WO2024031858A1 - 动力基站 - Google Patents

动力基站 Download PDF

Info

Publication number
WO2024031858A1
WO2024031858A1 PCT/CN2022/131880 CN2022131880W WO2024031858A1 WO 2024031858 A1 WO2024031858 A1 WO 2024031858A1 CN 2022131880 W CN2022131880 W CN 2022131880W WO 2024031858 A1 WO2024031858 A1 WO 2024031858A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
component
lifting
motor
output
Prior art date
Application number
PCT/CN2022/131880
Other languages
English (en)
French (fr)
Inventor
柳建雄
何志雄
吴志诚
郑滨
Original Assignee
广东天太机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东天太机器人有限公司 filed Critical 广东天太机器人有限公司
Publication of WO2024031858A1 publication Critical patent/WO2024031858A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/06Rolling motors, i.e. motors having the rotor axis parallel to the stator axis and following a circular path as the rotor rolls around the inside or outside of the stator ; Nutating motors, i.e. having the rotor axis parallel to the stator axis inclined with respect to the stator axis and performing a nutational movement as the rotor rolls on the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the field of robotic technology, and in particular, to a power base station.
  • the traditional handling power In the field of mobile handling robots, power is the core part.
  • the generated power drives the robot to carry out handling and movement.
  • the traditional handling power mainly relies on the structure of the hydraulic base station and the hydraulic cylinder.
  • the disadvantage of this method is that It requires regular maintenance, oil changes and sealing ring replacement, and the overall volume is large.
  • the traditional driving wheel solutions are generally divided into: horizontal driving wheel, horizontal steering wheel and vertical steering wheel.
  • the axial length of the horizontal driving wheel and the horizontal steering wheel is longer, resulting in an increase in the steering radius.
  • the structure of the vertical steering wheel is distributed longitudinally, so the longitudinal volume is large.
  • the present invention provides a power base station.
  • the invention discloses a power base station, which includes: a lifting module, a hollow joint module that bears axial load, and a driving wheel module.
  • the lifting module includes a power mechanism, a lifting mechanism, and a crank connecting rod mechanism connected in sequence; the drive
  • the wheel module includes a driving mechanism, a two-stage planetary reduction mechanism and a rolling mechanism.
  • the driving mechanism is connected to the rolling mechanism through the two-stage planetary reduction mechanism; the hollow joint module that bears the axial load is set on the crank connecting rod mechanism, and the hollow joint module that bears the axial load is The hollow joint module is connected to the driving mechanism.
  • the power mechanism includes:
  • a drive control assembly located within the housing
  • the brake is arranged in the housing, and the brake is connected to the drive control component;
  • the motor assembly includes a motor shaft, a magnetic tile bushing, a plurality of rotor magnetic tiles and a plurality of stator coils.
  • the motor shaft is rotated and installed in the housing. One end of the motor shaft extends out of the housing.
  • the motor shaft is connected to the lifting mechanism.
  • the brake is installed in the housing.
  • the motor shaft has a magnetic tile bushing set on the motor shaft.
  • the magnetic tile bushing is provided with a first receiving groove. The side of the brake away from the drive control component is located in the first receiving groove.
  • a plurality of rotor magnetic tiles are arranged around the magnetic tile bushing. , a plurality of stator coils and a plurality of rotor magnetic tiles are arranged oppositely, and the stator coils are connected to the drive control component;
  • Encoder assembly which connects the drive control assembly and the motor shaft.
  • the lifting mechanism includes a lifting bearing component and a lifting input component, a lifting transmission component, and a lifting output component provided on the lifting bearing component.
  • the lifting bearing component is connected to the housing, and the lifting input component is connected to the motor shaft and extends out of the housing.
  • the lifting transmission component is connected to the lifting input component and the lifting output component respectively.
  • the crank-link mechanism includes a crank support component, a connecting rod component and a lifting output component.
  • the lifting load-bearing component, the connecting rod component and the hollow joint module that bears the axial load are all provided on the crank support component.
  • the rod assembly is rotatably connected to the lifting output assembly and the lifting output piece.
  • the hollow joint module that bears axial load includes a motor component, a deceleration component, a rigid component, an output component, a first encoder component, a second encoder component, a control component and a braking component.
  • the motor The output end of the component is connected to the deceleration component.
  • the rigid component is located between the motor component and the deceleration component.
  • the deceleration component is connected to the rigid component and the deceleration component through several connecting parts.
  • the rigid component is connected to the crank link mechanism, and the output component is connected to the deceleration component.
  • the first encoder component is connected to the output end of the motor component
  • the second encoder component is connected to the output component
  • the control component is connected to the motor component, the first encoder component, the second encoder component and the brake component, and the brake component sleeve Located at the output end of the motor assembly.
  • the motor assembly includes a motor front cover, a motor tail cover, a stator part, a rotor part and a transmission sleeve.
  • the motor front cover is connected to the deceleration assembly
  • the motor front cover is connected to the motor tail cover
  • the tail cover and the rigid part form a receiving groove.
  • the stator part and the rotor part are both located in the receiving groove.
  • the transmission sleeve is connected to the input end of the rotor part and the deceleration component.
  • the first encoder component is connected to the transmission sleeve, and the second encoder component and the control component are both Located in the receiving slot, the end of the output piece away from the reduction assembly penetrates the motor front cover and motor tail cover.
  • the deceleration assembly includes a fixed plate and a reducer.
  • the fixed plate is connected to the rigid part and the motor assembly.
  • the reducer is arranged on the fixed plate, and the output part is connected to the reducer.
  • the two-stage planetary reduction mechanism includes:
  • the first-level planetary deceleration assembly includes a first-level sun gear, a plurality of first-level planetary gears, a first-level internal ring gear and a first-level cage.
  • the first-level sun gear is connected to the output end of the driving mechanism, and the multiple first-level planetary gears are connected to a first-level planetary gear.
  • the first-stage sun gear and the first-stage internal ring gear, and the first-stage cage connects multiple first-stage planet gears;
  • the secondary planetary deceleration assembly includes a secondary sun gear, a plurality of secondary planetary gears, a secondary internal ring gear and a secondary cage.
  • the secondary sun gear is connected to the primary cage, and the multiple secondary planetary gears are connected to the secondary cage.
  • the sun gear and the secondary internal ring gear, the secondary internal ring gear is connected to the rolling mechanism, and the secondary cage is connected to multiple secondary planetary gears.
  • the rolling mechanism includes a hub and a rubber-coated wheel.
  • the hub is connected to the secondary internal ring gear, and the rubber-coated wheel is wrapped around the outer surface of the hub.
  • the driving wheel module further includes an input connection mechanism, which includes a first input support column, a second input support column and a rotating flange plate.
  • the first input support column is connected to the first-level internal ring gear
  • the third input support column is connected to the first-level internal ring gear.
  • the two input support columns are arranged on the outer surface of the driving mechanism, the rotating flange plate is connected to the first input support column and the second input support column respectively, and the rotating flange plate is connected to the hollow joint module that bears the axial load.
  • the beneficial effect of the present invention is that the power mechanism drives the crank linkage mechanism to move through the lifting mechanism to realize the transportation function, and the hollow joint module that bears the axial load simultaneously drives the entire drive wheel module to move, in which the drive wheel module
  • the driving mechanism drives the rolling mechanism through the secondary planetary reduction mechanism to achieve overall straight or turning motion.
  • Figure 1 is a three-dimensional schematic diagram of the power base station in the embodiment
  • Figure 2 is a diagram of the lifting state of the lifting module in the embodiment
  • Figure 3 is another lifting state diagram of the lifting module in the embodiment.
  • Figure 4 is a diagram of the landing state of the lifting module in the embodiment
  • Figure 5 is a three-dimensional schematic diagram of the combination of the power mechanism and the lifting mechanism in the embodiment
  • Figure 6 is a cross-sectional view of the combination of the power mechanism and the lifting mechanism in the embodiment
  • Figure 7 is an exploded schematic diagram of the power mechanism in the embodiment
  • Figure 8 is a three-dimensional schematic view of the power mechanism in the embodiment.
  • Figure 9 is a cross-sectional view of the power mechanism in the embodiment.
  • Figure 10 is a three-dimensional schematic view of the magnetic tile bushing in the embodiment.
  • Figure 11 is an exploded schematic diagram of the lifting mechanism in the embodiment.
  • Figure 12 is a cross-sectional view of the hollow joint module bearing axial load in the embodiment
  • Figure 13 is an exploded schematic diagram of the hollow joint module bearing axial load in the embodiment
  • Figure 14 is a three-dimensional schematic view of the hollow joint module bearing axial load in the embodiment
  • Figure 15 is a three-dimensional schematic view of the driving wheel module in the embodiment.
  • Figure 16 is a cross-sectional view of the driving wheel module in the embodiment.
  • Figure 17 is a cross-sectional view of the secondary planetary reduction mechanism in the embodiment.
  • Figure 18 is a combined diagram of the secondary cage and the secondary planet gear in the embodiment.
  • 1000-lift module 100-power mechanism; 1-casing; 11-first accommodation chamber; 12-second accommodation chamber; 13-front end cover; 14-casing; 15-rear end cover; 16-tail cover ; 2-Drive control assembly; 3-Brake; 31-Second accommodation slot; 4-Motor assembly; 41-Motor shaft; 42-Magnetic tile bushing; 421-First accommodation slot; 43-Rotor magnet tile; 44- Stator coil; 5-encoder assembly; 51-encoding magnetic part; 52-encoding reading part; 53-encoding bearing part; 6-front bearing; 7-rear bearing; 8-elastic part; 200-lifting mechanism; 201- Lift the load-bearing assembly; 2011-load-bearing shell; 2012-load-bearing end cover; 2013-third accommodation cavity; 202-lift input assembly; 2021-input bearing; 2022-input cam; 2023-input end cover; 203-lift transmission assembly; 2031-Transmission steel wheel; 2032-Transmission flexspline;
  • 2000-Hollow joint module that bears axial load; 901-Drive assembly; 9011-Motor front cover; 9012-Motor tail cover; 9013-Stator part; 9014-Rotor part; 9015-Transmission sleeve; 9016-Accommodation slot; 902-Reduction assembly; 9021-Fixed plate; 9022-Reducer; 903-Rigid parts; 9031-First escape groove; 904-Output parts; 905-First encoder assembly; 9051-First encoder bearing; 9052 -The first encoder holder; 90521-the second avoidance groove; 9053-the first encoder code disc; 906-the second encoder assembly; 9061-the second encoder holder; 9062-the second encoder code disc ;907-Control components;908-Connectors;
  • 3000-Driving wheel module 600-Second-level planetary reduction mechanism; 601-First-level planetary reduction assembly; 6011-First-level sun gear; 6012-First-level planetary gear; 6013-First-level internal ring gear; 6014-First-level holding Frame; 602-secondary planetary reduction assembly; 6021-secondary sun gear; 6022-secondary planetary gear; 6023-secondary internal ring gear; 6024-secondary cage; 700-rolling mechanism; 701-hub; 7011- Groove; 702-rubber wheel; 800-input connection mechanism; 801-first input support column; 802-second input support column; 803-rotating flange plate; 8031-connection through hole; 804-wire passing piece; 8041-Wire duct;
  • Figure 1 is a three-dimensional schematic diagram of a power base station in an embodiment.
  • the power base station of this application includes a lifting module 1000, a hollow joint module 2000 that bears axial load, and a driving wheel module 3000.
  • the lifting module 1000 is used to transport objects, and the hollow joint module 2000 that bears axial load is connected to the lifting module.
  • the assembly 1000 and the driving wheel module 3000, and the hollow joint module 2000 that bears the axial load drives the driving wheel module 3000 to move to change direction, and the driving wheel module 3000 rotates to achieve movement.
  • Figure 2 is a lifting state diagram of the lifting module 1000 in the embodiment
  • Figure 3 is another lifting state diagram of the lifting module 1000 in the embodiment
  • Figure 4 is a lifting state diagram of the lifting module 1000 in the embodiment.
  • Figure 5 is a perspective view of the combination of the power mechanism 100 and the lifting mechanism 200 in the embodiment
  • Figure 6 is a cross-sectional view of the combination of the power mechanism 100 and the lifting mechanism 200 in the embodiment.
  • the lifting module 1000 of the present application includes a power mechanism 100, a lifting mechanism 200 and a crank connecting rod mechanism 500.
  • the output end of the power mechanism 100 is connected to the lifting mechanism 200, and power is output through the lifting mechanism 200.
  • the output end of the lifting mechanism 200 is connected to the crank linkage.
  • the rod mechanism 500 and the power mechanism 100 provide precise power output.
  • the power produces a large torque after passing through the lifting mechanism 200.
  • the large torque drives the crank link mechanism 500 to move, so that the items on the crank link mechanism 500 can be
  • Figure 7 is an exploded schematic view of the power mechanism 100 in the embodiment;
  • Figure 8 is a three-dimensional schematic view of the power mechanism 100 in the embodiment;
  • Figure 9 is a cross-sectional view of the power mechanism 100 in the embodiment;
  • Figure 10 is A schematic three-dimensional view of the magnetic tile bushing 42 in the embodiment.
  • the power mechanism 100 includes a housing 1, a drive control component 2, a brake 3, a motor component 4 and an encoder component 5.
  • the drive control component 2, the brake 3, the motor component 4 and the encoder component 5 are all located in the housing 1, and the motor The output end of the assembly 4 extends out of the housing 1 for power output.
  • the drive control component 2 is connected to the brake 3, the motor component 4 and the encoder component 5.
  • the drive control component 2 drives the brake 3 to release the fixation of the motor component 4, so that the motor component 4 works after being excited by the drive control component 2, and the encoder
  • the sensor component 5 takes the movement information from the motor component 4 and feeds it back to the drive control component 2 .
  • the housing 1 has a first accommodation cavity 11 and a second accommodation cavity 12.
  • the drive control component 2 is located in the first accommodation cavity 11, and the brake 3, motor assembly 4 and encoder assembly 5 are all located in the second accommodation cavity 12.
  • the casing 1 in this embodiment includes a front end cover 13, a casing 14, a rear end cover 15 and a tail cover 16.
  • the front end cover 13, the casing 14, the rear end cover 15 and the tail cover 16 are connected in sequence, and the front end cover 13
  • the casing 14 and the rear end cover 15 are connected to form the second accommodation cavity 12
  • the rear end cover 15 and the tail cover 16 are connected to form the first accommodation cavity 11 .
  • a sealing ring is provided at the connection between the front end cover 13, the casing 14, the rear end cover 15 and the tail cover 16.
  • the sealing ring uses an existing O-ring.
  • both the casing 14 and the tail cover 16 are provided with a heat dissipation structure, and the heat dissipation structure is a heat dissipation comb.
  • the drive control component 2 is composed of a PCB circuit board and other electronic components. It is the same as the existing servo motor drive control module and controls the entire motor operation.
  • the motor assembly 4 includes a motor shaft 41, a magnetic tile bushing 42, a plurality of rotor magnetic tiles 43 and a plurality of stator coils 44.
  • the motor shaft 41 is rotatably disposed in the second accommodation cavity 12, and the motor shaft 41 respectively penetrates the front end cover 13 and the stator coil 44.
  • the magnetic tile sleeve 42 is sleeved on the motor shaft 41, and a plurality of rotor magnetic tiles 43 are arranged along the edge of the magnetic tile sleeve 42, that is, a plurality of rotor magnetic tiles 43 are arranged around the outer surface of the magnetic tile sleeve 42.
  • a plurality of stator coils 44 are arranged opposite to a plurality of rotor magnetic tiles 43 , and the stator coils 44 are connected to the drive control component 2 , and the brake 3 is sleeved on the motor shaft 41 .
  • the brake 3 is located between the magnetic tile sleeve 42 and the drive control assembly 2 along the axial direction of the motor shaft 41 .
  • the magnetic tile sleeve 42 is provided with a first receiving groove 421, and the side of the brake 3 close to the magnetic tile sleeve 42 extends into the first receiving groove 421, thereby shortening the magnetic tile sleeve 42, the brake 3 and the drive control assembly 2
  • the magnetic tile bushing 42 is made of magnetically permeable material to improve the magnetic field response effect.
  • the power mechanism 100 also includes a front bearing 6 and a rear bearing 7.
  • the front bearing 6 is arranged on the front end cover 13, and the rear bearing 7 is arranged on the rear end cover 15.
  • One end of the motor shaft 41 passes through the front bearing 6, and the end extends to The outside of the housing 1 serves as the output end, and the other end of the motor shaft 41 passes through the rear bearing 7 .
  • an elastic member 8 is provided between the side of the front bearing 6 away from the rear bearing 7 and the wall surface of the front end cover 13. The arrangement of the elastic member 8 can prevent the motor shaft 41 from axial movement during rotation and improve its work. time stability.
  • the elastic member 8 in this embodiment is a wave elastic pad.
  • a second receiving groove 31 is formed on the side of the brake 3 away from the front bearing 6, and one side of the rear bearing 7 extends into the second receiving groove 31, further shortening the axial length of the servo motor.
  • the encoder assembly 5 includes a coding magnetic part 51 and a coding reading part 52.
  • the coding magnetic part 51 is connected to one end of the motor shaft 41 close to the rear bearing 7.
  • the coding reading part 52 is arranged on the drive control assembly 2.
  • the coding magnetic part 51 is attached to the motor shaft. 41 rotates together, the code reading piece 52 reads the rotation information, and then obtains the rotation angle information of the motor shaft 41, and feeds the information back to the drive control component 2.
  • the encoder assembly 5 also includes an encoding carrier 53, which is embedded in one end of the motor shaft 41.
  • the encoding magnetic component 51 is disposed on the encoding carrier 53.
  • the arrangement of the encoding carrier 53 can not only enhance the encoding magnetic component 51
  • the firmness of the arrangement also enables a partial area of the encoding magnetic component 51 to extend into the motor shaft 41, thereby shortening the overall axial length.
  • the code carrier 53 is made of non-magnetic material to prevent the magnetism of the motor assembly 4 from being transmitted to the code magnetic component 51 during operation, causing errors in reading information from the code reading component 52 .
  • the drive control component 2 excites the brake 3, and the brake 3 no longer acts on the motor shaft 41, releasing the fixation of the motor shaft 41. Then, the drive control component 2 excites the stator coil 44 and then drives the motor shaft 41 to rotate, encoding the magnetism.
  • the component 51 rotates together with the motor shaft 41, and the code reading component 52 collects the corresponding information and feeds it back to the drive control component 2; when it is necessary to stop working, the drive control component 2 demagnetizes the brake 3 and the stator coil 44, and the brake 3 is aligned again.
  • the motor shaft 41 is fixed to stop rotating.
  • the components 5 are all arranged inside the housing 1 and are arranged in an orderly manner along the axial direction to facilitate the routing of rear connection cables.
  • the internal structure of the entire housing 1 is compactly distributed, which not only reduces the length of the entire servo motor, but also reduces the length of the entire servo motor. Reduces overall volume.
  • FIG. 11 is an exploded schematic diagram of the lifting mechanism 200 in the embodiment.
  • the lifting mechanism 200 includes a lifting bearing component 201, a lifting input component 202, a lifting transmission component 203 and a lifting output component 204.
  • the lifting bearing component 201 is connected to the front end cover 13, the lifting input component 202 is connected to the motor shaft 41, and the lifting transmission component 203 is connected to the lifting output.
  • the assembly 204 and the lifting input assembly 202 transmit power from the lifting input assembly 202 to the lifting output assembly 204.
  • the lifting output assembly 204 is connected to the crank link mechanism 500, and the lifting output assembly 204 drives the crank link mechanism 500 to move.
  • the lifting bearing assembly 201 includes a bearing shell 2011 and a bearing end cover 2012.
  • the bearing shell 2011 is connected to the front end cover 13.
  • the bearing end cover 2012 is arranged on the side of the bearing shell 2011 away from the front end cover 13.
  • the bearing end cover 2012, the bearing shell 2011 and The front end cover 13 forms a third accommodation cavity 2013.
  • the lifting input assembly 202, the lifting transmission assembly 203 and the lifting output assembly 204 are all located in the third accommodation cavity 2013.
  • One end of the lifting output assembly 204 is located outside the bearing end cover 2012.
  • the lifting input assembly 202 includes an input bearing 2021, an input cam 2022 and an input end cover 2023.
  • the input bearing 2021 is located on the side of the bearing shell 2011 close to the front end cover 13.
  • the input cam 2022 is provided on the input bearing 2021, and the input cam 2022 is connected to the motor shaft 41 , the input end cover 2023 is connected to the motor shaft 41, and the input end cover 2023 is in contact with the input cam 2022.
  • the input bearing 2021 is a flexible bearing.
  • the input cam 2022 and the input end cover 2023 are respectively on both sides of the input bearing 2021, and are in contact with the input cam 2022 to fix the input cam 2022.
  • the lifting transmission assembly 203 includes a transmission steel wheel 2031, a transmission flexspline 2032, a transmission connection flange 2033 and an output flange 2034.
  • the transmission steel wheel 2031 is arranged on the inner wall of the third accommodation cavity 2013, and the transmission flexspline 2032 is connected to the transmission steel wheel 2031.
  • the transmission connection flange 2033 is located in the transmission flexspline 2032, and the transmission connection flange 2033 is connected to the side of the transmission flexspline 2032 away from the input bearing 2021, and the output flange
  • the disk 2034 and the transmission connection flange 2033 are arranged on the same side, the output flange 2034 is located outside the transmission flexspline 2032, and the output flange 2034 is connected to the transmission connection flange 2033 and the lifting output assembly 204.
  • the transmission steel wheel 2031 and the load-bearing shell 2011 are integrated to save volume, facilitate horizontal installation, and eliminate the need for various assembly flange parts.
  • the lifting output assembly 204 includes an output bearing 2041 and an output crankshaft 2042.
  • the output bearing 2041 is disposed on the side of the load-bearing housing 2011 away from the input bearing 2021.
  • the output crankshaft 2042 is disposed on the output bearing 2041, and the output crankshaft 2042 is connected to the output flange. 2034 is connected, and the output crankshaft 2042 is also connected with the connecting rod assembly 502.
  • the output flange 2034 drives the output crankshaft 2042 to move, and the output crankshaft 2042 drives the connecting rod assembly 502 to move.
  • the number of output bearings 2041 is two to increase the load-carrying capacity of the output crankshaft 2042.
  • the load-bearing end cover 2012 is also provided with an oil seal ring 300, and the output crankshaft 2042 and the oil seal ring 300 can move relative to each other; in addition, the load-bearing end cover 2012 is also provided with an oil seal cover 400, and the oil seal cover 400 is located on the load-bearing end cover. 2012 Central. Through the arrangement of the oil seal ring 300 and the oil seal cover 400, internal lubricating oil can be prevented from leaking.
  • the power mechanism 100 reduces the overall length and volume of the power mechanism 100 through the first accommodation groove and the overall structural layout, and the drive control components, motor components and The encoder assembly cooperates to realize the precise operation of the motor shaft, thereby improving the accuracy of the output of the lifting output assembly 204.
  • the traditional structure it has the advantages of small size and high precision, and is easy to assemble, disassemble and follow-up maintenance.
  • the crank linkage mechanism 500 includes a crank support component 501, a connecting rod component 502 and a lifting output component 503.
  • the load-bearing shell 2011 is provided on the crank support component 501, and the connecting rod component 502 is rotatably provided on the crank support.
  • Assembly 501, and the connecting rod assembly 502 is rotationally connected to the output crankshaft 2042, and the lifting output member 503 is rotationally connected to the connecting rod assembly 502.
  • the crank support assembly 501 includes a crank support base 5011 and a crank support column 5012. One end of the crank support column 5012 is disposed on the crank support base 5011, and the other end is disposed on the load-bearing shell 2011.
  • the connecting rod assembly 502 is rotatably connected to the crank support base 5011.
  • the number of crank support columns 5012 is two, and the two crank support columns 5012 are spaced apart from the load-bearing shell 2011 to improve the stability of supporting the power mechanism 100 and the lifting mechanism 200 .
  • the connecting rod assembly 502 includes a first connecting rod 5021, a second connecting rod 5022 and a third connecting rod 5023.
  • One end of the first connecting rod 5021 is rotatably connected to the crank support base 5011, and the other end of the first connecting rod 5021 is rotatably connected to the third connecting rod.
  • the two ends of the connecting rod 5023 and the second connecting rod 5022 are respectively rotatably connected to the output crankshaft 2042 and the first connecting rod 5021.
  • the end of the third connecting rod 5023 away from the first connecting rod 5021 is rotatably connected to the lifting output member 503.
  • the rotational connections involved in the first link 5021, the second link 5022 and the third link 5023 are hinged joints realized by the cooperation between the connecting shaft and the bushing. In order to prevent axial movement from occurring during rotation, at the connection Equipped with shaft card.
  • the second connecting rod 5022 drives the first connecting rod 5021 to move
  • the first connecting rod 5021 pushes the third connecting rod 5023 upward
  • the third connecting rod 5023 drives the lifting output member 503 to rise together.
  • the first connecting rod 5021 and the third connecting rod 5023 are on the same straight line. At this time, it is the highest point of the lift output member 503 rising.
  • the output crankshaft 2042 can drive the second connecting rod 5022 to move a short distance in the counterclockwise direction, so that The output end of the output crankshaft 2042, the second connecting rod 5022, and the connection between the second connecting rod 5022 and the first connecting rod 5021 are on the same straight line and enter a self-locking state to provide maximum support for the lifting output member 503. , to avoid the sudden fall of the lifting output member 503 due to overweight items.
  • the output crankshaft 2042 drives the second connecting rod 5022 to move clockwise together, and the lifting output member 503 enters the descending state.
  • the power mechanism 100 reduces the overall length and volume of the power mechanism 100 through the first accommodation groove 421 and the overall structural layout, and the power mechanism 100
  • the drive control component 2, the motor component 4 and the encoder component 5 cooperate to realize the precise operation of the motor shaft 41, thereby improving the output accuracy of the lifting output component 204.
  • the lifting output component 204 drives the lifting output component 503 to perform lifting movements through the connecting rod component 502.
  • the entire lifting module 1000 is not only small in size, but also has fast response speed, accurate position and strong stability.
  • Figure 12 is a cross-sectional view of the hollow joint module 2000 that bears axial load in the embodiment
  • Figure 13 is an exploded schematic view of the hollow joint module 2000 that bears axial load in the embodiment
  • Figure 14 This is a three-dimensional schematic diagram of the hollow joint module 2000 bearing axial load in the embodiment.
  • the hollow joint module 2000 that bears axial load includes a driving component 901, a deceleration component 902, a rigid component 903, an output component 904, a first encoder component 905, a second encoder component 906, a control component 907 and a braking component (Fig. (not marked in ), the driving component 901 is connected to the deceleration component 902, and a rigid component 903 is provided between the two.
  • the rigid component 903 is connected to the deceleration component 902, and the rigid component 903 is connected to the crank support base 5011 for fixation.
  • the output component 904 is connected to the output end of the deceleration assembly 902, and the output member 904 is connected to the driving wheel module 3000, the first encoder assembly 905 is connected to the output end of the driving assembly 901, the second encoder assembly 906 is connected to the output member 904, and the braking assembly is connected to the drive
  • the output end of the assembly 901 or the input end of the deceleration assembly 902, the control assembly 907 is connected to the driving assembly 901, the first encoder assembly 905, the second encoder assembly 906 and the braking assembly.
  • the driving assembly 901 includes a motor front cover 9011, a motor tail cover 9012, a stator part 9013, a rotor part 9014 and a transmission sleeve 9015.
  • the motor front cover 9011 penetrates the crank support base 5011 and is connected to the deceleration assembly 902, and the rigid part 903, the motor front cover 9011 and the motor tail cover 9012 together form an accommodating groove 9016.
  • the stator part 9013, the rotor part 9014 and the transmission sleeve 9015 are all located in the accommodating groove 9016.
  • the stator part 9013 is arranged on the inner wall of the motor front cover 9011.
  • the rotor part 9014 and the stator part 9013 are arranged oppositely, and the rotor member 9014 is arranged on the outer surface of the transmission sleeve 9015, and the transmission sleeve 9015 is connected to the input end of the reduction assembly 902. Furthermore, in order to shorten the overall length and facilitate installation, a first escape groove 9031 is opened on the side of the rigid member 903 away from the deceleration assembly 902, and the motor front cover 9011 is disposed in the first escape groove 9031.
  • the deceleration assembly 902 includes a fixed plate 9021 and a reducer 9022.
  • the fixed plate 9021 and the rigid member 903 are connected through a connector 908.
  • the fixed plate 9021 is also connected to the motor front cover 9011 through a connector 908.
  • the reducer 9022 is arranged in the fixed plate 9021.
  • the output piece 904 is connected to the output end of the reducer 9022.
  • the output member 904 penetrates from one end of the reducer 9022 to the motor tail cover 9012, and the output member 904 can rotate relative to the motor tail cover 9012.
  • the reducer 9022 is an existing heavy-load harmonic reducer.
  • the heavy-load harmonic reducer consists of four basic components: wave generator, flexible gear, flexible bearing, and rigid gear. The working principle is: relying on waves
  • the generator is equipped with a flexible bearing to cause the flexible gear to produce controllable elastic deformation and mesh with the rigid gear to transmit motion and power.
  • the rigid gear is connected to the output member 904 for power output
  • the outer diameter of the rigid member 903 is larger than the outer diameter of the deceleration assembly 902, and the rigid member 903 is a flange.
  • the rigid part 903 and the fixed plate 9021 are connected through twelve connecting parts 908.
  • the fixed plate 9021 and the rigid part 903 are both provided with twelve threaded through holes, and the connecting parts 908 are screwed with the threaded through holes; at the same time,
  • the fixed plate 9021 is also connected to the motor front cover 9011 through four connectors 908. In specific applications, since a rigid member 903 is spaced between the fixed disc 9021 and the motor front cover 9011, the length of the four connectors 908 is longer.
  • the output member 904 in this embodiment is a hollow output shaft, and cables can be arranged through the hollow part to avoid cable clutter.
  • the outer edge of the rigid component 903 is provided with several threaded holes for connecting to other structural components.
  • the first encoder assembly 905 includes a first encoder bearing 9051, a first encoder fixed seat 9052 and a first encoder code plate 9053.
  • the first encoder bearing 9051 is provided on the motor front cover 9011, and the first encoder fixed seat 9052
  • the first encoder bearing 9051 is connected, and the first encoder fixed seat 9052 is connected to the transmission sleeve 9015.
  • the first encoder code plate 9053 is provided at an end of the first encoder fixed seat 9052 away from the transmission sleeve 9015.
  • the first encoder fixed seat 9052 and the first encoder code disk 9053 are driven to rotate together, and the control component 907 obtains the rotation information of the transmission sleeve 9015 through the first encoder code disk 9053.
  • the second encoder assembly 906 includes a second encoder fixed base 9061 and a second encoder code plate 9062.
  • the second encoder fixed base 9061 is connected to the output member 904, and the second encoder code plate 9062 is disposed on the second encoder fixed base.
  • 9061 is close to the side of the control component 907.
  • the second encoder code wheel 9062 rotates together with the output component 904.
  • the control component 907 obtains the rotation information of the output component 904 through the second encoder code wheel 9062.
  • a second escape groove 90521 is formed on the side of the first encoder holder 9052 away from the reducer 9022.
  • the first encoder holder 9052 is located in the second escape groove 90521, thereby reducing the overall length.
  • the first encoder code disc 9053 and the second encoder code disc 9062 are on the same plane.
  • the first encoder component 905 and the second encoder component 906 use single-turn absolute value encoders.
  • the advantage of using two single-turn absolute value encoders is that the module will still operate after powering off and on again. It will know the single-turn absolute position of the output part 904. It does not need to use a photoelectric switch or a limit switch to return to the dot every time it is turned on, or it does not need to use a multi-turn absolute value encoder with an external encoder battery like the traditional solution. As time goes by, the encoder battery is prone to running out of power and maintenance is inconvenient.
  • the control component 907 is composed of a PCB circuit board and other electronic components. It is the same as the existing servo motor drive control module and controls the work of the entire module.
  • the braking component is an electromagnetic braking component.
  • the electromagnetic brake parts can refer to the existing electromagnetic brake structure. When the joint module is running, it is energized together with the electromagnetic brake, so that the armature is attracted and separated from the brake disc, and the motor operates normally. When the joint module is powered off, no current flows through the electromagnetic brake coil. The armature is lifted up by the compression spring and is in close contact with the brake disc. It instantly generates great friction with the brake disc, causing the motor to brake in time to ensure deceleration. Safety of motor use.
  • the control component 907 drives the braking component to release the brake on the output end of the driving component 901.
  • the driving component 901 works and inputs power to the deceleration component 902. After deceleration by the deceleration component 902, the power is output through the output member 904, where the first code
  • the encoder component 905 and the second encoder component 906 respectively input the motion information of the driving component 901 and the output component 904 to the control component 907.
  • a rigid component 903 is provided between the driving component 901 and the deceleration component 902, and the deceleration component 902 passes through the connecting component.
  • 908 is connected to the rigid component 903 and the driving component 901. When a heavy axial load is required, the force is transferred to several connectors 908 to prevent the driving component 901 from being stressed as a fixed end, thereby increasing the overall axial force. Effect.
  • Figure 15 is a schematic perspective view of the driving wheel module 3000 in the embodiment
  • Figure 16 is a cross-sectional view of the driving wheel module 3000 in the embodiment.
  • the driving wheel module 3000 includes a driving mechanism, a secondary planetary reduction mechanism 600 and a rolling mechanism 700.
  • the driving mechanism serves as a power output, and its output end is connected to the secondary planetary reduction mechanism 600.
  • the power is transmitted to the rolling mechanism through the secondary planetary reduction mechanism 600. 700, and the rolling mechanism 700 rotates to achieve the final movement.
  • the driving mechanism in this embodiment has the same structure as the power mechanism 100. Therefore, the structure of the power mechanism 100 will be introduced in detail below.
  • the power mechanism 100 includes a housing 1, a drive control component 2, a brake 3, a motor component 4 and an encoder component 5.
  • the drive control component 2, the brake 3, the motor component 4 and the encoder component 5 are all located in the housing 1, and the motor
  • the output end of the assembly 4 extends to the outside of the housing 1 for power output, and the output end is connected to the secondary planetary reduction mechanism 600 .
  • the drive control component 2 is connected to the brake 3, the motor component 4 and the encoder component 5.
  • the drive control component 2 drives the brake 3 to release the fixation of the motor component 4, so that the motor component 4 works after being excited by the drive control component 2, and the encoder
  • the sensor component 5 takes the movement information from the motor component 4 and feeds it back to the drive control component 2 .
  • the housing 1 has a first accommodation cavity 11 and a second accommodation cavity 12.
  • the drive control component 2 is located in the first accommodation cavity 11, and the brake 3, motor assembly 4 and encoder assembly 5 are all located in the second accommodation cavity 12.
  • the casing 1 in this embodiment includes a front end cover 13, a casing 14, a rear end cover 15 and a tail cover 16.
  • the front end cover 13, the casing 14, the rear end cover 15 and the tail cover 16 are connected in sequence, and the front end cover 13
  • the casing 14 and the rear end cover 15 are connected to form the second accommodation cavity 12
  • the rear end cover 15 and the tail cover 16 are connected to form the first accommodation cavity 11 .
  • a sealing ring is provided at the connection between the front end cover 13, the casing 14, the rear end cover 15 and the tail cover 16.
  • the sealing ring uses an existing O-ring.
  • both the casing 14 and the tail cover 16 are provided with a heat dissipation structure, and the heat dissipation structure is a heat dissipation comb.
  • the drive control component 2 is composed of a PCB circuit board and other electronic components. It is the same as the existing servo motor drive control module and controls the entire motor operation.
  • the motor assembly 4 includes a motor shaft 41, a magnetic tile bushing 42, a plurality of rotor magnetic tiles 43 and a plurality of stator coils 44.
  • the motor shaft 41 is rotatably disposed in the second accommodation cavity 12, and the motor shaft 41 respectively penetrates the front end cover 13 and the stator coil 44.
  • the casing 14 and the motor shaft 41 are connected to the secondary planetary reduction mechanism 600.
  • the magnetic tile sleeve 42 is sleeved on the motor shaft 41.
  • a plurality of rotor magnetic tiles 43 are arranged along the edge of the magnetic tile sleeve 42, that is, a plurality of rotor magnetic tiles 43.
  • a plurality of stator coils 44 are arranged around the outer surface of the magnetic tile bushing 42 and are opposite to a plurality of rotor magnetic tiles 43 .
  • the stator coils 44 are connected to the drive control component 2 , and the brake 3 is sleeved on the motor shaft 41 .
  • the brake 3 is located between the magnetic tile sleeve 42 and the drive control assembly 2 along the axial direction of the motor shaft 41 .
  • the magnetic tile sleeve 42 is provided with a first receiving groove 421, and the side of the brake 3 close to the magnetic tile sleeve 42 extends into the first receiving groove 421, thereby shortening the magnetic tile sleeve 42, the brake 3 and the drive control assembly 2
  • the axial distance between the three shortens the length of the entire servo motor.
  • the magnetic tile bushing 42 is made of magnetically permeable material to improve the magnetic field response effect.
  • the power mechanism 100 also includes a front bearing 6 and a rear bearing 7.
  • the front bearing 6 is arranged on the front end cover 13, and the rear bearing 7 is arranged on the rear end cover 15.
  • One end of the motor shaft 41 passes through the front bearing 6, and the end extends to The outside of the housing 1 serves as the output end, and the other end of the motor shaft 41 passes through the rear bearing 7 .
  • an elastic member 8 is provided between the side of the front bearing 6 away from the rear bearing 7 and the wall surface of the front end cover 13. The arrangement of the elastic member 8 can prevent the motor shaft 41 from axial movement during rotation and improve its work. time stability.
  • the elastic member 8 in this embodiment is a wave elastic pad.
  • a second receiving groove 31 is formed on the side of the brake 3 away from the front bearing 6, and one side of the rear bearing 7 extends into the second receiving groove 31, further shortening the axial length of the servo motor.
  • the encoder assembly 5 includes a coding magnetic part 51 and a coding reading part 52.
  • the coding magnetic part 51 is connected to one end of the motor shaft 41 close to the rear bearing 7.
  • the coding reading part 52 is arranged on the drive control assembly 2.
  • the coding magnetic part 51 is attached to the motor shaft. 41 rotates together, the code reading piece 52 reads the rotation information, and then obtains the rotation angle information of the motor shaft 41, and feeds the information back to the drive control component 2.
  • the encoder assembly 5 also includes an encoding carrier 53, which is embedded in one end of the motor shaft 41.
  • the encoding magnetic component 51 is disposed on the encoding carrier 53.
  • the arrangement of the encoding carrier 53 can not only enhance the encoding magnetic component 51
  • the firmness of the arrangement also enables a partial area of the encoding magnetic component 51 to extend into the motor shaft 41, thereby shortening the overall axial length.
  • the code carrier 53 is made of non-magnetic material to prevent the magnetism of the motor assembly 4 from being transmitted to the code magnetic component 51 during operation, causing errors in reading information from the code reading component 52 .
  • the drive control component 2 excites the brake 3, and the brake 3 no longer acts on the motor shaft 41, releasing the fixation of the motor shaft 41. Then, the drive control component 2 excites the stator coil 44 and then drives the motor shaft 41 to rotate, encoding the magnetism.
  • the component 51 rotates together with the motor shaft 41, and the code reading component 52 collects the corresponding information and feeds it back to the drive control component 2; when it is necessary to stop working, the drive control component 2 demagnetizes the brake 3 and the stator coil 44, and the brake 3 is aligned again.
  • the motor shaft 41 is fixed to stop rotating.
  • the components 5 are all arranged inside the housing 1 and are arranged in an orderly manner along the axial direction to facilitate the routing of rear connection cables.
  • the internal structure of the entire housing 1 is compactly distributed, which not only reduces the length of the entire servo motor, but also reduces the length of the entire servo motor. Reduces overall volume.
  • FIG. 17 is a cross-sectional view of the secondary planetary reduction mechanism 600 in the embodiment
  • FIG. 18 is an assembly diagram of the secondary cage 6024 and the secondary planet gear 6022 in the embodiment.
  • the secondary planetary reduction mechanism 600 includes a primary planetary reduction assembly 601 and a secondary planetary reduction assembly 602.
  • the primary planetary reduction assembly 601 is connected to the motor shaft 41
  • the secondary planetary reduction assembly 602 is connected to the primary planetary reduction assembly 601 and the rolling mechanism 700.
  • the first-level planetary assembly includes a first-level sun gear 6011, a plurality of first-level planetary gears 6012, a first-level internal ring gear 6013 and a first-level cage 6014.
  • the first-level sun gear 6011 is connected to the motor shaft 41, and the multiple first-level planetary gears 6012 are connected.
  • the primary sun gear 6011 and the planet gear are also connected to the primary internal ring gear 6013.
  • the primary cage 6014 is connected to multiple primary planet gears 6012 and secondary planetary reduction assemblies 602.
  • one output end of the motor shaft 41 is covered with a bushing, and the bushing drives the input shaft to rotate together, and the input shaft is connected to the primary sun gear 6011.
  • the outer surface of the shaft sleeve is also covered with bearings.
  • the secondary planetary assembly includes a secondary sun gear 6021, a plurality of secondary planetary gears 6022, a secondary internal ring gear 6023 and a secondary cage 6024.
  • the secondary sun gear 6021 is connected to the primary retainer, and the multiple secondary planetary gears 6022 is connected to the secondary sun gear 6021, and the secondary internal ring gear 6023 is connected to multiple secondary planet gears 6022 and the rolling mechanism 700.
  • multiple secondary planetary gears 6022 and secondary cages 6024 are fixedly connected, and the secondary planetary gears 6022 can only rotate.
  • the secondary internal ring gear 6023 is driven by the secondary planetary gears 6022 to roll.
  • the mechanisms 700 rotate together.
  • the secondary cage 6024 is provided on the front end cover 13, and the other end is fixedly connected to the primary internal ring gear 6013.
  • the secondary planet gear 6022 is located in the middle area of the secondary cage 6024.
  • a motor mounting flange is provided between the secondary cage 6024 and the front end cover 13.
  • the central circle diameter of the outer ring screw hole of the motor mounting flange is larger than the flange outer diameter of the secondary internal ring gear 6023.
  • the secondary internal ring gear 6023 is sleeved on the outer surface of the secondary cage 6024 and is supported by two support bearings.
  • the inner rings of the two support bearings are connected to the secondary cage 6024, and their outer rings are connected to the secondary cage 6024.
  • the secondary internal ring gear is 6023 connected. Assume that the motor shaft 41 transmits power to the primary sun gear 6011 in the forward direction, and the primary cage 6014 outputs power to the secondary sun gear 6021 in the reverse direction.
  • the rolling mechanism 700 includes a hub 701 and a rubber-coated wheel 702.
  • the hub 701 is connected to the secondary internal ring gear 6023, and the rubber-coated wheel 702 is wrapped around the outer surface of the hub 701.
  • the secondary internal ring gear 6023 drives the wheel hub 701 to rotate, and the hub 701 drives the rubber-coated wheel 702 to rotate together to achieve overall movement.
  • a groove 7011 is provided on the inside of the hub 701, and part or all of the housing 1 is located in the groove 7011 to reduce the overall axial length.
  • the hub 701 and the housing 1 are connected through a connecting bearing.
  • the driving wheel module 3000 also includes an input connection mechanism 800.
  • the input connection mechanism 800 includes a first input support column 801, a second input support column 802 and a rotating flange plate 803.
  • the first input support The column 801 is connected to the side of the secondary cage 6024 away from the motor shaft 41.
  • the second input support column 802 is provided on the outer surface of the housing 1.
  • the rotating flange plate 803 connects the first input support column 801 and the second input support column respectively. 802, and the rotating flange plate 803 is higher than the rubber-coated wheel 702, and the output end of the output member 904 is connected to the rotating flange plate 803.
  • connection end cover is provided between the first input support column 801 and the secondary cage 6024.
  • One end of the input shaft passes through the primary sun gear 6011 and is connected to the connection end cover through a bearing.
  • the rotating flange plate 803 is provided with a connection through hole 8031.
  • the input connection mechanism 800 also includes a wire passing member 804.
  • the wire passing member 804 is connected to the side of the rotating flange plate 803 facing the housing 1.
  • the wire passing member 804 is along its axial direction.
  • a wire trough 8041 is provided, and the wire trough 8041 communicates with the connection through hole 8031, so that the wire harness can pass through the connection through hole 8031 and enter the wire trough 8041, and then be connected to other components.
  • the side of the crank support base 5011 is provided with a power splitter 4000 and a signal splitter 5000.
  • the wiring harness on the power splitter 4000 and the signal splitter 5000 passes through the output piece. 904, and then pass through the connecting through hole 8031 and the wiring groove 8041 to connect to the power mechanism 100.
  • the power lines and signal lines of the lifting module 1000 and the hollow joint module 2000 that bear the axial load are connected to the power splitter 4000 and the signal splitter 5000 respectively.
  • the power splitter 4000 and the signal splitter 5000 A total of four lines are synthesized (power supply +, power supply -, communication line CANH, communication line CANL), which can solve the cumbersome wiring and control problems of traditional solutions.
  • a thrust ball bearing 6000 and a bearing cover 7000 are provided at the connection between the output member 904 and the rotating flange plate 803.
  • the seat ring of the thrust ball bearing 6000 is connected to the rotating flange plate 803.
  • the bearing cover 7000 covers the thrust ball.
  • the outer surface of the bearing 6000 is protected and the hollow joint module 2000, which bears the axial load, comes with a cross roller bearing, which allows the power base station to withstand loads in any direction to a certain extent, while the thrust ball bearing 6000 is under heavy pressure. This greatly increases the overall axial and radial loads of the power base station.
  • the power mechanism 100 drives the primary sun gear 6011 to move, the primary sun gear 6011 drives the primary planet gear 6012 to move, the primary planet gear 6012 drives the secondary sun gear 6021 to move through the primary cage 6014, and the secondary sun gear 6021 passes through the secondary cage 6014.
  • the first-level planetary gear 6022 drives the second-level internal ring gear 6023 to rotate, and then the second-level internal ring gear 6023 drives the rolling mechanism 700 to rotate to achieve overall movement.
  • the power mechanism 100 drives the crank linkage mechanism 500 to move through the lifting mechanism 200 to realize the transportation function.
  • the hollow joint module 2000 that bears the axial load simultaneously drives the entire driving wheel module 3000 to move. Among them, the driving wheel module 3000 is driven
  • the mechanism drives the rolling mechanism 700 to move through the secondary planetary deceleration mechanism 600 to achieve overall straight or turning motion.
  • this power base station can not only meet the required handling and movement conditions, but also has a small overall volume. , high stability and convenient follow-up maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本发明揭示一种动力基站,包括:升降模组、承受轴向负载的中空关节模组以及驱动轮模组,所述升降模组包括依序连接的动力机构、抬升机构及曲柄连杆机构;所述驱动轮模组包括驱动机构、二级行星减速机构以及滚动机构。动力机构通过抬升机构带动曲柄连杆机构运动,实现搬运功能,同步的,承受轴向负载的中空关节模组带动整个驱动轮模组运动,其中,驱动轮模组中驱动机构通过二级行星减速机构带动滚动机构运动,实现整体的直行或转向运动,通过结构优化并进行合理布局,使得这个动力基站不仅可以满足所需的搬运与运动的情况,而且整体体积小、稳定性高以及后续维护便捷。

Description

动力基站 技术领域
本发明涉及机器人技术领域,具体地,涉及一种动力基站。
背景技术
在移动搬运机器人领域中,动力是核心部分,产生的动力驱使机器人进行搬运及运动,对于搬运的情况,传统的搬运动力主要是靠液压基站与液压缸配合的结构,采用该种方式的缺点在于需要定期进行维修、换油以及密封圈的更换,而且整体体积大。对于运动的情况,传统驱动轮部分的决方案一般分为:卧式驱动轮、卧式舵轮以及立式舵轮。卧式驱动轮与卧式舵轮的轴向长度较长,导致转向半径增大,立式舵轮的结构呈纵向分布,因此纵向体积大。
发明内容
针对现有技术的不足,本发明提供一种动力基站。
本发明公开的一种动力基站,包括:升降模组、承受轴向负载的中空关节模组以及驱动轮模组,升降模组包括依序连接的动力机构、抬升机构及曲柄连杆机构;驱动轮模组包括驱动机构、二级行星减速机构以及滚动机构,驱动机构通过二级行星减速机构连接滚动机构;承受轴向负载的中空关节模组设置于曲柄连杆机构,且承受轴向负载的中空关节模组连接驱动机构。
根据本发明的一实施方式,动力机构包括:
壳体;
驱动控制组件,其位于壳体内;
制动器,其设置于壳体内,且制动器与驱动控制组件连接;
电机组件,其包括电机轴、磁瓦轴套、多个转子磁瓦及多个定子线圈, 电机轴转动设置于壳体内,电机轴的一端伸出壳体外,电机轴连接抬升机构,制动器设置于电机轴,磁瓦轴套套设于电机轴,磁瓦轴套开设有第一容纳槽,制动器远离驱动控制组件的一侧位于第一容纳槽内,多个转子磁瓦环绕设置于磁瓦轴套,多个定子线圈与多个转子磁瓦相对设置,且定子线圈连接驱动控制组件;
编码器组件,其连接驱动控制组件及电机轴。
根据本发明的一实施方式,抬升机构包括抬升承载组件以及设置于升承载组件的抬升输入组件、抬升传动组件、抬升输出组件,抬升承载组件连接壳体,抬升输入组件连接电机轴伸出壳体外的一端,抬升传动组件分别连接抬升输入组件及抬升输出组件。
根据本发明的一实施方式,曲柄连杆机构包括曲柄支撑组件、连杆组件及升降输出件,抬升承载组件、连杆组件及承受轴向负载的中空关节模组均设置于曲柄支撑组件,连杆组件转动连接抬升输出组件及升降输出件。
根据本发明的一实施方式,承受轴向负载的中空关节模组包括电机组件、减速组件、刚性件、输出件、第一编码器组件、第二编码器组件、控制组件及制动组件,电机组件的输出端连接减速组件,刚性件位于电机组件与减速组件之间,且减速组件通过若干个连接件分别与刚性件及减速组件连接,刚性件连接曲柄连杆机构,输出件连接减速组件的输出端,第一编码器组件连接电机组件的输出端,第二编码器组件连接输出件,控制组件连接电机组件、第一编码器组件、第二编码器组件及制动组件,制动组件套设于电机组件的输出端。
根据本发明的一实施方式,电机组件包括电机前盖、电机尾盖、定子件、转子件以及传动套,电机前盖连接减速组件,电机前盖与电机尾盖连接,且电机前盖、电机尾盖及刚性件形成容纳槽,定子件及转子件均位于容纳槽内,传动套连接转子件及减速组件的输入端,第一编码器组件连接传动套,第二编码器组件及控制组件均位于容纳槽,输出件远离减速组件的一端贯穿电机 前盖及电机尾盖。
根据本发明的一实施方式,减速组件包括固定盘及减速器,固定盘连接刚性件及电机组件,减速器设置于固定盘,输出件连接减速器。
根据本发明的一实施方式,二级行星减速机构包括:
一级行星减速组件,其包括一级太阳轮、多个一级行星轮、一级内齿圈及一级保持架,一级太阳轮连接驱动机构的输出端,多个一级行星轮连接一级太阳轮及一级内齿圈,一级保持架连接多个一级行星轮;
二级行星减速组件,其包括二级太阳轮、多个二级行星轮、二级内齿圈及二级保持架,二级太阳轮连接一级保持架,多个二级行星轮连接二级太阳轮及二级内齿圈,二级内齿圈连接滚动机构,二级保持架连接多个二级行星轮。
根据本发明的一实施方式,滚动机构包括轮毂及包胶轮,轮毂连接二级内齿圈,包胶轮裹设于轮毂外表面。
根据本发明的一实施方式,驱动轮模组还包括输入连接机构,其包括第一输入支撑柱、第二输入支撑柱及旋转法兰板,第一输入支撑柱连接一级内齿圈,第二输入支撑柱设置于驱动机构外表面,旋转法兰板分别与第一输入支撑柱及第二输入支撑柱连接,且旋转法兰板连接承受轴向负载的中空关节模组。
本发明的有益效果在于,动力机构通过抬升机构带动曲柄连杆机构运动,实现搬运功能,同步的,承受轴向负载的中空关节模组带动整个驱动轮模组运动,其中,驱动轮模组中驱动机构通过二级行星减速机构带动滚动机构运动,实现整体的直行或转向运动,通过结构优化并进行合理布局,使得这个动力基站不仅可以满足所需的搬运与运动的情况,而且整体体积小、稳定性高以及后续维护便捷。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为实施例中动力基站的立体示意图;
图2为实施例中升降模组的升起状态图;
图3为实施例中升降模组的另一升起状态图;
图4为实施例中升降模组的降落状态图;
图5为实施例中动力机构与抬升机构组合的立体示意图;
图6为实施例中动力机构与抬升机构组合的剖视图;
图7为实施例中动力机构的爆炸示意图;
图8为实施例中动力机构的立体示意图;
图9为实施例中动力机构的剖视图;
图10为实施例中磁瓦轴套的立体示意图;
图11为实施例中抬升机构的爆炸示意图;
图12为实施例中承受轴向负载的中空关节模组的剖视图;
图13为实施例中承受轴向负载的中空关节模组的爆炸示意图;
图14为实施例中承受轴向负载的中空关节模组的立体示意图;
图15为实施例中驱动轮模组的立体示意图;
图16为实施例中驱动轮模组的剖视图;
图17为实施例中二级行星减速机构的剖视图;
图18为实施例中二级保持架与二级行星轮组合图。
附图标记说明:
1000-升降模组;100-动力机构;1-壳体;11-第一容纳腔;12-第二容纳腔;13-前端盖;14-机壳;15-后端盖;16-尾盖;2-驱动控制组件;3-制动器;31-第二容纳槽;4-电机组件;41-电机轴;42-磁瓦轴套;421-第一容纳 槽;43-转子磁瓦;44-定子线圈;5-编码器组件;51-编码磁性件;52-编码读取件;53-编码承载件;6-前轴承;7-后轴承;8-弹性件;200-抬升机构;201-抬升承载组件;2011-承载外壳;2012-承载端盖;2013-第三容纳腔;202-抬升输入组件;2021-输入轴承;2022-输入凸轮;2023-输入端盖;203-抬升传动组件;2031-传动钢轮;2032-传动柔轮;2033-传动连接法兰盘;2034-输出法兰盘;204-抬升输出组件;2041-输出轴承;2042-输出曲柄轴;300-油封圈;400-油封盖;500-曲柄连杆机构;501-曲柄支撑组件;5011-曲柄支撑基座;5012-曲柄支撑柱;502-连杆组件;5021-第一连杆;5022-第二连杆;5023-第三连杆;503-升降输出件;
2000-承受轴向负载的中空关节模组;901-驱动组件;9011-电机前盖;9012-电机尾盖;9013-定子件;9014-转子件;9015-传动套;9016-容置槽;902-减速组件;9021-固定盘;9022-减速器;903-刚性件;9031-第一避位槽;904-输出件;905-第一编码器组件;9051-第一编码器轴承;9052-第一编码器固定座;90521-第二避位槽;9053-第一编码器码盘;906-第二编码器组件;9061-第二编码器固定座;9062-第二编码器码盘;907-控制组件;908-连接件;
3000-驱动轮模组;600-二级行星减速机构;601-一级行星减速组件;6011-一级太阳轮;6012-一级行星轮;6013-一级内齿圈;6014-一级保持架;602-二级行星减速组件;6021-二级太阳轮;6022-二级行星轮;6023-二级内齿圈;6024-二级保持架;700-滚动机构;701-轮毂;7011-凹槽;702-包胶轮;800-输入连接机构;801-第一输入支撑柱;802-第二输入支撑柱;803-旋转法兰板;8031-连接通孔;804-过线件;8041-走线槽;
4000-电源分线器;
5000-信号分线器;
6000-推力球轴承;
7000-轴承盖。
具体实施方式
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,并非特别指称次序或顺位的意思,亦非用以限定本发明,其仅仅是为了区别以相同技术用语描述的组件或操作而已,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
如图1所示,图1为实施例中动力基站的立体示意图。本申请的动力基站包括升降模组1000、承受轴向负载的中空关节模组2000以及驱动轮模组3000,升降模组1000用于搬运物品,承受轴向负载的中空关节模组2000连接升降模组1000及驱动轮模组3000,且承受轴向负载的中空关节模组2000驱使驱动轮模组3000运动进行换向,驱动轮模组3000则进行转动实现运动。
如图2-图4所示,图2为实施例中升降模组1000的升起状态图;图3为实施例中升降模组1000的另一升起状态图;图4为实施例中升降模组1000的降落状态图;图5为实施例中动力机构100与抬升机构200组合的立体示意图;图6为实施例中动力机构100与抬升机构200组合的剖视图。本申请的升降模组1000包括动力机构100、抬升机构200及曲柄连杆机构500,动力机构100的输出端连接抬升机构200,通过抬升机构200进行动力输出,抬升机构200的输出端连接曲柄连杆机构500,动力机构100提供精准动力 输出,动力经由抬升机构200后产出大的扭力,通过该大扭力带动曲柄连杆机构500连动,使得曲柄连杆机构500上的物品可以被抬升或下降。
如图7-图10所示,图7为实施例中动力机构100的爆炸示意图;图8为实施例中动力机构100的立体示意图;图9为实施例中动力机构100的剖视图;图10为实施例中磁瓦轴套42的立体示意图。动力机构100包括壳体1、驱动控制组件2、制动器3、电机组件4及编码器组件5,驱动控制组件2、制动器3、电机组件4及编码器组件5均位于壳体1内,且电机组件4的输出端伸出到壳体1外部进行动力输出。其中,驱动控制组件2连接制动器3、电机组件4及编码器组件5,驱动控制组件2驱使制动器3解除对电机组件4的固定,使得电机组件4在受到驱动控制组件2励磁后进行工作,编码器组件5采取到电机组件4的运动信息反馈至驱动控制组件2。
具体应用时,壳体1具有第一容纳腔11及第二容纳腔12,驱动控制组件2位于第一容纳腔11内,制动器3、电机组件4及编码器组件5均位于第二容纳腔12内。本实施例中的壳体1包括前端盖13、机壳14、后端盖15及尾盖16,前端盖13、机壳14、后端盖15及尾盖16依序连接,并且前端盖13、机壳14及后端盖15连接形成第二容纳腔12,后端盖15及尾盖16连接形成第一容纳腔11。进一步的,为了提高连接的密封性,前端盖13、机壳14、后端盖15及尾盖16连接处设有密封圈,密封圈采用的是现有的O型密封圈。更进一步的,为了提升伺服电机的散热效果,机壳14与尾盖16均设有散热结构,该散热结构为散热梳齿。
驱动控制组件2由PCB线路板与其他电子元器件组成,与现有的伺服电机驱动控制模块相同,其对整个电机工作进行控制。
电机组件4包括电机轴41、磁瓦轴套42、多个转子磁瓦43及多个定子线圈44,电机轴41转动设置于第二容纳腔12内,且电机轴41分别贯穿前端盖13与机壳14,磁瓦轴套42套设于电机轴41上,多个转子磁瓦43沿磁瓦轴套42边缘设置,即多个转子磁瓦43环绕设置于磁瓦轴套42外表面,多 个定子线圈44与多个转子磁瓦43正对设置,且定子线圈44与驱动控制组件2连接,制动器3套设于电机轴41上。具体应用时,沿电机轴41轴向上,制动器3位于磁瓦轴套42与驱动控制组件2之间。磁瓦轴套42开设有第一容纳槽421,制动器3靠近磁瓦轴套42的一侧伸入到第一容纳槽421内,进而缩短了磁瓦轴套42、制动器3及驱动控制组件2三者的轴向间距,使得整个伺服电机的长度缩短。具体的,磁瓦轴套42由导磁材料制成,提升磁场反应效果。
进一步的,动力机构100还包括前轴承6及后轴承7,前轴承6设置于前端盖13,后轴承7设置于后端盖15,电机轴41一端贯穿前轴承6,且该一端伸出至壳体1外部作为输出端,电机轴41的另一端贯穿后轴承7。更进一步的,前轴承6远离后轴承7的一侧与前端盖13壁面之间设有弹性件8,通过弹性件8的设置可防止电机轴41在进行转动时发生轴向运动,提升其工作时的稳定性。本实施例中的弹性件8为波浪弹垫。更进一步的,制动器3远离前轴承6的一侧开设有第二容纳槽31,后轴承7的一侧伸入至第二容纳槽31内,进一步缩短了伺服电机的轴向长度。
编码器组件5包括编码磁性件51及编码读取件52,编码磁性件51连接电机轴41靠近后轴承7的一端,编码读取件52设置于驱动控制组件2,编码磁性件51随电机轴41一起转动,编码读取件52读取其转动的信息,进而获取电机轴41的转动角度信息,并将信息反馈至驱动控制组件2。进一步的,编码器组件5还包括编码承载件53,编码承载件53嵌入电机轴41的一端,编码磁性件51设置于编码承载件53,通过编码承载件53的设置不仅可以增强编码磁性件51设置的牢固性,而且也能使得编码磁性件51的部分区域伸入至电机轴41内,缩短整体的轴向长度。具体的,编码承载件53由不导磁材料制成,防止电机组件4工作时的磁性传递至编码磁性件51,造成编码读取件52信息读取出错。
工作时,驱动控制组件2使得制动器3励磁,制动器3不再作用于电机 轴41,解除对电机轴41的固定,而后,驱动控制组件2使得定子线圈44励磁进而推动电机轴41转动,编码磁性件51与电机轴41一并转动,编码读取件52则采集相应信息反馈至驱动控制组件2;当需要停止工作时,驱动控制组件2使得制动器3及定子线圈44失磁,制动器3再次对电机轴41进行固定,使其停止转动。
通过第一容纳槽421的开设,使得制动器3的部分结构伸入到第一容纳槽421内,在轴向上缩短整体的长度;此外,驱动控制组件2、制动器3、电机组件4及编码器组件5均设置在壳体1内部,且沿着轴向有序排布,便于后连接线缆的走线,整个壳体1内部结构分布紧凑,不仅使得整个伺服电机在长度上缩小,而且还降低了整体体积。
如图6及图11所示,图11为实施例中抬升机构200的爆炸示意图。抬升机构200包括抬升承载组件201、抬升输入组件202、抬升传动组件203及抬升输出组件204,抬升承载组件201与前端盖13连接,抬升输入组件202连接电机轴41,抬升传动组件203连接抬升输出组件204及抬升输入组件202,将动力由抬升输入组件202传递至抬升输出组件204,抬升输出组件204连接曲柄连杆机构500,抬升输出组件204带动曲柄连杆机构500运动。
抬升承载组件201包括承载外壳2011及承载端盖2012,承载外壳2011与前端盖13连接,承载端盖2012设置于承载外壳2011远离前端盖13的一侧,且承载端盖2012、承载外壳2011及前端盖13构成第三容纳腔2013,抬升输入组件202、抬升传动组件203及抬升输出组件204均位于第三容纳腔2013内,抬升输出组件204的一端位于承载端盖2012外部。
抬升输入组件202包括输入轴承2021、输入凸轮2022及输入端盖2023,输入轴承2021位于承载外壳2011靠近前端盖13的一侧,输入凸轮2022设置于输入轴承2021,且输入凸轮2022连接电机轴41,输入端盖2023连接电机轴41,且输入端盖2023与输入凸轮2022抵接。具体应用时,输入轴承2021为柔性轴承。输入凸轮2022与输入端盖2023分别在输入轴承2021的两侧, 并与输入凸轮2022抵接,对输入凸轮2022进行固定。
抬升传动组件203包括传动钢轮2031、传动柔轮2032、传动连接法兰盘2033及输出法兰盘2034,传动钢轮2031设置于第三容纳腔2013内壁,传动柔轮2032连接传动钢轮2031及输入轴承2021连接,且位于二者之间,传动连接法兰盘2033位于传动柔轮2032内,且传动连接法兰盘2033与传动柔轮2032远离输入轴承2021的一侧连接,输出法兰盘2034与传动连接法兰盘2033设置于同一侧,输出法兰盘2034位于传动柔轮2032的外侧,且输出法兰盘2034与传动连接法兰盘2033及抬升输出组件204连接。具体的,传动钢轮2031与承载外壳2011一体设置,起到节省体积,方便卧式安装,免去各种装配法兰件零件。
抬升输出组件204包括输出轴承2041及输出曲柄轴2042,输出轴承2041设置于承载外壳2011远离输入轴承2021的一侧,输出曲柄轴2042设置于输出轴承2041,且输出曲柄轴2042与输出法兰盘2034连接,输出曲柄轴2042还与连杆组件502连接,通过输出法兰盘2034带动输出曲柄轴2042运动,输出曲柄轴2042带动连杆组件502运动。本实施例中,输出轴承2041的数量为两个,以提高对输出曲柄轴2042的承载能力。
进一步的,在承载端盖2012上还设有油封圈300,输出曲柄轴2042与油封圈300可进行相对运动;此外,承载端盖2012上还设有油封盖400,油封盖400位于承载端盖2012中部。通过油封圈300及油封盖400的设置,可防止内部的润滑油外泄。
通过动力机构100与抬升机构200的配合使用,动力机构100通过第一容纳槽及整体的结构布局,缩小了动力机构100的整体长度以及体积,而且动力机构100中的驱动控制组件、电机组件及编码器组件配合,实现电机轴的精准工作,进而提高抬升输出组件204输出的精度,与传统的结构相比,具有体积小和精度高的优势,便于组装、拆卸和后续的维修。
请继续复阅图2-图4,曲柄连杆机构500包括曲柄支撑组件501、连杆 组件502及升降输出件503,承载外壳2011设置于曲柄支撑组件501,连杆组件502转动设置于曲柄支撑组件501,且连杆组件502转动连接输出曲柄轴2042,升降输出件503转动连接连杆组件502。曲柄支撑组件501包括曲柄支撑基座5011及曲柄支撑柱5012,曲柄支撑柱5012一端设置于曲柄支撑基座5011,其另一端设置于承载外壳2011,连杆组件502转动连接曲柄支撑基座5011。具体应用时,曲柄支撑柱5012的数量为两个,两个曲柄支撑柱5012间隔设置于承载外壳2011,提升对动力机构100及抬升机构200支撑的稳定性。
连杆组件502包括第一连杆5021、第二连杆5022及第三连杆5023,第一连杆5021的一端转动连接曲柄支撑基座5011,第一连杆5021的另一端转动连接第三连杆5023,第二连杆5022的两端分别转动连接输出曲柄轴2042及第一连杆5021,第三连杆5023远离第一连杆5021的一端转动连接升降输出件503。进一步的,第一连杆5021、第二连杆5022及第三连杆5023所涉及到的转动连接是通过连接轴与轴套配合实现的铰接,为了防止转动时发生轴向运动,在连接处设有轴卡。
当输出曲柄轴2042逆时针运动时,通过第二连杆5022带动第一连杆5021运动,第一连杆5021向上推动第三连杆5023,第三连杆5023带动升降输出件503一起上升,第一连杆5021与第三连杆5023处于同一直线上,此时为升降输出件503上升的最高点,输出曲柄轴2042可带动第二连杆5022朝逆时针方向再运动一小段距离,使得输出曲柄轴2042的输出端、第二连杆5022及第二连杆5022与第一连杆5021的连接处三者处于同一直线上,进入自锁状态,为升降输出件503提供最大的支撑力,避免升降输出件503因物品过重而突然下落的情况。同理,当需要下降时,输出曲柄轴2042带动第二连杆5022一起顺时针运动,升降输出件503进入下降状态。
通过动力机构100、抬升机构200及曲柄连杆机构500的配合使用,动力机构100通过第一容纳槽421及整体的结构布局,缩小了动力机构100的 整体长度以及体积,而且动力机构100中的驱动控制组件2、电机组件4及编码器组件5配合,实现电机轴41的精准工作,进而提高抬升输出组件204输出的精度,抬升输出组件204通过连杆组件502带动升降输出件503进行升降运动,整个升降模组1000不仅体积小,而且响应速度快、位置精准以及稳定性强。
如图12-图14所示,图12为实施例中承受轴向负载的中空关节模组2000的剖视图;图13为实施例中承受轴向负载的中空关节模组2000的爆炸示意图;图14为实施例中承受轴向负载的中空关节模组2000的立体示意图。承受轴向负载的中空关节模组2000包括驱动组件901、减速组件902、刚性件903、输出件904、第一编码器组件905、第二编码器组件906、控制组件907以及制动组件(图中未标识),驱动组件901与减速组件902连接,且二者之间设置有刚性件903,刚性件903与减速组件902连接,且刚性件903与曲柄支撑基座5011连接进行固定,输出件904连接减速组件902的输出端,且输出件904连接驱动轮模组3000,第一编码器组件905连接驱动组件901的输出端,第二编码器组件906连接输出件904,制动组件连接驱动组件901的输出端或者减速组件902的输入端,控制组件907连接驱动组件901、第一编码器组件905、第二编码器组件906及制动组件。
驱动组件901包括电机前盖9011、电机尾盖9012、定子件9013、转子件9014及传动套9015,电机前盖9011贯穿曲柄支撑基座5011,连接减速组件902,且刚性件903、电机前盖9011及电机尾盖9012共同构成容置槽9016,定子件9013、转子件9014及传动套9015均位于容置槽9016内,定子件9013设置于电机前盖9011内壁面,转子件9014与定子件9013相对设置,且转子件9014设置于传动套9015外表面,传动套9015连接减速组件902的输入端。进一步的,为了缩短整体的长度以及便于安装,刚性件903远离减速组件902的一侧开设有第一避位槽9031,电机前盖9011设置于第一避位槽9031内。
减速组件902包括固定盘9021及减速器9022,固定盘9021与刚性件903 通过连接件908进行连接,固定盘9021还通过连接件908与电机前盖9011连接,减速器9022设置于固定盘9021内,输出件904连接减速器9022的输出端。具体应用时,输出件904由减速器9022的一端贯穿至电机尾盖9012,且输出件904可相对电机尾盖9012进行转动。需要说明的是,减速器9022为现有的重负载谐波减速机,重负载谐波减速机由波发生器、柔性齿轮、柔性轴承、刚性齿轮四个基本构件组成,工作原理为:依靠波发生器装配上柔性轴承使柔性齿轮产生可控弹性变形,并与刚性齿轮相啮合来传递运动和动力的齿轮传动。刚性齿轮与输出件904连接进行动力输出。
具体的,刚性件903的外径大于减速组件902的外径,且刚性件903为法兰盘。刚性件903与固定盘9021通过十二个连接件908进行连接,相对应的,固定盘9021与刚性件903均设有十二个螺纹通孔,连接件908与螺纹通孔螺接;同时,固定盘9021还通过四个连接件908与电机前盖9011连接,具体应用时,由于固定盘9021与电机前盖9011之间间隔了刚性件903,因此,该四个连接件908的长度较长,便于其穿过固定盘9021、刚性件903后与电机前盖9011螺接。本实施例中的输出件904为中空输出轴,可通过其中空的部位进行线缆的布置,避免线缆杂乱现象。刚性件903的外边缘开设有若干个与其他结构件连接的螺纹孔。
第一编码器组件905包括第一编码器轴承9051、第一编码器固定座9052及第一编码器码盘9053,第一编码器轴承9051设置于电机前盖9011,第一编码器固定座9052连接第一编码器轴承9051,且第一编码器固定座9052连接传动套9015,第一编码器码盘9053设置于第一编码器固定座9052远离传动套9015的一端,传动套9015转动时将带动第一编码器固定座9052及第一编码器码盘9053一起转动,控制组件907则通过第一编码器码盘9053获取传动套9015转动信息。
第二编码器组件906包括第二编码器固定座9061及第二编码器码盘9062,第二编码器固定座9061连接输出件904,第二编码器码盘9062设置 于第二编码器固定座9061靠近控制组件907的一侧,第二编码器码盘9062随输出件904一起转动,控制组件907通过第二编码器码盘9062获取输出件904的转动信息。进一步的,第一编码器固定座9052远离减速器9022的一侧开设有第二避位槽90521,第一编码器固定座9052位于第二避位槽90521内,缩小整体的长度。本实施例中第一编码器码盘9053与第二编码器码盘9062处于同一平面上。需要说明的是,第一编码器组件905与第二编码器组件906采用的是单圈绝对值编码器,采用两个单圈绝对值编码器的好处是:模组掉电后重新上电依然会知道输出件904的单圈绝对位置,不必像传统方案采用光电开关或者限位开关每次开机都要回圆点,或者不必像传统方案那样使用多圈绝对值编码器外接编码器电池,随时间推移,编码器电池容易没电维护不便捷。
控制组件907由PCB线路板与其他电子元器件组成,与现有的伺服电机驱动控制模块相同,其对整个模组工作进行控制。
具体应用时,制动组件为电磁刹车件。电磁刹车件可以参考现有的电磁刹车结构,关节模组运转时和电磁刹车器一起通电,使得衔铁被吸合与制动盘分离,电机正常运转。当关节模组断电时,电磁刹车器线圈中无电流通过,衔铁被压缩弹簧顶起与制动盘紧贴,并与制动盘瞬间产生极大摩擦力,使电机及时制动,保证减速电机使用的安全性。
控制组件907驱使制动组件松开对驱动组件901输出端的抱闸,驱动组件901工作并向减速组件902输入动力,经过减速组件902减速后再通过输出件904进行动力输出,其中,第一编码器组件905及第二编码器组件906分别将驱动组件901及输出件904的运动信息输入至控制组件907,驱动组件901与减速组件902之间设有刚性件903,且减速组件902通过连接件908与刚性件903及驱动组件901连接,当需要轴向重负载时,其受力处为转至 若干个连接件908,避免驱动组件901作为固定端受力,进而提升整体的轴向受力效果。
如图15-图16所示,图15为实施例中驱动轮模组3000的立体示意图;图16为实施例中驱动轮模组3000的剖视图。驱动轮模组3000包括驱动机构、二级行星减速机构600及滚动机构700,驱动机构作为动力输出,其输出端连接二级行星减速机构600,动力通过二级行星减速机构600后传输至滚动机构700,滚动机构700则进行转动实现最终的运动。
请复阅图7-图10,本实施中的驱动机构与动力机构100结构相同,因此,以下将以动力机构100的结构进行详细介绍。
动力机构100包括壳体1、驱动控制组件2、制动器3、电机组件4及编码器组件5,驱动控制组件2、制动器3、电机组件4及编码器组件5均位于壳体1内,且电机组件4的输出端伸出到壳体1外部进行动力输出,该输出端连接二级行星减速机构600。其中,驱动控制组件2连接制动器3、电机组件4及编码器组件5,驱动控制组件2驱使制动器3解除对电机组件4的固定,使得电机组件4在受到驱动控制组件2励磁后进行工作,编码器组件5采取到电机组件4的运动信息反馈至驱动控制组件2。
具体应用时,壳体1具有第一容纳腔11及第二容纳腔12,驱动控制组件2位于第一容纳腔11内,制动器3、电机组件4及编码器组件5均位于第二容纳腔12内。本实施例中的壳体1包括前端盖13、机壳14、后端盖15及尾盖16,前端盖13、机壳14、后端盖15及尾盖16依序连接,并且前端盖13、机壳14及后端盖15连接形成第二容纳腔12,后端盖15及尾盖16连接形成第一容纳腔11。进一步的,为了提高连接的密封性,前端盖13、机壳14、后端盖15及尾盖16连接处设有密封圈,密封圈采用的是现有的O型密封圈。更进一步的,为了提升伺服电机的散热效果,机壳14与尾盖16均设有散热结构,该散热结构为散热梳齿。
驱动控制组件2由PCB线路板与其他电子元器件组成,与现有的伺服电 机驱动控制模块相同,其对整个电机工作进行控制。
电机组件4包括电机轴41、磁瓦轴套42、多个转子磁瓦43及多个定子线圈44,电机轴41转动设置于第二容纳腔12内,且电机轴41分别贯穿前端盖13与机壳14,电机轴41连接二级行星减速机构600,磁瓦轴套42套设于电机轴41上,多个转子磁瓦43沿磁瓦轴套42边缘设置,即多个转子磁瓦43环绕设置于磁瓦轴套42外表面,多个定子线圈44与多个转子磁瓦43正对设置,且定子线圈44与驱动控制组件2连接,制动器3套设于电机轴41上。具体应用时,沿电机轴41轴向上,制动器3位于磁瓦轴套42与驱动控制组件2之间。磁瓦轴套42开设有第一容纳槽421,制动器3靠近磁瓦轴套42的一侧伸入到第一容纳槽421内,进而缩短了磁瓦轴套42、制动器3及驱动控制组件2三者的轴向间距,使得整个伺服电机的长度缩短。具体的,磁瓦轴套42由导磁材料制成,提升磁场反应效果。
进一步的,动力机构100还包括前轴承6及后轴承7,前轴承6设置于前端盖13,后轴承7设置于后端盖15,电机轴41一端贯穿前轴承6,且该一端伸出至壳体1外部作为输出端,电机轴41的另一端贯穿后轴承7。更进一步的,前轴承6远离后轴承7的一侧与前端盖13壁面之间设有弹性件8,通过弹性件8的设置可防止电机轴41在进行转动时发生轴向运动,提升其工作时的稳定性。本实施例中的弹性件8为波浪弹垫。更进一步的,制动器3远离前轴承6的一侧开设有第二容纳槽31,后轴承7的一侧伸入至第二容纳槽31内,进一步缩短了伺服电机的轴向长度。
编码器组件5包括编码磁性件51及编码读取件52,编码磁性件51连接电机轴41靠近后轴承7的一端,编码读取件52设置于驱动控制组件2,编码磁性件51随电机轴41一起转动,编码读取件52读取其转动的信息,进而获取电机轴41的转动角度信息,并将信息反馈至驱动控制组件2。进一步的,编码器组件5还包括编码承载件53,编码承载件53嵌入电机轴41的一端,编码磁性件51设置于编码承载件53,通过编码承载件53的设置不仅可以增 强编码磁性件51设置的牢固性,而且也能使得编码磁性件51的部分区域伸入至电机轴41内,缩短整体的轴向长度。具体的,编码承载件53由不导磁材料制成,防止电机组件4工作时的磁性传递至编码磁性件51,造成编码读取件52信息读取出错。
工作时,驱动控制组件2使得制动器3励磁,制动器3不再作用于电机轴41,解除对电机轴41的固定,而后,驱动控制组件2使得定子线圈44励磁进而推动电机轴41转动,编码磁性件51与电机轴41一并转动,编码读取件52则采集相应信息反馈至驱动控制组件2;当需要停止工作时,驱动控制组件2使得制动器3及定子线圈44失磁,制动器3再次对电机轴41进行固定,使其停止转动。
通过第一容纳槽421的开设,使得制动器3的部分结构伸入到第一容纳槽421内,在轴向上缩短整体的长度;此外,驱动控制组件2、制动器3、电机组件4及编码器组件5均设置在壳体1内部,且沿着轴向有序排布,便于后连接线缆的走线,整个壳体1内部结构分布紧凑,不仅使得整个伺服电机在长度上缩小,而且还降低了整体体积。
再一并参照图17-图18所示,图17为实施例中二级行星减速机构600的剖视图;图18为实施例中二级保持架6024与二级行星轮6022组合图。二级行星减速机构600包括一级行星减速组件601及二级行星减速组件602,一级行星减速组件601连接电机轴41,二级行星减速组件602连接一级行星减速组件601及滚动机构700。一级行星组件包括一级太阳轮6011、多个一级行星轮6012、一级内齿圈6013及一级保持架6014,一级太阳轮6011连接电机轴41,多个一级行星轮6012连接一级太阳轮6011,且以及行星轮还与一级内齿圈6013连接,一级保持架6014连接多个一级行星轮6012及二级行星减速组件602。具体应用时,电机轴41输出的一端套有轴套,轴套带动输入轴一起转动,输入轴连接一级太阳轮6011。同时,轴套外表面还套设有轴承。一级太阳轮6011、一级行星轮6012及一级内齿圈6013之间的啮合连接。 二级行星组件包括二级太阳轮6021、多个二级行星轮6022、二级内齿圈6023及二级保持架6024,二级太阳轮6021与一级保持件连接,多个二级行星轮6022与二级太阳轮6021连接,二级内齿圈6023连接多个二级行星轮6022及滚动机构700。具体应用时,多个二级行星轮6022及二级保持架6024为固定连接,二级行星轮6022只能自转,相对的,二级内齿圈6023在二级行星轮6022的带动下带动滚动机构700一起转动。二级保持架6024一端设置于前端盖13,另一端则与一级内齿圈6013固定连接,二级行星轮6022位于二级保持架6024中部区域。具体的,二级保持架6024与前端盖13之间还设有电机安装法兰,电机安装法兰的外圈螺丝孔的中心圆直径比二级内齿圈6023的法兰外径大。本实施例中,二级内齿圈6023套设在二级保持架6024外表面,且通过两个支撑轴承进行支撑,两个支撑轴承的内圈与二级保持架6024连接,其外圈与二级内齿圈6023连接。假设电机轴41沿着正向向一级太阳轮6011传输动力,一级保持架6014则沿反向向二级太阳轮6021输出动力。
请复阅图15及图16,滚动机构700包括轮毂701及包胶轮702,轮毂701连接二级内齿圈6023,包胶轮702裹设于轮毂701外表面。二级内齿圈6023带动轮毂701转动,轮毂701带动包胶轮702一起转动实现整体的运动。具体应用时,轮毂701的内侧开设有凹槽7011,壳体1部分或全部区域位于凹槽7011内,缩小整体的轴向长度,轮毂701与壳体1之间通过连接轴承进行连接。
请继续参照图15及图16,驱动轮模组3000还包括输入连接机构800,输入连接机构800包括第一输入支撑柱801、第二输入支撑柱802及旋转法兰板803,第一输入支撑柱801与二级保持架6024远离电机轴41的一侧连接,第二输入支撑柱802设置于壳体1外表面,旋转法兰板803分别连接第一输入支撑柱801与第二输入支撑柱802,且旋转法兰板803高于包胶轮702,输出件904输出端连接旋转法兰板803。具体应用时,第一输入支撑柱801 与二级保持架6024之间还设有连接端盖,输入轴的一端穿过一级太阳轮6011后通过轴承与连接端盖连接。旋转法兰板803开设有连接通孔8031,输入连接机构800还包括过线件804,过线件804与旋转法兰板803朝向壳体1的一侧连接,过线件804沿其轴向开设有走线槽8041,走线槽8041与连接通孔8031相通,便于线束穿过连接通孔8031后进入走线槽8041,再与其他部件进行连接,通过过线件804的设置,不仅可以改善传统走线杂乱现象,而且还能避免包胶轮702运动时与线束接触并对线束造成磨损的现象。具体的,请继续复阅图1,曲柄支撑基座5011的侧边设有电源分线器4000及信号分线器5000,电源分线器4000与信号分线器5000上的线束穿过输出件904的中空处,然后再穿过连接通孔8031、走线槽8041后与动力机构100连接。此外,升降模组1000与承受轴向负载的中空关节模组2000的电源线与信号线分别与电源分线器4000、信号分线器5000连接,最终电源分线器4000、信号分线器5000共合成四根线(电源+、电源-、通信线CANH、通信线CANL),如此可以解决传统方案繁琐的接线问题以及控制问题。
进一步的,输出件904与旋转法兰板803的连接处还设有推力球轴承6000及轴承盖7000,推力球轴承6000的座圈与旋转法兰板803连接,轴承盖7000罩设于推力球轴承6000的外表面,对其进行保护,承受轴向负载的中空关节模组2000自带十字交叉滚子轴承可使动力基站承受一定程度下任何方向的负载,而推力球轴承6000在重压下则大大增加动力基站整体的轴向与径向方向的负载。
动力机构100带动一级太阳轮6011运动,一级太阳轮6011带动一级行星轮6012运动,一级行星轮6012通过一级保持架6014带动二级太阳轮6021运动,二级太阳轮6021通过二级行星轮6022带动二级内齿圈6023转动,再由二级内齿圈6023带动滚动机构700转动实现整体运动,通过各个部件的合理布局,以及采用二级行星减速机构600联动的结构,不仅缩小了整体的轴 向长度,使得转向半径减小,且还便于日常组装、拆卸和维护。
动力机构100通过抬升机构200带动曲柄连杆机构500运动,实现搬运功能,同步的,承受轴向负载的中空关节模组2000带动整个驱动轮模组3000运动,其中,驱动轮模组3000中驱动机构通过二级行星减速机构600带动滚动机构700运动,实现整体的直行或转向运动,通过结构优化并进行合理布局,使得这个动力基站不仅可以满足所需的搬运与运动的情况,而且整体体积小、稳定性高以及后续维护便捷。
以上所述仅为本发明的实施方式而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理内所作的任何修改、等同替换、改进等,均应包括在本发明的权利要求范围之内。

Claims (10)

  1. 一种动力基站,其特征在于,包括:升降模组(1000)、承受轴向负载的中空关节模组(2000)以及驱动轮模组(3000),所述升降模组(1000)包括依序连接的动力机构(100)、抬升机构(200)及曲柄连杆机构(500);所述驱动轮模组(3000)包括驱动机构、二级行星减速机构(600)以及滚动机构(700),所述驱动机构通过所述二级行星减速机构(600)连接所述滚动机构(700);所述承受轴向负载的中空关节模组(2000)设置于所述曲柄连杆机构(500),且所述承受轴向负载的中空关节模组(2000)连接所述驱动机构。
  2. 根据权利要求1所述的动力基站,其特征在于,所述动力机构(100)包括:
    壳体(1);
    驱动控制组件(2),其位于所述壳体(1)内;
    制动器(3),其设置于所述壳体(1)内,且所述制动器(3)与所述驱动控制组件(2)连接;
    电机组件(4),其包括电机轴(41)、磁瓦轴套(42)、多个转子磁瓦(43)及多个定子线圈(44),所述电机轴(41)转动设置于所述壳体(1)内,所述电机轴(41)的一端伸出所述壳体(1)外,所述电机轴(41)连接所述抬升机构(200),所述制动器(3)设置于所述电机轴(41),所述磁瓦轴套(42)套设于所述电机轴(41),所述磁瓦轴套(42)开设有第一容纳槽(421),所述制动器(3)远离所述驱动控制组件(2)的一侧位于所述第一容纳槽(421)内,多个所述转子磁瓦(43)环绕设置于所述磁瓦轴套(42),多个所述定子线圈(44)与多个所述转子磁瓦(43)相对设置,且所述定子线圈(44)连接所述驱动控制组件(2);
    编码器组件(5),其连接所述驱动控制组件(2)及所述电机轴(41)。
  3. 根据权利要求2所述的动力基站,其特征在于,所述抬升机构(200)包括抬升承载组件(201)以及设置于所述升承载组件(201)的抬升输入组件(202)、抬升传动组件(203)、抬升输出组件(204),所述抬升承载组件(201)连接所述壳体(1),所述抬升输入组件(202)连接所述电机轴(41)伸出所述壳体(1)外的一端,所述抬升传动组件(203)分别连接所述抬升输入组件(202)及所述抬升输出组件(204)。
  4. 根据权利要求3所述的动力基站,其特征在于,所述曲柄连杆机构(500)包括曲柄支撑组件(501)、连杆组件(502)及升降输出件(503),所述抬升承载组件(201)、所述连杆组件(502)及所述承受轴向负载的中空关节模组(2000)均设置于所述曲柄支撑组件(501),所述连杆组件(502)转动连接所述抬升输出组件(204)及所述升降输出件(503)。
  5. 根据权利要求1所述的动力基站,其特征在于,所述承受轴向负载的中空关节模组(2000)包括电机组件(1)、减速组件(2)、刚性件(3)、输出件(4)、第一编码器组件(5)、第二编码器组件(6)、控制组件(7)及制动组件,所述电机组件(1)的输出端连接所述减速组件(2),所述刚性件(3)位于所述电机组件(1)与所述减速组件(2)之间,且所述减速组件(2)通过若干个连接件(8)分别与所述刚性件(3)及所述减速组件(2)连接,所述刚性件(3)连接所述曲柄连杆机构(500),所述输出件(4)连接所述减速组件(2)的输出端,所述第一编码器组件(5)连接所述电机组件(1)的输出端,所述第二编码器组件(6)连接所述输出件(4),所述控制组件(7)连接所述电机组件(1)、所述第一编码器组件(5)、所述第二编码器组件(6)及所述制动组件,所述制动组件套设于所述电机组件(1)的输出端。
  6. 根据权利要求5所述的动力基站,其特征在于,所述电机组件(1)包括电机前盖(11)、电机尾盖(12)、定子件(13)、转子件(14)以及传动套(15),所述电机前盖(11)连接所述减速组件(2),所述电机前盖(11)与所述电机尾盖(12)连接,且所述电机前盖(11)、所述电机尾盖(12)及 所述刚性件(3)形成容纳槽(16),所述定子件(13)及所述转子件(14)均位于所述容纳槽(16)内,所述传动套(15)连接所述转子件(14)及所述减速组件(2)的输入端,所述第一编码器组件(5)连接所述传动套(15),所述第二编码器组件(6)及所述控制组件(7)均位于所述容纳槽(16),所述输出件(4)远离所述减速组件(2)的一端贯穿所述电机前盖(11)及所述电机尾盖(12)。
  7. 根据权利要求5所述的动力基站,其特征在于,所述减速组件(2)包括固定盘(21)及减速器(22),所述固定盘(21)连接所述刚性件(3)及所述电机组件(1),所述减速器(22)设置于所述固定盘(21),所述输出件(4)连接所述减速器(22)。
  8. 根据权利要求1所述的动力基站,其特征在于,所述二级行星减速机构(600)包括:
    一级行星减速组件(601),其包括一级太阳轮(6011)、多个一级行星轮(6012)、一级内齿圈(6013)及一级保持架(6014),所述一级太阳轮(6011)连接所述驱动机构的输出端,多个所述一级行星轮(6012)连接所述一级太阳轮(6011)及所述一级内齿圈(6013),所述一级保持架(6014)连接多个所述一级行星轮(6012);
    二级行星减速组件(602),其包括二级太阳轮(6021)、多个二级行星轮(6022)、二级内齿圈(6023)及二级保持架(6024),所述二级太阳轮(6021)连接所述一级保持架(6014),多个所述二级行星轮(6022)连接所述二级太阳轮(6021)及所述二级内齿圈(6023),所述二级内齿圈(6023)连接所述滚动机构(700),所述二级保持架(6024)连接多个所述二级行星轮(6022)。
  9. 根据权利要求8所述的动力基站,其特征在于,所述滚动机构(700)包括轮毂(701)及包胶轮(702),所述轮毂(701)连接所述二级内齿圈(6023),所述包胶轮(702)裹设于所述轮毂(701)外表面。
  10. 根据权利要求8所述的动力基站,其特征在于,所述驱动轮模组 (3000)还包括输入连接机构(800),其包括第一输入支撑柱(801)、第二输入支撑柱(802)及旋转法兰板(803),所述第一输入支撑柱(801)连接所述一级内齿圈(6013),所述第二输入支撑柱(802)设置于所述驱动机构外表面,所述旋转法兰板(803)分别与所述第一输入支撑柱(801)及所述第二输入支撑柱(802)连接,且所述旋转法兰板(803)连接所述承受轴向负载的中空关节模组(2000)。
PCT/CN2022/131880 2022-08-12 2022-11-15 动力基站 WO2024031858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210970132.1 2022-08-12
CN202210970132.1A CN115276311B (zh) 2022-08-12 2022-08-12 动力基站

Publications (1)

Publication Number Publication Date
WO2024031858A1 true WO2024031858A1 (zh) 2024-02-15

Family

ID=83751318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131880 WO2024031858A1 (zh) 2022-08-12 2022-11-15 动力基站

Country Status (2)

Country Link
CN (1) CN115276311B (zh)
WO (1) WO2024031858A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276311B (zh) * 2022-08-12 2023-05-30 广东天太机器人有限公司 动力基站
CN117353510B (zh) * 2023-12-05 2024-02-13 成都精密电机有限公司 一种伺服电机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110123536A (zh) * 2019-05-28 2019-08-16 新乡市中心医院(新乡中原医院管理中心) 一种心血管内科用患者搬运车
US20200156868A1 (en) * 2018-11-20 2020-05-21 Advanced Intelligent Systems Inc. Systems, methods, and storage units for article transport and storage
CN112374422A (zh) * 2020-12-04 2021-02-19 东凯叉车(常州)有限公司 一种带称重功能的随车自体装卸叉车
CN112811354A (zh) * 2021-01-21 2021-05-18 北京极智嘉科技股份有限公司 一种搬运机器人、仓储物流系统及笼车搬运方法
CN114084849A (zh) * 2021-11-18 2022-02-25 宝开(上海)智能物流科技有限公司 一种料箱搬运机器人
CN114102659A (zh) * 2021-12-06 2022-03-01 之江实验室 一种基于行星减速器的一体化机器人驱动关节
CN114633281A (zh) * 2022-02-28 2022-06-17 浙江大学 一种抗侧倾高功率密度机器人关节驱动单元
CN115276311A (zh) * 2022-08-12 2022-11-01 广东天太机器人有限公司 动力基站
CN218416090U (zh) * 2022-08-12 2023-01-31 广东天太机器人有限公司 动力基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107487175B (zh) * 2017-07-25 2019-12-31 东风汽车公司 一种一体化集成式轮毂电机驱动单元
CN108638839B (zh) * 2018-05-14 2019-09-27 清华大学 一种低地板电动桥总成
CN110739798B (zh) * 2018-07-18 2020-11-10 六环传动(西安)科技有限公司 能够实现全闭环控制的行星减速电机及关节机器人

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200156868A1 (en) * 2018-11-20 2020-05-21 Advanced Intelligent Systems Inc. Systems, methods, and storage units for article transport and storage
CN110123536A (zh) * 2019-05-28 2019-08-16 新乡市中心医院(新乡中原医院管理中心) 一种心血管内科用患者搬运车
CN112374422A (zh) * 2020-12-04 2021-02-19 东凯叉车(常州)有限公司 一种带称重功能的随车自体装卸叉车
CN112811354A (zh) * 2021-01-21 2021-05-18 北京极智嘉科技股份有限公司 一种搬运机器人、仓储物流系统及笼车搬运方法
CN114084849A (zh) * 2021-11-18 2022-02-25 宝开(上海)智能物流科技有限公司 一种料箱搬运机器人
CN114102659A (zh) * 2021-12-06 2022-03-01 之江实验室 一种基于行星减速器的一体化机器人驱动关节
CN114633281A (zh) * 2022-02-28 2022-06-17 浙江大学 一种抗侧倾高功率密度机器人关节驱动单元
CN115276311A (zh) * 2022-08-12 2022-11-01 广东天太机器人有限公司 动力基站
CN218416090U (zh) * 2022-08-12 2023-01-31 广东天太机器人有限公司 动力基站

Also Published As

Publication number Publication date
CN115276311A (zh) 2022-11-01
CN115276311B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2024031858A1 (zh) 动力基站
CN101849119A (zh) 齿轮轴承驱动装置
US5355743A (en) Robot and robot actuator module therefor
CN102941573B (zh) 一种绳驱动多关节机器人
US20090312134A1 (en) Gear reducer electric motor assembly with internal brake
CN211565962U (zh) 机器人关节结构及机器人
CN206011131U (zh) 一种协作机器人模块化串联关节
CN207845070U (zh) 一种举升装置、移载型自动导引运输车
CN107246870A (zh) 一种基于柔索传动的差动结构稳定平台
JP2017175837A (ja) 電動アクチュエータ
CN110666836A (zh) 一种双向输出仿人机器人用臂部一体化关节
CN110725918A (zh) 一种并联磁性行星传动一体化机器人关节装置
CN112140142A (zh) 一种高精度紧凑型一体化关节结构
CN114102659B (zh) 一种基于行星减速器的一体化机器人驱动关节
CN113276157A (zh) 一种多级紧凑型电驱动关节模组及机器人
CN218416090U (zh) 动力基站
CN101666377A (zh) 大型单壁悬臂整体式行星架
CN113977625A (zh) 一种集成双减速器控制于一体的电动关节模组
CN111805523B (zh) 一种一体化电动关节模组
CN210920016U (zh) 一种并联磁性行星传动驱控一体机器人关节模组
CN110815284A (zh) 一种中空式模块化关节
CN113794309B (zh) 移动平台高速悬臂式轮毂电机
CN212497829U (zh) 一种高精度紧凑型一体化关节结构
CN212096415U (zh) 一种磁性齿轮传动机器人关节模组
CN211565895U (zh) 一种机器人用关节模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954797

Country of ref document: EP

Kind code of ref document: A1