WO2024032110A1 - 一种用于控制血压的方法及设备 - Google Patents

一种用于控制血压的方法及设备 Download PDF

Info

Publication number
WO2024032110A1
WO2024032110A1 PCT/CN2023/097917 CN2023097917W WO2024032110A1 WO 2024032110 A1 WO2024032110 A1 WO 2024032110A1 CN 2023097917 W CN2023097917 W CN 2023097917W WO 2024032110 A1 WO2024032110 A1 WO 2024032110A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
user
model
time
module
Prior art date
Application number
PCT/CN2023/097917
Other languages
English (en)
French (fr)
Inventor
段世俊
徐浩杰
方彪
纪华雷
纪五丰
Original Assignee
宁波越凡医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波越凡医疗科技有限公司 filed Critical 宁波越凡医疗科技有限公司
Publication of WO2024032110A1 publication Critical patent/WO2024032110A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes

Definitions

  • the present application relates to a method and equipment for controlling blood pressure, which belongs to the technical field of health monitoring.
  • Blood pressure is one of the important physiological parameters of the human body. It can reflect the functional status of the human heart and blood vessels. It is an important basis for clinical judgment of diseases and observation of medical effects.
  • the blood pressure measurements used clinically mainly include office blood pressure, ambulatory blood pressure and home self-measurement blood pressure. Both office blood pressure and ambulatory blood pressure need to be measured in the hospital.
  • the former uses a traditional mercury sphygmomanometer or an automatic sphygmomanometer, which requires professional medical staff to operate or requires relatively large professional equipment.
  • the ambulatory sphygmomanometer used in the latter is portable, it is It is large in size, and cables must be wrapped around the patient's body, and the measurement is still done through cuff pressure measurement. It has low comfort and has a great impact on the user's normal life. Due to power, hygiene and other reasons, the continuous use time usually does not exceed 24 days. Hour.
  • the purpose of this application is to provide a method and equipment for controlling blood pressure, which can achieve stable monitoring of blood pressure in a complex environment and provide timely intervention and treatment.
  • this application provides a method for controlling blood pressure, including the following steps:
  • S1 Establish or retrieve the first model of pulse wave conduction time and blood pressure
  • S2 Obtain the user's blood pressure data and health parameter information, and establish a second model of the user's health parameter information and blood pressure;
  • step S3 Continuously monitor the user's pulse wave conduction time. If the user's pulse wave conduction time is collected within the T1 time, proceed to step S4; if the user's pulse wave conduction time is not collected within the T1 time, proceed to step S5;
  • step S4 Convert the pulse wave conduction time into blood pressure data in real time through the first model, and output the blood pressure data to step S6;
  • step S5 Continuously monitor the user's health parameter information, and convert the health parameter information into blood pressure data in real time through the second model; output the blood pressure data to step S6;
  • step S6 Analyze the output blood pressure data and determine whether the blood pressure data is within a safe range. If so, return to step S3. If not, perform electrical stimulation treatment on the user.
  • the health parameter information includes the user's constant parameters and at least one time-varying parameter collected by the health parameter collection module.
  • the coefficient parameters in the second model are automatically optimized after reaching the predetermined time t 1 and/or predetermined conditions, or are passively optimized after being triggered by the user.
  • the method for optimizing coefficient parameters includes training a network with blood pressure data obtained by the first model and blood pressure data obtained by the second model to optimize the coefficient parameters of the second model; and /Or, train the network through the blood pressure data obtained directly and the blood pressure data obtained through the second model to optimize the coefficient parameters of the second model.
  • the gears of the electrical stimulation treatment are provided with multiple levels according to the abnormality degree of the blood pressure data, and the electrical stimulation intensity and/or electrical stimulation frequency and/or electrical stimulation time and/or the multiple levels are Or the number of repeated electrical stimulations is different.
  • the gear of the electrical stimulation treatment is optimized according to the user's usage and/or after reaching the predetermined time t2 .
  • This application also provides a device for controlling blood pressure, including a wearable structure and a pulse wave sensing module, a health parameter collection module, an electrical stimulation module and a control module provided on the wearable structure.
  • the pulse wave The sensing module is used to collect the user's pulse wave signal in real time and transmit the pulse wave signal to the control module.
  • the health parameter collection module is used to collect the user's health parameter in real time and transmit the health parameter to the control module.
  • the electrical stimulation module is used to apply electrical stimulation to the user's limbs
  • the control module receives and analyzes the pulse wave signal and the health parameters, and controls the electrical stimulation module through the above-mentioned method for controlling blood pressure. Start or stop.
  • the health parameter collection module includes one or a combination of a heart rate sensor, a blood oxygen sensor, a temperature sensor, a motion sensor, a blood lipid sensor and a skin resistance sensor.
  • the device also includes a feedback module, which is communicatively connected with the pulse wave sensing module, the health parameter collection module and the control module to monitor the user's blood pressure changes in real time, and The blood pressure changes are fed back to the control module, and the control module adjusts the electrical stimulation intensity and/or electrical stimulation frequency and/or electrical stimulation time and/or the number of repetitions of the electrical stimulation module according to the feedback information from the feedback module.
  • a feedback module which is communicatively connected with the pulse wave sensing module, the health parameter collection module and the control module to monitor the user's blood pressure changes in real time, and The blood pressure changes are fed back to the control module, and the control module adjusts the electrical stimulation intensity and/or electrical stimulation frequency and/or electrical stimulation time and/or the number of repetitions of the electrical stimulation module according to the feedback information from the feedback module.
  • the device further includes a communication module, which sends the second model to the server to realize backup of the second model.
  • the device further includes a storage module configured to store constant value parameters of multiple users and a second model corresponding to each user.
  • the method for controlling blood pressure in this application uses the user's health information parameters to monitor blood pressure in real time when the user's pulse wave signal cannot be monitored, thereby ensuring that the user's blood pressure is monitored in complex situations.
  • Blood pressure data can be obtained stably in the environment, and the user's blood pressure abnormalities can be intervened in a timely manner to prevent them from worsening, forming a closed loop of blood pressure monitoring and blood pressure intervention.
  • Figure 1 is a flow chart of a method for controlling blood pressure in this application.
  • Figure 2 is a structural block diagram of a device for controlling blood pressure in this application.
  • Figure 3 is a logical block diagram of the establishment and optimization of the second model.
  • Pulse Wave Transit Time is the time for the blood pressure wave to travel along the blood vessel wall. This time is composed of the time from the beginning of the heart contraction to the opening of the aortic valve to the appearance of the blood pulsation in the aorta, and the time it is conducted through the blood vessels to the peripheral parts. PWTT parameters can be obtained from the ECG and pulse wave of the wrist. There are currently a large number of clinical trials that show that pulse wave conduction time is negatively correlated with blood pressure. When blood pressure is relatively high, the arterial wall becomes tense and the pulse wave transmission speed becomes slower. quick. When blood pressure is low, artery walls relax and pulse waves travel slower.
  • the changing relationship between pulse wave conduction time and blood pressure can be used to monitor blood pressure changes and blood pressure values within a certain error range.
  • the pulse wave conduction time itself has relatively high requirements on the measurement environment. There may be cases where the data cannot be monitored, and the user's blood pressure cannot be monitored in real time in complex environments.
  • the method for controlling blood pressure includes the following steps: S1: Establish or retrieve a first model of pulse wave conduction time and blood pressure; S2: Obtain the user's blood pressure data and health parameter information, and establish a second model of the user's health parameter information and blood pressure; S3: Continuously monitor the user If the user's pulse wave conduction time is collected within the T1 time, proceed to step S4; if the user's pulse wave conduction time is not collected within the T1 time, proceed to step S5; S4: Pulse wave conduction time The conduction time is converted into blood pressure data in real time through the first model, and the blood pressure data is output to step S6; S5: Continuously monitor the user's health parameter information, and convert the health parameter information into blood pressure data in real time through the second model; output the blood pressure data Go to step S6; S6: Analyze the output blood pressure data and determine whether the blood pressure data is within a safe range.
  • step S3. If so, return to step S3. If not, perform electrical stimulation treatment on the user.
  • the user's health information parameters can be used to monitor blood pressure in real time, thereby ensuring that blood pressure data can be obtained stably in complex environments, and timely intervention in the user's blood pressure abnormalities to prevent them. deterioration, forming a closed loop of blood pressure monitoring and blood pressure intervention.
  • This application also provides a device 100 for controlling blood pressure, including a wearable structure and a pulse wave sensing module 10, a health parameter collection module 20, and an electrical stimulation module arranged on the wearable structure. 40 and the control module 30.
  • the pulse wave sensing module 10 is used to collect the user's pulse wave signal in real time and transmit the pulse wave signal to the control module 30.
  • the health parameter collection module 20 is used to collect the user's health parameters in real time and transmit the health parameter to the control module 30. The parameters are transmitted to the control module 30.
  • the electrical stimulation module 40 is used to apply electrical stimulation to the user's limbs.
  • the control module 30 receives and analyzes the pulse wave signal and health parameters, and controls the activation of the electrical stimulation module 40 through the above-mentioned method for controlling blood pressure. or stop.
  • the device can monitor changes in blood pressure in real time in a complex environment, and when abnormal blood pressure is detected, timely intervention and treatment can be performed to prevent its deterioration, and treatment can be stopped in a timely manner after normal blood pressure is detected.
  • the following description takes the device 100 for controlling blood pressure as a wearable watch as an example for detailed description, but it should not be limited to this.
  • a wearable watch includes a wristband and a case coupled to the wristband.
  • the pulse wave sensing module 10, the health parameter collection module 20, the electrical stimulation module 40 and the control module 30 are built into the housing.
  • the pulse wave sensing module 10, the health parameter collection module 20 and the electrical stimulation module 40 are arranged in contact with the housing.
  • the pulse wave sensing module 10 is used to collect the user's pulse wave signal in real time and transmit the pulse wave signal to the control module 30.
  • the control module 30 calculates the blood pressure data through the first model and monitors the user's blood pressure changes in real time.
  • the health parameter acquisition module 20 is used to collect the user's health parameters in real time and transmit the health parameters to the control module 30.
  • the control module 30 uses the above health parameters to calculate the blood pressure data through the second model. , to continuously and stably monitor the user's blood pressure changes.
  • the electrical stimulation module 40 is used to apply electrical stimulation to the user's limbs.
  • the control module 30 controls the electrical stimulation module 40 to start to perform intervention treatment in a timely manner.
  • the control module 30 controls the electrical stimulation module 40 to stop.
  • the pulse wave sensing module 10, the health parameter collection module 20, the electrical stimulation module 40 and the control module 30 can also be provided on the wristband, or partly on the wristband and partly on the shell. In general, this application does not limit this.
  • the pulse wave sensing module 10 collects the user's radial artery main peak value (H1), radial artery main peak time (T1), brachial artery main peak value (H2), and brachial artery main peak time (T2), and uses the radial artery main peak value ( H1) and the main peak time of the brachial artery (H2) are used as reference points. Compare the time difference between the corresponding main peak time of the radial artery (T1) and the main peak time of the brachial artery (T2). The difference is used as the pulse wave transit time (PWTT).
  • PWTT pulse wave transit time
  • the first model matrix is:
  • a 11 to A 14 and A 21 to A 24 in the first model are coefficient parameters calculated through a neural network algorithm and a polynomial fitting algorithm.
  • the first model can be pre-stored in the storage module 70 of the watch.
  • the control module 30 retrieves the first model from the storage module 70 and then conducts the user's pulse wave monitored in real time by the pulse wave sensing module 10 The time is converted into blood pressure data in real time through the first model, thereby achieving the purpose of real-time monitoring of the user's blood pressure.
  • the first model can be built by itself. The user measures the user's accurate real-time blood pressure data through a separate ambulatory blood pressure monitoring device (the ambulatory blood pressure monitoring device is independent of the wearable device), and then inputs the blood pressure data into the watch.
  • the pulse wave sensing module 10 in the watch monitors For pulse wave conduction time, the control module 30 places the above data in the same coordinate system, and establishes a first model between pulse wave conduction time and blood pressure through mathematical modeling methods such as polynomial fitting methods. The user's pulse wave transit time can then be monitored in real time through the pulse wave sensing module 10 in the watch, and then converted into blood pressure data in real time through the first model.
  • Pulse wave transit time itself has relatively high requirements on the measurement environment, and there may be cases where the data cannot be monitored. At this time, the user's blood pressure cannot be monitored in a timely manner, let alone intervene in abnormal blood pressure situations in a timely manner.
  • this application associates the user's health parameters with blood pressure data to form a second model, and derives the user's real-time blood pressure through the second model to measure blood pressure based on pulse wave conduction time (PWTT).
  • PWTT pulse wave conduction time
  • the second model is associated with the user's health parameter information, it is not a standard model and needs to be established when the wearable device is used for the first time. Therefore, the second model is also an independent and effective model for each individual user. model.
  • the health parameter information includes the user's constant parameters and at least one time-varying parameter collected by the health parameter collection module 20 .
  • the calculated value of pressure P 22 L 1 G 21 +...+L M G 2M +S 1 (t)G 2(M+1) +...+S N (t)G 2(M+N) . in, is the second model matrix, G 11 ⁇ G 1 (M+N) and G 21 ⁇ G 2 (M + N) are coefficient parameters calculated
  • the control module 30 will compare and analyze the data of the ambulatory blood pressure monitoring device within a period of time with the data of the corresponding health parameter collection module 20, and finally establish a model between the user's health information parameter changes and the user's blood pressure trend, that is, the second model. .
  • the user's personal constant parameters are first input into the user information of the watch.
  • constant value parameters are the user's age, gender, height, weight, etc.
  • the user's accurate real-time blood pressure data measured by the ambulatory blood pressure monitoring device is then input into the watch.
  • the health parameter collection module 20 in the watch collects the user's time-varying parameters at the same time.
  • the control module 30 will select a period of time, such as the blood pressure data monitored by the ambulatory blood pressure monitoring equipment and the relevant health information parameters collected by the health parameter collection module 20 from 5:10:00 to 5:20:00.
  • the control module 30 uses neural network algorithm training based on the above data to obtain the coefficient parameters of the second model, and establishes a second model between health parameter information and blood pressure.
  • the second model is established, if the pulse wave sensing module 10 does not collect the pulse wave conduction time within the T1 time, the user's time-varying parameters can be monitored in real time through the health parameter acquisition module 20 in the watch, and then through the third
  • the second model converts into blood pressure data in real time to continuously and stably monitor blood pressure.
  • the T1 time can be 10 seconds, that is, when the pulse wave sensing module 10 collects the measurement value within 10 seconds, then enter steps S4 and S6. If the pulse wave sensing module 10 collects the measurement value within 10 seconds, , then step S5 will be activated, and step S6 will be entered from S5.
  • the blood pressure data obtained by the first model through the pulse wave sensing module 10 and the health parameter acquisition module 20 can also be used to collect the user's time-varying parameters and the input user's constant parameters at the same time, through neural
  • the network algorithm builds a second model between health parameter information and blood pressure.
  • the health parameter collection module 20 includes one or a combination of a heart rate sensor, a blood oxygen sensor, a temperature sensor, a motion sensor, a blood lipid sensor, and a skin resistance sensor.
  • the time-varying parameter can be one or a combination of heart rate, blood oxygen, temperature, exercise, blood lipids and skin resistance.
  • the control module 30 jointly constructs a second model matrix according to the number and type of time-varying parameters and constant parameters. When calculating blood pressure changes, the data of the selected time-varying parameters need to be input at the same time. .
  • the coefficient parameters in the second model are automatically optimized after reaching the predetermined time t 1 and/or the predetermined condition, or are passively optimized after being triggered by the user.
  • the user can trigger the upgrade module on the watch as needed to optimize the coefficient parameters in the second model matrix.
  • the coefficient parameters in the second model can be automatically optimized.
  • the method of optimizing coefficient parameters includes training a network with blood pressure data obtained through the first model and blood pressure data obtained through the second model, so as to optimize the coefficient parameters of the second model.
  • the blood pressure data directly obtained through the ambulatory blood pressure monitoring device and the blood pressure data obtained through the second model are used to train the network to optimize the coefficient parameters of the second model.
  • the above two optimization methods can be combined to optimize the coefficient parameters of the second model.
  • the watch further includes a storage module 70 configured to store constant value parameters of multiple users and second models related to the multiple users.
  • a storage module 70 configured to store constant value parameters of multiple users and second models related to the multiple users.
  • the user's information can be retrieved from the user information.
  • the device further includes a communication module 60, which sends the second model to the server to implement backup of the second model.
  • the second model can be downloaded from the server, thereby avoiding repeated creation of the second model.
  • the control module 30 controls the electrical stimulation module 40 to perform electrical stimulation treatment on the user, thereby promptly treating the abnormal blood pressure.
  • the wearable device is a watch
  • electrical stimulation of the median nerve is performed on the user through the contact between the watch and the user, which can be simply understood as applying current, voltage, and frequency stimulation to an "acupoint.”
  • the electrical stimulation treatment gears are provided with multiple levels according to the degree of abnormality of the blood pressure data, and the multiple levels of electrical stimulation intensity and/or electrical stimulation frequency and/or electrical stimulation time and/or the number of repeated electrical stimulation are different.
  • the user's blood pressure parameters or blood pressure change trends are divided into multiple blood pressure abnormality levels.
  • assign personalized median nerve electrical stimulation parameters to each divided blood pressure abnormality level For example, the blood pressure range of normal and healthy adults should be systolic blood pressure 90-130mmHg.
  • the user's accurate real-time blood pressure parameters are analyzed through a preset algorithm to determine that the user's ideal systolic blood pressure is 100-135mmHg. If the systolic blood pressure reaches 135-145mmHg , it is a first-level blood pressure abnormality. At this time, the level of electrical stimulation of the median nerve by the electrical stimulation module 40 is A. If the systolic blood pressure reaches 145-153 mmHg, it is a secondary blood pressure abnormality. At this time, the level of electrical stimulation of the median nerve by the electrical stimulation module 40 is B. If the systolic blood pressure reaches 154-163 mmHg, it is a third-level blood pressure abnormality. At this time, the level of electrical stimulation of the median nerve by the electrical stimulation module 40 is C.
  • the control unit will adjust the blood pressure range exceeding the normal range according to the severity of the hypertension and the time of suffering from hypertension. , taking medications, etc., to determine the level of electrical stimulation that should be given to the user.
  • the gear of the electrical stimulation treatment is optimized according to the user's usage and/or after reaching the predetermined time t 2 to improve the effect of the electrical stimulation treatment. For example, when user feedback is not strong enough or a certain period of time has elapsed since the last optimization, the electrical stimulation gear parameters will be re-set.
  • the device also includes a feedback module 50 , which is communicatively connected with the pulse wave sensing module 10 , the health parameter collection module 20 and the control module 30 to monitor the user's blood pressure data in real time and feed back the blood pressure data to the control module 30 , the control module 30 automatically adjusts the electrical stimulation intensity and/or electrical stimulation frequency and/or electrical stimulation time and/or the number of repetitions of the electrical stimulation module 40 according to the feedback information from the feedback module 50 . For example, when the watch is performing level B electrical stimulation, the user's blood pressure data is re-measured through the pulse wave sensing module 10 or the health parameter collection module 20.
  • the user's blood pressure data is re-measured through the feedback module. 50 feeds back this information to the control module 30, and the control module 30 thereby reduces the level of the electrical stimulation module 40 from level B to level A.
  • the control module 30 When the user's blood pressure data is re-measured through the pulse wave sensing module 10 or the health parameter collection module 20 sensor module, and if it is found that the blood pressure has not changed, the information is fed back to the control module 30 through the feedback module 50, and the control module 30 then electrically stimulates The level of module 40 is raised from Level B to Level C. Or the control module 30 may adjust at least one of intensity, frequency, time and number of repetitions in level B. to adapt to the user's body.
  • the feedback module 50 the blood pressure data can be fed back to the control module 30 in a timely manner according to the user's own situation, so that the electrical stimulation can be adjusted in a timely manner.
  • the gear, intensity, frequency, time and number of repetitions of electrical stimulation treatment can also be adjusted manually.
  • a watch is provided with several buttons through which the electrical stimulation treatment plan can be manually adjusted. This application does not limit this.
  • the method and device for controlling blood pressure in this application can use the user's health information parameters to monitor blood pressure in real time when the user's pulse wave signal cannot be detected, thereby ensuring that the blood pressure can be monitored in complex environments. Stable acquisition of blood pressure data, and timely intervention in users' blood pressure abnormalities to prevent their deterioration, forming a closed loop of blood pressure monitoring and blood pressure intervention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Vascular Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种用于控制血压的方法及设备(100),方法包括:S1:建立或调取脉搏波传导时间与血压的第一模型(S1);S2:获取用户的血压数据以及健康参数信息,建立健康参数信息与血压的第二模型(S2);S3:持续监测脉搏波传导时间,若在T1时间内采集到脉搏波传导时间,则进入步骤S4;若在T1时间内未采集到脉搏波传导时间,则进入步骤S5(S3);S4:通过第一模型实时获取血压数据,并输出至步骤S6(S4);S5:持续监测健康参数信息,并通过第二模型实时获取血压数据;并输出至步骤S6(S5);S6:对输出的血压数据进行分析并判断血压数据是否在安全范围内,若在,则返回步骤S3,若不在,则进行电刺激治疗(S6)。能够提高血压监测的准确性,并及时给予治疗。

Description

一种用于控制血压的方法及设备
本申请要求了申请日为2022年8月12日,申请号为202210968464.6,发明名称为“一种用于控制血压的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种用于控制血压的方法及设备,属于健康监测技术领域。
背景技术
血压是人体的重要生理参数之一,能够反应出人体心脏和血管的功能状况,是临床上判断疾病、观察医疗效果等的重要依据。
目前临床上应用的血压测量主要有诊室血压、动态血压和家庭自测血压。诊室血压和动态血压都需要在医院进行,前者使用传统的水银血压计或者自动血压计,需要专业医护人员操作或者需要较为大型的专业设备,后者使用的动态血压计虽为可携带式,但其体积较大,须在患者身上缠绕线缆,且测量仍通过袖带加压测量,舒适度低,对使用者正常生活影响较大,且由于电量、卫生等原因通常连续使用时间不超过24小时。家庭自测血压主要通过电子式袖带或腕带血压计实现,产品价格较为合理,准确度也较高,但测量仍需要人工主动操作,无法对血压进行实时的动态监测。而且,这些血压检测手段无法根据用户的实际情况进行实时调整,也无法主动地根据用户的血压情况及时进行干预,不能满足用户的使用需求。
有鉴于此,确有必要提供一种用于控制血压的方法及设备,以解决上述问题。
发明内容
本申请的目的在于提供一种用于控制血压的方法及设备,能够在复杂环境下实现对血压的稳定监测,并及时进行干预治疗。
为实现上述目的,本申请提供了一种用于控制血压的方法,包括以下步骤:
S1:建立或调取脉搏波传导时间与血压的第一模型;
S2:获取用户的血压数据以及健康参数信息,建立用户健康参数信息与血压的第二模型;
S3:持续监测用户的脉搏波传导时间,若在T1时间内采集到用户的脉搏波传导时间,则进入步骤S4;若在T1时间内未采集到用户的脉搏波传导时间,则进入步骤S5;
S4:将所述脉搏波传导时间通过所述第一模型实时转换成血压数据,并将血压数据输出至步骤S6;
S5:持续监测用户的健康参数信息,并将所述健康参数信息通过所述第二模型实时转换成血压数据;将血压数据输出至步骤S6;
S6:对输出的血压数据进行分析并判断所述血压数据是否在安全范围内,若在,则返回步骤S3,若不在,则对用户进行电刺激治疗。
作为本申请的进一步改进,所述健康参数信息包括用户的常值参数和通过健康参数采集模块采集的至少一个时变参数。
作为本申请的进一步改进,所述常值参数设有m个,以L1~Lm表示,所述时变参数设有n个,以S1(t)~Sn(t)表示,其中,m、n为整数,且m≥1,n≥1,根据所述第二模型转换得到的血压数据为其中,P21为舒张压的计算值,P22为收缩压的计算值,为第二模型矩阵,G11~G1(M+N)和G21~G2 (M+N)为根据神经网络算法计算得到的系数参数。
作为本申请的进一步改进,所述第二模型中的系数参数在达到预定时间t1和/或预定条件后进行自动优化,或经用户触发而被动优化。
作为本申请的进一步改进,所述系数参数优化的方法包括通过所述第一模型得到的血压数据与通过第二模型得到的血压数据进行训练网络,以优化所述第二模型的系数参数;和/或,通过直接获取的血压数据与通过第二模型得到的血压数据进行训练网络,以优化所述第二模型的系数参数。
作为本申请的进一步改进,所述电刺激治疗的档位根据血压数据的异常程度设有多个等级,所述多个等级的电刺激强度和/或电刺激频率和/或电刺激时间和/或重复电刺激的次数不同。
作为本申请的进一步改进,所述电刺激治疗的档位根据用户的使用情况和/或达到预定时间t2后进行优化。
本申请还提供了一种用于控制血压的设备,包括可穿戴结构以及设置在所述可穿戴结构上的脉搏波传感模块、健康参数采集模块、电刺激模块和控制模块,所述脉搏波传感模块用于实时采集用户的脉搏波信号,并将所述脉搏波信号传输至控制模块,所述健康参数采集模块用于实时采集用户的健康参数,并将所述健康参数传输至控制模块,所述电刺激模块用于施加电刺激至用户的肢体,所述控制模块接收并分析所述脉搏波信号和所述健康参数,并通过上述的用于控制血压的方法控制所述电刺激模块启动或停止。
作为本申请的进一步改进,所述健康参数采集模块包括心率传感器、血氧传感器、温度传感器、运动传感器、血脂传感器和皮肤电阻传感器的一种或几种的组合。
作为本申请的进一步改进,所述设备还包括反馈模块,所述反馈模块与所述脉搏波传感模块、所述健康参数采集模块及控制模块通信连接,以实时监测用户的血压变化,并将血压变化反馈至控制模块,所述控制模块根据所述反馈模块的反馈信息调整所述电刺激模块的电刺激强度和/或电刺激频率和/或电刺激时间和/或重复次数。
作为本申请的进一步改进,所述设备还包括通信模块,所述通信模块将所述第二模型发送至服务器,以实现所述第二模型的备份。
作为本申请的进一步改进,所述设备还包括存储模块,所述存储模块配置为存储多个用户的常值参数及与每个用户相对应的第二模型。
本申请的有益效果是:与现有技术相比,本申请的一种用于控制血压的方法在监测不到用户的脉搏波信号时,利用用户的健康信息参数实时监测血压,从而保证在复杂环境下可以稳定获取血压数据,并及时对用户的血压异常进行干预,防止其恶化,形成血压监测与血压干预的闭环。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1是本申请一种用于控制血压的方法的流程图。
图2是本申请一种用于控制血压的设备的结构框图。
图3是第二模型建立与优化的逻辑框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请实施例的技术方案进行清楚、完整地描述。
在此,需要说明的是,为了避免因不必要的细节而模糊了本申请,在附图中仅仅示出了与本申请的方案密切相关的结构和/或处理步骤,而省略了与本申请关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
脉搏波传导时间(Pulse Wave Transit Time,PWTT)是血压波沿血管壁传输时间,这个时间是由从心脏开始收缩到大动脉瓣打开再到出现在大动脉血液脉动,经过血管传导到末梢部位时间组成,PWTT参数可以从手腕部的心电和脉搏波来进行获取,目前有大量临床试验可知脉搏波传导时间与血压呈负相关,当血压比较高时,动脉壁变得紧张,脉搏波的传递速度变快。当血压比较低时,动脉壁变得松弛,脉搏波的传递速度变慢。因此,利用脉搏波传导时间与血压之间的变化关系可以用来监测血压的变化及在一定误差范围内的血压值。但是脉搏波传导时间本身对测量的环境要求就比较高,可能会存在监测不到数据的情况,无法在复杂环境下实时监测用户血压。
因此,本申请提供了一种用于控制血压的方法,请参阅图1所示,该用于控制血压的方法包括以下步骤:S1:建立或调取脉搏波传导时间与血压的第一模型;S2:获取用户的血压数据以及健康参数信息,建立用户健康参数信息与血压的第二模型;S3:持续监测用户 的脉搏波传导时间,若在T1时间内采集到用户的脉搏波传导时间,则进入步骤S4;若在T1时间内未采集到用户的脉搏波传导时间,则进入步骤S5;S4:将脉搏波传导时间通过第一模型实时转换成血压数据,并将血压数据输出至步骤S6;S5:持续监测用户的健康参数信息,并将健康参数信息通过第二模型实时转换成血压数据;将血压数据输出至步骤S6;S6:对输出的血压数据进行分析并判断血压数据是否在安全范围内,若在,则返回步骤S3,若不在,则对用户进行电刺激治疗。通过该方法,当监测不到用户的脉搏波信号时,可以利用用户的健康信息参数实时监测血压,从而保证在复杂环境下可以稳定获取血压数据,并及时对用户的血压异常进行干预,防止其恶化,形成血压监测与血压干预的闭环。
请参阅图2所示,本申请另外提供了一种用于控制血压的设备100,包括可穿戴结构以及设置在可穿戴结构上的脉搏波传感模块10、健康参数采集模块20、电刺激模块40和控制模块30,脉搏波传感模块10用于实时采集用户的脉搏波信号,并将脉搏波信号传输至控制模块30,健康参数采集模块20用于实时采集用户的健康参数,并将健康参数传输至控制模块30,电刺激模块40用于施加电刺激至用户的肢体,控制模块30接收并分析脉搏波信号和健康参数,并通过上述的用于控制血压的方法控制电刺激模块40启动或停止。该设备能够在复杂环境下实时监测血压的变化,并在在监测到血压异常时,及时进行干预治疗,防止其恶化,并在监测到血压正常后,及时停止治疗。
为了清楚地描述本申请用于控制血压的方法及设备,以下说明书内容以用于控制血压的设备100为可穿戴式的手表为例进行详细说明,但不应以此为限。
在一实施例中,可穿戴式的手表包括腕带和耦合在腕带上的壳体。壳体中内置有脉搏波传感模块10、健康参数采集模块20、电刺激模块40和控制模块30,其中脉搏波传感模块10、健康参数采集模块20、电刺激模块40设置在壳体接触用户体表的内表面。脉搏波传感模块10用于实时采集用户的脉搏波信号,并将脉搏波信号传输至控制模块30,控制模块30通过第一模型计算出血压数据,并实时监测用户的血压变化。健康参数采集模块20用于实时采集用户的健康参数,并将健康参数传输至控制模块30,当监测不到用户的脉搏波信号时,控制模块30将上述健康参数通过第二模型计算出血压数据,以持续稳定地监测用户的血压变化。电刺激模块40用于施加电刺激至用户的肢体,当监测到用户的血压异常时,控制模块30控制电刺激模块40启动,以及时进行干预治疗。当监测到用户的血压恢复正常后,控制模块30控制电刺激模块40停止。当然,在其他实施例中,脉搏波传感模块10、健康参数采集模块20、电刺激模块40和控制模块30也可以设置在腕带上,或者部分设置在腕带上,而部分设置在壳体上,本申请对此不予限制。
具体地,脉搏波传感模块10采集用户的桡动脉主峰值(H1)、桡动脉主峰时刻(T1)、肱动脉主峰值(H2)和肱动脉主峰时刻(T2),以桡动脉主峰值(H1)和肱动脉主峰值(H2)为参考点,比较对应的桡动脉主峰时刻(T1)和肱动脉主峰时刻(T2)的时间差,差值作为脉搏波传导时间(PWTT),PWTT=|T1-T2|,第一模型矩阵为: 根据第一模型得到的用户的血压值为:即舒张压的计算值P11=A11*PWTT3+A12*PWTT2+A13*PWTT+A14,收缩压的计算值P12=A21*PWTT3+A22*PWTT2+A23*PWTT+A24。其中,第一模型中A11~A14和A21~A24为通过神经网络算法及多项式拟合算法计算得到系数参数。
第一模型可以预先存储在手表的存储模块70内,当监测血压时,控制模块30从存储模块70中调取第一模型,然后将脉搏波传感模块10实时监测到的用户的脉搏波传导时间通过第一模型实时转换成血压数据,进而实现实时监测用户的血压的目的。或者,第一模型可以自行建立。用户通过单独的动态血压监测设备(动态血压监测设备独立于可穿戴设备)测量出的用户准确的实时血压数据,然后将血压数据输入到手表中,同时,手表中的脉搏波传感模块10监测脉搏波传导时间,控制模块30将上述数据放在同一坐标系中,通过多项式拟合法等数学建模方式建立脉搏波传导时间与血压之间的第一模型。之后可以通过手表中的脉搏波传感模块10实时监测到的用户的脉搏波传导时间,然后通过第一模型实时转换成血压数据。
脉搏波传导时间(PWTT)本身对测量的环境要求比较高,可能会存在监测不到数据的情况。此时,就不能及时的监测用户的血压,更不能及时对血压的异常情况进行干预。在这种情况下,本申请通过将用户的健康参数与血压数据进行关联,形成第二模型,通过第二模型推导出用户的实时血压情况,以对脉搏波传导时间(PWTT)测血压的一种补充方法,保证在复杂环境下可以稳定获取血压信息(血压变化趋势),保证可以对用户血压异常进行及时的干预,防止其恶化。
由于第二模型与用户的健康参数信息相关联,故其不是一个标准的模型,需要在首次使用该可穿戴的设备时自行建立,因此,第二模型也是针对每个单独的用户的一个独立有效的模型。
请参阅图3所示,健康参数信息包括用户的常值参数和通过健康参数采集模块20采集的至少一个时变参数。常值参数设有m个,以L1~Lm表示,时变参数设有n个,以S1(t)~Sn(t)表示,其中,m、n为整数,且m≥1,n≥1,根据第二模型转换得到的血压数据为即舒张压的计算值P21=L1G11+…+LMG1M+S1(t)G1(M+1)+…+SN(t)G1(M+N),收缩压的计算值P22=L1G21+…+LMG2M+S1(t)G2(M+1)+…+SN(t)G2(M+N)。其中,为第二模型矩阵,G11~G1(M+N)和G21~G2(M+N)为根据神经网络算法计算得到的系数参数。
控制模块30会将一段时间内的动态血压监测设备的数据与对应的健康参数采集模块20的数据对比分析,最后建立起用户的健康信息参数变化与用户血压趋势之间的模型,即第二模型。
在一个实施例中,当用户拿到手表时,先将用户个人的常值参数输入到手表的用户信息内。例如,常值参数为用户的年龄、性别、身高、体重等。然后通过动态血压监测设备测量出的用户准确的实时血压数据,然后将血压数据输入到手表中,同时,手表中的健康参数采集模块20在同一时间采集用户的时变参数。例如,控制模块30就会选取一段时间,如5点10分00秒00至5点20分00秒00内的动态血压监测设备监测的血压数据以及健康参数采集模块20采集的相关健康信息参数。控制模块30在上述数据的基础上使用神经网络算法训练得到第二模型的系数参数,建立健康参数信息与血压之间的第二模型。当建立第二模型后,如果在T1时间内脉搏波传感模块10未采集到脉搏波传导时间,则可以通过手表中的健康参数采集模块20实时监测到的用户的时变参数,然后通过第二模型实时转换成血压数据,以持续稳定地对血压进行监测。优选地,T1时间可以为10秒钟,即当10秒钟内脉搏波传感模块10采集到测量值,则进入步骤S4和S6,如果10秒钟内脉搏波传感模块10采集到测量值,则会激活步骤S5,则从S5进入步骤S6。
在另一个实施例中,也可以通过脉搏波传感模块10经第一模型得到的血压数据与健康参数采集模块20在同一时间采集用户的时变参数以及输入的用户的常值参数,通过神经网络算法建立健康参数信息与血压之间的第二模型。
进一步地,健康参数采集模块20包括心率传感器、血氧传感器、温度传感器、运动传感器、血脂传感器和皮肤电阻传感器的一种或几种的组合。时变参数可以为心率、血氧、温度、运动、血脂和皮肤电阻的一种或几种的组合。当选择好具体的时变参数后,控制模块30按照时变参数的数量和类型以及常值参数共同构建出第二模型矩阵,当计算血压变化时,需要同时输入选定的时变参数的数据。
进一步地,第二模型中的系数参数在达到预定时间t1和/或预定条件后进行自动优化,或经用户触发而被动优化。也就是说,用户可以根据需要触发手表上的升级模块,进而对第二模型矩阵中的系数参数进行优化。或者,当设定一个预定时间t1和/或预定条件,当手表中的第二模型达到该预定时间t1和/或预定条件后,可以对第二模型中的系数参数进行自动优化。
系数参数优化的方法包括通过第一模型得到的血压数据与通过第二模型得到的血压数据进行训练网络,以优化第二模型的系数参数。或者通过动态血压监测设备直接获取的血压数据与通过第二模型得到的血压数据进行训练网络,以优化第二模型的系数参数。或者,可以将上述两种优化方法进行结合,从而优化第二模型的系数参数。
进一步地,手表还包括存储模块70,存储模块70配置为存储多个用户的常值参数及与多个用户相关的第二模型。当多个用户轮流使用该手表时,可以在用户信息中调取该用户的 常值参数以及与该常值参数相关的第二模型,从而不用重复地建立第二模型。
可选地,设备还包括通信模块60,通信模块60将第二模型发送至服务器,以实现第二模型的备份。当用户更换可穿戴设备时,可以从服务器中下载该第二模型,从而避免重复建立第二模型。
当可穿戴设备监测到用户的血压出现异常时,例如当前的血压参数超过过去三天平均血压的20%,则控制模块30控制电刺激模块40对用户进行电刺激治疗,从而及时对血压异常情况进行干预。优选地,当可穿戴设备为手表时,通过手表与用户的接触面对用户进行正中神经电刺激,可以简单理解成对一个“穴位”施加电流、电压、频率上的刺激。
进一步地,电刺激治疗的档位根据血压数据的异常程度设有多个等级,多个等级的电刺激强度和/或电刺激频率和/或电刺激时间和/或重复电刺激的次数不同。具体地,在动态血压监测设备测量出的用户准确的实时血压参数基础上,并依据预设好的算法将用户的血压参数或血压变化趋势分成多个血压异常等级。并在各个划分出的血压异常等级上赋予个性化的正中神经电刺激参数。例如,正常健康的成年人血压范围应该为收缩压90-130mmHg,通过预设算法对用户准确的实时血压参数进行分析,得出用户的理想收缩压为100-135mmHg,若收缩压达到135-145mmHg,则为一级血压异常,此时电刺激模块40对正中神经进行电刺激的等级为A。若收缩压达到145-153mmHg,则为二级血压异常,此时电刺激模块40对正中神经进行电刺激的等级为B。若收缩压达到154-163mmHg,则为三级血压异常,此时电刺激模块40对正中神经进行电刺激的等级为C。
进一步地,手表的用户信息中也可以输入用户的高血压病史,当用户被判断为患有高血压时,控制单元在将超过正常区间的血压范围根据高血压的严重程度、患有高血压的时间、服用药物等情况,以确定应该给予用户的电刺激的刺激等级。
进一步地,电刺激治疗的档位根据用户的使用情况和/或达到预定时间t2后进行优化,以提高电刺激治疗的效果。例如,当用户反馈强度不够或者距离上次优化超过一定时间后会重新进行电刺激档位参数的设置。
进一步地,设备还包括反馈模块50,反馈模块50与脉搏波传感模块10、健康参数采集模块20及控制模块30通信连接,以实时监测用户的血压数据,并将血压数据反馈至控制模块30,控制模块30根据反馈模块50的反馈信息自动调整电刺激模块40的电刺激强度和/或电刺激频率和/或电刺激时间和/或重复次数。例如,当手表在执行B等级的电刺激期间,通过脉搏波传感模块10或健康参数采集模块20重新测量用户的血压数据,当监测到血压降低至一级血压异常区间时,则通过反馈模块50将该信息反馈给控制模块30,控制模块30从而将电刺激模块40的等级从B等级降低到A等级。当通过脉搏波传感模块10或健康参数采集模块20传感器模块重新测量用户的血压数据,当发现血压没有变化,则通过反馈模块50将该信息反馈给控制模块30,控制模块30从而将电刺激模块40的等级从B等级提高到C等级。或者控制模块30可以调整B等级中的强度、频率、时间和重复次数中的至少一 个以适应用户的身体。通过反馈模块50,可以根据用户的自身情况及时地将血压数据反馈给控制模块30,从而及时进行电刺激调整。
可选地,电刺激治疗的档位、强度、频率、时间及重复次数也可以手动调整。例如,在手表上设有若干按钮,通过若干按钮以手动调节电刺激治疗的方案。本申请对此不予限制。
综上所述,本申请的一种用于控制血压的方法及设备,在监测不到用户的脉搏波信号时,能够利用用户的健康信息参数对血压进行实时监测,从而保证在复杂环境下可以稳定获取血压数据,并及时对用户的血压异常进行干预,防止其恶化,形成血压监测与血压干预的闭环。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种用于控制血压的方法,其中,包括以下步骤:
    S1:建立或调取脉搏波传导时间与血压的第一模型;
    S2:获取用户的血压数据以及健康参数信息,建立用户健康参数信息与血压的第二模型;
    S3:持续监测用户的脉搏波传导时间,若在T1时间内采集到用户的脉搏波传导时间,则进入步骤S4;若在T1时间内未采集到用户的脉搏波传导时间,则进入步骤S5;
    S4:将所述脉搏波传导时间通过所述第一模型实时转换成血压数据,并将血压数据输出至步骤S6;
    S5:持续监测用户的健康参数信息,并将所述健康参数信息通过所述第二模型实时转换成血压数据;将血压数据输出至步骤S6;
    S6:对输出的血压数据进行分析并判断所述血压数据是否在安全范围内,若在,则返回步骤S3,若不在,则对用户进行电刺激治疗。
  2. 根据权利要求1所述的用于控制血压的方法,其中,所述健康参数信息包括用户的常值参数和通过健康参数采集模块采集的至少一个时变参数。
  3. 根据权利要求2所述的用于控制血压的方法,其中,所述常值参数设有m个,以L1~Lm表示,所述时变参数设有n个,以S1(t)~Sn(t)表示,其中,m、n为整数,且m≥1,n≥1,根据所述第二模型转换得到的血压数据为 其中,P21为舒张压的计算值,P22为收缩压的计算值,为第二模型矩阵,G11~G1(M+N)和G21~G2(M+N)为根据神经网络算法计算得到的系数参数。
  4. 根据权利要求3所述的用于控制血压的方法,其中,所述第二模型中的系数参数在达到预定时间t1和/或预定条件后进行自动优化,或经用户触发而被动优化。
  5. 根据权利要求4所述的用于控制血压的方法,其中,所述系数参数优化的方法包括通过所述第一模型得到的血压数据与通过第二模型得到的血压数据进行训练网络,以优化所述第二模型的系数参数;和/或,通过直接获取的血压数据与通过第二模型得到的血压数据进行训练网络,以优化所述第二模型的系数参数。
  6. 根据权利要求1所述的用于控制血压的方法,其中,所述电刺激治疗的档位根据血压数据的异常程度设有多个等级,所述多个等级的电刺激强度和/或电刺激频率和/或电刺激 时间和/或重复电刺激的次数不同。
  7. 根据权利要求6所述的用于控制血压的方法,其中,所述电刺激治疗的档位根据用户的使用情况和/或达到预定时间t2后进行优化。
  8. 一种用于控制血压的设备,其中,包括可穿戴结构以及设置在所述可穿戴结构上的脉搏波传感模块、健康参数采集模块、电刺激模块和控制模块,所述脉搏波传感模块用于实时采集用户的脉搏波信号,并将所述脉搏波信号传输至控制模块,所述健康参数采集模块用于实时采集用户的健康参数,并将所述健康参数传输至控制模块,所述电刺激模块用于施加电刺激至用户的肢体,所述控制模块接收并分析所述脉搏波信号和所述健康参数,并通过如权利要求1~7任一项所述的用于控制血压的方法控制所述电刺激模块启动或停止。
  9. 根据权利要求8所述的用于控制血压的设备,其中,所述健康参数采集模块包括心率传感器、血氧传感器、温度传感器、运动传感器、血脂传感器和皮肤电阻传感器的一种或几种的组合。
  10. 根据权利要求8所述的用于控制血压的设备,其中,所述设备还包括反馈模块,所述反馈模块与所述脉搏波传感模块、所述健康参数采集模块及所述控制模块通信连接,以实时监测用户的血压变化,并将血压变化反馈至控制模块,所述控制模块根据所述反馈模块的反馈信息调整所述电刺激模块的电刺激强度和/或电刺激频率和/或电刺激时间和/或重复次数。
  11. 根据权利要求8所述的用于控制血压的设备,其中,所述设备还包括通信模块,所述通信模块将所述第二模型发送至服务器,以实现所述第二模型的备份。
  12. 根据权利要求8所述的用于控制血压的设备,其中,所述设备还包括存储模块,所述存储模块配置为存储多个用户的常值参数及与每个用户相对应的第二模型。
PCT/CN2023/097917 2022-08-12 2023-06-02 一种用于控制血压的方法及设备 WO2024032110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210968464.6A CN115281633A (zh) 2022-08-12 2022-08-12 一种用于控制血压的方法及设备
CN202210968464.6 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032110A1 true WO2024032110A1 (zh) 2024-02-15

Family

ID=83829518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097917 WO2024032110A1 (zh) 2022-08-12 2023-06-02 一种用于控制血压的方法及设备

Country Status (2)

Country Link
CN (1) CN115281633A (zh)
WO (1) WO2024032110A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115281633A (zh) * 2022-08-12 2022-11-04 宁波越凡医疗科技有限公司 一种用于控制血压的方法及设备
CN117205442B (zh) * 2023-09-18 2024-04-23 易集康健康科技(杭州)有限公司 一种射频脉冲发射模块的控制方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106055A (zh) * 2015-12-03 2017-08-29 华为技术有限公司 一种血压测量方法及装置
US20190307337A1 (en) * 2014-03-06 2019-10-10 Scanadu Incorporated Methods and apparatus for self-calibrating non-invasive cuffless blood pressure measurements
CN110507296A (zh) * 2019-08-12 2019-11-29 重庆大学 一种基于lstm网络的急性低血压混合预警方法
US20200178820A1 (en) * 2018-12-11 2020-06-11 Bittium Biosignals Oy Method and arrangement for continuously estimating blood pressure
CN113397509A (zh) * 2020-03-15 2021-09-17 英业达科技有限公司 动态切换血压测量模型的方法
TW202135724A (zh) * 2020-03-18 2021-10-01 英業達股份有限公司 動態切換血壓量測模型的方法
CN113470805A (zh) * 2020-03-15 2021-10-01 英业达科技有限公司 建立血压模型的方法
CN114652288A (zh) * 2022-02-28 2022-06-24 深圳大学 一种非袖带式动态血压测量系统
CN115281633A (zh) * 2022-08-12 2022-11-04 宁波越凡医疗科技有限公司 一种用于控制血压的方法及设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190307337A1 (en) * 2014-03-06 2019-10-10 Scanadu Incorporated Methods and apparatus for self-calibrating non-invasive cuffless blood pressure measurements
CN107106055A (zh) * 2015-12-03 2017-08-29 华为技术有限公司 一种血压测量方法及装置
US20200178820A1 (en) * 2018-12-11 2020-06-11 Bittium Biosignals Oy Method and arrangement for continuously estimating blood pressure
CN110507296A (zh) * 2019-08-12 2019-11-29 重庆大学 一种基于lstm网络的急性低血压混合预警方法
CN113397509A (zh) * 2020-03-15 2021-09-17 英业达科技有限公司 动态切换血压测量模型的方法
CN113470805A (zh) * 2020-03-15 2021-10-01 英业达科技有限公司 建立血压模型的方法
TW202135724A (zh) * 2020-03-18 2021-10-01 英業達股份有限公司 動態切換血壓量測模型的方法
CN114652288A (zh) * 2022-02-28 2022-06-24 深圳大学 一种非袖带式动态血压测量系统
CN115281633A (zh) * 2022-08-12 2022-11-04 宁波越凡医疗科技有限公司 一种用于控制血压的方法及设备

Also Published As

Publication number Publication date
CN115281633A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024032110A1 (zh) 一种用于控制血压的方法及设备
US10485434B2 (en) Non-invasive and non-occlusive blood pressure monitoring devices and methods
KR100871230B1 (ko) 통신 장치와 연동되는 비가압적이고 비침습적인 손목형혈압 측정 방법 및 장치
JP7057284B6 (ja) 被検者の1又は複数の生理的特徴の基準を決定する機器の作動方法及び機器及びコンピュータプログラム
JP2008536545A (ja) 連続血圧モニタリングのためのシステム
KR20020009724A (ko) 원격진료측정장치 및 진료방법
JP2004248793A (ja) ベッドサイド情報システム
JP3582211B2 (ja) 運動支援装置
EP3346909A1 (en) Estimating physiological states based on changes in cri
CN104825144A (zh) 移动式无创连续血压监测传感装置
CN204931659U (zh) 一种移动式无创连续血压监测传感装置
CN105167763A (zh) 一种健康检测仪
KR20070075515A (ko) 비침습적 연속 혈압, 동맥탄성도 측정 장치 및 방법
JP2004261608A (ja) 運動支援装置
KR20080044223A (ko) 비침습적 연속혈압, 동맥탄성도 측정장치
CN116636821A (zh) 一种血压管理系统及方法
Fattah et al. Wrist-card: PPG sensor based wrist wearable unit for low cost personalized cardio healthcare system
JP7121208B2 (ja) ポータブル脱水監視システム
US20220249055A1 (en) Non-invasive, real-time, beat-to-beat, ambulatory blood pressure monitoring
WO2018115049A1 (en) Patient monitoring
WO2018231193A1 (en) Apparatus and method for calculating a pulse deficit value
KR20080048010A (ko) 비침습적 연속 혈압, 동맥탄성도 측정장치
Hellqvist et al. Stiffness index derived from overnight photoplethysmography, and its relations to ambulatory arterial stiffness index, blood pressure and cardiovascular risk
TWI771681B (zh) 能夠得出個人的參數的按摩裝置、系統、和方法
RU2725294C1 (ru) Персонализированная система формирования рекомендаций пользователю в реализации здорового образа жизни

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851338

Country of ref document: EP

Kind code of ref document: A1