WO2024031836A1 - Procédé et appareil d'humidification de maison dynamique combinant un confort thermique et une température sensible - Google Patents

Procédé et appareil d'humidification de maison dynamique combinant un confort thermique et une température sensible Download PDF

Info

Publication number
WO2024031836A1
WO2024031836A1 PCT/CN2022/126551 CN2022126551W WO2024031836A1 WO 2024031836 A1 WO2024031836 A1 WO 2024031836A1 CN 2022126551 W CN2022126551 W CN 2022126551W WO 2024031836 A1 WO2024031836 A1 WO 2024031836A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
equivalent
moment
thermal comfort
mode
Prior art date
Application number
PCT/CN2022/126551
Other languages
English (en)
Chinese (zh)
Inventor
薛雪
龙照凯
孙雪
李俊
王伟明
Original Assignee
湖南桅灯智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南桅灯智能科技有限公司 filed Critical 湖南桅灯智能科技有限公司
Publication of WO2024031836A1 publication Critical patent/WO2024031836A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the invention belongs to the technical field of air conditioning, and in particular relates to a home dynamic humidification method and device that integrates thermal comfort and body temperature.
  • the humidification modes of traditional humidifiers are generally manual switch humidification, scheduled humidification, and automatic humidification.
  • the traditional humidifier is installed with a humidity sensor, which monitors the indoor real-time humidity in real time and controls the start and stop of the humidifier according to the set upper and lower humidity limits.
  • the above-mentioned traditional humidifier operation control mode cannot effectively and dynamically control humidification according to the comfort needs of indoor space personnel in real time.
  • the actual humidification effect does not take into account the indoor dry bulb temperature and whether there are other air conditioning devices running in the room.
  • the final humidification effect was unsatisfactory.
  • the existing evaluation indicators of human body thermal comfort are not accurate enough and cannot be dynamically adjusted according to actual conditions, making the humidification effect unsatisfactory.
  • the smart home dynamic humidification method that integrates thermal comfort and body temperature disclosed in the first aspect of the present invention includes the following steps:
  • Step 1 After turning on the smart home dynamic humidifier device, at the kth moment, the indoor air dry bulb temperature T k air and relative humidity RH k air are monitored in real time through the built-in air dry bulb temperature sensor, relative humidity sensor and infrared induction sensor. , and use the infrared induction sensor to monitor whether there are other air conditioning devices in the room that are turned on and in mode, and set the equivalent air flow rate v k air, eqt ;
  • Step 2 Calculate the equivalent thermal comfort index at the k-th moment using the parameters measured in real time in Step 1;
  • Step 3 Calculate the body temperature at the k-th moment using the parameters measured in real time in Step 1;
  • Step 4 If other air conditioning devices in the room are turned on, set the initial assignment weight coefficients W 1 k and W 2 k ;
  • Step 5 Substitute the weight coefficients W 1 k and W 2 k at the k-th moment into the formula and calculate the PT k int value at the k-th moment;
  • Step 6 When the value of PT k int belongs to the [-1,1] interval and the value of RH k air belongs to the [35%, 65%] interval, the control mode H k+1 of the smart humidifier at the k+1th moment mode is adjusted to "0", that is, humidification is not started; when the value of PT k int is less than -1, or the value of RH k air is less than 35%, the control mode H k+1 of the smart humidifier at the k+1th moment mode is adjusted to "1", the humidifier turns on the regular humidification mode for the room; when the value of PT k int is less than -1, and the value of RH k air is also less than 35%, the k+1th moment of the smart humidifier The control mode H k+1 mode is adjusted to "2", and the humidifier turns on the room in rapid over-humidification mode;
  • Step 7 Entering the k+1th moment, the smart humidifier re-collects the air temperature and relative humidity at the new moment, recalculates the equivalent thermal comfort index and body temperature, and calculates the weight coefficients W 1 k , W at the new moment 2k ;
  • Step 8 Repeat the above steps 5, 6, and 7 until the smart humidifier is turned off manually or scheduled.
  • the equivalent air flow velocity v k air, eqt is set to 0 m/s; if other air conditioning devices are found to be turned on, the equivalent air flow velocity is set according to the monitored air conditioner wind speed mode. v k air,eqt ;
  • the equivalent air flow speed v k air, eqt at low speed is 0.1m/s
  • the equivalent air flow speed v k air, eqt at medium speed and automatic speed is 0.2 m/s
  • at high speed When the equivalent air flow velocity v k air, eqt is equivalent to 0.3m/s;
  • the equivalent air flow speed v k air, eqt is 0.1 m/s at 1 grid
  • the equivalent air flow speed v k air, eqt is 0.15 m/s at 2 grid
  • the equivalent air flow speed v k air, eqt at 3 grid is 0.15 m/s.
  • the equivalent air flow velocity v k air, eqt is equivalent to 0.2m/s at the gear position
  • the equivalent air flow velocity v k air, eqt is equivalent to 0.25 m/s at 4 grids
  • the equivalent air flow velocity v k air at 5 grids is eqt is equivalent to 0.3m/s.
  • PMV eqt is the equivalent thermal comfort index, whose range is equivalent to the average index of seven levels of thermal sensation voting.
  • somatosensory temperature at time k is the indoor air temperature at time k; is the indoor relative humidity at time k; is the indoor equivalent air flow velocity at time k.
  • weight coefficients W 1 k and W 2 k at the k-th moment are substituted into the following formula to calculate the fusion value PT k int of the equivalent thermal comfort and the sensory temperature at the k-th moment;
  • weight coefficients W 1 k+1 and W 2 k+1 at the new moment are calculated as follows:
  • the smart home dynamic humidification device that integrates thermal comfort and body temperature disclosed in the second aspect of the present invention includes:
  • the processor is configured to execute the smart home dynamic humidification method integrating thermal comfort and body temperature according to any one of claims 1 to 7 via executable instructions.
  • the thermal comfort and body temperature of the indoor human body are taken into consideration, and the equivalent thermal comfort algorithm is innovatively adopted, and the fusion algorithm takes into account both thermal comfort requirements and appropriate body temperature;
  • the present invention adopts innovative control methods of dynamic humidification, conventional humidification, and rapid excessive humidification based on real-time monitoring of indoor temperature and humidity conditions;
  • This invention innovatively uses infrared sensors to monitor whether there are other air-conditioning devices in the indoor space, and at the same time, the indoor air flow rate is included in the consideration of humidification comfort.
  • Figure 1 is a flow chart of the method of the present invention.
  • the dry bulb temperature of the indoor space being humidified is not considered, nor is it considered whether other air conditioning devices (such as refrigeration air conditioners) are operating in the indoor space being humidified. More importantly, traditional air conditioners are almost never used. Without considering the actual thermal sensation of the human body (such as human body thermal comfort, somatosensory temperature) and other issues, the present invention proposes a new fusion control algorithm based on equivalent thermal comfort and somatosensory temperature.
  • Human thermal comfort is a comprehensive evaluation index based on the basic equation of human thermal balance and the subjective thermal sensation level of psychophysiology, taking into account many relevant factors of human thermal comfort.
  • the human thermal comfort index indicates the average index of the group's voting for seven levels of thermal sensation (+3 ⁇ -3), as shown in Table 1 below.
  • Somatosensory temperature refers to the degree of coldness and warmth felt by the human body. When converted into the same temperature, it will be affected by the comprehensive effects of air temperature, wind speed and relative humidity.
  • control algorithm and device of the present invention also take into account whether other air conditioning devices (such as conventional household air conditioners) are running in the indoor space by relying on smart home intelligent identification. Monitor the air dry bulb temperature, relative humidity, air flow rate and other necessary air parameters in the indoor humidification space, and perform dynamic humidification control (such as humidification time, humidification amount).
  • dynamic humidification control such as humidification time, humidification amount.
  • organic linkage control of temperature and humidity can be achieved.
  • control steps of the present invention are as follows:
  • Step 1 After turning on the smart home dynamic humidifier device, at the kth moment, the indoor air dry bulb temperature T k air and relative humidity RH k air are monitored in real time through the built-in air dry bulb temperature sensor, relative humidity sensor and infrared induction sensor. , and use the infrared induction sensor to monitor whether other air conditioning devices are turned on and the mode (cooling or heating mode) in the room. If no other air conditioning device is found to be turned on, the equivalent air flow rate v k air, eqt is equivalent to 0m/s.
  • Step 2 As shown in formula (1), substitute the parameters measured in real time in step 1 to calculate the equivalent thermal comfort index at the kth moment;
  • PMV eqt is the equivalent thermal comfort index, and its range is equivalent to the average index of the seven levels of thermal sensation voting (+3 ⁇ -3) in the above table.
  • ASHRAE Standard 55-2010 defines comfort as the state of consciousness of the human body expressing satisfaction with the thermal environment. It is suitable for typical indoor environments, that is: the person is in a sitting state (1.1met), the indoor wind speed is ⁇ 0.2m/s, and the thermal resistance of the person's clothing It is 1.0clo (typical attire in winter) or 0.5clo (typical attire in summer). For clothing thermal resistance between 0.5clo and 1.0clo, the thermal comfort zone can be determined by interpolation. This method can only look up tables, and makes assumptions or assumptions about some parameters, without the operability of on-the-ground control.
  • the equivalent thermal comfort index proposed by the present invention normalizes and equates various factors. For example, radiation temperature is equivalent according to static and long-term mixing methods, and behaviors such as dressing and washing are calculated as 1 (behaviors such as sleeping mode and covering quilt are calculated as 1). Equivalent), the metabolic rate value is the average value of sitting, and equivalent control of other factors, the thermal comfort can be close to the actual human body perception. In the subsequent control process, the weight coefficient of the equivalent thermal comfort index is also set, and the weight coefficient is dynamically adjusted based on the actual control results to make the thermal comfort index closer to the user's feeling.
  • Step 3 As shown in formula (2), substitute the parameters measured in real time in step 1 to calculate the somatosensory temperature at the kth moment;
  • somatosensory temperature at time k is the indoor air temperature at time k; is the indoor relative humidity at time k; is the indoor equivalent air flow velocity at time k.
  • Step 5 As shown in formula (3), substitute the weight coefficients W 1 k and W 2 k at the k-th moment into the formula and calculate the PT k int value at the k-th moment;
  • PT int is the fusion value of equivalent thermal comfort and sensory temperature
  • T body is the sensory temperature
  • T air is the indoor air temperature
  • RH air is the indoor relative humidity
  • v air, eqt is the indoor equivalent air flow rate
  • W 1 , W 2 is the weight coefficient of the adjustment control
  • k is the kth time.
  • the time interval can be set to at least 30 seconds.
  • Step 6 As shown in formula (4), when the value of PT k int belongs to the [-1,1] interval and the value of RH k air belongs to the [35%, 65%] interval, the k+1th smart humidifier The control mode H k+1 mode at the time is adjusted to "0", that is, humidification is not started, and the humidification amount of the humidifier to the room is 0; when the value of PT k int is less than -1, or the value of RH k air is less than 35 %, the control mode H k+1 mode of the smart humidifier at the k+1th moment is adjusted to "1", that is, humidification is started, and the humidifier turns on the regular humidification mode for the room to increase the moisture content of the air in the room.
  • the control mode H k+1 mode of the intelligent humidifier at the k+1th moment is adjusted to "2" means starting humidification.
  • the humidifier starts the rapid overhumidification mode of the room, which is used to quickly and massively increase the moisture content and relative humidity of the air in the room.
  • H mode is the intelligent humidifier control mode.
  • Step 7 Entering the k+1th time, the smart humidifier re-collects the air temperature and relative humidity at the new time, recalculates the equivalent thermal comfort index and body temperature, and substitutes them into the calculation according to formula (5) and formula (6). Obtain the weight coefficients W 1 k and W 2 k at the new moment;
  • Step 8 Repeat the above steps 5, 6, and 7 until the smart humidifier is turned off manually or scheduled.
  • the thermal comfort and body temperature of the indoor human body are taken into consideration, and the equivalent thermal comfort algorithm is innovatively adopted, and the fusion algorithm takes into account both thermal comfort requirements and appropriate body temperature;
  • the present invention adopts innovative control methods of dynamic humidification, conventional humidification and rapid excessive humidification based on real-time monitoring of indoor temperature and humidity conditions;
  • This invention innovatively uses infrared sensors to monitor whether there are other air-conditioning devices in the indoor space, and at the same time, the indoor air flow rate is included in the consideration of humidification comfort.
  • Each functional unit in the embodiment of the present invention can be integrated into a processing module, or each unit can exist physically alone, or multiple or more of the above units can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the storage media mentioned above can be read-only memory, magnetic disks or optical disks, etc.
  • Each of the above devices or systems can execute the storage method in the corresponding method embodiment.
  • the above-mentioned embodiment is an implementation mode of the present invention, but the implementation mode of the present invention is not limited by the above-mentioned embodiment. Any other changes that deviate from the spirit and principle of the present invention, Modifications, substitutions, combinations, and simplifications should all be equivalent substitutions, and are all included in the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

L'invention concerne un procédé et un appareil d'humidification de maison intelligente dynamique combinant un confort thermique et une température sensible. Le procédé consiste à : (1) surveiller, en temps réel, une température intérieure et une humidité relative, et régler une vitesse d'air équivalente ; (2) calculer un indice de confort thermique équivalent et une température sensible à un k-ième moment ; (3) régler un coefficient de poids d'attribution initial, et calculer une valeur PTk int au k-ième moment ; (4) régler un mode de commande d'un humidificateur intelligent au (k+1)-ième moment en fonction des plages de la valeur PTk int et d'une valeur RHk air, le mode de commande le non-démarrage de l'humidification, un mode d'humidification classique et un mode de super-humidification rapide ; (5) lors de l'entrée dans le (k+1)-ème moment, recalculer l'indice de confort thermique équivalent et la température sensible, et calculer un coefficient de poids à un nouveau moment ; et répéter les étapes (3) à (5) jusqu'à ce que l'humidificateur soit éteint.
PCT/CN2022/126551 2022-08-12 2022-10-21 Procédé et appareil d'humidification de maison dynamique combinant un confort thermique et une température sensible WO2024031836A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210966262.8A CN115046296B (zh) 2022-08-12 2022-08-12 一种融合热舒适性与体感温度的家居动态加湿方法及装置
CN202210966262.8 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024031836A1 true WO2024031836A1 (fr) 2024-02-15

Family

ID=83167504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126551 WO2024031836A1 (fr) 2022-08-12 2022-10-21 Procédé et appareil d'humidification de maison dynamique combinant un confort thermique et une température sensible

Country Status (2)

Country Link
CN (1) CN115046296B (fr)
WO (1) WO2024031836A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046296B (zh) * 2022-08-12 2022-11-04 湖南桅灯智能科技有限公司 一种融合热舒适性与体感温度的家居动态加湿方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275236A (ja) * 1989-04-14 1990-11-09 Mitsubishi Electric Corp 空調制御装置
JPH03247929A (ja) * 1990-02-23 1991-11-06 Funai Electric Co Ltd ルームエアコンディショナー
CN102721151A (zh) * 2012-05-29 2012-10-10 广东美的电器股份有限公司 加湿控制装置及其控制方法
CN106225153A (zh) * 2016-07-25 2016-12-14 广东美的制冷设备有限公司 空调器的温湿度控制方法及装置
CN115046296A (zh) * 2022-08-12 2022-09-13 湖南桅灯智能科技有限公司 一种融合热舒适性与体感温度的家居动态加湿方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456841B (zh) * 2014-11-13 2017-01-25 重庆大学 一种基于热舒适评价的热湿环境综合控制空调系统及方法
CN106765861A (zh) * 2015-11-25 2017-05-31 广东美的制冷设备有限公司 空调控制方法及装置
CN105241035B (zh) * 2015-11-26 2018-11-20 湘潭大学 基于动态热舒适的空调器控制系统及其控制方法
CN105526678A (zh) * 2015-12-30 2016-04-27 中建三局智能技术有限公司 一种恒温恒湿组合式空调器的含湿量控制方法
CN106196470A (zh) * 2016-07-25 2016-12-07 广东美的制冷设备有限公司 空调器及其温湿度控制方法
KR20200054679A (ko) * 2018-11-12 2020-05-20 주식회사 굿템코리아 초음파 가습기
CN111207505A (zh) * 2020-02-26 2020-05-29 佛山科学技术学院 一种基于体感温度的环境调节装置
CN113494758B (zh) * 2020-03-18 2022-09-02 海信集团有限公司 一种计算pmv值的终端设备和方法
CN113237201A (zh) * 2021-06-09 2021-08-10 海信(山东)空调有限公司 空调器的控制方法及装置、空调器和计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275236A (ja) * 1989-04-14 1990-11-09 Mitsubishi Electric Corp 空調制御装置
JPH03247929A (ja) * 1990-02-23 1991-11-06 Funai Electric Co Ltd ルームエアコンディショナー
CN102721151A (zh) * 2012-05-29 2012-10-10 广东美的电器股份有限公司 加湿控制装置及其控制方法
CN106225153A (zh) * 2016-07-25 2016-12-14 广东美的制冷设备有限公司 空调器的温湿度控制方法及装置
CN115046296A (zh) * 2022-08-12 2022-09-13 湖南桅灯智能科技有限公司 一种融合热舒适性与体感温度的家居动态加湿方法及装置

Also Published As

Publication number Publication date
CN115046296A (zh) 2022-09-13
CN115046296B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN104456841B (zh) 一种基于热舒适评价的热湿环境综合控制空调系统及方法
CN103032934B (zh) 空调器的自动控制方法
CN107367023B (zh) 用于控制空调的方法及装置
CN102880208B (zh) 温湿度的控制方法、装置及系统
CN106152412A (zh) 空调器的温湿度控制方法及装置
CN106969471B (zh) 一种基于室外温湿度的空调调整冷冻水温度运行的方法
CN104764165A (zh) 控制睡眠环境的空调器及方法
CN103307701A (zh) 空调系统人体舒适度的控制方法及空调器
JP2007285579A (ja) 空調制御装置
CN107084490B (zh) 空调器的控制方法和空调器
JP2003185217A (ja) 空気調和機
CN100513911C (zh) 空调及其控制方法
WO2024031836A1 (fr) Procédé et appareil d'humidification de maison dynamique combinant un confort thermique et une température sensible
JP4538941B2 (ja) 空気調和装置
CN106440209A (zh) 一种移动式空调器控制方法、控制装置以及移动式空调器
CN106196472A (zh) 空调器的温湿度控制方法及装置
CN108036476A (zh) 一种空调器
WO2023002749A1 (fr) Dispositif de climatisation et système de commande
CN108413589B (zh) 一种基于温冷感的空调器控制方法和空调器
CN215336812U (zh) 一种精准控制房间温度、湿度的单压缩机双系统组合结构
CN106839289B (zh) 空调器控制方法、控制器、空调器及空调器控制系统
JP2884706B2 (ja) 就寝装置
CN111854037A (zh) 一种空调器控制方法、装置、空调器及存储介质
US20240142129A1 (en) Air-conditioning device and control system
JPH0519059B2 (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954778

Country of ref document: EP

Kind code of ref document: A1