WO2024032103A1 - 一种镍基高温合金锻造过程的物理模拟方法 - Google Patents

一种镍基高温合金锻造过程的物理模拟方法 Download PDF

Info

Publication number
WO2024032103A1
WO2024032103A1 PCT/CN2023/097157 CN2023097157W WO2024032103A1 WO 2024032103 A1 WO2024032103 A1 WO 2024032103A1 CN 2023097157 W CN2023097157 W CN 2023097157W WO 2024032103 A1 WO2024032103 A1 WO 2024032103A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling
compression
sample
nickel
Prior art date
Application number
PCT/CN2023/097157
Other languages
English (en)
French (fr)
Inventor
杨玉艳
刘庆涛
林伟
周洲
罗锐
程晓农
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2320155.1A priority Critical patent/GB2624983A/en
Priority to US18/575,801 priority patent/US20240264051A1/en
Publication of WO2024032103A1 publication Critical patent/WO2024032103A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat

Definitions

  • the present invention is in the technical field of metal material processing, and in particular relates to a physical simulation method of the forging process of nickel-based high-temperature alloys.
  • forging provides strong support for the manufacturing of large-sized components and the production of high-end metal structural materials, and has been vigorously promoted and applied around the world.
  • Nickel-based superalloy GH4169 is widely used in key components such as aerospace, petrochemical oil fields, and high-end molds because of its good high-temperature strength, oxidation resistance, and good durability; and the molding of large shafts and large-size parts It is necessary to meet the requirements of uniform organization and good performance to ensure service life.
  • the formulation of the forging process of these large forgings and the physical simulation method of the forging process are a big problem.
  • Improper formulation of the forging process will lead to uneven structures of large forgings, and there are certain differences in the performance of different parts, which may easily lead to problems that cannot meet the use conditions. , which will have an impact on the service of large-scale key equipment such as aerospace and aerospace.
  • the commonly used methods for physical simulation of the forging process of large forgings are physical simulation methods such as single-pass deformation, isothermal deformation, and cooling single-pass deformation.
  • Single-pass deformation physical simulation only simulates the forging process of large forgings with only one deformation, and cannot simulate the impact of multiple deformations on the material structure, which is of little help to the formulation of the forging process; isothermal deformation physical simulation only focuses on the time limit of the forging process.
  • the simulation is carried out under extremely fast forging speed. High-temperature alloys lose heat quickly in the air. The contact between the parts and the forging hammer during the deformation process will also cause temperature changes in the material. Isothermal deformation only exists in small-scale forging processes.
  • the present invention provides a physical simulation method for the forging process of nickel-based high-temperature alloys.
  • the physical simulation method provided by the invention is close to the actual forging process, has good simulation effect and high operability, and can effectively guide the forging processing of nickel-based high-temperature alloys.
  • a physical simulation method for the forging process of nickel-based high-temperature alloys including the following steps:
  • the nickel-based high-temperature alloy sample is heated, kept and quenched in sequence to obtain a pre-treated sample;
  • the pre-treated sample is sequentially subjected to temperature rise, first heat preservation, cooling, repeated compression-cooling treatment, second heat preservation and quenching treatment to obtain a simulated sample;
  • the insulation temperature in step (1) is 1020-1080°C, and the insulation time is 30-200 minutes;
  • the temperature of the first heat preservation is 1020 ⁇ 1050°C, and the heat preservation time is 60 ⁇ 300s;
  • the second heat preservation The temperature is 950 ⁇ 1050°C, and the holding time is 60 ⁇ 300s;
  • the number of repetitions of the repeated compression-cooling treatment is more than 3 times.
  • Each compression-cooling treatment includes compression and cooling in sequence.
  • the engineering deformation amount of each compression is 10-30%, and the amplitude of each cooling is 10-30%. 30°C. After the cooling is completed, the next compression is performed until the last cooling is completed.
  • the nickel-based high-temperature alloy is nickel-based high-temperature alloy GH4169, Inconel 625 or Inconel 718.
  • the nickel-based high-temperature alloy sample is a cylindrical sample, with a diameter of 6 to 10 mm and a length of 10 to 20 mm.
  • the temperature rising rate in step (1) is 8-10°C/min.
  • the quenching medium for the quenching treatment in step (1) is water, and the quenching rate is 50-100°C/s.
  • the temperature rising rate in step (2) is 8-10°C/s.
  • the number of repeated compression-cooling treatments is 3 to 5 times.
  • the compression temperature in the repeated compression-cooling process is 950-1050°C, and the temperature of each compression is sequentially lowered, the compression pressure is 1000-2000kgf, and the compression time is 2-10s. -The cooling time for each cooling process is 5 to 30 seconds.
  • the quenching treatment method in step (2) is vacuum air quenching, the quenching treatment time is 20 to 40 s, and the temperature at which quenching ends is 100 to 200°C.
  • the present invention also provides simulated samples obtained by the physical simulation method described in the above scheme.
  • the invention provides a physical simulation method for the forging process of nickel-based high-temperature alloys, which includes the following steps: (1) sequentially subject a nickel-based high-temperature alloy sample to heating, insulation and quenching treatments to obtain a pretreated sample; (2) The pretreated sample is sequentially subjected to heating, first insulation, cooling, repeated compression-cooling, second insulation and quenching to obtain a simulated sample; the temperature of the insulation in step (1) is 1020 ⁇ 1080°C.
  • the heat preservation time is 30 ⁇ 200min; in the step (2), the first heat preservation temperature is 1020 ⁇ 1050°C, and the heat preservation time is 60 ⁇ 300s; the second heat preservation temperature is 950 ⁇ 1050°C, and the heat preservation time is 60 ⁇ 300s;
  • the number of repetitions of the repeated compression-cooling treatment is more than 3 times.
  • Each compression-cooling treatment includes compression and cooling in sequence.
  • the engineering deformation amount of each compression is 10-30%, and the amplitude of each cooling is 10-30%. 30°C. After the cooling is completed, the next compression is performed until the last cooling is completed.
  • the present invention uses a forging simulation method of multi-pass compression and cooling deformation to simulate the forging process of nickel-based high-temperature alloys, and controls the number of compression passes and the degree of cooling during the simulation process, which can not only ensure that the situation of multiple forgings is restored, but also consider When it comes to the problem that the cooling of the material during the forging process will have an impact on the structure; the present invention uses multi-pass compression simulation to restore the multiple deformation processes of the hammer on the blank during the forging process, and uses the cooling deformation simulation method to realize the material Process simulation of uneven material structure caused by temperature changes during deformation; the simulation method of the present invention is simple to operate, close to the actual forging process, has good simulation effect, high operability, and is suitable for a variety of nickel-based high-temperature materials with the same forging method alloy, the difference between the structure and hardness of the obtained simulated sample and the same part of the forging obtained by actual forging is small; in the actual application process of the present invention, the actual results of the large-scale
  • the forging process includes determining the temperature range (initial and final forging temperatures), the amount of forging deformation, etc., which can effectively guide the forging process of nickel-based high-temperature alloys.
  • the results of the examples show that the structure of the simulated sample obtained by using the forging simulation method provided by the present invention is close to the actual forging result, the difference in grain size of the same parts is less than 1 level, and the difference in hardness is less than 25HBW.
  • Figure 1 is a schematic diagram of the observation surface of the physical simulation sample structure
  • Figure 2 is a comparison diagram of the structure of the same part of the simulated sample (left) obtained in Example 1 and the actual forged sample (right);
  • Figure 3 is a comparison diagram of the structure of the same part of the simulated sample (left) obtained in Example 2 and the actual forged sample (right);
  • Figure 4 is a comparison diagram of the structure of the same part of the simulated sample (left) obtained in Example 3 and the actual forged sample (right);
  • Figure 5 is a comparison diagram of the structure of the same part of the simulated sample (left) obtained in Example 4 and the actual forged sample (right).
  • the invention provides a physical simulation method for the forging process of nickel-based high-temperature alloys, which includes the following steps:
  • the nickel-based high-temperature alloy sample is heated, kept and quenched in sequence to obtain a pre-treated sample;
  • the pre-treated sample is sequentially subjected to temperature rise, first heat preservation, cooling, repeated compression-cooling treatment, second heat preservation and quenching treatment to obtain a simulated sample;
  • the insulation temperature in step (1) is 1020-1080°C, and the insulation time is 30-200 minutes;
  • the first heat preservation temperature is 1020-1050°C, and the heat preservation time is 60-300s;
  • the second heat preservation temperature is 950-1050°C, and the heat preservation time is 60-300s;
  • the number of repetitions of the repeated compression-cooling treatment is more than 3 times.
  • Each compression-cooling treatment includes compression and cooling in sequence.
  • the engineering deformation amount of each compression is 10-30%, and the amplitude of each cooling is 10-30%. 30°C. After the cooling is completed, the next compression is performed until the last cooling is completed.
  • the nickel-based high-temperature alloy sample is sequentially subjected to temperature raising, insulation and quenching treatments to obtain a pretreated sample.
  • the nickel-based high-temperature alloy is preferably nickel-based high-temperature alloy GH4169, Inconel 625 or Inconel 718;
  • the nickel-based high-temperature alloy sample is preferably a cylindrical sample, and the diameter of the cylindrical sample is preferably 6 to 10 mm, more preferably 8 mm, and the length is preferably 10 to 20 mm, more preferably 12 to 15 mm.
  • the present invention when the original size of the nickel-based high-temperature alloy does not meet the above conditions, the present invention preferably processes the nickel-based high-temperature alloy.
  • the present invention has no special limitation on the method of processing, and can obtain the above-mentioned Samples of different sizes are sufficient.
  • wire cutting machine tools are preferably used to process the nickel-based high-temperature alloy.
  • the present invention facilitates subsequent structural observation by controlling the size of the forging simulation sample.
  • the heating rate in step (1) is preferably 8-10°C/min; the starting temperature of the heating is room temperature, and the end temperature is the temperature maintained in step (1); the step (1) 1)
  • the temperature of the heat preservation is 1020 ⁇ 1080°C, preferably 1020 ⁇ 1040°C, and the heat preservation time is 30 ⁇ 200min, preferably 50 ⁇ 150min;
  • the heating and heat preservation processes in the step (1) are preferably performed in a resistance heating heat treatment furnace
  • quenching treatment is performed (recorded as the first quenching);
  • the quenching medium of the first quenching is preferably water, the quenching rate is preferably 50-100°C/s, and the end temperature of quenching is preferably 50-100°C.
  • the present invention pretreats the nickel-based high-temperature alloy sample by heating, holding and first quenching, which can regulate the grain size of the original sample, so that the grain size in the obtained pretreated sample is basically consistent, and at the same time, the internal content of the material is improved. Stress removal improves the consistency of the material, avoids the impact of residual stress on the material structure, and further improves the accuracy and consistency of forging simulation.
  • the present invention sequentially performs temperature rise, first heat preservation, temperature drop, repeated compression-cooling treatment, second heat preservation and quenching treatment on the pretreatment sample to obtain a simulated sample.
  • the rate of temperature rise in step (2) is preferably 8 to 10°C/s, more preferably 9 to 10°C/s.
  • the starting temperature of the temperature rise is room temperature, and the end temperature is the temperature of the first heat preservation.
  • the temperature of the first heat preservation is 1020 ⁇ 1050°C, preferably 1030 ⁇ 1040°C, and the heat preservation time of the first heat preservation is 60 ⁇ 300s, preferably 100 ⁇ 250s; the temperature is cooled after the first heat preservation is completed, specifically: Cool down to first pressure shrinkage temperature, and the cooling rate is preferably 0.5 to 5°C/s.
  • the number of repetitions of the repeated compression-cooling process is more than 3 times, preferably 3 to 5 times; each compression-cooling process includes sequential compression and cooling, and the engineering deformation amount of each compression is 10 ⁇ 30%, preferably 15 ⁇ 35%, and the amplitude of each temperature drop is 10 ⁇ 30°C, preferably 20°C.
  • the next compression is performed (that is, the end temperature of the cooling is the temperature of the next compression) until The last cooling down is over.
  • the compression temperature in the repeated compression-cooling process is preferably 950 to 1050°C, and the temperature of each compression is sequentially reduced (the temperature reduction range of two adjacent compressions is the cooling range).
  • the pressure is preferably 1000 to 2000kgf, more preferably 1500 to 2000kgf.
  • the present invention can deform the material better by applying a fixed pressure during forging simulated compression.
  • the time of each compression in the repeated compression-cooling process is preferably 2 to 10 s, more preferably 3 to 8 s; the time of each cooling in the compression-cooling process is 5 to 30 s, and the cooling rate is Preferably it is 0.5-5°C/s.
  • the obtained sample is subjected to a second heat preservation.
  • the temperature of the second heat preservation is 950-1050°C, preferably 950-1020°C
  • the heat preservation time of the second heat preservation is It is 60-300s, preferably 100-300s, more preferably 200-300s.
  • the temperature rise, first heat preservation, temperature reduction, repeated compression-cooling treatment, and second heat preservation in step (2) are preferably performed in a Gleeble-3500 thermal simulator.
  • the preheated The processed sample is placed between the left and right indenter of the Gleeble-3500 thermal simulator. Maintain the axial alignment between the pretreated sample and the indenter.
  • the nickel-based superalloy and The pressure head is in contact, and the Gleeble-3500 thermal simulator is used to sequentially perform heating, first insulation, cooling, repeated compression-cooling processing and second insulation.
  • the Gleeble-3500 thermal simulator is directly controlled to increase the temperature.
  • the heat preservation is performed to the second heat preservation temperature, and the temperature rising rate is preferably 8 to 12°C/s, and more preferably 10°C/s.
  • the present invention has no special restrictions on the specific source of the Gleeble-3500 thermal simulator. Commercially available products familiar to those skilled in the art can be used. By using the Gleeble simulator to conduct forging simulation, the present invention can more accurately control process parameters, thereby obtaining the required simulation process.
  • the present invention has no special limitation on the method of pressure relief after each compression is completed, and the pressure can be relieved by operating the Gleeble-3500 thermal simulator.
  • the present invention performs quenching treatment on the obtained sample (recorded as the second quenching treatment).
  • the method of the second quenching treatment is preferably vacuum air quenching, and the time of the second quenching treatment is preferably 20 to 40s, preferably 30s, and the temperature at which quenching ends is preferably 100-200°C, more preferably 100-150°C.
  • the present invention can further reduce the precipitation of precipitated phases and the recrystallization of material grains during the cooling process, and restore the physical state of the material at high temperatures; the present invention has no special requirements for the specific operation of the vacuum air quenching. Limitation, the vacuum air quenching process well known in the art can be used.
  • the present invention also provides a simulated sample obtained by the physical simulation method described in the above scheme; the structure and hardness of the simulated sample obtained by the present invention have little difference with the results of the same part of the forged forging, and can effectively guide the forging process of nickel-based high-temperature alloys , in the actual application process, the forging process of the nickel-based high-temperature alloy in the large-scale forging process can be determined based on the simulation results of the present invention, including the actual forging temperature range (initial forging and final forging temperatures) and the amount of forging deformation, etc., thereby Effectively guide the forging processing of nickel-based high-temperature alloys.
  • the nickel-based high-temperature alloy samples used in the following examples are all cylindrical samples with a diameter of 10mm and a length of 15mm.
  • the prepared sample tissue was tested.
  • the anatomical observation method of the sample is shown in Figure 1.
  • the simulated sample was machined to obtain a sample for tissue grain size testing.
  • the test was conducted in accordance with "GBT6394-2017 Metal
  • the average grain size determination method is carried out to test the grain size of the sample.
  • the nickel-based superalloy GH4169 is The high temperature alloy is in contact with the indenter. After the sample is installed, the temperature is raised. The heating rate is 9°C/s. The temperature is raised to 1050°C and kept for 30s. Then the temperature is lowered to 1040°C for the first compression. After the first compression is completed, the temperature is lowered for 10s.
  • Each cooling rate is 2 °C/s, and then perform the next compression and cooling, a total of 5 compressions and coolings, the pressure of each compression is 2000kgf, the engineering deformation of each compression is 15%, the rate and time of each cooling are consistent, 2nd
  • the temperatures for the first to fifth compressions are 1020°C, 1000°C, 980°C and 960°C. After the fifth compression, the temperature is lowered to 940°C; then the temperature is raised to 1000°C and kept for 200 seconds; after the insulation is completed, vacuum air quenching is performed. The quenching time is 30s, the temperature at the end of quenching is 100°C, and the simulated sample is obtained.
  • the structure of the simulated sample is close to the structure of the actual forged sample (initial forging temperature is 1040°C, final forging temperature is 960°C, deformation amount for each forging is 15%, return to furnace and heat preservation for 10 minutes after five deformations),
  • the difference in grain size of the same part is less than 1 level, and the difference in hardness is 18HBW.
  • Figure 2 is a comparison diagram of the structure of the same part of the simulated sample (left) and the actual forged sample (right) obtained in Example 1.
  • the grain size of the simulated sample is 5.5, and the grain size of the actual forged sample is 6. class.
  • the nickel-based superalloy GH4169 is The high temperature alloy is in contact with the indenter. After the sample is installed, the temperature is raised. The heating rate is 10°C/s. The temperature is raised to 1030°C and kept for 60s. Then the temperature is lowered to 1020°C for the first compression. After the first compression is completed, the temperature is lowered for 20s. Each cooling rate is 1 °C/s, and then perform the next compression and cooling. A total of 3 compressions and coolings are performed. The pressure of each compression is 1500kgf.
  • each compression The engineering deformation of each compression is 18%. The rate and time of each cooling are consistent. 2nd The temperatures for the first and third compressions are 1000°C and 980°C respectively. After the third compression, the temperature is lowered to 960°C; then the temperature is raised to 980°C and kept for 250s; after the insulation is completed, vacuum air quenching is performed, the quenching time is 30s, and the quenching is completed. The temperature is 120°C, and a simulated sample is obtained.
  • the structure of the simulated sample is consistent with the actual forged sample (initial forging temperature is 1020°C, final forging temperature is 980°C °C, the deformation amount for each forging is 18%, and the structure is close to that after three deformations and heat preservation for 10 minutes).
  • the difference in grain size of the same parts is less than 1 grade, and the difference in hardness is 14HBW.
  • Figure 3 is a comparison diagram of the structure of the same part of the simulated sample (left) obtained in Example 2 and the actual forged sample (right).
  • the grain size of the simulated sample is 6.5, and the grain size of the actual forged sample is 7. class.
  • the nickel-based high-temperature alloy was replaced with Inconel 625, and the remaining conditions were the same as in Example 1.
  • the structure of the simulated sample is close to that of the actual forged sample (the same forging conditions as the actual forged sample in Example 1).
  • the difference in grain size of the same parts is less than 1 level, and the hardness difference is 22 HBW.
  • Figure 4 is a comparison diagram of the structure of the same part of the simulated sample (left) obtained in Example 3 and the actual forged sample (right).
  • the grain size of the simulated sample is level 5, and the grain size of the actual forged sample is 5.5. class.
  • the nickel-based high-temperature alloy was replaced with Inconel 718, and the remaining conditions were the same as in Example 2.
  • the structure of the simulated sample is close to that of the actual forged sample (the same forging conditions as the actual forged sample in Example 2).
  • the difference in grain size of the same parts is less than 1 grade, and the hardness difference is 16 HBW.
  • Figure 5 is a comparison diagram of the structure of the same part of the simulated sample (left) obtained in Example 4 and the actual forged sample (right).
  • the grain size of the simulated sample is level 6, and the grain size of the actual forged sample is 6.5. class.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Forging (AREA)

Abstract

本发明涉及金属材料加工技术领域,提供了一种镍基高温合金锻造过程的物理模拟方法。本发明将镍基高温合金试样依次进行升温、保温和淬火处理,得到预处理试样;然后将预处理试样依次进行升温、第一保温、降温、重复压缩-降温处理、第二保温和淬火处理,得到模拟试样,其中重复压缩-降温处理的次数为3次以上。本发明采用多道次压缩降温变形的锻造模拟方式对镍基高温合金的锻造过程进行模拟,贴近锻造过程实际,模拟效果好,可操作性高,并且操作步骤简单,适用于同种锻造方法的多种镍基高温合金,所得模拟试样的组织及硬度与实际锻造所得锻件相同部位的差异较小,可有效指导镍基高温合金的锻造加工过程。

Description

一种镍基高温合金锻造过程的物理模拟方法 技术领域
本发明金属材料加工技术领域,尤其涉及一种镍基高温合金锻造过程的物理模拟方法。
背景技术
锻造作为一种金属材料的成型方式,为大规格尺寸部件的制造及高端金属结构材料的生产提供了有力的支持,在全球范围内得到大力推广与应用。镍基高温合金GH4169因其具有良好的高温强度、抗氧化性能以及良好的持久性能,被广泛应用于航空航天、石化油田、高端模具等关键部件;而大型轴类件及大尺寸零部件的成型需要满足组织均匀、性能良好的要求,以保证使用寿命。然而,这些大型锻件的锻造工艺的制定及锻造过程物理模拟方法是一大难题,锻造工艺制定不当会导致大型锻件的组织不均匀,不同部位的性能存在一定差异,容易出现无法满足使用条件的问题,对航空航天等大型关键装备的服役产生影响。
目前,大型锻件锻造过程的物理模拟常用的方法是单道次变形、等温变形、降温单道次变形等物理模拟方法。单道次变形物理模拟针对大型锻件的锻造过程模拟只有一次变形,无法模拟多次变形对材料的组织产生的影响,对锻造工艺的制定的帮助较小;等温变形物理模拟只针对锻造过程时间极短,锻造速度极快的情况下进行模拟,高温合金在空气中的热量散失较快,变形过程中零件与锻造锤头的接触也会使材料发生温度变化,等温变形仅存在于小型锻造过程中,无法对大型锻件锻造过程中降温对材料组织产生的影响进行模拟,对锻造过程的模拟也不贴合实际;降温单道次变形物理模拟是一种新型的锻造模拟方法,此方法考虑到材料在锻造过程中的降温问题。但是,仅考虑单道次内的降温仍然很容易出现模拟结果与实际锻造结果存在差异的问题。
因此,上述模拟方法均无法对锻造过程进行准确模拟,模拟结果与实际锻造结果差异较大,无法有效指导镍基高温合金的锻造加工,亟需提供一种更加贴近实际锻造过程的模拟方法。
发明内容
有鉴于此,本发明提供了一种镍基高温合金锻造过程的物理模拟方法。本发明提供的物理模拟方法贴近锻造的实际过程,模拟效果好,可操作性高,可有效指导镍基高温合金的锻造加工。
为了实现上述发明目的,本发明提供以下技术方案:
一种镍基高温合金锻造过程的物理模拟方法,包括以下步骤:
(1)将镍基高温合金试样依次进行升温、保温和淬火处理,得到预处理试样;
(2)将所述预处理试样依次进行升温、第一保温、降温、重复压缩-降温处理、第二保温和淬火处理,得到模拟试样;
所述步骤(1)中保温的温度为1020~1080℃,保温时间为30~200min;
所述步骤(2)中第一保温的温度为1020~1050℃,保温时间为60~300s;第二保温 的温度为950~1050℃,保温时间为60~300s;
所述重复压缩-降温处理的重复次数为3次以上,每次压缩-降温处理包括依次进行的压缩和降温,每次压缩的工程变形量为10~30%,每次降温的幅度为10~30℃,降温完成后进行下一次压缩,直至最后一次降温结束。
优选的,所述镍基高温合金为镍基高温合金GH4169、Inconel 625或Inconel 718。
优选的,所述镍基高温合金试样为圆柱形试样,所述圆柱形试样的直径为6~10mm,长度为10~20mm。
优选的,所述步骤(1)中升温的速率为8~10℃/min。
优选的,所述步骤(1)中淬火处理的淬火介质为水,淬火速率为50~100℃/s。
优选的,所述步骤(2)中升温的速率为8~10℃/s。
优选的,所述重复压缩-降温处理的次数为3~5次。
优选的,所述重复压缩-降温处理中压缩的温度为950~1050℃,且每次压缩的温度依次降低,压缩的压力为1000~2000kgf,每次压缩的时间为2~10s,所述压缩-降温处理中每次降温的时间为5~30s。
优选的,所述步骤(2)中淬火处理的方式为真空气淬,淬火处理的时间为20~40s,淬火结束的温度为100~200℃。
本发明还提供了上述方案所述物理模拟方法得到的模拟试样。
本发明提供了一种镍基高温合金锻造过程的物理模拟方法,包括以下步骤:(1)将镍基高温合金试样依次进行升温、保温和淬火处理,得到预处理试样;(2)将所述预处理试样依次进行升温、第一保温、降温、重复压缩-降温处理、第二保温和淬火处理,得到模拟试样;所述步骤(1)中保温的温度为1020~1080℃,保温时间为30~200min;所述步骤(2)中第一保温的温度为1020~1050℃,保温时间为60~300s;第二保温的温度为950~1050℃,保温时间为60~300s;所述重复压缩-降温处理的重复次数为3次以上,每次压缩-降温处理包括依次进行的压缩和降温,每次压缩的工程变形量为10~30%,每次降温的幅度为10~30℃,降温完成后进行下一次压缩,直至最后一次降温结束。本发明采用多道次压缩降温变形的锻造模拟方式对镍基高温合金的锻造过程进行模拟,并控制模拟过程中的压缩道次及降温程度,既能够保证还原锻件多次锻造的情况,同时考虑到了锻造过程中材料的降温情况会对组织产生影响的问题;本发明采用多道次压缩模拟的方式还原锻造过程中的锤头对坯料的多次变形过程,采用降温变形模拟的方式实现了材料在变形过程中的温度变化导致材料组织不均匀的过程模拟;本发明的模拟方法操作简单,贴近锻造过程实际,模拟效果好,可操作性高,适用于同种锻造方法的多种镍基高温合金,所得模拟试样的组织及硬度与实际锻造所得锻件相同部位得差异较小;在本发明的实际应用过程中,可以根据本发明模拟得到的结果,确定镍基高温合金大型锻造时的实际锻造工艺,包括确定温度区间(始锻和终锻温度)、锻造的变形量等,从而可有效指导镍基高温合金的锻造加工过程。实施例结果表明,采用本发明提供的锻造模拟方法得到的模拟试样,其组织与实际锻造结果接近,相同部位的晶粒度差别小于1级,硬度差别小于25HBW。
附图说明
图1为物理模拟试样组织观察面示意图;
图2为实施例1所得模拟试样(左)与实际锻造试样(右)相同部位的组织对比图;
图3为实施例2所得模拟试样(左)与实际锻造试样(右)相同部位的组织对比图;
图4为实施例3所得模拟试样(左)与实际锻造试样(右)相同部位的组织对比图;
图5为实施例4所得模拟试样(左)与实际锻造试样(右)相同部位的组织对比图。
具体实施方式
本发明提供了一种镍基高温合金锻造过程的物理模拟方法,包括以下步骤:
(1)将镍基高温合金试样依次进行升温、保温和淬火处理,得到预处理试样;
(2)将所述预处理试样依次进行升温、第一保温、降温、重复压缩-降温处理、第二保温和淬火处理,得到模拟试样;
所述步骤(1)中保温的温度为1020~1080℃,保温时间为30~200min;
所述步骤(2)中第一保温的温度为1020~1050℃,保温时间为60~300s;第二保温的温度为950~1050℃,保温时间为60~300s;
所述重复压缩-降温处理的重复次数为3次以上,每次压缩-降温处理包括依次进行的压缩和降温,每次压缩的工程变形量为10~30%,每次降温的幅度为10~30℃,降温完成后进行下一次压缩,直至最后一次降温结束。
本发明将镍基高温合金试样依次进行升温、保温和淬火处理,得到预处理试样。在本发明中,所述镍基高温合金优选为镍基高温合金GH4169、Inconel 625或Inconel 718;所述镍基高温合金试样优选为圆柱形试样,所述圆柱形试样的直径优选为6~10mm,更优选为8mm,长度优选为10~20mm,更优选为12~15mm。在本发明中,当所述镍基高温合金的原始尺寸不满足上述条件时,本发明优选对所述镍基高温合金进行加工,本发明对所述加工的方式没有特殊的限定,能够得到上述尺寸的试样即可,在本发明的具体实施例中,优选使用线切割机床对所述镍基高温合金进行加工。本发明通过控制锻造模拟试样的尺寸,便于进行后续组织观察。
在本发明中,所述步骤(1)中的升温速率优选为8~10℃/min;所述升温的起始温度为室温,终点温度为步骤(1)中保温的温度;所述步骤(1)保温的温度为1020~1080℃,优选为1020~1040℃,保温时间为30~200min,优选为50~150min;所述步骤(1)中升温和保温过程均优选在电阻加热热处理炉中进行;保温完成后进行淬火处理(记为第一淬火);所述第一淬火的淬火介质优选为水,淬火速率优选为50~100℃/s,淬火的终点温度优选为50~100℃。本发明通过升温、保温和第一淬火对镍基高温合金试样进行预处理,可以调控原始试样的晶粒度,使所得预处理试样中的晶粒度基本一致,同时使材料内部的应力去除,提高材料的一致性,避免残余应力对材料的组织产生影响,进一步提高锻造模拟的准确度和一致性。在本发明的具体实施例中,优选将镍基高温合金试样放置在电阻加热热处理炉的测温电偶附近,并且使用温度保持较好的热处理炉,可以使材料晶粒度更加一致。
得到预处理试样后,本发明将所述预处理试样依次进行升温、第一保温、降温、重复压缩-降温处理、第二保温和淬火处理,得到模拟试样。在本发明中,所述步骤(2)中升温的速率优选为8~10℃/s,更优选为9~10℃/s,升温的起始温度为室温,终点温度为第一保温的温度;所述第一保温的温度为1020~1050℃,优选为1030~1040℃,所述第一保温的保温时间为60~300s,优选为100~250s;第一保温结束后进行降温,具体是降温至第一次压 缩的温度,所述降温的速率优选为0.5~5℃/s。
在本发明中,所述重复压缩-降温处理的重复次数为3次以上,优选为3~5次;每次压缩-降温处理包括依次进行的压缩和降温,每次压缩的工程变形量为10~30%,优选为15~35%,每次降温的幅度为10~30℃,优选为20℃,降温完成后进行下一次压缩(即降温的终点温度即为下一次压缩的温度),直至最后一次降温结束。在本发明中,所述重复压缩-降温处理中压缩的温度优选为950~1050℃,且每次压缩的温度依次降低(相邻两次压缩的温度降低幅度即为降温的幅度),压缩的压力优选为1000~2000kgf,更优选为1500~2000kgf,本发明通过在锻造模拟压缩时施加固定的压力,可以使材料更好的变形。在本发明中,所述重复压缩-降温处理中每次压缩的时间优选为2~10s,更优选为3~8s;所述压缩-降温处理中每次降温的时间为5~30s,降温速率优选为0.5~5℃/s。
以压缩-降温处理的次数为三次为例说明本发明的重复过程:依次进行第一次压缩、第一次降温、第二次压缩、第二次降温、第三次压缩和第三次降温,以第一次压缩的温度为1040℃、每次降温的幅度为20℃为例,则第一次、第二次和第三次压缩的温度分别为1040℃、1020℃和1000℃,第三次压缩完成后,再降温至980℃,即完成三次压缩-降温处理。
重复压缩-降温处理完成后,将所得试样进行第二保温,在本发明中,所述第二保温的温度为950~1050℃,优选为950~1020℃,所述第二保温的保温时间为60~300s,优选为100~300s,更优选为200~300s。本发明通过控制锻造模拟过程中的参数,可以进一步提高模拟的结果准确性和一致性,从而进一步提高锻造模拟质量。
在本发明的具体实施例中,所述步骤(2)中的升温、第一保温、降温、重复压缩-降温处理、第二保温均优选在Gleeble-3500热模拟机中进行,具体为将预处理试样放置在Gleeble-3500热模拟机的左压头和右压头之间,保持预处理试样和与压头之间轴向对中,通过移动主动模端,使镍基高温合金和压头接触,通过Gleeble-3500热模拟机依次进行升温、第一保温、降温、重复压缩-降温处理和第二保温,重复压缩-降温处理完成后,具体是直接控制Gleeble-3500热模拟机升温至第二保温的温度进行保温,升温的速率优选为8~12℃/s,更优选为10℃/s。本发明对所述Gleeble-3500热模拟机的具体来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。本发明通过采用Gleeble模拟机进行的锻造模拟,能够更加精准的控制工艺参数,从而获得所需的模拟过程。本发明对每次压缩完成后卸压的方式没有特殊的限定,通过操作Gleeble-3500热模拟机进行卸压即可。
第二保温完成后,本发明将所得试样进行淬火处理(记为第二淬火处理),所述第二淬火处理的方式优选为真空气淬,所述第二淬火处理的时间优选为20~40s,优选为30s,淬火结束的温度优选为100~200℃,更优选为100~150℃。本发明通过控制淬火的参数,能够进一步降低材料在冷却过程中的析出相析出及材料晶粒再结晶情况,还原高温时材料的物理状态;本发明对所述真空气淬的具体操作没有特殊的限定,采用本领域技术熟知的真空气淬的工艺即可。
本发明还提供了上述方案所述物理模拟方法得到的模拟试样;本发明得到的模拟试样组织及硬度与锻造的锻件相同部位结果差异较小,可有效指导镍基高温合金的锻造加工过程,在实际应用过程中,可以根据本发明的模拟结果确定镍基高温合金在大型锻造过程中的锻造工艺,包括实际锻造的温度区间(始锻和终锻温度)及锻造的变形量等,从而有效指导镍基高温合金的锻造加工。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下列实施例中使用的镍基高温合金试样均为圆柱形试样,直径为10mm,长度为15mm。
下列实施例中,对制备得到的试样组织进行测试,试样解剖观察方式如图1所示,将模拟试样进行机加工,得到组织晶粒度测试用样品,测试按照《GBT6394-2017金属平均晶粒度测定方法》进行,测试试样的晶粒度。
实施例1
将镍基高温合金GH4169试样放置在热处理炉中依次进行升温和保温,升温的速率为10℃/min,升温至1040℃保温60min,保温结束后,将试样取出并立即进行水淬,得到预处理试样。
将预处理试样放置在Gleeble-3500热模拟机的左压头和右压头之间,保持镍基高温合金GH4169和与压头之间轴向对中,通过移动主动模端,使镍基高温合金和压头接触。将试样安装好后进行升温,升温速率为9℃/s,升温至1050℃保温30s,然后降温至1040℃进行第一次压缩,第一次压缩完成后降温10s,每次降温速率为2℃/s,然后进行下一次压缩和降温,共进行5次压缩和降温,每次压缩的压力为2000kgf,每次压缩的工程变形量为15%,每次降温的速率和时间一致,第2次~第5次压缩的温度依次为1020℃、1000℃、980℃和960℃,第五次压缩后降温至940℃;然后升温至1000℃保温200s;保温结束后进行真空气淬,淬火时间为30s,淬火结束的温度为100℃,得到模拟试样。
经过观察,模拟试样的组织与实际锻造试件(始锻温度为1040℃,终锻温度为960℃,锻造每次变形量为15%,经过五次变形后回炉保温10min)的组织接近,相同部位的晶粒度差别小于1级,硬度差别为18HBW。
图2为实施例1所得模拟试样(左)与实际锻造试样(右)相同部位的组织对比图,其中模拟试样的晶粒度为5.5级,实际锻造试样的晶粒度为6级。
实施例2
将镍基高温合金GH4169试样放置在热处理炉中依次进行升温和保温,升温的速率为10℃/min,升温至1020℃保温120min,保温结束后,将试样取出并立即进行水淬,得到预处理试样。
将预处理试样放置在Gleeble-3500热模拟机的左压头和右压头之间,保持镍基高温合金GH4169和与压头之间轴向对中,通过移动主动模端,使镍基高温合金和压头接触。将试样安装好后进行升温,升温速率为10℃/s,升温至1030℃保温60s,然后降温至1020℃进行第一次压缩,第一次压缩完成后降温20s,每次降温速率为1℃/s,然后进行下一次压缩和降温,共进行3次压缩和降温,每次压缩的压力为1500kgf,每次压缩的工程变形量为18%,每次降温的速率和时间一致,第2次、第3次压缩的温度依次为1000℃、980℃,第3次压缩后降温至960℃;然后升温至980℃保温250s;保温结束后进行真空气淬,淬火时间为30s,淬火结束的温度为120℃,得到模拟试样。
经过观察,模拟试样的组织与实际锻造试件(始锻温度为1020℃,终锻温度为980 ℃,锻造每次变形量为18%,经过三次变形后回炉保温10min)的组织接近,相同部位的晶粒度差别小于1级,硬度差别为14HBW。
图3为实施例2所得模拟试样(左)与实际锻造试样(右)相同部位的组织对比图,其中模拟试样的晶粒度为6.5级,实际锻造试样的晶粒度为7级。
实施例3
将镍基高温合金替换为Inconel 625,其余条件与实施例1相同。
经过观察,模拟试样的组织与实际锻造试件(和实施例1中实际锻造试件的锻造条件相同)的组织接近,相同部位的晶粒度差别小于1级,硬度差别为22HBW。
图4为实施例3所得模拟试样(左)与实际锻造试样(右)相同部位的组织对比图,其中模拟试样的晶粒度为5级,实际锻造试样的晶粒度为5.5级。
实施例4
将镍基高温合金替换为Inconel 718,其余条件与实施例2相同。
经过观察,模拟试样的组织与实际锻造试件(和实施例2中实际锻造试件的锻造条件相同)的组织接近,相同部位的晶粒度差别小于1级,硬度差别为16HBW。
图5为实施例4所得模拟试样(左)与实际锻造试样(右)相同部位的组织对比图,其中模拟试样的晶粒度为6级,实际锻造试样的晶粒度为6.5级。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种镍基高温合金锻造过程的物理模拟方法,其特征在于,包括以下步骤:
    (1)将镍基高温合金试样依次进行升温、保温和淬火处理,得到预处理试样;
    (2)将所述预处理试样依次进行升温、第一保温、降温、重复压缩-降温处理、第二保温和淬火处理,得到模拟试样;
    所述步骤(1)中保温的温度为1020~1080℃,保温时间为30~200min;
    所述步骤(2)中第一保温的温度为1020~1050℃,保温时间为60~300s;第二保温的温度为950~1050℃,保温时间为60~300s;
    所述重复压缩-降温处理的重复次数为3次以上,每次压缩-降温处理包括依次进行的压缩和降温,每次压缩的工程变形量为10~30%,每次降温的幅度为10~30℃,降温完成后进行下一次压缩,直至最后一次降温结束。
  2. 根据权利要求1所述的物理模拟方法,其特征在于,所述镍基高温合金为镍基高温合金GH4169、Inconel 625或Inconel 718。
  3. 根据权利要求1或2所述的物理模拟方法,其特征在于,所述镍基高温合金试样为圆柱形试样,所述圆柱形试样的直径为6~10mm,长度为10~20mm。
  4. 根据权利要求1所述的物理模拟方法,其特征在于,所述步骤(1)中升温的速率为8~10℃/min。
  5. 根据权利要求1所述的物理模拟方法,其特征在于,所述步骤(1)中淬火处理的淬火介质为水,淬火速率为50~100℃/s。
  6. 根据权利要求1所述的物理模拟方法,其特征在于,所述步骤(2)中升温的速率为8~10℃/s。
  7. 根据权利要求1所述的物理模拟方法,其特征在于,所述重复压缩-降温处理的次数为3~5次。
  8. 根据权利要求1或7所述的物理模拟方法,其特征在于,所述重复压缩-降温处理中压缩的温度为950~1050℃,且每次压缩的温度依次降低,压缩的压力为1000~2000kgf,每次压缩的时间为2~10s,所述压缩-降温处理中每次降温的时间为5~30s。
  9. 根据权利要求1所述的物理模拟方法,其特征在于,所述步骤(2)中淬火处理的方式为真空气淬,淬火处理的时间为20~40s,淬火结束的温度为100~200℃。
  10. 权利要求1~9任意一项所述物理模拟方法得到的模拟试样。
PCT/CN2023/097157 2022-08-11 2023-05-30 一种镍基高温合金锻造过程的物理模拟方法 WO2024032103A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2320155.1A GB2624983A (en) 2022-08-11 2023-05-30 Physical simulation method for forging process of nickel-based superalloy
US18/575,801 US20240264051A1 (en) 2022-08-11 2023-05-30 Physical simulation method for forging process of nickel-base superalloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210962689.0A CN115323298B (zh) 2022-08-11 2022-08-11 一种镍基高温合金锻造过程的物理模拟方法
CN202210962689.0 2022-08-11

Publications (1)

Publication Number Publication Date
WO2024032103A1 true WO2024032103A1 (zh) 2024-02-15

Family

ID=83923021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097157 WO2024032103A1 (zh) 2022-08-11 2023-05-30 一种镍基高温合金锻造过程的物理模拟方法

Country Status (2)

Country Link
CN (1) CN115323298B (zh)
WO (1) WO2024032103A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2624983A (en) * 2022-08-11 2024-06-05 Univ Jiangsu Physical simulation method for forging process of nickel-based superalloy
CN115323298B (zh) * 2022-08-11 2023-03-03 江苏大学 一种镍基高温合金锻造过程的物理模拟方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732012A (zh) * 2015-02-13 2015-06-24 西北工业大学 Gh4169合金锻件晶粒度与锻造热力参数关系的建立方法
CN107937850A (zh) * 2017-11-30 2018-04-20 中南大学 一种通过热处理提升镍基合金锻件组织均匀性的方法
CN110551955A (zh) * 2019-08-23 2019-12-10 中国航发北京航空材料研究院 一种降低gh4169合金大尺寸盘锻件内部残余应力的方法
CN114160796A (zh) * 2021-11-02 2022-03-11 深圳市万泽中南研究院有限公司 一种制备涡轮盘的热处理工艺方法和涡轮盘
CN115323298A (zh) * 2022-08-11 2022-11-11 江苏大学 一种镍基高温合金锻造过程的物理模拟方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050155679A1 (en) * 2003-04-09 2005-07-21 Coastcast Corporation CoCr alloys and methods for making same
FR2953860B1 (fr) * 2009-12-10 2015-05-15 Snecma Procede de fabrication de superaillages de nickel de type inconel 718
JP5981164B2 (ja) * 2012-02-24 2016-08-31 長野鍛工株式会社 ニッケル基合金の超塑性鍛造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732012A (zh) * 2015-02-13 2015-06-24 西北工业大学 Gh4169合金锻件晶粒度与锻造热力参数关系的建立方法
CN107937850A (zh) * 2017-11-30 2018-04-20 中南大学 一种通过热处理提升镍基合金锻件组织均匀性的方法
CN110551955A (zh) * 2019-08-23 2019-12-10 中国航发北京航空材料研究院 一种降低gh4169合金大尺寸盘锻件内部残余应力的方法
CN114160796A (zh) * 2021-11-02 2022-03-11 深圳市万泽中南研究院有限公司 一种制备涡轮盘的热处理工艺方法和涡轮盘
CN115323298A (zh) * 2022-08-11 2022-11-11 江苏大学 一种镍基高温合金锻造过程的物理模拟方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUOAI HE; FENG LIU; LAN HUANG; LIANG JIANG: "Analysis of Forging Cracks during Hot Compression of Powder Metallurgy Nickel‐Based Superalloy on Simulation and Experiment ", ADVANCE ENGINEERING MATERIALS, WILEY VCH VERLAG, WEINHEIM., DE, vol. 18, no. 10, 3 August 2016 (2016-08-03), DE , pages 1823 - 1832, XP072135979, ISSN: 1438-1656, DOI: 10.1002/adem.201600270 *

Also Published As

Publication number Publication date
CN115323298A (zh) 2022-11-11
CN115323298B (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2024032103A1 (zh) 一种镍基高温合金锻造过程的物理模拟方法
CN107389445B (zh) 一种应力松弛试验评价材料再热裂纹敏感性的方法
CN111215567A (zh) 提高gh4099高温合金薄壁类环件晶粒度的锻造方法
CN107220485B (zh) 一种适用于多道次压缩的本构模型的建立方法
CN113249552B (zh) 改善2Cr13转子探伤杂波的调质热处理工艺
JP5284555B2 (ja) 大形鍛造鍛造品の製造方法
Furrer et al. Optimizing the heat treatment of Ni-based superalloy turbine discs
US20240264051A1 (en) Physical simulation method for forging process of nickel-base superalloy
CN114226618B (zh) 基于混晶调控的大型轴类锻件终锻成形的反向控制工艺
CN114317900B (zh) 一种用于消除锻件偏析线的热处理工艺方法
CN106167848A (zh) 一种利用锻造余热进行预先完全退火的铁路车辆车轴热处理工艺
CN113283067A (zh) 铝合金加工工艺优化方法及其应用
CN114864007A (zh) 超高强钢高温成形晶粒尺寸演化模型建立方法
Zhang et al. Mechanisms and microstructures of 2A97 Al‐Li alloy under the hot forming with synchronous quenching process
CN102269668B (zh) 一种对压缩试样进行急速水淬的试验方法
CN107598067B (zh) 一种X12CrMoWVNbN10静叶环锻件的加工工艺
CN109773096A (zh) 一种提高探伤水平的锻造方法及装置
US11313010B2 (en) Method of forming parts from sheet metal
CN114603073B (zh) 一种克服4130锻件裂纹的锻造方法
CN118726873A (zh) 一种镍合金及其处理方法
CN115679077A (zh) 一种Cr5型锻钢轧辊锻后重结晶方法
CN117123727A (zh) 高温合金薄壁类环件晶粒细化的锻造方法
CN113740333A (zh) 一种观察镍基高温合金动态再结晶过程组织演变的方法
CN118180307A (zh) 一种消除钢锭内部孔隙缺陷的方法
CN118291722A (zh) 一种SUP13Cr/1材料锻后热处理工艺

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202320155

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20230530

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851331

Country of ref document: EP

Kind code of ref document: A1