WO2024032227A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024032227A1
WO2024032227A1 PCT/CN2023/104189 CN2023104189W WO2024032227A1 WO 2024032227 A1 WO2024032227 A1 WO 2024032227A1 CN 2023104189 W CN2023104189 W CN 2023104189W WO 2024032227 A1 WO2024032227 A1 WO 2024032227A1
Authority
WO
WIPO (PCT)
Prior art keywords
wake
signal
period
state
information
Prior art date
Application number
PCT/CN2023/104189
Other languages
English (en)
French (fr)
Inventor
孙欢
侯海龙
罗之虎
曲韦霖
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032227A1 publication Critical patent/WO2024032227A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication, and in particular, to a communication method and device.
  • PDCCH physical downlink control channel
  • the new radio interface introduces discontinuous reception (DRX), wake-up signal (WUS), and paging early identification (paging early identification). ) and other mechanisms are used to reduce the power consumption of terminal equipment.
  • DRX discontinuous reception
  • WUS wake-up signal
  • paging early identification paging early identification
  • WUR wake-up receiver
  • This application provides a communication method and device that can reduce the power consumption of terminal equipment for monitoring the wake-up signal WUS.
  • a communication method is provided.
  • the method can be executed by a first terminal device, or by a component of the first terminal device, such as a processor, a chip, or a chip system of the first terminal device. It can also be executed by a first terminal device. It is implemented by a logic module or software that can realize all or part of the functions of the first terminal device.
  • the method includes: determining a first resource, and monitoring a wake-up signal on part or all of the first resource through a wake-up receiver of the first terminal device, where the wake-up signal is used to wake up the main receiver of the first terminal device.
  • the first resource includes X wake-up signal WUS beams, X is a positive integer less than N, and N is the number of synchronization signal block SSB beams.
  • the number of WUS beams is smaller than the number of SSB beams.
  • the direction of the WUS beam is smaller than the direction of the SSB beam.
  • the X WUS beams include a first WUS beam, and the direction of the first WUS beam corresponds to the direction of at least one SSB beam among the N SSB beams.
  • the terminal device can determine the direction of the WUS beam based on the direction of the SSB beam it detects. Subsequently, WUS can be monitored in the direction of the WUS beam determined by it, without the need to monitor WUS in the directions of all SSB beams, thus reducing the power consumption of the terminal device.
  • the method further includes: receiving first information from the network device, the first information indicating a correspondence between the direction of the first WUS beam and the direction of the at least one SSB beam.
  • the directions of the X WUS beams correspond to the directions of the first X SSB beams with the strongest signal strength among the N SSB beams.
  • the terminal device can determine based on the directions of the first X SSB beams with the strongest channel strength The direction of the WUS beam. Subsequently, WUS can be monitored in the direction of the WUS beam determined by it, without the need to monitor WUS in the directions of all SSB beams, thus reducing the power consumption of the terminal device.
  • the directions of the X WUS beams may be the same as the directions of the first X SSB beams with the strongest signal strength.
  • the method further includes: determining the signal strength of each of the N SSB beams; and sending second information to the network device.
  • the second information indicates the signal strength of each of the N SSB beams, or the second information indicates the index of the X SSB beams.
  • the network device can learn the direction of the WUS beam corresponding to the first terminal device, so that when WUS needs to be sent, WUS can be sent to the first terminal device in the beam direction.
  • determining the first resource includes: measuring a reference signal of the serving cell within a first time period to obtain the signal quality of the reference signal. If the signal quality of the reference signal is greater than the first threshold, the first resource is determined.
  • the direction of the SSB beam or WUS beam directed at the terminal equipment only changes slightly or does not change.
  • the direction of the WUS beam can be more accurately determined based on the direction of the SSB beam, or the direction of the SSB beam can be determined based on the direction of the WUS beam, thereby improving reception efficiency.
  • the working frequency band of the first terminal device belongs to frequency range 2.
  • a communication method is provided.
  • the method can be executed by the first terminal device, or can be executed by components of the first terminal device, such as the processor, chip, or chip system of the first terminal device. It can also be It is implemented by a logic module or software that can realize all or part of the functions of the first terminal device.
  • the method includes: determining a second resource, and monitoring a wake-up signal on the second resource through a wake-up receiver of the first terminal device, where the wake-up signal is used to wake up the main receiver of the first terminal device.
  • the second resource includes a time domain periodic resource, and the time domain periodic resource is located in the first period within the first period.
  • the first period also includes a second period. The first period is used to wake up the receiver to monitor the wake-up signal, and the second period is used to wake up the receiver to monitor the wake-up signal. Send and receive signals to the main receiver.
  • the first period within the first cycle is used to wake up the receiver to monitor the wake-up signal
  • the second period is used for the main receiver to send and receive signals or for traditional terminals, so that the network equipment can allocate time domain resources.
  • the wake-up receiver monitors the wake-up signal during part of the first cycle. Compared with the solution where the wake-up receiver is always turned on to monitor the wake-up signal, the wake-up signal monitoring time can be reduced and the power consumption of the terminal device can be saved.
  • the time domain periodic resources in the first period are used to wake up the receiver to monitor the wake-up signal, that is, the terminal device can periodically monitor the wake-up signal in the first period through the wake-up receiver. At other times, the wake-up receiver can sleep, further saving power consumption of the terminal device.
  • the period of the time domain periodic resource when the power consumption type of the first terminal device is low power, the period of the time domain periodic resource is the first value.
  • the period of the time domain periodic resource is a second value, and the second value is greater than the first value.
  • a larger WUS listening period can be configured for an extremely low-power terminal device to reduce the WUS listening time, thereby further reducing the power consumption of the terminal device.
  • the method further includes: sending third information to the network device, where the third information indicates the power consumption type of the first terminal device, and the power consumption type includes low power consumption or extremely low power consumption.
  • the method further includes: receiving indication information from the network device, the indication information indicating at least one of the following: a first period, a length of the first period, a length of the second period, or a time domain period resource. cycle.
  • the method further includes: receiving indication information, which may indicate that the wake-up signal carries no information, or that the wake-up signal carries at least one of the following: The identification of the terminal device, system information change instruction, system information scheduling information, (changed) system information, or offset information.
  • the offset information indicates the time offset between the wake-up signal and the paging opportunity.
  • the wake-up signal includes a first field.
  • the wake-up signal does not include fields other than the first field, or the wake-up signal also includes offset information, and the offset information indicates the time offset between the wake-up signal and the paging opportunity.
  • the wake-up signal also includes the identification of the terminal device
  • the wake-up signal also includes a system information change indication or system information scheduling information
  • the wake-up signal also includes system information.
  • the method further includes: when the state of the first field is the first state, waking up the main receiver according to the offset information.
  • one PO can correspond to multiple terminal devices.
  • the network device can send paging information of multiple terminal devices on the PO, thereby increasing system capacity.
  • the method further includes: when the state of the first field is the second state, and when the wake-up signal includes the identity of the first terminal device, wake up the main receiver machine.
  • the terminal device does not need to wake up the main receiver frequently. It only wakes up the main receiver for random access when it is confirmed that the network device has initiated paging for itself, which can save the power consumption of the main receiver.
  • the method further includes: when the state of the first field is the third state, after obtaining the system information change indication or the system information scheduling information, waking up the main receiver.
  • the terminal device can learn that the system information has changed without monitoring in the PO. This means that the terminal device can be informed of the change in system information in advance, and after waking up the main receiver You can directly receive SIB1 to receive the changed system information, reducing the reception delay of system information. In addition, the terminal equipment does not need to be connected to the PO via the main receiver. Monitoring can also save the power consumption of the main receiver.
  • the terminal device does not need to monitor in the PO and can learn the system information scheduling information without receiving SIB1. After waking up the main receiver, it can receive the changed system information based on the system information scheduling information. Reduce the delay in receiving system information. In addition, the terminal device does not need to monitor in the PO through the main receiver, nor does it need to obtain system information scheduling information through AIB1, which can save the power consumption of the main receiver.
  • the method further includes: obtaining system information when the state of the first field is the fourth state.
  • the reception delay of system information can be greatly reduced.
  • it can also reduce the number and time of waking up the main receiver and save the power consumption of the terminal equipment.
  • the method further includes: when the state of the first field is the fourth state, determining not to wake up the main receiver.
  • a communication method is provided.
  • the method can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device. It can also be executed by a device that can implement all or part of the communication method.
  • Logic module or software implementation of network device functions.
  • the method includes: determining the corresponding relationship between the directions of X wake-up signal WUS beams and the directions of N synchronization signal block SSB beams, where Correspondence between the direction of the WUS beam and the directions of N SSB beams.
  • the number of WUS beams is smaller than the number of SSB beams, which can reduce the search space of WUS beams, thereby reducing the power consumption of terminal equipment for monitoring WUS.
  • the network device can send signals to other terminal devices in the directions of other SSB beams, thereby improving system capacity.
  • the number of WUS beams is small, which is equivalent to a small number of repeated WUS transmissions. Compared with sending WUS N times through N WUS beams, the resources occupied are reduced, so the solution of this application is also The data transfer rate of WUS can be increased.
  • the X WUS beams include a first WUS beam, and the direction of the first WUS beam corresponds to the direction of at least one SSB beam among the N SSB beams.
  • the indication information includes a correspondence between the direction of the first WUS beam and the direction of at least one SSB beam among the N SSB beams.
  • the directions of the X WUS beams correspond to the directions of the first X SSB beams with the strongest signal strength among the N SSB beams.
  • the indication information includes the number X of WUS beams.
  • the method further includes: receiving second information from the first terminal device, and determining directions of X WUS beams based on the second information.
  • the second information indicates the signal strength of each of the N SSB beams, or the second information indicates the top X SSB beams with the strongest signal strength among the N SSB beams.
  • the method further includes: configuring a reporting type to the first terminal device, where the reporting type includes signal strength or an index of an SSB beam.
  • a communication method is provided.
  • the method can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device. It can also be executed by a device that can implement all or part of the communication method.
  • Logic module or software implementation of network device functions.
  • the method includes: determining the second resource, and sending indication information to the first terminal device, where the indication information indicates the second resource.
  • the second resource includes a time domain periodic resource, and the time domain periodic resource is located in the first period within the first period.
  • the first period also includes a second period.
  • the first period is used to wake up the receiver to monitor the wake-up signal
  • the wake-up signal is used to Wake up the main receiver
  • the second period is used for the main receiver to send and receive signals.
  • the period of the time domain periodic resource when the power consumption type of the first terminal device is low power, the period of the time domain periodic resource is the first value.
  • the period of the time domain periodic resource is a second value, and the second value is greater than the first value.
  • the method further includes: receiving third information from the first terminal device, and determining the period of the time domain periodic resource based on the third information.
  • the third information indicates the power consumption type of the first terminal device, and the power consumption type includes low power consumption or extremely low power consumption.
  • the indication information includes at least one of the following: a first period, a duration of the first period, a duration of the second period, or a period of a time domain periodic resource.
  • the wake-up signal includes the first field; when the state of the first field is the first state, the wake-up signal does not include fields other than the first field, or the wake-up signal also includes offset information. Shift information indicates the time offset for waking up the main receiver;
  • the wake-up signal also includes the identification of the terminal device
  • the wake-up signal also includes a system information change indication or system information scheduling information
  • the wake-up signal also includes system information.
  • a communication device for implementing various methods.
  • the communication device may be the first terminal device in the first aspect or the second aspect, or a device included in the first terminal device, such as a chip or a chip system; or the communication device may be the first terminal device in the third or fourth aspect.
  • the communication device includes modules, units, or means (means) corresponding to the implementation method.
  • the modules, units, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to functions.
  • the communication device may include a processing module and a transceiver module.
  • This processing module can be used to implement the processing functions in any of the above aspects and any possible implementation manner thereof.
  • the transceiver module may include a receiving module and a sending module, respectively used to implement the receiving function and the sending function in any of the above aspects and any possible implementation manner thereof.
  • the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device performs the method described in any aspect.
  • the communication device may be the first terminal device in the first aspect or the second aspect, or a device included in the first terminal device, such as a chip or a chip system; or the communication device may be the first terminal device in the third or fourth aspect.
  • a seventh aspect provides a communication device, including: a processor and a communication interface; the communication interface is used to communicate with modules outside the communication device; the processor is used to execute computer programs or instructions to enable the communication device Perform the methods described in either aspect.
  • the communication device may be the first terminal device in the first aspect or the second aspect, or a device included in the first terminal device, such as a chip or a chip system; or the communication device may be the first terminal device in the third or fourth aspect.
  • a communication device including: at least one processor; the processor is configured to execute a computer program or instructions stored in a memory, so that the communication device executes the method described in any aspect.
  • the memory may be coupled to the processor, or may be independent of the processor.
  • the communication device may be the first terminal device in the first aspect or the second aspect, or a device included in the first terminal device, such as a chip or a chip system; or the communication device may be the first terminal device in the third or fourth aspect.
  • a computer-readable storage medium stores computer programs or instructions, which when run on a communication device, enable the communication device to perform the method described in any aspect.
  • a tenth aspect provides a computer program product containing instructions that, when run on a communication device, enable the communication device to perform the method described in any aspect.
  • An eleventh aspect provides a communication device (for example, the communication device may be a chip or a chip system).
  • the communication device includes a processor for implementing the functions involved in any aspect.
  • the communication device includes a memory for storing necessary program instructions and data.
  • the device when it is a system-on-a-chip, it may be composed of a chip or may include chips and other discrete components.
  • the communication device provided in any one of the fifth to eleventh aspects is a chip
  • the sending action/function of the communication device can be understood as output information
  • the receiving action/function of the communication device can be understood as input information.
  • Figure 1 is a schematic structural diagram of a communication system provided by this application.
  • Figure 2a is a schematic structural diagram of a network device provided by this application.
  • Figure 2b is a schematic structural diagram of another network device provided by this application.
  • Figure 2c is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 3 is a schematic diagram of SSB beam scanning provided by this application.
  • FIG. 4 is a schematic diagram of PEI monitoring and indication provided by this application.
  • Figure 5 is a schematic flow chart of a communication method provided by this application.
  • Figure 6 is a schematic diagram of the corresponding relationship between an SSB beam and a WUS beam provided by this application;
  • Figure 7 is a schematic flow chart of another communication method provided by this application.
  • Figure 8 is a schematic diagram of the correspondence between another SSB beam and WUS beam provided by this application.
  • Figure 9 is a schematic flow chart of another communication method provided by this application.
  • Figure 10 is a schematic diagram of a second resource provided by this application.
  • Figure 11 is a schematic structural diagram of a communication device provided by this application.
  • Figure 12 is a schematic structural diagram of another communication device provided by the present application.
  • Figure 13 is a schematic structural diagram of yet another communication device provided by this application.
  • A/B can mean A or B; "and/or” in this application only means It is an association relationship that describes associated objects. It means that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A and B Can be singular or plural.
  • plural means two or more than two.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It can be understood that in the various embodiments of the present application, the size of the sequence numbers of each process does not mean the order of execution. The execution order of each process should be determined by its functions and internal logic, and should not be determined by the execution order of the embodiments of the present application. The implementation process constitutes no limitation.
  • the technical solution provided by this application can be used in various communication systems.
  • the communication system can be a third generation partnership project (3GPP) communication system, for example, the fourth generation (4th generation, 4G) long-term evolution (long term evolution, LTE) system, evolved LTE system (LTE-Advanced, LTE-A) system, fifth generation (5th generation, 5G) new radio (new radio, NR) system, vehicle to everything (V2X) system, LTE and NR hybrid networking system, or device-to-device (D2D) system, machine to machine (M2M) communication system, Internet of things (IoT), and Other next-generation communication systems, etc.
  • the communication system may also be a non-3GPP communication system, without limitation.
  • the above-mentioned communication systems applicable to the present application are only examples.
  • the communication systems applicable to the present application are not limited to these and will be explained uniformly here, and will not be described in detail below.
  • the communication system includes at least one network device 110 and one or more terminal devices 120 connected to the network device 110 for illustration. It should be understood that the number of terminal devices and network devices in Figure 1 is only an example, and may be more or less.
  • the network device 110 in the embodiment of this application is a device that connects the terminal device 120 to a wireless network.
  • the network device 110 can be a node in a wireless access network, and can also be called a base station. It can also be called a radio access network (RAN) node (or device).
  • RAN radio access network
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutionary Node B) in the LTE system or LTE-A system, such as a traditional macro base station eNB and a micro base station eNB in a heterogeneous network scenario.
  • the next generation node B (gNB) in the NR system may be included.
  • it may include a transmission reception point (TRP), a home base station (e.g., home evolved NodeB, or home Node B, HNB), a baseband unit (baseband unit, BBU), a baseband pool (BBU pool), or Wireless fidelity (WiFi) access point (access point, AP), etc.
  • TRP transmission reception point
  • BBU home evolved NodeB
  • BBU baseband unit
  • BBU pool baseband pool
  • WiFi Wireless fidelity
  • NTN network equipment
  • L1 layer 1
  • DU Integrated access and backhaul
  • IAB Integrated access and backhaul
  • the network device may be a device that implements base station functions in IoT, such as V2X, D2D, or a device that implements base station functions in machine to machine (M2M), which is not limited by the embodiments of this application.
  • the base stations in the embodiments of this application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, home base stations, TRPs, and transmitting points. , TP), mobile switching center, etc., the embodiments of this application do not specifically limit this.
  • the network device may include a centralized unit (central unit, CU) and/or a distributed unit (distributed unit, DU). Further, the network device may also include an active antenna unit (AAU) (not shown in Figure 2a).
  • AAU active antenna unit
  • the CU can implement some functions of the network device, and the DU can implement another part of the functions of the network device.
  • the CU can be responsible for processing non-real-time protocols and services, and implementing functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • DU can be responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU can be responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the AAU can implement some physical layer processing functions, radio frequency processing and active antenna related functions.
  • the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer. Therefore, under this architecture, high-level signaling (such as RRC layer signaling) can also be considered to be sent by DU, or sent by DU and AAU.
  • control plane CU control plane, CU-CP
  • user plane CU user plane, CU-UP
  • the signaling generated by the CU can be sent to the terminal device through DU, or the signaling generated by the terminal device can be sent to the CU through DU.
  • the DU may directly encapsulate the signaling through the protocol layer and transparently transmit it to the terminal device or CU without parsing the signaling.
  • the terminal device 120 in the embodiment of the present application may be a user-side device used to implement wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal can be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, or a mobile station in a 5G network or a public land mobile network (PLMN) evolved after 5G. , remote station, remote terminal, mobile equipment, wireless communication equipment, terminal agent or terminal device, etc.
  • UE user equipment
  • PLMN public land mobile network
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), or a device with wireless communications Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminals in control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Functional handheld devices computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminals in control, wireless terminals in self-driving, wireless terminals in remote medical, wireless
  • the terminal may be a terminal with communication functions in IoT, such as a terminal in V2X (such as an Internet of Vehicles device), a terminal in D2D communication, or a terminal in M2M communication, etc.
  • Terminals can be mobile or fixed.
  • the terminal device in this application is equipped with (or supports) a wake-up receiver (wake-up receiver, WUR) and a main receiver.
  • WUR has a signal receiving function, and further, it can also have a signal sending function.
  • the main receiver has signal sending and receiving functions.
  • the WUR and the main receiver can communicate with each other.
  • the terminal device can monitor the wake-up signal (WUS) through WUR. After monitoring WUS, it can turn on the main receiver to send and receive signals.
  • the power consumption of the main receiver is higher than that of the WUR.
  • the WUR and the main receiver can be two functional modules of the terminal equipment, or they can be two entities of the terminal equipment. in hard In terms of software implementation, the WUR and the main receiver can share a set of hardware resources, or can share part of the hardware resources, or can be implemented by two independent sets of hardware resources, which is not specifically limited in this application.
  • the WUR may also be called a WUR link
  • the main receiver may also be called a main link
  • Terminal equipment with WUR and main receiver may be called dual connection terminal or dual connection terminal equipment.
  • other names may also be used, and this application does not specifically limit this.
  • the network device or the terminal device can perform some or all of the steps in the embodiment of the present application. These steps or operations are only examples.
  • the embodiment of the present application can also perform other operations or various operations. Deformation.
  • various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.
  • the methods provided in the following embodiments of this application can be applied to WUS monitoring scenarios.
  • This application scenario does not impose any limitations on the present application.
  • This application does not specifically limit the application scenarios of the methods provided below. For example, it can also be used for other signals. monitoring, or other scenarios involving signals.
  • Synchronization signal block (SSB):
  • the primary synchronization signal (PSS), secondary synchronization signal (SSS), and physical broadcast channel (PBCH) can be collectively referred to as SSB.
  • network equipment can send SSBs through beam scanning, that is, multiple SSBs are sent on different beams in a time division multiplexing manner.
  • the network device may send SSB 0 to SSB N on different beams.
  • Multiple SSBs sent through beam scanning can be called synchronization signal (SS) burst set (SS burst set).
  • SSB0 to SSB N in Figure 3 can be called a synchronization signal burst set.
  • a beam can be understood as a communication resource.
  • the technology for forming beams may be beam forming technology or other technical means. Different beams can be considered as different resources.
  • the beam can be specifically represented in the protocol by the index of various signals (or resources), such as the resource index of the channel state information reference signal (CSI-RS), the SSB index, the sounding reference signal (sounding reference signal) reference signal, SRS) resource index, tracking reference signal (tracking reference signal, TRS) resource index, etc.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • TRS tracking reference signal
  • the beam can also be reflected in the protocol as a spatial domain filter, or a spatial filter, or a spatial domain parameter, a spatial parameter, or a spatial setting ( spatial domain setting), spatial setting, or quasi Co-location (QCL) information, QCL assumptions, QCL instructions, etc.
  • Beams can be indicated by a transmission configuration indication (TCI) state (TCI-state) parameter, or by a spatial relationship parameter. Therefore, in this application, the beam can also be replaced by a spatial filter, spatial filter, spatial parameter, spatial parameter, spatial setting, spatial setting, QCL information, QCL hypothesis, QCL indication, TCI-state, or spatial relationship, etc.
  • TCI transmission configuration indication
  • the beam can also be replaced by a spatial filter, spatial filter, spatial parameter, spatial parameter, spatial setting, spatial setting, QCL information, QCL hypothesis, QCL indication, TCI-state, or spatial relationship, etc.
  • the above terms are also equivalent to each other.
  • the "beam" in this application can also be replaced by other terms representing beams, which is
  • the beam used to transmit SSB is called an SSB beam.
  • SSB beams can be represented by SSB index, QCL information, QCL hypothesis, QCL indication, TCI-state, or spatial relationship, etc.
  • the network's paging for terminal equipment is usually divided into two categories.
  • One type is used to notify users in the radio resource control (RRC) idle state or RRC inactive state through paging (Paging) messages.
  • RRC radio resource control
  • Paging paging
  • the terminal device performs random access, thereby causing the terminal device to enter the RRC connection state for subsequent data communication; the other type is used to notify the terminal device to receive system information through short messages.
  • the system information may include public safety alarm information carried on system information block (SIB) 6, SIB7, or SIB8, or may include public safety alarm information carried on other SIBs except SIB6, SIB7, and SIB8.
  • Public safety warning information may include, for example, Earthquake and Tsunami Warning System (ETWS) information, Commercial Mobile Alert Service (CMAS) information, etc.
  • ETWS Earthquake and Tsunami Warning System
  • CMAS Commercial Mobile Alert Service
  • the terminal device can receive the physical downlink control channel (PDCCH) scrambled by the paging radio network temporary identifier (P-RNTI) in the paging occasion (PO), according to
  • the paging downlink control information (DCI) in the PDCCH receives system information or paging messages in the physical downlink share channel (PDSCH).
  • the paging DCI may include a 2-bit short message indication field, and the definition of the short message field may be as shown in Table 1.
  • the short message can be carried through an 8-bit short message field.
  • the definition of the short message indication field can be as shown in Table 2.
  • BCCH represents broadcast control channel (broadcast control channel, BCCH).
  • DRX refers to discontinuous reception (DRX).
  • the terminal device can obtain the system information scheduling information (SI scheduling information, SI-SchedulingInfo) from SIB1, and then receive the DCI used to schedule the system information according to the configuration in the system information scheduling information. Then receive updated system information according to the DCI.
  • SI scheduling information SI scheduling information, SI-SchedulingInfo
  • Paging early identification (PEI) Paging early identification
  • PEI is used to indicate whether there is a paging message in its corresponding PO.
  • the network device may send a PEI to the terminal device to inform the terminal device whether the one or more POs include a paging message for the terminal device. If the PEI indicates that one or more POs do not include the paging message of the terminal device, the terminal device can skip monitoring the one or more POs and enter a sleep state to save energy. If the PEI indication also indicates that one or more POs include paging messages for the terminal device, the terminal device needs to monitor the one or more POs.
  • PEI listening opportunity 1 corresponds to PO1, PO2, PO3, and PO4. If the PEI monitored in PEI listening opportunity 1 indicates that the four POs do not include the paging message of the terminal device, then the terminal device will enter the sleep state and will not monitor the four POs. If the PEI monitored in PEI monitoring opportunity 1 indicates that the four POs include paging messages of the terminal device, the terminal device does not need to monitor the four POs.
  • network equipment uses a quasi-co-location method with SSB to send PEI. That is, if the network device sends SSB in N beam directions, it also sends PEI in the same N beam directions.
  • the WUR For the WUR proposed in NR version 18, if the monitoring power consumption of the WUR is lower than the power consumption of the main receiver in the sleep state, the WUR needs to use on-off keying (OOK) and frequency-shift keying (frequency-shift). keying, FSK) and other modulation methods that support low-power reception.
  • OOK on-off keying
  • FSK frequency-shift keying
  • the data rate of modulation methods such as OOK is lower. Therefore, for the same size of information, compared with high-order modulation methods such as QPSK, it takes longer to send using modulation methods such as OOK, which means that the terminal device needs to spend longer time to receive.
  • PEI technology is used to send WUS in a quasi-co-located manner with SSB, the terminal device needs to spend a longer time monitoring in more directions, resulting in higher monitoring power consumption of the terminal device.
  • this application provides a communication method.
  • the time for the terminal device to monitor WUS can be reduced, thereby achieving energy saving for the terminal device.
  • a communication method provided by this application includes:
  • the first terminal device determines the first resource.
  • the first resource includes X WUS beams.
  • X is a positive integer less than N
  • N is the number of SSB beams
  • N is a positive integer. That is to say, in this embodiment of the present application, the number of WUS beams is smaller than the number of SSB beams.
  • a WUS beam can be understood as a beam used to transmit WUS. WUS beams can be represented using the WUS index.
  • the number of SSB beams is the same as the number of SSBs actually sent by the network device.
  • the number N can be determined according to the parameter ssb-PositionInBurst in SIB1.
  • the number X of WUS beams may be notified by the network device to the first terminal device.
  • the network device may indicate the number X to the first terminal device through RRC signaling or DCI.
  • the number X of WUS beams may be protocol defined.
  • the number X of WUS beams may be independently determined by the first terminal device.
  • the first terminal device may also report the number X of WUS beams to the network device. This application does not specifically limit this.
  • Case 1 The direction of one WUS beam corresponds to the direction of M SSB beams, where M is a positive integer.
  • M is a positive integer.
  • M is greater than 1, that is, the direction of one WUS beam corresponds to the direction of multiple SSB beams.
  • the X WUS beams include a first WUS beam, and the direction of the first WUS beam corresponds to the direction of at least one SSB beam among the N SSB beams.
  • the first WUS beam may be any WUS beam among the X WUS beams.
  • the direction of a WUS beam corresponds to the direction of M SSB beams, which can be understood as: the direction of the WUS beam can be determined according to the directions of the M SSB beams, or in other words, the direction of the WUS beam is the direction of the M SSB beams.
  • the direction angle of the WUS beam can be linearly represented by the direction angles of M SSB beams.
  • the direction angle of a WUS beam is equal to the average of the direction angles of M SSB beams.
  • the phase difference of the phase shifters connected to adjacent units in the antenna corresponding to the WUS beam can be determined based on the direction angle.
  • the relationship between the phase difference and the direction angle of the beam is ⁇ is the wavelength, and d is the distance between adjacent units.
  • the direction of the beam can be specifically represented by parameters such as receiving parameters, air domain parameters, spatial parameters, air domain settings, and spatial settings, which are not specifically limited in this application.
  • the direction of the WUS beam corresponds to the direction of the SSB beam, which can also be described as: the WUS beam corresponds to the SSB beam.
  • the two can be replaced with each other, and this application does not specifically limit them.
  • the directions of SSB beams corresponding to the directions of different WUS beams among the X WUS beams do not overlap.
  • the beam directions of SSB1 and SSB2 can correspond to the beam directions of WUS1
  • the beam directions of SSB3 and SSB4 can correspond to Beam direction of WUS2.
  • the number of ovals in each part represents the total number of beams
  • the ovals filled with black represent the direction of a certain SSB beam or WUS beam.
  • the beam direction of SSB1 is 0°
  • the beam direction of SSB2 is 90°, and so on.
  • Figure 6 is only an exemplary illustration of the corresponding relationship between the SSB beam and the WUS beam when N is equal to 4 and X is equal to 2.
  • the corresponding relationship between the four SSB beams and the two WUS beams can also be shown in Table 3.
  • Correspondence 1 indicates that the beam directions of SSB1 and SSB3 correspond to the beam directions of WUS1, and the beam directions of SSB2 and SSB4 correspond to the beam directions of WUS2.
  • Correspondence 2 indicates that the beam directions of SSB1 and SSB4 correspond to the beam directions of WUS1, and the beam directions of SSB2 and SSB3 correspond to the beam directions of WUS2.
  • directions of SSB beams corresponding to directions of different WUS beams among the X WUS beams overlap.
  • the corresponding relationship between the directions of the four SSB beams and the directions of the two WUS beams may include but is not limited to: SSB1, SSB2,
  • the beam directions of SSB3 and SSB3 correspond to the beam directions of WUS1, and the beam directions of SSB2, SSB3, and SSB4 correspond to the beam directions of WUS2.
  • N 4 and X equals 2 is only an exemplary description of the values of N and X in this application, and N and X can also have other values.
  • N 16 and X equals 2; or N equals 16 and X equals 1; or N equals 8 and X equals 2; or N equals 8 and X equals 1; or N equals 4 and , this application does not specifically limit the values of N and X.
  • the correspondence between the directions of X WUS beams and the directions of N SSB beams may be defined by the protocol. Alternatively, it may be indicated by the network device to the first terminal device. In this scenario, as shown in Figure 7, before step S501, it is still possible to to include:
  • the network device determines the corresponding relationship between the directions of X WUS beams and the directions of N SSB beams.
  • the network device sends instruction information to the first terminal device.
  • the first terminal device receives the instruction information from the network device.
  • the indication information indicates the corresponding relationship between the directions of X WUS beams and the directions of N SSB beams.
  • the indication information may include first information, and the first information may indicate the direction of the first WUS beam.
  • the indication information may be implemented in the form of a list.
  • the indication information may include a table similar to the above-mentioned Table 3 to indicate the directions of M SSB beams corresponding to the directions of each WUS beam.
  • the indication information may be implemented in the form of a key-value pair.
  • the indication information may include: ⁇ SSB1, SSB2:WUS1 ⁇ , ⁇ SSB3, SSB4:WUS2 ⁇ to indicate the corresponding relationship shown in Figure 6.
  • the indication information can also be implemented in other forms, which is not specifically limited in this application.
  • the above step S501 may specifically include: the first terminal device determines X WUS beams according to the indication information.
  • the network device may send the relevant configurations of N SSBs to the first terminal device in the system information, so that the first terminal device can learn the index, direction and other information of the N SSB beams.
  • the first terminal device After receiving the indication information, combined with the relevant information of the N SSBs, the first terminal device can obtain the information of the X WUS beams based on the indication information.
  • the network device can determine the directions of the The device sends WUS.
  • the directions of the X WUS beams correspond to the directions of the first X SSB beams with the strongest signal strength among the N SSB beams. That is, the directions of the X WUS beams correspond to the directions of the X SSB beams one-to-one.
  • the direction of the WUS beam corresponds to the direction of the SSB beam, which can be understood as: the direction of the WUS beam is the same as the direction of the SSB beam. Or, the difference between the direction of the WUS beam and the direction of the SSB beam is less than a certain threshold.
  • the beam direction of WUS1 corresponds to (for example, the same) the beam direction of SSB1
  • the beam direction of WUS2 corresponds to (for example, the same) beam direction of SSB2.
  • step S501 may also include:
  • the network device determines the corresponding relationship between the directions of X WUS beams and the directions of N SSB beams.
  • the network device sends instruction information to the first terminal device.
  • the first terminal device receives the instruction information from the network device.
  • steps S500a and S500b are similar to the implementation of steps S500a and S500b in case one.
  • the indication information may include the number X of WUS beams.
  • the first terminal device can learn that the directions of the X WUS beams correspond to the directions of the first X SSB beams with the strongest signal strength among the N SSB beams.
  • the first terminal device may measure N SSB beams, determine the signal strengths of each of the N SSB beams, and measure the N SSB beams in order from large to small signal strengths.
  • the signal strength is sorted to obtain the top X SSB beams.
  • the X SSB beams are the top X SSBs with the strongest signal strength.
  • the signal strength of the SSB beam can be represented by parameters such as reference signal receiving power (reference signal receiving power, RSRP), reference signal receiving quality (reference signal receiving quality, RSRQ), etc. This application does not specifically limit this.
  • the first terminal device can also send the second information to the network device.
  • the network device receives the second information from the first terminal device.
  • the second information indicates the signal strength of each of the N SSB beams, or indicates the index of the top X SSB beams with the strongest signal strength.
  • the index of the SSB beam can be understood as the index of the SSB, and the two can be replaced with each other.
  • the network device may configure a reporting type to the first terminal device, and the reporting type may be signal strength.
  • the second information may indicate the signal strength of each of the N SSB beams.
  • the reporting type may be an index of an SSB beam.
  • the second information may indicate the index of the X SSB beams.
  • the network device can determine the directions of X WUS beams based on the second information.
  • the network device may send WUS to the first terminal device on the X WUS beams.
  • the first terminal device monitors the wake-up signal on some or all of the first resources through the wake-up receiver.
  • the wake-up signal is used to wake up the main receiver of the first terminal device.
  • the first terminal device monitors the wake-up signal on part of the first resource through the wake-up receiver.
  • the first terminal device can monitor WUS on the beam of WUS1 but not on the beam of WUS2. Monitor WUS on the beam.
  • the second threshold may be predefined by the protocol; or may be configured by the network device; or may be determined by the first terminal device itself, which is not specifically limited in this application.
  • the embodiments of the present application also involve the first threshold, which will be explained in subsequent embodiments and will not be described again here.
  • the first terminal device can monitor the wake-up signal on all resources of the first resource through the wake-up receiver.
  • the first terminal device can wake up the main receiver. Subsequently, signals can be sent and received through the main receiver according to the scheduling of the network device.
  • the number of WUS beams is smaller than the number of SSB beams. That is to say, the direction of the WUS beam is smaller than the direction of the SSB beam.
  • the search space of the WUS beam can be reduced, thereby reducing the cost.
  • the terminal device can determine the direction of the SSB beam based on the WUS beams it searches. Compared with the terminal device searching for SSB beams in all SSB beam directions, Reduce the power consumption of SSB beam search and reception. Since SSB needs to be monitored and received through the main receiver, the power consumption of the main receiver can be reduced.
  • the terminal device monitors WUS in the beam direction of WUS1, or the signal quality of WUS in the beam direction of WUS1 is greater than a certain threshold, then the terminal device can correspond to WUS1.
  • the network device can send signals to other terminal devices in the directions of other SSB beams, thereby improving system capacity.
  • the number of WUS beams is small, which is equivalent to a small number of repeated WUS transmissions. Compared with sending WUS N times through N WUS beams, the resources occupied are reduced, so the solution of this application can also improve The data transfer rate of WUS.
  • the method shown in Figure 5 can be applied to scenarios where the mobility of the terminal device is low or the terminal device is stationary.
  • the signal quality of the reference signal of the serving cell measured by the terminal equipment within a period of time is greater than or equal to the threshold value 1
  • the mobility of the terminal equipment can be considered to be low.
  • the signal quality of the reference signal of the serving cell measured during this period is greater than or equal to the threshold value 2
  • the terminal device can be considered to be stationary.
  • the signal quality of the reference signal of the serving cell within this period of time may be the average signal quality of the reference signals within this period of time.
  • threshold value 2 is greater than threshold value 1.
  • the threshold value 1 and the threshold value 2 may be defined by the protocol; or may be configured by the network device, which is not specifically limited in this application.
  • the terminal device or network device may perform the method shown in Figure 5 above in a scenario where it is determined that the mobility of the terminal device is low or stationary. That is to say, the above step S501 may specifically include: the terminal device measures the reference signal of the serving cell within the first time period to obtain the signal quality of the reference signal; when the signal quality of the reference signal is greater than the first threshold, determine First resource.
  • the first threshold may be the above-mentioned threshold value 1 or threshold value 2.
  • the terminal device may send the signal quality of the reference signal to the network device; or may indicate to the network device whether the signal quality of the reference signal is greater than the first threshold.
  • the network device can determine whether to execute the method shown in Figure 5 based on the report from the terminal device.
  • the signal quality of the reference signal can be represented by RSRP, RSRQ, etc., which is not specifically limited in this application.
  • the direction of the SSB beam or WUS beam directed at the terminal device will only change slightly or not.
  • the direction of the WUS beam can be more accurately determined based on the direction of the SSB beam, or the direction of the SSB beam can be determined based on the direction of the WUS beam, thereby improving reception efficiency.
  • the working frequency band of the first terminal device may belong to frequency range 2.
  • the first terminal device may operate by analog domain beam reception. Based on this method, the first terminal device does not need to perform a complex analog-to-digital conversion process and can adjust the receiving beam direction through a simple phase shifter to receive the WUS beam, thereby achieving low-power reception.
  • the method shown in Figure 5 above can be understood as the design of WUS airspace resources.
  • this application also provides a communication method to design WUS time domain resources. As shown in Figure 9, the method includes the following steps:
  • the first terminal device determines the second resource.
  • the second resource includes a time domain periodic resource.
  • the time domain periodic resource is located in the first period within the first period.
  • the first cycle also includes the second cycle. This first period can be used to wake up the receiver to listen for a wake-up signal.
  • the second period is used for the main receiver to send and receive signals.
  • the time domain resources in the first cycle can be divided into two parts, one part of which can be allocated to the wake-up receiver for the wake-up receiver to monitor the wake-up signal.
  • the other part can be allocated to the main receiver for the main receiver to send and receive signals.
  • the other part of the time domain resources can also be allocated to legacy terminal equipment that does not support wake-up receivers.
  • the first cycle may be called an outer DRX cycle or a first DRX cycle.
  • the first period within the first cycle may be called the activation period or activity period.
  • the second period within the first cycle may be called the inactive period or the sleep period or the inactive period.
  • the first cycle, the first period, and the second period may also have other names, and this application does not specifically limit this.
  • the first period includes a first period and a second period, and the first period includes time domain periodic resources.
  • the terminal device can monitor the wake-up signal on this time domain periodic resource.
  • this time domain periodic resource can be understood as the inner DRX mechanism. That is, the first terminal device can monitor the wake-up signal within the time domain periodic resource through the wake-up receiver. In other periods in the first period except for the periodic resource, the wake-up receiver of the first terminal device may sleep, thereby saving power consumption of the wake-up receiver.
  • the period of the time domain periodic resource may be called the inner DRX period or the second DRX period.
  • the period of the time domain periodic resource may be the second period.
  • the value of the second period may be determined according to the power consumption type of the first terminal device. For example, when the power consumption type of the first terminal device is low power, the value of the second period may be the first value; when the power consumption type of the first terminal device is extremely low power, the value of the second period may be Value can be a second numeric value. Wherein, the second value is greater than the first value.
  • a larger listening period can be configured for extremely low-power terminal devices to reduce the listening time of the terminal devices, thereby saving the power consumption of the terminal devices.
  • the power consumption type of the terminal device can be the default configuration of the terminal device when it leaves the factory.
  • the terminal device can learn its own power consumption type by reading the default configuration.
  • the power consumption type of the terminal device can be determined according to the user's settings. For example, when the user turns on the power saving mode of the terminal device, the power consumption type of the terminal device is extremely low power consumption; when the user turns off the power saving mode of the terminal device, for example, the user sets the terminal device to be in performance mode, the power consumption type of the terminal device Type can be low power.
  • the power consumption type of the terminal device may be determined based on the remaining power of the terminal device. For example, when the remaining power is less than or equal to 20%, the power consumption type of the terminal device can be very low power consumption; when the remaining power is greater than 20%, the power consumption type of the terminal device can be low power consumption.
  • the second resource may be configured by the network device to the first terminal device.
  • the method provided by this application may also include the following steps:
  • the network device determines the second resource.
  • the network device determining the second resource may include the network device determining at least one of the following: a first period, a length of the first period, a length of the second period, or a second period.
  • the second period may be determined by the network device according to the power consumption type of the first terminal device.
  • the first terminal device can send the third information to the network device.
  • the network device receives the third information from the first terminal device.
  • the third information may indicate the power consumption type of the first terminal device.
  • the network device can determine the second period based on the third information. For example, when the type of the terminal device is low power, the value of the second period is determined to be the first value; when the type of the terminal device is extremely low power, the value of the second period is determined to be the second value.
  • the third information may be reported during random access.
  • the first terminal device may be reported in Message 1 (Msg1), Message 3 (Msg3), or Message A (MsgA) in random access. reported.
  • Msg1 Message 1
  • Msg3 Message 3
  • MsgA Message A
  • the third information may be carried in auxiliary information.
  • Network devices can deliver auxiliary information configuration through RRC reconfiguration signaling. After receiving the signaling, the first terminal device reports the auxiliary information according to the corresponding configuration. Compared with one-time static reporting of terminal device capabilities, the reporting of auxiliary information can change dynamically. For example, the network device may configure the first terminal device to periodically report the auxiliary information, or to report the auxiliary information when the power consumption type of the first terminal device changes.
  • the third information may be reported by the first terminal device after the power consumption type of the first terminal device changes. For example, when the user turns on the power saving mode of the terminal device and the power consumption type of the terminal device changes from low power consumption to very low power consumption, the first terminal device can report the third information to the network device.
  • the network device sends instruction information to the first terminal device.
  • the first terminal device receives the instruction information from the network device.
  • the indication information indicates the second resource.
  • the indication information may indicate at least one of the following: a first period, a length of the first period, a length of the second period, or a second period.
  • the network device may send the indication information on the resource (or link) corresponding to the primary receiver of the first terminal device.
  • the indication information may be carried in Message 2 (Msg2), Message 4 (Msg4), or Message B (MsgB) in random access; or, the indication information may be carried in the DCI on the PDCCH.
  • the network device may also send the indication information on the resource (or link) corresponding to the wake-up receiver of the first terminal device.
  • the indication information can be carried in WUS.
  • the first terminal device After receiving the indication information, the first terminal device can adjust the listening time of the WUS according to the indication information carried in the WUS.
  • the above step S901 may specifically include: the first terminal device determines the second resource according to the indication information.
  • the first terminal device monitors the wake-up signal on the second resource through the wake-up receiver.
  • the wake-up signal is used to wake up the main receiver of the first terminal device.
  • the first terminal device may periodically monitor the wake-up signal on the time domain periodic resource within the first period through the wake-up receiver. At other times during the first period, the wake-up receiver may sleep. In addition, during the second period, the wake-up receiver can also sleep.
  • the first terminal device can wake up the main receiver. Subsequently, signals can be sent and received through the main receiver according to the scheduling of the network device.
  • the first period within the first cycle is used to wake up the receiver to monitor the wake-up signal
  • the second period is used for the main receiver to send and receive signals or for traditional terminals, so that the network equipment can allocate time domain resources.
  • the wake-up receiver monitors the wake-up signal during part of the first cycle. Compared with the solution where the wake-up receiver is always on to monitor the wake-up signal, the wake-up signal monitoring time can be reduced and the terminal equipment can save money. of power consumption.
  • the time domain periodic resources in the first period are used to wake up the receiver to monitor the wake-up signal, that is, the terminal device can periodically monitor the wake-up signal in the first period through the wake-up receiver. At other times, the wake-up receiver can sleep, further saving power consumption of the terminal device.
  • the air domain resource of WUS can be the first resource in the method shown in Figure 5
  • the time domain resource of WUS can be the second resource in the method shown in Figure 9.
  • the spatial domain resources and time domain resources of the wake-up signal are explained.
  • the content carried in the wake-up signal provided by this application, or the composition (or frame structure) of the wake-up signal will be described.
  • the wake-up signal may include at least one of the following: indication information, identification of the terminal device, system information change indication, system information scheduling information, (changed) system information, or offset information.
  • the indication information may indicate the content carried by the wake-up signal, or in other words, the composition (or frame structure) of the wake-up signal.
  • the system information change indication may indicate that the system information in BCCH except SIB6, SIB7, and SIB8 is updated.
  • System information scheduling information is used to schedule DCI, and the DCI is used to schedule system information.
  • the offset information indicates the time offset (offset) between the wake-up signal and the PO.
  • the terminal device can delay waking up the main receiver after receiving the wake-up signal, and the delay time is the time offset indicated by the offset information.
  • the offset information may include two-level offsets, for example, including a radio frame level offset and a slot level offset.
  • the time offset length indicated by the indication information is the offset duration at the radio frame level plus the offset duration at the slot level. Based on the two-level offset, the accuracy of the time offset for waking up the main receiver can be loosened, which is more suitable for the clock accuracy of the wake-up receiver.
  • the wake-up signal when the wake-up signal includes indication information, the above-mentioned indication information can be carried through the first field in the wake-up signal (that is, the wake-up signal includes the first field), and the different states of the first field can be understood as indication information. Different instructions.
  • the wake-up signal when the state of the first field is the first state, does not include fields other than the first field. In other words, the wake-up signal only includes the first field, or in other words, the wake-up signal only includes the indication information carried by the first field. Alternatively, when the state of the first field is the first state, the wake-up signal further includes the above-mentioned offset information.
  • the wake-up signal also includes the identification of the terminal device.
  • the wake-up signal also includes a system information change indication or system information scheduling information.
  • the wake-up signal also includes system information.
  • the system information may be updated system information, for example, public safety alarm information, or information after changes to system information carried in other SIBs except SIB6, SIB7, and SIB8.
  • the different states of the first field and the contents carried by the wake-up signal indicated by them, or the composition (or frame structure) of the wake-up signal can be as shown in Table 4.
  • the status of the above-mentioned first field can be represented by the value of the first field.
  • the size of the first field may be 2 bits.
  • the value of the first field is "00", which can represent the first state of the first field; the value of "01” can represent the second state of the first field; the value of "10” can represent The third state of the first field; the value "11” can represent the fourth state of the first field.
  • the value "00" can also represent other states, such as the second state, the third state, or the fourth state, etc., which is not specifically limited in this application.
  • the first field must have the above four states.
  • the state of the first field may only include at least one of the above four states.
  • the size of the first field is not necessarily 2 bits.
  • the above-mentioned first state and second state of the first field exist, but the third state and the fourth state do not exist, and the size of the first field may be 1 bit.
  • the indication information takes the different states of the first field to represent different indications of the indication information (that is, the indication information is implemented through bit states) as an example.
  • the indication information can also be implemented in other explicit ways, which is not specifically limited in this application.
  • the first terminal device can also perform different operations in different states of the first field.
  • the first terminal device can immediately wake up the main receiver after listening to the wake-up signal, and send the signal to the PO through the main receiver. Monitor on. If the wake-up signal also includes offset information, the first terminal device can wake up the main receiver according to the offset information and monitor on the PO through the main reception. For example, the first terminal device may delay waking up the main receiver after receiving the wake-up signal, and the delay duration is the time offset indicated by the offset information.
  • the network device can carry no fields other than the first field in the wake-up signal, or carry offset information, so that the terminal device wakes up the main receiver and performs the call on the PO through the main receiver. monitor. Since the main receiver can use a modulation method with a higher modulation order to modulate information, the paging efficiency can be improved.
  • one PO can correspond to multiple terminal devices. When the terminal device monitors the PO through the main receiver, the network device can send paging information of multiple terminal devices on the PO, thereby increasing system capacity.
  • the first terminal When the state of the first field is the second state, and the wake-up signal includes the identification of the first terminal device, the first terminal is configured to wake up its main receiver.
  • the first terminal device may obtain the identifier of the terminal device carried in the wake-up signal.
  • the identifier indicates that the network has initiated paging for the first terminal device.
  • the first terminal device can wake up the main receiver. Subsequently, the first terminal device can perform random access (RA) on the random access channel (RACH) through the main receiver to respond to the paging of the network.
  • RA random access
  • RACH random access channel
  • the terminal device does not need to frequently wake up the main receiver. It only wakes up the main receiver for random access when it is confirmed that the network device has initiated paging for itself, which can save the power consumption of the main receiver.
  • the first terminal device wakes up the main receiver after obtaining the system information change instruction or system information scheduling information.
  • the first terminal device can wake up the main receiver after listening to the wake-up signal and obtaining the system information change indication. Subsequently, the first terminal device can receive SIB1 through the main receiver, obtain the system information scheduling information in SIB1, and then receive the changed system information according to the system information scheduling information.
  • the terminal device can learn that the system information has changed without monitoring in the PO, that is, the terminal device can learn the change of the system information in advance, and can directly receive SIB1 after waking up the main receiver to receive the changed system information. , reduce the reception delay of system information.
  • the terminal device does not need to monitor in the PO through the main receiver, and the power consumption of the main receiver can also be saved.
  • the first terminal device can wake up the main receiver after monitoring the wake-up signal and obtaining the system information scheduling information. Subsequently, the first terminal device may receive the changed system information according to the system information scheduling information.
  • the terminal device does not need to monitor in the PO, and does not need to receive SIB1 to learn the system information scheduling information. After waking up the main receiver, it can receive the changed system information based on the system information scheduling information, reducing the reception of system information. time delay. In addition, the terminal device does not need to monitor in the PO through the main receiver, nor does it need to obtain system information scheduling information through AIB1, which can save the power consumption of the main receiver.
  • the first terminal device can obtain the system information.
  • This system information can be understood as the changed system information.
  • the first terminal device can initiate an early warning to the user through SMS, vibration, ringing, etc.
  • the wake-up signal includes system information
  • the first terminal device monitors the wake-up signal and obtains the system information, it can determine not to wake up the main receiver. That is, even if the first terminal device monitors the wake-up signal, after the wake-up signal In the case where system information is included, the first terminal device may not wake up the main receiver.
  • the reception delay of system information can be greatly reduced. In addition, it can also reduce the number and time of waking up the main receiver and save the power consumption of the terminal equipment.
  • the indication information carried in the wake-up signal may not be carried in the wake-up signal.
  • the network device may send the indication information to the first terminal device before sending the wake-up signal to indicate the content carried in the wake-up signal.
  • the indication information may indicate that the wake-up signal carries no information, or that the wake-up signal carries at least one of the following: terminal device identification, system information change instruction, system information scheduling information, (changed) system information, or offset information.
  • the network device can re-send the indication information to the first terminal device to indicate the changed composition of the wake-up signal. That is to say, the first terminal device can determine the composition of the wake-up signal it subsequently monitors based on the latest instruction information it receives.
  • the processing of the terminal device may refer to the relevant description when the state of the first field is the first state.
  • the processing of the terminal device may refer to the relevant description when the state of the first field is the second state.
  • the processing of the terminal device may refer to the relevant description when the state of the first field is the third state.
  • the processing of the terminal device may refer to the relevant description when the state of the first field is the fourth state.
  • the methods and/or steps implemented by the network device can also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software that can be used in the network device). chip or circuit); the methods and/or steps implemented by the first terminal device can also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software such as chips) that can be used in the first terminal device. or circuit) implementation.
  • the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the communication device into functional modules according to the above method embodiments.
  • functional modules can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 11 shows a schematic structural diagram of a communication device 110 .
  • the communication device 110 includes a processing module 1101 and a transceiver module 1102.
  • the communication device 110 may be used to implement the functions of the above-mentioned first network device or receiving device.
  • the communication device 110 may also include a storage module (not shown in Figure 11) for storing program instructions and data.
  • the transceiver module 1102 which may also be called a transceiver unit, is used to implement sending and/or receiving functions.
  • the transceiver module 1102 may be composed of a transceiver circuit, a transceiver, a transceiver, or a communication interface.
  • the transceiver module 1102 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the first network device or the receiving device in the above method embodiment, and/or to support Other processes of the technology described herein; the processing module 1101 can be used to perform steps of the processing class (such as determining, generating, etc.) performed by the first network device or the receiving device in the above method embodiments, and/or to support Other processes for the techniques described herein.
  • the processing module 1101 can be used to perform steps of the processing class (such as determining, generating, etc.) performed by the first network device or the receiving device in the above method embodiments, and/or to support Other processes for the techniques described herein.
  • the processing module 1101 is used to determine the first resource.
  • the transceiver module 1102 is configured to monitor a wake-up signal on part or all of the first resource through the wake-up receiver, and the wake-up signal is used to wake up the main receiver.
  • the first resource includes X wake-up signal WUS beams, X is a positive integer less than N, and N is the number of synchronization signal block SSB beams.
  • the X WUS beams include a first WUS beam, and the direction of the first WUS beam corresponds to the direction of at least one SSB beam among the N SSB beams.
  • the transceiver module 1102 is also configured to receive first information from the network device, where the first information indicates the corresponding relationship between the direction of the first WUS beam and the direction of at least one SSB beam.
  • the directions of the X WUS beams correspond to the directions of the first X SSB beams with the strongest signal strength among the N SSB beams.
  • the processing module 1101 is also used to determine the signal strength of each of the N SSB beams.
  • the transceiver module 1102 is also used to send the second information to the network device.
  • the second information indicates the signal strength of each of the N SSB beams, or the second information indicates the index of the X SSB beams.
  • the processing module 1101 is used to determine the first resource, including: the processing module 1101 is used to measure the reference signal of the serving cell within the first time period to obtain the signal quality of the reference signal.
  • the processing module 1101 is also configured to determine the first resource when the signal quality of the reference signal is greater than the first threshold.
  • the processing module 1101 is used to determine the second resource.
  • the transceiver module 1102 is configured to monitor the wake-up signal on the second resource through the wake-up receiver, and the wake-up signal is used to wake up the main receiver.
  • the second resource includes a time domain periodic resource, and the time domain periodic resource is located in the first period within the first period.
  • the first period also includes a second period. The first period is used to wake up the receiver to monitor the wake-up signal, and the second period is used to wake up the receiver to monitor the wake-up signal. Send and receive signals to the main receiver.
  • the period of the time domain periodic resource is the first value.
  • the period of the time domain periodic resource is a second value, and the second value is greater than the first value.
  • the transceiver module 1102 is also configured to send third information to the network device.
  • the third information indicates the power consumption type of the first terminal device, and the power consumption type includes low power consumption or extremely low power consumption.
  • the transceiver module 1102 is also configured to receive indication information from the network device, where the indication information indicates at least one of the following: the first period, the length of the first period, the length of the second period, or the period of the time domain periodic resource. .
  • the transceiver module 1102 is also used to receive indication information.
  • the indication information may indicate that the wake-up signal does not carry information, or that the wake-up signal carries at least one of the following: the identification of the terminal device, the system information change indication, the system Information scheduling information, (changed) system information, or offset information.
  • the offset information indicates the time offset between the wake-up signal and the paging opportunity.
  • the wake-up signal includes a first field.
  • the state of the first field is the first state
  • the wake-up signal does not include fields other than the first field, or the wake-up signal also includes offset information, and the offset information indicates the time offset between the wake-up signal and the paging opportunity.
  • the wake-up signal also includes the identification of the terminal device
  • the wake-up signal also includes a system information change indication or system information scheduling information
  • the wake-up signal also includes system information.
  • the processing module 1101 is also configured to wake up the main receiver according to the offset information
  • the processing module 1101 is also configured to wake up the main receiver when the wake-up signal includes the identification of the first terminal device;
  • the processing module 1101 is also configured to wake up the main receiver after obtaining the system information change indication or system information scheduling information;
  • the processing module 1101 is also used to obtain system information.
  • the processing module 1101 is also configured to determine not to wake up the main receiver.
  • the processing module 1101 is used to determine the corresponding relationship between the directions of X wake-up signal WUS beams and the directions of N synchronization signal block SSB beams, where X is a positive integer less than N.
  • the transceiver module 1102 is configured to send indication information to the first terminal device, where the indication information indicates the corresponding relationship between the directions of the X WUS beams and the N SSB beams.
  • the X WUS beams include a first WUS beam, and the direction of the first WUS beam corresponds to the direction of at least one SSB beam among the N SSB beams.
  • the indication information includes a correspondence relationship between the direction of the first WUS beam and the direction of at least one SSB beam among the N SSB beams.
  • the directions of the X WUS beams correspond to the directions of the first X SSB beams with the strongest signal strength among the N SSB beams.
  • the indication information includes the number X of WUS beams.
  • the transceiving module 1102 is used to receive second information from the first terminal device.
  • the processing module 1101 is also configured to determine the directions of X WUS beams based on the second information.
  • the second information indicates the signal strength of each of the N SSB beams, or the second information indicates the top X SSB beams with the strongest signal strength among the N SSB beams.
  • the transceiver module 1102 is also configured to configure a reporting type to the first terminal device, where the reporting type includes signal strength or an index of an SSB beam.
  • the processing module 1101 is used to determine the second resource.
  • the transceiving module 1102 is configured to send indication information to the first terminal device, where the indication information indicates the second resource.
  • the second resource includes a time domain periodic resource, and the time domain periodic resource is located in the first period within the first period.
  • the first period also includes a second period. The first period is used to wake up the receiver to monitor the wake-up signal, and the wake-up signal is used to Wake up the main receiver, and the second period is used for the main receiver to send and receive signals.
  • the period of the time domain periodic resource is the first value.
  • the period of the time domain periodic resource is a second value, and the second value is greater than the first value.
  • the transceiving module 1102 is also used to receive third information from the first terminal device.
  • the processing module 1101 is also configured to determine the period of the time domain periodic resource according to the third information.
  • the third information indicates the power consumption type of the first terminal device, and the power consumption type includes low power consumption or extremely low power consumption.
  • the indication information includes at least one of the following: the first period, the duration of the first period, the duration of the second period, or the period of the time domain periodic resource.
  • the wake-up signal includes the first field; when the state of the first field is the first state, the wake-up signal does not include fields other than the first field, or the wake-up signal also includes offset information, and the offset information indicates wake-up.
  • Primary receiver time offset when the state of the first field is the first state, the wake-up signal does not include fields other than the first field, or the wake-up signal also includes offset information, and the offset information indicates wake-up.
  • the wake-up signal also includes the identification of the terminal device
  • the wake-up signal also includes a system information change indication or system information scheduling information
  • the wake-up signal also includes system information.
  • the communication device 110 may be presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to an application-specific integrated circuit (ASIC), a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or others that may provide the above functions. device.
  • ASIC application-specific integrated circuit
  • the function/implementation process of the transceiver module 1102 can be implemented through the input and output interface (or communication interface) of the chip or chip system, and the processing module 1101
  • the function/implementation process can be realized by the processor (or processing circuit) of the chip or chip system.
  • the communication device 110 provided in this embodiment can perform the above method, the technical effects it can obtain can refer to the above method embodiment, and will not be described again here.
  • the first terminal device or network device described in the embodiment of the present application can also be implemented using the following: one or more field programmable gate arrays (FPGA), A programmable logic device (PLD), controller, state machine, gate logic, discrete hardware component, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic device
  • state machine state machine
  • gate logic discrete hardware component
  • any other suitable circuit any combination of circuits capable of performing the various functions described throughout this application.
  • the first terminal device or network device described in the embodiment of the present application can be implemented by a general bus architecture.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device 1200 includes a processor 1201 and a transceiver 1202 .
  • the communication device 1200 may be a network device, or a chip or a chip system thereof; or, the communication device 1200 may be a first terminal device, or a chip or module thereof.
  • Figure 12 shows only the main components of the communication device 1200.
  • the communication device may further include a memory 1203 and an input and output device (not shown in the figure).
  • the processor 1201 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • Memory 1203 is mainly used to store software programs and data.
  • the transceiver 1202 may include a radio frequency circuit and an antenna.
  • the radio frequency circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 1201, the transceiver 1202, and the memory 1203 can be connected through a communication bus.
  • the processor 1201 can read the software program in the memory 1203, interpret and execute the instructions of the software program, Process data for software programs.
  • the processor 1201 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1201.
  • the processor 1201 converts the baseband signal into data and performs processing on the data. deal with.
  • the radio frequency circuit and antenna can be arranged independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely and independently of the communication device. .
  • the above communication device 110 may take the form of the communication device 1200 shown in FIG. 12 .
  • the function/implementation process of the processing module 1101 in Figure 11 can be implemented by the processor 1201 in the communication device 1200 shown in Figure 12 calling the computer execution instructions stored in the memory 1203.
  • the function/implementation process of the transceiver module 1102 in Figure 11 can be implemented by the transceiver 1202 in the communication device 1200 shown in Figure 12 .
  • the network device or the first terminal device in this application can adopt the composition structure shown in Figure 13, or include the components shown in Figure 13.
  • Figure 13 is a schematic diagram of the composition of a communication device 1300 provided by this application.
  • the communication device 1300 can be a first terminal device or a chip or a system on a chip in the first terminal device; or it can be a network device or a module in the network device. Or a chip or system on a chip.
  • the communication device 1300 includes at least one processor 1301 and at least one communication interface (FIG. 13 is only an example of including a communication interface 1304 and a processor 1301 for illustration).
  • the communication device 1300 may also include a communication bus 1302 and a memory 1303.
  • the processor 1301 can be a general central processing unit (CPU), a general processor, a network processor (NP), a digital signal processor (DSP), a microprocessor, or a microcontroller device, programmable logic device (PLD), or any combination thereof.
  • the processor 1301 can also be other devices with processing functions, such as circuits, devices or software modules, without limitation.
  • the communication bus 1302 is used to connect different components in the communication device 1300 so that different components can communicate.
  • the communication bus 1302 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 13, but it does not mean that there is only one bus or one type of bus.
  • Communication interface 1304 used to communicate with other devices or communication networks.
  • the communication interface 1304 may be a module, a circuit, a transceiver, or any device capable of realizing communication.
  • the communication interface 1304 may also be an input/output interface located within the processor 1301 to implement signal input and signal output of the processor.
  • Memory 1303 may be a device with a storage function, used to store instructions and/or data. Wherein, the instructions may be computer programs.
  • the memory 1303 may be a read-only memory (ROM) or other types of static storage devices that can store static information and/or instructions, or may be a random access memory (RAM). or other types of dynamic storage devices that can store information and/or instructions, and can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, etc., are not restricted.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices, etc. are not restricted.
  • the memory 1303 may exist independently of the processor 1301 or may be integrated with the processor 1301.
  • the memory 1303 may be located within the communication device 1300 or outside the communication device 1300, without limitation.
  • the processor 1301 can be used to execute instructions stored in the memory 1303 to implement the methods provided by the following embodiments of the application.
  • the communication device 1300 may also include an output device 1305 and an input device 1306.
  • Output device 1305 communicates with processor 1301 and can display information in a variety of ways.
  • the output device 1305 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • Input device 1306 communicates with processor 1301 and may receive user input in a variety of ways.
  • the input device 1306 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
  • the communication device 110 shown in FIG. 11 may take the form of the communication device 1300 shown in FIG. 13 .
  • the function/implementation process of the processing module 1101 in Figure 11 can be implemented by the processor 1301 in the communication device 1300 shown in Figure 13 calling the computer execution instructions stored in the memory 1303.
  • the function/implementation process of the transceiver module 1102 in Figure 11 can be implemented through the communication interface 1304 in the communication device 1300 shown in Figure 13 .
  • the structure shown in Figure 13 does not constitute a specific limitation on network equipment or terminal equipment.
  • the network device or the terminal device may include more or less components than shown in the figures, or some components may be combined, or some components may be separated, or may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • embodiments of the present application further provide a communication device, which includes a processor and is configured to implement the method in any of the above method embodiments.
  • the communication device further includes a memory.
  • This memory is used to store necessary computer programs and data.
  • the computer program may include instructions, and the processor may call the instructions in the computer program stored in the memory to instruct the communication device to perform the method in any of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device further includes an interface circuit, which is a code/data reading and writing interface circuit.
  • the interface circuit is used to receive computer execution instructions (computer execution instructions are stored in the memory and may be directly read from memory, or possibly through other devices) and transferred to the processor.
  • the communication device further includes a communication interface, which is used to communicate with modules external to the communication device.
  • the communication device may be a chip or a chip system.
  • the communication device may be composed of a chip or may include a chip and other discrete devices. This is not specifically limited in the embodiments of the present application.
  • This application also provides a computer-readable storage medium on which a computer program or instructions are stored. When the computer program or instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Components shown as units may or may not be physical units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • computer program instructions When computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:第一终端设备确定第一资源,并通过该第一终端设备的唤醒接收机在第一资源的部分或全部资源上监听唤醒信号。该唤醒信号用于唤醒第一终端设备的主接收机。其中,第一资源包括X个唤醒信号波束,X为小于N的正整数,N为同步信号块SSB波束的数目。也就是说,WUS波束的方向小于SSB波束的方向,相比于二者相同的方案,可以减少WUS波束的搜索空间,从而降低终端设备监听和接收WUS的功耗。

Description

一种通信方法及装置
本申请要求于2022年08月09日提交国家知识产权局、申请号为202210950417.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
通信系统中,分组数据业务往往是突发的,数据传输偶尔活跃一段时间后会保持更长时间的静默。从延迟的角度来看,终端设备时刻监听物理下行控制信道(physical downlink control channel,PDCCH),以接收上行调度或下行数据,所产生的时延是最小的。但是,时刻监听PDCCH会导致巨大的功耗。
为了解决时延和功耗的矛盾,新空口(new radio,NR)中引入了非连续接收(discontinuous reception,DRX)、唤醒信号(wake-up signal,WUS)、寻呼预先指示(paging early identification)等机制,用于降低终端设备的功耗。
为了更进一步降低终端设备的功耗,NR开始研究唤醒接收机(wake-up receiver,WUR)。终端设备可以通过WUR进行监听,监听到WUS后可以打开主接收机进行数据收发等。因此,如何实现WUR上的低功耗WUS监听,是目前亟待解决的问题。
发明内容
本申请提供一种通信方法及装置,能够降低终端设备监听唤醒信号WUS的功耗。
第一方面,提供了一种通信方法,该方法可以由第一终端设备执行,也可以由第一终端设备的部件,例如第一终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一终端设备功能的逻辑模块或软件实现。该方法包括:确定第一资源,并通过第一终端设备的唤醒接收机在第一资源的部分或全部资源上监听唤醒信号,该唤醒信号用于唤醒第一终端设备的主接收机。其中,第一资源包括X个唤醒信号WUS波束,X为小于N的正整数,N为同步信号块SSB波束的数目。
基于该方案,WUS波束的数目小于SSB波束的数目。也就是说,WUS波束的方向小于SSB波束的方向,相比于二者相同的方案,可以减少WUS波束的搜索空间,从而降低终端设备监听WUS的功耗。
在一种可能的设计中,X个WUS波束包括第一WUS波束,第一WUS波束的方向与N个SSB波束中的至少一个SSB波束的方向对应。
基于该可能的设计,由于第一WUS波束的方向与至少一个SSB波束的方向存在对应关系,因此,终端设备可以基于其检测到的SSB波束的方向确定WUS波束的方向。后续可以在其确定的WUS波束方向上监听WUS,无需在所有SSB波束的方向上进行WUS监听,从而可以降低终端设备的功耗。
在一种可能的设计中,该方法还包括:接收来自网络设备的第一信息,第一信息指示第一WUS波束的方向和至少一个SSB波束的方向的对应关系。
在一种可能的设计中,X个WUS波束的方向与N个SSB波束中信号强度最强的前X个SSB波束的方向对应。
基于该可能的设计,由于X个WUS波束的方向与SSB波束中信号强度最强的前X个SSB波束的方向对应,因此,终端设备可以基于信道强度最强的前X个SSB波束的方向确定WUS波束的方向。后续可以在其确定的WUS波束方向上监听WUS,无需在所有SSB波束的方向上进行WUS监听,从而可以降低终端设备的功耗。示例性的,该X个WUS波束的方向可以和信号强度最强的前X个SSB波束的方向相同。
在一种可能的设计中,该方法还包括:确定N个SSB波束各自的信号强度;向网络设备发送第二信息。其中,第二信息指示N个SSB波束各自的信号强度,或者,第二信息指示X个SSB波束的索引。
基于该可能的设计,可以使得网络设备获知第一终端设备对应的WUS波束的方向,从而在需要发送WUS的情况下,在该波束方向上向第一终端设备发送WUS。
在一种可能的设计中,确定第一资源,包括:在第一时间段内测量服务小区的参考信号,得到参考信号的信号质量。在参考信号的信号质量大于第一阈值的情况下,确定第一资源。
基于该可能的设计,该参考信号的信号质量大于第一阈值时,表示终端设备的移动性较低或静止,对 于终端设备来说,对准该终端设备的SSB波束或WUS波束的方向仅发生微小的变化或不会发生变化。该场景下,基于本申请提供的SSB波束和WUS波束的对应关系,能够更准确的根据SSB波束的方向确定WUS波束的方向,或者根据WUS波束的方向确定SSB波束的方向,从而提高接收效率。
在一种可能的设计中,第一终端设备的工作频段属于频率范围2。
第二方面,提供了一种通信方法,该方法可以由第一终端设备执行,也可以由第一终端设备的部件,例如第一终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一终端设备功能的逻辑模块或软件实现。该方法包括:确定第二资源,通过第一终端设备的唤醒接收机在第二资源上监听唤醒信号,该唤醒信号用于唤醒第一终端设备的主接收机。其中,第二资源包括时域周期资源,时域周期资源位于第一周期内的第一时期,第一周期还包括第二时期,第一时期用于唤醒接收机监听唤醒信号,第二时期用于主接收机收发信号。
基于该方案,一方面,第一周期内的第一时期用于唤醒接收机监听唤醒信号,第二时期用于主接收机收发信号或者用于传统终端,使得网络设备在分配时域资源时能够兼容传统终端,提高适用性。此外,唤醒接收机在第一周期内的部分时间段内监听唤醒信号,相比于唤醒接收机总是打开以监听唤醒信号的方案,可以减少唤醒信号的监听时间,节省终端设备的功耗。另一方面,进一步的,第一时期内的时域周期资源用于唤醒接收机监听唤醒信号,即终端设备可以通过唤醒接收机在第一时期内周期性的监听唤醒信号,在第一时期内的其他时间,唤醒接收机可以休眠,从而进一步节省终端设备的功耗。
在一种可能的设计中,第一终端设备的功耗类型为低功耗时,时域周期资源的周期为第一数值。第一终端设备的功耗类型为极低功耗时,时域周期资源的周期为第二数值,第二数值大于第一数值。
基于该可能的设计,可以为极低功耗类型的终端设备配置较大的WUS监听周期,以减少WUS监听时间,从而进一步降低该终端设备的功耗。
在一种可能的设计中,该方法还包括:向网络设备发送第三信息,第三信息指示第一终端设备的功耗类型,功耗类型包括低功耗或极低功耗。
在一种可能的设计中,该方法还包括:接收来自网络设备的指示信息,指示信息指示以下至少一项:第一周期、第一时期的时长、第二时期的时长、或时域周期资源的周期。
结合第一方面或第二方面,在一种可能的设计中,该方法还包括:接收指示信息,该指示信息可以指示:唤醒信号中不携带信息,或者,唤醒信号中携带以下至少一项:终端设备的标识、系统信息变更指示、系统信息调度信息、(变更后的)系统信息、或偏移信息。其中,偏移信息指示唤醒信号和寻呼时机之间的时间偏移。
结合第一方面或第二方面,在一种可能的设计中,唤醒信号包括第一字段。第一字段的状态为第一状态时,唤醒信号不包括除第一字段之外的字段,或者,唤醒信号还包括偏移信息,偏移信息指示唤醒信号和寻呼时机之间的时间偏移;
第一字段的状态为第二状态时,唤醒信号还包括终端设备的标识;
第一字段的状态为第三状态时,唤醒信号还包括系统信息变更指示或系统信息调度信息;
第一字段的状态为第四状态时,唤醒信号还包括系统信息。
结合第一方面或第二方面,在一种可能的设计中,该方法还包括:第一字段的状态为第一状态时,根据偏移信息唤醒主接收机。
基于该可能的设计,第一字段的状态为第一状态时,主接收机被唤醒,由于主接收机可以采用调制阶数较高的调制方式进行信息调制,因此可以提高寻呼效率。此外,一个PO可以对应多个终端设备,终端设备通过主接收机在PO上进行监听时,网络设备可以在该PO上发送多个终端设备的寻呼信息等,从而提高系统容量。
结合第一方面或第二方面,在一种可能的设计中,该方法还包括:第一字段的状态为第二状态时,在唤醒信号包括第一终端设备的标识的情况下,唤醒主接收机。
基于该可能的设计,终端设备无需频繁唤醒主接收机,只有在确认网络设备对自身发起寻呼时,才唤醒主接收机进行随机接入,可以节省主接收机的功耗。
结合第一方面或第二方面,在一种可能的设计中,该方法还包括:第一字段的状态为第三状态时,获取系统信息变更指示或系统信息调度信息后,唤醒主接收机。
基于该可能的设计,若唤醒信号包括系统信息变更指示,终端设备无需在PO中进行监听即可获知系统信息发生了变更,即可以使得终端设备提前获知系统信息发生变更,在唤醒主接收机后可以直接接收SIB1以接收变更后的系统信息,降低系统信息的接收时延。此外,终端设备无需通过主接收机在PO中进 行监听,也可以节省主接收机的功耗。
若唤醒信号包括系统信息调度信息,终端设备无需在PO中进行监听,并且无需接收SIB1即可获知系统信息调度信息,在唤醒主接收机后可以根据该系统信息调度信息接收变更后的系统信息,降低系统信息的接收时延。此外,终端设备无需通过主接收机在PO中进行监听,也无需通过AIB1获取系统信息调度信息,可以节省主接收机的功耗。
结合第一方面或第二方面,在一种可能的设计中,该方法还包括:第一字段的状态为第四状态时,获取系统信息。
基于该可能的设计,可以极大降低系统信息的接收时延。此外,还可以降低主接收机的唤醒次数和时间,节省终端设备的功耗。
结合第一方面或第二方面,在一种可能的设计中,该方法还包括:第一字段的状态为第四状态时,确定不唤醒主接收机。
第三方面,提供了一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:确定X个唤醒信号WUS波束的方向与N个同步信号块SSB波束的方向的对应关系,X为小于N的正整数;向第一终端设备发送指示信息,该指示信息指示X个WUS波束的方向与N个SSB波束的方向的对应关系。
基于该方案,一方面,WUS波束的数目小于SSB波束的数目,可以减少WUS波束的搜索空间,从而降低终端设备监听WUS的功耗。另一方面,由于对于一个终端设备,WUS波束的数量相较于SSB波束的数量较小,使得网络设备可以在其他SSB波束方向上向其他终端设备发送信号,从而提升系统容量。再一方面,对于一个终端设备,WUS波束的数量较小,相当于WUS重复发送的次数较小,相比于通过N个WUS波束发送N次WUS,占用的资源减少,从而本申请的方案也可以提高WUS的数据传输速率。
在一种可能的设计中,X个WUS波束包括第一WUS波束,第一WUS波束的方向与N个SSB波束中的至少一个SSB波束的方向对应。
在一种可能的设计中,该指示信息包括第一WUS波束的方向与N个SSB波束中的至少一个SSB波束的方向的对应关系。
在一种可能的设计中,X个WUS波束的方向与N个SSB波束中信号强度最强的前X个SSB波束的方向对应。
在一种可能的设计中,该指示信息包括WUS波束的数目X。
在一种可能的设计中,该方法还包括:接收来自第一终端设备的第二信息,根据该第二信息确定X个WUS波束的方向。其中,第二信息指示N个SSB波束各自的信号强度,或者,第二信息指示N个SSB波束中信号强度最强的前X个SSB波束。
在一种可能的设计中,该方法还包括:向第一终端设备配置上报类型,该上报类型包括信号强度或SSB波束的索引。
其中,第三方面的任一可能的设计所带来的技术效果可参考上述第一方面中的相应设计所带来的技术效果,在此不再赘述。
第四方面,提供了一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:确定第二资源,向第一终端设备发送指示信息,该指示信息指示第二资源。其中,第二资源包括时域周期资源,时域周期资源位于第一周期内的第一时期,第一周期还包括第二时期,第一时期用于唤醒接收机监听唤醒信号,唤醒信号用于唤醒主接收机,第二时期用于主接收机收发信号。其中,第四方面所带来的技术效果可参考上述第二方面所带来的技术效果,在此不再赘述。
在一种可能的设计中,第一终端设备的功耗类型为低功耗时,时域周期资源的周期为第一数值。第一终端设备的功耗类型为极低功耗时,时域周期资源的周期为第二数值,第二数值大于第一数值。
在一种可能的设计中,该方法还包括:接收来自第一终端设备的第三信息,根据第三信息确定时域周期资源的周期。其中,第三信息指示第一终端设备的功耗类型,功耗类型包括低功耗或极低功耗。
在一种可能的设计中,指示信息包括以下至少一项:第一周期、第一时期的时长、第二时期的时长、或时域周期资源的周期。
在一种可能的设计中,唤醒信号包括第一字段;第一字段的状态为第一状态时,唤醒信号不包括除第一字段之外的字段,或者,唤醒信号还包括偏移信息,偏移信息指示唤醒主接收机的时间偏移;
第一字段的状态为第二状态时,唤醒信号还包括终端设备的标识;
第一字段的状态为第三状态时,唤醒信号还包括系统信息变更指示或系统信息调度信息;
第一字段的状态为第四状态时,唤醒信号还包括系统信息。
其中,第四方面的任一可能的设计所带来的技术效果可参考上述第二方面中的相应设计所带来的技术效果,在此不再赘述。
第五方面,提供了一种通信装置用于实现各种方法。该通信装置可以为第一方面或第二方面中的第一终端设备,或者第一终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第三方面或第四方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。所述通信装置包括实现方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括处理模块和收发模块。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。收发模块可以包括接收模块和发送模块,分别用以实现上述任一方面及其任意可能的实现方式中的接收功能和发送功能。
在一些可能的设计中,收发模块可以由收发电路,收发机,收发器或者通信接口构成。
第六方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行任一方面所述的方法。该通信装置可以为第一方面或第二方面中的第一终端设备,或者第一终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第三方面或第四方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。
第七方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行任一方面所述的方法。该通信装置可以为第一方面或第二方面中的第一终端设备,或者第一终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第三方面或第四方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。
第八方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为第一方面或第二方面中的第一终端设备,或者第一终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第三方面或第四方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当其在通信装置上运行时,使得通信装置可以执行任一方面所述的方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行任一方面所述的方法。
第十一方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现任一方面中所涉及的功能。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。
在一些可能的设计中,该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
可以理解的是,第五方面至第十一方面中任一方面提供的通信装置是芯片时,通信装置的发送动作/功能可以理解为输出信息,通信装置的接收动作/功能可以理解为输入信息。
其中,第五方面至第十一方面中任一种设计方式所带来的技术效果可参见第一方面或第二方面或第三方面或第四方面中不同设计方式所带来的技术效果,在此不再赘述。
附图说明
图1为本申请提供的一种通信系统的结构示意图;
图2a为本申请提供的一种网络设备的结构示意图;
图2b为本申请提供的另一种网络设备的结构示意图;
图2c为本申请提供的一种终端设备的结构示意图;
图3为本申请提供的一种SSB波束扫描的示意图;
图4为本申请提供的一种PEI监听和指示的示意图;
图5为本申请提供的一种通信方法的流程示意图;
图6为本申请提供的一种SSB波束和WUS波束的对应关系示意图;
图7为本申请提供的另一种通信方法的流程示意图;
图8为本申请提供的另一种SSB波束和WUS波束的对应关系示意图;
图9为本申请提供的又一种通信方法的流程示意图;
图10为本申请提供的一种第二资源的示意图;
图11为本申请提供的一种通信装置的结构示意图;
图12为本申请提供的另一种通信装置的结构示意图;
图13为本申请提供的又一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“…时”、“当…时”以及“若”均指在某种客观情况下会做出相应的处理,并非是限定时间,且也不要求实现时要有判断的动作,也不意味着存在其它限定。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例根据其内在的逻辑关系可以组合形成新的实施例。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
本申请提供的技术方案可用于各种通信系统,该通信系统可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统,例如,第四代(4th generation,4G)长期演进(long term evolution,LTE)系统、演进的LTE系统(LTE-Advanced,LTE-A)系统、第五代(5th generation,5G)新无线(new radio,NR)系统、车联网(vehicle to everything,V2X)系统、LTE和NR混合组网的系统、或者设备到设备(device-to-device,D2D)系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of things,IoT),以及其他下一代通信系统等。或者,该通信系统也可以为非3GPP通信系统,不予限制。
其中,上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
如图1所示,为本申请提供的一种可能的通信系统的结构示意图。图1中以该通信系统包括至少一个网络设备110,以及与该网络设备110连接的一个或多个终端设备120为例进行说明。应理解,图1中的终端设备和网络设备的数量仅是举例,还可以更多或者更少。
可选的,本申请实施例中的网络设备110,是一种将终端设备120接入到无线网络的设备,所述网络设备110可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。
例如,网络设备可以包括LTE系统或LTE-A系统中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB。或者,可以包括NR系统中的下一代节点B(next generation node B,gNB)。或者,可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池(BBU pool),或无线保真(wireless fidelity,WiFi)接入点(access point,AP)等。或者,可以包括NTN中的基站,即可以部署于高空平台或者卫星,在NTN中,网络设备可以作为层1(L1)中继(relay),或者可以作为基站,或者可以作为DU,或者可以作为接入回传一体化(integrated access and backhual,IAB)节点。或者,网络设备可以是IoT中实现基站功能的设备,例如V2X、D2D、或者机器到机器(machine to machine,M2M)中实现基站功能的设备,本申请实施例并不限定。
可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、家庭基站、TRP、发射点(transmitting point,TP)、移动交换中心等,本申请实施例对此不作具体限定。
可选的,作为一种可能的部署形态,如图2a所示,网络设备可以包括集中式单元(central unit,CU)和/或分布式单元(distributed unit,DU)。进一步的,网络设备还可以包括有源天线单元(active antenna unit,AAU)(图2a中未示出)。
可选的,CU可以实现网络设备的部分功能,DU实现网络设备的另一部分功能。例如,CU可以负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)、分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU可以负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层层和物理(physical,PHY)层的功能。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。
可选的,AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因此在该架构下,高层信令(如RRC层信令)也可以认为是由DU发送的,或者,由DU和AAU发送的。
进一步的,如图2b所示,还可以将CU的控制面(CU control plane,CU-CP)和用户面(CU user plane,CU-UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
可选的,在图2a或图2b所示的网络设备结构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端设备或CU。
可选的,本申请实施例中的终端设备120,可以是用于实现无线通信功能的用户侧设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者5G之后演进的公共陆地移动网络(public land mobile network,PLMN)中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。或者,终端可以是IoT中具有通信功能的终端,例如V2X中的终端(例如车联网设备)、D2D通信中的终端、或者M2M通信中的终端等。终端可以是移动的,也可以是固定的。
如图2c所示,本申请中的终端设备具备(或支持)唤醒接收机(wake-up receiver,WUR)和主接收机。其中,WUR具备信号接收功能,进一步的,还可以具备信号发送功能。主接收机具备信号收发功能。
可选的,WUR和主接收机之间可以相互通信。终端设备可以通过WUR监听唤醒信号(wake-up signal,WUS),监听到WUS后可以打开主接收机进行信号收发。主接收机的功耗高于WUR的功耗。
可选的,WUR和主接收机可以是终端设备的两个功能模块,或者,可以是终端设备的两个实体。在硬 件实现上,WUR和主接收机可以共享一套硬件资源,或者,可以共享部分硬件资源,或者,可以由两套独立的硬件资源实现,本申请对此不作具体限定。
本申请实施例中,WUR也可以称为WUR链路,主接收机也可以称为主链路。具备WUR和主接收机的终端设备可以称为双连接终端或双连接终端设备。当然,也可以有其他名称,本申请对此不作具体限定。
下面将结合附图,对本申请实施例提供的方法进行展开说明。可以理解的,本申请实施例中,网络设备或终端设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
示例性的,本申请下述实施例提供的方法可以应用于WUS监听的场景。当然,此处仅是示例性的对本申请的应用场景进行说明,该应用场景对本申请不造成任何限定,本申请对下述提供的方法的应用场景也不作具体限定,例如还可以用于其他信号的监听,或者其他涉及信号的场景。
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
1、同步信号块(synchronization signal block,SSB):
主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、和物理广播信道(physical broadcast channel,PBCH)可以合称为SSB。
在NR系统中,网络设备可以通过波束扫描的方式发送SSB,即以时分复用的方式在不同波束上发送多个SSB。示例性的,如图3所示,网络设备可以在不同波束上发送SSB 0至SSB N。通过波束扫描发送的多个SSB可以称为同步信号(synchronization signal,SS)突发集(SS burst set)。例如,图3中的SSB0至SSB N可以称为一个同步信号突发集。
波束可以理解为一种通信资源。形成波束的技术可以是波束赋形技术或者其他技术手段。不同的波束可以认为是不同的资源。
波束在协议中具体地可以通过各种信号(或资源)的索引来表示,例如通过信道状态信息参考信号(channel state information reference signal,CSI-RS)的资源索引、SSB索引,探测参考信号(sounding reference signal,SRS)的资源索引,跟踪参考信号(tracking reference signal,TRS)的资源索引等表示。
此外,波束在协议中的体现还可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter),或称空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),或准共址(quasi Co-location,QCL)信息,QCL假设,QCL指示等。波束可以通过传输配置指示(transmission configuration indication,TCI)状态(TCI-state)参数来指示,或通过空间关系(spatial relation)参数来指示。因此,本申请中,波束也可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI-state,或空间关系等。上述术语之间也相互等效。本申请中的波束也可以替换为其他表示波束的术语,本申请不作限定。
本申请中,将用于发送SSB的波束称为SSB波束。SSB波束可以通过SSB索引、QCL信息,QCL假设,QCL指示,TCI-state,或空间关系等来表示。
2、寻呼(paging):
在移动通信网络中,网络对终端设备的寻呼通常分为两类,一类用于通过寻呼(Paging)消息通知处于无线资源控制(radio resource control,RRC)空闲态或RRC非激活态的终端设备进行随机接入,从而使得该终端设备进入RRC连接态,以便后续进行数据通信;另一类用于通过短消息通知终端设备接收系统信息。
示例性的,系统信息可以包括承载在系统信息块(system information block,SIB)6、SIB7、或SIB8上的公共安全告警信息,或者包括承载在除SIB6、SIB7和SIB8之外的其他SIB上的信息。公共安全告警信息例如可以包括地震海啸告警系统(earthquake and tsunami warning system,ETWS)信息、商业移动警示服务(commercial mobile alert service,CMAS)信息等。
终端设备可以在寻呼时机(paging occasion,PO)中接收由寻呼无线网络临时标识(paging radio network temporary identifier,P-RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH),根据该PDCCH中的寻呼下行控制信息(downlink control information,DCI)接收系统信息或物理下行共享信道(physical downlink share channel,PDSCH)中的寻呼消息。
寻呼DCI中可以包括2比特(bit)的短消息指示字段,该短消息字段的定义可以如表1所示。
表1

在寻呼DCI中携带短消息的情况下,该短消息可以通过8比特的短消息字段承载。该短消息指示字段的定义可以如表2所示。
表2
其中,BCCH表示广播控制信道(broadcast control channel,BCCH)。DRX指非连续接收(discontinuous reception,DRX)。
在短消息指示系统信息发生更新时,终端设备可以从SIB1中获取系统信息调度信息(SI scheduling information,SI-SchedulingInfo),再根据系统信息调度信息中的配置,接收用于调度系统信息的DCI,之后根据该DCI接收更新后的系统信息。
3、寻呼早期指示(paging early identification,PEI):
PEI用于指示其对应的PO中是否存在寻呼消息。在一个或多个PO之前,网络设备可以向终端设备发送PEI,用于告知终端设备该一个或多个PO中是否包括该终端设备的寻呼消息。如果PEI指示一个或多个PO中不包括该终端设备的寻呼消息,终端设备可以跳过该一个或多个PO的监听,并进入睡眠状态以达到节能的目的。如果PEI指示还指示一个或多个PO中包括该终端设备的寻呼消息,终端设备需要监听该一个或多个PO。
示例性的,如图4所示,假设PEI监听时机1对应PO1、PO2、PO3、和PO4。若PEI监听时机1中监听到的PEI指示该4个PO中不包括终端设备的寻呼消息,那么终端设备将进入睡眠状态,不在该4个PO中进行监听。若PEI监听时机1中监听到的PEI指示该4个PO中包括终端设备的寻呼消息,终端设不需要在该4个PO中进行监听。
目前,网络设备采用与SSB准共址的方式发送PEI。即,若网络设备在N个波束方向上发送SSB,那么也在相同的N个波束方向上发送PEI。
对于NR版本18提出的WUR,若要实现WUR的监听功耗低于主接收机睡眠状态的功耗,WUR需要采用开关键控(on-off keying,OOK)、频移键控(frequency-shift keying,FSK)等支持低功耗接收的调制方式。然而,OOK等调制方式的数据速率较低,因此,对于同样大小的信息,相比于QPSK等高阶调制方式,采用OOK等调制方式发送时需要更长的时间,即需要终端设备花费更长的时间接收。该场景下,若参考PEI技术,采用与SSB准共址的方式发送WUS,需要终端设备在较多方向花费更长的时间进行监听,从而导致终端设备的监听功耗较高。
基于此,本申请提供一种通信方法,通过对WUS的传输资源的设计,可以减少终端设备监听WUS的时间,从而实现终端设备节能。
如图5所示,为本申请提供的一种通信方法,该方法包括:
S501、第一终端设备确定第一资源。
其中,该第一资源包括X个WUS波束。X为小于N的正整数,N为SSB波束的数目,N为正整数。也就是说,本申请实施例中,WUS波束的数目小于SSB波束的数目。示例性的,WUS波束可以理解为用于发送WUS的波束。WUS波束可以使用WUS的索引表示。
可选的,SSB波束的数目和网络设备实际发送的SSB的数目相同。示例性的,该数目N可以根据SIB1中的参数ssb-PositionInBurst确定。
可选的,WUS波束的数目X可以是网络设备向第一终端设备通知的,例如,网络设备可以通过RRC信令或DCI向第一终端设备指示该数目X。或者,WUS波束的数目X可以是协议定义的。或者,WUS波束的数目X可以是第一终端设备自主确定的,该场景下,第一终端设备还可以向网络设备上报该WUS波束的数目X。本申请对此不做具体限定。
可选的,该X个WUS波束和该N个SSB波束之间可以存在如下两种对应情况:
情况一、一个WUS波束的方向与M个SSB波束的方向对应,M为正整数。M大于1时,即一个WUS波束的方向与多个SSB波束的方向对应。
也就是说,假设X个WUS波束中包括第一WUS波束,该第一WUS波束的方向与N个SSB波束中的至少一个SSB波束的方向对应。该第一WUS波束可以是X个WUS波束中的任意一个WUS波束。
可选的,一个WUS波束的方向与M个SSB波束的方向对应,可以理解为:该WUS波束的方向可以根据该M个SSB波束的方向确定,或者说,该WUS波束的方向是该M个SSB波束的方向的函数。示例性的,WUS波束的方向角可以通过M个SSB波束的方向角线性表示。例如,WUS波束的方向角等于M个SSB波束的方向角的平均值。以WUS波束的方向角为θ0,M个SSB波束的方向角分别为θ12,…θM为例,当M=2,θ1=0°,θ2=90°时,θ0=(θ12)/2=45°。获知WUS波束的方向角后,可以根据该方向角确定WUS波束对应的天线中相邻单元连接的移相器的相位差其中,相位差和波束的方向角之间的关系为λ为波长,d为相邻单元之间的距离。
可选的,波束的方向具体可以由接收参数、空域参数、空间参数、空域设置、空间设置等参数表示,本申请对此不做具体限定。
需要说明的是,本申请中,WUS波束的方向与SSB波束的方向对应,也可以描述为:WUS波束与SSB波束对应。二者可以相互替换,本申请对此不做具体限定。
作为一种可能的实现,该X个WUS波束中不同的WUS波束的方向对应的SSB波束的方向不重叠。
示例性的,以SSB波束的数目N等于4,WUS波束的数目X等于2为例,如图6所示,SSB1和SSB2的波束方向可以对应WUS1的波束方向,SSB3和SSB4的波束方向可以对应WUS2的波束方向。图6中,每个部分的椭圆形数目表示波束的总数,使用黑色填充的椭圆形表示某个SSB波束或WUS波束的方向。例如图6中所示,SSB1的波束方向为0°,SSB2的波束方向为90°等。
需要说明的是,图6仅是对N等于4,X等于2时,SSB波束和WUS波束的对应关系的一种示例性说明。此外,该4个SSB波束和2个WUS波束的对应关系还可以如表3所示。
表3
其中,对应关系1表示SSB1和SSB3的波束方向对应WUS1的波束方向,SSB2和SSB4的波束方向对应WUS2的波束方向。对应关系2表示SSB1和SSB4的波束方向对应WUS1的波束方向,SSB2和SSB3的波束方向对应WUS2的波束方向。
作为另一种可能的实现,该X个WUS波束中不同的WUS波束的方向对应的SSB波束的方向存在重叠。
示例性的,以SSB波束的数目N等于4,WUS波束的数目X等于2为例,该4个SSB波束的方向和2个WUS波束的方向的对应关系可以包括但不限于:SSB1、SSB2、和SSB3的波束方向对应WUS1的波束方向,SSB2、SSB3、和SSB4的波束方向对应WUS2的波束方向。
需要说明的是,N等于4,X等于2仅是本申请对N和X取值的一种示例性说明,N和X还可以有其他取值。例如,N等于16,X等于2;或者,N等于16,X等于1;或者,N等于8,X等于2;或者,N等于8,X等于1;或者,N等于4,X等于1等,本申请对N和X的取值不做具体限定。
可选的,该可能的实现中,X个WUS波束的方向与N个SSB波束的方向之间的对应关系可以是协议定义的。或者,可以是网络设备向第一终端设备指示的。该场景下,如图7所示,该步骤S501之前还可 以包括:
S500a、网络设备确定X个WUS波束的方向与N个SSB波束的方向的对应关系。
S500b、网络设备向第一终端设备发送指示信息。相应的,第一终端设备接收来自网络设备的指示信息。
其中,该指示信息指示X个WUS波束的方向与N个SSB波束的方向的对应关系。
在一个WUS波束的方向与M个SSB波束的方向对应的情况下,假设X个WUS波束包括第一WUS波束,该指示信息中可以包括第一信息,该第一信息可以指示第一WUS波束的方向和M个SSB波束的方向的对应关系。
示例性的,该指示信息可以以列表的形式实现,例如,指示信息可以包括类似于上述表3的表格来指示每个WUS波束的方向对应的M个SSB波束的方向。或者,该指示信息可以以键值对的形式实现,例如,指示信息可以包括:{SSB1,SSB2:WUS1}、{SSB3,SSB4:WUS2},以指示上述图6所示的对应关系。当然,该指示信息还可以通过其他形式实现,本申请对此不做具体限定。
可选的,该场景下,上述步骤S501具体可以为:第一终端设备根据指示信息确定X个WUS波束。示例性的,网络设备可以在系统信息中向第一终端设备发送N个SSB的相关配置,从而第一终端设备可以获知N个SSB波束的索引、方向等信息。收到指示信息后,结合N个SSB的相关信息,第一终端设备即可以根据指示信息获知X个WUS波束的信息。
此外,该场景下,网络设备可以根据SSB波束的方向和上述对应关系确定X个WUS波束的方向,后续在需要向第一终端设备发送WUS时,可以在该X个WUS波束上向第一终端设备发送WUS。
情况二、X个WUS波束的方向与N个SSB波束中信号强度最强的前X个SSB波束的方向对应。即X个WUS波束的方向与该X个SSB波束的方向一一对应。
可选的,该情况二中,WUS波束的方向与SSB波束的方向对应,可以理解为:WUS波束的方向与该SSB波束的方向相同。或者,WUS波束的方向与该SSB波束的方向之间的差值小于某个阈值。
示例性的,以SSB波束的数目N等于4,WUS波束的数目X等于2为例,如图8所示,假设4个SSB波束中,信号强度最强的两个SSB波束为SSB1的波束和SSB2的波束,那么,WUS1的波束方向和SSB1的波束方向对应(例如相同),WUS2的波束方向和SSB2的波束方向对应(例如相同)。
可选的,该可能的实现中,X个WUS波束的方向与N个SSB波束的方向之间的对应关系可以是协议定义的。或者,可以是网络设备向第一终端设备指示的。该场景下,如图7所示,该步骤S501之前还可以包括:
S500a、网络设备确定X个WUS波束的方向与N个SSB波束的方向的对应关系。
S500b、网络设备向第一终端设备发送指示信息。相应的,第一终端设备接收来自网络设备的指示信息。
其中,该步骤S500a和步骤S500b的实现与情况一中的步骤S500a和步骤S500b的实现类似,区别在于:在情况二中,指示信息可以包括WUS波束的数目X。第一终端设备收到该指示信息后,即可获知X个WUS波束的方向与N个SSB波束中信号强度最强的前X个SSB波束的方向对应。
可选的,在步骤S501之前,第一终端设备可以对N个SSB波束进行测量,确定该N个SSB波束各自的信号强度,并按照信号强度由大到小的顺序对该N个SSB波束的信号强度排序,得到排名前X的SSB波束,该X个SSB波束即为信号强度最强的前X个SSB。
可选的,SSB波束的信号强度可以通过参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)等参数表示,本申请对此不做具体限定。
可选的,第一终端设备还可以向网络设备发送第二信息。相应的,网络设备接收来自第一终端设备的第二信息。其中,该第二信息指示N个SSB波束各自的信号强度,或者,指示信号强度最强的前X个SSB波束的索引。SSB波束的索引可以理解为SSB的索引,二者可以相互替换。
可选的,网络设备可以向第一终端设备配置上报类型,该上报类型可以为信号强度,此时,第二信息可以指示N个SSB波束各自的信号强度。或者,该上报类型可以为SSB波束的索引,此时,第二信息可以指示该X个SSB波束的索引。
可选的,网络设备收到第二信息后,可以根据第二信息确定X个WUS波束的方向。后续需要向第一终端设备发送WUS时,网络设备可以在该X个WUS波束上向第一终端设备发送WUS。
S502、第一终端设备通过唤醒接收机在第一资源的部分或全部资源上监听唤醒信号。该唤醒信号用于唤醒第一终端设备的主接收机。
可选的,在X个WUS波束和N个SSB波束之间的对应情况为上述情况一时,第一终端设备可以确定信号质量大于或等于第二阈值的SSB波束对应的WUS波束,从而通过唤醒接收机在在该WUS波束上监听唤醒信号。即第一终端设备通过唤醒接收机在第一资源的部分资源上监听唤醒信号。
示例性的,基于图6所示的示例,若信号质量大于或等于第二阈值的SSB波束为SSB1的波束和SSB2的波束,那么第一终端设备可以在WUS1的波束上监听WUS,不在WUS2的波束上监听WUS。
可选的,第二阈值可以是协议预定义的;或者,可以是网络设备配置的;或者,可以是第一终端设备自行确定的,本申请对此不做具体限定。此外,本申请实施例还涉及第一阈值,将在后续实施例中说明,在此不予赘述。
可选的,在X个WUS波束和N个SSB波束之间的对应情况为上述情况一时,第一终端设备也可以通过唤醒接收机在第一资源的全部资源上监听唤醒信号,本申请对此不做具体限定。
可选的,在X个WUS波束和N个SSB波束之间的对应情况为上述情况二时,第一终端设备可以通过唤醒接收机在第一资源的全部资源上监听唤醒信号。
可选的,若第一终端设备通过唤醒接收机监听到WUS,则第一终端设备可以唤醒主接收机。后续可以根据网络设备的调度通过主接收机收发信号。
基于该方案,一方面,WUS波束的数目小于SSB波束的数目,也就是说,WUS波束的方向小于SSB波束的方向,相比于二者相同的方案,可以减少WUS波束的搜索空间,从而降低终端设备监听和接收WUS的功耗。
另一方面,基于X个WUS波束和N个SSB波束的对应关系,终端设备可以基于其搜索到的WUS波束确定SSB波束的方向,相比于终端设备在全部SSB波束方向上搜索SSB波束,可以减少SSB波束的搜索和接收功耗,由于SSB需要通过主接收机监听和接收,因此,可以降低主接收机的功耗。
示例性的,基于图6所示的对应关系,假设终端设备在WUS1的波束方向上监听到WUS,或者WUS1的波束方向上WUS的信号质量大于某个阈值,后续,终端设备即可在WUS1对应的SSB1和SSB2的波束方向上监听和接收SSB,在SSB3和SSB4的波束方向上不进行SSB的监听和接收。
再一方面,由于对于一个终端设备,WUS波束的数量相较于SSB波束的数量较小,使得网络设备可以在其他SSB波束方向上向其他终端设备发送信号,从而提升系统容量。此外,对于一个终端设备,WUS波束的数量较小,相当于WUS重复发送的次数较小,相比于通过N个WUS波束发送N次WUS,占用的资源减少,从而本申请的方案也可以提高WUS的数据传输速率。
可选的,图5所示的方法可以应用于终端设备的移动性较低或终端设备静止的场景。示例性的,终端设备在一段时间内测量得到的服务小区的参考信号的信号质量大于或等于门限值1时,可以认为终端设备的移动性较低。该段时间内测量得到的服务小区的参考信号的信号质量大于或等于门限值2时,可以认为终端设备静止。示例性的,该段时间内的服务小区的参考信号的信号质量可以是该段时间内的参考信号的平均信号质量。
其中,门限值2大于门限值1。该门限值1和门限值2可以是协议定义的;或者,可以是网络设备配置的,本申请对此不作具体限定。
可选的,终端设备或网络设备可以在确定终端设备的移动性较低或静止的场景下,执行上述图5所示的方法。也就是说,上述步骤S501具体可以为:终端设备在第一时间段内测量服务小区的参考信号,得到该参考信号的信号质量;在该参考信号的信号质量大于第一阈值的情况下,确定第一资源。其中,第一阈值可以为上述门限值1或门限值2。
可选的,终端设备得到第一时间段内参考信号的信号质量后,可以向网络设备发送该参考信号的信号质量;或者,可以向网络设备指示该参考信号的信号质量是否大于第一阈值。网络设备可以根据终端设备的上报,确定是否执行图5所示的方法。
可选的,参考信号的信号质量可以通过RSRP、RSRQ等表示,本申请对此不作具体限定。
基于该方案,终端设备的移动性较低或静止的情况下,对于终端设备来说,对准该终端设备的SSB波束或WUS波束的方向仅发生微小的变化或不会发生变化。该场景下,基于本申请提供的SSB波束和WUS波束的对应关系,能够更准确的根据SSB波束的方向确定WUS波束的方向,或者根据WUS波束的方向确定SSB波束的方向,从而提高接收效率。
可选的,第一终端设备的工作频段可以属于频率范围2。此外,第一终端设备可以通过模拟域波束接收的方式工作。基于该方式,第一终端设备无需执行复杂的模数转换过程,通过简单的移相器即可调整接收波束方向,以接收WUS波束,从而可以实现低功耗接收。
上述图5所示的方法可以理解为对WUS空域资源的设计。此外,本申请还提供一种通信方法对WUS时域资源进行设计。如图9所示,该方法包括如下步骤:
S901、第一终端设备确定第二资源。
其中,该第二资源包括时域周期资源。该时域周期资源位于第一周期内的第一时期。第一周期还包括第二周期。该第一时期可以用于唤醒接收机监听唤醒信号。第二时期用于主接收机收发信号。
换句话说,本申请中可以将第一周期内的时域资源分为两部分,其中一部分可以分配给唤醒接收机,用于唤醒接收机监听唤醒信号。另一部分可以分配给主接收机,用于主接收机收发信号。此外,该另一部分时域资源还可以分配不支持唤醒接收机的传统(legacy)终端设备。
可选的,该第一周期可以称为外层DRX周期或第一DRX周期。第一周期内的第一时期可以称为激活时期或活动态时期。第一周期内的第二时期可以称为非激活时期或睡眠时期或非活动态时期。当然,第一周期、第一时期、和第二时期也可以有其他名称,本申请对此不做具体限定。
示例性的,如图10所示,第一周期包括第一时期和第二时期,第一时期内包括时域周期资源。终端设备可以在该时域周期资源上监听唤醒信号。
可选的,该时域周期资源可以理解为内层DRX机制。即,第一终端设备可以通过唤醒接收机在该时域周期资源内监听唤醒信号。在第一时期内除该周期资源外的其他时期,第一终端设备的唤醒接收机可以休眠,从而节省唤醒接收机的功耗。示例性的,该时域周期资源的周期可以称为内层DRX周期或第二DRX周期。
可选的,该时域周期资源的周期可以为第二周期。第二周期的取值可以根据第一终端设备的功耗类型确定。示例性的,第一终端设备的功耗类型为低功耗时,第二周期的取值可以为第一数值;第一终端设备的功耗类型为极低功耗时,第二周期的取值可以为第二数值。其中,第二数值大于第一数值。
也就是说,相比于低功耗类型的终端设备,可以为极低功耗类型的终端设备配置较大的监听周期,减少终端设备的监听时间,从而节省终端设备的功耗。
可选的,终端设备的功耗类型(包括低功耗或极低功耗)可以是终端设备出厂时的默认配置,终端设备通过读取该默认配置,即可获知自身的功耗类型。或者,终端设备的功耗类型可以根据用户的设置确定。例如,用户开启终端设备的省电模式时,该终端设备的功耗类型为极低功耗;用户关闭终端设备的省电模式时,例如用户设置终端设备处于性能模式,该终端设备的功耗类型可以为低功耗。或者,终端设备的功耗类型可以根据终端设备的剩余电量确定。例如,剩余电量小于或等于20%时,终端设备的功耗类型可以为极低功耗;剩余电量大于20%时,终端设备的功耗类型可以为低功耗。
可选的,第二资源可以是网络设备向第一终端设备配置的。该场景下,在步骤S901之前,本申请提供的方法还可以包括如下步骤:
S900a、网络设备确定第二资源。
可选的,网络设备确定第二资源可以包括,网络设备确定以下至少一项:第一周期、第一时期的时长、第二时期的时长、或第二周期。
可选的,第二周期可以是网络设备根据第一终端设备的功耗类型确定的。该场景下,第一终端设备可以向网络设备发送第三信息。相应的,网络设备接收来自第一终端设备的第三信息。其中,该第三信息可以指示第一终端设备的功耗类型。网络设备收到第三信息后,可以根据第三信息确定第二周期。例如,在终端设备的类型为低功耗时,确定第二周期的取值为第一数值;在终端设备的类型为极低功耗时,确定第二周期的取值为第二数值。
可选的,该第三信息可以是随机接入过程中上报的,例如,第一终端设备可以在随机接入中的消息1(Msg1)、消息3(Msg3)、或消息A(MsgA)中上报的。
或者,该第三信息可以携带在辅助信息中。网络设备可以通过RRC重配信令下发辅助信息配置。第一终端设备接收到该信令后按照对应的配置上报辅助信息。相较于一次性静态的终端设备能力上报,辅助信息的上报可以动态变化。例如,网络设备可以配置第一终端设备周期性上报辅助信息,或者在第一终端设备的功耗类型发生变化时上报辅助信息。
或者,第三信息可以是第一终端设备的功耗类型发生变化后,第一终端设备上报的。例如,用户开启终端设备的省电模式时,该终端设备的功耗类型由低功耗变为极低功耗,那么第一终端设备可以向网络设备上报该第三信息。
S900b、网络设备向第一终端设备发送指示信息。相应的,第一终端设备接收来自网络设备的指示信息。
其中,该指示信息指示第二资源。示例性的,指示信息可以指示以下至少一项:第一周期、第一时期的时长、第二时期的时长、或第二周期。
可选的,网络设备可以在第一终端设备的主接收机对应的资源(或链路)上发送该指示信息。该场景下,指示信息可以携带在随机接入中的消息2(Msg2)、消息4(Msg4)、或消息B(MsgB)中;或者,指示信息可以携带在PDCCH上的DCI中。
网络设备也可以在第一终端设备的唤醒接收机对应的资源(或链路)上发送该指示信息。该场景下,指示信息可以携带在WUS中。第一终端设备收到该指示信息后,可以根据WUS中携带的该指示信息调整WUS的监听时间等。
可选的,该场景下,上述步骤S901具体可以为:第一终端设备根据指示信息确定第二资源。
S902、第一终端设备通过唤醒接收机在第二资源上监听唤醒信号。该唤醒信号用于唤醒第一终端设备的主接收机。
即,第一终端设备可以通过唤醒接收机在第一时期内的时域周期资源上周期性监听唤醒信号。在第一时期内的其他时间,唤醒接收机可以休眠。此外,在第二时期,唤醒接收机也可以休眠。
可选的,若第一终端设备通过唤醒接收机监听到WUS,则第一终端设备可以唤醒主接收机。后续可以根据网络设备的调度通过主接收机收发信号。
基于该方案,一方面,第一周期内的第一时期用于唤醒接收机监听唤醒信号,第二时期用于主接收机收发信号或者用于传统终端,使得网络设备在分配时域资源时能够兼容传统终端,提高适用性。此外,唤醒接收机在第一周期内的部分时间段内监听唤醒信号,相比于唤醒接收机总是打开(always on)以监听唤醒信号的方案,可以减少唤醒信号的监听时间,节省终端设备的功耗。
另一方面,进一步的,第一时期内的时域周期资源用于唤醒接收机监听唤醒信号,即终端设备可以通过唤醒接收机在第一时期内周期性的监听唤醒信号,在第一时期内的其他时间,唤醒接收机可以休眠,从而进一步节省终端设备的功耗。
需要说明的是,上述图5和图9所示的方法可以独立使用,即二者之间不存在依赖关系。或者,可以结合使用,例如,WUS的空域资源可以为上述图5所示方法中的第一资源,WUS的时域资源可以为上述图9所示方法中的第二资源。
以上,对唤醒信号的空域资源和时域资源进行了说明。下面,将对本申请提供的唤醒信号中携带的内容,或者说,唤醒信号的组成(或帧结构)进行说明。
可选的,唤醒信号可以包括以下至少一项:指示信息、终端设备的标识、系统信息变更指示、系统信息调度信息、(变更后的)系统信息、或偏移信息。
可选的,该指示信息可以指示唤醒信号携带的内容,或者说,指示唤醒信号的组成(或帧结构)。系统信息变更指示可以指示除SIB6、SIB7、SIB8外的BCCH中的系统信息发生更新。系统信息调度信息用于调度DCI,该DCI用于调度系统信息。
可选的,偏移信息指示唤醒信号和PO之间的时间偏移(offset)。当唤醒信号中包括偏移信息时,终端设备可以在收到唤醒信号后延迟唤醒主接收机,延迟的时长即为该偏移信息指示的时间偏移。
可选的,该偏移信息可以包括两级偏移,例如,包括无线帧级别的偏移和时隙级别的偏移。该场景下,指示信息指示的时间偏移长度即为无线帧级别的偏移时长加上时隙级别的偏移时长。基于该两级偏移,可以使得唤醒主接收机的时间偏移的精度较为宽松,更适用于唤醒接收机的时钟精度。
可选的,在唤醒信号中包括指示信息的情况下,上述指示信息可以通过唤醒信号中的第一字段承载(即唤醒信号包括第一字段),第一字段的不同状态可以理解为指示信息的不同指示。
可选的,第一字段的状态为第一状态时,唤醒信号不包括除第一字段之外的字段。换句话说,唤醒信号仅包括第一字段,或者说,唤醒信号仅包括第一字段承载的指示信息。或者,第一字段的状态为第一状态时,唤醒信号还包括上述偏移信息。
第一字段的状态为第二状态时,唤醒信号还包括终端设备的标识。
第一字段的状态为第三状态时,唤醒信号还包括系统信息变更指示或系统信息调度信息。
第一字段的状态为第四状态时,唤醒信号还包括系统信息。示例性的,该系统信息可以为更新后的系统信息,例如,公共安全告警信息,或除SIB6、SIB7、SIB8外的其他SIB中承载的系统信息发生变更后的信息。
即,第一字段的不同状态及其指示的唤醒信号携带的内容,或唤醒信号的组成(或帧结构),可以如表4所示。
表4
可选的,上述第一字段的状态可以通过第一字段的取值表示。第一字段的大小(size)可以为2比特。此时,示例性的,第一字段的取值为“00”时可以表示第一字段的第一状态;取值“01”可以表示第一字段的第二状态;取值“10”可以表示第一字段的第三状态;取值“11”可以表示第一字段的第四状态。当然,取值“00”也可以表示其他状态,例如第二状态或第三状态或第四状态等,本申请对此不作具体限定。
需要说明的是,本申请并不限定第一字段一定存在上述四种状态,例如,第一字段的状态可以仅包括上述四种状态中的至少一个。此时,第一字段的大小也不一定是2比特。例如,第一字段的上述第一状态和第二状态存在,第三状态和第四状态不存在,第一字段的大小可以为1比特。
上述以第一字段的不同状态表示指示信息的不同指示(即通过比特状态实现指示信息),为例进行说明。此外,该指示信息也可以通过其他显式方式实现,本申请对此不作具体限定。
可选的,第一终端设备还可以第一字段的不同状态执行不同的操作。示例性的:
第一字段的状态为第一状态时,若唤醒信号不包括除第一字段之外的字段,第一终端设备在监听到唤醒信号后,可以立即唤醒主接收机,并通过主接收机在PO上进行监听。若唤醒信号还包括偏移信息,第一终端设备可以根据偏移信息唤醒主接收机,并通过主接收在PO上进行监听。例如,第一终端设备可以在收到唤醒信号后延迟唤醒主接收机,延迟的时长即为该偏移信息指示的时间偏移。
可选的,网络设备可以在广播寻呼场景下,在唤醒信号中不携带第一字段外的字段,或携带偏移信息,使得终端设备唤醒主接收机,并通过主接收机在PO上进行监听。由于主接收机可以采用调制阶数较高的调制方式进行信息调制,因此可以提高寻呼效率。此外,一个PO可以对应多个终端设备,终端设备通过主接收机在PO上进行监听时,网络设备可以在该PO上发送多个终端设备的寻呼信息等,从而提高系统容量。
第一字段的状态为第二状态时,在唤醒信号包括第一终端设备的标识的情况下,第一终端设唤醒其主接收机。
可选的,第一终端设备可以获取唤醒信号中携带的终端设备的标识,在该标识为第一终端设备的标识时,表示网络对该第一终端设备发起了寻呼。该场景下,第一终端设备可以唤醒主接收机。后续,第一终端设备可以通过主接收机在随机接入信道(random access channel,RACH)上进行随机接入(random access,RA),以响应网络的寻呼。
基于该处理,终端设备无需频繁唤醒主接收机,只有在确认网络设备对自身发起寻呼时,才唤醒主接收机进行随机接入,可以节省主接收机的功耗。
第一字段的状态为第三状态时,第一终端设备获取系统信息变更指示或系统信息调度信息后,唤醒主接收机。
可选的,若唤醒信号包括系统信息变更指示,第一终端设备监听到唤醒信号并获取该系统信息变更指示后,可以唤醒主接收机。后续,第一终端设备可以通过主接收机接收SIB1,获取SIB1中的系统信息调度信息,再根据系统信息调度信息接收变更后的系统信息。
基于该处理,终端设备无需在PO中进行监听即可获知系统信息发生了变更,即可以使得终端设备提前获知系统信息发生变更,在唤醒主接收机后可以直接接收SIB1以接收变更后的系统信息,降低系统信息的接收时延。此外,终端设备无需通过主接收机在PO中进行监听,也可以节省主接收机的功耗。
若唤醒信号包括系统信息调度信息,第一终端设备监听到唤醒信号并获取该系统信息调度信息后,可以唤醒主接收机。后续,第一终端设备可以根据该系统信息调度信息接收变更后的系统信息。
基于该处理,终端设备无需在PO中进行监听,并且无需接收SIB1即可获知系统信息调度信息,在唤醒主接收机后可以根据该系统信息调度信息接收变更后的系统信息,降低系统信息的接收时延。此外,终端设备无需通过主接收机在PO中进行监听,也无需通过AIB1获取系统信息调度信息,可以节省主接收机的功耗。
第一字段的状态为第四状态时,第一终端设备可以获取系统信息。该系统信息可以理解为变更后的系统信息。
示例性的,该系统信息为公共安全告警信息,例如地震、海啸等告警信息时,第一终端设备可以通过短信、震动、响铃等方式向用户发起预警。
可选的,若唤醒信号包括系统信息,第一终端设备监听到唤醒信号并获取该系统信息后,可以确定不唤醒主接收机,即,即使第一终端设备监听到唤醒信号,在该唤醒信号包括系统信息的情况下,第一终端设备可以不唤醒主接收机。
基于该处理,可以极大降低系统信息的接收时延。此外,还可以降低主接收机的唤醒次数和时间,节省终端设备的功耗。
上述说明以指示信息携带在唤醒信号中为例进行描述。此外,该指示信息也可以不携带在唤醒信号中。示例性的,网络设备可以在发送唤醒信号之前向第一终端设备发送该指示信息,以指示唤醒信号中携带的内容。此时,该指示信息可以指示:唤醒信号中不携带信息,或者,唤醒信号中携带以下至少一项:终端设备的标识、系统信息变更指示、系统信息调度信息、(变更后的)系统信息、或偏移信息。
可选的,在唤醒信号中携带的信息或唤醒信号的组成发生变化后,网络设备可以重新向第一终端设备发送该指示信息,以指示变化后的唤醒信号的组成。也就是说,第一终端设备可以根据其最新接收到的指示信息确定后续其监听的唤醒信号的组成。
可选的,在指示信息指示唤醒信号不携带信息或携带偏移信息时,终端设备的处理可参考上述第一字段的状态为第一状态时的相关说明。在指示信息指示唤醒信号携带终端设备的标识时,终端设备的处理可参考上述第一字段的状态为第二状态时的相关说明。在指示信息指示唤醒信号携带系统信息变更指示或系统信息调度信息时,终端设备的处理可参考上述第一字段的状态为第三状态时的相关说明。在指示信息指示唤醒信号携带系统信息时,终端设备的处理可参考上述第一字段的状态为第四状态时的相关说明。
需要说明的是,上述对唤醒信号携带的内容的设计,可以和图5或图9所示的方法结合使用。或者,可以不依赖于图5或图9所示的方法单独使用,本申请对此不作具体限定。
可以理解的是,以上各个实施例中,由网络设备实现的方法和/或步骤,也可以由可用于该网络设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件例如芯片或者电路)实现;由第一终端设备实现的方法和/或步骤,也可以由可用于该第一终端设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件例如芯片或者电路)实现。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通信装置图11示出了一种通信装置110的结构示意图。该通信装置110包括处理模块1101和收发模块1102。该通信装置110可以用于实现上述第一网络设备或接收设备的功能。
在一些实施例中,该通信装置110还可以包括存储模块(图11中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块1102,也可以称为收发单元用以实现发送和/或接收功能。该收发模块1102可以由收发电路、收发机、收发器或者通信接口构成。
在一些实施例中,收发模块1102,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由第一网络设备或接收设备执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块1101,可以用于执行上述方法实施例中由第一网络设备或接收设备执行的处理类(例如确定、生成等)的步骤,和/或用于支持本文所描述的技术的其它过程。
在该通信装置110用于实现上述第一终端设备的功能时:
作为第一种可能的实现,处理模块1101,用于确定第一资源。收发模块1102,用于通过唤醒接收机在第一资源的部分或全部资源上监听唤醒信号,该唤醒信号用于唤醒主接收机。其中,第一资源包括X个唤醒信号WUS波束,X为小于N的正整数,N为同步信号块SSB波束的数目。
可选的,X个WUS波束包括第一WUS波束,第一WUS波束的方向与N个SSB波束中的至少一个SSB波束的方向对应。
可选的,收发模块1102,还用于接收来自网络设备的第一信息,第一信息指示第一WUS波束的方向和至少一个SSB波束的方向的对应关系。
可选的,X个WUS波束的方向与N个SSB波束中信号强度最强的前X个SSB波束的方向对应。
可选的,处理模块1101,还用于确定N个SSB波束各自的信号强度。收发模块1102,还用于向网络设备发送第二信息。其中,第二信息指示N个SSB波束各自的信号强度,或者,第二信息指示X个SSB波束的索引。
可选的,处理模块1101,用于确定第一资源,包括:处理模块1101,用于在第一时间段内测量服务小区的参考信号,得到参考信号的信号质量。处理模块1101,还用于在参考信号的信号质量大于第一阈值的情况下,确定第一资源。
作为第二种可能的实现,处理模块1101,用于确定第二资源。收发模块1102,用于通过唤醒接收机在第二资源上监听唤醒信号,该唤醒信号用于唤醒主接收机。其中,第二资源包括时域周期资源,时域周期资源位于第一周期内的第一时期,第一周期还包括第二时期,第一时期用于唤醒接收机监听唤醒信号,第二时期用于主接收机收发信号。
可选的,第一终端设备的功耗类型为低功耗时,时域周期资源的周期为第一数值。第一终端设备的功耗类型为极低功耗时,时域周期资源的周期为第二数值,第二数值大于第一数值。
可选的,收发模块1102,还用于向网络设备发送第三信息,第三信息指示第一终端设备的功耗类型,功耗类型包括低功耗或极低功耗。
可选的,收发模块1102,还用于接收来自网络设备的指示信息,指示信息指示以下至少一项:第一周期、第一时期的时长、第二时期的时长、或时域周期资源的周期。
可选的,收发模块1102,还用于接收指示信息,该指示信息可以指示:唤醒信号中不携带信息,或者,唤醒信号中携带以下至少一项:终端设备的标识、系统信息变更指示、系统信息调度信息、(变更后的)系统信息、或偏移信息。其中,偏移信息指示唤醒信号和寻呼时机之间的时间偏移。
可选的,唤醒信号包括第一字段。第一字段的状态为第一状态时,唤醒信号不包括除第一字段之外的字段,或者,唤醒信号还包括偏移信息,偏移信息指示唤醒信号和寻呼时机之间的时间偏移;
第一字段的状态为第二状态时,唤醒信号还包括终端设备的标识;
第一字段的状态为第三状态时,唤醒信号还包括系统信息变更指示或系统信息调度信息;
第一字段的状态为第四状态时,唤醒信号还包括系统信息。
可选的,第一字段的状态为第一状态时,处理模块1101,还用于根据偏移信息唤醒主接收机;
第一字段的状态为第二状态时,处理模块1101,还用于在唤醒信号包括第一终端设备的标识的情况下,唤醒主接收机;
第一字段的状态为第三状态时,处理模块1101,还用于在获取系统信息变更指示或系统信息调度信息后,唤醒主接收机;
第一字段的状态为第四状态时,处理模块1101,还用于获取系统信息。
可选的,第一字段的状态为第四状态时,处理模块1101,还用于确定不唤醒主接收机。
在该通信装置110用于实现上述网络设备的功能时:
作为第一种可能的实现,处理模块1101,用于确定X个唤醒信号WUS波束的方向与N个同步信号块SSB波束的方向的对应关系,X为小于N的正整数。收发模块1102,用于向第一终端设备发送指示信息,该指示信息指示X个WUS波束的方向与N个SSB波束的方向的对应关系。
可选的,X个WUS波束包括第一WUS波束,第一WUS波束的方向与N个SSB波束中的至少一个SSB波束的方向对应。
可选的,该指示信息包括第一WUS波束的方向与N个SSB波束中的至少一个SSB波束的方向的对应关系。
可选的,X个WUS波束的方向与N个SSB波束中信号强度最强的前X个SSB波束的方向对应。
可选的,该指示信息包括WUS波束的数目X。
可选的,收发模块1102,用于接收来自第一终端设备的第二信息。处理模块1101,还用于根据该第二信息确定X个WUS波束的方向。其中,第二信息指示N个SSB波束各自的信号强度,或者,第二信息指示N个SSB波束中信号强度最强的前X个SSB波束。
可选的,收发模块1102,还用于向第一终端设备配置上报类型,该上报类型包括信号强度或SSB波束的索引。
作为第二种可能的实现,处理模块1101,用于确定第二资源。收发模块1102,用于向第一终端设备发送指示信息,该指示信息指示第二资源。其中,第二资源包括时域周期资源,时域周期资源位于第一周期内的第一时期,第一周期还包括第二时期,第一时期用于唤醒接收机监听唤醒信号,唤醒信号用于唤醒主接收机,第二时期用于主接收机收发信号。
可选的,第一终端设备的功耗类型为低功耗时,时域周期资源的周期为第一数值。第一终端设备的功耗类型为极低功耗时,时域周期资源的周期为第二数值,第二数值大于第一数值。
可选的,收发模块1102,还用于接收来自第一终端设备的第三信息。处理模块1101,还用于根据第三信息确定时域周期资源的周期。其中,第三信息指示第一终端设备的功耗类型,功耗类型包括低功耗或极低功耗。
可选的,指示信息包括以下至少一项:第一周期、第一时期的时长、第二时期的时长、或时域周期资源的周期。
可选的,唤醒信号包括第一字段;第一字段的状态为第一状态时,唤醒信号不包括除第一字段之外的字段,或者,唤醒信号还包括偏移信息,偏移信息指示唤醒主接收机的时间偏移;
第一字段的状态为第二状态时,唤醒信号还包括终端设备的标识;
第一字段的状态为第三状态时,唤醒信号还包括系统信息变更指示或系统信息调度信息;
第一字段的状态为第四状态时,唤醒信号还包括系统信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该通信装置110可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,当图11中的通信装置110是芯片或芯片系统时,收发模块1102的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,处理模块1101的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的通信装置110可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的第一终端设备或网络设备,还可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
作为另一种可能的产品形态,本申请实施例所述的第一终端设备或网络设备,可以由一般性的总线体系结构来实现。为了便于说明,参见图12,图12是本申请实施例提供的通信装置1200的结构示意图,该通信装置1200包括处理器1201和收发器1202。该通信装置1200可以为网络设备,或其中的芯片或芯片系统;或者,该通信装置1200可以为第一终端设备,或其中的芯片或模块。图12仅示出了通信装置1200的主要部件。除处理器1201和收发器1202之外,所述通信装置还可以进一步包括存储器1203、以及输入输出装置(图未示意)。
可选的,处理器1201主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1203主要用于存储软件程序和数据。收发器1202可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
可选的,处理器1201、收发器1202、以及存储器1203可以通过通信总线连接。
当通信装置开机后,处理器1201可以读取存储器1203中的软件程序,解释并执行软件程序的指令, 处理软件程序的数据。当需要通过无线发送数据时,处理器1201对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1201,处理器1201将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到上述通信装置110可以采用图12所示的通信装置1200的形式。
作为一种示例,图11中的处理模块1101的功能/实现过程可以通过图12所示的通信装置1200中的处理器1201调用存储器1203中存储的计算机执行指令来实现。图11中的收发模块1102的功能/实现过程可以通过图12所示的通信装置1200中的收发器1202来实现。
作为又一种可能的产品形态,本申请中的网络设备或第一终端设备可以采用图13所示的组成结构,或者包括图13所示的部件。图13为本申请提供的一种通信装置1300的组成示意图,该通信装置1300可以为第一终端设备或者第一终端设备中的芯片或者片上系统;或者,可以为网络设备或者网络设备中的模块或芯片或片上系统。
如图13所示,该通信装置1300包括至少一个处理器1301,以及至少一个通信接口(图13中仅是示例性的以包括一个通信接口1304,以及一个处理器1301为例进行说明)。可选的,该通信装置1300还可以包括通信总线1302和存储器1303。
处理器1301可以是一个通用中央处理器(central processing unit,CPU)、通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器1301还可以是其它具有处理功能的装置,例如电路、器件或软件模块,不予限制。
通信总线1302用于连接通信装置1300中的不同组件,使得不同组件可以通信。通信总线1302可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口1304,用于与其他设备或通信网络通信。示例性的,通信接口1304可以模块、电路、收发器或者任何能够实现通信的装置。可选的,所述通信接口1304也可以是位于处理器1301内的输入输出接口,用以实现处理器的信号输入和信号输出。
存储器1303,可以是具有存储功能的装置,用于存储指令和/或数据。其中,指令可以是计算机程序。
示例性的,存储器1303可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或其他磁存储设备等,不予限制。
需要指出的是,存储器1303可以独立于处理器1301存在,也可以和处理器1301集成在一起。存储器1303可以位于通信装置1300内,也可以位于通信装置1300外,不予限制。处理器1301,可以用于执行存储器1303中存储的指令,以实现本申请下述实施例提供的方法。
作为一种可选的实现方式,通信装置1300还可以包括输出设备1305和输入设备1306。输出设备1305和处理器1301通信,可以以多种方式来显示信息。例如,输出设备1305可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备1306和处理器1301通信,可以以多种方式接收用户的输入。例如,输入设备1306可以是鼠标、键盘、触摸屏设备或传感设备等。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到上述图11所示的通信装置110可以采用图13所示的通信装置1300的形式。
作为一种示例,图11中的处理模块1101的功能/实现过程可以通过图13所示的通信装置1300中的处理器1301调用存储器1303中存储的计算机执行指令来实现。图11中的收发模块1102的功能/实现过程可以通过图13所示的通信装置1300中的通信接口1304来实现。
需要说明的是,图13所示的结构并不构成对网络设备或终端设备的具体限定。比如,在本申请另一些实施例中,网络设备或终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
在一些实施例中,本申请实施例还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的计算机程序和数据。该计算机程序可以包括指令,处理器可以调用存储器中存储的计算机程序中的指令以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片系统,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机程序或指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例 性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (50)

  1. 一种通信方法,其特征在于,所述方法包括:
    确定第一资源,所述第一资源包括X个唤醒信号WUS波束,所述X为小于N的正整数,N为同步信号块SSB波束的数目;
    通过第一终端设备的唤醒接收机在所述第一资源的部分或全部资源上监听唤醒信号,所述唤醒信号用于唤醒所述第一终端设备的主接收机。
  2. 根据权利要求1所述的方法,其特征在于,所述X个WUS波束包括第一WUS波束,所述第一WUS波束的方向与所述N个SSB波束中的至少一个SSB波束的方向对应。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第一信息,所述第一信息指示所述第一WUS波束的方向和所述至少一个SSB波束的方向的对应关系。
  4. 根据权利要求1所述的方法,其特征在于,所述X个WUS波束的方向与所述N个SSB波束中信号强度最强的前X个SSB波束的方向对应。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    确定所述N个SSB波束各自的信号强度;
    向网络设备发送第二信息,所述第二信息指示所述N个SSB波束各自的信号强度,或者,所述第二信息指示所述X个SSB波束的索引。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述确定第一资源,包括:
    在第一时间段内测量服务小区的参考信号,得到所述参考信号的信号质量;
    在所述参考信号的信号质量大于第一阈值的情况下,确定所述第一资源。
  7. 一种通信方法,其特征在于,所述方法包括:
    确定第二资源,所述第二资源包括时域周期资源,所述时域周期资源位于第一周期内的第一时期,所述第一周期还包括第二时期,所述第一时期用于唤醒接收机监听唤醒信号,所述第二时期用于主接收机收发信号;
    通过第一终端设备的唤醒接收机在所述第二资源上监听所述唤醒信号,所述唤醒信号用于唤醒所述第一终端设备的主接收机。
  8. 根据权利要求7所述的方法,其特征在于,所述第一终端设备的功耗类型为低功耗时,所述时域周期资源的周期为第一数值;
    所述第一终端设备的功耗类型为极低功耗时,所述时域周期资源的周期为第二数值,所述第二数值大于所述第一数值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    向网络设备发送第三信息,所述第三信息指示所述第一终端设备的功耗类型,所述功耗类型包括低功耗或极低功耗。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的指示信息,所述指示信息指示以下至少一项:所述第一周期、所述第一时期的时长、所述第二时期的时长、或所述时域周期资源的周期。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述唤醒信号包括第一字段;
    所述第一字段的状态为第一状态时,所述唤醒信号不包括除所述第一字段之外的字段,或者,所述唤醒信号还包括偏移信息,所述偏移信息指示唤醒信号和寻呼时机之间的时间偏移;
    所述第一字段的状态为第二状态时,所述唤醒信号还包括终端设备的标识;
    所述第一字段的状态为第三状态时,所述唤醒信号还包括系统信息变更指示或系统信息调度信息;
    所述第一字段的状态为第四状态时,所述唤醒信号还包括系统信息。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第一字段的状态为所述第一状态时,根据所述偏移信息唤醒所述主接收机;
    所述第一字段的状态为所述第二状态时,在所述唤醒信号包括所述第一终端设备的标识的情况下,唤醒所述主接收机;
    所述第一字段的状态为所述第三状态时,获取所述系统信息变更指示或所述系统信息调度信息后,唤醒所述主接收机;
    所述第一字段的状态为所述第四状态时,获取所述系统信息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:所述第一字段的状态为所述第四状态时,确定不唤醒所述主接收机。
  14. 一种通信方法,其特征在于,所述方法包括:
    确定X个唤醒信号WUS波束的方向与N个同步信号块SSB波束的方向的对应关系,X为小于N的正整数;
    向第一终端设备发送指示信息,所述指示信息指示所述X个WUS波束的方向与所述N个SSB波束的方向的对应关系。
  15. 根据权利要求14所述的方法,其特征在于,所述X个WUS波束包括第一WUS波束,所述第一WUS波束的方向与所述N个SSB波束中的至少一个SSB波束的方向对应。
  16. 根据权利要求14所述的方法,其特征在于,所述X个WUS波束的方向与所述N个SSB波束中信号强度最强的前X个SSB波束的方向对应。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的第二信息,所述第二信息指示所述N个SSB波束各自的信号强度,或者,所述第二信息指示所述N个SSB波束中信号强度最强的前X个SSB波束;
    根据所述第二信息确定所述X个WUS波束的方向。
  18. 一种通信方法,其特征在于,所述方法包括:
    确定第二资源,所述第二资源包括时域周期资源,所述时域周期资源位于第一周期内的第一时期,所述第一周期还包括第二时期,所述第一时期用于唤醒接收机监听唤醒信号,所述唤醒信号用于唤醒主接收机,所述第二时期用于主接收机收发信号;
    向第一终端设备发送指示信息,所述指示信息指示所述第二资源。
  19. 根据权利要求18所述的方法,其特征在于,所述第一终端设备的功耗类型为低功耗时,所述时域周期资源的周期为第一数值;
    所述第一终端设备的功耗类型为极低功耗时,所述时域周期资源的周期为第二数值,所述第二数值大于所述第一数值。
  20. 根据权利要求18或19所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的第三信息,所述第三信息指示所述第一终端设备的功耗类型,所述功耗类型包括低功耗或极低功耗;
    根据所述第三信息确定所述时域周期资源的周期。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述指示信息包括以下至少一项:所述第一周期、所述第一时期的时长、所述第二时期的时长、或所述时域周期资源的周期。
  22. 根据权利要求14-21任一项所述的方法,其特征在于,所述唤醒信号包括第一字段;
    所述第一字段的状态为第一状态时,所述唤醒信号不包括除所述第一字段之外的字段,或者,所述唤醒信号还包括偏移信息,所述偏移信息指示唤醒所述主接收机的时间偏移;
    所述第一字段的状态为第二状态时,所述唤醒信号还包括终端设备的标识;
    所述第一字段的状态为第三状态时,所述唤醒信号还包括系统信息变更指示或系统信息调度信息;
    所述第一字段的状态为第四状态时,所述唤醒信号还包括系统信息。
  23. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于确定第一资源,所述第一资源包括X个唤醒信号WUS波束,所述X为小于N的正整数,N为同步信号块SSB波束的数目;
    所述收发模块,用于通过唤醒接收机在所述第一资源的部分或全部资源上监听唤醒信号,所述唤醒信号用于唤醒主接收机。
  24. 根据权利要求23所述的通信装置,其特征在于,所述X个WUS波束包括第一WUS波束,所述第一WUS波束的方向与所述N个SSB波束中的至少一个SSB波束的方向对应。
  25. 根据权利要求24所述的通信装置,其特征在于,
    所述收发模块,还用于接收来自网络设备的第一信息,所述第一信息指示所述第一WUS波束的方向和所述至少一个SSB波束的方向的对应关系。
  26. 根据权利要求23所述的通信装置,其特征在于,所述X个WUS波束的方向与所述N个SSB波束中信号强度最强的前X个SSB波束的方向对应。
  27. 根据权利要求26所述的通信装置,其特征在于,
    所述处理模块,还用于确定所述N个SSB波束各自的信号强度;
    所述收发模块,还用于向网络设备发送第二信息,所述第二信息指示所述N个SSB波束各自的信号强度,或者,所述第二信息指示所述X个SSB波束的索引。
  28. 根据权利要求23-27任一项所述的通信装置,其特征在于,所述处理模块,用于确定第一资源,包括:
    处理模块,用于在第一时间段内测量服务小区的参考信号,得到所述参考信号的信号质量;
    处理模块,还用于在所述参考信号的信号质量大于第一阈值的情况下,确定所述第一资源。
  29. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于确定第二资源,所述第二资源包括时域周期资源,所述时域周期资源位于第一周期内的第一时期,所述第一周期还包括第二时期,所述第一时期用于唤醒接收机监听唤醒信号,所述第二时期用于主接收机收发信号;
    所述收发模块,用于通过唤醒接收机在所述第二资源上监听所述唤醒信号,所述唤醒信号用于唤醒所述主接收机。
  30. 根据权利要求29所述的通信装置,其特征在于,所述通信装置的功耗类型为低功耗时,所述时域周期资源的周期为第一数值;
    所述通信装置的功耗类型为极低功耗时,所述时域周期资源的周期为第二数值,所述第二数值大于所述第一数值。
  31. 根据权利要求29或30所述的通信装置,其特征在于,
    所述收发模块,还用于向网络设备发送第三信息,所述第三信息指示所述通信装置的功耗类型,所述功耗类型包括低功耗或极低功耗。
  32. 根据权利要求29-31任一项所述的通信装置,其特征在于,
    所述收发模块,还用于接收来自网络设备的指示信息,所述指示信息指示以下至少一项:所述第一周期、所述第一时期的时长、所述第二时期的时长、或所述时域周期资源的周期。
  33. 根据权利要求23-32任一项所述的通信装置,其特征在于,所述唤醒信号包括第一字段;
    所述第一字段的状态为第一状态时,所述唤醒信号不包括除所述第一字段之外的字段,或者,所述唤醒信号还包括偏移信息,所述偏移信息指示唤醒信号和寻呼时机之间的时间偏移;
    所述第一字段的状态为第二状态时,所述唤醒信号还包括终端设备的标识;
    所述第一字段的状态为第三状态时,所述唤醒信号还包括系统信息变更指示或系统信息调度信息;
    所述第一字段的状态为第四状态时,所述唤醒信号还包括系统信息。
  34. 根据权利要求33所述的通信装置,其特征在于,
    所述第一字段的状态为所述第一状态时,所述处理模块,还用于根据所述偏移信息唤醒所述主接收机;
    所述第一字段的状态为所述第二状态时,所述处理模块,还用于在所述唤醒信号包括所述通信装置的标识的情况下,唤醒所述主接收机;
    所述第一字段的状态为所述第三状态时,所述处理模块,还用于获取所述系统信息变更指示或所述系统信息调度信息后,唤醒所述主接收机;
    所述第一字段的状态为所述第四状态时,所述处理模块,还用于获取所述系统信息。
  35. 根据权利要求34所述的通信装置,其特征在于,所述第一字段的状态为所述第四状态时,所述处理模块,还用于确定不唤醒所述主接收机。
  36. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于确定X个唤醒信号WUS波束的方向与N个同步信号块SSB波束的方向的对应关系,X为小于N的正整数;
    所述收发模块,用于向第一终端设备发送指示信息,所述指示信息指示所述X个WUS波束的方向与所述N个SSB波束的方向的对应关系。
  37. 根据权利要求36所述的通信装置,其特征在于,所述X个WUS波束包括第一WUS波束,所述第一WUS波束的方向与所述N个SSB波束中的至少一个SSB波束的方向对应。
  38. 根据权利要求36所述的通信装置,其特征在于,所述X个WUS波束的方向与所述N个SSB波束中信号强度最强的前X个SSB波束的方向对应。
  39. 根据权利要求38所述的通信装置,其特征在于,
    所述收发模块,还用于接收来自所述第一终端设备的第二信息,所述第二信息指示所述N个SSB波 束各自的信号强度,或者,所述第二信息指示所述N个SSB波束中信号强度最强的前X个SSB波束;
    所述处理模块,还用于根据所述第二信息确定所述X个WUS波束的方向。
  40. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于确定第二资源,所述第二资源包括时域周期资源,所述时域周期资源位于第一周期内的第一时期,所述第一周期还包括第二时期,所述第一时期用于唤醒接收机监听唤醒信号,所述唤醒信号用于唤醒主接收机,所述第二时期用于主接收机收发信号;
    所述收发模块,用于向第一终端设备发送指示信息,所述指示信息指示所述第二资源。
  41. 根据权利要求40所述的通信装置,其特征在于,所述第一终端设备的功耗类型为低功耗时,所述时域周期资源的周期为第一数值;
    所述第一终端设备的功耗类型为极低功耗时,所述时域周期资源的周期为第二数值,所述第二数值大于所述第一数值。
  42. 根据权利要求40或41所述的通信装置,其特征在于,
    所述收发模块,还用于接收来自所述第一终端设备的第三信息,所述第三信息指示所述第一终端设备的功耗类型,所述功耗类型包括低功耗或极低功耗;
    所述处理模块,还用于根据所述第三信息确定所述时域周期资源的周期。
  43. 根据权利要求40-42任一项所述的通信装置,其特征在于,所述指示信息包括以下至少一项:所述第一周期、所述第一时期的时长、所述第二时期的时长、或所述时域周期资源的周期。
  44. 根据权利要求36-43任一项所述的通信装置,其特征在于,所述唤醒信号包括第一字段;
    所述第一字段的状态为第一状态时,所述唤醒信号不包括除所述第一字段之外的字段,或者,所述唤醒信号还包括偏移信息,所述偏移信息指示唤醒所述主接收机的时间偏移;
    所述第一字段的状态为第二状态时,所述唤醒信号还包括终端设备的标识;
    所述第一字段的状态为第三状态时,所述唤醒信号还包括系统信息变更指示或系统信息调度信息;
    所述第一字段的状态为第四状态时,所述唤醒信号还包括系统信息。
  45. 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器,用于运行计算机程序或指令,以使所述通信装置执行如权利要求1-13任一项所述的方法。
  46. 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器,用于运行计算机程序或指令,以使所述通信装置执行如权利要求14-22任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有计算机指令或程序,当计算机指令或程序在计算机上运行时,使得如权利要求1-13任一项所述的方法被执行。
  48. 一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有计算机指令或程序,当计算机指令或程序在计算机上运行时,使得如权利要求14-22任一项所述的方法被执行。
  49. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令;当部分或全部所述计算机指令在计算机上运行时,使得如权利要求1-13任一项所述的方法被执行。
  50. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令;当部分或全部所述计算机指令在计算机上运行时,使得如权利要求14-22任一项所述的方法被执行。
PCT/CN2023/104189 2022-08-09 2023-06-29 一种通信方法及装置 WO2024032227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210950417.9A CN117676775A (zh) 2022-08-09 2022-08-09 一种通信方法及装置
CN202210950417.9 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024032227A1 true WO2024032227A1 (zh) 2024-02-15

Family

ID=89850721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104189 WO2024032227A1 (zh) 2022-08-09 2023-06-29 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117676775A (zh)
WO (1) WO2024032227A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831262A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 信号处理方法以及信号处理装置
WO2021114008A1 (en) * 2019-12-09 2021-06-17 Qualcomm Incorporated Wake-up signal techniques in wireless communications
WO2021162623A1 (en) * 2020-02-13 2021-08-19 Telefonaktiebolaget Lm Ericsson (Publ) Aspects of wus transmission in idle mode
CN114097280A (zh) * 2019-07-05 2022-02-25 瑞典爱立信有限公司 无线设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831262A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 信号处理方法以及信号处理装置
CN114097280A (zh) * 2019-07-05 2022-02-25 瑞典爱立信有限公司 无线设备
WO2021114008A1 (en) * 2019-12-09 2021-06-17 Qualcomm Incorporated Wake-up signal techniques in wireless communications
WO2021162623A1 (en) * 2020-02-13 2021-08-19 Telefonaktiebolaget Lm Ericsson (Publ) Aspects of wus transmission in idle mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (MEDIATEK): "Summary#2 of Paging Enhancements", 3GPP DRAFT; R1-2108398, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 20 August 2021 (2021-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052041759 *

Also Published As

Publication number Publication date
CN117676775A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
EP3667986B1 (en) Method and device for information transmission and reception
US20200029299A1 (en) System information transmission method and apparatus
US20220394526A1 (en) Communication method and apparatus
US20220352953A1 (en) Communication method and apparatus
WO2019191984A1 (zh) 一种信号发送方法、网络设备及终端设备
US20220338183A1 (en) Method and Apparatus for Transmitting Initial Access Configuration Information
US12010651B2 (en) Wireless communication method, terminal, and network device
WO2023125223A1 (zh) 下行传输的方法及装置
WO2018127764A1 (en) Explicit configuration of paging and control channel in system information
WO2022188105A1 (zh) 无线通信的方法及设备
WO2019192451A1 (zh) 通信方法和通信装置
WO2022267982A1 (zh) 一种通信方法以及相关装置
WO2024032227A1 (zh) 一种通信方法及装置
WO2022022340A1 (zh) 一种通信方法及装置
WO2019210507A1 (zh) 系统信息确定方法、装置及存储介质
WO2019041261A1 (zh) 一种通信方法及设备
WO2022082772A1 (zh) 一种数据传输方法和相关装置
WO2024032252A1 (zh) 一种通信方法及装置
WO2024051391A1 (zh) 一种通信的方法和通信装置
WO2023050206A1 (zh) 传输寻呼预先指示pei的方法、终端和网络设备
WO2022082538A1 (zh) 无线通信的方法和装置以及通信设备
WO2023023952A1 (zh) 通信方法及通信装置
WO2024012114A1 (zh) 通信方法及通信装置
WO2023016245A1 (zh) 一种通信方法及通信装置
WO2024034402A1 (en) Method, network controlled repeater, and access network node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851454

Country of ref document: EP

Kind code of ref document: A1