication information may be used to indicate that terminal device #3 can support reporting the first data.
  • the eighth indication information may be used to instruct the network device to report the first data of terminal device #3.
  • the eighth indication information may be used to indicate that the network device can support reporting the first data of terminal device #3.
  • the eighth indication information may be used to indicate that terminal device #3 may support the first SRB. Taking QoE measurement as an example, the eighth indication information may be used to instruct terminal device #3 to switch from communicating through an indirect link to communicating through a direct link.
  • the eighth indication information may also be sent by network device #4, that is, by the network device that communicates with terminal device #3 through an indirect link.
  • the terminal device #3 when the terminal device #3 cannot support the transmission of the first message generated according to the first configuration through the first SRB, if the terminal device #3 stores the data generated according to the first configuration, the terminal device #3 When switching to a scenario that can support the first SRB, the data cached by terminal device #3 can be uploaded in time, thereby updating the data in a timely manner during the period when it cannot be reported, improving the efficiency of the system.
  • the measurement results cached by terminal device #3 can be uploaded in time, so that the network device can make timely adjustments based on the measurement results, thereby improving user experience. , improving the processing efficiency of the system.
  • terminal equipment #1 is a remote UE
  • terminal equipment #2 is a target relay UE (target relay UE)
  • the network Device 1# is the target gNB (for example, T-gNB in Figure 13)
  • network device 2# is the source gNB (for example, S-gNB in Figure 13).
  • Figure 13 is a schematic diagram of a communication method 1300 provided by an embodiment of the present application. This method 1300 may be adapted to the method 1100 described above. Method 1300 may include the following steps.
  • the UE performs the U2N relay discovery (U2N relay discovery) process.
  • U2N relay discovery U2N relay discovery
  • the UE finds nearby available candidate relay UEs through the U2N relay discovery process.
  • the UE Before switching to the indirect link scenario, the UE has not yet become a remote UE and transmits uplink data and downlink data with the S-gNB.
  • the UE is a remote UE after switching to the indirect link scenario.
  • the UE is collectively called a remote UE in method 1300.
  • the remote UE performs measurement reporting.
  • the remote UE can report the information of the candidate relay UE, such as the ID of the candidate relay UE, the cell ID, and the signal quality of the sidelink link between the remote UE and the candidate relay UE, etc.
  • the S-gNB determines to perform handover based on the measurement report of the remote UE.
  • S-gNB determines to handover the remote UE to the target relay UE based on the measurement report of the remote UE.
  • the method 1300 further includes step 1330a.
  • the S-gNB may send indication information (an example of the sixth indication information) to the CN, OAM or MCE.
  • the indication information may indicate that the remote UE does not support reporting QoE measurement measurement results.
  • the indication information may indicate that the base station side no longer supports providing measurement results of QoE measurements of remote UEs.
  • the indication information may instruct the remote UE to switch from communicating through a direct link to communicating through an indirect link.
  • S-gNB sends a handover request to T-gNB.
  • the handover request may carry the RRC configuration information of the remote UE on the S-gNB side. If the S-gNB delivers QoE measurement configuration to the remote UE, the QoE measurement configuration can be sent to the T-gNB through this message.
  • the switching request may be an example of the fifth indication information in the method 1000.
  • T-gNB determines the configuration of QoE and/or SRB4.
  • the T-gNB may generate RRC configuration information of the remote UE on the T-gNB side, and the RRC configuration information may carry indications related to the configuration of QoE and/or SRB4 (an example of the second indication information).
  • the T-gNB determines based on the handover request that after the handover, the remote UE will communicate with the T-gNB through the target relay UE and does not support reporting of QoE measurement measurement results.
  • the method 1300 is mainly explained by taking the S-gNB delivering QoE measurement configuration and SRB4 configuration to the remote UE as an example, and does not limit the solution of the embodiment of the present application.
  • the S-gNB may not deliver the QoE measurement configuration to the remote UE, and/or the S-gNB may not deliver the SRB4 configuration to the remote UE.
  • the following is an example of the four solutions in method 1000, taking the S-gNB delivering QoE measurement configuration and SRB4 configuration to the remote UE as an example.
  • the T-gNB determines to instruct the remote UE to release the QoE measurement configuration and SRB4.
  • the T-gNB may instruct the release of the QoE measurement configuration through IE measconfigAPPLayerToReaseList in the RRC configuration information, and instruct the release of SRB4 by setting IE srb4-ToRelease in the RRC message to true.
  • IE measconfigAPPLayerToReaseList is located in IE AppLayerMeasConfig.
  • the T-gNB may release the QoE measurement configuration and SRB4 through the full configuration indication carried in the RRC configuration information.
  • T-gNB sends the RRC message to remote UE through S-gNB.
  • the RRC message received by the Remote UE is the RRC reconfiguration message (RRC reconfiguration message) in step 1370.
  • the T-gNB determines to instruct the remote UE to release the QoE measurement configuration and retain or modify the SRB4 configuration.
  • the T-gNB may indicate this solution through information elements in RRC configuration information.
  • the T-gNB may indicate this solution through the full configuration indication carried in the RRC configuration information, and carry the configuration information of SRB4 in the RRC configuration information.
  • the T-gNB determines to instruct the remote UE to release SRB4 and retain or modify the QoE measurement configuration.
  • the T-gNB may indicate this solution through information elements in RRC configuration information.
  • the T-gNB may indicate the solution through the full configuration indication carried in the RRC configuration information, and carry the QoE measurement configuration in the RRC configuration information.
  • the T-gNB may determine the QoE measurement configuration that needs to be retained based on implementation.
  • the T-gNB may indicate the determined QoE measurement configuration to the management device (CN, OAM or MCE in Figure 13).
  • the QoE measurements that can be provided by the application layer of the remote UE include QoE measurements of streaming, MTSI, and VR.
  • the T-gNB may determine to retain any one or more of the above QoE measurements based on implementation.
  • the T-gNB may determine QoE measurements to preserve streaming based on implementation.
  • the T-gNB may determine, based on implementation, a measurement configuration that retains measurement quantities visible to the base station side.
  • the T-gNB determines to instruct the remote UE to retain or modify the SRB4 configuration, and retain or modify the QoE measurement configuration.
  • the T-gNB may indicate this solution through information elements in RRC configuration information.
  • the T-gNB may indicate the solution through the full configuration indication carried in the RRC configuration information, and carry the QoE measurement configuration and SRB4 configuration in the RRC configuration information.
  • the T-gNB may determine the QoE measurement configuration that needs to be retained based on implementation. For detailed description, please refer to Scheme 3 and will not be repeated here.
  • the indication information of the above scheme can also be indicated in the form of an index value, that is, the index value is carried in the RRC message to instruct the remote UE to execute the scheme corresponding to the index value.
  • the index value is carried in the RRC message to instruct the remote UE to execute the scheme corresponding to the index value.
  • relevant instructions please refer to the corresponding solution in method 1000 and will not be described again here.
  • method 1300 further includes step 1350a.
  • the T-gNB may send indication information (an example of the sixth indication information) to the CN, OAM or MCE.
  • the indication information may indicate that the remote UE does not support reporting QoE measurement measurement results.
  • the indication information may indicate that the base station side no longer supports providing measurement results of QoE measurement of the remote UE.
  • the indication information may indicate that the remote UE is switched to communication via a direct link. Instead, communicate over an indirect link.
  • the T-gNB may perform step 1350a when the S-gNB delivers the QoE measurement configuration to the remote UE.
  • T-gNB sends HO ACK to S-gNB.
  • T-gNB sends the RRC configuration information determined in step 1350 to S-gNB through HO ACK.
  • the S-gNB sends the RRC configuration information to the remote UE, that is, the RRC reconfiguration message (RRC reconfiguration message) in Figure 13.
  • the RRC configuration information can be used as an example of the first indication information, instructing the remote UE to switch from a directly connected link to an indirect link.
  • Remote UE configures related content according to the RRC configuration information.
  • the remote UE can delete all AS-related configurations according to the instruction, and configure the AS-related configurations according to the configuration information carried in the RRC message.
  • the remote UE can release the QoE measurement configuration and SRB4.
  • the remote UE releases the QoE measurement configuration and retains or modifies SRB4.
  • the remote UE has SRB4
  • the remote UE since the remote UE has released the QoE measurement configuration, QoE measurements will not be performed, and there are no measurement results to report. The remote UE will not report the measurement results of the QoE measurement.
  • the remote UE retains or modifies the QoE measurement configuration and releases SRB4.
  • Remote UE can send the relevant configuration of the application layer to the application layer and instruct the application layer to perform corresponding QoE measurements.
  • the RRC layer can send an indication information to the application layer.
  • the indication information is used to instruct the application layer not to submit the measurement results to the AS after the measurement.
  • the application layer can save this measurement. Furthermore, the application layer can continuously perform measurements and update the saved measurement results.
  • the remote UE can set the timing duration for the measurement results saved in the application layer.
  • timing duration can also be obtained in other ways, for example, indicated by the T-gNB.
  • the embodiments of the present application do not limit this.
  • the application layer discards the corresponding measurement results. This releases the UE's cache. For example, if the application layer does not receive the instruction submitted to the AS within the timing range, the application layer can discard the corresponding measurement results. For another example, if the remote UE does not receive an instruction to switch to a direct link within the timing range, the RRC layer can send an indication message to the application layer to instruct the application layer to discard the corresponding measurement results.
  • the remote UE retains or modifies the QoE measurement configuration and retains or modifies SRB4.
  • the T-gNB delivers the SRB4 configuration to the remote UE, it cannot deliver the mapping relationship configuration of the SRB4-related SRAP layer to the remote UE.
  • the remote UE can send the relevant configuration of the application layer to the application layer, instruct the application layer to perform corresponding QoE measurements, and submit the measurement results to the AS.
  • the RRC layer After the RRC layer receives the measurement results, it does not report the measurement results based on the configuration of SRB4.
  • the RRC layer can save this measurement result.
  • the AS can update the measurement results stored in the RRC layer based on the measurement results submitted by the application layer.
  • the remote UE can set the device timing duration for the measurement results saved in the RRC layer.
  • timing duration can also be obtained in other ways, for example, indicated by the T-gNB.
  • the embodiments of the present application do not limit this.
  • the RRC layer discards the corresponding measurement results. This releases the UE's cache. For example, if the remote UE does not receive an instruction to switch to a direct link within the timing range, the RRC layer can discard the corresponding measurement results.
  • the above only takes the execution of relevant solutions according to the RRC configuration information of the T-gNB as an example for explanation, and does not limit the solutions of the embodiments of the present application.
  • the RRC configuration information of the T-gNB may not carry the indication information of the above solution, but the relevant solution is specified by the protocol.
  • the Remote UE receives the instruction to switch the direct link to the indirect link, that is, after the Remote UE receives the RRC configuration information sent by the T-gNB through the S-gNB, it can execute the corresponding solution according to the protocol provisions.
  • T-gNB sends RRC reconfiguration message to the target relay UE.
  • the T-gNB generates the configuration information required to relay the remote UE to the target relay UE, that is, the RRC reconfiguration message in Figure 13, and sends it to the target relay UE.
  • the remote UE sends RRC configuration completion information.
  • the remote UE accesses the T-gNB through the target relay UE, and sends the RRC configuration completion message through the target relay UE, that is, the RRC reconfiguration complete message (RRC reconfiguration complete message) in Figure 13.
  • the need for measurement results of QoE measurement is avoided by configuring QoE measurement configuration and/or SRB and defining the behavior of the terminal side.
  • terminal equipment #3 can be a remote UE
  • terminal equipment #4 can be a relay UE
  • network equipment 3# can be the target gNB.
  • network device 4# is the source gNB (for example, S-gNB in Figure 14).
  • Figure 14 is a schematic diagram of a communication method 1400 provided by an embodiment of the present application. This method 1400 may be adapted to the method 1200 described above. Method 1400 may include the following steps.
  • the remote UE performs measurement reporting.
  • remote UE Before handover, remote UE transmits uplink data and downlink data with S-gNB through relay UE.
  • the remote UE can report information about surrounding candidate cells, such as the ID of the cell and the signal quality of the cell.
  • the S-gNB determines to perform handover based on the measurement report.
  • the S-gNB determines to handover the remote UE to the target cell under the T-gNB based on the measurement report.
  • method 1400 further includes step 1402a.
  • the S-gNB may send indication information (an example of the eighth indication information) to the CN, OAM or MCE.
  • the indication information may indicate that the remote UE supports reporting the measurement results of QoE measurement.
  • the indication information may indicate that the base station side can support providing measurement results of QoE measurement of the remote UE.
  • the indication information may instruct the remote UE to switch from communicating through an indirect link to communicating through a direct link.
  • S-gNB sends a handover request to T-gNB.
  • the switching request may be an example of seventh indication information in method 1200.
  • T-gNB determines the configuration of QoE and/or SRB4.
  • the T-gNB may generate RRC configuration information for the remote UE in the target cell under the T-gNB.
  • the RRC configuration information may carry indications related to the configuration of QoE and/or SRB4 (an example of the fourth indication information).
  • T-gNB Based on the handover request, T-gNB can know that T-gNB can configure QoE measurement configuration and SRB4 as needed.
  • method 1400 mainly describes several solutions in method 1300, which does not limit the solutions of the embodiments of the present application.
  • T-gNB can confirm the above content according to the handover request, and determine and configure QoE measurement configuration and SRB4 as needed.
  • the T-gNB can determine to instruct the remote UE to add SRB4.
  • the T-gNB can determine to instruct the remote UE to retain or modify SRB4.
  • method 1400 further includes step 1404a.
  • the T-gNB may send indication information (an example of the eighth indication information) to the CN, OAM or MCE.
  • the indication information may indicate that the remote UE supports reporting the measurement results of QoE measurement.
  • the indication information may indicate that the base station side supports providing measurement results of QoE measurement of remote UE.
  • the indication information may instruct the remote UE to switch from communicating through an indirect link to communicating through a direct link.
  • T-gNB sends HO ACK to S-gNB.
  • T-gNB sends the RRC configuration information determined in step 1404 to S-gNB through HO ACK.
  • S-gNB sends RRC configuration information to remote UE through relay UE, that is, RRC reconfiguration message in Figure 14.
  • the RRC configuration information can be used as an example of the third indication information, instructing the remote UE to switch from the indirect link to the direct link.
  • Remote UE configures related content according to the RRC configuration information.
  • the remote UE has QoE measurement configuration, and the measurement results of QoE measurement are saved in the application layer, in the remote After receiving the RRC configuration information, the UE can instruct the application layer to submit the saved measurement results to the AS, trigger a QoE measurement report, and report the measurement results cached by the application layer.
  • the AS can trigger a QoE measurement report and report the measurement results cached by the AS.
  • the remote UE accesses the target cell under the T-gNB.
  • the remote UE performs random access (RA) according to the RRC configuration information to access the target cell under the T-gNB.
  • RA random access
  • the remote UE sends RRC configuration completion information to the T-gNB, that is, the RRC reconfiguration completion information in Figure 14.
  • the S-gNB sends RRC configuration information (RRC reconfiguration information in Figure 14) to the relay UE to release the required relay configuration on the relay UE side.
  • RRC configuration information RRC reconfiguration information in Figure 14
  • remote UE or relay UE releases the sidelink connection between the two.
  • the remote UE during the handover process from the indirect link to the direct link, if the remote UE stores the measurement results of the QoE measurement in the indirect link scenario, it will switch to the direct link after switching to the direct link.
  • the measurement results of QoE measurements cached during the period that cannot be reported can be reported.
  • the network device and the remote UE transmit data through a relay UE as an example for illustration. It can be understood that the solution of the embodiment of the present application can also be used in a multi-hop relay scenario. For example, network equipment and remote UE transmit data through multiple relay UEs.
  • the methods and operations implemented by the device can also be implemented by components of the device (such as chips or circuits).
  • embodiments of the present application also provide corresponding devices, and the devices include modules for executing corresponding modules in each of the above method embodiments.
  • the module can be software, hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • FIG 15 is a schematic diagram of a communication device 1600 provided by an embodiment of the present application.
  • the device 1600 includes a transceiver unit 1610 and a processing unit 1620.
  • the transceiver unit 1610 can be used to implement corresponding communication functions.
  • the transceiver unit 1610 may also be called a communication interface or a communication unit.
  • the processing unit 1620 can be used to implement corresponding processing functions, such as configuring resources.
  • the device 1600 also includes a storage unit, which can be used to store instructions and/or data, and the processing unit 1620 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments.
  • the actions of the equipment or network elements in the network can be used to store instructions and/or data, and the processing unit 1620 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments.
  • the actions of the equipment or network elements in the network can be used to store instructions and/or data, and the processing unit 1620 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments.
  • the actions of the equipment or network elements in the network can be used to store instructions and/or data, and the processing unit 1620 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments.
  • the actions of the equipment or network elements in the network can be used to store instructions
  • the device 1600 may be the first terminal device in the aforementioned embodiment, or may be a component (such as a chip) of the first terminal device.
  • the device 1600 can implement steps or processes corresponding to those performed by the first terminal device in the above method embodiment, wherein the transceiver unit 1610 can be used to perform operations related to the transceiver of the first terminal device in the above method embodiment, and the processing unit 1620 may be used to perform operations related to processing of the first terminal device in the above method embodiment.
  • the transceiver unit 1610 is configured to receive first indication information.
  • the first indication information is used to indicate that the first terminal device no longer supports transmission of the first message generated according to the first configuration through the first signaling wireless bearer.
  • the transceiver unit 1610 is also used to receive the Two indication information, the second indication information is used to instruct the first terminal to configure the first configuration and/or the first signaling radio bearer.
  • the processing unit 1620 is configured to configure the first configuration and/or the first signaling radio bearer.
  • the first indication information is used to instruct the first terminal device to switch from communicating through a direct link to communicating through an indirect link
  • the first configuration is a quality of experience QoE measurement configuration
  • the first signaling wireless bearer is signaling Wireless bearer SRB4.
  • processing unit 1620 is specifically configured to add the first configuration according to the second instruction information, modify the first configuration according to the second instruction information, retain the first configuration according to the second instruction information, or release the first configuration according to the second instruction information. configuration.
  • the processing unit 1620 is specifically configured to add the first signaling radio bearer according to the second indication information, modify the first signaling radio bearer according to the second indication information, retain the first signaling radio bearer according to the second indication information, or Release the first signaling radio bearer according to the second indication information.
  • the processing unit 1620 is further configured to generate first data according to the first configuration and store the first data, and the first message includes the first data.
  • the first data is generated by the first protocol layer of the first terminal device according to the first configuration, the first configuration is submitted to the first protocol layer by the second protocol layer of the first terminal device, and the first data is stored in The first protocol layer.
  • the first data is generated by the first protocol layer of the first terminal device according to the first configuration, the first configuration is submitted to the first protocol layer by the second protocol layer of the first terminal device, and the first data is stored in In the second protocol layer of the first terminal device, the first data is submitted from the first protocol layer to the second protocol layer.
  • the first protocol layer includes an application layer
  • the second protocol layer includes an access layer or a radio resource control layer.
  • processing unit 1620 is also configured to discard the first data when the storage duration of the first data exceeds the timing duration.
  • the transceiver unit 1610 is also configured to receive third indication information, and the third indication information is used to indicate that the first terminal device can support transmission of the first message through the first signaling wireless bearer; the transceiver unit 1610 is also configured to receive a fourth Instruction information, the fourth instruction information is used to instruct the first terminal device to add the first signaling wireless bearer, modify the first signaling wireless bearer, or retain the first signaling wireless bearer; the transceiver unit 1610 is also used to use the first signaling wireless bearer to The bearer transmits the first message.
  • the third indication information is used to instruct the first terminal device to switch from communicating through an indirect link to communicating through a direct link.
  • the first message is generated by the second protocol layer, the first message includes the first data, and the first data is submitted to the second protocol layer by the first protocol layer that stores the first data.
  • the first message is generated by the second protocol layer, the first message includes the first data, and the first data is stored in the second protocol layer.
  • the device 1600 may be the first network device in the aforementioned embodiment, or may be a component (such as a chip) of the first network device.
  • the device 1600 can implement steps or processes corresponding to those performed by the first network device in the above method embodiment, wherein the transceiver unit 1610 can be used to perform operations related to the transceiver of the first network device in the above method embodiment, and the processing unit 1620 may be used to perform operations related to processing of the first network device in the above method embodiment.
  • the transceiver unit 1610 is configured to receive fifth indication information, which indicates that the first terminal device no longer supports transmitting the first message generated according to the first configuration through the first signaling wireless bearer; transceiver Unit 1610 is further configured to send second indication information, where the second indication information is used to instruct the first terminal device to configure the first configuration and/or the first signaling radio bearer.
  • the fifth indication information is used to instruct the first terminal device to switch from communicating through a direct link to communicating through an indirect link
  • the first configuration is a quality of experience QoE measurement configuration
  • the first signaling wireless bearer is signaling Wireless bearer SRB4
  • the link between the first network device and the first terminal device is an indirect link.
  • the second indication information is used to instruct: the first terminal device adds the first configuration, the first terminal device modifies the first configuration, the first terminal device retains the first configuration, or the first terminal device releases the first configuration.
  • the second indication information is used to instruct: the first terminal device adds the first signaling radio bearer, the first terminal device modifies the first signaling radio bearer, the first terminal device retains the first signaling radio bearer, or the first terminal device retains the first signaling radio bearer. A terminal device releases the first signaling radio bearer.
  • the transceiver unit 1060 is also configured to send sixth instruction information to the management device, where the sixth instruction information is used to instruct to stop reporting the first message.
  • the device 1600 may be the second network device in the previous embodiment, or may be a component (such as a chip) of the second network device.
  • the device 1600 can implement steps or processes corresponding to those performed by the second network device in the above method embodiment, wherein the transceiver unit 1610 can be used to perform operations related to the transceiver of the second network device in the above method embodiment, and the processing unit 1620 may be used to perform operations related to processing of the second network device in the above method embodiment.
  • the transceiver unit 1610 is configured to receive seventh indication information.
  • the seventh indication information is used to indicate that the first terminal device can support transmission of the first message generated according to the first configuration through the first signaling wireless bearer;
  • the transceiver unit 1610 is also configured to send fourth instruction information.
  • the fourth instruction information is used to instruct the first terminal device to add the first signaling radio bearer, modify the first signaling radio bearer, or retain the first signaling radio bearer; transceiver unit 1610, also used to receive the first message transmitted by the first terminal device through the first signaling wireless bearer, the first message includes the first data, and the first data is the first terminal device according to the first message before receiving the fourth indication information. Generated by a configuration.
  • the seventh indication information is used to instruct the first terminal device to switch from communicating through an indirect link to communicating through a direct link. After the switching is completed, the link between the second network device and the first terminal device The path is a direct link.
  • the transceiver unit 1610 is also configured to send eighth instruction information to the management device, where the eighth instruction information is used to instruct to resume reporting of the first message.
  • the device 1600 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merged logic circuitry, and/or other suitable components to support the described functionality.
  • the device 1600 can be specifically the first terminal device in the above embodiments, and can be used to execute various processes corresponding to the first terminal device in the above method embodiments and/or or steps; alternatively, the device 1600 may be specifically the first network device in the above embodiments, and may be used to perform various processes and/or steps corresponding to the first network device in the above method embodiments; or the device 1600 may be specifically It is the second network device in the above embodiments and can be used to perform various processes and/or steps corresponding to the second network device in the above method embodiments. To avoid duplication, the details will not be described again.
  • the device 1600 of each of the above solutions has the function of realizing the corresponding steps performed by the device (such as the first terminal device, the first network device, and the second network device) in the above method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 1610 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 15 can be the network element or device in the aforementioned embodiment, or it can be a chip or chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • FIG 16 is a schematic diagram of another communication device 1700 according to an embodiment of the present application.
  • the device 1700 includes a processor 1710, which is used to execute computer programs or instructions stored in the memory 1720, or read data/signaling stored in the memory 1720, to perform the methods in each method embodiment above.
  • processors 1710 there are one or more processors 1710 .
  • the device 1700 further includes a memory 1720, which is used to store computer programs or instructions and/or data.
  • the memory 1720 may be integrated with the processor 1710, or may be provided separately.
  • the device 1700 also includes a transceiver 1730, which is used for receiving and/or transmitting signals.
  • the processor 1710 is used to control the transceiver 1730 to receive and/or transmit signals.
  • the device 1700 is used to implement the operations performed by the first terminal device in each of the above method embodiments.
  • the processor 1710 is used to execute computer programs or instructions stored in the memory 1720 to implement related operations of the first terminal device in each of the above method embodiments.
  • the apparatus 1700 is used to implement the operations performed by the first network device in each of the above method embodiments.
  • the processor 1710 is configured to execute computer programs or instructions stored in the memory 1720 to implement related operations of the first network device in each of the above method embodiments.
  • the apparatus 1700 is used to implement the operations performed by the second network device in each of the above method embodiments.
  • the processor 1710 is used to execute computer programs or instructions stored in the memory 1720 to implement each of the above method embodiments. Related operations of the second network device.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM). For example, RAM can be used as an external cache.
  • RAM includes the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions for implementing the methods executed by the device in each of the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the first terminal device in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the first network device in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the second network device in each embodiment of the above method.
  • Embodiments of the present application also provide a computer program product, which includes instructions.
  • the instructions When the instructions are executed by a computer, the instructions in the above method embodiments are implemented by a device (such as a first terminal device, a first network device, or a second network device). device) execution method.
  • a device such as a first terminal device, a first network device, or a second network device). device
  • An embodiment of the present application also provides a communication system, including the aforementioned first terminal device and a first network device.
  • the system also includes a device that communicates with the above-mentioned first terminal device and/or the first network device.
  • An embodiment of the present application also provides a communication system, including the aforementioned first terminal device and a second network device.
  • the system also includes a device that communicates with the above-mentioned first terminal device and/or the second network device.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Via wire (e.g. coaxial cable, fiber optic, digital subscriber line (DSL)) Or wirelessly (such as infrared, wireless, microwave, etc.) transmitted to another website, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated therein.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)).
  • the aforementioned available media include but Not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信的方法、装置和系统。该方法可以包括:第一网络设备接收第一指示信息,第一指示信息用于指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息;第一终端设备接收第二指示信息,第二指示信息用于指示第一终端设备配置第一配置和/或第一信令无线承载,第一终端设备配置第一配置和/或第一信令无线承载。这样,在第一终端设备无法支持通过第一SRB传输根据第一配置生成的第一消息时,使得第一终端设备配置第一SRB和/或第一配置,以避免出现第一消息需要通过第一SRB传输与第一终端设备无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。

Description

通信的方法、装置和系统
本申请要求于2022年8月8日提交中国专利局、申请号为202210945305.4、申请名称为“通信的方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,并且更具体地,涉及一种通信的方法、装置和系统。
背景技术
在用户设备(user equipment,UE)可支持信令无线承载(signalling radio bearer,SRB)的场景下,用户设备可以通过该SRB传输相应的数据。当用户设备切换至不可支持该SRB的场景时,用户设备无法对本应通过该SRB传输的数据执行后续处理,影响了系统的效率。
以体验质量(quality of experience,QoE)测量为例,在UE支持配置SRB4的场景下,可以通过SRB4上报QoE测量的测量结果。在UE支持配置SRB4的场景和UE不支持配置SRB的场景进行切换后,原本通过SRB4上报的测量结果无法正常上报。例如,在直连链路状态下,网络设备为UE下发QoE测量配置,同时为UE配置SRB4。UE根据QoE测量配置进行QoE测量,并将QoE测量结果通过SRB4发送至网络设备。若之后该UE(如称为远端UE)通过另一个UE(如称为中继UE)与网络设备进行通信,即该UE通过非直连链路和网络设备进行通信,由于远端UE的SRB4的数据无法通过中继UE进行中继传输,原本通过SRB4上报的QoE测量结果此时无法正常上报,影响了系统的效率。
发明内容
本申请提供一种通信的方法、装置和系统,通过终端设备配置第一配置和/或第一信令无线承载提高,以提高系统的效率。
第一方面,提供了一种通信的方法,该方法可以由设备执行,或者,也可以由设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第一终端设备执行为例进行说明。
该方法可以包括:第一终端设备接收第一指示信息,第一指示信息用于指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息;第一终端设备接收第二指示信息,第二指示信息用于指示第一终端设备配置第一配置和/或第一信令无线承载;第一终端设备根据第二指示信息配置第一配置和/或第一信令无线承载。
基于上述技术方案,在第一终端设备无法支持通过第一SRB传输根据第一配置生成的第一消息时,使得第一终端设备配置第一SRB和/或第一配置,以避免出现第一消息需要通过第一SRB传输与第一终端设备无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。
示例性地,配置第一配置和/或第一SRB中的“配置”可以包括:添加、修改、保留或释放等。
指示第一终端设备配置第一SRB也可以理解为,指示第一终端设备配置第一SRB配置。
第二指示信息可以是由第一网络设备生成的。
示例性地,第二指示信息可以为通过全配置(full configuration)的方式指示。
示例性地,第一网络设备可以生成RRC配置信息。该RRC配置信息携带全配置指示,并指示第一配置和/或第一SRB配置。
示例性地,第二指示信息可以为通过附加配置(delta configuration)的方式指示。例如,第二指示信息可以通过一个或多个信元的方式指示。例如,第一网络设备可以生成RRC配置信息,通过RRC配置信息中的一个或多个信元指示添加、修改、或释放第一配置和/或第一SRB。若RRC配置信息中不带任何关于第一配置和/或第一SRB的配置指示,则终端设备将保留原有的第一配置和/或第一SRB配置信息,并据此进行配置。
在某些实现方式中,第一指示信息用于指示第一终端设备通过直连链路通信切换为通过非直连链路通信,第一配置为体验质量QoE测量配置,第一信令无线承载为信令无线承载SRB4。
在该情况下,第一消息包括QoE测量的测量结果。
在某些实现方式中,第一终端设备根据第二指示信息配置第一配置和/或第一信令无线承载,包括:第一终端设备根据第二指示信息添加第一配置,第一终端设备根据第二指示信息修改第一配置,第一终端设备根据第二指示信息保留第一配置,或者,第一终端设备根据第二指示信息释放第一配置。
在某些实现方式中,第一终端设备根据第二指示信息配置第一配置和/或第一信令无线承载,包括:第一终端设备根据第二指示信息添加第一信令无线承载,第一终端设备根据第二指示信息修改第一信令无线承载,第一终端设备根据第二指示信息保留第一信令无线承载,或者第一终端设备根据第二指示信息释放第一信令无线承载。
在某些实现方式中,第一终端设备根据第二指示信息配置第一配置和/或第一信令无线承载包括:第一终端设备释放第一配置和第一信令无线承载。
若在第一终端设备接收第一指示信息之前,第一终端设备已经建立了第一SRB,且存储了第一配置,在接收到第一指示信息之后,第一终端设备可以释放第一配置和第一信令无线承载。
基于上述方案,第一终端设备可以释放第一配置,不再根据第一配置生成数据,也无需通过第一SRB传输包括该数据的第一消息,避免出现第一消息需要通过第一SRB传输与第一终端设备无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。而且,上述方案能够释放第一终端设备的缓存,避免存储资源的浪费。
在某些实现方式中,第一终端设备根据第二指示信息配置第一配置和/或第一信令无线承载包括:第一终端设备根据第二指示信息释放第一配置,且第一终端设备执行以下任一项:第一终端设备根据第二指示信息添加第一信令无线承载,第一终端设备根据第二指示信息修改第一信令无线承载,第一终端设备根据第二指示信息保留第一信令无线承载。
若在第一终端设备接收第一指示信息之前,第一终端设备已经存储了第一配置,在接收到第一指示信息之后,第一终端设备可以释放第一配置。
这样,第一终端设备可以释放第一配置,不再根据第一配置生成数据,无需通过第一SRB传输包括该数据的第一消息,避免出现第一消息需要通过第一SRB传输与第一终端设备无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。而且,上述方案能够释放第一终端设备的缓存,避免存储资源的浪费。
在某些实现方式中,该方法还包括:第一终端设备的第二协议层向第一终端设备的第一协议层发送第一配置;第一协议层根据第一配置获取第一数据,第一协议层不向第二协议层递交第一数据。
示例性地,若第一终端设备中存储了第一配置,但未建立第一SRB,例如,第一终端设备释放了第一SRB。在该情况下,第一终端设备的第二协议层可以向第一终端设备的第一协议层发送指示信息,指示第一协议层不向第二协议层递交第一数据。
基于上述方案,第一终端设备可以根据第一配置获取第一数据,第一协议层不向第二协议层递交第一数据,避免出现第一消息需要通过第一SRB传输与第一终端设备无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。
在某些实现方式中,该方法还包括:第一终端设备的第二协议层向第一终端设备第一协议层发送第一配置;第一协议层根据第一配置获取第一数据;第一协议层向第一终端设备的第二协议层递交第一数据,接入层不上报第一消息,第一消息包括第一数据。
示例性地,若第一终端设备中存储了第一配置,且建立了第一SRB。在该情况下,第一终端设备的第一协议层可以将获取的第一数据递交至第二协议层,第二协议层根据第一终端设备当前不支持第一SRB的情况不进行上报。
在上述方案中,第一终端设备的第一协议层可以根据第一配置获取第一数据,并递交至第二协议层,第二协议层不上报第一数据,从而避免出现第一消息需要通过第一SRB传输与第一终端设备无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。
在某些实现方式中,在第一终端设备配置第一配置和/或第一信令无线承载之后,方法还包括:第一终端设备根据第一配置生成第一数据,存储第一数据,第一消息包括第一数据。
基于上述方案,在第一终端设备不再支持第一SRB的情况下,第一终端设备仍可以根据第一配置获取第一数据,并将第一数据保存。这样,当第一终端设备由不支持第一SRB转换为可支持第一SRB 的场景时,可以及时将缓存的第一数据上报。
在某些实现方式中,第一数据是由第一终端设备的第一协议层根据第一配置生成,第一配置是由第一终端设备的第二协议层递交至第一协议层,第一数据存储于第一协议层。
换言之,第一终端设备根据第一配置生成第一数据,存储第一数据,包括:第一终端设备的第二协议层将第一配置发送给第一终端设备的第一协议层,第一协议层根据第一配置生成第一数据,存储第一数据。
在某些实现方式中,第一数据是由第一终端设备的第一协议层根据第一配置生成,第一配置是由第一终端设备的第二协议层递交至第一协议层,第一数据存储于第一终端设备的第二协议层中,第一数据是由第一协议层递交至第二协议层。
换言之,第一终端设备根据第一配置生成第一数据,存储第一数据,包括:第一终端设备的第二协议层将第一配置发送给第一终端设备的第一协议层,第一协议层根据第一配置生成第一数据;第一协议层将第一数据递交到第二协议层;第一终端设备的第二协议层存储第一数据。
在某些实现方式中,第一协议层包括应用层。
在某些实现方式中,第二协议层包括接入层或无线资源控制层。
在某些实现方式中,方法还包括:在第一数据的存储时长超过定时时长的情况下,丢弃第一数据。
示例性地,该定时时长可以由第一终端设备确定。该定时时长也可以由协议规定。或者,该定时时长也可以由第一网络设备指示。
基于上述方案,定时丢弃第一数据,可以释放第一终端设备的缓存,避免浪费存储资源。
在某些实现方式中,方法还包括:第一终端设备接收第三指示信息,第三指示信息用于指示第一终端设备可支持通过第一信令无线承载传输第一消息;第一终端设备接收第四指示信息,第四指示信息用于指示第一终端设备添加第一信令无线承载、修改第一信令无线承载或保留第一信令无线承载;第一终端设备通过第一信令无线承载传输第一消息。
在本申请实施例的方案中,在第一终端设备无法支持第一SRB时,若第一终端设备存储了根据第一配置生成的数据,在第一终端设备切换至可支持第一SRB的场景时,可以及时上传第一终端设备缓存的数据,从而将无法上报期间的数据进行及时更新,提高了系统的效率。
在某些实现方式中,第三指示信息用于指示第一终端设备由通过非直连链路通信切换为通过直连链路通信。
在某些实现方式中,第一消息是由第二协议层生成的,第一消息中包括第一数据,第一数据是由存储第一数据的第一协议层递交至第二协议层。
换言之,第一终端设备通过第一信令无线承载传输第一消息,包括:第一协议层将第一协议层中存储的第一数据递交至第二协议层;第二协议层生成第一消息,第一消息中包括第一数据;第二协议层通过第一信令无线承载传输第一消息。
在某些实现方式中,第一消息是由第二协议层生成的,第一消息中包括第一数据,第一数据存储于第二协议层。
换言之,第一终端设备通过第一信令无线承载传输第一消息,包括:第二协议层生成第一消息,第一消息中包括第二协议层中存储的第一数据;第二协议层通过第一信令无线承载传输第一消息。
第二方面,提供了一种通信的方法,该方法可以由设备执行,或者,也可以由设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第一网络设备执行为例进行说明。
该方法可以包括:第一网络设备接收第五指示信息,第五指示信息指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息;第一网络设备发送第二指示信息,第二指示信息用于指示第一终端设备配置第一配置和/或第一信令无线承载。
基于上述技术方案,在第一终端设备无法支持通过第一SRB传输根据第一配置生成的第一消息时,使得第一终端设备配置第一SRB和/或第一配置,以避免出现第一消息需要通过第一SRB传输与第一终端设备无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。
示例性地,第一网络设备接收来自第三网络设备的第五指示信息。第一网络设备向第三网络设备发送第二指示信息。第三网络设备将第二指示信息发送至第一终端设备。
在某些实现方式中,第五指示信息用于指示第一终端设备通过直连链路通信切换为通过非直连链 路通信,第一配置为体验质量QoE测量配置,第一信令无线承载为信令无线承载SRB4,在切换完成后,第一网络设备与第一终端设备之间的链路为非直连链路。
在某些实现方式中,第二指示信息用于指示:第一终端设备添加第一配置,第一终端设备修改第一配置,第一终端设备保留第一配置,或者,第一终端设备释放第一配置。
在某些实现方式中,第二指示信息用于指示:第一终端设备添加第一信令无线承载,第一终端设备修改第一信令无线承载,第一终端设备保留第一信令无线承载,或者第一终端设备释放第一信令无线承载。
在某些实现方式中,方法还包括:第一网络设备向管理设备发送第六指示信息,第六指示信息用于指示停止第一消息的上报。
第三方面,提供了一种通信的方法,该方法可以由设备执行,或者,也可以由设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第二网络设备执行为例进行说明。
该方法可以包括:第二网络设备接收第七指示信息,第七指示信息用于指示第一终端设备可支持通过第一信令无线承载传输根据第一配置生成的第一消息;第二网络设备发送第四指示信息,第四指示信息用于指示第一终端设备添加第一信令无线承载、修改第一信令无线承载或保留第一信令无线承载;第二网络设备接收由第一终端设备通过第一信令无线承载传输的第一消息,第一消息包括第一数据,第一数据是第一终端设备在接收到第四指示信息之前根据第一配置生成的。
在本申请实施例的方案中,在第一终端设备无法支持第一SRB时,若第一终端设备存储了根据第一配置生成的数据,在第一终端设备切换至可支持第一SRB的场景时,可以及时上传第一终端设备缓存的数据,从而将无法上报期间的数据进行及时更新,提高了系统的效率。
示例性地,第二网络设备可以从第四网络设备接收第七指示信息。第二网络设备向第四网络设备发送第四指示信息。第四网络设备可以通过中继终端设备将第四指示信息发送至第一终端设备。
在某些实现方式中,第七指示信息用于指示第一终端设备由通过非直连链路通信切换为通过直连链路通信,在切换完成后,第二网络设备与第一终端设备之间的链路为直连链路。
在某些实现方式中,方法还包括:第二网络设备向管理设备发送第八指示信息,第八指示信息用于指示恢复第一消息的上报。
第四方面,提供了一种通信的方法,该方法可以由设备执行,或者,也可以由设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第三网络设备执行为例进行说明。
该方法可以包括:第三网络设备向第一网络设备发送第五指示信息,第五指示信息指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息;第三网络设备接收第一网络设备发送的第二指示信息,第二指示信息用于指示第一终端设备配置第一配置和/或第一信令无线承载;第三网络设备向第一终端设备发送第二指示信息。
在某些实现方式中,第五指示信息用于指示第一终端设备通过直连链路通信切换为通过非直连链路通信,第一配置为体验质量QoE测量配置,第一信令无线承载为信令无线承载SRB4,在切换完成前,第三网络设备与第一终端设备之间的链路为直连链路,切换完成后,第一网络设备与第一终端设备之间的链路为非直连链路。
在某些实现方式中,第二指示信息用于指示:第一终端设备添加第一配置,第一终端设备修改第一配置,第一终端设备保留第一配置,或者,第一终端设备释放第一配置。
在某些实现方式中,第二指示信息用于指示:第一终端设备添加第一信令无线承载,第一终端设备修改第一信令无线承载,第一终端设备保留第一信令无线承载,或者第一终端设备释放第一信令无线承载。
在某些实现方式中,方法还包括:第三网络设备向管理设备发送第六指示信息,第六指示信息用于指示停止第一消息的上报。
第五方面,提供了一种通信的方法,该方法可以由设备执行,或者,也可以由设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第一网络设备执行为例进行说明。
该方法可以包括:第一网络设备确定第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息;第一网络设备向第一终端设备发送第二指示信息,第二指示信息用于指示第一终端设备配置第一配置和/或第一信令无线承载。
示例性地,第一网络设备接收第一终端设备发送的测量报告,第一网络设备可以根据该测量报告确定第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息。
在某些实现方式中,第一网络设备确定第一终端设备通过直连链路通信切换为通过非直连链路通信,第一配置为体验质量QoE测量配置,第一信令无线承载为信令无线承载SRB4。
在某些实现方式中,第二指示信息用于指示:第一终端设备添加第一配置,第一终端设备修改第一配置,第一终端设备保留第一配置,或者,第一终端设备释放第一配置。
在某些实现方式中,第二指示信息用于指示:第一终端设备添加第一信令无线承载,第一终端设备修改第一信令无线承载,第一终端设备保留第一信令无线承载,或者第一终端设备释放第一信令无线承载。
在某些实现方式中,方法还包括:第一网络设备向管理设备发送第六指示信息,第六指示信息用于指示停止第一消息的上报。
第六方面,提供了一种通信的方法,该方法可以由设备执行,或者,也可以由设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第一网络设备执行为例进行说明。
该方法可以包括:第四网络设备向第二网络设备发送第七指示信息,第七指示信息用于指示第一终端设备可支持通过第一信令无线承载传输根据第一配置生成的第一消息;第四网络设备接收第二网络设备发送的第四指示信息,第四指示信息用于指示第一终端设备添加第一信令无线承载、修改第一信令无线承载或保留第一信令无线承载;第四网络设备通过中继终端设备将第四指示信息发送至第一终端设备。这样,第一终端设备可以通过第一信令无线承载传输第一消息至第二网络设备,第一消息包括第一数据,第一数据是第一终端设备在接收到第四指示信息之前根据第一配置生成的。
在某些实现方式中,第七指示信息用于指示第一终端设备由通过非直连链路通信切换为通过直连链路通信,在切换完成后,第二网络设备与第一终端设备之间的链路为直连链路。在切换完成前,第四网络设备与第一终端设备之间的链路为非直连链路。
在某些实现方式中,方法还包括:第四网络设备向管理设备发送第八指示信息,第八指示信息用于指示恢复第一消息的上报。
第七方面,提供了一种通信的方法,该方法可以由设备执行,或者,也可以由设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第二网络设备执行为例进行说明。
该方法可以包括:第二网络设备确定第一终端设备可支持通过第一信令无线承载传输根据第一配置生成的第一消息;第二网络设备发送第四指示信息,第四指示信息用于指示第一终端设备添加第一信令无线承载、修改第一信令无线承载或保留第一信令无线承载;第二网络设备接收由第一终端设备通过第一信令无线承载传输的第一消息,第一消息包括第一数据,第一数据是第一终端设备在接收到第四指示信息之前根据第一配置生成的。
在某些实现方式中,第二网络设备可以确定第一终端设备由通过非直连链路通信切换为通过直连链路通信。
示例性地,第二网络设备通过中继终端设备接收到第一终端设备发送的测量报告,第二网络设备根据该测量包括可以确定第一终端设备由通过非直连链路通信切换为通过直连链路通信。
在某些实现方式中,方法还包括:第二网络设备向管理设备发送第八指示信息,第八指示信息用于指示恢复第一消息的上报。
第八方面,提供一种通信装置,该装置用于执行上述第一方面至第七方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第七方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为设备(如网络设备或终端设备)。当该装置为设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于设备(如网络设备或终端设备)的芯片、芯片系统或电路。当该装置为用于设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第九方面,提供一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第七方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为设备(如网络设备或终端设备)。
在另一种实现方式中,该装置为用于设备(如网络设备或终端设备)的芯片、芯片系统或电路。
第十方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十一方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第七方面任一种可能实现方式中的方法。
第十二方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第七方面任一种可能实现方式中的方法。
第十三方面,提供一种通信系统,包括前述的第一终端设备、第一网络设备或第二网络设备中的至少一项。
附图说明
图1是适用于本申请一实施例的网络架构的示意图。
图2是SL通信的示意图。
图3是SL无线资源控制(radio resource control,RRC)的控制面协议栈架构的示意图。
图4是U2N relay的示意图。
图5是L2 U2N relay的协议栈的示意图。
图6是L2 U2N relay中承载复用的示意图。
图7是QoE测量的示意性流程图。
图8是QoE测量的另一种示意性流程图。
图9是直连链路切换至非直连链路的通信场景的示意图。
图10是本申请实施例的一种通信的方法的示意性流程图。
图11是非直连链路切换至直连链路的通信场景的示意图。
图12是本申请实施例的另一种通信的方法的示意性流程图。
图13是本申请实施例的又一种通信的方法的示意性流程图。
图14是本申请实施例的又一种通信的方法的示意性流程图。
图15是本申请实施例提供的一种通信装置1600的示意图。
图16是本申请实施例提供另一种通信装置1700的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th generation,6G)移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站、辅站、多制式无线(motor slide retainer,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(中央单元控制面(central unit-control plane,CU-CP))和用户面CU节点(中央单元用户面(central unit-user plane,CU-UP))以及DU节点的设备。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
图1是适用于本申请实施例的网络架构的示意图。
如图1所示,作为示例,该网络架构可以包括终端设备,如图1的(a)中的第一终端设备和第二终端设备,或者,如图1的(b)中的终端设备。该网络架构还可以包括网络设备。
其中,图1的(a)中的第一终端设备可称为远端用户设备(remote UE),第二终端设备可称为中 继用户设备(relay UE)。第一终端设备与第二终端设备可通过通信接口#1进行通信,第二终端设备与网络设备可通过通信接口#2进行通信,第一终端设备可通过第二终端设备与网络设备进行通信。举例来说,以图1的(a)所示的架构为例,网络设备向第一终端设备发送数据时,可先将数据发送给第二终端设备,然后由第二终端设备将该数据转发给第一终端设备。
图1的(b)中的终端设备与网络设备可通过通信接口2#进行通信,终端设备与网络设备之间可以直接进行通信。
作为示例,通信接口#1可以为基于邻近服务通信5(proximity-based services communication 5,PC5)接口,也可以是非第三代合作伙伴计划(3rd generation partnership project,3GPP)定义的接口,例如私有接口、无线保真(wireless fidelity,WiFi)、蓝牙或者有线接口等,不予限制。作为示例,通信接口#2可以为Uu接口,Uu接口指的是UE与网络设备之间通信的接口,相应地,UE与网络设备之间的链路可称为Uu链路(Uu link)。可以理解,PC5接口、Uu接口只是举例,对本申请的保护范围不构成任何的限定,通信接口还可以是其他名称,这里不再赘述。
可以理解,上述图1为所示的网络架构仅是示例性说明,适用本申请实施例的网络架构并不局限于此。例如,在上述架构中,还可以包括其他设备,如核心网设备和/或其他终端设备。作为示例,核心网设备例如可以包括:接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元等。
为便于理解本申请实施例,对本申请实施例中涉及的几个基本概念做简单说明。
可以理解,下文中所介绍的基本概念是以目前协议中规定的基本概念为例进行简单说明,但并不限定本申请实施例只能够应用于目前已有的系统中。因此,以目前已有的系统为例描述时出现的名称,都是功能性描述,具体名称并不限定,仅表示功能,可以对应的扩展到其它系统,比如4G或未来通信系统中。
1、侧行链路(slidelink,SL)
在无线通信系统中,UE与UE之间可以通过运营商网络(例如,基站)进行数据通信,UE与UE之间也可以不用通过运营商网络,直接进行UE与UE之间的通信。UE与UE之间的接口可称为PC5接口。UE与UE之间的链路可称为侧行链路,或者UE与UE之间的链路也可称为PC5链路(PC5link)。作为一可能的应用场景,在V2X中,每个车可认为是一个UE,车与车之间(即UE与UE之间)可以通过PC5接口进行通信,不需要经过运营商网络,这样可以有效地减少通信时延。
为统一描述,本申请实施例以UE与UE之间的链路记为SL,UE与网络设备之间的链路记为Uu链路为例进行示例性说明。可以理解,SL和Uu链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。还可以理解,SL和Uu链路表征了设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。
图2是SL通信的示意图。
如图2所示,UE1与UE2之间的接口可以称为PC5接口,UE1与UE2之间的直连链路可以称为SL,UE1与UE2之间可以通过PC5接口直接通信。
图3是SL无线资源控制(radio resource control,RRC)的控制面协议栈架构的示意图。
如图3所示,SL RRC的控制面的协议栈可以包括:物理(physical,PHY)层、媒体接入控制(media access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、RRC层。
PC5接口可以支持广播、单播、组播等通信方式。本申请中主要涉及单播通信方式,下面简单介绍单播通信。
2、单播通信
两个UE之间先建立单播连接,在建立单播连接之后,两个UE可以基于协商的标识进行数据通信,该数据可以是加密的,也可以是不加密的。单播通信类似于UE与网络设备之间建立RRC连接之后进行的数据通信。相比于广播,在单播通信中,只有建立了单播连接的两个UE之间才可以进行该单播通信。
在单播通信中,UE发送数据时,可以随数据发送源标识和目的标识,如源层2标识(source layer- 2identifier)和目的层2标识(destination layer-2identifier),以使得数据传输至正确的接收端。例如,每个SL媒体接入控制层数据协议单元(media access control protocol data unit,MAC PDU)的子头中可以包含该源层2标识和目的层2标识。其中,源标识用于标识发送端,可以是发送端UE自己分配的。目的标识用于标识接收端,可以是接收端UE为该单播连接分配的标识。UE之间通过PC5接口进行通信。
3、无线承载
无线承载是网络设备为UE分配的一系列协议实体及配置的总称,是由层2提供的用于在UE和网络设备之间传输用户数据的服务,包括PDCP协议实体(或者称为PDCP层)、RLC协议实体(或者称为RLC层)、MAC协议实体(或者称为MAC层)和PHY实体(或者称为PHY)等。
无线承载可分为数据无线承载(data radio bearer,DRB)和信令无线承载(signalling radio bearer,SRB)。DRB用于承载数据,SRB用于承载信令或消息。在SL通信场景中,UE和UE之间通信对应的无线承载称为侧行链路无线承载(sidelink radio bearer,SL RB),同样地,该SL RB包括侧行链路数据无线承载(sidelink data radio bearer,SL DRB)和侧行链路信令无线承载(sidelink signalling radio bearer,SL SRB)。在协议的信令设计中,RB配置一般包含PDCP层以上的配置,RLC层以下的协议实体称为RLC承载,且相应的配置在RLC承载配置中给出。
4、RLC承载(RLC bearer)
RLC承载:指RLC层以下的协议实体及配置,为RB对应的下层部分,包括RLC层和逻辑信道等一系列资源。一个RLC承载和MAC层的一个逻辑信道相关联。一个RLC承载和一个PDCP层相关联,即一个RLC服务于一个RB。在SL通信场景中,SL上的RLC承载又可称为侧行链路RLC承载(sidelink RLC bearer)。
5、UE接入网络中继(UE-to-network relay,U2N relay)
U2N relay或者也可称为SL U2N relay,可以是指一种UE为UE提供接入网络的服务的架构。在U2N relay场景中,借助单播通信,一个UE通过另一个UE接入网络,从而实现网络覆盖增强。在U2N relay场景中,执行中继功能的节点可称为中继UE(relay UE),通过该relay UE接入网络的节点可称为远端UE(remote UE)。可以理解,remote UE和relay UE仅仅是为了区分做的命名,其命名不对本申请实施例的保护范围造成限定。例如,remote UE、relay UE还可以分别称为第一设备、第二设备;或者还可以称为第一节点、第二节点;或者还可以称为第一模块、第二模块等。为统一,下文以remote UE和relay UE进行描述。
图4是U2N relay的通信架构的示意图。
如图4所示,remote UE可通过relay UE的协作与网络设备进行通信,其中remote UE和relay UE之间通过SL通信,对应的接口可称为PC5;relay UE和网络设备直接连接,即通过Uu接口进行通信。
可以理解,一个relay UE可以为一个remote UE提供中继服务,或者也可以为多个remote UE提供中继服务,对此不予限制。一个remote UE可以通过一跳路径(即通过一个relay UE)接入网络,或者也可以通过多跳路径(即通过多个relay UE)接入网络,对此不予限制。
U2N relay技术主要包括层二(layer-2,L2)U2N relay和层三(layer-3,L3)U2N relay两种设计。下面以L2 U2N relay为例,介绍数据传输时用户面的协议栈和控制面的协议栈。
图5是L2 U2N relay的协议栈的示意图。
图5中的(a)为L2 U2N relay的用户面的协议栈(即remote UE通过relay UE与网络设备建立连接进行数据传输时用户面的协议栈)的示意图;图5中的(b)为L2 U2N relay的控制面的协议栈(即remote UE通过relay UE与网络设备建立连接进行数据传输时控制面的协议栈)的示意图。
如图5中的(a)所示,L2 U2N relay的用户面的协议栈可以包括:PHY层(如,图5中的(a)中所示的PC5-PHY和Uu-PHY)、MAC层(如,图5中的(a)中所示的PC5-MAC和Uu-MAC)、RLC层(如,图5中的(a)中所示的PC5-RLC和Uu-RLC)、侧行链路中继适配协议(sidelink relay adaptation protocol,SRAP)层(如图5中的(a)所示的PC5-SRAP和Uu-SRAP)、PDCP层(如,图5中的(a)中所示的Uu-PDCP)和SDAP层(如,图5中的(a)中所示的Uu-SDAP)。SRAP层还可以称为适配(adapt)层。
如图5中的(b)所示,L2 U2N relay的控制面的协议栈可以包括:PHY层(如,图5中的(b) 中所示的PC5-PHY和Uu-PHY)、MAC层(如,图5中的(b)中所示的PC5-MAC和Uu-MAC)、RLC层(如,图5中的(b)中所示的PC5-RLC和Uu-RLC)、SRAP层(如图5中的(b)所示的PC5-SRAP和Uu-SRAP)、PDCP层(如,图5中的(b)中所示的Uu-PDCP)和RRC层(如,图5中的(b)中所示的Uu-RRC)。
如图5所示,remote UE的数据包在relay UE的PDCP层以下进行中继转发,即relay UE维护中继的RLC承载,包括RLC层(如图5中的PC5-RLC和Uu-RLC)、MAC层(如图5中的PC5-MAC和Uu-MAC)以及PHY层(如图5中的PC5-PHY和Uu-PHY)。remote UE和网络设备之间有端对端的PDCP层、SDAP层以及RRC层,没有端对端的RLC层、MAC层以及PHY层。在U2N relay的通信场景中,网络设备和relay UE之间的RLC承载可称为Uu RLC承载或Uu中继RLC通道(Uu Relay RLC channel),relay UE和remote UE之间的RLC承载为PC5 relay RLC承载或PC5中继RLC通道(PC5 Relay RLC channel)。
SRAP层(或者称为适配层)在RLC层和PDCP层之间。参见图5,在PC5口(即sidelink)两端的协议栈中的SRAP层称为PC5-SRAP层,在Uu口两端的协议栈中的SRAP层称为Uu-SRAP层。SRAP层的主要作用包括承载的复用和解复用,即支持不同的承载复用到一个承载上,或者将一个承载拆分至不同的承载。
例如,在下行方向上,网络设备的SRAP层可以将上层到达的一个或者多个remote UE的数据复用至一个RLC承载,即Uu链路上的一个Uu RLC承载可能会包含一个或者多个remote UE的数据(或者说一个或多个remote UE的无线承载)。remote UE的无线承载和RLC承载之间的映射关系可由网络设备配置。网络设备还可配置remote UE的无线承载和remote UE的PC5 relay RLC承载之间的映射关系,因此,通过在SRAP PDU的数据包的包头中添加remote UE标识(又可称为本地标识(local ID))和无线承载的标识(RB ID,如DRB ID或SRB ID),relay UE的SRAP层接收到网络设备发送的下行数据后,可以根据SRAP PDU的数据包的包头中的local ID和RB ID,将Uu relay RLC承载上的数据正确映射到对应remote UE的不同PC5 relay RLC承载上,从而实现复用数据的拆分。上行方向类似,relay UE的SRAP层可以将一个或者多个remote UE的PC5 relay RLC承载上的数据复用到一个Uu RLC承载上,从而实现承载复用。网络设备接收到Uu RLC承载上的数据后,网络设备的SRAP层将进行解复用,即根据数据中携带的local ID和DRB ID,递交至相应的PDCP层。local ID可以由relay UE所在的网络设备进行分配。作为一种可能的分配方式,remote UE和relay UE建立单播连接后,relay UE向网络设备发送RRC消息,例如,侧行链路UE信息NR(sidelinkUEinformationNR,SUI)消息,请求网络设备为该remote UE分配local ID。
图6是L2 U2N relay中承载复用的示意图。
如图6所示,remote UE 1和remote UE 2可复用relay UE的Uu RLC承载,与网络设备通信。网络设备与remote UE 1和remote UE 2分别有端对端的SDAP层和PDCP层,以及端对端的承载配置。以下行传输为例说明relay UE的中继转发过程。网络设备向remote UE发送下行数据,首先,remote UE的下行数据通过SDAP和PDCP递交至网络设备的SRAP层;网络设备根据数据对应的上层实体,在相应的数据包上添加remote UE的local ID和DRB ID,然后递交至下层协议层,在Uu RLC承载上进行复用;relay UE的SRAP层接收到来自Uu RLC承载的数据后,根据数据包中的remote UE的local ID,确定该数据包对应的PC5连接(connection);relay UE再根据数据包中的remote UE的local ID、DRB ID、以及网络设备配置的映射关系(即PC5 relay RLC承载、DRB ID、以及local ID三者之间的映射关系),将数据递交至正确的remote UE上的PC5 relay RLC承载;最后,remote UE的SRAP层再根据数据中携带的DRB ID,将数据递交至正确的Uu PDCP和Uu SDAP层。
5.QoE测量
QoE测量包括基于信令的QoE测量和基于管理的QoE测量。基于信令的QoE测量针对特定UE。例如,核心网(core network,CN)可以通过UE级别的信令向网络设备发送QoE测量的配置信息。基于管理的QoE不针对特定UE。例如,网关或操作、管理和维护(opreation,administration and maintainance,OAM)向网络设备发送基于管理的QoE测量的配置信息,由网络设备根据当前接入该网络设备的UE的能力以及其他信息选择部分UE进行QoE测量。
图7是QoE测量的示意性流程图。
如图7所示,QoE测量的流程可以包括如下步骤。
步骤1,RAN接收QoE的测量请求(QoE measurement request)。
RAN获取QoE的测量配置信息。
如图7所示,CN或OAM可以向RAN发起QoE的测量请求。如图7所示,OAM可以向RAN发起基于管理的QoE的测量请求,CN可以向RAN发起基于信号的QoE的测量请求。
QoE的测量配置信息中包括应用层测量配置。QoE的测量配置信息中包括一个容器(container),该container中包含应用层测量配置,即应用层测量配置容器(container for application layer measurement configuration)。示例性地,QoE的测量配置信息中还包括QoE参考(QoE reference)、业务类型(service type)、QoE测量收集(QoE measurement collection,QMC)的范围(choice area scope of QMC)、基于小区(cell based)的范围、基于跟踪区域(tracking area based,TA based)的范围、基于跟踪区域标识(tracking area identity based,TAI based)的范围、基于PLMN区域的范围(PLMN area based)、测量收集实体(measurement collection entity,MCE)的互联网协议(internet protocol,IP)地址(measurement collection entity IP address)、QMC支持的切片列表(slice support list for QMC)、与最小化路测(minization of drive test,MDT)对齐信息(choice MDT alignment information)、基于信令的MDT(S-based MDT)测量以及可得的RAN可见的QoE测量量或测量指标(available RAN visible QoE metrics)等。
对于基于信令的QoE的测量,CN可以通过与RAN之间针对某个UE的接口,向RAN发送针对该特定UE的QoE的测量配置信息。
对于基于管理的QoE的测量,RAN可以从OAM获取QoE的测量配置信息,应理解,图7中的网元仅为示例,例如,RAN还可以从管理网元(element management,EM)获取QoE的测量配置信息。OAM或EM通知的不是针对某个特定UE的QoE的测量配置信息。
可选地,如果需要UE针对某些切片(slice)的业务进行应用层测量,则在container中可以配置对应的slice范围,即container中携带slice的标识,UE只对这些切片的业务进行应用层测量。
CN或OAM还可以通知RAN,RAN可以为UE配置测量指标,例如,RAN可见的应用层指标或available RAN visible QoE metrics等。给UE的应用层测量配置中应用层测量量包括RAN可见的应用层指标。该应用层指标可以为如下指标:平均吞吐量、初始播放时延、缓冲级别、播放时延、恶化持续时间、连续的丢包数、抖动持续时间、失步持续时间、往返时延、平均码率、类比质量视角切换时延(comparable quality viewport switching latency)或卡顿情况。
平均吞吐量指示一个测量间隔内,UE的应用层接收的总比特数。
初始播放时延指示在流媒体开始呈现的初始播放时延。例如,初始播放时延具体可以定义为从获取第一段媒体数据的时刻到从客户端缓冲区中提取流媒体的时刻。
缓冲级别指示从当前播放时刻开始,媒体数据还可以播放的持续时间。
播放时延指示流媒体启动的播放时延。例如,播放时延具体可以定义为从由超文本传送协议(hyper text transfer protocol,HTTP)传输的动态自适应流媒体(dynamic adaptive streaming over HTTP,DASH)播放器收到一个播放/回退/开始触发到媒体播放的时延。
恶化持续时间指示在恶化之前的上一个质量好的数据帧到后续第一个质量好的数据帧之间的时间间隔。一个质量好的数据帧指一个被完整接受的帧,且该帧对应的图片中所有部分包含了正确的内容或者该帧是一个新帧(即不依赖于之前任何已经解码的帧)或只依赖之前已经解码的质量好的帧。
连续的丢包数指示连续丢失的实时传输协议(real-time transport protocol,RTP)报文数目。
抖动持续时间中的抖动是指一个帧的实际播放时刻和期望的播放时刻之间的差别超过一定门限。
失步持续时间中的失步是指一个值A和一个值B之间的绝对时间差别超过一定门限。值A是指一个视频流的上一个播放帧的播放时刻和语音流的上一个播放帧的播放时刻之间的差别。值B是指该视频流的上一个播放帧的期望的播放时刻和该语音流的上一个播放帧的期望的播放时刻之间的差别。
往返时延指示RTP级别的往返时间,并加上在客户端中由于缓冲和其他处理导致的额外的两方向的时延(如RTP级别、扬声器、话筒、RTP级别)。
平均码率指示在测量周期内编码有效的媒体信息的比特率。
类比质量视角切换时延上报当视角移动导致质量下降时的时延和质量相关因素。质量相关因素包括质量排序值(quality ranking value)、分辨率。
卡顿情况指示在视频流播放过程中是否发生了卡顿,或者卡顿发生的时间长度。
“可见”是指RAN可以解读接收到的信息,还可以替换为感知、获知或检测等。
RAN获知UE会对以上应用层指标进行测量后,可以通知UE上报RAN可见的应用层指标的测量结果。或者,RAN可以通知UE上报协议中规定的RAN可见的应用层指标的测量结果。只要UE当前对协议中规定的RAN可见的应用层指标进行了测量,就上报这些应用层指标的测量结果。
QoE的测量配置信息中的应用侧测量配置也可以不以container的形式发送至RAN。例如,可以以RAN可见的形式发送给RAN。
如前所述,CN或OAM向RAN发送的QoE的测量配置信息中还可以包括QoE reference和MCE的IP地址。QoE reference用于标识网络请求的这个QoE测量,或用于在RAN和测量收集实体标识QoE测量收集任务,可以称为QoE测量标识。QoE reference是一个全局唯一的标识。例如,QoE reference可以由国家移动码(mobile country code,MMC)、移动网络码(mobile network code,MNC)和QoE测量收集标识构成。其中QoE测量收集标识是由管理系统或运营商分配的。MCE的IP地址用于在RAN收到UE上报的测量结果后,将对应的测量结果发送给该MCE。
步骤2,RAN将QoE的测量配置信息发送给UE。
对于基于信令的QoE的测量,RAN将应用层测量配置(例如,应用层测量配置容器),发送至对应的UE。RAN也可以根据UE是否支持QoE测量确定是否为UE配置QoE测量。
对于基于管理的QoE测量,RAN可以根据OAM或EM发送的QoE的测量配置信息、UE是否支持对应的QoE测量以及其他因素选择合适的UE,并将应用层测量配置发送至选择出的UE。
RAN通过RRC消息将从CN、OAM或者EM获取的应用层测量配置发送给UE。该RRC消息中携带该应用层测量配置对应的业务类型。例如,应用层测量配置是以一种container形式(container manner)发送给UE。
需要说明的是,RAN也可以不基于步骤1的请求命令而触发为UE配置应用层测量配置。作为一种可能的示例,RAN可以自行触发为UE配置应用层测量配置,即RAN可以自行生成应用层配置,并通过RRC消息发送给UE。该RRC消息中可以携带该应用层测量配置对应的业务类型。
除了向UE发送应用侧测量配置外,RAN还可以向UE下发一些配置信息(例如,RAN可见的应用层测量配置),通知UE以RAN可见的形式(比如信息元素形式)上报一些应用层指标。该应用层指标可以包括步骤1中的RAN可见的应用层指标。或者,该应用层指标也可以包括一个应用层指标的综合分数、接入层指标的综合分数、结合应用层指标和接入层指标得到的综合分数或者一个指示应用层指标优劣程度的指标。例如,RAN可以给UE下发一些阈值,UE根据应用层指标的测量结果以及该应用层指标对应的阈值确定上报应用层指标的测量结果对应的优劣程度的指标(比如,取值可以为好,中,差)。RAN还可以配置UE上报RAN可见的应用层指标的上报周期。若RAN没有配置该上报周期,UE可以在上报应用层测量配置对应的应用层测量结果时上报RAN可见的应用层指标。
RAN也可以不向UE下发上报RAN可见的应用层指标的一些配置信息。UE在获得应用层指标之后,可以向RAN上报协议规定的且当前UE能获取到的一些应用层指标。
除了将应用层测量配置或RAN可见的测量配置发送给UE之外,RAN还可以向UE下发应用层测量标识。该应用层测量标识是由RAN为UE生成的,对应一个RAN为UE配置的一个应用层测量配置。一般而言,该应用层测量标识是和QoE reference对应的。RAN保存了该对应关系。
RAN可以同一条RRC消息中向UE发送应用层测量配置和RAN可见的应用层测量配置,也可以在不同的信息发送,例如先发送应用层测量配置,之后再发送RAN可见的应用层测量配置。
步骤3,UE的接入层(access stratum,AS)将收到的QoE测量配置信息发送给UE的AS的上层。
例如,UE的AS的上层可以为图7中的UE的应用层(application,APP)。或者,UE的AS的上层也可以是其他能够进行QoE测量的层。
UE的AS可以将从RAN收到的应用层测量配置以及业务类型发送给UE的AS的上层。
UE的AS的上层可以根据应用层测量配置进行QoE测量。
若步骤2中,应用层测量配置是以一种container形式的方式发送给UE,则UE的AS除了将应用层测量配置发送给AS的上层以外,UE的AS还可以将从RAN接收的通知UE以RAN可见的形式上报的一些应用层指标的配置信息发送给UE的AS的上层。
此外,UE的AS可以将每个应用层测量配置对应的应用层测量标识发送给UE的AS的上层。
UE的AS可以通过一个称为口令命令AT(attention)command的方式将以上信息发送给AS的上层。
步骤4,UE的AS的上层将QoE测量结果发送给UE的AS(具体地,可以是AS的RRC层)。
UE的AS的上层可以按照一定的规则(该规则包含在应用层测量配置中)将应用层测量结果发送给UE的AS。例如,UE的AS的上层周期性上报应用层测量结果,UE可以在一个会话结束后向RAN上报应用层测量结果。
当UE的AS的上层根据应用层测量配置确定需要上报应用层测量结果时,UE的AS的上层将应用层测量结果发送给UE的AS。应用层测量结果可以是以container的形式上报的。若应用层测量配置中需要UE针对某些slice的业务进行应用层测量,则UE可以在以container形式上报的应用层测量结果中携带slice标识,该slice标识可以用于指示当前应用层测量结果是针对哪些slice进行应用层测量获得的测量结果。
UE的AS的上层除了上报RAN不可见的应用层测量结果外,还可以根据RAN可见的应用层测量配置上报RAN可见的应用层指标的测量结果(比如,以信息元素形式上报的应用层指标的测量结果)。UE的AS的上层可能在不同的时刻上报RAN不可见的应用层指标的测量结果和RAN可见的应用层指标的测量结果。UE的AS的上层在上报RAN可见的应用层指标的测量结果时,还上报PDU会话(PDU session)ID,该PDU session ID用于指示该RAN可见的应用层指标的测量结果是对应哪一个PDU session对应的业务的测量结果。
UE的AS的上层除了上报应用层测量结果或RAN可见的应用层指标的测量结果之外,还可以上报该测量结果对应的应用层测量标识。
在某个应用层测量开始时,UE的AS的上层可以向UE的AS发送指示信息,指示该应用层测量已启动。类似地,在某个应用层测量结束时,UE的AS的上层可以向UE的AS发送指示信息,指示该应用层测量已结束。
UE的AS可以通过一个称为口令命令AT(attention)command的方式将以上信息发送给AS的上层。
步骤5,UE的AS将QoE测量结果发送至RAN。
具体地,QoE测量结果通过SRB4上报给RAN。
QoE测量结果包括应用层测量结果。例如,UE的AS可以通过上行RRC消息将应用层测量结果发送给RAN。
应理解,下发QoE的测量配置信息的RAN和接收QoE测量结果的RAN可以为同一个RAN,也可以为不同的RAN。例如,由于UE发生移动,UE接入的RAN可能会发生变化。图7中仅以两者为同一个RAN作为示例。
应用层测量结果可以以container的形式发送给RAN,也可以不以container的形式发送给RAN。
若应用层测量测量结果以container的形式发送给RAN,UE的AS除了上报RAN不可见的应用层测量结果(即该container中的内容)之外,还可以上报RAN可见的应用层指标的测量结果。UE可以在不同的时刻上报RAN不可见的应用层测量结果和RAN可见的应用层测量结果。UE的AS在上报RAN可见的应用层指标的测量结果时,还可以上报PDU session ID。
此外,UE的AS除了上报应用层测量结果或RAN可见的应用层指标的测量结果之外,还可以上报这些测量结果对应的应用层测量标识。
步骤6,RAN将QoE测量结果发送给MCE。
示例性地,RAN根据存储的应用层测量标识和QoE reference的对应关系及UE上报的应用层测量标识,得到该应用侧测量标识对应的QoE reference。RAN根据QoE reference查找到对应的MCE的IP地址,然后将应用层测量结果发送给对应的MCE。
或者,RAN根据UE上报的应用层测量标识获得对应的应用层测量配置,根据CN或OAM下发的QoE测量配置信息获得该应用侧测量结果对应的MCE的IP地址,然后将应用层测量结果发送给对应的MCE。
进一步地,RAN可以根据UE上报的RAN可见的应用层指标的测量结果,进行无线资源优化。例 如,当某个应用层指标的测量结果不理想时,RAN可以给该UE分配更多的资源,或者,提高该UE的调度优先级等。
在切换场景下,源基站会将以下应用层测量的相关信息发送给目标基站:
(1)应用层测量是否已启动
(2)基于信令的QoE的测量配置信息,即从核心网收到的QoE的测量配置信息。
上文结合图7介绍了QoE测量流程的相关步骤,可以理解,上文为示例性说明,其不对本申请实施例的保护范围造成限定。
在UE可支持SRB的场景下,UE可以通过该SRB传输相应的数据。当UE切换至不可支持该SRB的场景时,UE无法对本应通过该SRB传输的数据执行后续处理,影响了系统的效率。
下面以体验质量(quality of experience,QoE)测量为例进行说明。
图8是QoE测量的另一种示意性流程图。
图8示出了在QoE测量的流程中,网络设备和UE之间的通信过程。
如图8所示的步骤1,为了支持UE的QoE测量上报,网络设备可以通过RRC配置信令,例如,RRC重配置(RRC reconfiguration)信息,下发QoE的测量配置信息,具体描述可以参见图7的步骤2。QoE的测量配置信息的具体内容可以包含在信元(information element,IE)AppLayerMeasConfig中。网络设备还会为UE配置SRB4,用于UE的QoE测量结果的上报。如图8所示的步骤2,UE可以基于网络设备下发的QoE的测量配置信息指示应用层进行QoE测量,并将QoE测量结果通过测量报告应用层(MeasurementReportAPPLayer)消息上报给网络设备,具体描述可以参见图7的步骤5。其中,MeasurementReportAPPLayer消息通过SRB4发送。
如前所述,在目前的SL U2N relay架构中,remote UE可以通过relay UE与网络设备进行通信。为了实现上述通信过程,网络设备需要为remote UE和relay UE进行相关配置。具体地,网络设备需要向remote UE发送SRB的配置信息、DRB的配置信息以及SRAP层的配置信息。SRAP层的配置信息包括SRB、DRB与PC5 RLC channel之间的映射关系配置信息。Relay UE也需要从网络设备接收中继remote UE的SRB数据和DRB数据所需的配置信息,该配置信息包括PC5 RLC channel的配置信息、Uu RLC channel的配置信息以及SRAP层的配置信息。该SRAP层的配置信息包括SRB、DRB与PC5RLC channel以及Uu RLC channel之间的映射关系配置信息。目前协议中支持在SRAP层的配置信息中指示SRB0~SRB3与RLC承载之间的映射关系,使得remote UE的SRB0~SRB3数据可以通过relay UE进行中继传输。换言之,目前协议支持remote UE的SRB0~SRB3数据通过relay UE进行中继传输。
UE的QoE测量结果需要通过SRB4上报至网络设备。而现有的SL U2N relay架构中,网络设备无法为remote UE配置用于QoE测量上报的SRB4,remote UE的SRB4数据无法通过relay UE进行中继传输。或者说,现有的SL U2N relay架构下,remote UE不支持SRB4。UE的QoE测量结果无法正常上报。
在UE在支持SRB4配置的场景切换至不支持SRB4配置的场景时,例如,UE由通过直连链路与网络设备通信切换至通过非直连链路与网络设备通信(即通过relay UE和网络设备通信)时,无法正常处理QoE测量,降低了系统的效率。
本申请实施例提供了一种通信的方法,在终端设备不可支持通过SRB传输根据第一配置生成的数据的情况下,终端设备配置该第一配置和/或该SRB,以提高系统的效率。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上面对本申请中涉及到的术语做了简单说明,下文实施例中不再赘述。下文将结合附图详细说明本申请实施例提供的方法。
图9是直连链路切换至非直连链路的通信场景的示意图。
如图9的(a)所示,终端设备#1(如图9的(a)中所示的remote UE)通过Uu link直接与网络设备#1(如图9的(a)中所示的gNB)通信,然后切换至通过终端设备#2(如图9的(a)中所示的relay UE)和网络设备#1通信。如图9的(a)所示,remote UE和relay UE可以连接同一个网络设备。
如图9的(b)所示,终端设备#1(如图9的(b)中所示的remote UE)通过Uu link直接与网络设备#2(如图9的(b)中所示的源gNB)通信,然后切换至通过终端设备#2(如图9的(b)中所示的relay UE)和网络设备#1(如图9的(b)中所示的目标gNB)通信。如图9的(b)所示,remote UE和relay UE可以连接不同的网络设备,即异站切换的情况。
图10是本申请实施例提供的一种通信的方法的示意性流程图。
图10所示的方法1000可以应用于上述图1或图9所示的网络架构中,不作限定。
方法1000可以包括图10的(a)中所示的步骤,或者也可以包括图10的(b)中所示的步骤。
如图10的(a)所示,方法1000可以包括步骤1010a至步骤1040a。或者,如图10的(b)所示,方法1000可以包括步骤1010b至步骤1040b。示例性地,图10的(a)所示的方法可以适用于图9的(a)的场景。图10的(b)所示的方案可以适用于图9的(b)所示的场景。
1010a,第一网络设备确定第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息。
示例性地,在步骤1010b中,第一网络设备可以根据从第一终端设备接收的测量报告确定第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息。
1010b,第一网络设备从第三网络设备接收第五指示信息,第五指示信息用于指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息。第一网络设备可以根据第五指示信息知晓第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息。
终端设备可支持通过第一SRB传输数据,指的是,终端设备能够通过第一SRB传输需要由第一SRB承载的数据。换言之,终端设备具有通过第一SRB传输需要由第一SRB承载的数据的能力或者终端设备和网络设备之间的链路支持配置第一SRB用于传输承载于第一SRB的数据,此处并非限定终端设备必须要执行通过第一SRB传输数据的操作。为了便于描述,在本申请实施例中,终端设备可支持通过第一SRB传输数据,也可以称为,终端设备可支持第一SRB。
终端设备不支持通过第一SRB传输数据,指的是,终端设备无法通过第一SRB传输需要由第一SRB承载的数据。换言之,终端设备不具有通过第一SRB传输需要由第一SRB承载的数据的能力,或者终端设备和基站之间的链路不支持配置第一SRB用于传输通过第一SRB传输的数据。为了便于描述,在本申请实施例中,终端设备不支持通过第一SRB传输数据,也可以称为,终端设备不支持第一SRB。
终端设备#1(第一终端设备的一例)可以根据第一配置生成第一消息。第一消息需要通过第一SRB上报。在终端设备#1可支持第一SRB的情况下,可以通过第一SRB上报第一消息。之后,终端设备#1由可支持第一SRB的场景转换为不支持第一SRB的场景,无法再通过第一SRB上报第一消息。
示例性地,方法1000可以应用于QoE测量的场景中。为了便于理解和描述,本申请实施例中主要以QoE测量的场景为例对方法1000进行说明,不对本申请实施例的应用场景构成限定。
可选地,第一配置可以为QoE测量配置,第一SRB可以为SRB4。该QoE测量配置也可以称为应用层测量的配置(configuration of application layer measurements)。
在该情况下,终端设备#1可以根据QoE测量配置进行QoE测量,得到QoE测量的测量结果。第一消息可以包括该测量结果。
示例性地,根据第一配置生成第一消息,包括:终端设备#1将QoE测量配置递交至第一协议层,第一协议层根据第一配置生成QoE测量结果,并将QoE测量结果递交至第二协议层,第二协议层生成第一消息,第一消息包含该QoE测量结果。
可选地,第五指示信息可以用于指示终端设备#1通过直连链路通信转换为通过非直连链路通信。
终端设备#1由通过直连链路通信转换为通过非直连链路通信时,如图9所示,终端设备#1无法再支持SRB4。
示例性地,终端设备#1通过直连链路通信,可以为,终端设备#1与网络设备直接连接。例如,终端设备#1通过Uu link与网络设备进行通信。终端设备#1通过非直连链路通信,可以为,终端设备#1(如远端UE)通过中继终端设备(如中继UE)与网络设备连接。远端UE和中继UE之间可以通过sidelink通信。例如,终端设备#1可以为remote UE,中继终端设备可以为relay UE。Relay UE为能够提供中继服务的终端设备。Remote UE为通过relay UE提供的中继服务接入网络的终端设备。Relay UE 位于小区覆盖范围内,remote UE可能位于小区覆盖范围内,也可能移动至小区覆盖范围之外。
示例性地,本申请实施例的方案可以应用于切换的场景下。在切换完成后,终端设备#1通过非直连链路和网络设备#1(第一网络设备的一例)通信。
作为一种可能的实现方式,在步骤1010a中,网络设备#1从终端设备#1接收测量报告(measurement reports),触发网络设备#1确定切换。在切换之前,终端设备#1通过该直连链路与网络设备#1通信。在切换完成后,终端设备#1可以通过非直连链路与网络设备#1通信。
换言之,在同站切换的场景下,终端设备#1(如图9的(a)中的remote UE)向网络设备#1(如图9的(a)中的gNB)发送测量报告(measurement reports)。该测量报告可以触发网络设备#1确定切换,例如网路设备#1决策将终端设备#1从网络设备#1的第一小区切换至第二小区,终端设备#1通过中继设备连接至网络设备#1的第二小区。需要说明的是,在切换之前,终端设备#1与网络设备#1之间为直连链路,终端设备#1还没有成为remote UE。
作为一种可能的实现方式,在步骤1010b中,网络设备#1从网络设备#2(第三网络设备的一例)接收切换请求(handover request,HO request)#1,该切换请求#1携带第五指示信息。在切换请求#1指示的切换之前,终端设备#1通过该直连链路与网络设备#2通信。在该切换完成后,终端设备#1可以通过非直连链路与网络设备#1通信。
换言之,切换请求#1可以为异站切换的场景下的切换请求。网络设备#1为目标网络设备,网络设备#2为源网络设备。例如,切换请求#1可以为网络设备#2(如图9的(b)中的源gNB)向网络设备#1(如图9的(b)中的目标gNB)发送的切换请求。需要说明的是,在切换之前,终端设备#1与网络设备#2之间为直连链路,终端设备#1还没有成为remote UE。
应理解,以上仅为示例,本申请实施例的方案还可以应用于其他切换场景。例如,终端设备#1与网络设备#2之间通过链路#1通信,终端设备#1可支持SRB4。之后终端设备#1切换为与网络设备#1之间通过链路#2通信,终端设备#1不再支持SRB4。在其他切换场景中,切换请求#1还可以表示为其他形式的信息,本申请实施例对切换请求#1的具体形式不做限定。为了便于理解和描述,本申请实施例中主要以切换场景为例对方法1000进行说明,不对本申请实施例的方案构成限定。
可替换地,本申请实施例的方案可以应用于重连接的场景下。在该情况下,第五指示信息可以为重连接恢复请求(RRCresumerequest)。在重连接请求完成后,终端设备#1通过非直连链路和网络设备#1通信。具体描述可以参考上述切换请求,仅请求消息的具体类型不同,此处不再赘述。
应理解,以上仅为示例,第五指示信息还可以为其他形式的信息,本申请实施例对此不做限定。
1020,第一网络设备发送第二指示信息,第二指示信息用于指示第一终端设备配置第一配置和/或第一SRB。
在1020a中,第一网络设备向第一终端设备发送第二指示信息。
在1020b中,第一网络设备向第三网络设备发送第二指示信息。第三网络设备可以将第二指示信息发送至第一终端设备。在接收到第二指示信息之后,网络设备#1可以确定与终端设备#1的第一配置和/或第一SRB相关的方案(例如,后文中的方案1、方案2、方案3和方案4),并通过第二指示信息指示确定的方案。
示例性地,本申请实施例的方案可以应用于切换的场景下。在切换完成后,终端设备#1通过非直连链路和网络设备#1通信。
作为一种可能的实现方式,在步骤1020a中,网络设备#1向终端设备#1发送RRC配置消息,RRC配置消息中携带第二指示信息。在切换完成之前,终端设备#1通过该直连链路与网络设备#1通信。在切换完成后,终端设备#1可以通过非直连链路与网络设备#1通信。
作为一种可能的实现方式,在步骤1020b中,网络设备#1向网络设备#2发送切换请求确认(handover request acknowledge,HO Ack)消息,切换请求确认消息中携带第二指示信息。在切换之前,终端设备#1通过该直连链路与网络设备#2通信。在该切换完成后,终端设备#1可以通过非直连链路与网络设备#1通信。
应理解,以上仅为示例,在其他切换场景中,第二指示信息还可以通过其他消息发送,本申请实施例对此不做限定。
如前所述,第二指示信息用于指示终端设备#1配置第一配置和/或第一SRB。其中,配置第一配置 和/或第一SRB中的“配置”可以包括:添加、修改、保留或释放等。
第二指示信息可以为full configuration方式的指示信息。
示例性地,网络设备#1可以生成RRC配置信息。该RRC配置信息携带全配置指示,并指示第一配置和/或第一SRB配置。
示例性地,第二指示信息可以为delta configuration方式的指示信息。第二指示信息可以通过一个或多个信元的方式指示。例如,网络设备#1可以生成RRC配置信息,通过RRC配置信息中的一个或多个信元指示添加、修改或释放第一配置和/或第一SRB。
其中,“保留”可以理解为,在delta configuration的情况下,第二指示信息中没有指示对终端设备#1原先的配置进行任何更新。换言之,若RRC配置信息中不带任何关于第一配置和/或第一SRB的配置指示,则终端设备将保留原有的第一配置和/或第一SRB配置信息,并据此进行配置。
可选地,第二指示信息可以用于指示终端设备#1配置第一配置。示例性地,第二指示信息可以用于指示:终端设备#1添加第一配置,终端设备#1修改第一配置,终端设备#1保留第一配置,或者,终端设备#1释放第一配置。
示例性地,若在网络设备#1接收第五指示信息之前,终端设备#1没有存储第一配置,则网络设备#1可以确定为终端设备#1添加第一配置,即为终端设备#1下发第一配置。
或者,若在网络设备#1确定终端设备#1不再支持第一SRB之前,终端设备#1没有存储第一配置,则网络设备#1可以确定为终端设备#1添加第一配置,即为终端设备#1下发第一配置。
以终端设备#1从直连链路转换为非直连链路场景下的QoE测量为例,若与终端设备#1通过直连链路通信的网络设备没有向终端设备#1下发QoE测量配置,网络设备#1可以确定为终端设备#1下发QoE测量配置。
第一配置的具体参数可以由第二指示信息指示,或者,也可以由其他信息指示。终端设备#1可以根据第一配置的具体参数添加第一配置。例如,终端设备#1可以根据第二指示信息添加第一配置。
示例性地,若网络设备#1接收第五指示信息之前,终端设备#1存储了第一配置,则网络设备#1可以确定释放第一配置,即指示终端设备#1释放第一配置。
或者,若在网络设备#1确定终端设备#1不再支持第一SRB之前,终端设备#1存储了第一配置,则网络设备#1可以确定释放第一配置,即指示终端设备#1释放第一配置。
以终端设备#1从直连链路转换为非直连链路场景下的QoE测量为例,若与终端设备#1通过直连链路通信的网络设备向终端设备#1下发了QoE测量配置,网络设备#1可以确定指示终端设备#1释放该QoE测量配置。
示例性地,若网络设备#1接收第五指示信息之前,终端设备#1存储了第一配置,则网络设备#1可以确定修改该第一配置,即指示终端设备#1修改该第一配置。
或者,若在网络设备#1确定终端设备#1不再支持第一SRB之前,终端设备#1存储了第一配置,则网络设备#1可以确定修改该第一配置,即指示终端设备#1修改该第一配置。以终端设备#1从直连链路转换为非直连链路场景下的QoE测量为例,若与终端设备#1通过直连链路通信的网络设备向终端设备#1下发了QoE测量配置,网络设备#1可以确定指示终端设备#1修改该QoE测量配置。
第一配置的具体参数可以由第二指示信息指示,或者,也可以由其他信息指示。终端设备#1可以根据第一配置的具体参数修改该第一配置。例如,终端设备#1可以根据第二指示信息修改该第一配置。
示例性地,若网络设备#1接收第五指示信息之前,终端设备#1存储了第一配置,则网络设备#1可以确定保留该第一配置,即指示终端设备#1保留该第一配置。
或者,若在网络设备#1确定终端设备#1不再支持第一SRB之前,终端设备#1存储了第一配置,则网络设备#1可以确定保留该第一配置,即指示终端设备#1保留该第一配置。
以终端设备#1从直连链路转换为非直连链路场景下的QoE测量为例,若与终端设备#1通过直连链路通信的网络设备向终端设备#1下发了QoE测量配置,网络设备#1可以确定指示终端设备#1保留该QoE测量配置。
终端设备#1保留该第一配置,即终端设备#1可以不对该第一配置做任何处理。
可选地,第二指示信息可以用于指示终端设备#1配置第一SRB。示例性地,第二指示信息可以用于指示:终端设备#1添加第一SRB,终端设备#1修改第一SRB,终端设备#1保留第一SRB,或者, 终端设备#1释放第一SRB。
示例性地,若在网络设备#1接收第五指示信息之前,终端设备#1不具备第一SRB,则网络设备#1可以确定为终端设备#1添加第一SRB,即建立第一SRB。
或者,若在网络设备#1确定终端设备#1不再支持第一SRB之前,终端设备#1不具备第一SRB,则网络设备#1可以确定为终端设备#1添加第一SRB,即建立第一SRB。
以终端设备#1从直连链路转换为非直连链路场景下的QoE测量为例,若与终端设备#1通过直连链路通信的网络设备没有为终端设备#1添加SRB4,网络设备#1可以确定为指示终端设备#1添加SRB4。
第一SRB的具体参数可以由第二指示信息指示,或者,也可以由其他信息指示。终端设备#1可以根据第一SRB的具体参数添加第一SRB。例如,终端设备#1可以根据第二指示信息添加第一SRB。
示例性地,若网络设备#1接收第五指示信息之前,终端设备#1具备第一SRB,则网络设备#1可以确定释放第一SRB,即指示终端设备#1释放第一SRB。
或者,若在网络设备#1确定终端设备#1不再支持第一SRB之前,终端设备#1具备第一SRB,则网络设备#1可以确定释放第一SRB,即指示终端设备#1释放第一SRB。
以终端设备#1从直连链路转换为非直连链路场景下的QoE测量为例,若与终端设备#1通过直连链路通信的网络设备为终端设备#1添加了SRB4,网络设备#1可以确定指示终端设备#1释放SRB4。
示例性地,若网络设备#1接收第五指示信息之前,终端设备#1具备第一SRB,则网络设备#1可以确定修改该第一SRB,即指示终端设备#1修改该第一SRB。
或者,若在网络设备#1确定终端设备#1不再支持第一SRB之前,终端设备#1具备第一SRB,则网络设备#1可以确定修改该第一SRB,即指示终端设备#1修改该第一SRB。
以终端设备#1从直连链路转换为非直连链路场景下的QoE测量为例,若与终端设备#1通过直连链路通信的网络设备为终端设备#1添加了SRB4,网络设备#1可以确定指示终端设备#1修改该SRB4。
第一SRB的具体参数可以由第二指示信息指示,或者,也可以由其他信息指示。终端设备#1可以根据第一SRB的具体参数修改该第一SRB。例如,终端设备#1可以根据第二指示信息修改该第一SRB。
示例性地,若网络设备#1接收第五指示信息之前,终端设备#1具备第一SRB,则网络设备#1可以确定保留该第一SRB,即指示终端设备#1保留该第一SRB。
或者,若在网络设备#1确定终端设备#1不再支持第一SRB之前,终端设备#1具备第一SRB,则网络设备#1可以确定保留该第一SRB,即指示终端设备#1保留该第一SRB。
以终端设备#1从直连链路转换为非直连链路场景下的QoE测量为例,若与终端设备#1通过直连链路通信的网络设备为终端设备#1添加了SRB4,网络设备#1可以确定指示终端设备#1保留该SRB4。
终端设备#1保留该第一SRB,即终端设备#1可以不对该第一SRB做任何处理。
作为一种可能的实现方式,第二指示信息可以为通过信元的方式指示。
示例性地,网络设备#1可以生成RRC配置信息,通过RRC配置信息中的一个或多个信元指示第一配置和/或第一SRB。
作为另一种可能的实现方式,第二指示信息可以为通过全配置的方式指示。
示例性地,网络设备#1可以生成RRC配置信息。该RRC配置信息携带全配置指示,可以指示第一配置和/或第一SRB。在该情况下,终端设备#1可以删除所有AS的相关配置,重新按照该RRC消息中携带的配置信息配置AS的相关配置。
如上所述,第二指示信息可以用于指示第一配置的相关信息或第一SRB的相关信息。或者,第二指示信息也可以用指示第一配置的相关信息和第一SRB的相关信息。下面以以4种方案为例对第二指示信息进行示例性地说明。
方案1
网络设备#1可以确定使终端设备#1不具备第一配置,且不具备第一SRB。
具体地,若在终端设备#1不再支持第一SRB之前,或者说,在网络设备#1知晓或确定终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一配置,网络设备#1可以确定指示终端设备#1释放该第一配置。若在网络设备#1知晓或确定终端设备#1不再支持第一SRB之前,终端设备#1不具备第一配置,网络设备#1可以确定指示不作处理。网络设备#1知晓终端设备#1不再支持第一SRB之前也可以理解为网络设备#1接收到第五指示信息之前。
若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一SRB,网络设备#1可以确定指示终端设备#1释放该第一SRB。若在终端设备#1不再支持第一SRB,终端设备#1不具备第一SRB,网络设备#1可以确定指示不作处理。
例如,若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一配置和第一SRB,网络设备#1可以确定指示终端设备#1释放第一配置和第一SRB。在该情况下,第二指示信息即用于指示终端设备#1释放第一配置和第一SRB。
这样,终端设备#1可以释放第一配置,不再根据第一配置生成数据无需通过第一SRB传输包括该数据的第一消息,避免出现第一消息需要通过第一SRB传输与终端设备#1无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。而且,本方案能够释放终端设备#1的缓存,避免存储资源的浪费。
下面以终端设备#1从直连链路转换为非直连链路场景下的QoE测量为例进行说明。
示例性地,在异站切换的场景下,在切换之前,与终端设备#1通过直连链路通信的网络设备#2为终端设备#1下发了QoE测量配置和SRB4配置。网络设备#2发送的切换请求#1中携带终端设备#1在网络设备#2侧的QoE测量配置和SRB4配置。在该情况下,网络设备#1可以根据该切换请求#1确定指示终端设备#1释放该QoE测量配置和SRB4。
示例性地,在同站切换的场景下,在切换之前,网络设备#1为终端设备#1下发了QoE测量配置和SRB4配置。在该情况下,网络设备#1可以确定指示终端设备#1释放该QoE测量配置和SRB4。
示例性地,第一网络设备可以生成给终端设备#1的RRC配置信息。在RRC配置信息中携带第二指示信息。
例如,通过RRC消息中的IE measconfigAPPLayerToReaseList指示释放QoE测量配置。IE measconfigAPPLayerToReaseList位于IE AppLayerMeasConfig中。通过RRC消息中的IE srb4-ToRelease设置为真(true)来指示释放SRB4。
再如,RRC消息中携带全配置指示。终端设备#1根据该全配置指示删除所有AS的相关配置,重新按照该RRC消息中携带的配置信息配置AS的相关配置,包括释放QoE测量配置和SRB4。
方案2
网络设备#1可以确定使终端设备#1不具备第一配置,且具备第一SRB。
具体地,若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一配置,网络设备#1可以确定指示终端设备#1释放该第一配置。若在终端设备#1不再支持第一SRB之前,终端设备#1不具备第一配置,网络设备#1可以确定指示不作处理。
若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一SRB,网络设备#1可以确定指示终端设备#1保留或修改该第一SRB。若在终端设备#1不再支持第一SRB之前,终端设备#1不具备第一SRB,网络设备#1可以确定指示添加第一SRB。
例如,若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一配置和第一SRB,第二指示信息可以用于指示终端设备#1释放第一配置和修改第一SRB。
再如,若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一配置和第一SRB,第二指示信息可以用于指示终端设备#1释放第一配置和保留第一SRB。
这样,终端设备#1可以释放第一配置,不再根据第一配置生成数据,无需通过第一SRB传输包括该数据的第一消息,避免出现第一消息需要通过第一SRB传输与终端设备#1无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。而且,本方案能够释放终端设备#1的缓存,避免存储资源的浪费。
如前所述,网络设备#1可以通过IE的方式指示相关操作。例如,网络设备#1可以通过IE#1和IE#2分别指示第一配置和第一SRB的相关操作。具体地,网络设备通过IE#1指示释放第一配置,通过IE#2指示保留或修改第一SRB。这样,终端设备#1可以根据第二指示信息释放第一配置,对第一SRB不作处理或修改第一SRB。再如,网络设备#1可以仅通过IE#1指示释放第一配置。这样,终端设备#1可以根据该IE#1释放第一配置,对第一SRB不作处理。该情况也可以视为由第二指示信息指示释放第一配置,保留第一SRB。
或者,网络设备可以通过全配置的方式指示相关操作。例如,RRC消息中携带全配置的指示,以 及第一SRB的配置参数。网络设备#1可以通过全配置的方式指示释放第一配置,修改第一SRB。这样,终端设备#1可以根据第二指示信息删除所有AS的相关配置,根据第一SRB的配置参数更新第一SRB。
应理解,以上仅为示例,在其他场景下,第二指示信息可以用于指示其他信息以使得终端设备#1不具备第一配置,且具备第一SRB,本申请实施例对此不做限定。
方案3
网络设备#1可以确定使终端设备#1具备第一配置,且不具备第一SRB。
具体地,若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一配置,网络设备#1可以确定指示终端设备#1保留或修改该第一配置。若在终端设备#1不再支持第一SRB之前,终端设备#1不具备第一配置,网络设备#1可以确定指示终端设备#1添加第一配置。
若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一SRB,网络设备#1可以确定指示终端设备#1释放该第一SRB。若在终端设备#1不再支持第一SRB之前,终端设备#1不具备第一SRB,网络设备#1可以确定指示不作处理。
例如,若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一配置和第一SRB,第二指示信息可以用于指示终端设备#1释放第一SRB和修改第一配置,或者,第二指示信息可以用于指示终端设备#1释放第一SRB和保留第一配置。
再如,若在终端设备#1不再支持第一SRB之前,终端设备#1不具备第一配置和第一SRB,第二指示信息可以用于指示终端设备#1添加第一配置。
再如,在终端设备#1不再支持第一SRB之前,终端设备#1不具备第一配置且具备第一SRB,第二指示信息可以用于指示终端设备#1添加第一配置,释放第一SRB。
如前所述,网络设备#1可以通过IE的方式指示相关操作。示例性地,网络设备#1可以通过IE#1和IE#2分别指示第一配置和第一SRB的相关操作。例如,网络设备通过IE#1指示保留、修改添加或第一配置,通过IE#2指示释放第一SRB。这样,终端设备#1可以根据第二指示信息释放第一SRB,对第一配置不作处理、修改第一配置或添加第一配置。
或者,网络设备可以通过全配置的方式指示相关操作。例如,RRC消息中携带全配置的指示,以及第一配置的配置参数。这样,终端设备#1可以根据第二指示信息删除所有AS的相关配置,根据第一配置的配置参数更新第一配置。
应理解,以上仅为示例,在其他场景下,第二指示信息可以用于指示其他信息以使得终端设备#1具备第一配置,且不具备第一SRB,本申请实施例对此不做限定。
方案4
网络设备#1可以确定使终端设备#1具备第一配置,且具备第一SRB。
具体地,若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一配置,网络设备#1可以确定指示终端设备#1保留或修改该第一配置。若在终端设备#1不再支持第一SRB之前,终端设备#1不具备第一配置,网络设备#1可以确定指示终端设备#1添加第一配置。
若在终端设备#1不再支持第一SRB之前,终端设备#1已经具备第一SRB,网络设备#1可以确定指示终端设备#1保留或修改该第一SRB。若在终端设备#1不再支持第一SRB之前,终端设备#1不具备第一SRB,网络设备#1可以确定指示终端设备#1添加第一SRB。
具体指示方式可以参考上述方案,为避免重复,此处不再赘述。
可选地,不同的配置方案可以对应不同的索引(index)。第二指示信息可以指示索引,以指示终端设备#1根据该索引对应的配置方案执行相应的操作。
例如,配置方案#1为释放第一SRB和第一配置,对应的索引值为1,配置方案#2为释放第一SRB和修改第一配置,对应的索引值为2,配置方案#3释放第一配置和保留第一SRB,对应的索引值为3。应理解,以上配置方案仅为示例,不对本申请实施例的方案构成限定。
进一步地,在网络设备#1确定使终端设备#1具备第一配置的情况(例如方案3和方案4)下,网络设备#1可以基于实现确定第一配置的具体配置参数。
以QoE测量为例,网络设备#1可以基于实现确定QoE测量配置。
示例性地,在终端设备#1不再支持第一SRB之前,若终端设备#1中已具备QoE测量配置,网络 设备#1可以确定保留该QoE测量配置中的部分或全部。
例如,终端设备#1的应用层可以提供数据流(streaming)、互联网协议多媒体子系统(Internet protocol multimedia subsystem,IMS)、多媒体电话服务(multimedia telephony service for IMS,MTSI)、和VR的QoE测量。网络设备#1可以根据需求确定保留streaming相关的QoE测量配置。或者,网络设备#1可以根据需要确定保留网络设备#1可见的测量量的测量配置。
可选地,网络设备#1可以将第一配置上报至管理设备。
示例性地,管理设备可以包括:CN、OAM或MCE等。
步骤1010a和步骤1020a为可选步骤。
步骤1010b和1020b为可选步骤。
1030,第一终端设备接收第一指示信息。第一指示信息用于指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息。
1030a,第一终端设备接收来自第一网络设备的第一指示信息。
1030b,第一终端设备接收来自第三网络设备的第一指示信息。
在终端设备#1接收到第一指示信息时,终端设备#1可以根据该第一指示信息确定无法再支持第一SRB。
以方法1000应用于QoE测量的场景为例,第一指示信息可以用于指示终端设备#1通过直连链路通信转换为通过非直连链路通信。
示例性地,本申请实施例的方案可以应用于切换的场景下。在切换完成后,终端设备#1通过非直连链路和网络设备#1通信。
作为一种可能的实现方式,在步骤1030a中,网络设备#1向终端设备#1发送RRC配置信息,该RRC配置信息中携带第一指示信息,使得终端设备#1由通过该直连链路与网络设备#1通信切换为通过非直连链路与网络设备#1通信。
换言之,终端设备#1(如图9的(a)中的remote UE)从网络设备#1(如图9的(a)中的gNB)接收RRC配置信息,终端设备#1根据该RRC配置信息切换为非直连链路通信。需要说明的是,在切换之前,终端设备#1与网络设备#1之间为直连链路,终端设备#1还没有成为remote UE。
作为一种可能的实现方式,在步骤1030b中,网络设备#2向终端设备#1发送切换命令(handover commond,HO command)#1,该切换命令#1携带第一指示信息。在切换之前,终端设备#1通过该直连链路与网络设备#2通信。在该切换完成后,终端设备#1可以通过非直连链路与网络设备#1通信。
换言之,切换命令#1可以为异站切换的场景下的切换命令。网络设备#1为目标网络设备,网络设备#2为源网络设备。例如,切换命令#1可以为网络设备#2(如图9的(b)中的源gNB)向终端设备#1(如图9的(b)中的remote UE)发送的切换命令。需要说明的是,在切换之前,终端设备#1与网络设备#2之间为直连链路,终端设备#1还没有成为remote UE。
应理解,以上仅为示例,在其他切换场景中,切换命令#1还可以表示为其他形式的信息,本申请实施例对切换命令#1的具体形式不做限定。为了便于理解和描述,本申请实施例中主要以切换场景为例对方法1000进行说明,不对本申请实施例的方案构成限定。
应理解,以上仅为示例,在其他场景中第一指示信息还可以为其他形式的信息,本申请实施例对此不做限定。
1040,第一终端设备配置第一配置和/或第一SRB。
图10的(a)中的步骤1040a和图10的(b)中的步骤1040b均为步骤1040。
作为一种可能的实现方式,终端设备#1可以接收第二指示信息,根据第二指示信息配置第一配置和/或第一SRB。
其中,第一指示信息和第二指示信息可以由同一信息携带,例如,RRC配置信息。或者,第一指示信息和第二指示信息可以由不同信息携带。
示例性地,第二指示信息可以由网络设备#1发送至终端设备#1。
可替换地,第二指示信息也可以由网络设备#1通过其他设备发送至终端设备#1。
例如,在异站切换的场景中,在切换完成前,终端设备#1通过直连链路与网络设备#2通信,在切换完成后,终端设备#1通过非直连链路与网络设备#1通信。在该情况下,网络设备#1可以通过网络设 备#2将第二指示信息发送给终端设备#1。
作为另一种可能的实现方式,终端设备#1在接收到第一指示信息后,可以自行确定配置第一配置和/或第一SRB。或者,终端设备#1在接收到第一指示信息后,可以根据协议规定配置第一配置和/或第一SRB。在该实现方式下,步骤1010a和步骤1020a可以省略。步骤1010b和步骤1020b可以省略。
可选地,终端设备#1配置第一配置可以包括:终端设备#1添加第一配置,终端设备#1修改第一配置,终端设备#1保留第一配置,或者,终端设备#1释放第一配置。
示例性地,终端设备#1可以根据网络设备#1发送的第一配置的具体参数添加第一配置。或者,终端设备#1可以根据网络设备#1发送的第一配置的具体参数修改第一配置。其中,第一配置的具体参数可以由第二指示信息指示,或者,第一配置的具体参数也可以由其他指示信息指示。
可选地,第一终端设备配置第一SRB可以包括:终端设备#1添加第一SRB,终端设备#1修改第一SRB,终端设备#1保留第一SRB,或者,终端设备#1释放第一SRB。
示例性地,终端设备#1可以根据网络设备#1发送的第一SRB的具体参数添加第一SRB。或者,终端设备#1可以根据网络设备#1发送的第一SRB的具体参数修改第一SRB。其中,第一SRB的具体参数可以由第二指示信息指示,或者,第一SRB的具体参数也可以由其他指示信息指示。
可选地,方法1000还包括:在终端设备#1不再支持第一SRB之后,若终端设备#1中具备第一配置,终端设备#1可以根据第一配置获取第一数据,并存储第一数据。
由于终端设备#1不再支持第一SRB,第一数据无法通过第一SRB上报。在上述方案中,在终端设备#1不再支持第一SRB的情况下,终端设备#1仍可以根据第一配置获取第一数据,并将第一数据保存。这样,当终端设备#1由不支持第一SRB转换为可支持第一SRB的场景时,可以及时将缓存的第一数据上报。
示例性地,第一配置可以为QoE测量配置,第一数据可以为根据该QoE测量配置进行QoE测量得到的测量结果。
以QoE测量的场景为例,例如,在终端设备#1通过非直连链路与网络设备#1通信,终端设备#1当前不支持SRB4,终端设备#1可以根据QoE测量配置进行QoE测量,以得到QoE测量的测量结果,并将QoE测量的测量结果保存在终端设备#1中。这样,当终端设备#1之后通过直连链路接入网络时,可以及时上报之前缓存的QoE测量的测量结果。
进一步地,方法1000还包括:在第一数据的存储时长超过定时时长的情况下,丢弃第一数据。
这样可以释放终端设备#1的缓存,避免浪费存储资源。
示例性地,该定时时长可以由终端设备#1确定。该定时时长也可以由协议规定。或者,该定时时长也可以由网络设备#1指示。
在终端设备#1具备第一配置且不具备第一SRB的情况下,终端设备#1的第一协议层可以根据第一配置获取第一数据,终端设备#1可以指示第一协议层不向AS递交第一数据。
可选地,第一协议层可以为应用层。终端设备#1的应用层指的是能够根据第一配置获取第一数据的层。以QoE测量的场景为例,终端设备#1的应用层指的是能够进行QoE测量的层。
可选地,第二协议层可以为接入层或接入层中的RRC层。
为了便于描述,本申请实施例中主要以第一协议层为应用层,第二协议层为接入层为例进行说明,不对本申请实施例的方案构成限定。
示例性地,在终端设备#1不具备第一SRB的情况下,第一数据无法通过第一SRB上报。在终端设备#1接收到第一指示信息后,终端设备#1的AS(例如,RRC层)可以向应用层发送一个指示信息,指示应用层获取到第一数据后,不需要将第一数据递交至AS。
在上述方案中,终端设备#1可以根据第一配置获取第一数据,通过指示应用层不向AS递交第一数据,避免出现第一消息需要通过第一SRB传输与终端设备#1无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。
可选地,终端设备#1可以根据第一配置获取第一数据,并存储第一数据,包括:在终端设备#1具备第一配置且不具备第一SRB的情况下,终端设备#1的第二协议层将第一配置递交至第一协议层,第一协议层可以根据第一配置获取第一数据,并将第一数据保存在第一协议层中。
示例性地,在终端设备#1接收到第一指示信息后,终端设备#1的AS可以向应用层发送一个指示 信息,指示应用层获取到第一数据后,不需要将第一数据递交至AS。应用层可以保存第一数据,并根据第一配置更新第一数据。
进一步地,在定时时长的范围内,第一协议层没有向第二协议层递交存储的第一数据,则第一协议层可以将对应的第一数据丢弃。
示例性地,在定时时长的范围内,应用层没有收到向AS递交第一数据的指示,则应用层可以将对应的第一数据丢弃。
可替换地,在定时时长的范围内,终端设备#1没有收到终端设备#1可支持第一SRB的指示,可以向应用层发送一个指示,指示应用层将对应的第一数据丢弃。
在终端设备#1具备第一配置且具备第一SRB的情况下,终端设备#1的第一协议层可以根据第一配置获取第一数据,并将第一数据递交至第二协议层,第二协议层不上报第一数据。
示例性地,在终端设备#1具备第一SRB的情况下,由于终端设备#1不支持第一SRB,第一数据仍无法通过第一SRB上报。终端设备#1的应用层获取到第一数据后,将第一数据递交至AS。RRC层接收到第一数据后,基于第一SRB配置情况不上报第一数据。
在上述方案中,终端设备#1的应用层可以根据第一配置获取第一数据,并递交至AS,AS不上报第一数据,从而避免出现第一消息需要通过第一SRB传输与终端设备#1无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。
可选地,终端设备#1可以根据第一配置获取第一数据,并存储第一数据,包括:
在终端设备#1具备第一配置且具备第一SRB的情况下,终端设备#1的第一协议层可以根据第一配置获取第一数据,将第一数据递交至第二协议层,第二协议层保存第一数据。
示例性地,终端设备#1的应用层获取到第一数据后,将第一数据递交至AS。RRC层接收到第一数据后,基于第一SRB配置情况不上报第一数据。RRC层保存第一数据。AS可以根据应用层递交的第一数据,对RRC层保存的第一数据进行更新。
进一步地,在定时时长的范围内,第二协议层无法上报第一数据,可以将对应的第一数据丢弃。
例如,在定时时长的范围内,终端设备#1仍无法支持第一SRB,AS可以将对应的第一数据丢弃。
可选地,网络设备#1可以向管理设备发送第六指示信息。第六指示信息可以用于指示停止第一数据的上报。
示例性地,第六指示信息可以用于指示终端设备#1停止上报第一数据。或者说,第六指示信息可以用于指示终端设备#1不支持上报第一数据。
可替换地,第六指示信息可以用于指示网络设备不上报终端设备#1的第一数据。或者说,第六指示信息可以用于指示网络设备不支持上报终端设备#1的第一数据
可替换地,第六指示信息可以用于指示终端设备#1不支持第一SRB。以QoE测量为例,第六指示信息可以用指示终端设备#1由通过直连链路通信转换为通过非直连链路通信。
可选地,在终端设备#1不可支持第一SRB之前,终端设备#1中已具备第一配置的情况下,网络设备#1可以向管理设备发送第六指示信息。
以QoE测量的切换场景为例,若在终端设备#1切换为非直连链路的场景之前,与终端设备#1通过直连链路通信的网络设备已经下发了QoE测量配置,网络设备#1可以发送第六指示信息。
在QoE测量的异站切换的场景中,第六指示信息也可以由网络设备#2发送,即由通过直连链路与终端设备#1通信的网络设备发送。
可选地,在终端设备#1不可支持第一SRB之前,终端设备#1中已具备第一配置的情况下,网络设备#2可以向管理设备发送第六指示信息。
在本申请实施例的方案中,在终端设备#1无法支持通过第一SRB传输根据第一配置生成的第一消息时,使得终端设备#1配置第一SRB和/或第一配置,以避免出现第一消息需要通过第一SRB传输与终端设备#1无法支持第一SRB数据传输之间的矛盾,从而提高系统的效率。
在UE不支持SRB的场景中,UE可能释放了第一配置和/或SRB。本申请实施例提供了一种通信的方法,使得在UE由不可支持SRB切换至可支持SRB的场景时可以通过该SRB传输相应的数据,以提高系统的效率。
图11是非直连链路切换至直连链路的通信场景的示意图。
如图11的(a)所示,终端设备#3(如图11的(a)中所示的remote UE)通过终端设备#4(如图11的(a)中所示的relay UE)和网络设备#3(如图11的(a)中所示的gNB)通信,然后切换至通过Uu link直接与网络设备#3通信。如图11的(a)所示,remote UE和relay UE可以连接同一个网络设备。
如图11的(b)所示,终端设备#3(如图11的(b)中所示的remote UE)通过终端设备#4(如图11的(b)中所示的relay UE)和网络设备#4(如图11的(b)中所示的源gNB)通信,之后切换至通过Uu link直接与网络设备#3(如图11的(b)中所示的目标gNB)通信。如图11的(b)所示,remote UE和relay UE可以连接不同的网络设备,即异站切换的情况。
图12是本申请实施例提供的一种通信的方法的示意性流程图。图12所示的方法1200可以应用于上述图1或图11所示的网络架构中,不作限定。方法1200可以包括如下步骤。
方法1200可以包括图12的(a)中所示的步骤,或者也可以包括图12的(b)中所示的步骤。
如图12的(a)所示,方法1200可以包括步骤1210a至步骤1250a。或者,如图12的(b)所示,方法1200可以包括步骤1210b至步骤1250b。示例性地,图12的(a)所示的方法可以适用于图11的(a)的场景。图12的(b)所示的方案可以适用于图11的(b)所示的场景。
1210a,第二网络设备确定第一终端设备可支持通过第一SRB传输根据第一配置生成的第一消息。
示例性地,第二网络设备可以根据第一终端设备的测量报告确定第一终端设备可支持通过第一SRB传输根据第一配置生成的第一消息。
1210b,第二网络设备接收来自第四网络设备的第七指示信息,第七指示信息用于指示第一终端设备可支持通过第一SRB传输根据第一配置生成的第一消息。
第二网络设备可以根据第七指示信息知晓第一终端设备可支持通过第一信令无线承载传输根据第一配置生成的第一消息。
在方法1200中,第一终端设备可以为终端设备#3。终端设备#3可以为方法1000中的终端设备#1。或者,终端设备#3也可以为其他终端设备。
示例性地,方法1200可以应用于QoE测量的场景中。第一配置可以为QoE测量配置,第一SRB可以为SRB4。
可选地,第七指示信息可以用于指示终端设备#3通过非直连链路通信转换为通过直连链路通信。转换完成后,网络设备#3(第二网络设备的一例)与终端设备#3通过直连链路通信。
终端设备#3由通过非直连链路通信转换为通过直连链路通信时,终端设备#3可支持SRB4。
示例性地,本申请实施例的方案可以应用于切换的场景下。在切换完成后,终端设备#3通过直连链路和网络设备#3通信。
作为一种可能的实现方式,在步骤1210a中,网络设备#3通过终端设备4#接收终端设备#3的测量报告。触发网络设备#3确定切换,在的切换之前,终端设备#3通过该非直连链路与网络设备#3通信。在切换完成后,终端设备#3可以通过直连链路与网络设备#3通信。
换言之,在同站切换的场景下,终端设备#3(如图11的(a)中的remote UE)通过终端设备#4(如图11的(a)中的relay UE)向网络设备#3(如图11的(a)中的gNB)发送测量报告(measurement reports)。该测量报告可以触发网络设备#3确定切换,例如网路设备#3决策将终端设备#3从网络设备#3的第一小区切换至第二小区,终端设备#3直接连接至网络设备#3的第二小区。需要说明的是,在切换之后,终端设备#3与网络设备#3之间为直连链路,终端设备#1不再是remote UE。
作为一种可能的实现方式,在步骤1210b中,网络设备#3从网络设备#4(第四网络设备的一例)接收切换请求(handover request,HO request)#2,该切换请求#2携带第七指示信息。在切换请求#2指示的切换之前,终端设备#3通过该非直连链路与网络设备#4通信。在该切换完成后,终端设备#3可以通过非直连链路与网络设备#3通信。
换言之,切换请求#2可以为异站切换的场景下的切换请求。网络设备#3为目标网络设备,网络设备#4为源网络设备。例如,切换请求#2可以为网络设备#4(如图11的(b)中的源gNB)向网络设备#3(如图11的(b)中的目标gNB)发送的切换请求。需要说明的是,在切换之后,终端设备#3与网络设备#3之间为直连链路,终端设备#3不再是remote UE。
应理解,以上仅为示例,本申请实施例的方案还可以应用于其他切换场景。例如,终端设备#3与 网络设备#4之间通过链路#3通信,终端设备#3不支持SRB4。之后终端设备#3切换为与网络设备#3之间通过链路#4通信,终端设备#3可支持SRB4。在其他切换场景中,切换请求#2还可以表示为其他形式的信息,本申请实施例对切换请求#2的具体形式不做限定。为了便于理解和描述,本申请实施例中主要以切换场景为例对方法1200进行说明,不对本申请实施例的方案构成限定。其他场景可以参考方法1000中的描述,此处不再赘述。
以上仅为示例,第七指示信息还可以为其他形式的信息,本申请实施例对此不做限定。
1220,第二网络设备发送第四指示信息,第四指示信息用于指示第一终端设备添加第一SRB、修改第一SRB或保留第一SRB。
在1220a中,第二网络设备向第一终端设备发送第四指示信息。第二网络设备可以直接向第一终端设备发送第四指示信息。或者,第二网络设备也可以通过中继终端设备向第一终端设备发送第四指示信息(图中未示出)。
在接收到第七指示信息之后,网络设备#3可以确定与终端设备#3的第一SRB相关的方案,并通过第四指示信息指示确定的方案。
在1220b中,第二网络设备向第四网络设备发送第四指示信息。第四网络设备可以直接向第一终端设备发送第四指示信息。或者,第四网络设备也可以通过中继终端设备向第一终端设备发送第四指示信息(图中未示出)。
示例性地,本申请实施例的方案可以应用于切换的场景下。在切换完成后,终端设备#3通过直连链路和网络设备#3通信。
作为一种可能的实现方式,在步骤1220a中,网络设备#3通过终端设备#4向终端设备#3发送RRC配置消息。RRC配置消息中携带第四指示信息。在切换之前,终端设备#3通过该非直连链路与网络设备#3通信。在切换完成后,终端设备#3可以通过直连链路与网络设备#3通信。
作为一种可能的实现方式,在步骤1220b中,网络设备#3向网络设备#4发送切换请求确认(handover request acknowledge,HO Ack)消息,切换请求确认消息中携带第四指示信息。在切换之前,终端设备#3通过该非直连链路与网络设备#4通信。在该切换完成后,终端设备#3可以通过直连链路与网络设备#3通信。
应理解,以上仅为示例,在其他切换场景中,第四指示信息还可以通过其他消息发送,本申请实施例对此不做限定。
第四指示信息可以为full configuration方式的指示信息。
示例性地,网络设备#3可以生成RRC配置信息。该RRC配置信息携带全配置指示,并指示第一SRB配置。
示例性地,第四指示信息可以为delta configuration方式的指示信息。第四指示信息可以通过一个或多个信元的方式指示。例如,网络设备#3可以生成RRC配置信息,通过RRC配置信息中的信元指示添加或修改第一SRB。
其中,“保留”可以理解为,在delta configuration的情况下,第四指示信息中没有指示对终端设备#1原先的配置进行任何更新。换言之,若RRC配置信息中不带任何关于第一SRB的配置指示,则终端设备将保留原有的第一SRB配置信息,并据此进行配置。
在终端设备#3可支持第一SRB的情况下,网络设备#3可以确定使终端设备#3具备第一SRB。
示例性地,若终端设备#3可支持第一SRB之前,例如,在在网络设备#3接收第七指示信息之前,即网络设备#3知晓终端设备#3可支持第一SRB之前,或者,在网络设备#3确定终端设备#3可支持第一SRB之前,终端设备#3不具备第一SRB,则网络设备#3可以确定为终端设备#3添加第一SRB。第四指示信息用于指示终端设备#3添加第一SRB。以终端设备#3从非直连链路转换为直连链路场景下的QoE测量为例,若与终端设备#3通过非直连链路通信的网络设备没有为终端设备#3添加SRB4,网络设备#3可以确定为指示终端设备#3添加SRB4。
第一SRB的具体参数可以由第四指示信息指示,或者,也可以由其他信息指示。终端设备#3可以根据第一SRB的具体参数添加第一SRB。例如,终端设备#3可以根据第四指示信息添加第一SRB。
示例性地,若终端设备#3可支持第一SRB之前,终端设备#3具备第一SRB,则网络设备#3可以确定修改该第一SRB,即指示终端设备#3修改该第一SRB。例如,终端设备#3执行方法1000中的方 案3或方案4,终端设备#3中具备第一SRB。网络设备#3可以确定修改该第一SRB,即指示终端设备#3修改该第一SRB。第四指示信息用于指示终端设备#3修改该第一SRB。
以终端设备#3从非直连链路转换为直连链路场景下的QoE测量为例,若与终端设备#3通过非直连链路通信的网络设备为终端设备#3添加了SRB4,网络设备#3可以确定指示终端设备#3修改该SRB4。
终端设备#3可以根据第一SRB的具体参数修改该第一SRB。第一SRB的具体参数可以由第四指示信息指示,或者,也可以由其他信息指示。例如,终端设备#3可以根据第四指示信息修改该第一SRB。
示例性地,若终端设备#3可支持第一SRB之前,终端设备#3具备第一SRB,则网络设备#3可以确定保留该第一SRB,即指示终端设备#3保留该第一SRB。例如,终端设备#3执行方法1000中的方案3或方案4,终端设备#3中具备第一SRB。网络设备#3可以确定保留该第一SRB,即指示终端设备#3保留该第一SRB。第四指示信息用于指示终端设备#3保留第一SRB。
以终端设备#3从非直连链路转换为直连链路场景下的QoE测量为例,若与终端设备#3通过非直连链路通信的网络设备为终端设备#3添加了SRB4,网络设备#3可以确定指示终端设备#3保留该SRB4。
终端设备#3保留该第一SRB,即终端设备#3可以不对该第一SRB做任何处理。
网络设备#3还可以为终端设备#3配置第一配置,在该情况下,第四指示信息还可以用于指示配置第一配置,本申请实施例对此不做限定。
作为一种可能的实现方式,第四指示信息可以为通过信元的方式指示。
示例性地,网络设备#3可以生成RRC配置信息,通过RRC配置信息中的信元指示第一SRB。
作为另一种可能的实现方式,第四指示信息可以为通过全配置(full configuration)的方式指示。
示例性地,网络设备#3可以生成RRC配置信息。该RRC配置信息携带全配置指示,可以指示第一SRB。在该情况下,终端设备#3可以删除所有AS的相关配置,重新按照该RRC消息中携带的配置信息配置AS的相关配置。
1230,第一终端设备接收第三指示信息。第三指示信息用于指示第一终端设备可支持通过第一SRB传输根据第一配置生成的第一消息。
在步骤1230a中,第一终端设备接收来自第二网络设备的第三指示信息。示例性地,终端设备#3可以直接接收网络设备#3发送的第三指示信息。或者,终端设备#3可以通过终端设备#4接收网络设备#3发送的第三指示信息(图中未示出)。
在步骤1230b中,第一终端设备接收来自第四网络设备的第三指示信息。示例性地,终端设备#3可以直接接收网络设备#4发送的第三指示信息。或者,终端设备#3可以通过终端设备#4接收网络设备#4发送的第三指示信息(图中未示出)。
在终端设备#3接收到第三指示信息时,终端设备#3可以根据该第三指示信息确定可支持第一SRB。
以方法1000应用于QoE测量的场景为例,第三指示信息可以用于指示终端设备#3通过非直连链路通信转换为通过直连链路通信。
示例性地,本申请实施例的方案可以应用于切换的场景下。在切换完成后,终端设备#3通过直连链路和网络设备#3通信。
作为一种可能的实现方式,在步骤1230a中,网络设备#3通过终端设备#4向终端设备#3发送RRC配置信息,该配置信息中携带第三指示信息,使得终端设备#3由通过非直连链路与网络设备#3通信切换为通过直连链路与网络设备#3通信。
换言之,终端设备#3(如图11的(a)中的remote UE)通过终端设备#4(如图11的(a)中的relay UE)从网络设备#3(如图11的(a)中的gNB)接收RRC配置新,终端设备#3根据该RRC配置信息切换为直连链路通信。需要说明的是,在切换之后,终端设备#3与网络设备#3之间为直连链路,终端设备#3不再是remote UE。
作为一种可能的实现方式,在步骤1230b中,网络设备#4通过终端设备4#向终端设备#3发送切换命令(handover commond,HO command)#2,该切换命令#2携带第三指示信息。在切换之前,终端设备#3通过该非直连链路与网络设备#4通信。在该切换完成后,终端设备#3可以通过直连链路与网络设备#3通信。
换言之,切换命令#2可以为异站切换的场景下的切换命令。网络设备#3为目标网络设备,网络设备#4为源网络设备。例如,切换命令#2可以为网络设备#4(如图11的(b)中的源gNB)通过终端设 备#4(如图11的(b)中的relay UE)向终端设备#3(如图9的(b)中的remote UE)发送的切换命令。需要说明的是,在切换之后,终端设备#3与网络设备#3之间为直连链路,终端设备#3不再是remote UE。
应理解,以上仅为示例,在其他切换场景中,切换命令#2还可以表示为其他形式的信息,本申请实施例对切换命令#2的具体形式不做限定。为了便于理解和描述,本申请实施例中主要以切换场景为例对方法1200进行说明,不对本申请实施例的方案构成限定。
应理解,以上仅为示例,在其他场景中第四指示信息还可以为其他形式的信息,本申请实施例对此不做限定。
1240,第一终端设备添加第一SRB、修改第一SRB或保留第一SRB。
图12的(a)中的步骤1240a和图12的(b)中的步骤1240b均为步骤1240。
作为一种可能的实现方式,终端设备#3可以接收第四指示信息,根据第四指示信息执行相关操作。
其中,第四指示信息和第三指示信息可以为同一信息,例如,RRC配置信息。或者,第四指示信息和第三指示信息可以为不同信息。
示例性地,第四指示信息可以由网络设备#3发送至终端设备#3。
可替换地,第四指示信息也可以由网络设备#3通过其他设备发送至终端设备#3。
例如,在同站切换的场景中,在切换完成前,终端设备#3通过非直连链路与网络设备#3通信,在切换完成后,终端设备#3通过直连链路与网络设备#3通信。在该情况下,网络设备#3可以通过终端设备#4将第四指示信息发送给终端设备#3。
作为另一种可能的实现方式,终端设备#3在接收到第三指示信息后,可以自行确定配置第一SRB。或者,终端设备#3在接收到第三指示信息后,可以根据协议规定配置第一SRB。在该实现方式下,步骤1210a和步骤1220a可以省略。步骤1210b和步骤1220b可以省略。
示例性地,终端设备#3可以根据网络设备#3给终端设备#3的第一SRB的具体参数添加第一SRB。或者,终端设备#3可以根据网络设备#3给终端设备#3的第一SRB的具体参数修改第一SRB。其中,第一SRB的具体参数可以由第四指示信息指示,或者,第一SRB的具体参数也可以由其他指示信息指示。
终端设备#3保留第一SRB,可以为终端设备#3对第一SRB不作处理。
1250,第一终端设备通过第一SRB传输第一消息,第一消息包括第一终端设备存储的第一数据。
在1250a和1250b中,第一终端设备向第二网络设备发送第一消息。体地,在终端设备#3接收第三指示信息之前,若终端设备#3中存储有根据第一配置获取的第一数据,在终端设备#3可支持第一SRB之后,可以通过第一SRB传输第一消息。
这样,当终端设备#3由不支持第一SRB转换为可支持第一SRB的场景时,可以及时将在终端设备#3不支持第一SRB的场景下缓存的第一数据上报。
以QoE测量的场景为例,例如,在终端设备#3通过非直连链路与网络设备通信,终端设备#3当前不支持SRB4,终端设备#3可以根据QoE测量配置进行QoE测量,以得到QoE测量的测量结果,并将QoE测量的测量结果保存在终端设备#3中。当终端设备#3通过直连链路接入网络时,终端设备#3建立了SRB4后,即可及时上报之前缓存的QoE测量的测量结果。
可选地,第一终端设备通过第一SRB传输第一消息,包括:第一终端设备的第一协议层将第一协议层中存储的第一数据递交至第一终端设备的第二协议层;第二协议层生成该第一消息,该第一消息中包括该第一数据;第二协议层通过第一SRB传输第一消息。
在终端设备#3不支持SRB的场景下,若终端设备#3根据第一配置获取了第一数据,并将第一数据保存在第一协议层中,在终端设备#3转换为可支持第一SRB的场景时,终端设备#3建立第一SRB后,终端设备#3的第一协议层可以将缓存的第一数据递交至第二协议层,触发一次上报。
以QoE测量的场景为例,例如,在终端设备#3通过非直连链路与网络设备通信时,若终端设备#3根据QoE测量配置得到了测量结果,并将测量结果保存在应用层中,当终端设备#3通过直连链路接入网络时,终端设备#3建立SRB4后,即可及时上报之前缓存的QoE测量的测量结果。
可选地,第一终端设备通过第一SRB传输第一消息,包括:第一终端设备的第二协议层生成第一消息,第一消息中包括第二协议层中存储的第一数据;第二协议层通过第一SRB传输第一消息。
在终端设备#3不支持SRB的场景下,若终端设备#3根据第一配置获取了第一数据,并将第一数据保存在第二协议层中,在终端设备#3转换为可支持第一SRB的场景时,终端设备#3已建立第一SRB,终端设备#3的第二协议层可以触发一次上报,即上报缓存的第一数据。
以QoE测量的场景为例,例如,在终端设备#3通过非直连链路与网络设备通信时,若终端设备#3根据QoE测量配置得到了测量结果,并将测量结果保存在AS中,当终端设备#3通过直连链路接入网络时,终端设备#3已建立SRB4,AS可立即触发上报之前缓存的QoE测量的测量结果。
可选地,方法1200还包括:第二网络设备向管理设备发送第八指示信息,第八指示信息用于指示恢复第一消息的上报。
示例性地,第八指示信息可以用于指示终端设备#3恢复上报第一数据。或者说,第八指示信息可以用于指示终端设备#3可支持上报第一数据。
可替换地,第八指示信息可以用于指示网络设备上报终端设备#3的第一数据。或者说,第八指示信息可以用于指示网络设备可支持上报终端设备#3的第一数据。
可替换地,第八指示信息可以用于指示终端设备#3可支持第一SRB。以QoE测量为例,第八指示信息可以用指示终端设备#3由通过非直连链路通信转换为通过直连链路通信。
在QoE测量的异站切换的场景中,第八指示信息也可以由网络设备#4发送,即由通过非直连链路与终端设备#3通信的网络设备发送。
在本申请实施例的方案中,在终端设备#3无法支持通过第一SRB传输根据第一配置生成的第一消息时,若终端设备#3存储了根据第一配置生成的数据,在终端设备切换至可支持第一SRB的场景时,可以及时上传终端设备#3缓存的数据,从而将无法上报期间的数据进行及时更新,提高了系统的效率。例如,在QoE测量场景中,在终端设备#3切换至可支持SRB4的场景时,可以及时上传终端设备#3缓存的测量结果,以便网络设备可以根据该测量结果及时作出调整,从而提高用户体验,提高了系统的处理效率。
为了便于理解,下面结合切换场景下的QoE测量为例对本申请实施例的方案的一种可能流程进行示例性说明。在由直连链路切换至非直连链路的场景(如图9的(b))下,终端设备#1为remote UE,终端设备#2为目标中继UE(target relay UE),网络设备1#为目标gNB(例如,图13中的T-gNB),网络设备2#为源gNB(例如,图13中的S-gNB)。其中涉及到的步骤以及术语具体可以可参考上文描述。
图13是本申请一实施例提供的一种通信的方法1300的示意图。该方法1300可以适用于上述方法1100。方法1300可以包括如下步骤。
1310,UE执行U2N中继发现(U2N relay discovery)流程。
UE通过U2N relay discovery流程找到周边可用的候选relay UE。
该UE在切换至非直连链路的场景之前,还没有成为remote UE,与S-gNB之间进行上行数据和下行数据的传输。该UE在切换至非直连链路的场景后即为remote UE,为了便于描述,在方法1300中该UE统一称为remote UE。
1320,remote UE执行测量上报(measurement reporting)。
具体地,remote UE可以上报候选relay UE的信息,例如,候选relay UE的ID,小区(cell)ID以及remote UE与候选relay UE之间的sidelink链路的信号质量等。
1330,S-gNB根据remote UE的测量上报确定执行切换。
S-gNB根据remote UE的测量上报确定将remote UE切换至目标relay UE。
可选地,方法1300还包括步骤1330a。
1330a,若S-gNB为remote UE下发了QoE测量配置,S-gNB可以向CN、OAM或者MCE发送指示(indication)信息(第六指示信息的一例)。该指示信息可以指示remote UE不支持上报QoE测量的测量结果。或者,该指示信息可以指示基站侧不再支持提供remote UE的QoE测量的测量结果。或者,该指示信息可以指示remote UE由通过直连链路通信切换为通过非直连链路通信。
1340,S-gNB向T-gNB发送切换请求。该切换请求中可以携带remote UE在S-gNB侧的RRC配置信息。若S-gNB为remote UE下发了QoE测量配置,该QoE测量配置可以通过该消息发送至T-gNB。
该切换请求可以为方法1000中的第五指示信息的示例。
1350,T-gNB确定QoE和/或SRB4的配置。
T-gNB可以生成remote UE在T-gNB侧的RRC配置信息,该RRC配置信息中可以携带QoE和/或SRB4的配置相关的指示(第二指示信息的一例)。T-gNB根据切换请求确定切换后remote UE将通过目标relay UE和T-gNB进行通信,不支持QoE测量的测量结果的上报。
为了便于理解和描述,方法1300中主要以S-gNB为remote UE下发了QoE测量配置和SRB4配置为例进行说明,不对本申请实施例的方案构成限定。例如,在实际应用中,S-gNB可能没有向remote UE下发QoE测量配置,和/或,S-gNB可能没有向remote UE下发SRB4配置。
下面以在S-gNB为remote UE下发了QoE测量配置和SRB4配置为例对方法1000中的4种方案进行示例性说明。
方案1
T-gNB确定指示remote UE释放QoE测量配置和SRB4。
示例性地,T-gNB可以通过RRC配置信息中的IE measconfigAPPLayerToReaseList指示释放QoE测量配置,通过RRC消息中的IE srb4-ToRelease设置为真(true)来指示释放SRB4。IE measconfigAPPLayerToReaseList位于IE AppLayerMeasConfig中。
可替换地,T-gNB可以通过RRC配置信息携带的全配置指示来释放QoE测量配置和SRB4。T-gNB将该RRC消息通过S-gNB发送至remote UE。Remote UE接收到的该RRC消息即为步骤1370中的RRC重配置信息(RRC reconfiguration message)。
方案2
T-gNB确定指示remote UE释放QoE测量配置,并保留或修改SRB4配置。
示例性地,T-gNB可以通过RRC配置信息中的信元指示该方案。
可替换地,T-gNB可以通过RRC配置信息携带的全配置指示来指示该方案,并在该RRC配置信息中携带SRB4的配置信息。
方案3
T-gNB确定指示remote UE释放SRB4,并保留或修改QoE测量配置。
示例性地,T-gNB可以通过RRC配置信息中的信元指示该方案。
可替换地,T-gNB可以通过RRC配置信息携带的全配置指示来指示该方案,并在该RRC配置信息中携带QoE测量配置。
进一步地,T-gNB可以基于实现确定需要保留的QoE测量配置。在该情况下,T-gNB可以将确定的QoE测量配置指示给管理设备(如图13中的CN、OAM或MCE)。
示例性地,若remote UE的应用层可以提供的QoE测量包括streaming、MTSI以及VR的QoE测量。T-gNB可以基于实现确定保留以上任一项或多项的QoE测量。例如,T-gNB可以基于实现确定保留streaming的QoE测量。再如,T-gNB可以基于实现确定保留基站侧可见测量量的测量配置。
方案4
T-gNB确定指示remote UE保留或修改SRB4配置,并保留或修改QoE测量配置。
示例性地,T-gNB可以通过RRC配置信息中的信元指示该方案。
可替换地,T-gNB可以通过RRC配置信息携带的全配置指示来指示该方案,并在该RRC配置信息中携带QoE测量配置以及SRB4配置。
进一步地,T-gNB可以基于实现确定需要保留的QoE测量配置。具体描述参见方案3,此处不再赘述。
应理解,以上指示信息的形式仅为示例。例如,上述方案的指示信息还可以通过索引值的形式指示,即在RRC消息中携带索引值,以指示remote UE执行该索引值对应的方案。指示的相关内容可以参考方法1000中的对应方案,此处不再赘述。
可选地,方法1300还包括步骤1350a。
1350a,T-gNB可以向CN、OAM或者MCE发送指示信息(第六指示信息的一例)。该指示信息可以指示remote UE不支持上报QoE测量的测量结果。或者,该指示信息可以指示基站侧不再支持提供remote UE的QoE测量的测量结果。或者,该指示信息可以指示remote UE由通过直连链路通信切 换为通过非直连链路通信。
示例性地,T-gNB可以在S-gNB为remote UE下发了QoE测量配置的情况下执行步骤1350a。
1360,T-gNB向S-gNB发送HO ACK。
T-gNB通过HO ACK将步骤1350中确定的RRC配置信息发送至S-gNB。
1370,S-gNB向remote UE发送RRC配置信息,即图13中的RRC重配置信息(RRC reconfiguration message)。
该RRC配置信息可以作为第一指示信息的一例,指示remote UE由直连链路切换至非直连链路。
Remote UE根据该RRC配置信息配置相关内容。
若remote UE接收到到RRC消息中携带全配置的指示,remote UE可以根据该指示删除所有AS的相关配置,并按照该RRC消息中携带的配置信息配置AS的相关配置。
下面针对上述方案1至方案4进行简单的说明。
对于上述方案1,remote UE可以释放QoE测量配置和SRB4。
对于上述方案2,remote UE释放QoE测量配置,保留或修改SRB4。
虽然remote UE中具备SRB4,但由于remote UE释放了QoE测量配置,不会进行QoE测量,没有可上报的测量结果,remote UE不会进行QoE测量的测量结果的上报。
对于上述方案3,remote UE保留或修改QoE测量配置,释放SRB4。
Remote UE可以将应用层的相关配置发送至应用层,指示应用层进行相应的QoE测量。
由于当前remote UE中未建立SRB4,无法进行QoE测量的测量结果的上报。在该情况下,remote UE在收到RRC配置信息后,RRC层可以向应用层发送一个指示信息,该指示信息用于指示应用层在测量之后,不将测量结果向AS递交。
可选地,应用层可以保存该测量结果。进一步地,应用层可以持续进行测量,对保存的测量结果进行更新。
进一步地,remote UE可以为应用层中保存的测量结果设备定时时长。
应理解,该定时时长也可以由其他方式获取,例如,由T-gNB指示。本申请实施例对此不做限定。
若在定时时长的范围内,应用层未将保存的测量结果递交至AS,则应用层将对应的测量结果丢弃。这样可以释放UE的缓存。例如,若在定时时长的范围内,应用层未收到向AS递交的指示,则应用层可以将对应的测量结果丢弃。再如,若定时时长的范围内,remote UE未收到切换为直连链路的指示,则RRC层可以向应用层发送一个指示信息,指示应用层丢弃对应的测量结果。
对于上述方案4,remote UE保留或修改QoE测量配置,保留或修改SRB4。
T-gNB虽然为remote UE下发了SRB4配置,但无法为remote UE下发SRB4相关的SRAP层的映射关系的配置。
在该情况下,remote UE可以将应用层的相关配置发送至应用层,指示应用层进行相应的QoE测量,并将测量结果递交至AS。RRC层收到测量结果后,基于SRB4的配置情况不上报测量结果。
可选地,RRC层可以保存该测量结果。进一步地,AS可以根据应用层递交的测量结果对RRC层保存的测量结果进行更新。
进一步地,remote UE可以为RRC层中保存的测量结果设备定时时长。
应理解,该定时时长也可以由其他方式获取,例如,由T-gNB指示。本申请实施例对此不做限定。
若在定时时长的范围内,remote UE没有上报测量结果,则RRC层将对应的测量结果丢弃。这样可以释放UE的缓存。例如,若定时时长的范围内,remote UE未收到切换为直连链路的指示,则RRC层可以丢弃对应的测量结果。
应理解,以上仅以根据T-gNB的RRC配置信息执行相关方案为例进行说明,不对本申请实施例的方案构成限定。例如,在实际场景中,T-gNB的RRC配置信息也可以不携带上述方案的指示信息,而由协议规定相关方案。Remote UE在接收到直连链路切换至非直连链路的指令时,即Remote UE接收到由T-gNB通过S-gNB发送的RRC配置信息后,即可根据协议规定执行对应的方案。
1380,T-gNB向目标relay UE发送RRC reconfiguration message。
T-gNB生成给目标relay UE中继remote UE所需要的配置信息,即图13中的RRC reconfiguration message,并发送给目标relay UE。
1390,remote UE发送RRC配置完成信息。
remote UE通过目标relay UE接入T-gNB,并通过目标relay UE发送RRC配置完成信息,即图13中的RRC重配置完成信息(RRC reconfiguration complete message)。
根据本申请实施例的方案,在直连链路到非直连链路的切换过程中,通过配置QoE测量配置和/或SRB以及定义终端侧的行为等方式,避免出现QoE测量的测量结果需要通过SRB4传输与终端无法支持SRB4数据传输之间的矛盾,从而提高系统的效率。
在由非直连链路切换至直连链路的场景(如图11的(b))下,终端设备#3可以为remote UE,终端设备#4为relay UE,网络设备3#为目标gNB(例如,图14中的T-gNB),网络设备4#为源gNB(例如,图14中的S-gNB)。其中涉及到的步骤以及术语具体可以可参考上文描述。
图14是本申请一实施例提供的一种通信的方法1400的示意图。该方法1400可以适用于上述方法1200。方法1400可以包括如下步骤。
1401,remote UE执行测量上报(measurement reporting)。
remote UE在切换之前,与S-gNB之间通过relay UE进行上行数据和下行数据的传输。
具体地,remote UE可以上报周边候选小区的信息,例如,小区的ID以及小区的信号质量等。
1402,S-gNB根据该测量上报确定执行切换。
S-gNB根据该测量上报确定将remote UE切换至T-gNB下的目标小区。
可选地,方法1400还包括步骤1402a。
1402a,S-gNB可以向CN、OAM或者MCE发送指示(indication)信息(第八指示信息的一例)。该指示信息可以指示remote UE支持上报QoE测量的测量结果。或者,该指示信息可以指示基站侧可支持提供remote UE的QoE测量的测量结果。或者,该指示信息可以指示remote UE由通过非直连链路通信切换为通过直连链路通信。
1403,S-gNB向T-gNB发送切换请求。
该切换请求可以为方法1200中的第七指示信息的示例。
1404,T-gNB确定QoE和/或SRB4的配置。
T-gNB可以生成remote UE在T-gNB下的目标小区下的RRC配置信息,该RRC配置信息中可以携带QoE和/或SRB4的配置相关的指示(第四指示信息的一例)
T-gNB根据该切换请求可以知道T-gNB可以根据需要配置QoE测量配置和SRB4。
为了便于理解和描述,方法1400中主要针对方法1300中的几种方案进行说明,不对本申请实施例的方案构成限定。
若切换之前,remote UE中不具备QoE测量配置和SRB4,例如,方法1300中的方案1,T-gNB根据该切换请求可以确认上述内容,并根据需要确定指示配置QoE测量配置和SRB4。
若切换之前,remote UE中不具备SRB4,具备QoE测量配置,例如,方法1300中的方案3,T-gNB可以确定指示remote UE添加SRB4。
若切换之前,remote UE中具备SRB4,具备QoE测量配置,例如,方法1300中的方案4,T-gNB可以确定指示remote UE保留或修改SRB4。
可选地,方法1400还包括步骤1404a。
1404a,T-gNB可以向CN、OAM或者MCE发送指示信息(第八指示信息的一例)。该指示信息可以指示remote UE支持上报QoE测量的测量结果。或者,该指示信息可以指示基站侧支持提供remote UE的QoE测量的测量结果。或者,该指示信息可以指示remote UE由通过非直连链路通信切换为通过直连链路通信。
1405,T-gNB向S-gNB发送HO ACK。
T-gNB通过HO ACK将步骤1404中确定的RRC配置信息发送至S-gNB。
1406,S-gNB通过relay UE向remote UE发送RRC配置信息,即图14中的RRC reconfiguration message。
该RRC配置信息可以作为第三指示信息的一例,指示remote UE由非直连链路切换至直连链路。
Remote UE根据该RRC配置信息配置相关内容。
若切换之前,remote UE具备QoE测量配置,且QoE测量的测量结果保存在应用层中,在remote  UE接收到RRC配置信息后,可以指示应用层将保存的测量结果递交至AS,触发一次QoE测量上报,将应用层缓存的测量结果上报。
若切换之前,remote UE具备QoE测量配置,且QoE测量的测量结果保存在AS中,在remote UE接收到RRC配置信息后,AS可以触发一次QoE测量上报,将AS缓存的测量结果上报。
1407,remote UE接入T-gNB下的目标小区。
remote UE根据RRC配置信息执行随机接入(random access,RA),以接入T-gNB下的目标小区。
1408,remote UE向T-gNB发送RRC配置完成信息,即图14中的RRC重配置完成信息。
1409,S-gNB向relay UE发送RRC配置信息(如图14中的RRC重配置信息),释放relay UE侧的中继所需配置。
1410,remote UE或者relay UE释放两者之间的sidelink连接。
根据本申请实施例的方案,在非直连链路到直连链路的切换过程中,若remote UE在非直连链路的场景下存储了QoE测量的测量结果,在切换为直连链路的场景时,可以将不能上报期间缓存的QoE测量的测量结果上报。
可以理解,本申请实施例中的图13和图14中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图13和图14的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,本申请实施例中以网络设备与remoteUE通过一个relay UE传输数据为例进行示例说明,可以理解,本申请实施例的方案也可以用于多跳中继的场景。比如,网络设备与remoteUE通过多个relay UE传输数据。
还可以理解,在上述一些实施例中,涉及到的消息名称,仅是一种示例,不对本申请实施例的保护范围造成限定。
还可以理解,在本申请各个实施例中涉及到的公式仅是示例性说明,其不对本申请实施例的保护范围造成限定。在计算上述各个涉及的参数的过程中,也可以根据上述公式进行计算,或者基于上述公式的变形进行计算,也可以根据其它方式进行计算以满足公式计算的结果。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各实施例中的各种数字序号的大小并不意味着执行顺序的先后,仅为描述方便进行的区分,不应对本申请实施例的实施过程构成任何限定。
还可以理解,上述各个方法实施例中,由设备实现的方法和操作,也可以由可由设备的组成部件(例如芯片或者电路)来实现。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
图15是本申请实施例提供的一种通信的装置1600的示意图。该装置1600包括收发单元1610和处理单元1620。收发单元1610可以用于实现相应的通信功能。收发单元1610还可以称为通信接口或通信单元。处理单元1620可以用于实现相应的处理功能,如配置资源。
可选地,该装置1600还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1620可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中设备或网元的动作。
在第一种设计中,该装置1600可以是前述实施例中的第一终端设备,也可以是第一终端设备的组成部件(如芯片)。该装置1600可实现对应于上文方法实施例中的第一终端设备执行的步骤或者流程,其中,收发单元1610可用于执行上文方法实施例中第一终端设备的收发相关的操作,处理单元1620可用于执行上文方法实施例中第一终端设备的处理相关的操作。
一种可能的实现方式,收发单元1610,用于接收第一指示信息,第一指示信息用于指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息。收发单元1610还用于接收第 二指示信息,第二指示信息用于指示第一终端配置第一配置和/或第一信令无线承载。处理单元1620,用于配置第一配置和/或第一信令无线承载。
可选地,第一指示信息用于指示第一终端设备通过直连链路通信切换为通过非直连链路通信,第一配置为体验质量QoE测量配置,第一信令无线承载为信令无线承载SRB4。
可选地,处理单元1620具体用于根据第二指示信息添加第一配置,根据第二指示信息修改第一配置,根据第二指示信息保留第一配置,或者,根据第二指示信息释放第一配置。
可选地,处理单元1620具体用于根据第二指示信息添加第一信令无线承载,根据第二指示信息修改第一信令无线承载,根据第二指示信息保留第一信令无线承载,或者根据第二指示信息释放第一信令无线承载。
可选地,在第一终端设备配置第一配置和/或第一信令无线承载之后,处理单元1620还用于根据第一配置生成第一数据,存储第一数据,第一消息包括第一数据。
可选地,第一数据是由第一终端设备的第一协议层根据第一配置生成,第一配置是由第一终端设备的第二协议层递交至第一协议层,第一数据存储于第一协议层。
可选地,第一数据是由第一终端设备的第一协议层根据第一配置生成,第一配置是由第一终端设备的第二协议层递交至第一协议层,第一数据存储于第一终端设备的第二协议层中,第一数据是由第一协议层递交至第二协议层。
可选地,第一协议层包括应用层,或者,第二协议层包括接入层或无线资源控制层。
可选地,处理单元1620还用于在第一数据的存储时长超过定时时长的情况下,丢弃第一数据。
可选地,收发单元1610还用于接收第三指示信息,第三指示信息用于指示第一终端设备可支持通过第一信令无线承载传输第一消息;收发单元1610还用于接收第四指示信息,第四指示信息用于指示第一终端设备添加第一信令无线承载、修改第一信令无线承载或保留第一信令无线承载;收发单元1610还用于通过第一信令无线承载传输第一消息。
可选地,第三指示信息用于指示第一终端设备由通过非直连链路通信切换为通过直连链路通信。
可选地,第一消息是由第二协议层生成的,第一消息中包括第一数据,第一数据是由存储第一数据的第一协议层递交至第二协议层。
可选地,第一消息是由第二协议层生成的,第一消息中包括第一数据,第一数据存储于第二协议层。
在第二种设计中,该装置1600可以是前述实施例中的第一网络设备,也可以是第一网络设备的组成部件(如芯片)。该装置1600可实现对应于上文方法实施例中的第一网络设备执行的步骤或者流程,其中,收发单元1610可用于执行上文方法实施例中第一网络设备的收发相关的操作,处理单元1620可用于执行上文方法实施例中第一网络设备的处理相关的操作。
一种可能的实现方式,收发单元1610,用于接收第五指示信息,第五指示信息指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息;收发单元1610,还用于发送第二指示信息,第二指示信息用于指示第一终端设备配置第一配置和/或第一信令无线承载。
可选地,第五指示信息用于指示第一终端设备通过直连链路通信切换为通过非直连链路通信,第一配置为体验质量QoE测量配置,第一信令无线承载为信令无线承载SRB4,在切换完成后,第一网络设备与第一终端设备之间的链路为非直连链路。
可选地,第二指示信息用于指示:第一终端设备添加第一配置,第一终端设备修改第一配置,第一终端设备保留第一配置,或者,第一终端设备释放第一配置。
可选地,第二指示信息用于指示:第一终端设备添加第一信令无线承载,第一终端设备修改第一信令无线承载,第一终端设备保留第一信令无线承载,或者第一终端设备释放第一信令无线承载。
可选地,收发单元1060还用于向管理设备发送第六指示信息,第六指示信息用于指示停止第一消息的上报。
在第三种设计中,该装置1600可以是前述实施例中的第二网络设备,也可以是第二网络设备的组成部件(如芯片)。该装置1600可实现对应于上文方法实施例中的第二网络设备执行的步骤或者流程,其中,收发单元1610可用于执行上文方法实施例中第二网络设备的收发相关的操作,处理单元1620可用于执行上文方法实施例中第二网络设备的处理相关的操作。
一种可能的实现方式,收发单元1610,用于接收第七指示信息,第七指示信息用于指示第一终端设备可支持通过第一信令无线承载传输根据第一配置生成的第一消息;收发单元1610,还用于发送第四指示信息,第四指示信息用于指示第一终端设备添加第一信令无线承载、修改第一信令无线承载或保留第一信令无线承载;收发单元1610,还用于接收由第一终端设备通过第一信令无线承载传输的第一消息,第一消息包括第一数据,第一数据是第一终端设备在接收到第四指示信息之前根据第一配置生成的。
可选地,第七指示信息用于指示第一终端设备由通过非直连链路通信切换为通过直连链路通信,在切换完成后,第二网络设备与第一终端设备之间的链路为直连链路.
可选地,收发单元1610还用于向管理设备发送第八指示信息,第八指示信息用于指示恢复第一消息的上报。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置1600以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1600可以具体为上述实施例中的第一终端设备,可以用于执行上述各方法实施例中与第一终端设备对应的各个流程和/或步骤;或者,装置1600可以具体为上述实施例中的第一网络设备,可以用于执行上述各方法实施例中与第一网络设备对应的各个流程和/或步骤;或者,装置1600可以具体为上述实施例中的第二网络设备,可以用于执行上述各方法实施例中与第二网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1600具有实现上述方法中设备(如第一终端设备,又如第一网络设备,又如第二网络设备)所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元1610还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图15中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图16是本申请实施例提供另一种通信装置1700的示意图。该装置1700包括处理器1710,处理器1710用于执行存储器1720存储的计算机程序或指令,或读取存储器1720存储的数据/信令,以执行上文各方法实施例中的方法。可选地,处理器1710为一个或多个。
可选地,如图16所示,该装置1700还包括存储器1720,存储器1720用于存储计算机程序或指令和/或数据。该存储器1720可以与处理器1710集成在一起,或者也可以分离设置。可选地,存储器1720为一个或多个。
可选地,如图16所示,该装置1700还包括收发器1730,收发器1730用于信号的接收和/或发送。例如,处理器1710用于控制收发器1730进行信号的接收和/或发送。
作为一种方案,该装置1700用于实现上文各个方法实施例中由第一终端设备执行的操作。
例如,处理器1710用于执行存储器1720存储的计算机程序或指令,以实现上文各个方法实施例中第一终端设备的相关操作。
作为另一种方案,该装置1700用于实现上文各个方法实施例中由第一网络设备执行的操作。
例如,处理器1710用于执行存储器1720存储的计算机程序或指令,以实现上文各个方法实施例中第一网络设备的相关操作。
作为另一种方案,该装置1700用于实现上文各个方法实施例中由第二网络设备执行的操作。
例如,处理器1710用于执行存储器1720存储的计算机程序或指令,以实现上文各个方法实施例 中第二网络设备的相关操作。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第一终端设备执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第一网络设备执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第二网络设备执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由设备(如第一终端设备,又如第一网络设备,又如第二网络设备)执行的方法。
本申请实施例还提供一种通信的系统,包括前述的第一终端设备和第一网络设备。可选地,该系统中还包括与上述第一终端设备和/或第一网络设备通信的设备。
本申请实施例还提供一种通信的系统,包括前述的第一终端设备和第二网络设备。可选地,该系统中还包括与上述第一终端设备和/或第二网络设备通信的设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL)) 或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信的方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息;
    接收第二指示信息,所述第二指示信息用于指示所述第一终端设备配置所述第一配置和/或所述第一信令无线承载;
    根据所述第二指示信息配置所述第一配置和/或所述第一信令无线承载。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示所述第一终端设备通过直连链路通信切换为通过非直连链路通信,所述第一配置为体验质量QoE测量配置,所述第一信令无线承载为信令无线承载SRB4。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第二指示信息配置所述第一配置和/或所述第一信令无线承载,包括:
    根据所述第二指示信息添加所述第一配置,
    根据所述第二指示信息修改所述第一配置,
    根据所述第二指示信息保留所述第一配置,或者,
    根据所述第二指示信息释放所述第一配置。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述第二指示信息配置所述第一配置和/或所述第一信令无线承载,包括:
    根据所述第二指示信息添加所述第一信令无线承载,
    根据所述第二指示信息修改所述第一信令无线承载,
    根据所述第二指示信息保留所述第一信令无线承载,或者
    根据所述第二指示信息释放所述第一信令无线承载。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述根据所述第二指示信息配置所述第一配置和/或所述第一信令无线承载之后,所述方法还包括:
    根据所述第一配置生成第一数据,存储所述第一数据,所述第一消息包括所述第一数据。
  6. 根据权利要求5所述的方法,其特征在于,所述第一数据是由第一协议层根据所述第一配置生成,所述第一配置是由第二协议层递交至所述第一协议层,所述第一数据存储于所述第一协议层。
  7. 根据权利要求5所述的方法,其特征在于,所述第一数据是由第一协议层根据所述第一配置生成,所述第一配置是由第二协议层递交至所述第一协议层,所述第一数据存储于所述第二协议层中,所述第一数据是由所述第一协议层递交至所述第二协议层。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一协议层包括应用层,或者,所述第二协议层包括接入层或无线资源控制层。
  9. 根据权利要求5至8中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一数据的存储时长超过定时时长的情况下,丢弃所述第一数据。
  10. 根据权利要求5至9中任一项所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于指示所述第一终端设备可支持通过所述第一信令无线承载传输所述第一消息;
    接收第四指示信息,所述第四指示信息用于指示所述第一终端设备添加所述第一信令无线承载、修改所述第一信令无线承载或保留所述第一信令无线承载;
    通过所述第一信令无线承载传输所述第一消息。
  11. 根据权利要求10所述的方法,其特征在于,所述第三指示信息用于指示所述第一终端设备由通过非直连链路通信切换为通过直连链路通信。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一消息是由所述第二协议层生成的,所述第一消息中包括所述第一数据,所述第一数据是由存储所述第一数据的第一协议层递交至所述第二协议层。
  13. 根据权利要求10或11所述的方法,其特征在于,所述第一消息是由所述第二协议层生成的,所述第一消息中包括所述第一数据,所述第一数据存储于所述第二协议层。
  14. 一种通信的方法,其特征在于,包括:
    接收第五指示信息,所述第五指示信息指示第一终端设备不再支持通过第一信令无线承载传输根据第一配置生成的第一消息;
    发送第二指示信息,所述第二指示信息用于指示所述第一终端设备配置所述第一配置和/或所述第一信令无线承载。
  15. 根据权利要求14所述的方法,其特征在于,所述第五指示信息用于指示所述第一终端设备通过直连链路通信切换为通过非直连链路通信,所述第一配置为体验质量QoE测量配置,所述第一信令无线承载为信令无线承载SRB4,在所述切换完成后,第一网络设备与所述第一终端设备之间的链路为所述非直连链路。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二指示信息用于指示:
    所述第一终端设备添加所述第一配置,
    所述第一终端设备修改所述第一配置,
    所述第一终端设备保留所述第一配置,或者,
    所述第一终端设备释放所述第一配置。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述第二指示信息用于指示:
    所述第一终端设备添加所述第一信令无线承载,
    所述第一终端设备修改所述第一信令无线承载,
    所述第一终端设备保留所述第一信令无线承载,或者
    所述第一终端设备释放所述第一信令无线承载。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述方法还包括:
    向管理设备发送第六指示信息,所述第六指示信息用于指示停止所述第一消息的上报。
  19. 一种通信的方法,其特征在于,包括:
    接收第七指示信息,所述第七指示信息用于指示第一终端设备可支持通过第一信令无线承载传输根据第一配置生成的第一消息;
    发送第四指示信息,所述第四指示信息用于指示所述第一终端设备添加所述第一信令无线承载、修改所述第一信令无线承载或保留所述第一信令无线承载;
    接收由所述第一终端设备通过所述第一信令无线承载传输的所述第一消息,所述第一消息包括第一数据,所述第一数据是所述第一终端设备在接收到所述第四指示信息之前根据所述第一配置生成的。
  20. 根据权利要求19所述的方法,其特征在于,第七指示信息用于指示所述第一终端设备由通过非直连链路通信切换为通过直连链路通信,在所述切换完成后,第二网络设备与所述第一终端设备之间的链路为所述直连链路。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    向管理设备发送第八指示信息,所述第八指示信息用于指示恢复所述第一消息的上报。
  22. 一种通信装置,其特征在于,包括:
    用于执行如权利要求1至21中任一项所示的方法的单元或模块。
  23. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至13中任一项所述的方法,以使得所述装置执行如权利要求14至18中任一项所述的方法,或者以使得所述装置执行如权利要求19至21中任一项所述的方法。
  24. 根据权利要求23所述的装置,其特征在于,所述装置还包括所述存储器。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至13中任意一项所述的方法,使得所述计算机执行如权利要求14至18中任意一项所述的方法,或者以使得所述计算机执行如权利要求19至21中任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至13中 任一项所述的方法的指令,所述计算机程序产品包括用于执行如权利要求14至18中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求19至21中任一项所述的方法的指令。
  27. 一种通信系统,其特征在于,包括第一终端设备和第一网络设备,
    其中,所述第一终端设备用于执行如权利要求1至13中任一项所述的方法,所述第一网络设备用于执行如权利要求14至18中任一项所述的方法。
  28. 一种通信系统,其特征在于,包括第一终端设备和第二网络设备,
    其中,所述第一终端设备用于执行如权利要求1至13中任一项所述的方法,所述第二网络设备用于执行如权利要求19至21中任一项所述的方法。
  29. 一种芯片,其特征在于,包括处理器,所述处理器用于运行程序或指令,使得如权利要求1至13中任一项所述的方法被实现,使得如权利要求14至18中任一项所述的方法被实现,或者使得如权利要求19至21中任一项所述的方法被实现。
PCT/CN2023/110896 2022-08-08 2023-08-03 通信的方法、装置和系统 WO2024032451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210945305.4A CN117596690A (zh) 2022-08-08 2022-08-08 通信的方法、装置和系统
CN202210945305.4 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024032451A1 true WO2024032451A1 (zh) 2024-02-15

Family

ID=89850870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110896 WO2024032451A1 (zh) 2022-08-08 2023-08-03 通信的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN117596690A (zh)
WO (1) WO2024032451A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453247A (zh) * 2020-03-27 2021-09-28 中国电信股份有限公司 用于上报业务体验指标的方法和系统
WO2022083558A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 通信方法,装置,可读存储介质和系统
CN114731721A (zh) * 2019-10-02 2022-07-08 谷歌有限责任公司 用于在通信网络中管理无线电承载兼容性的系统和方法
CN114828071A (zh) * 2022-05-20 2022-07-29 中国联合网络通信集团有限公司 一种QoE测量方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731721A (zh) * 2019-10-02 2022-07-08 谷歌有限责任公司 用于在通信网络中管理无线电承载兼容性的系统和方法
CN113453247A (zh) * 2020-03-27 2021-09-28 中国电信股份有限公司 用于上报业务体验指标的方法和系统
WO2022083558A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 通信方法,装置,可读存储介质和系统
CN114828071A (zh) * 2022-05-20 2022-07-29 中国联合网络通信集团有限公司 一种QoE测量方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on service continuity for L2 UE to NW Relay", 3GPP DRAFT; R2-2110488, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066935 *

Also Published As

Publication number Publication date
CN117596690A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
US11546811B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
US11109263B2 (en) Data transmission method and data transmission apparatus
JP7043506B2 (ja) ロングタームエボリューション通信システムのためのマルチテクノロジアグリゲーションアーキテクチャ
JP6017733B2 (ja) 複数のキャリアを支援する移動通信システムで信号送受信方法及び装置
US11064557B2 (en) Method and device for establishing radio resource control connection
US11343874B2 (en) Relay transmission method and device
WO2021018283A1 (zh) 通信方法和通信装置
US20230164640A1 (en) Communication method and communication apparatus
WO2022151306A1 (zh) 数据传输的方法和装置
EP4354770A1 (en) Method and apparatus for transmitting data
JP2023546462A (ja) 通信方法および装置、可読記憶媒体、ならびにシステム
US20240056889A1 (en) Communication processing method for data transmission and related device
WO2017215469A1 (en) System and method for paging in a communications system
US20230254729A1 (en) Migration method and apparatus for iab-node
CN110876171B (zh) 一种多跳数据传输方法及装置
WO2024032451A1 (zh) 通信的方法、装置和系统
WO2022082690A1 (zh) 群组切换的方法、装置和系统
WO2021027900A1 (zh) 一种通信方法、终端及网络设备
WO2021163832A1 (zh) 数据传输的方法和装置
WO2021189269A1 (zh) 一种实现业务连续性的方法及装置
WO2021142767A1 (zh) 通信方法和通信装置
WO2023231965A1 (zh) 数据传输的方法、装置和系统
WO2022206850A1 (zh) 信息传递方法及装置
WO2023131280A1 (zh) 信息记录方法、通信装置、以及计算机存储介质
WO2022056863A1 (zh) 一种切换方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851672

Country of ref document: EP

Kind code of ref document: A1