WO2024031708A1 - 数据传输方法、装置及电子设备 - Google Patents

数据传输方法、装置及电子设备 Download PDF

Info

Publication number
WO2024031708A1
WO2024031708A1 PCT/CN2022/112308 CN2022112308W WO2024031708A1 WO 2024031708 A1 WO2024031708 A1 WO 2024031708A1 CN 2022112308 W CN2022112308 W CN 2022112308W WO 2024031708 A1 WO2024031708 A1 WO 2024031708A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
target
frequency
sbfd
Prior art date
Application number
PCT/CN2022/112308
Other languages
English (en)
French (fr)
Inventor
孔磊
Original Assignee
新华三技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新华三技术有限公司 filed Critical 新华三技术有限公司
Priority to PCT/CN2022/112308 priority Critical patent/WO2024031708A1/zh
Priority to CN202280002728.0A priority patent/CN117882346A/zh
Publication of WO2024031708A1 publication Critical patent/WO2024031708A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communications, and in particular, to a data transmission method, device and electronic equipment.
  • TDD Time-Division Duplex
  • the TDD frame structure can be divided into DL (DownLink, downlink) time slots, S (Special, special) time slots and UL (UpLink, uplink) time slots.
  • the S time slots can be used for UL, DL or GP (Guard Period, protection period). ).
  • current 5G commercial networks usually configure more DL time slots and relatively less UL time slots, which limits the uplink transmission rate and increases the uplink transmission delay.
  • FD (Full-Duplex, full-duplex) communication can send and receive at the same time, that is, perform uplink and downlink data transmission at the same time.
  • the current 3GPP protocol group has regarded FD communication as a research project and officially started standardization work. Operators, terminal manufacturers, etc. are also conducting research on key technologies in FD communications.
  • a first aspect of this application provides a data transmission method, which method is applied to UEs that support subband full-duplex SBFD mode, and the method includes: determining the SBFD time-frequency corresponding to the target time slot based on configuration information issued by the base station. resources and the target time-frequency resource associated with the target time slot; according to the overlap result of the SBFD time-frequency resource and the target time-frequency resource, determine the data transmission operation corresponding to the target time-frequency resource; in the The determined data transmission operation is performed in the target time slot.
  • a second aspect of the present application provides a data transmission method, which method is applied to a base station that supports subband full-duplex SBFD mode, and the method includes: determining the SBFD time-frequency resource corresponding to the target time slot and the SBFD time-frequency resource corresponding to the target time slot.
  • the target time-frequency resource associated with the time slot according to the overlap result of the SBFD time-frequency resource and the target time-frequency resource, determine the data transmission operation corresponding to the target time-frequency resource; execute the determined time-frequency resource in the target time slot data transfer operations.
  • a third aspect of the present application provides a data transmission device, which is applied to a UE that supports subband full-duplex SBFD mode, and the device includes: a first determination module for determining a target based on configuration information issued by a base station The SBFD time-frequency resource corresponding to the time slot and the target time-frequency resource associated with the target time slot; the second determination module is configured to determine based on the SBFD time-frequency resource and the overlap result with the target time-frequency resource.
  • a data transmission operation corresponding to the target time-frequency resource an execution module configured to execute the determined data transmission operation in the target time slot.
  • a fourth aspect of the present application provides a data transmission device, which is applied to a base station that supports subband full-duplex SBFD mode, and the device includes: a first determination module for determining the SBFD time-frequency corresponding to the target time slot. resources and target time-frequency resources associated with the target time slot; a second determination module configured to determine, based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, the target time-frequency resource corresponding to the target time slot. a data transmission operation; an execution module configured to perform the determined data transmission operation in the target time slot.
  • a fifth aspect of the present application provides an electronic device, including: at least one processor, and a machine-readable storage medium storing machine-executable instructions, wherein by reading the machine-executable instructions, the at least one processor is Prompt execution of the data transmission method as described in any of the above aspects.
  • the time-frequency domain resources of TDD SBFD can be used for uplink random access transmission without affecting the current 5G HD system, so that the uplink access resources can be increased and the access delay can be reduced;
  • the transmission criteria when the DL channel overlaps with the PRACH are given, which determines the reception and transmission behavior of the base station and UE, reduces the blind detection of the base station and UE, effectively increases the uplink transmission opportunities, and improves the reliability of uplink transmission.
  • Figure 1 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figures 2 to 16 are schematic diagrams of the overlapping of SBFD time-frequency resources and target time-frequency resources according to embodiments of the present application.
  • Figure 17 is a schematic structural diagram of a data transmission device according to an embodiment of the present application.
  • Figure 18 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of this application, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” used may be interpreted as "when” or "when” or "in response to determining”.
  • time domain resources are used to separate downlink and uplink, so uplink allocation for a limited duration will result in reduced cell coverage, increased transmission delay and insufficient uplink capacity, which is the current problem in TDD communication. Problems with the system.
  • the current 5G NR system only considers the time-frequency domain resource allocation of physical channels in TDD HD mode, and does not consider how to transmit uplink physical channels on the time-frequency domain resources of TDD FD mode and user equipment in TDD FD mode ( UE) how to perform uplink random access.
  • this application mainly focuses on how UE performs uplink random access in TDD FD mode, and proposes a method and transmission criteria for UE random access in TDD FD mode to ensure that FD UE can smoothly and efficiently access the NR system. At the same time, it also ensures that the access and data transmission of existing terminals are not affected.
  • a new data transmission method is proposed, which is applied to UEs that support subband full-duplex SBFD mode. As shown in Figure 1, the method includes the following steps 101 to 103.
  • Step 101 Determine the SBFD time-frequency resource corresponding to the target time slot and the target time-frequency resource associated with the target time slot based on the configuration information issued by the base station.
  • Step 102 Determine the data transmission operation corresponding to the target time-frequency resource according to the overlap result of the SBFD time-frequency resource corresponding to the target time slot and the target time-frequency resource associated with the target time slot.
  • Step 103 Perform the determined data transmission operation in the target time slot.
  • SBFD Sub-Band Full Duplex
  • a part of the SBFD time-frequency resources are configured in the existing time-frequency resources in the TDD mode, so that at the same time, on the SBFD time-frequency resources, the same time-frequency resources as other time-frequency resources (uplink time-frequency resources or downlink time-frequency resources) can be transmitted. data in different directions on frequency resources).
  • the configuration of SBFD time-frequency resources is flexible and changeable, and is generally performed by the base station in a semi-static or dynamic manner. If it is configured in a semi-static way, the configuration information can be sent to the UE by the base station through system signaling (for example, broadcast signaling, or RRC signaling); if it is configured in a dynamic way, the configuration information can be sent by the base station through downlink control.
  • system signaling for example, broadcast signaling, or RRC signaling
  • RRC signaling for example, broadcast signaling, or RRC signaling
  • the information DCI is delivered to the UE.
  • UEs that support SBFD referred to as SBFD UE for short
  • SBFD UEs that support SBFD can identify the configuration of SBFD time-frequency resources from the received system signaling or DCI; UEs that do not support SBFD (referred to as Legacy UE) do not expect the base station to use SBFD resources for them.
  • the UE supporting SBFD obtains the configuration information issued by the base station.
  • the configuration information it can be determined: the configuration unit of the SBFD time-frequency resource (for example, time slot or mini-time slot), which time slots it is configured in, the configuration period, and the adaptation range (for example, UL time slot, DL time slot, S time slots, or their combination), and other time-frequency resource-related configurations, etc.
  • the "target time slot” is the UL time slot, DL time slot or S time slot configured with SBFD time-frequency resources. Taking the UL time slot as an example, SBFD time-frequency resources can be configured in all UL symbols or part of the UL symbols of the UL time slot.
  • the SBFD time-frequency resource can occupy at least one physical resource block PRB on the symbol.
  • the physical resource block can be defined in a partial bandwidth BWP and is a resource used for actual transmission. In each BWP, the physical resource block is numbered according to predefined indexing rules. The situation of DL time slot and S time slot is similar to that of UL time slot.
  • the UE can determine the target time slot based on the configuration information.
  • the target time slot can be understood as the currently focused time slot, which can be any time slot configured with SBFD time-frequency resources.
  • the target time-frequency resource associated with the target time slot is a time-frequency resource that conforms to the existing 5G communication mechanism. It can be an uplink time-frequency resource used to send uplink data, a downlink time-frequency resource used to send downlink data, or Including both uplink time and frequency resources and downlink time and frequency resources.
  • the target time-frequency resource is the RO time-frequency resource corresponding to the random access channel opportunity RO, the SSB time-frequency resource corresponding to the synchronization signal block SSB, or includes both RO time-frequency resources and SSB time-frequency resources, etc.
  • some of the target time-frequency resources may be located in another time slot different from the target time slot.
  • the MsgA RO time-frequency resource and the MsgA PUSCH time-frequency resource are located at different times. in the gap.
  • the association between SBFD time-frequency resources, target time-frequency resources, and target time slots can be determined through the configuration information issued by the base station.
  • step 102 the UE determines the data transmission operation corresponding to the target time-frequency resource according to the overlap result of the SBFD time-frequency resource corresponding to the target time slot and the target time-frequency resource associated with the target time slot.
  • the overlap/non-overlap of the SBFD time-frequency resources and the target time-frequency resources mainly refers to the overlap/non-overlap in the frequency domain, and the overlap in the time domain is not considered.
  • the SBFD mode introduces subband duplex technology into the TDD communication system, it only needs to distinguish the target time-frequency resources and the SBFD time-frequency resources in the frequency domain to avoid conflicts with the SBFD time-frequency resources.
  • the uplink time-frequency resources overlap with the downlink time-frequency resources.
  • the overlap may be in the time domain, the frequency domain, or the time-frequency domain; the uplink time-frequency resources do not overlap with the downlink time-frequency resources. , means that there is no overlap in the time and frequency domains.
  • a data transmission mechanism suitable for the SBFD mode is determined by considering the conflict between the SBFD time-frequency resources and the time-frequency resources configured according to the existing communication mechanism.
  • the 3GPP protocol group has proposed a relevant draft for the SBFD mode.
  • this draft only adds the use of SBFD time-frequency resources based on the existing 5G communication system.
  • the strategies for resource scheduling and channel transmission remain unchanged.
  • the existing draft for the SBFD mode does not consider the issue that the use of SBFD time-frequency resources may conflict with the original strategy.
  • the data transmission method in this example can consider the overlap between the actual time-frequency resources used by the uplink/downlink channels and signals and the configured SBFD time-frequency resources to provide clear data transmission for the full-duplex communication system based on the SBFD mode. Strategy to achieve full-duplex communication based on SBFD between the UE and the base station.
  • the data transmission method according to the example of the present application has been described above in conjunction with FIG. 1 .
  • Each step of the data transmission method is further described below based on a specific example of uplink/downlink channel transmission.
  • the random access process is a necessary process for establishing a wireless link between the UE and the network. Only after the random access process is completed, the UE and the base station can perform normal data interaction operations.
  • the UE can achieve two basic functions through the random access process: 1) Obtain uplink synchronization with the base station. Once the uplink is out of synchronization, the UE can only transmit data in the PRACH; 2) Apply for uplink resources (UL_GRANT).
  • the usual random access process is divided into: 4-step random access and 2-step random access.
  • the following description of channel transmission in SBFD mode will be based on 4-step random access and 2-step random access.
  • the design of the data transmission mechanism in the SBFD mode is mainly considered from the perspective of the conflict between the uplink/downlink time-frequency resources involved in random access and the SBFD time-frequency resources. The specific The random access process is described too much.
  • the UE will send a message (MSG1) to the base station, which is a random access signal (ie, preamble) transmitted using the random access channel opportunity RO.
  • MSG1 a message
  • This application solution will formulate corresponding strategies for RO channel transmission in SBFD mode.
  • the target time-frequency resources mentioned in step 102 above can be the time-frequency resources occupied by the RO channel (hereinafter referred to as RO time-frequency resources). ).
  • RO time-frequency resources the time-frequency resources occupied by the RO channel
  • one or more ROs may be configured, and any RO among them is used as the target RO to describe the data transmission mechanism based on the SBFD mode.
  • the determination step performed in step 102 includes: if the overlapping result is: the RO time-frequency resource is located within the SBFD time-frequency resource, then: when the symbol corresponding to the SBFD time-frequency resource is an uplink When the UL symbol or flexible F symbol is used, the data transmission operation corresponding to the target time-frequency resource is determined to be: sending the random access signal carried by the target RO in the RO time-frequency resource; when the SBFD time-frequency resource corresponds to When the symbols are downlink DL symbols, it is determined that the data transmission operation corresponding to the target time-frequency resource is: prohibiting sending the random access signal.
  • FIG. 2 is a schematic diagram of the overlapping of SBFD time-frequency resources and target time-frequency resources.
  • the RO time-frequency resource where the RO is located completely overlaps with the SBFD time-frequency resource, that is, the RO time-frequency resource is located within the SBFD time-frequency resource.
  • the SBFD time-frequency resource is configured on the UL symbol or the F symbol, the RO is valid, and the UE can use the SBFD time-frequency resource (the part corresponding to the RO time-frequency resource) to send a random access signal .
  • the SBFD time-frequency resource is configured on a DL symbol, the RO is invalid, and the UE is prohibited from using the RO to send random access signals.
  • the determination step performed in step 102 includes: if the overlapping result is: there is partial overlap between the RO time-frequency resource and the SBFD time-frequency resource, then: when the SBFD When the symbol corresponding to the frequency resource is an uplink UL symbol or a flexible F symbol, it is determined that the data transmission operation corresponding to the target time-frequency resource is: prohibiting the transmission of the random access signal carried by the target RO; or in the SBFD time-frequency For overlapping resources in the resources that overlap with the RO time-frequency resources, the partial random access signal corresponding to the overlapping resources in the random access signal is sent; or when the symbol corresponding to the SBFD time-frequency resource is When it is a downlink DL symbol, it is determined that the data transmission operation corresponding to the target time-frequency resource is: prohibiting sending the random access signal.
  • FIG 3 is a schematic diagram of the overlapping of SBFD time-frequency resources and target time-frequency resources.
  • RO time-frequency resources and SBFD time-frequency resources are partially overlapping.
  • Scheme 1 the RO is regarded as invalid, and the use of this RO to send random access signals is prohibited
  • Scheme 2 Considering the RO as valid, the UE can use the overlapping resources in the SBFD time-frequency resources that overlap with the RO time-frequency resources to send a part of the random access signal. The part of the random access signal can be used in the random access signal. That portion of the overlapping resource is sent.
  • the SBFD time-frequency resource is configured on a DL symbol, the RO is invalid, and the UE is prohibited from using the RO to send random access signals.
  • the downlink channel/signal is the synchronization signal block SSB.
  • SSB is used for synchronization between the base station and the UE, and transmits MIB (Master Information Block) and SIB1 (Scheduling Information Block) including key information of the cell. Therefore, the UE correctly receives SSB to achieve normal communication. Foundation.
  • the UE needs to receive SSB first, then receive SIB1, and initiate random access based on the SBFD time-frequency resource configuration information extracted from SIB1.
  • SIB1 Service Information Block
  • the target time-frequency resource mentioned in step 102 includes the RO time-frequency resource where the target RO is located, and the SSB time-frequency resource where the SSB is located; the target RO is configured for the target time slot. Any RO among at least one RO; the RO time-frequency resource is located in the SBFD time-frequency resource.
  • the determining step in step 102 includes: if the overlapping result is: the SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource overlaps with the The RO time-frequency resources do not overlap, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the SSB bearer in the SSB time-frequency resource.
  • the UE determines the data transmission operation corresponding to the target time-frequency resource as:
  • the condition that the time interval between the SSB and the target RO is greater than the uplink and downlink conversion time is met, the data carried by the SSB is received on the SSB time-frequency resource, and the data carried by the SSB is sent on the RO time-frequency resource.
  • the random access signal carried by the target RO and when the condition is not met, the random access signal is prohibited from being sent in the RO time-frequency resource, and the data carried by the SSB is only received in the SSB time-frequency resource.
  • this type of UE is divided into two types: one is half-duplex UE, that is, it can send or receive on SBFD time-frequency resources, but at the same time, it can only send or receive, which is called half-duplex UE. It is HD UE; the other is full-duplex UE, that is, it can transmit and receive simultaneously on SBFD time-frequency resources at the same time, which is called FD UE.
  • the half-duplex mode is enabled, the UE can function as a half-duplex UE, and when the full-duplex mode is enabled, the UE can function as a full-duplex UE.
  • Figure 4 is a schematic diagram of the overlapping of SBFD time-frequency resources and target time-frequency resources.
  • the target time-frequency resources include RO time-frequency resources and SSB time-frequency resources.
  • the RO time-frequency resources and the SBFD time-frequency resources are in a completely overlapping state, that is, the RO time-frequency resources are located within the SBFD time-frequency resources.
  • the overlap between the SBFD time-frequency resources and the target time-frequency resources also covers the overlap between the RO time-frequency resources and the SSB time-frequency resources.
  • the SSB and RO channels can be sent and received normally. Not affected; for HD UE, the time interval between the SSB and RO channels needs to meet the uplink and downlink conversion time TRX, otherwise, the RO channel is considered invalid, and RACH preamble is prohibited from being sent on the RO channel, and only SSB bearers are received The data.
  • This time interval can be the interval between the receiving end time point of SSB and the sending start time point of RO, or the interval between the sending starting time point of SSB and the receiving end time point of RO. The time intervals mentioned below The determination is similar to this.
  • the uplink-downlink conversion time is the time required for switching between uplink data transmission and downlink data reception commonly used in this field.
  • the determining step in step 102 includes: if the overlapping result is: the SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource overlaps with the If the RO time-frequency resources partially overlap, it is determined that the data transmission operation corresponding to the target time-frequency resource is: only receiving the data carried by the SSB in the SSB time-frequency resource, and prohibiting the use of the RO time-frequency resource.
  • the RO time-frequency resources are located within the SBFD time-frequency resources, and the SSB time-frequency resources partially overlap with the RO time-frequency resources.
  • Scheme 1 treat the RO channel as invalid and prohibit the UE Send the RACH preamble on the RO channel and receive the data carried by the SSB normally; the second option is to regard the RO channel as valid, send part of the RACH preamble on the RO channel, and receive the data carried by the SSB normally.
  • the part of the RO time-frequency resource that does not overlap with the SSB time-frequency resource that is, the remaining resource, is specifically used to send the data associated with the remaining part in the RACH preamble.
  • the reception priority of SSB is higher than that of other downlink channels/signals.
  • priority is given to ensuring the reception of SSB.
  • it does not need to consider the conflict between SSB and SBFD time-frequency resources or RO channels, and delivers SSB normally.
  • the above describes the situation in which the RO channel and SSB jointly reuse SSB time-frequency resources.
  • the following describes the above data transmission method by taking the case where the RO channel and the physical downlink shared channel PDSCH coexist as an example.
  • the target time-frequency resources mentioned in step 101 include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the PDSCH time-frequency resource where the physical downlink shared channel PDSCH is located; the target An RO is any RO among at least one RO configured for the target time slot; the RO time-frequency resource is located in the SBFD time-frequency resource.
  • the determination step performed in step 102 includes: if the overlapping result is: the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource.
  • the RO time-frequency resources do not overlap, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the target PDSCH bearer on the PDSCH time-frequency resource.
  • the UE when the UE is in the half-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as: When the condition that the time interval between the target PDSCH and the target RO is greater than the uplink and downlink conversion time is met, the data carried by the target PDSCH is received in the PDSCH time-frequency resource, and is transmitted in the RO time-frequency resource.
  • the random access signal carried by the target RO and when the condition is not met, the random access signal is only sent in the RO time-frequency resource, and the target PDSCH bearer is prohibited from being received in the PDSCH time-frequency resource.
  • the data when the condition that the time interval between the target PDSCH and the target RO is greater than the uplink and downlink conversion time is met, the data carried by the target PDSCH is received in the PDSCH time-frequency resource, and is transmitted in the RO time-frequency resource.
  • the determination step performed in step 102 includes: if the overlapping result is: the PDSCH time-frequency resource partially overlaps with the SBFD time-frequency resource, and the PDSCH time-frequency resource overlaps with the SBFD time-frequency resource.
  • the RO time-frequency resources do not overlap, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: the PDSCH time-frequency resource does not overlap with the The remaining resources with overlapping SBFD time-frequency resources receive part of the data carried by the target PDSCH associated with the remaining resources, and send the random access signal carried by the target RO in the RO time-frequency resources; when When the UE is in half-duplex TDD mode, the data transmission operation corresponding to the target time-frequency resource is determined as: when the condition that the time interval between the target PDSCH and the target RO is greater than the uplink-downlink conversion time is met.
  • the determination step performed in step 102 includes: if the overlapping result is: the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource.
  • the RO time-frequency resources partially overlap, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the target PDSCH on the PDSCH time-frequency resource.
  • the data carried, and the random access signal carried by the target RO is sent in the RO time-frequency resource; when the UE is in the half-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is : When the condition that the time interval between the target PDSCH and the target RO is greater than the uplink and downlink conversion time is met, the random access signal carried by the target RO is sent on the RO time-frequency resource, and the random access signal carried by the target RO is sent on the PDSCH
  • the remaining resources in the time-frequency resources that do not overlap with the RO time-frequency resources receive part of the data associated with the remaining resources in the data carried by the target PDSCH; or when the condition is not met, only the The RO time-frequency resource sends a random access signal carried by the target RO, and the PDSCH time-frequency resource is prohibited from receiving data carried by the target PDSCH.
  • the determination step performed in step 102 includes: if the overlapping result is: the PDSCH time-frequency resource partially overlaps with the SBFD time-frequency resource, and the PDSCH time-frequency resource overlaps with the SBFD time-frequency resource.
  • the RO time-frequency resources partially overlap, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: in the PDSCH time-frequency resource and the SBFD time-frequency resources and the remaining resources in which the RO time-frequency resources do not overlap, receive the data associated with the remaining resources among the data carried by the target PDSCH, and send the target RO bearer in the RO time-frequency resources.
  • the UE when the UE is in the half-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as: when the time interval between the target PDSCH and the target RO is greater than Under the conditions of uplink and downlink conversion time, the random access signal carried by the target RO is sent in the RO time-frequency resource, and the PDSCH time-frequency resource is the same as the SBFD time-frequency resource and the RO time-frequency
  • the remaining resources with non-overlapping resources receive part of the data associated with the remaining resources in the data carried by the target PDSCH; or send the random access signal carried by the target RO in the RO time-frequency resource, prohibiting
  • the PDSCH time-frequency resource receives data carried by the target PDSCH.
  • the RO time-frequency resources are located within the SBFD time-frequency resources.
  • the first case is: PDSCH time-frequency resources and SBFD The time-frequency resources do not overlap, and the PDSCH time-frequency resources do not overlap with the RO time-frequency resources; the second case is: the PDSCH time-frequency resources do not overlap with the SBFD time-frequency resources, and the PDSCH time-frequency resources do not overlap with the RO time-frequency resources.
  • the third case is: PDSCH time-frequency resources partially overlap with the SBFD time-frequency resources, and the PDSCH time-frequency resources partially overlap with the RO time-frequency resources;
  • the fourth case is: PDSCH time-frequency resources There is partial overlap with the SBFD time-frequency resources, and the PDSCH time-frequency resources do not overlap with the RO time-frequency resources. This is an example only and is not limiting.
  • RO#1 and PDSCH1 are shown in Figure 6.
  • the PDSCH1 and RO#1 channels can transmit and receive normally without being affected. That is, the UE can normally send the random access signal carried by the RO#1 channel; the base station can normally deliver the downlink data carried by the PDSCH1.
  • the UE is in half-duplex TTD mode, when the time interval between RO#1 and PDSCH1 channels meets the uplink and downlink conversion time TRX, that is, the time interval must be greater than the uplink and downlink conversion time TRX, the PDSCH1 and RO#1 channels can be normal.
  • Transceiver otherwise, only RACH preamble is sent on the RO channel, and reception of data carried by PDSCH is prohibited.
  • both the UE and the base station need to consider whether the time interval between uplink and downlink time-frequency resources meets the conditions for uplink and downlink switching time. This is also true in other embodiments that will be discussed later.
  • the base station For the base station, it is also necessary to consider whether the UE's working mode is half-duplex or full-duplex.
  • the base station When the UE accesses the network, the base station will send a message to the UE to inquire about the UE's capabilities. After receiving the message, the UE will report its capabilities to the base station, so that the base station can know whether the UE is a UE with SBFD capability, and also Will know whether the UE is an FD UE or an HD UE.
  • the reception of the non-overlapping portion of PDSCH2 specifically refers to: using the remaining resources in the PDSCH time-frequency resources corresponding to PDSCH2 that do not overlap with the RO time-frequency resources, and receiving the data carried by PDSCH2 associated with the remaining resources. part of the data.
  • the UE is an HD UE or an FD UE.
  • the UE receives the Part of the data is actually data obtained by rate matching the original data carried by the PDSCH on the base station side.
  • RO#2 and PDSCH3 are shown in Figure 6.
  • Option 2 While sending the RACH preamble on the RO#2 channel, receive the non-overlapping part of PDSCH3.
  • the reception of the non-overlapping part of PDSCH3 it specifically refers to: using the remaining resources in the PDSCH time-frequency resources corresponding to PDSCH3 that do not overlap with the SBFD time-frequency resources and RO time-frequency resources, receiving the data carried by PDSCH3 and Partial data associated with the remaining resources.
  • the UE when receiving this part of the data, it is also necessary to consider whether the UE is an HD UE or an FD UE. If it is an FD UE, it will be received normally. If it is an HD UE, it is also necessary to consider whether the time interval between PDSCH and RO satisfies the uplink and downlink conversion. Time TRX.
  • the base station since the downlink time-frequency resources used for downlink channel transmission have changed, the base station needs to perform rate-matching on the data at the encoding end to adapt to the new downlink time-frequency resources. Therefore, at this time, the UE receives the Part of the data is actually data obtained by rate matching the original data carried by the PDSCH on the base station side. This rate matching adopts conventional technology, which will not be described in detail in this application.
  • RO#1 and PDSCH3 are shown in Figure 6.
  • the reception of PDSCH3 and the RACH preamble can be sent normally on the RO#1 channel; however, the base station sends In PDSCH3, it is necessary to consider the overlap between the time-frequency resources of PDSCH3 and the time-frequency resources of SBFD. After performing rate matching, downlink data is sent in the part of PDSCH3 that does not overlap with the SBFD time-frequency resources.
  • the RACH preamble is normally sent on the RO#1 channel; in addition, the uplink and downlink conversion time TRX also needs to be considered. Only when the uplink and downlink conversion time conditions are met, the downlink data carried by PDSCH3 will be received.
  • the PDSCH may also be a repetition of the PDSCH. That is, the data transmission mechanism described above is also applicable to the PDSCH. Repeat the transfer.
  • the above data transmission method is described below by taking the case where the RO channel and the physical downlink control channel PDCCH jointly multiplex SBFD time-frequency resources as an example.
  • the target time-frequency resources mentioned in step 101 include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; the target An RO is any RO among at least one RO configured for the target time slot; the RO time-frequency resource is located in the SBFD time-frequency resource.
  • the determining step performed in step 102 includes: if the overlapping result is: the PDCCH time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource resources do not overlap with the RO time-frequency resources, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the The data carried by the PDCCH, and the random access signal carried by the target RO is sent in the RO time-frequency resource; when the UE is in the half-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource.
  • the determining step performed in step 102 includes: if the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource.
  • the RO time-frequency resources do not overlap, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the target PDCCH on the PDCCH time-frequency resource The data carried, and the random access signal carried by the target RO is sent in the RO time-frequency resource; when the UE is in the half-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is : When the condition that the time interval between the target PDCCH and the target RO is greater than the uplink-downlink conversion time is met, receive the data carried by the target PDCCH in the PDCCH time-frequency resource, and receive the data carried by the target PDCCH in the RO time-frequency resource. Send a random access signal carried by the target RO; and when the condition is not met, only send the random access signal in the RO time-frequency resource, and prohibit receiving the target PDCCH in the PDCCH time-frequency resource. carried data.
  • the determining step performed in step 102 includes: if the overlapping result is: the PDCCH time-frequency resource partially overlaps with the SBFD time-frequency resource, and the PDCCH time-frequency resource does not overlap with the RO time-frequency resource, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: the PDCCH time-frequency resource does not overlap with the target time-frequency resource.
  • the remaining resources of the overlapping SBFD time-frequency resources receiving part of the data associated with the remaining resources in the data carried by the target PDCCH, and sending a random access signal carried by the target RO in the RO time-frequency resources;
  • the data transmission operation corresponding to the target time-frequency resource is determined to satisfy the condition that the time interval between the target PDCCH and the target RO is greater than the uplink and downlink conversion time.
  • the determining step performed in step 102 includes: if the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource.
  • the RO time-frequency resources partially overlap, but the receiving starting point of the PDCCH is earlier than the sending starting point of the target RO, then: when the UE is in the full-duplex TDD mode, determine the target time-frequency
  • the data transmission operation corresponding to the resource is: receiving data carried by the target PDCCH in the PDCCH time-frequency resource, and sending a random access signal carried by the target RO in the RO time-frequency resource; when the UE is in half In the duplex TDD mode, the data transmission operation corresponding to the target time-frequency resource is determined as follows: when the condition that the time interval between the target PDCCH and the target RO is greater than the uplink-downlink conversion time is satisfied, the RO Time-frequency resources transmit random access signals carried by the target RO, and the remaining resources in the PDCCH time-frequency resources that do not overlap with the RO time-frequency resources receive data carried by the target PDCCH that are consistent with the time-frequency resources. Part of the data associated with the remaining resources; or when the conditions are not met, only send the random access signal of
  • the determining step performed in step 102 includes: if the overlapping result is: the PDCCH time-frequency resource partially overlaps with the SBFD time-frequency resource, and the PDCCH time-frequency resource There is partial overlap with the RO time-frequency resources, but the receiving starting point of the PDCCH is later than the sending starting point of the target RO, then: when the UE is in the full-duplex TDD mode, determine the time and frequency with the target RO.
  • the data transmission operation corresponding to the frequency resource is: receiving the data carried by the target PDCCH in the PDCCH time-frequency resource, and sending the random access signal carried by the target RO in the RO time-frequency resource; when the UE is in In the half-duplex TDD mode, the data transmission operation corresponding to the target time-frequency resource is determined as follows: when the condition that the time interval between the target PDCCH and the target RO is greater than the uplink-downlink conversion time is satisfied, in the The RO time-frequency resource sends the random access signal carried by the target RO, and the remaining resources in the PDCCH time-frequency resource that do not overlap with the SBFD time-frequency resource and the RO time-frequency resource receive the Part of the data carried by the target PDCCH associated with the remaining resources; or when the condition is not met, only send the random access signal carried by the target RO on the RO time-frequency resource, and prohibit the use of the target RO on the PDCCH.
  • the time-frequency resource receives the data carried by the target PDCCH.
  • the determining step performed in step 102 includes: if the overlapping result is: the PDCCH time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource The resource partially overlaps with the RO time-frequency resource, then: when no random access signal is to be sent, the data transmission operation corresponding to the target time-frequency resource is determined to be: ignore the target RO, and The PDCCH time-frequency resource receives data carried by the target PDCCH or prohibits receiving data carried by the target PDCCH.
  • the RO time-frequency resources are located within the SBFD time-frequency resources.
  • the first case is: PDCCH time-frequency resources and SBFD The time-frequency resources do not overlap, and the PDCCH time-frequency resources do not overlap with the RO time-frequency resources;
  • the second case is: the PDCCH time-frequency resources do not overlap with the SBFD time-frequency resources, and the PDCCH time-frequency resources and the RO time-frequency resources exist There is partial overlap, but the receiving starting point of the PDCCH is earlier than the sending starting point of the target RO;
  • the third case is: the PDCCH time-frequency resources and the SBFD time-frequency resources do not overlap, and the PDCCH time-frequency resources and the RO time-frequency resources There is partial overlap, but the reception start point of the PDCCH is later than the transmission start point of the target RO.
  • there may be other situations which are just examples and are not limited to this.
  • the PDCCH1 and RO#1 channels can transmit and receive normally without being affected; if the UE In half-duplex TTD mode, when the time interval between RO#1 and PDCCH1 channels meets the uplink and downlink conversion time TRX, that is, the time interval must be greater than the uplink and downlink conversion time TRX, PDCCH1 and RO#1 channels can transmit and receive normally. Otherwise, only the RACH preamble is sent on the RO#1 channel, and the reception of data carried by PDCCH1 is prohibited.
  • the reception of the non-overlapping portion of PDCCH2 specifically refers to: using the remaining resources in the PDCCH time-frequency resources corresponding to PDCCH2 that do not overlap with the RO time-frequency resources, and receiving the data carried by PDCCH2 associated with the remaining resources.
  • the UE when receiving this part of the data, it is also necessary to consider whether the UE is an HD UE or an FD UE. If it is an FD UE, it will be received normally. If it is an HD UE, it is also necessary to consider whether the time interval between the PDCCH and RO satisfies the uplink and downlink conversion. Time TRX. In addition, since the downlink time-frequency resources used for downlink channel transmission have changed, the base station needs to perform rate-matching on the data at the encoding end to adapt to the new downlink time-frequency resources. Therefore, at this time, the UE receives the Part of the data is actually data obtained by rate matching the original data carried by the PDCCH on the base station side.
  • the reception of the non-overlapping portion of PDCCH3 specifically refers to: using the remaining resources in the PDCCH time-frequency resources corresponding to PDCCH3 that do not overlap with the RO time-frequency resources, receiving the data carried by PDCCH3 that are consistent with the remaining resources.
  • Some data associated with the resource when receiving this part of the data, it is also necessary to consider whether the UE is an HD UE or an FD UE. If it is an FD UE, it will be received normally. If it is an HD UE, it is also necessary to consider whether the time interval between the PDCCH and RO satisfies the uplink and downlink conversion. Time TRX. In addition, since the downlink time-frequency resources used for downlink channel transmission have changed, the base station needs to perform rate-matching on the data at the encoding end to adapt to the new downlink time-frequency resources. Therefore, at this time, the UE receives the Part of the data is actually data obtained by rate matching the original data carried by the PDCCH on the base station side.
  • partial overlap of SBFD time-frequency resources and PDCCH time-frequency resources is not considered. If the SBFD time-frequency resource partially overlaps with the PDCCH time-frequency resource, in addition to removing the overlapping part between the PDCCH and RO, it is also necessary to remove the overlapping part with the SBFD time-frequency resource.
  • the above takes the RO channel, SSB, PDSCH, and PDCCH as examples to describe the transmission mechanism of the random access signal in the 4-step random access process in the SBFD mode.
  • the above-mentioned RO belongs to a dedicated RO group configured for the SBFD mode; and/or the above-mentioned random access signal is a dedicated random access signal configured for the SBFD mode or a conventional random access specified by the protocol. Signal.
  • the SBFD time-frequency resource is located within the DL time slot and is set to UL/Flexible; the upper half of the figure in Figure 8 corresponds to the Legacy UE, and the lower half of the figure corresponds to the SBFD UE; because the legacy UE does not recognize SIB1 SBFD configuration, so the matching relationship between SSB and RO of Legacy UE is that SSB#1 corresponds to RO#2 of slot#2, and SSB#2 corresponds to RO#3 of slot#2; because SBFD UE recognizes the SBFD configuration in SIB1, so The matching relationship between SSB and RO of SBFD UE is that SSB#1 corresponds to RO#1 of slot#1 and RO#3 of slot#2, and SSB#2 corresponds to RO#2 of slot#2; therefore, the SSB of legacy UE and SBFD UE The matching relationship with RO will vary depending on the SBFD configuration.
  • the base station does not know which UE the preamble is sent from among the legacy UE and the SBFD UE, so it cannot determine whether the RO corresponds to the SSB. This is because the legacy UE The SBFD UE uses the same preamble set.
  • SBFD UE is identified by configuring a proprietary RACH preamble for the SBFD mode; using broadcast signaling (such as: SIB1) to carry the configuration of the SBFD proprietary RACH preamble is as follows; SBFD UE is configured according to Select and send the SBFD proprietary RACH preamble; in this way, the base station will know that the SBFD UE needs to access after receiving the preamble and will determine the downlink beam used to send the random access response RAR based on the matching relationship between the SSB and RO configured for the SBFD UE.
  • broadcast signaling such as: SIB1
  • SBFD UE uses the RO in the RO group configured for SBFD mode, and Legacy UE uses the conventionally configured RO; SSB matches the RO in the SBFD-specific RO group and the conventionally configured RO respectively, specifically as follows As shown in Figure 9. For SBFD UE, only use RO#1 and RO#2 in Slot#1; while Legacy UE uses RO#1 and RO#2 in Slot#2; in this way, there will be no SSB and RO problems caused by configuring SBFD. The matching relationship was incorrectly recognized.
  • the configuration of SBFD time-frequency resources can be delivered to the UE through broadcast signaling. If the broadcast signaling does not include the configuration of SBFD time-frequency resources, the SBFD resources can be dynamically configured for uplink random access for random access triggered by PDCCH order.
  • the information indication content contained in the DCI is as shown in the following table, which mainly indicates the SBFD time-frequency resources and the PRACH resources under the resources, as shown in Figure 10.
  • the 2-step random access process simplifies the 4-step random access process.
  • the RO channel is used to send random access signals
  • the MsgA PUSCH channel is also used to send uplink data.
  • the MsgA PUSCH channel is associated with the MsgA RO channel.
  • the following describes the data transmission mechanism in SBFD mode based on the uplink/downlink time-frequency resources used in the 2-step random access process.
  • the target time-frequency resources in step 101 include: the MsgA RO time-frequency resource where the target MsgA random access channel opportunity RO for sending the random access message MsgA is located, and the MsgA RO time-frequency resource associated with the target MsgA RO.
  • MsgA RO and MsgA PUSCH There are two methods for resource allocation of MsgA RO and MsgA PUSCH. One is that MsgA RO resources and MsgA PUSCH resources are only allocated to SBFD UEs; the other is that MsgA RO resources are only allocated to SBFD users, and for MsgA PUSCH resources, SBFD UE and legacy UE can be shared. At the same time, in order to distinguish SBFD UE and legacy UE, the SBFD proprietary RACH preamble can be configured to identify the SBFD UE or the SBFD UE can only use the RO within the SBFD resource.
  • Both MsgA RO and MsgA PUSCH channel for 2-step random access are configured on the SBFD resource, and MsgA RO is associated with MsgA PUSCH; this case only applies to SBFD UE; see Figure 12 for details.
  • the third case only MsgA PUSCH for 2-step random access is configured on the SBFD resource, while MsgA RO is in the traditional UL time slot, and MsgA RO is associated with MsgA PUSCH; this case only applies to SBFD UE; see Figure 13 for details. .
  • MsgA RO and MsgA PUSCH There are two methods for resource allocation of MsgA RO and MsgA PUSCH. One is that MsgA RO and MsgA PUSCH are allocated only to SBFD UE; the other is that MsgA PUSCH is only allocated to SBFD users, and MsgA RO resources, SBFD UE and legacy are allocated.
  • SBFD UE can be shared, SBFD UE is for 2-step RACH; legacy UE can be 2-step RACH or 4-step RACH; at the same time, in order to distinguish SBFD UE and legacy UE, you can configure the SBFD proprietary RACH preamble to identify the SBFD UE or just use the SBFD UE MsgA PUSCH and the corresponding msgA RO in the SBFD resource can be used to perform 2-step random access.
  • the transmission mechanism of the MsgA RO channel is similar to that in the 4-step random access transmission method, which will not be described in detail here.
  • the following mainly describes the transmission of MsgA PUSCH.
  • MsgA PUSCH due to the correlation between MsgA PUSCH and MsgA RO channel, when the MsgA RO channel is invalid, MsgA PUSCH is also invalid, that is, MsgA PUSCH will not be used to send data.
  • MsgA PUSCH is invalid, if the MsgA RO channel is valid, the random access signal can be sent normally on the MsgA RO channel, and then the UE retransmits MsgA PUSCH. At this time, if the retransmission counter times out, the 2-step random access can be switched to 4-step random access.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the SSB time-frequency resource where the synchronization signal block SSB is located; the time-frequency resource according to the SBFD
  • the overlapping result of the frequency resource and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the SSB time-frequency resource overlaps the SBFD time-frequency resource Or do not overlap, and the SSB time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is : Receive the data carried by the SSB in the SSB time-frequency resource, and send the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; or when the UE is in half-duplex T
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the SSB time-frequency resource where the synchronization signal block SSB is located; the time-frequency resource according to the SBFD
  • the overlapping result of the frequency resource and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the SSB time-frequency resource overlaps the SBFD time-frequency resource or do not overlap, and the SSB time-frequency resource partially overlaps with the MsgA PUSCH time-frequency resource, then it is determined that the data transmission operation corresponding to the target time-frequency resource is: prohibiting sending all data in the MsgA PUSCH time-frequency resource.
  • the PUSCH time-frequency resources are located within the SBFD time-frequency resources.
  • the overlapping results of the SBFD time-frequency resources and the target time-frequency resources are divided into two situations.
  • the first situation is: SSB time-frequency resources and SBFD time-frequency resources.
  • the resources overlap or do not overlap, and the SSB time-frequency resources do not overlap with the PUSCH time-frequency resources.
  • SSB and MsgA PUSCH can be sent and received normally without being affected; if the UE is in half-duplex TTD mode, when the time interval between SSB and MsgA PUSCH satisfies the upper and lower When the line conversion time TRX is reached, that is, the time interval must be greater than the uplink and downlink conversion time TRX, SSB and MsgA PUSCH can be sent and received normally. Otherwise, MsgA PUSCH is invalid and data is only received in the SSB time-frequency resource.
  • the second case of the overlap result of SBFD time-frequency resources and target time-frequency resources is: SSB time-frequency resources overlap or do not overlap with SBFD time-frequency resources, and SSB time-frequency resources and PUSCH time-frequency resources exist Partially overlapping.
  • Scheme 1 MsgA PUSCH is invalid, and the UE cannot send data on the MsgA PUSCH;
  • Scheme 2 MsgA PUSCH is valid, and the UE can send some data on the MsgA PUSCH.
  • sending part of the data on the MsgA PUSCH specifically refers to: using the remaining resources in the PUSCH time-frequency resources corresponding to the MsgA PUSCH that do not overlap with the SSB time-frequency resources, sending the data carried by the MsgA PUSCH that is consistent with the remaining resources. Some data associated with the resource.
  • the UE since the uplink time-frequency resources used for uplink channel transmission have changed, the UE needs to perform rate-matching on the data at the coding end to adapt to the new uplink time-frequency resources. Therefore, at this time, the part sent by the UE The data is actually the data obtained after rate matching the original data carried by MsgA PUSCH.
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource does not overlap, and the PDCCH time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: Receive the data carried by the PDCCH in the PDCCH time-frequency resource, and send the data carried by the target MSGA PUSCH in the MSGA PUSCH time-frequency resource; when the UE is in the half-duplex TDD mode, determine and the The data transmission operation corresponding to the target
  • the MSGA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource There is no overlap, and the PDCCH time-frequency resource partially overlaps with the MSGA PUSCH time-frequency resource, but the receiving starting point of the PDCCH is later than the sending starting point of the target MSGA PUSCH, then: when the UE is in the full In the duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the data carried by the target PDCCH in the PDCCH time-frequency resource, and sending the MSGA in the MSGA PUSCH time-frequency resource.
  • Data carried by PUSCH when the UE is in half-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as: the time interval between the target PDCCH and the target MSGA PUSCH is greater than Under the conditions of uplink and downlink conversion time, the data carried by the target MSGA PUSCH is sent in the MSGA PUSCH time-frequency resource, and the remaining resources in the PDCCH time-frequency resource that do not overlap with the MSGA PUSCH time-frequency resource are, Receive part of the data associated with the remaining resources in the data carried by the target PDCCH; or when the conditions are not met, send the data carried by the target MSGA PUSCH in the MSGA PUSCH time-frequency resource, prohibiting
  • the PDCCH time-frequency resource receives the data carried by the target PDCCH.
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource There is partial overlap, and the PDCCH time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then: when the UE is in full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is : The remaining resources in the PDCCH time-frequency resources that do not overlap with the SBFD time-frequency resources, receiving part of the data associated with the remaining resources in the data carried by the target PDCCH, and using the MSGA PUSCH time-frequency resource to send the data carried by the target
  • the MSGA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource There is partial overlap, and there is partial overlap between the PDCCH time-frequency resource and the MSGA PUSCH time-frequency resource, but the receiving starting point of the PDCCH is later than the sending starting point of the target MSGA PUSCH, then: when the UE is in In the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the data carried by the target PDCCH in the PDCCH time-frequency resource, and sending the data in the MSGA PUSCH time-frequency resource.
  • the data transmission operation corresponding to the target time-frequency resource is determined to be: when the time interval between the target PDCCH and the target MSGA PUSCH is satisfied When the condition is greater than the uplink and downlink conversion time, the data carried by the target MSGA PUSCH is sent in the MSGA PUSCH time-frequency resource, and the data carried by the target MSGA PUSCH is sent in the PDCCH time-frequency resource with the SBFD time-frequency resource and the MSGA PUSCH time-frequency resource.
  • the remaining resources whose frequency resources do not overlap receive part of the data associated with the remaining resources in the data carried by the target PDCCH; or when the conditions are not met, send the target MSGA on the MSGA PUSCH time-frequency resources
  • the data carried by the PUSCH is prohibited from receiving the data carried by the target PDCCH in the PDCCH time-frequency resource.
  • the MSGA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource Overlapping or non-overlapping, and the PDCCH time-frequency resource partially overlaps the MSGA PUSCH time-frequency resource, but the receiving starting point of the PDCCH is later than the sending starting point of the target MSGA PUSCH, then: in the absence of random access
  • the data transmission operation corresponding to the target time-frequency resource is determined to be: ignore the target MSGA PUSCH, and receive the data carried by the target PDCCH in the PDCCH time-frequency resource.
  • the overlapping results of the SBFD time-frequency resources and the target time-frequency resources are divided into two situations.
  • the first situation is: the PDCCH time-frequency resources overlap or do not overlap with the SBFD time-frequency resources, and the PDCCH time-frequency resources Does not overlap with PUSCH time-frequency resources.
  • PDCCH1 and MsgA PUSCH1/PUSCH2 can transmit and receive normally without being affected; if The UE is in half-duplex TTD mode.
  • the second case of the overlap result of SBFD time-frequency resources and target time-frequency resources is: PDCCH time-frequency resources overlap or do not overlap with SBFD time-frequency resources, and PDCCH time-frequency resources and PUSCH time-frequency resources exist There is a partial overlap, but the reception start point of the PDCCH is later than the transmission start point of the PUSCH.
  • Scheme 1 cancel the reception of PDCCH2, and only send data on MsgA PUSCH1/PUSCH2;
  • Scheme 2 while transmitting data on MsgA PUSCH1/PUSCH2, receive the non-overlapping part of PDCCH2;
  • Scheme 3 when the UE knows that the 2-step RACH transmission is not performed, the PDCCH2 is received normally, while MsgA PUSCH1/PUSCH2 is ignored.
  • the reception of the non-overlapping part of PDCCH2 specifically refers to: using the remaining resources in the PDCCH time-frequency resources corresponding to PDCCH2 that do not overlap with the PUSCH time-frequency resources, and receiving the data carried by PDCCH2 associated with the remaining resources. part of the data.
  • the UE when receiving this part of the data, it is also necessary to consider whether the UE is an HD UE or an FD UE. If it is an FD UE, it will be received normally. If it is an HD UE, it is also necessary to consider whether the time interval between PDCCH2 and MsgA PUSCH1/PUSCH2 is satisfied. Uplink and downlink conversion time TRX.
  • the base station needs to perform rate-matching on the data at the encoding end to adapt to the new downlink time-frequency resources. Therefore, at this time, the UE receives the Part of the data is actually the data obtained after the base station side performs rate matching on the original data carried by PDCCH2.
  • the overlapping results of SBFD time-frequency resources and target time-frequency resources are divided into three situations.
  • the first situation is: PDSCH time-frequency resources overlap or do not overlap with SBFD time-frequency resources, and the PDSCH time-frequency resources Does not overlap with PUSCH time-frequency resources.
  • MsgA PUSCH1/PUSCH2 and PDSCH1 in Figure 16.
  • PDSCH1 and MsgA PUSCH1/PUSCH2 can transmit and receive normally without being affected; if The UE is in half-duplex TTD mode.
  • PDSCH1 and MsgA PUSCH1/PUSCH2 can transmit and receive normally. , otherwise, only send data in MsgA PUSCH1/PUSCH2, and prohibit receiving data carried by PDSCH1.
  • the second case of the overlap result between SBFD time-frequency resources and target time-frequency resources is: PDSCH time-frequency resources do not overlap with SBFD time-frequency resources, and there is partial overlap between PDSCH time-frequency resources and PUSCH time-frequency resources. .
  • PDSCH time-frequency resources do not overlap with SBFD time-frequency resources, and there is partial overlap between PDSCH time-frequency resources and PUSCH time-frequency resources.
  • the reception of the non-overlapping portion of PDCCH2 specifically refers to: using the remaining resources in the PDSCH time-frequency resources corresponding to PDSCH2 that do not overlap with the PUSCH time-frequency resources, and receiving the data carried by PDSCH2 associated with the remaining resources. part of the data.
  • the UE when receiving this part of the data, it is also necessary to consider whether the UE is an HD UE or an FD UE. If it is an FD UE, it will be received normally. If it is an HD UE, it is also necessary to consider whether the time interval between PDSCH2 and MsgA PUSCH1/PUSCH2 is satisfied. Uplink and downlink conversion time TRX.
  • the base station needs to perform rate-matching on the data at the encoding end to adapt to the new downlink time-frequency resources. Therefore, at this time, the UE receives the Part of the data is actually the data obtained after the base station side performs rate matching on the original data carried by PDSCH2.
  • the third case of the overlap result between SBFD time-frequency resources and target time-frequency resources is: PDSCH time-frequency resources partially overlap with SBFD time-frequency resources, and PDSCH time-frequency resources partially overlap with PUSCH time-frequency resources. overlapping.
  • PDSCH time-frequency resources partially overlap with SBFD time-frequency resources
  • PDSCH time-frequency resources partially overlap with PUSCH time-frequency resources. overlapping.
  • Scheme 1 cancel the reception of PDSCH3, and only send data on MsgA PUSCH1/PUSCH2
  • scheme Second perform sending data on MsgA PUSCH1/PUSCH2 while receiving the non-overlapping part of PDSCH3.
  • the reception of the non-overlapping portion of PDCCH2 it specifically refers to: using the remaining resources in the PDSCH time-frequency resources corresponding to PDSCH2 that do not overlap with the SBFD time-frequency resources, and receiving the data carried by PDSCH3 associated with the remaining resources. part of the data.
  • the UE when receiving this part of the data, it is also necessary to consider whether the UE is an HD UE or an FD UE. If it is an FD UE, it will be received normally. If it is an HD UE, it is also necessary to consider whether the time interval between PDSCH3 and MsgA PUSCH1/PUSCH2 is satisfied. Uplink and downlink conversion time TRX.
  • the base station needs to perform rate-matching on the data at the encoding end to adapt to the new downlink time-frequency resources. Therefore, at this time, the UE receives the Part of the data is actually the data obtained after the base station side performs rate matching on the original data carried by PDSCH3.
  • the configuration of SBFD time-frequency resources can be delivered to the UE through broadcast signaling. If the broadcast signaling does not include the configuration of SBFD time-frequency resources, the SBFD resources can be dynamically configured for uplink random access for random access triggered by PDCCH order.
  • the information indication content contained in DCI is as follows, which mainly indicates the SBFD time-frequency resource and the 2-step PRACH resource under this resource.
  • a data transmission method is provided, which is characterized in that the method is applied to a base station that supports subband full-duplex SBFD mode, and the method is The method includes: determining the SBFD time-frequency resource corresponding to the target time slot and the target time-frequency resource associated with the target time slot; determining the time-frequency resource associated with the target time-frequency resource according to the overlap result of the SBFD time-frequency resource and the target time-frequency resource.
  • the data transmission operation corresponding to the target time-frequency resource is performed; and the determined data transmission operation is performed in the target time slot.
  • the target time slot is an uplink UL time slot, a downlink DL time slot or a special time slot;
  • the SBFD time-frequency resource occupies at least one symbol of the target time slot in the time domain.
  • the frequency domain occupies at least one physical resource block for each symbol.
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the SSB time-frequency resource where the synchronization signal block SSB is located; the target RO is for the Any RO among at least one RO configured in the target time slot; the RO time-frequency resource is located in the SBFD time-frequency resource.
  • determining the data transmission operation corresponding to the target time-frequency resource according to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource includes: if the overlapping result is : The SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource partially overlaps with the RO time-frequency resource, then the data transmission corresponding to the target time-frequency resource is determined.
  • the operation is: only send the data carried by the SSB in the SSB time-frequency resource, and prohibit detection of random access signals in the RO time-frequency resource; or send the data carried by the SSB in the SSB time-frequency resource.
  • data, and the remaining resources in the RO time-frequency resources receive part of the random access signals associated with the remaining resources among the random access signals carried by the target RO; when the remaining resources are the RO Time-frequency resources that do not overlap with the SSB time-frequency resources.
  • determining the data transmission operation corresponding to the target time-frequency resource according to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource includes: if the overlapping result is : The SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource does not overlap with the RO time-frequency resource, then: if the UE to receive data from the base station is in full In the duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: sending the data of the SSB bearer on the SSB time-frequency resource, and receiving the target RO bearer on the RO time-frequency resource.
  • the UE determines the data transmission operation corresponding to the target time-frequency resource as: when the time interval between the SSB and the target RO is greater than When the conditions of uplink and downlink conversion time are met, the data carried by the SSB is sent on the SSB time-frequency resource, and the random access signal carried by the target RO is received on the RO time-frequency resource; and when the condition is not met; When , it is prohibited to perform random access signal detection on the RO time-frequency resource, and the data carried by the SSB is only sent on the SSB time-frequency resource.
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the PDSCH time-frequency resource where the physical downlink shared channel PDSCH is located; the target RO is for the Any RO among at least one RO configured in the target time slot; the RO time-frequency resource is located in the SBFD time-frequency resource.
  • determining the data transmission operation corresponding to the target time-frequency resource according to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource includes: if the overlapping result is : The PDSCH time-frequency resources do not overlap with the SBFD time-frequency resources, and the PDSCH time-frequency resources do not overlap with the RO time-frequency resources, if the UE to receive data from the base station is in full-duplex TDD mode , then it is determined that the data transmission operation corresponding to the target time-frequency resource is: sending the data carried by the target PDSCH in the PDSCH time-frequency resource, and receiving the random access of the target RO bearer in the RO time-frequency resource.
  • the UE determines that the data transmission operation corresponding to the target time-frequency resource is: when the time interval between the target PDSCH and the target RO is greater than the uplink and downlink
  • the condition of the conversion time is met, the data carried by the target PDSCH is sent on the PDSCH time-frequency resource, and the random access signal carried by the target RO is received on the RO time-frequency resource; and when the condition is not met; , only receive the random access signal in the RO time-frequency resource, and prohibit sending the data carried by the target PDSCH in the PDSCH time-frequency resource.
  • the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource partially overlap, and the PDSCH time-frequency resource does not overlap with the RO time-frequency resource
  • the data transmission operation corresponding to the target time-frequency resource is determined to be: performing rate matching on the data carried by the target PDSCH;
  • the remaining resources in the resources that do not overlap with the SBFD time-frequency resources send the data obtained after performing the rate matching, and receive the random access signal carried by the target RO on the RO time-frequency resources; or if If the UE is in half-duplex TDD mode, then the data transmission operation corresponding to the target time-frequency resource is determined to be: when the condition that the time interval between the target PDSCH and the target RO is greater than the uplink-downlink conversion time is met, Perform rate matching on the data carried by the target PDSCH, send the remaining resources in the PDSCH time-frequency resources that do not overlap
  • determining the data transmission operation corresponding to the target time-frequency resource according to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource includes: if the overlapping result is : The PDSCH time-frequency resources do not overlap with the SBFD time-frequency resources, and the PDSCH time-frequency resources partially overlap with the RO time-frequency resources, then: if the UE to receive data from the base station is in full dual In the TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: sending the data carried by the target PDSCH in the PDSCH time-frequency resource, and receiving the data carried by the target RO in the RO time-frequency resource.
  • Random access signal or if the UE is in half-duplex TDD mode, determine that the data transmission operation corresponding to the target time-frequency resource is: when the time interval between the target PDSCH and the target RO is greater than When the conditions of uplink and downlink conversion time are met, rate matching is performed on the data carried by the target PDSCH; the remaining resources in the PDSCH time-frequency resources that do not overlap with the RO time-frequency resources are obtained after sending and performing the rate matching. data; and receive the random access signal carried by the target RO in the RO time-frequency resource; or when the condition is not met, only receive the random access signal in the RO time-frequency resource, and it is prohibited to receive the random access signal in the RO time-frequency resource.
  • the PDSCH time-frequency resource sends the data carried by the target PDSCH.
  • the overlapping result is: the PDSCH time-frequency resource partially overlaps the SBFD time-frequency resource, and the PDSCH time-frequency resource partially overlaps the RO time-frequency resource
  • the UE to receive data from the base station is in full-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource to: perform rate matching on the data carried by the target PDSCH; in the The remaining resources in the PDSCH time-frequency resources that do not overlap with the SBFD time-frequency resources and the RO time-frequency resources are sent to the data obtained after performing the rate matching, and the target is received in the RO time-frequency resources.
  • the random access signal carried by the RO or if the UE is in the half-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: between the target PDSCH and the target RO.
  • rate matching is performed on the data carried by the target PDSCH; among the PDSCH time-frequency resources, those that do not overlap with the RO time-frequency resources and the SBFD time-frequency resources Use the remaining resources to send the data obtained after performing the rate matching; and receive the random access signal carried by the target RO in the RO time-frequency resource; or when the condition is not met, use the RO time-frequency resource to Receive a random access signal carried by the target RO, and prohibit sending data carried by the target PDSCH in the PDSCH time-frequency resource.
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; the target RO is for the Any RO among at least one RO configured in the target time slot; the RO time-frequency resource is located in the SBFD time-frequency resource.
  • the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource does not overlap with the RO time-frequency resource, then:
  • the data transmission operation corresponding to the target time-frequency resource is determined to be: sending the data carried by the target PDCCH in the PDCCH time-frequency resource, and The random access signal carried by the target RO is received in the RO time-frequency resource;
  • the data transmission operation corresponding to the target time-frequency resource is: When the time interval between the target PDCCH and the target RO is greater than the uplink-downlink conversion time, the data carried by the target PDCCH is sent on the PDCCH time-frequency resource, and the target RO is received on the RO time-frequency resource.
  • the random access signal carried; and when the condition is not met, the random access signal is only received in the
  • the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource partially overlap, and the PDSCH time-frequency resource does not overlap with the RO time-frequency resource
  • the data transmission operation corresponding to the target time-frequency resource is: performing rate matching on the data carried by the target PDCCH;
  • the remaining resources in the resources that do not overlap with the SBFD time-frequency resources send the data obtained after performing the rate matching, and receive the random access signal carried by the target RO on the RO time-frequency resources; or if If the UE is in half-duplex TDD mode, then the data transmission operation corresponding to the target time-frequency resource is determined to be: when the condition that the time interval between the target PDCCH and the target RO is greater than the uplink-downlink conversion time is met, Perform rate matching on the data carried by the target PDCCH, send the remaining resources in the PDCCH time-frequency resources that do
  • the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps with the RO time-frequency resource, but If the receiving starting point of the PDCCH is earlier than the sending starting point of the target RO, then: if the UE to receive data from the base station is in the full-duplex TDD mode, determine the data transmission corresponding to the target time-frequency resource.
  • the operation is: transmitting the data carried by the target PDCCH in the PDCCH time-frequency resource, and receiving a random access signal carried by the target RO in the RO time-frequency resource; or if the UE to receive data from the base station In the half-duplex TDD mode, the data transmission operation corresponding to the target time-frequency resource is determined as follows: when the condition that the time interval between the target PDSCH and the target RO is greater than the uplink-downlink conversion time is met, Perform rate matching on the data carried by the target PDCCH; send the data obtained after performing the rate matching on the remaining resources in the PDCCH time-frequency resources that do not overlap with the RO time-frequency resources; and in the RO time-frequency resources to receive the random access signal carried by the target RO; or when the condition is not met, receive the random access signal carried by the target RO only in the RO time-frequency resource, and prohibit using the PDCCH time-frequency resource. Send the data carried by the target PDCCH.
  • the overlapping result is: the PDCCH time-frequency resource partially overlaps the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps the RO time-frequency resource, However, the receiving starting point of the PDCCH is earlier than the sending starting point of the target RO. Then: if the UE to receive data from the base station is in the full-duplex TDD mode, determine the data corresponding to the target time-frequency resource.
  • the transmission operation is: perform rate matching on the data carried by the target PDCCH; among the remaining resources in the PDCCH time-frequency resources that do not overlap with the SBFD time-frequency resources and the RO time-frequency resources, send and perform the The data obtained after rate matching, and receiving the random access signal carried by the target RO in the RO time-frequency resource; or if the UE is in half-duplex TDD mode, determining the time-frequency resource corresponding to the target RO
  • the data transmission operation is: when the condition that the time interval between the target PDCCH and the target RO is greater than the uplink and downlink conversion time is met, perform rate matching on the data carried by the target PDCCH; in the PDCCH time-frequency resource The remaining resources that do not overlap with the RO time-frequency resources and the SBFD time-frequency resources, send the data obtained after performing the rate matching; and receive the random access of the target RO bearer on the RO time-frequency resources. or when the condition is not met, only receive the random access signal carried by the target RO in the RO time-frequency resource, and prohibit
  • the target RO is MsgA RO.
  • the target time-frequency resources include: the MsgA RO time-frequency resource where the target MsgA random access channel opportunity RO for sending the random access message MsgA is located, and the target MsgA associated with the target MsgA RO.
  • the time slot of SBFD time-frequency resources; or the target MsgA PUSCH is configured in the time slot allocated with SBFD time-frequency resources, and the target MsgA RO associated with the target MsgA PUSCH is configured in the time slot allocated with SBFD time-frequency resources; MsgA PUSCH and MsgA RO Corresponding to different time slots; or the target MsgA PUSCH is configured in a time slot with no SBFD time-frequency resources allocated, and the target MsgA RO associated with the target MsgA PUSCH is configured in a time slot with SBFD time-frequency resources allocated.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the SSB time-frequency resource where the synchronization signal block SSB is located; the time-frequency resource according to the SBFD
  • the overlapping result of the frequency resource and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the SSB time-frequency resource overlaps the SBFD time-frequency resource Or do not overlap, and the SSB time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then: when the UE to receive data from the base station is in the full-duplex TDD mode, determine the target time-frequency resource.
  • the corresponding data transmission operation is: sending the data carried by the SSB in the SSB time-frequency resource, and receiving the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; or when the UE is in half-duplex In TDD mode, the data transmission operation corresponding to the target time-frequency resource is determined as follows: when the condition that the time interval between the SSB and the target MsgA PUSCH is greater than the uplink-downlink conversion time is satisfied, the SSB time-frequency resources to send the data carried by the SSB, and receive the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; and when the conditions are not met, it is prohibited to receive the MsgA PUSCH bearer in the MsgA PUSCH time-frequency resource.
  • the data carried by the SSB is only sent in the SSB time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the SSB time-frequency resource where the synchronization signal block SSB is located; the time-frequency resource according to the SBFD
  • the overlapping result of the frequency resource and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the SSB time-frequency resource overlaps the SBFD time-frequency resource or do not overlap, and the SSB time-frequency resource partially overlaps with the MsgA PUSCH time-frequency resource, then it is determined that the data transmission operation corresponding to the target time-frequency resource is: prohibiting receiving all data on the MsgA PUSCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource does not overlap, and the PDCCH time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then: when the UE to receive data from the base station is in full-duplex TDD mode, determine the target time-frequency resource corresponding to The data transmission operation is: sending the data carried by the PDCCH in the PDCCH time-frequency resource, and receiving the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; when the UE is in half-duplex TDD mode When, it
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource There is no overlap, and the PDCCH time-frequency resource partially overlaps with the MsgA PUSCH time-frequency resource, but the receiving starting point of the PDCCH is later than the sending starting point of the target MsgA PUSCH; if data is to be received from the base station
  • the UE is in full-duplex TDD mode, and the data transmission operation corresponding to the target time-frequency resource is determined to be: sending the data carried by the target PDCCH in the PDCCH time-frequency resource, and receiving the data carried in the RO time-frequency
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource There is partial overlap, and the PDCCH time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then: when the UE to receive data from the base station is in the full-duplex TDD mode, determine the target time-frequency resource.
  • the corresponding data transmission operation is: perform rate matching on the data carried by the target PDCCH; send the remaining resources in the PDCCH time-frequency resources that do not overlap with the SBFD time-frequency resources obtained after performing the rate matching. data, and receive the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; or when the UE is in half-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as: When the condition that the time interval between the target PDCCH and the target MsgA PUSCH is greater than the uplink and downlink conversion time is met, rate matching is performed on the data carried by the target PDCCH, and the data in the PDCCH time-frequency resource is matched with the SBFD The remaining resources with non-overlapping time-frequency resources are used to send the data carried by the target PDCCH, and receive the data carried by the target MsgA PUSCH in the MSGA PUSCH time-frequency resource; and when the conditions are not met, only in the The Msg
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource There is partial overlap, and the PDCCH time-frequency resource and the MsgA PUSCH time-frequency resource partially overlap, but the receiving starting point of the PDCCH is later than the sending starting point of the target MsgA PUSCH; if it is to be received from the base station
  • the data UE is in the full-duplex TDD mode, and the data transmission operation corresponding to the target time-frequency resource is determined to be: performing rate matching on the data carried by the target PDCCH; in the PDCCH time-frequency resource and the SBFD
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink shared channel PDSCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource does not overlap, and the PDSCH time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then: when the UE to receive data from the base station is in full-duplex TDD mode, determine the target time-frequency resource corresponding to The data transmission operation is: sending the data carried by the target PDSCH in the PDSCH time-frequency resource, and receiving the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; or when the UE is in half-duplex In TDD mode
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink control channel PDSCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource There is no overlap, and the PDSCH time-frequency resource partially overlaps with the MsgA PUSCH time-frequency resource, then: if the UE to receive data from the base station is in full-duplex TDD mode, determine the target time-frequency resource corresponding to The data transmission operation is: sending the data carried by the target PDSCH in the PDSCH time-frequency resource, and receiving the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; or if the UE is in half-duplex
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink control channel PDSCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource There is partial overlap, and there is partial overlap between the PDSCH time-frequency resource and the MsgA PUSCH time-frequency resource, then: if the UE to receive data from the base station is in full-duplex TDD mode, determine the target time-frequency resource.
  • the corresponding data transmission operation is: perform rate matching on the data carried by the target PDSCH; the remaining resources in the PDSCH time-frequency resources that do not overlap with the SBFD time-frequency resources and the MsgA PUSCH time-frequency resources, Send the data obtained after performing the rate matching, and receive the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; or if the UE is in half-duplex TDD mode, determine the target time-frequency
  • the data transmission operation corresponding to the resource is: when the condition that the time interval between the target PDSCH and the target MsgA PUSCH is greater than the uplink and downlink conversion time is met, perform rate matching on the data carried by the target PDSCH; in the PDSCH
  • the remaining resources in the time-frequency resources that do not overlap with the MsgA PUSCH time-frequency resource and the SBFD time-frequency resource are sent to the data obtained after performing the rate matching; and receiving the MsgA PUSCH time-frequency resource.
  • the data only receive the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource, and prohibit sending the target PDSCH bearer in the PDSCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink shared channel PDSCH is located; according to the SBFD
  • the overlapping result of time-frequency resources and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource, including: if the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource There is partial overlap, and the PDSCH time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then: when the UE to receive data from the base station is in the full-duplex TDD mode, determine the target time-frequency resource.
  • the corresponding data transmission operation is: perform rate matching on the data carried by the target PDSCH; send the remaining resources in the PDSCH time-frequency resources that do not overlap with the SBFD time-frequency resources obtained after performing the rate matching. data, and receive the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; or when the UE is in half-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as: When the condition that the time interval between the target PDSCH and the target MsgA PUSCH is greater than the uplink and downlink conversion time is met, rate matching is performed on the data carried by the target PDSCH, and the data in the PDSCH time-frequency resource is matched with the SBFD The remaining resources with non-overlapping time-frequency resources, send the data obtained after performing the rate matching, and receive the data carried by the target MsgA PUSCH in the MSGA PUSCH time-frequency resource; and when the conditions are not met, only The MsgA PUSCH time
  • the method further includes: when the target MsgA RO is invalid, prohibiting detection of the MsgA RO on the MsgA RO time-frequency resource, and prohibiting association with the target MsgA RO.
  • the MsgA PUSCH time-frequency resource where the target MsgA PUSCH is located receives the data carried by MsgA PUSCH; or the detection of MsgA PUSCH in the MsgA PUSCH time-frequency resource where the target MsgA PUSCH is located is prohibited, but the random access signal is received on the MsgA RO time-frequency resource.
  • the target RO or the target MsgA RO belongs to a dedicated RO group configured for the SBFD mode; and/or, the random access signal carried by the target RO or the target MsgA RO is A proprietary random access signal configured for SBFD mode or a regular random access signal specified by the protocol.
  • the method further includes: carrying the configuration information of the SBFD time-frequency resources in broadcast signaling and sending it to the UE; or carrying the configuration information of the SBFD time-frequency resources in the downlink control information. Sent to UE in DCI.
  • the time-frequency domain resources of TDD SBFD can be used for uplink random access transmission without affecting the current 5G HD system, so that the uplink access resources can be increased, thereby reducing the access delay;
  • it defines the transmission criteria when the DL channel overlaps with the PRACH, determines the reception and transmission behavior of the base station and UE, reduces blind detection of the base station and UE, effectively increases uplink transmission opportunities, and improves uplink transmission reliability.
  • an example of this application proposes a data transmission device applied to a UE.
  • the device is applied to UEs that support subband full-duplex SBFD mode.
  • the device includes:
  • the first determination module 1701 is used to determine the SBFD time-frequency resources corresponding to the target time slot and the target time-frequency resources associated with the target time slot based on the configuration information issued by the base station; the second determination module 1702 is used to determine the SBFD time-frequency resources corresponding to the target time slot based on the configuration information issued by the base station.
  • the overlapping result of the SBFD time-frequency resource and the target time-frequency resource determines the data transmission operation corresponding to the target time-frequency resource;
  • the execution module 1703 is used to execute the determined data transmission operation in the target time slot.
  • the target time slot is an uplink UL time slot, a downlink DL time slot or a special time slot;
  • the SBFD time-frequency resource occupies at least one symbol of the target time slot in the time domain.
  • the frequency domain occupies at least one physical resource block for each symbol.
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located;
  • the target RO is any RO among at least one RO configured for the target time slot.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses If the overlapping result is: the RO time-frequency resource is located in the SBFD time-frequency resource, then: when the symbol corresponding to the SBFD time-frequency resource is an uplink UL symbol or a flexible F symbol, it is determined that the The data transmission operation corresponding to the target time-frequency resource is: sending the random access signal carried by the target RO in the RO time-frequency resource; when the symbol corresponding to the SBFD time-frequency resource is a downlink DL symbol, determine the The data transmission operation corresponding to the target time-frequency resource is: prohibiting sending the random access signal.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses If the overlapping result is: there is partial overlap between the RO time-frequency resource and the SBFD time-frequency resource, then: when the symbol corresponding to the SBFD time-frequency resource is an uplink UL symbol or a flexible F symbol, determine and The data transmission operation corresponding to the target time-frequency resource is: prohibiting the transmission of random access signals carried by the target RO; or sending overlapping resources in the SBFD time-frequency resource that overlap with the RO time-frequency resource.
  • the transmission operation is: prohibiting sending the random access signal.
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the SSB time-frequency resource where the synchronization signal block SSB is located; the target RO is for the Any RO among at least one RO configured in the target time slot; the RO time-frequency resource is located in the SBFD time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses In: If the overlapping result is: the SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource partially overlaps with the RO time-frequency resource, then it is determined that the time-frequency resource overlaps with the RO time-frequency resource.
  • the data transmission operation corresponding to the target time-frequency resource is: only receive the data carried by the SSB in the SSB time-frequency resource, and prohibit sending the random access signal carried by the target RO in the RO time-frequency resource; or in The SSB time-frequency resource receives the data carried by the SSB, and the remaining resources in the RO time-frequency resource transmit a part of the random access signal associated with the remaining resources in the random access signal;
  • the remaining resources are time-frequency resources in the RO time-frequency resources that do not overlap with the SSB time-frequency resources.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses In: If the overlapping result is: the SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource does not overlap with the RO time-frequency resource, then: when the UE When in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the data carried by the SSB on the SSB time-frequency resource, and transmitting the target on the RO time-frequency resource.
  • the random access signal carried by the RO or when the UE is in half-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: within the time between the SSB and the target RO.
  • the interval is greater than the uplink and downlink conversion time, receive the data carried by the SSB in the SSB time-frequency resource, and send the random access signal carried by the target RO in the RO time-frequency resource; and when the requirements are not met;
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the PDSCH time-frequency resource where the physical downlink shared channel PDSCH is located; the target RO is for the Any RO among at least one RO configured in the target time slot; the RO time-frequency resource is located in the SBFD time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses If the overlapping result is: the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDSCH time-frequency resource does not overlap with the RO time-frequency resource, then: when the UE is in full In the duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the data carried by the target PDSCH on the PDSCH time-frequency resource, and transmitting the target RO on the RO time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses In: If the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource partially overlap, and the PDSCH time-frequency resource does not overlap with the RO time-frequency resource, then: when the UE is in In the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the remaining resources carried by the target PDSCH in the PDSCH time-frequency resource that do not overlap with the SBFD time-frequency resource.
  • Part of the data associated with the remaining resources in the data, and the random access signal carried by the target RO is sent in the RO time-frequency resource; when the UE is in the half-duplex TDD mode, determine the connection with the target
  • the data transmission operation corresponding to the time-frequency resource is: when the condition that the time interval between the target PDSCH and the target RO is greater than the uplink-downlink conversion time is met, the PDSCH time-frequency resource does not match the SBFD time-frequency
  • the remaining resources with overlapping resources receive part of the data associated with the remaining resources in the data carried by the target PDSCH, and send a random access signal carried by the target RO in the RO time-frequency resource; and when the conditions are not met
  • the random access signal is only sent in the RO time-frequency resource, and the data carried by the target PDSCH is prohibited from being received in the PDSCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses In: If the overlapping result is: the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDSCH time-frequency resource partially overlaps with the RO time-frequency resource, then: when the UE is in In the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the data carried by the target PDSCH in the PDSCH time-frequency resource, and transmitting the target in the RO time-frequency resource.
  • the random access signal carried by the RO when the UE is in the half-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as: the time between the target PDSCH and the target RO is satisfied
  • the random access signal carried by the target RO is sent in the RO time-frequency resource, and the remaining time-frequency resources in the PDSCH time-frequency resource that do not overlap with the RO time-frequency resource are resources, receive part of the data associated with the remaining resources among the data carried by the target PDSCH; or when the condition is not met, only send the random access signal carried by the target RO on the RO time-frequency resource, It is prohibited to receive data carried by the target PDSCH in the PDSCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses In: If the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource partially overlap, and the PDSCH time-frequency resource and the RO time-frequency resource partially overlap, then: when the UE When in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: the remainder of the PDSCH time-frequency resource that does not overlap with the SBFD time-frequency resource and the RO time-frequency resource.
  • the UE receives the data associated with the remaining resources among the data carried by the target PDSCH, and send the random access signal carried by the target RO in the RO time-frequency resource; when the UE is in half-duplex TDD mode
  • the data transmission operation corresponding to the target time-frequency resource is: when the condition that the time interval between the target PDSCH and the target RO is greater than the uplink-downlink conversion time is satisfied, transmitting in the RO time-frequency resource
  • the random access signal carried by the target RO, and the remaining resources in the PDSCH time-frequency resources that do not overlap with the SBFD time-frequency resources and the RO time-frequency resources receive the data carried by the target PDSCH part of the data associated with the remaining resources; or send the random access signal carried by the target RO in the RO time-frequency resource, and prohibit receiving the data carried by the target PDSCH in the PDSCH time-frequency resource.
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; the target RO is for the Any RO among at least one RO configured in the target time slot; the RO time-frequency resource is located in the SBFD time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses If the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource does not overlap with the RO time-frequency resource, then: when the UE is in full In the duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the data carried by the target PDCCH on the PDCCH time-frequency resource, and transmitting the target RO on the RO time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlap result of the SBFD time-frequency resource and the target time-frequency resource, specifically for : If the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource partially overlap, and the PDCCH time-frequency resource does not overlap with the RO time-frequency resource, then: when the UE is in full In the duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the data carried by the target PDCCH in the remaining resources in the PDCCH time-frequency resource that do not overlap with the SBFD time-frequency resource.
  • the data transmission operation corresponding to the frequency resource is: when the condition that the time interval between the target PDCCH and the target RO is greater than the uplink and downlink conversion time is met, the PDCCH time-frequency resource does not match the SBFD time-frequency resource.
  • Overlapping remaining resources receiving part of the data associated with the remaining resources in the data carried by the target PDCCH, and sending a random access signal carried by the target RO in the RO time-frequency resource; and when the required requirements are not met, When the above conditions are met, the random access signal is only sent in the RO time-frequency resource, and the data carried by the target PDCCH is prohibited from being received in the PDCCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses In: If the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps with the RO time-frequency resource, but the reception of the PDCCH The starting point is earlier than the sending starting point of the target RO, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the data on the PDCCH time-frequency resource.
  • the transmission operation is: when the condition that the time interval between the target PDCCH and the target RO is greater than the uplink and downlink conversion time is met, send the random access signal carried by the target RO in the RO time-frequency resource, and The remaining resources in the PDCCH time-frequency resources that do not overlap with the RO time-frequency resources receive part of the data associated with the remaining resources in the data carried by the target PDCCH; or when the condition is not met, only The random access signal carried by the target RO is sent in the RO time-frequency resource, and the data carried by the target PDCCH is prohibited from being received in the PDCCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses In: If the overlapping result is: the PDCCH time-frequency resource partially overlaps the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps the RO time-frequency resource, but the reception of the PDCCH The starting point is later than the sending starting point of the target RO, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving on the PDCCH time-frequency resource The data carried by the target PDCCH, and the random access signal carried by the target RO is sent in the RO time-frequency resource; when the UE is in the half-duplex TDD mode, determine the target time-frequency resource corresponding to the The data transmission operation is: when the condition that the time interval between the target PDCCH and the target RO is greater than the uplink and
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses In: If the overlapping result is: the PDCCH time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and there is partial overlap between the PDCCH time-frequency resource and the RO time-frequency resource, then: in the absence of random When an access signal is to be sent, it is determined that the data transmission operation corresponding to the target time-frequency resource is: ignore the target RO, and receive the data carried by the target PDCCH in the PDCCH time-frequency resource or prohibit reception. The data carried by the target PDCCH.
  • the target time-frequency resources include: a target MsgA random access channel opportunity for sending a random access message MsgA.
  • the time slot of the resource, the target MsgA RO associated with the target MsgA PUSCH is configured in a time slot with no SBFD time-frequency resources allocated; or the target MsgA PUSCH is configured in a time slot with SBFD time-frequency resources allocated, and the target MsgA associated with the target MsgA PUSCH RO is configured in a time slot allocated with SBFD time-frequency resources; MsgA
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the SSB time-frequency resource where the synchronization signal block SSB is located; the second determination module is in According to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, when determining the data transmission operation corresponding to the target time-frequency resource, it is specifically used: if the overlapping result is: the SSB time-frequency resource Overlap or not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then: when the UE is in full-duplex TDD mode, determine the time and frequency with the target The data transmission operation corresponding to the frequency resource is: receiving the data carried by the SSB in the SSB time-frequency resource, and sending the data carried by the target MsgA PUSCH in the MsgA PUSCH time-frequency resource; or when the UE is
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the SSB time-frequency resource where the synchronization signal block SSB is located; the second determination module is in According to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, when determining the data transmission operation corresponding to the target time-frequency resource, it is specifically used: if the overlapping result is: the SSB time-frequency resource Overlap or not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource partially overlaps with the MsgA PUSCH time-frequency resource, then it is determined that the data transmission operation corresponding to the target time-frequency resource is: prohibit all
  • the MsgA PUSCH time-frequency resource is used to send the data carried by the target MsgA PUSCH; or the remaining resources in the MsgA PUSCH time-frequency resource that do not overlap with the SBFD time-frequency resource are used to send the data carried by the
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; the second determination module When determining the data transmission operation corresponding to the target time-frequency resource according to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used: if the overlapping result is: the PDCCH time-frequency resources do not overlap with the SBFD time-frequency resources, and the PDCCH time-frequency resources do not overlap with the MsgA PUSCH time-frequency resources, then: when the UE is in the full-duplex TDD mode, determine the target time-frequency
  • the data transmission operation corresponding to the resource is: receiving the data carried by the PDCCH in the PDCCH time-frequency resource, and sending the data carried by the target MSGA PUSCH in the MSGA PUSCH time-frequency resource; when the UE is in half-duplex In TDD mode, the data
  • the MSGA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps with the MSGA PUSCH time-frequency resource, but the reception starting point of the PDCCH Later than the transmission starting point of the target MSGA PUSCH, then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving all the data on the PDCCH time-frequency resource.
  • the data carried by the target PDCCH, and the data carried by the MSGA PUSCH are sent in the MSGA PUSCH time-frequency resource; when the UE is in the half-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource.
  • the data carried by the target MSGA PUSCH is sent in the MSGA PUSCH time-frequency resource, and in the The remaining resources in the PDCCH time-frequency resources that do not overlap with the MSGA PUSCH time-frequency resources receive part of the data associated with the remaining resources in the data carried by the target PDCCH; or when the conditions are not met, in the The MSGA PUSCH time-frequency resource sends the data carried by the target MSGA PUSCH, and the PDCCH time-frequency resource is prohibited from receiving the data carried by the target PDCCH.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; the second determination module When determining the data transmission operation corresponding to the target time-frequency resource according to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used: if the overlapping result is: the PDCCH time-frequency Resources partially overlap with the SBFD time-frequency resources, and the PDCCH time-frequency resources do not overlap with the MsgA PUSCH time-frequency resources, then: when the UE is in full-duplex TDD mode, determine the time and frequency with the target The data transmission operation corresponding to the frequency resource is: receiving the partial data associated with the remaining resources in the data carried by the target PDCCH from the remaining resources in the PDCCH time-frequency resource that do not overlap with the SBFD time-frequency resource, and transmit the data carried by the target MSGA PUSCH in the
  • Part of the data associated with the remaining resources in the data, and the data carried by the target MSGA PUSCH are sent in the MSGA PUSCH time-frequency resource; and when the condition is not met, only in the MSGA PUSCH time-frequency resource Send the data carried by the target MSGA PUSCH, and prohibit receiving the data carried by the target PDCCH in the PDCCH time-frequency resource.
  • the MSGA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; the second determination module When determining the data transmission operation corresponding to the target time-frequency resource according to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used: if the overlapping result is: the PDCCH time-frequency The resources partially overlap with the SBFD time-frequency resources, and the PDCCH time-frequency resources partially overlap with the MSGA PUSCH time-frequency resources, but the receiving starting point of the PDCCH is later than the sending starting point of the target MSGA PUSCH , then: when the UE is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is: receiving the data carried by the target PDCCH in the PDCCH time-frequency resource, and in the The MSGA PUSCH time-frequency resource sends the data
  • Frequency resources and the MSGA PUSCH time-frequency resources do not overlap with the remaining resources, and receive part of the data associated with the remaining resources in the data carried by the target PDCCH; or when the conditions are not met, in the MSGA PUSCH
  • the time-frequency resource is used to send the data carried by the target MSGA PUSCH, and the data carried by the target PDCCH is prohibited from being received by the PDCCH time-frequency resource.
  • the MSGA PUSCH time-frequency resource is located within the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located; the second determination module When determining the data transmission operation corresponding to the target time-frequency resource according to the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDCCH time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps with the MSGA PUSCH time-frequency resource, but the reception of the PDCCH
  • the starting point is later than the sending starting point of the target MSGA PUSCH, then: when no random access signal is to be sent, determine the data transmission operation corresponding to the target time-frequency resource as:
  • the MSGA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink control channel PDSCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDSCH time-frequency resource does not overlap with the MSGA PUSCH time-frequency resource, then:
  • the data transmission operation corresponding to the target time-frequency resource is:
  • the data carried by the target PDSCH is received in the PDSCH time-frequency resource, and the data carried by the target PDSCH is received in the MSGA PUSCH time-frequency resource. resources to send data carried by the target MSGA PUSCH;
  • the data carried by the target MSGA PUSCH is only sent in the MSGA PUSCH time-frequency resource, and the data carried by the target PDSCH is prohibited from being received in the PDSCH time-frequency resource.
  • the MSGA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink control channel PDSCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDSCH time-frequency resource overlaps with the SBFD time-frequency resource, and the PDSCH time-frequency resource does not overlap with the MSGA PUSCH time-frequency resource, then:
  • the data transmission operation corresponding to the target time-frequency resource is:
  • the remaining resources in the PDSCH time-frequency resources that do not overlap with the SBFD time-frequency resources receive the target Part of the data carried by the PDSCH associated with the remaining resources, and sending the data carried by the target MSGA PUSCH in the MSGA PUSCH time-frequency resource;
  • the data carried by the target MSGA PUSCH is only sent in the MSGA PUSCH time-frequency resource, and the data carried by the target PDSCH is prohibited from being received in the PDSCH time-frequency resource.
  • the MSGA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink control channel PDSCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDSCH time-frequency resource partially overlaps with the MSGA PUSCH time-frequency resource, then:
  • the data transmission operation corresponding to the target time-frequency resource is:
  • the data carried by the target MSGA PUSCH is sent on the MSGA PUSCH time-frequency resource, and when the PDSCH The remaining resources in the frequency resources that do not overlap with the MSGA PUSCH time-frequency resources, and receive part of the data associated with the remaining resources in the data carried by the target PDSCH; or
  • the data carried by the target MSGA PUSCH is sent in the MSGA PUSCH time-frequency resource, and the data carried by the target PDSCH is prohibited from being received in the PDSCH time-frequency resource.
  • the MSGA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink control channel PDSCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDSCH time-frequency resource partially overlaps with the SBFD time-frequency resource, and the PDSCH time-frequency resource partially overlaps with the MSGA PUSCH time-frequency resource, then:
  • the data carried by the target MSGA PUSCH is sent on the MSGA PUSCH time-frequency resource, and when the PDSCH The remaining resources in the frequency resources that do not overlap with the MSGA PUSCH time-frequency resources and the SBFD time-frequency resources are received, and the partial data associated with the remaining resources in the data carried by the target PDSCH is received; or
  • the data carried by the target MSGA PUSCH is sent in the MSGA PUSCH time-frequency resource, and the data carried by the target PDSCH is prohibited from being received in the PDSCH time-frequency resource.
  • the target MsgA RO when the target MsgA RO is invalid, it is prohibited to send data in the MsgA RO time and frequency resource, and it is prohibited to send data in the MsgA PUSCH time and frequency where the target MsgA PUSCH associated with the target MsgA RO is located. resource sends data; or
  • the target RO or the target MsgA RO belongs to a dedicated RO group configured for SBFD mode; and/or,
  • the random access signal carried by the target RO or the target MsgA RO is a proprietary random access signal configured for the SBFD mode or a conventional random access signal specified by the protocol.
  • the configuration information is carried in broadcast signaling or downlink control information DCI and is delivered to the UE.
  • the target RO is MsgA RO.
  • an example of this application proposes a data transmission device applied to a base station.
  • the device is applied to a base station that supports subband full-duplex SBFD mode, and the device includes:
  • a first determination module configured to determine the SBFD time-frequency resource corresponding to the target time slot and the target time-frequency resource associated with the target time slot;
  • a second determination module configured to determine the data transmission operation corresponding to the target time-frequency resource according to the overlap result of the SBFD time-frequency resource and the target time-frequency resource;
  • An execution module configured to execute the determined data transmission operation in the target time slot.
  • the target time slot is an uplink UL time slot, a downlink DL time slot or a special time slot;
  • the SBFD time-frequency resource occupies at least one symbol of the target time slot in the time domain.
  • the frequency domain occupies at least one physical resource block for each symbol.
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the SSB time-frequency resource where the synchronization signal block SSB is located;
  • the target RO is any RO among at least one RO configured for the target time slot
  • the RO time-frequency resources are located in the SBFD time-frequency resources.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the overlapping result is: the SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource partially overlaps with the RO time-frequency resource, then it is determined that the time-frequency resource is the same as the target time-frequency resource.
  • the data transmission operations corresponding to frequency resources are:
  • the data carried by the SSB is transmitted in the SSB time-frequency resource, and the remaining resources in the RO time-frequency resource receive the random access signal associated with the remaining resources in the random access signal carried by the target RO.
  • Access signal; the remaining resources are time-frequency resources in the RO time-frequency resources that do not overlap with the SSB time-frequency resources.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the overlapping result is: the SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource does not overlap with the RO time-frequency resource, then:
  • the UE to receive data from the base station is in full-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as:
  • the data transmission operation corresponding to the target time-frequency resource is:
  • the data carried by the SSB is sent on the SSB time-frequency resource, and the data carried by the SSB is received on the RO time-frequency resource. Random access signals carried by the target RO;
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the PDSCH time-frequency resource where the physical downlink shared channel PDSCH is located;
  • the target RO is any RO among at least one RO configured for the target time slot
  • the RO time-frequency resources are located in the SBFD time-frequency resources.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the overlapping result is: the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDSCH time-frequency resource does not overlap with the RO time-frequency resource,
  • the data transmission operation corresponding to the target time-frequency resource is determined to be: sending the data carried by the target PDSCH in the PDSCH time-frequency resource, and Receive the random access signal carried by the target RO in the RO time-frequency resource; or
  • the data transmission operation corresponding to the target time-frequency resource is determined to be:
  • the data carried by the target PDSCH is sent on the PDSCH time-frequency resource, and the data carried by the target PDSCH is received on the RO time-frequency resource.
  • the random access signal is only received in the RO time-frequency resource, and the data carried by the target PDSCH is prohibited from being sent in the PDSCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource partially overlap, and the PDSCH time-frequency resource and the RO time-frequency resource do not overlap,
  • the UE to receive data from the base station is in full-duplex TDD mode, then determine the data transmission operation corresponding to the target time-frequency resource as:
  • the data transmission operation corresponding to the target time-frequency resource is determined to be:
  • rate matching is performed on the data carried by the target PDSCH, and the data in the PDSCH time-frequency resource is matched with the SBFD
  • the remaining resources with non-overlapping time and frequency resources send the data obtained after performing the rate matching, and receive the random access signal carried by the target RO on the RO time and frequency resources;
  • the random access signal is only received in the RO time-frequency resource, and the data carried by the target PDSCH is prohibited from being sent in the PDSCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource do not overlap, and the PDSCH time-frequency resource and the RO time-frequency resource partially overlap, then:
  • the UE to receive data from the base station is in full-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as:
  • the data transmission operation corresponding to the target time-frequency resource is determined to be:
  • the random access signal is only received in the RO time-frequency resource, and the data carried by the target PDSCH is prohibited from being sent in the PDSCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the overlapping result is: the PDSCH time-frequency resource partially overlaps the SBFD time-frequency resource, and the PDSCH time-frequency resource partially overlaps the RO time-frequency resource, then:
  • the UE to receive data from the base station is in full-duplex TDD mode, then determine the data transmission operation corresponding to the target time-frequency resource as:
  • the data obtained after performing the rate matching is sent, and the RO time-frequency resources are received.
  • the data transmission operation corresponding to the target time-frequency resource is determined to be:
  • the random access signal carried by the target RO is received in the RO time-frequency resource, and the data carried by the target PDSCH is prohibited from being sent in the PDSCH time-frequency resource.
  • the target time-frequency resources include: the RO time-frequency resource where the target random access channel opportunity RO is located, and the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located;
  • the target RO is any RO among at least one RO configured for the target time slot
  • the RO time-frequency resources are located in the SBFD time-frequency resources.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource does not overlap with the RO time-frequency resource, then:
  • the UE to receive data from the base station is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is:
  • the data transmission operation corresponding to the target time-frequency resource is:
  • the data carried by the target PDCCH is sent on the PDCCH time-frequency resource, and the data carried on the RO time-frequency resource is received.
  • the random access signal carried by the target RO is
  • the random access signal is only received in the RO time-frequency resource, and the data carried by the target PDCCH is prohibited from being sent in the PDCCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource partially overlap, and the PDSCH time-frequency resource and the RO time-frequency resource do not overlap,
  • the UE to receive data from the base station is in full-duplex TDD mode, then determine the data transmission operation corresponding to the target time-frequency resource as:
  • the data transmission operation corresponding to the target time-frequency resource is determined to be:
  • rate matching is performed on the data carried by the target PDCCH, and the data in the PDCCH time-frequency resource is matched with the SBFD
  • the remaining resources with non-overlapping time and frequency resources send the data obtained after performing the rate matching, and receive the random access signal carried by the target RO on the RO time and frequency resources;
  • the random access signal is only received in the RO time-frequency resource, and the data carried by the target PDCCH is prohibited from being sent in the PDCCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps with the RO time-frequency resource, but the reception starting point of the PDCCH is earlier.
  • the sending starting point of the target RO then:
  • the UE to receive data from the base station is in full-duplex TDD mode, then determine the data transmission operation corresponding to the target time-frequency resource as:
  • the random access signal carried by the target RO is only received in the RO time-frequency resource, and the data carried by the target PDCCH is prohibited from being sent in the PDCCH time-frequency resource.
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it specifically uses At:
  • the PDCCH time-frequency resource partially overlaps the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps the RO time-frequency resource, but the reception starting point of the PDCCH Earlier than the sending starting point of the target RO, then:
  • the UE to receive data from the base station is in full-duplex TDD mode, then determine the data transmission operation corresponding to the target time-frequency resource as:
  • the data obtained after performing the rate matching is sent, and the RO time-frequency resources are received.
  • the data transmission operation corresponding to the target time-frequency resource is determined to be:
  • the random access signal carried by the target RO is only received in the RO time-frequency resource, and the data carried by the target PDCCH is prohibited from being sent in the PDCCH time-frequency resource.
  • the target RO is MsgA RO.
  • the target time-frequency resources include: the MsgA RO time-frequency resource where the target MsgA random access channel opportunity RO for sending the random access message MsgA is located, and the target MsgA associated with the target MsgA RO.
  • Target MsgA RO and target MsgA PUSCH satisfy:
  • the target MsgA PUSCH is configured in a time slot allocated with SBFD time-frequency resources, and the target MsgA RO associated with the target MsgA PUSCH is configured in a time slot with no SBFD time-frequency resources allocated; or
  • the target MsgA PUSCH is configured in a time slot allocated with SBFD time-frequency resources, and the target MsgA RO associated with the target MsgA PUSCH is configured in a time slot allocated with SBFD time-frequency resources; MsgA PUSCH and MsgA RO correspond to different time slots; or
  • the target MsgA PUSCH is configured in a time slot with no SBFD time-frequency resources allocated, and the target MsgA RO associated with the target MsgA PUSCH is configured in a time slot with SBFD time-frequency resources allocated.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the SSB time-frequency resource where the synchronization signal block SSB is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then:
  • the UE to receive data from the base station is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is:
  • the data transmission operation corresponding to the target time-frequency resource is:
  • the data carried by the SSB is sent on the SSB time-frequency resource and received on the MsgA PUSCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the SSB time-frequency resource where the synchronization signal block SSB is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the SSB time-frequency resource overlaps or does not overlap with the SBFD time-frequency resource, and the SSB time-frequency resource partially overlaps with the MsgA PUSCH time-frequency resource, then it is determined that the time-frequency resource is the same as the target.
  • the data transmission operations corresponding to time-frequency resources are:
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlap result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then:
  • the UE to receive data from the base station is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is:
  • the data transmission operation corresponding to the target time-frequency resource is:
  • the data carried by the target PDCCH is sent in the PDCCH time-frequency resource, and in the MSGA PUSCH time-frequency
  • the resource receives the data carried by the target MsgA PUSCH;
  • the data carried by the target MsgA PUSCH is only received in the MsgA PUSCH time-frequency resource, and the data carried by the PDCCH is prohibited from being sent in the PDCCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDCCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps with the MsgA PUSCH time-frequency resource, but the reception starting point of the PDCCH Later than the sending starting point of the target MsgA PUSCH;
  • the UE to receive data from the base station is in full-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as:
  • the data carried by the target MsgA PUSCH is only received in the MsgA PUSCH time-frequency resource, and the data carried by the target PDCCH is prohibited from being received in the PDCCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDCCH time-frequency resource and the SBFD time-frequency resource partially overlap, and the PDCCH time-frequency resource and the MsgA PUSCH time-frequency resource do not overlap, then:
  • the UE to receive data from the base station is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is:
  • the data transmission operation corresponding to the target time-frequency resource is:
  • rate matching is performed on the data carried by the target PDCCH, and the data carried by the target PDCCH is matched with the time-frequency resource of the PDCCH.
  • the remaining resources with non-overlapping SBFD time-frequency resources are used to send the data carried by the target PDCCH, and receive the data carried by the target MsgA PUSCH in the MSGA PUSCH time-frequency resource;
  • the data carried by the target MsgA PUSCH is only received in the MsgA PUSCH time-frequency resource, and the data carried by the target PDCCH is prohibited from being sent in the PDCCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDCCH time-frequency resource where the physical downlink control channel PDCCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDCCH time-frequency resource partially overlaps the SBFD time-frequency resource, and the PDCCH time-frequency resource partially overlaps the MsgA PUSCH time-frequency resource, but the reception of the PDCCH The starting point is later than the sending starting point of the target MsgA PUSCH;
  • the UE to receive data from the base station is in full-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as:
  • the data obtained after performing the rate matching is sent, and the RO time-frequency resources are received
  • the data carried by the target MsgA PUSCH is only received in the MsgA PUSCH time-frequency resource, and the data carried by the target PDCCH is prohibited from being received in the PDCCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink shared channel PDSCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDSCH time-frequency resource does not overlap with the SBFD time-frequency resource, and the PDSCH time-frequency resource does not overlap with the MsgA PUSCH time-frequency resource, then:
  • the UE to receive data from the base station is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is:
  • the data transmission operation corresponding to the target time-frequency resource is:
  • the data carried by the target PDSCH is sent in the PDSCH time-frequency resource, and in the MSGA PUSCH time-frequency
  • the resource receives the data carried by the target MsgA PUSCH;
  • the data carried by the target MsgA PUSCH is only received in the MsgA PUSCH time-frequency resource, and the data carried by the target PDSCH is prohibited from being sent in the PDSCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink control channel PDSCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource do not overlap, and the PDSCH time-frequency resource and the MsgA PUSCH time-frequency resource partially overlap, then:
  • the UE to receive data from the base station is in full-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as:
  • the data transmission operation corresponding to the target time-frequency resource is determined to be:
  • the data carried by the target MsgA PUSCH is only received in the MsgA PUSCH time-frequency resource, and the data carried by the target PDSCH is prohibited from being sent in the PDSCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink control channel PDSCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the PDSCH time-frequency resource partially overlaps the SBFD time-frequency resource, and the PDSCH time-frequency resource partially overlaps the MsgA PUSCH time-frequency resource, then:
  • the UE to receive data from the base station is in full-duplex TDD mode, determine the data transmission operation corresponding to the target time-frequency resource as:
  • the resource receives the data carried by the target MsgA PUSCH;
  • the data transmission operation corresponding to the target time-frequency resource is determined to be:
  • the data carried by the target MsgA PUSCH is only received in the MsgA PUSCH time-frequency resource, and the data carried by the target PDSCH is prohibited from being sent in the PDSCH time-frequency resource.
  • the MsgA PUSCH time-frequency resource is located in the SBFD time-frequency resource; the target time-frequency resource also includes the PDSCH time-frequency resource where the physical downlink shared channel PDSCH is located;
  • the second determination module determines the data transmission operation corresponding to the target time-frequency resource based on the overlapping result of the SBFD time-frequency resource and the target time-frequency resource, it is specifically used to:
  • the overlapping result is: the PDSCH time-frequency resource and the SBFD time-frequency resource partially overlap, and the PDSCH time-frequency resource and the MsgA PUSCH time-frequency resource do not overlap, then:
  • the UE to receive data from the base station is in the full-duplex TDD mode, it is determined that the data transmission operation corresponding to the target time-frequency resource is:
  • the data transmission operation corresponding to the target time-frequency resource is determined to be:
  • rate matching is performed on the data carried by the target PDSCH, and the data in the PDSCH time-frequency resource is matched with the The remaining resources with non-overlapping SBFD time-frequency resources, send the data obtained after performing the rate matching, and receive the data carried by the target MsgA PUSCH in the MSGA PUSCH time-frequency resource;
  • the data carried by the target MsgA PUSCH is only received in the MsgA PUSCH time-frequency resource, and the data carried by the target PDSCH is prohibited from being sent in the PDSCH time-frequency resource.
  • the device further includes: when the target MsgA RO is invalid, prohibiting detection of the MsgA RO on the MsgA RO time-frequency resource, and prohibiting association with the target MsgA RO.
  • the MsgA PUSCH time-frequency resource where the target MsgA PUSCH is located receives the data carried by the MsgA PUSCH; or
  • the detection of MsgA PUSCH in the MsgA PUSCH time-frequency resource where the target MsgA PUSCH is located is prohibited, but the random access signal is received in the MsgA RO time-frequency resource.
  • the target RO or the target MsgA RO belongs to a dedicated RO group configured for SBFD mode; and/or,
  • the random access signal carried by the target RO or the target MsgA RO is a proprietary random access signal configured for the SBFD mode or a conventional random access signal specified by the protocol.
  • the device further includes: a sending module, configured to carry the configuration information of the SBFD time-frequency resources in broadcast signaling and send it to the UE; or to send the configuration information of the SBFD time-frequency resources to the UE. It is carried in the downlink control information DCI and sent to the UE.
  • a sending module configured to carry the configuration information of the SBFD time-frequency resources in broadcast signaling and send it to the UE; or to send the configuration information of the SBFD time-frequency resources to the UE. It is carried in the downlink control information DCI and sent to the UE.
  • the electronic device includes a processor 1801 and a machine-readable storage medium 1802.
  • the machine-readable storage medium 1802 stores machine-executable instructions that can be executed by the processor; the processor 1801 is used to execute the machine-executable instructions to implement the data transmission method disclosed in the above examples of this application.
  • one example of this application also provides a machine-readable storage medium.
  • the machine-readable storage medium stores a number of computer instructions.
  • the present invention can be realized. Apply the data transfer method disclosed in the above example.
  • machine-readable storage medium can be any electronic, magnetic, optical or other physical storage device, which can contain or store information, such as executable instructions, data, etc.
  • machine-readable storage media can be: RAM (Radom Access Memory, random access memory), volatile memory, non-volatile memory, flash memory, storage drive (such as hard drive), solid state drive, any type of storage disk (such as CDs, DVDs, etc.), or similar storage media, or a combination thereof.
  • a typical implementation device is a computer, which may be in the form of a personal computer, a laptop, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email transceiver, or a game controller. desktop, tablet, wearable device, or a combination of any of these devices.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • these computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means,
  • the instruction device implements the functions specified in one process or multiple processes of the flowchart and/or one block or multiple blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法、装置及电子设备。根据本申请的一方面,该方法包括:基于基站下发的配置信息确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;根据所述目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;在所述目标时隙执行所确定的数据传输操作。

Description

数据传输方法、装置及电子设备 技术领域
本申请涉及通信领域,尤其涉及一种数据传输方法、装置及电子设备。
背景技术
传统时分双工(Time-Division Duplex,TDD)通信系统通常工作在HD(Half-Duplex,半双工)模式中。TDD帧结构可以分成DL(DownLink,下行)时隙、S(Special,特殊)时隙和UL(UpLink,上行)时隙,其中S时隙可以用于UL、DL或者GP(Guard Period,保护周期)。当前的5G商用网络中为了提升网络吞吐量,通常DL时隙配置较多,UL时隙配置相对要少,使得上行传输速率受限,同时导致上行传输时延变大。
FD(Full-Duplex,全双工)通信可以同时进行发送和接收,即同时进行上行和下行数据传输。从标准化的角度,当前3GPP协议组已经将FD通信作为一个研究项目,正式开始标准化工作。各运营商、终端厂商等也在对FD通信中的各关键技术进行研究。
发明内容
本申请第一方面提供一种数据传输方法,所述方法应用于支持子带全双工SBFD模式的UE,并且所述方法包括:基于基站下发的配置信息确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;在所述目标时隙执行所确定的数据传输操作。
本申请第二方面提供一种数据传输方法,所述方法应用于支持子带全双工SBFD模式的基站,并且所述方法包括:确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;在所述目标时隙执行所确定的数据传输操作。
本申请第三方面提供一种数据传输装置,所述装置应用于支持子带全双工SBFD模式的UE,并且所述装置包括:第一确定模块,用于基于基站下发的配置信息确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;第二确定模块,用于根据所述SBFD时频资源以及与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;执行模块,用于在所述目标时隙执行所确定的数据传输操作。
本申请第四方面提供一种数据传输装置,所述装置应用于支持子带全双工SBFD模式的基站,并且所述装置包括:第一确定模块,用于确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;第二确定模块,用于根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;执行模块,用于在所述目标时隙执行所确定的数据传输操作。
本申请第五方面提供一种电子设备,包括:至少一个处理器,以及存储机器可执行指令 的机器可读存储介质,其中,通过读取所述机器可执行指令,所述至少一个处理器被促使执行如上任一方面所述的数据传输方法。
根据本申请提供的技术方案,能够在不影响当前5G HD系统的情况下,使用TDD SBFD的时频域资源进行上行随机接入传输,这样就可以增加上行接入资源,从而减少接入延迟;同时给出了DL信道与PRACH重叠时的传输准则,确定了基站和UE的接收和传输行为,减少了基站和UE的盲检并有效增加了上行传输机会,提高了上行传输可靠性。
附图说明
图1是根据本申请实施例的一种数据传输方法的示意流程图。
图2至图16是根据本申请实施例的SBFD时频资源与目标时频资源的重叠示意图。
图17是根据本申请实施例的一种数据传输装置的结构示意图。
图18是根据本申请实施例的一种电子设备的结构示意图。
具体实施方式
在本申请实施例使用的术语仅仅是出于描述特定实施例的目的,而非限制本申请。本申请和权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,此外,所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在TDD通信系统中,利用时域资源将下行链路和上行链路区分开,因此上行链路分配有限的持续时间将导致小区覆盖范围减少,传输延迟增加和上行容量不足,这是目前TDD通信系统存在的问题。同时,目前的5G NR系统仅仅考虑在TDD HD模式下物理信道的时频域资源分配,并没有考虑如何在TDD FD模式的时频域资源上传输上行物理信道以及在TDD FD模式下用户设备(UE)如何进行上行随机接入。
为此,本申请主要针对在TDD FD模式下UE如何进行上行随机接入,提出了在TDD FD模式下UE随机接入的方法和传输准则,保证FD UE能够顺利和高效接入到NR系统中的同时,也确保了已有终端的接入和数据传输不受影响。
在本申请的一个示例中,提出了一种新型的数据传输方法,该方法应用于支持子带全双 工SBFD模式的UE。如图1所示,该方法包括如下步骤101至103。
步骤101:基于基站下发的配置信息确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源。
步骤102:根据所述目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作。
步骤103:在所述目标时隙执行所确定的数据传输操作。
在本申请的方案中,全双工通信通过子带全双工(Sub-Band Full Duplex:SBFD)的方式来实现。具体地,在现有的TDD模式下的时频资源中配置一部分SBFD时频资源,使得在同一时刻,在该SBFD时频资源上,可以传输与其他时频资源(上行时频资源或下行时频资源)上不同方向的数据。
SBFD时频资源的配置是灵活多变的,一般由基站通过半静态方式或动态方式来执行。如果是半静态的方式配置,则配置信息可以由基站通过系统信令(例如,广播信令,或RRC信令)下发到UE;如果是动态方式配置,则配置信息可以由基站通过下行控制信息DCI下发给UE。支持SBFD的UE(简称为SBFD UE)可以从接收到的系统信令或DCI中识别出SBFD时频资源的配置;不支持SBFD的UE(简称为Legacy UE)则不期待基站对其进行SBFD资源的配置,即使基站进行了配置,Legacy UE也会直接忽略该配置,而按照现有的通信模式进行网络接入以及通信。关于SBFD,可以参考3GPP TSG-RAN WG1会议文档R1-2203157和R1-2203204以获取更多信息。
在步骤101中,支持SBFD的UE获得基站下发的配置信息。根据该配置信息可以确定:SBFD时频资源的配置单位(例如,时隙或迷你时隙),被配置在哪些时隙中,配置周期,适应范围(例如,UL时隙、DL时隙、S时隙,或它们的组合),以及其他时频资源相关的配置等。“目标时隙”即配置有SBFD时频资源的UL时隙、DL时隙或S时隙。以UL时隙为例,SBFD时频资源可以配置在UL时隙的全部UL符号或者部分UL符号中。从频域上看,针对每个UL符号,SBFD时频资源可以占用该符号上的至少一个物理资源块PRB。该物理资源块可以定义在部分带宽BWP内,是用于实际传输的资源,在每个BWP内,物理资源块按照预定义的索引规则进行编号。DL时隙、S时隙的情况与UL时隙类似。
UE基于该配置信息可以确定出目标时隙,该目标时隙可以被理解为当前关注的时隙,其可以是被配置有SBFD时频资源的任一时隙。与该目标时隙相关联的目标时频资源是符合现有的5G通信机制的时频资源,可以为用于发送上行数据的上行时频资源,用于发送下行数据的下行时频资源,或者包括上行时频资源和下行时频资源二者。例如,该目标时频资源是随机接入信道机会RO对应的RO时频资源、同步信号块SSB对应的SSB时频资源,或者包括RO时频资源和SSB时频资源二者等等,在此不一一列举。根据实际情况,该目标时频资源中的部分资源可能位于不同于该目标时隙的另一时隙,例如在2步随机接入过程中,MsgA RO时频资源与MsgA PUSCH时频资源位于不同时隙中。SBFD时频资源、目标时频资源、目标时隙的关联可以通过基站下发的配置信息确定。
在步骤102中,UE根据目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作。
在本申请示例中,SBFD时频资源与目标时频资源(上行/下行时频资源)重叠/不重叠,主要是指在频域上重叠/不重叠,时域上的重叠情况不进行考虑,因为SBFD模式是在TDD通信系统中引入了子带双工技术,因此只需要将目标时频资源与SBFD时频资源在频域上区分开来就不会产生与SBFD时频资源的冲突。另外,在本申请实施例中,上行时频资源与下行时频资源重叠,该重叠可以是时域上、频域上、或时频域上重叠;上行时频资源与下行时频资源不重叠,是指时频域上均不重叠。
在本步骤中,通过考虑SBFD时频资源与按照现有的通信机制配置的时频资源之间的冲突情况,确定出适合SBFD模式的数据传输机制。
3GPP协议组针对SBFD模式提出了相关的草案,然而,该草案只是在现有的5G通信系统的基础上增加了SBFD时频资源的使用,除了与SBFD时频资源的配置相关的部分外,对于资源调度以及信道传输等的策略是不变的。也就是说,现有的针对SBFD模式的草案并未对SBFD时频资源的使用可能与原有的策略产生冲突的问题进行考虑。然而,本示例的数据传输方法可以考虑上行/下行信道和信号实际使用的时频资源与所配置的SBFD时频资源的重叠情况,来为基于SBFD模式的全双工通信系统提供明确的数据传输策略,以实现UE与基站之间基于SBFD的全双工通信。
以上结合图1对根据本申请示例的数据传输方法进行了描述。以下基于上行/下行信道传输的具体示例,对该数据传输方法的各个步骤进行进一步描述。
对于UE而言,为了进行上行信道传输,需要执行随机接入过程。随机接入过程是UE和网络之间建立无线链路的必经过程,只有在随机接入过程完成之后,UE和基站之间才能正常进行数据交互操作。UE可以通过随机接入过程实现两个基本的功能:1)取得与基站之间的上行同步,一旦上行失步,UE只能在PRACH中传输数据;2)申请上行资源(UL_GRANT)。
通常的随机接入过程分为:4步随机接入和2步随机接入。以下对于在SBFD模式下的信道传输的描述会基于4步随机接入和2步随机接入来进行。在以下描述中,主要从随机接入所涉及的上行/下行时频资源与SBFD时频资源之间的冲突的角度,来考虑在SBFD模式下的数据传输机制的设计,并不会对具体的随机接入过程进行过多描述。
SBFD模式下的4步随机接入传输方法
在4步随机接入过程的第1步,UE会向基站发送消息(MSG1),该消息为利用随机接入信道机会RO传输的随机接入信号(即,前导码preamble)。本申请方案会对SBFD模式下RO信道的传输制定相应的策略。
首先对仅存在RO信道与SBFD时频资源复用的情况进行描述,此时,上述步骤102中提到的目标时频资源可以为RO信道所占用的时频资源(下文称为RO时频资源)。在一个目标时隙中,可能会配置有一个或多个RO,将其中的任一RO作为目标RO来对基于SBFD模式的数据传输机制来进行描述。
具体地,在步骤102中执行的确定步骤,包括:若所述重叠结果为:所述RO时频资源位于所述SBFD时频资源内,则:当所述SBFD时频资源对应的符号为上行UL符号或灵活F符号时,确定与所述目标时频资源对应的数据传输操作为:在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述SBFD时频资源对应的符号为下行DL符号时,确定与 所述目标时频资源对应的数据传输操作为:禁止发送所述随机接入信号。
图2为SBFD时频资源与目标时频资源的重叠示意图。如图2中所示,RO所在的RO时频资源与SBFD时频资源处于完全重叠状态,即,RO时频资源位于SBFD时频资源内。此时,如果SBFD时频资源被配置在UL符号上或F符号上,该RO是有效的,UE可以利用SBFD时频资源(与该RO时频资源相对应的部分)来发送随机接入信号。如果SBFD时频资源被配置在DL符号上,则该RO是无效的,此时禁止UE利用该RO来发送随机接入信号。
在本申请的一个例子中,在步骤102中执行的确定步骤,包括:若所述重叠结果为:所述RO时频资源与所述SBFD时频资源存在部分重叠,则:当所述SBFD时频资源对应的符号为上行UL符号或灵活F符号时,确定与所述目标时频资源对应的数据传输操作为:禁止发送所述目标RO承载的随机接入信号;或者在所述SBFD时频资源中的与所述RO时频资源相重叠的重叠资源,发送所述随机接入信号中的与所述重叠资源相对应的部分随机接入信号;或者当所述SBFD时频资源对应的符号为下行DL符号时,确定与所述目标时频资源对应的数据传输操作为:禁止发送所述随机接入信号。
图3为SBFD时频资源与目标时频资源的重叠示意图。如图3中所示,RO时频资源与SBFD时频资源处于部分重叠状态。此时,如果SBFD时频资源被配置在UL符号上或F符号上,可以有两种传输方案:方案一,将该RO视为无效,禁止利用该RO来发送随机接入信号;方案二:将该RO视为有效的,UE可以利用SBFD时频资源中与该RO时频资源相重叠的重叠资源来发送部分随机接入信号,该部分随机接入信号为该随机接入信号中可以利用该重叠资源来发送的那部分。如果SBFD时频资源被配置在DL符号上,则该RO是无效的,此时禁止UE利用该RO来发送随机接入信号。
以上对仅存在RO信道与SBFD时频资源复用的情况进行了描述。然而,除了RO信道以外,还可能存在其他下行信道/信号会复用SBFD时频资源,会对RO信道的传输产生影响。以下对RO信道与其他信道共同复用SBFD时频资源的情况进行描述。
以下以下行信道/信号为同步信号块SSB为例进行说明。
SSB用于基站和UE之间的同步,并传输包括小区关键信息的MIB(Master Information Block,主信息块)以及SIB1(Scheduling Information Block,调度信息块),因此UE正确地接收SSB是实现正常通信的基础。UE需要先接收到SSB,然后接收SIB1,根据从SIB1提取的SBFD时频资源配置信息发起随机接入。然而,在对根据本申请实施例的数据传输方法的描述中,无需考虑SSB的接收时间所带来的影响,因为SSB的接收是有周期性的,在一个周期内存在多个SSB的集合,而本申请方案关注的是在UE解析出SBFD时频资源配置信息之后对包括SSB在内的不同信道/信号的调度/传输。
在本申请的一个示例中,步骤102中提到的目标时频资源包括目标RO所在的RO时频资源,以及SSB所在的SSB时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,步骤102中的确定步骤包括:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操 作为:在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;或者当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,禁止在所述RO时频资源发送所述随机接入信号,仅在所述SSB时频资源接收所述SSB承载的数据。
对于支持SBFD模式的UE,该类UE又分为两种:一种是半双工UE,即可以在SBFD时频资源上进行发送或者接收,但是在同一时刻,仅能进行发送或者接收,称为HD UE;另一种是全双工UE,即在同一时刻,可以在SBFD时频资源上同时进行发送和接收,称为FD UE。UE在开启半双工模式时,可以作为半双工UE,在开启全双工模式时,可以作为全双工UE。
图4为SBFD时频资源与目标时频资源的重叠示意图。如图4所示,目标时频资源包括了RO时频资源和SSB时频资源,其中,RO时频资源与SBFD时频资源处于完全重叠状态,即,RO时频资源位于SBFD时频资源内。在这种情况下,SBFD时频资源与目标时频资源的重叠情况还覆盖了RO时频资源和SSB时频资源彼此间的重叠。此时,不论SSB时频资源是否与SBFD时频资源重叠(指部分重叠),如果SSB时频资源与RO时频资源不重叠,则对于FD UE而言,SSB和RO信道可以正常收发,均不受影响;对于HD UE而言,SSB和RO信道之间的时间间隔需要满足上下行转换时间TRX,否则,RO信道被视为无效,禁止在该RO信道上发送RACH preamble,仅接收SSB承载的数据。该时间间隔可以是SSB的接收结束时间点距离RO的发送起始时间点的间隔,也可以是SSB的发送起始时间点距离RO的接收结束时间点的间隔,下文中提到的时间间隔的确定方式与此类似。该上下行转换时间是本领域通用的上行数据发送与下行数据接收之间的切换所需的时间。
在本申请的一个示例中,步骤102中的确定步骤包括:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:仅在所述SSB时频资源接收所述SSB承载的数据,并禁止在所述RO时频资源发送所述目标RO承载的随机接入信号;或者在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源中的剩余资源发送所述随机接入信号中的与所述剩余资源相关联的部分随机接入信号;所述剩余资源为所述RO时频资源中不与所述SSB时频资源重叠的时频资源。
如图5所示,RO时频资源位于SBFD时频资源内,SSB时频资源与RO时频资源部分重叠,此时可以有两种传输方案:方案一,将RO信道视为无效,禁止UE在RO信道上发送RACH preamble,正常接收SSB承载的数据;方案二,将RO信道视为有效,在RO信道发送RACH preamble的一部分,并正常接收SSB承载的数据。在方案二中,具体利用RO时频资源中不与SSB时频资源重叠的那部分,即剩余资源,来发送RACH preamble中与该剩余部分相关联的数据。
由于SSB的接收是正常通信的基础,因此,SSB的接收优先级要高于其他下行信道/信号,在SSB与RO产生冲突时,优先确保SSB的接收。对于基站侧,其无需考虑SSB与SBFD时频资源或RO信道的冲突,正常下发SSB。
以上对RO信道与SSB共同复用SSB时频资源的情况进行了描述。以下以RO信道与物理下行共享信道PDSCH共存的情况为例来描述上述数据传输方法。
在本申请的一个示例中,步骤101中提到的目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行共享信道PDSCH所在的PDSCH时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,上述步骤102中执行的确定步骤包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,上述步骤102中执行的确定步骤包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,上述步骤102中执行的确定步骤包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDSCH时频资源中的与所述RO时频资源不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDSCH时频 资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,上述步骤102中执行的确定步骤包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源中与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDSCH时频资源中的与所述SBFD时频资源以及所述RO时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
如图6所示,RO时频资源位于SBFD时频资源内,SBFD时频资源与目标时频资源的重叠结果存在几种不同情况的示例,其中第一种情况为:PDSCH时频资源与SBFD时频资源不重叠,并且PDSCH时频资源与所述RO时频资源不重叠;第二种情况为:PDSCH时频资源与SBFD时频资源不重叠,并且PDSCH时频资源与所述RO时频资源存在部分重叠;第三种情况为:PDSCH时频资源与SBFD时频资源存在部分重叠,并且PDSCH时频资源与所述RO时频资源存在部分重叠;第四种情况为:PDSCH时频资源与SBFD时频资源存在部分重叠,并且PDSCH时频资源与所述RO时频资源不重叠。这仅为举例,并不具有限制性。
针对第一种情况,如图6中示出的RO#1和PDSCH1,在这种情况下,如果UE处于是全双工TDD模式,则PDSCH1和RO#1信道可以正常收发都不受到影响。即,UE可以正常发送RO#1信道承载的随机接入信号;基站可以正常下发PDSCH1承载的下行数据。如果UE处于半双工TTD模式,当RO#1和PDSCH1信道之间的时间间隔满足上下行转换时间TRX时,即,时间间隔要大于上下行转换时间TRX,PDSCH1和RO#1信道才可以正常收发,否则,仅在RO信道发送RACH preamble,禁止接收PDSCH承载的数据。只要UE处于半双工TTD模式,无论是UE还是基站均需要考虑上下行时频资源之间的时间间隔是否满足上下行切换时间的条件,在后续涉及的其他实施例中也是如此。
对于基站,也需要考虑UE的工作模式是半双工还是全双工。在UE接入网络的过程中,基站会向UE发送消息以询问UE能力,收到消息后,UE会将自身能力上报给基站,这样基站就可以知道UE是否是具有SBFD能力的UE,同时也会知道该UE是FD UE还是HD UE。
针对第二种情况,如图6中示出的RO#2和PDSCH2,在这种情况下,有两种传输方案:方案一,取消PDSCH2的接收,并且仅仅执行在RO#2信道上发送RACH preamble;方案二,执行在RO#2信道上发送RACH preamble的同时,接收PDSCH2的未重叠部分。在方案二中,关于PDSCH2的未重叠部分的接收,具体指:利用PDSCH2对应的PDSCH时频资源中的与RO时频资源不重叠的剩余资源,接收PDSCH2承载的数据中与所述剩余资源关联的部分数据。这里,在接收该部分数据时,同样需要考虑UE是HD UE还是FD UE,如果是FD UE,则正常接收,如果是HD UE,还需要考虑PDSCH与RO之间的时间间隔是否满足上下行转 换时间TRX。此外,由于用于进行下行信道传输的下行时频资源发生了改变,基站侧需要对编码端的数据执行速率匹配(rate-matching)以适应新的下行时频资源,因此,此时UE接收的该部分数据实际上是基站侧对PDSCH承载的原数据进行速率匹配后获得的数据。
针对第三种情况,如图6示出中的RO#2和PDSCH3,在这种情况下,有两种传输方案:方案一,取消PDSCH3的接收,并且仅仅执行在RO#2信道上发送RACH preamble;方案二,执行在RO#2信道上发送RACH preamble的同时,接收PDSCH3的未重叠部分。在方案二中,关于PDSCH3的未重叠部分的接收,具体指:利用PDSCH3对应的PDSCH时频资源中的与SBFD时频资源以及RO时频资源不重叠的剩余资源,接收PDSCH3承载的数据中与所述剩余资源关联的部分数据。这里,在接收该部分数据时,同样需要考虑UE是HD UE还是FD UE,如果是FD UE,则正常接收,如果是HD UE,还需要考虑PDSCH与RO之间的时间间隔是否满足上下行转换时间TRX。此外,由于用于进行下行信道传输的下行时频资源发生了改变,基站侧需要对编码端的数据执行速率匹配(rate-matching)以适应新的下行时频资源,因此,此时UE接收的该部分数据实际上是基站侧对PDSCH承载的原数据进行速率匹配后获得的数据。该速率匹配采用常规的技术,在本申请中不再赘述。
针对第四种情况,如图6示出中的RO#1和PDSCH3,在这种情况下,对于FD UE,可以正常执行PDSCH3的接收以及在RO#1信道上发送RACH preamble;但是基站在下发PDSCH3时,需要考虑PDSCH3的时频资源与SBFD时频资源的重叠,在执行速率匹配后,在PDSCH3的不与SBFD时频资源重叠的部分发送下行数据。对于HD UE,正常在RO#1信道上发送RACH preamble;另外,同样需要考虑上下行转换时间TRX,在满足上下行转换时间的条件时,才会接收PDSCH3承载的下行数据。
以上对RO信道与PDSCH共同复用SBFD时频资源的情况进行了描述,需要说明的是,该PDSCH也可能是PDSCH的重复传输(repetition),即,以上描述的数据传输机制同样适用于PDSCH的重复传输。
以下以RO信道与物理下行控制信道PDCCH共同复用SBFD时频资源的情况为例来描述上述数据传输方法。
在本申请的一个示例中,步骤101中提到的目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行控制信道PDCCH所在的PDCCH时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,在步骤102中执行的确定步骤,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源重叠或不重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源接收所述PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDCCH时频资源接 收所述PDCCH承载的数据。
在本申请的一个示例中,在步骤102中执行的确定步骤,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,在步骤102中执行的确定步骤,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,在步骤102中执行的确定步骤,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDCCH时频资源中的与所述RO时频资源不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,在步骤102中执行的确定步骤,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标RO的发送起始 点,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,在步骤102中执行的确定步骤,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源重叠或不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠,则:在没有随机接入信号要被发送的情况下,确定与所述目标时频资源对应的数据传输操作为:忽略所述目标RO,并在所述PDCCH时频资源接收所述目标PDCCH承载的数据或禁止接收所述目标PDCCH承载的数据。
如图7所示,RO时频资源位于SBFD时频资源内,SBFD时频资源与目标时频资源的重叠结果存在几种不同情况的示例,其中第一种情况为:PDCCH时频资源与SBFD时频资源不重叠,并且PDCCH时频资源与所述RO时频资源不重叠;第二种情况为:PDCCH时频资源与SBFD时频资源不重叠,并且PDCCH时频资源与RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点;第三种情况为:PDCCH时频资源与SBFD时频资源不重叠,并且PDCCH时频资源与RO时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标RO的发送起始点。当然,可能还有别的情况,仅为举例,不限于此。
针对第一种情况,如图7中的RO#1和PDCCH1,在这种情况下,如果UE处于是全双工TDD模式,则PDCCH1和RO#1信道可以正常收发都不受到影响;如果UE处于半双工TTD模式,当RO#1和PDCCH1信道之间的时间间隔满足上下行转换时间TRX时,即,时间间隔要大于上下行转换时间TRX,PDCCH1和RO#1信道才可以正常收发,否则,仅在RO#1信道发送RACH preamble,禁止接收PDCCH1承载的数据。
针对第二种情况,如图7中的RO#2和PDCCH2,在这种情况下,有三种传输方案:方案一,取消PDCCH2的接收,并且仅仅执行在RO#2信道上发送RACH preamble;方案二,执行在RO#2信道上发送RACH preamble的同时,接收PDCCH2的未重叠部分;方案三,在没有RACH preamble要被发送的情况下,正常进行PDCCH2的接收,而忽略RO#2,或者不接收PDCCH2。在方案二中,关于PDCCH2的未重叠部分的接收,具体指:利用PDCCH2对应的PDCCH时频资源中的与RO时频资源不重叠的剩余资源,接收PDCCH2承载的数据中与所述剩余资源关联的部分数据。这里,在接收该部分数据时,同样需要考虑UE是HD UE还是FD UE,如果是FD UE,则正常接收,如果是HD UE,还需要考虑PDCCH与RO之间的时间间隔是否满足上下行转换时间TRX。此外,由于用于进行下行信道传输的下行时频资源发生了改变,基站侧需要对编码端的数据执行速率匹配(rate-matching)以适应新的下行时频资源,因此,此时UE接收的该部分数据实际上是基站侧对PDCCH承载的原数据进行速 率匹配后获得的数据。
针对第三种情况,如图7中的RO#2和PDCCH3,在这种情况下,有三种传输方案:方案一,取消PDCCH3的接收,并且仅仅执行在RO#2信道上发送RACH preamble;方案二,执行在RO#2信道上发送RACH preamble的同时,接收PDCCH3的未重叠部分;方案三,在没有RACH preamble要被发送的情况下,正常进行PDCCH3的接收,而忽略RO#2,或者不接收PDCCH3。在方案二中,关于PDCCH3的未重叠部分的接收,具体指:利用PDCCH3对应的PDCCH时频资源中的与所述RO时频资源不重叠的剩余资源,接收PDCCH3承载的数据中与所述剩余资源关联的部分数据。这里,在接收该部分数据时,同样需要考虑UE是HD UE还是FD UE,如果是FD UE,则正常接收,如果是HD UE,还需要考虑PDCCH与RO之间的时间间隔是否满足上下行转换时间TRX。此外,由于用于进行下行信道传输的下行时频资源发生了改变,基站侧需要对编码端的数据执行速率匹配(rate-matching)以适应新的下行时频资源,因此,此时UE接收的该部分数据实际上是基站侧对PDCCH承载的原数据进行速率匹配后获得的数据。
在以上三种情况的示例中,并未考虑SBFD时频资源与PDCCH时频资源部分重叠。如果SBFD时频资源与PDCCH时频资源存在部分重叠,则除了去除PDCCH与RO的重叠部分外,还需要去除与SBFD时频资源重叠的部分。
以上对RO信道、SSB、PDSCH、PDCCH为例,对SBFD模式下的4步随机接入过程中随机接入信号的传输机制进行了描述。
在本申请的一个示例中,上述RO属于针对SBFD模式配置的专有RO组;和/或,上述随机接入信号为针对SBFD模式配置的专有随机接入信号或协议规定的常规随机接入信号。
根据5G NR的通信机制,在RO与SSB之间存在一个匹配关系。对于传统UE(Legacy UE),由于其无法识别SBFD的配置,因此SSB与RO的匹配关系不会因为SBFD的配置而发生变化。但是对于支持SBFD模式的UE(SBFD UE),SSB与RO的匹配关系会因为SBFD的配置而发生变化。从图8中可以看出,SBFD时频资源位于DL时隙之内并且被设置为UL/Flexible;图8的上半图对应Legacy UE,下半图对应SBFD UE;因为legacy UE不识别SIB1中的SBFD配置,因此Legacy UE的SSB与RO的匹配关系为SSB#1对应slot#2的RO#2,SSB#2对应slot#2的RO#3;因为SBFD UE识别SIB1中的SBFD配置,因此SBFD UE的SSB与RO的匹配关系为SSB#1对应slot#1的RO#1和slot#2的RO#3,SSB#2对应slot#2的RO#2;因此legacy UE和SBFD UE的SSB与RO的匹配关系会因为SBFD配置而不同。此时,如果UE选择RO#2或者RO#3去发送RACH preamble,则基站不知道该preamble是从legacy UE和SBFD UE中哪个UE发出的,因此也无法确定RO对应SSB,这是因为legacy UE和SBFD UE使用的是相同preamble集合。
为此,本申请的方案提出:通过针对SBFD模式配置专有RACH preamble对SBFD UE进行识别;利用广播信令(如:SIB1)来承载SBFD专有RACH preamble的配置如下所示;SBFD UE根据配置选择和发送SBFD专有RACH preamble;这样基站在接收到该preamble就知道SBFD UE需要接入而且会根据配置给SBFD UE的SSB与RO的匹配关系来确定用于发送随机接入响应RAR的下行波束。
RACH-ConfigCommonFor SBFD{
SBFD-TotalNumberOfRA-Preambles
SBFD-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB}
或者通过RO进行区分,SBFD UE使用针对SBFD模式配置的RO组中的RO,Legacy UE使用常规配置的RO;SSB与SBFD专有的RO组中的RO和常规配置的RO分别进行匹配,具体如图9所示。对于SBFD UE,仅仅使用Slot#1中的RO#1和RO#2;而Legacy UE使用Slot#2中的RO#1和RO#2;这样就不会出现由于配置了SBFD而导致SSB与RO的匹配关系被错误识别。
SBFD时频资源的配置可以通过广播信令的方式被下发给UE。如果广播信令不包括SBFD时频资源的配置,则可以针对PDCCH order触发的随机接入来动态配置SBFD资源以用于上行随机接入。DCI包含的信息指示内容如下表,主要是指示SBFD时频资源以及在该资源下的PRACH资源,如图10所示。
Figure PCTCN2022112308-appb-000001
SBFD模式下的2步随机接入传输方法
2步随机接入过程对4步随机接入过程进行了简化。在4步随机接入过程的步骤1,利用RO信道来发送随机接入信号,而在2步随机接入过程的步骤1,除了利用MsgA RO信道外,还利用了MsgA PUSCH信道来发送上行数据,该MsgA PUSCH信道与该MsgA RO信道存在关联关系。
以下结合2步随机接入过程中使用到的上行/下行时频资源来对SBFD模式下的数据传输 机制进行描述。
在本申请的一个示例中,步骤101中的目标时频资源包括:用于发送随机接入消息MsgA的目标MsgA随机接入信道机会RO所在的MsgA RO时频资源以及与目标MsgA RO相关联的目标MsgA物理上行共享信道PUSCH所在的MsgA PUSCH时频资源;目标MsgA RO和目标MsgA PUSCH满足:目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在未分配SBFD时频资源的时隙;或者目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙;MsgA PUSCH与MsgA RO对应不同的时隙;或者目标MsgA PUSCH配置在未分配SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙。
在广播信令中配置SBFD之后,这会影响2步随机接入的资源配置,目前主要有3种情况。第一种情况:SBFD资源上仅仅配置了2步随机接入的MsgA RO,同时MsgA PUSCH配置在传统的UL时隙,而且MsgA RO与MsgA PUSCH进行关联;这种情况仅仅适用支持SBFD模式的UE,具体见图11所示。
针对MsgA RO与MsgA PUSCH的资源分配有两种方法,一种是MsgA RO资源与MsgA PUSCH资源只分配给SBFD UE;另一种是MsgA RO资源只分配给SBFD用户,而针对MsgA PUSCH资源,SBFD UE和legacy UE可以共享,同时为了区分SBFD UE和legacy UE,可以配置SBFD专有RACH preamble对SBFD UE进行识别或者SBFD UE仅仅可以使用SBFD资源内的RO。
第二种情况:SBFD资源上既配置了2步随机接入的MsgA RO又配置了MsgA PUSCH信道,而且MsgA RO与MsgA PUSCH进行关联;这种情况仅仅适用SBFD UE;具体见图12所示。
第三种情况:SBFD资源上仅仅配置了2步随机接入的MsgA PUSCH同时MsgA RO在传统的UL时隙,而且MsgA RO与MsgA PUSCH进行关联;这种情况仅仅适用SBFD UE;具体见图13。
针对MsgA RO与MsgA PUSCH的资源分配,有两种方法,一种是MsgA RO与MsgA PUSCH只针对SBFD UE进行分配;另一种MsgA PUSCH只针对SBFD用户,而针对MsgA RO资源,SBFD UE和legacy UE可以共享,SBFD UE是针对2步RACH;而legacyUE可以是2步RACH或者4步RACH;同时为了区分SBFD UE和legacy UE,可以配置SBFD专有RACH preamble对SBFD UE进行识别或者通过SBFD UE仅仅可以使用SBFD资源内的MsgA PUSCH以及对应msgA RO来进行2步随机接入。
在SBFD模式下的2步随机接入传输方法中,MsgA RO信道的传输机制与4步随机接入传输方法中的类似,在此不再赘述,以下主要针对MsgA PUSCH的传输来进行描述。然而,由于MsgA PUSCH与MsgA RO信道的关联性,在MsgA RO信道无效的情况下,MsgA PUSCH也无效,即,不会利用MsgA PUSCH来发送数据。而在MsgA PUSCH无效的情况下,如果MsgA RO信道有效,则可以正常在MsgA RO信道发送随机接入信号,然后UE进行MsgA PUSCH的重传。此时,如果重传计数器超时,则可以由2步随机接入切换到4步随机接入。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述SSB时频资源接收所述SSB承载的数据,以及在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;或者当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源接收所述SSB承载的数据,以及在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;以及在不满足所述条件时,禁止在所述MsgA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,仅在所述SSB时频资源接收所述SSB承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:禁止在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;或者在所述MsgA PUSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送所述目标MsgA PUSCH承载的数据中与所述剩余资源关联的部分数据。
如图14所示,PUSCH时频资源位于SBFD时频资源内,SBFD时频资源与目标时频资源的重叠结果分为两种情况,其中第一种情况为:SSB时频资源与SBFD时频资源重叠或不重叠,并且SSB时频资源与所述PUSCH时频资源不重叠。针对第一种情况,如果UE处于是全双工TDD模式,则SSB和MsgA PUSCH可以正常收发都不受到影响;如果UE处于半双工TTD模式,当SSB和MsgA PUSCH之间的时间间隔满足上下行转换时间TRX时,即,时间间隔要大于上下行转换时间TRX,SSB和MsgA PUSCH才可以正常收发,否则,MsgA PUSCH无效,仅在SSB时频资源接收数据。
如图14所示,SBFD时频资源与目标时频资源的重叠结果的第二种情况为:SSB时频资源与SBFD时频资源重叠或不重叠,并且SSB时频资源与PUSCH时频资源存在部分重叠。针对第二种情况,有两种传输方案:方案一,MsgA PUSCH无效,UE不能在该MsgA PUSCH上发送数据;方案二,MsgA PUSCH有效,UE可以在该MsgA PUSCH上发送部分数据。在方案二中,在该MsgA PUSCH上发送部分数据,具体指:利用MsgA PUSCH对应的PUSCH时频资源中的与SSB时频资源不重叠的剩余资源,发送MsgA PUSCH承载的数据中与所述剩余资源关联的部分数据。此外,由于用于进行上行信道传输的上行时频资源发生了改变,UE需要对编码端的数据执行速率匹配(rate-matching)以适应新的上行时频资源,因此,此时UE发送的该部分数据实际上是对MsgA PUSCH承载的原数据进行速率匹配后获得的数据。
在本申请的一个实例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述 目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个实例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并且在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个实例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述 MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个实例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并且在所述PDCCH时频资源中的与所述SBFD时频资源、所述MSGA PUSCH时频资源均不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个实例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源重叠或不重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:在没有随机接入信号要被发送的情况下,确定与所述目标时频资源对应的数据传输操作为:忽略所述目标MSGA PUSCH,并在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
如图15所示,SBFD时频资源与目标时频资源的重叠结果分为两种情况,其中第一种情况为:PDCCH时频资源与SBFD时频资源重叠或不重叠,并且PDCCH时频资源与PUSCH时频资源不重叠。针对第一种情况,如图15中的MsgA PUSCH1/PUSCH2和PDCCH1,在这种情况下,如果UE处于是全双工TDD模式,则PDCCH1和MsgA PUSCH1/PUSCH2可以正常收发都不受到影响;如果UE处于半双工TTD模式,当MsgA PUSCH1/PUSCH2和PDCCH1之间的时间间隔满足上下行转换时间TRX时,即,时间间隔要大于上下行转换时间TRX,PDCCH1和MsgA PUSCH1/PUSCH2才可以正常收发,否则,仅在MsgA PUSCH1/PUSCH2发送数据,禁止接收PDCCH1承载的数据。
如图15所示,SBFD时频资源与目标时频资源的重叠结果的第二种情况为:PDCCH时频资源与SBFD时频资源重叠或不重叠,并且PDCCH时频资源与PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述PUSCH的发送起始点。针对第二种情况,如图15中的PUSCH1/PUSCH2和PDCCH2,在这种情况下,有三种传输方案:方案一,取 消PDCCH2的接收,并且仅仅执行在MsgA PUSCH1/PUSCH2上发送数据;方案二,执行在MsgA PUSCH1/PUSCH2上发送数据的同时,接收PDCCH2的未重叠部分;方案三,在UE知道不执行2步RACH发送的情况下,正常进行PDCCH2的接收,而忽略MsgA PUSCH1/PUSCH2。在方案二中,关于PDCCH2的未重叠部分的接收,具体指:利用PDCCH2对应的PDCCH时频资源中的与PUSCH时频资源不重叠的剩余资源,接收PDCCH2承载的数据中与所述剩余资源关联的部分数据。这里,在接收该部分数据时,同样需要考虑UE是HD UE还是FD UE,如果是FD UE,则正常接收,如果是HD UE,还需要考虑PDCCH2与MsgA PUSCH1/PUSCH2之间的时间间隔是否满足上下行转换时间TRX。此外,由于用于进行下行信道传输的下行时频资源发生了改变,基站侧需要对编码端的数据执行速率匹配(rate-matching)以适应新的下行时频资源,因此,此时UE接收的该部分数据实际上是基站侧对PDCCH2承载的原数据进行速率匹配后获得的数据。
如图16所示,SBFD时频资源与目标时频资源的重叠结果分为三种情况,其中第一种情况为:PDSCH时频资源与SBFD时频资源重叠或不重叠,并且PDSCH时频资源与PUSCH时频资源不重叠。针对第一种情况,如图16中的MsgA PUSCH1/PUSCH2和PDSCH1,在这种情况下,如果UE处于是全双工TDD模式,则PDSCH1和MsgA PUSCH1/PUSCH2可以正常收发都不受到影响;如果UE处于半双工TTD模式,当MsgA PUSCH1/PUSCH2和PDSCH1之间的时间间隔满足上下行转换时间TRX时,即,时间间隔要大于上下行转换时间TRX,PDSCH1和MsgA PUSCH1/PUSCH2才可以正常收发,否则,仅在MsgA PUSCH1/PUSCH2发送数据,禁止接收PDSCH1承载的数据。
如图16所示,SBFD时频资源与目标时频资源的重叠结果的第二种情况为:PDSCH时频资源与SBFD时频资源不重叠,并且PDSCH时频资源与PUSCH时频资源存在部分重叠。针对第二种情况,如图16中的PUSCH1/PUSCH2和PDSCH2,在这种情况下,有两种传输方案:方案一,取消PDSCH2的接收,并且仅仅执行在MsgA PUSCH1/PUSCH2上发送数据;方案二,执行在MsgA PUSCH1/PUSCH2上发送数据的同时,接收PDSCH2的未重叠部分。在方案二中,关于PDCCH2的未重叠部分的接收,具体指:利用PDSCH2对应的PDSCH时频资源中的与PUSCH时频资源不重叠的剩余资源,接收PDSCH2承载的数据中与所述剩余资源关联的部分数据。这里,在接收该部分数据时,同样需要考虑UE是HD UE还是FD UE,如果是FD UE,则正常接收,如果是HD UE,还需要考虑PDSCH2与MsgA PUSCH1/PUSCH2之间的时间间隔是否满足上下行转换时间TRX。此外,由于用于进行下行信道传输的下行时频资源发生了改变,基站侧需要对编码端的数据执行速率匹配(rate-matching)以适应新的下行时频资源,因此,此时UE接收的该部分数据实际上是基站侧对PDSCH2承载的原数据进行速率匹配后获得的数据。
如图16所示,SBFD时频资源与目标时频资源的重叠结果的第三种情况为:PDSCH时频资源与SBFD时频资源存在部分重叠,并且PDSCH时频资源与PUSCH时频资源存在部分重叠。针对第三种情况,如图16中的PUSCH1/PUSCH2和PDSCH3,在这种情况下,有两种传输方案:方案一,取消PDSCH3的接收,并且仅仅执行在MsgA PUSCH1/PUSCH2上发送数据;方案二,执行在MsgA PUSCH1/PUSCH2上发送数据的同时,接收PDSCH3的未重叠部分。在方案二中,关于PDCCH2的未重叠部分的接收,具体指:利用PDSCH2对应的PDSCH时频资源中的与SBFD时频资源不重叠的剩余资源,接收PDSCH3承载的数据中与 所述剩余资源关联的部分数据。这里,在接收该部分数据时,同样需要考虑UE是HD UE还是FD UE,如果是FD UE,则正常接收,如果是HD UE,还需要考虑PDSCH3与MsgA PUSCH1/PUSCH2之间的时间间隔是否满足上下行转换时间TRX。此外,由于用于进行下行信道传输的下行时频资源发生了改变,基站侧需要对编码端的数据执行速率匹配(rate-matching)以适应新的下行时频资源,因此,此时UE接收的该部分数据实际上是基站侧对PDSCH3承载的原数据进行速率匹配后获得的数据。
SBFD时频资源的配置可以通过广播信令的方式被下发给UE。如果广播信令不包括SBFD时频资源的配置,则可以针对PDCCH order触发的随机接入来动态配置SBFD资源以用于上行随机接入。DCI包含的信息指示内容如下表,主要是指示SBFD时频资源以及在该资源下的2步PRACH资源。
Figure PCTCN2022112308-appb-000002
与以上应用于UE的数据传输方法相对应地,在本申请的一个示例中,提供一种数据传输方法,其特征在于,所述方法应用于支持子带全双工SBFD模式的基站,并且所述方法包括:确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;在所述目标时隙执行所确定的数据传输操作。
在本申请的一个示例中,所述目标时隙为上行UL时隙、下行DL时隙或特殊时隙;所述SBFD时频资源在时域上占用所述目标时隙的至少一个符号,在频域针对每个符号占用至少一个物理资源块。
在本申请的一个示例中,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及同步信号块SSB所在的SSB时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:仅在所述SSB时频资源发 送所述SSB承载的数据,并禁止在所述RO时频资源执行随机接入信号的检测;或者在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源中的剩余资源接收所述目标RO承载的随机接入信号中的与所述剩余资源相关联的部分随机接入信号;所述剩余资源为所述RO时频资源中不与所述SSB时频资源重叠的时频资源。
在本申请的一个示例中,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源不重叠,则:若待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及在不满足所述条件时,禁止在所述RO时频资源执行随机接入信号的检测,仅在所述SSB时频资源发送所述SSB承载的数据。
在本申请的一个示例中,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行共享信道PDSCH所在的PDSCH时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:对所述目标PDSCH承载的数据执行速率匹配;在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配,在所述 PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配;在所述PDSCH时频资源中的与所述RO时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:对所述目标PDSCH承载的数据执行速率匹配;在所述PDSCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配;在所述PDSCH时频资源中的与所述RO时频资源、所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者在不满足所述条件时,在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行控制信道PDCCH所在的PDCCH时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频 资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
在本申请的一个示例中,若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:对所述目标PDCCH承载的数据执行速率匹配;在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配,在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
在本申请的一个示例中,若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若待从所述基站接收数据的UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配;在所述PDCCH时频资源中的与所述RO时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者在不满足所述条件时,仅在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
在本申请的一个示例中,若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:对所述目标PDCCH承载的数据执行速率匹配;在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配;在所述PDCCH时频资源中的与所述RO时频资源以及所述SBFD时频资源均不重叠的 剩余资源,发送执行所述速率匹配后获得的数据;以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者在不满足所述条件时,仅在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
在本申请的一个示例中,所述目标RO为MsgA RO。
在本申请的一个示例中,所述目标时频资源包括:用于发送随机接入消息MsgA的目标MsgA随机接入信道机会RO所在的MsgA RO时频资源以及与目标MsgA RO相关联的目标MsgA物理上行共享信道PUSCH所在的MsgA PUSCH时频资源;目标MsgA RO和目标MsgA PUSCH满足:目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在未分配SBFD时频资源的时隙;或者目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙;MsgA PUSCH与MsgA RO对应不同的时隙;或者目标MsgA PUSCH配置在未分配SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源不重叠,则:当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述SSB时频资源发送所述SSB承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述SSB与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源发送所述SSB承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及在不满足所述条件时,禁止在所述MsgA PUSCH时频资源接收MsgA PUSCH承载的数据,仅在所述SSB时频资源发送所述SSB承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:禁止在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者在所述MsgA PUSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,接收所述目标MsgA PUSCH承载的数据中与所述剩余资源关联的部分数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠, 并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源发送所述PDCCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源发送所述PDCCH的承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MsgA PUSCH的发送起始点;若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若待从所述基站接收数据的UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配;
在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:对所述目标PDCCH承载的数据执行速率匹配;在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配,在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标 MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源发送所述目标PDCCH的承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MsgA PUSCH的发送起始点;若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:对所述目标PDCCH承载的数据执行速率匹配;在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配;在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源以及所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行共享信道PDSCH所在的PDSCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源不重叠,则:当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源存在部分重叠,则:若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MsgA PUSCH时频资 源接收所述目标MsgA PUSCH承载的数据;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配;在所述PDSCH时频资源中的与所述MsgA PUSCH时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源存在部分重叠,则:若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:对所述目标PDSCH承载的数据执行速率匹配;在所述PDSCH时频资源中的与所述SBFD时频资源、所述MsgA PUSCH时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配;在所述PDSCH时频资源中的与所述MsgA PUSCH时频资源、所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行共享信道PDSCH所在的PDSCH时频资源;所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源不重叠,则:当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:对所述目标PDSCH承载的数据执行速率匹配;在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配,在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载 的数据。
在本申请的一个示例中,所述方法进一步包括:当所述目标MsgA RO无效时,禁止在所述MsgA RO时频资源执行MsgA RO的探测,以及禁止在在与所述目标MsgA RO相关联的目标MsgA PUSCH所在的MsgA PUSCH时频资源接收MsgA PUSCH承载的数据;或者禁止在目标MsgA PUSCH所在的MsgA PUSCH时频资源MsgA PUSCH的探测,但是在所述MsgA RO时频资源接收随机接入信号。
在本申请的一个示例中,所述目标RO或所述目标MsgA RO属于针对SBFD模式配置的专有RO组;和/或,所述目标RO或所述目标MsgA RO承载的随机接入信号为针对SBFD模式配置的专有随机接入信号或协议规定的常规随机接入信号。
在本申请的一个示例中,所述方法进一步包括:将所述SBFD时频资源的配置信息携带在广播信令中发送给UE;或者将所述SBFD时频资源的配置信息携带在下行控制信息DCI中发送给UE。
以上结合各个具体示例对本申请提供的数据传输方法进行了详细的描述。根据本申请提供的技术方案,能够在不影响当前5G HD系统的情况下,使用TDD SBFD的时频域资源进行上行随机接入传输,这样就可以增加上行接入资源,从而减少接入延迟;同时定义了DL信道与PRACH重叠时的传输准则,确定了基站和UE的接收和传输行为,减少了基站和UE的盲检并有效增加了上行传输机会,提高了上行传输可靠性。
基于与上述数据传输方法同样的构思,本申请一个示例中提出一种应用于UE的数据传输装置。所述装置应用于支持子带全双工SBFD模式的UE,如图17所示,所述装置包括:
第一确定模块1701,用于基于基站下发的配置信息确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;第二确定模块1702,用于根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;执行模块1703,用于在所述目标时隙执行所确定的数据传输操作。
在本申请的一个示例中,所述目标时隙为上行UL时隙、下行DL时隙或特殊时隙;所述SBFD时频资源在时域上占用所述目标时隙的至少一个符号,在频域针对每个符号占用至少一个物理资源块。
在本申请的一个示例中,在所述UE通过4步随机接入过程接入网络的情况下,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述RO时频资源位于所述SBFD时频资源内,则:当所述SBFD时频资源对应的符号为上行UL符号或灵活F符号时,确定与所述目标时频资源对应的数据传输操作为:在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述SBFD时频资源对应的符号为下行DL符号时,确定与所述目标时频资源对应的数据传输操作为:禁止发送所述随机接入信号。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述RO时频资源与所述SBFD时频资源存在部分重叠,则:当所述SBFD时频资源对应的符号为上行UL符号或灵活F符号时,确定与所述目标时频资源对应的数据传输操作为:禁止发送所述目标RO承载的随机接入信号;或者在所述SBFD时频资源中的与所述RO时频资源相重叠的重叠资源,发送所述随机接入信号中的与所述重叠资源相对应的部分随机接入信号;或者当所述SBFD时频资源对应的符号为下行DL符号时,确定与所述目标时频资源对应的数据传输操作为:禁止发送所述随机接入信号。
在本申请的一个示例中,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及同步信号块SSB所在的SSB时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:仅在所述SSB时频资源接收所述SSB承载的数据,并禁止在所述RO时频资源发送所述目标RO承载的随机接入信号;或者在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源中的剩余资源发送所述随机接入信号中的与所述剩余资源相关联的部分随机接入信号;所述剩余资源为所述RO时频资源中不与所述SSB时频资源重叠的时频资源。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;或者当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,禁止在所述RO时频资源发送所述随机接入信号,仅在所述SSB时频资源接收所述SSB承载的数据。
在本申请的一个示例中,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行共享信道PDSCH所在的PDSCH时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频 资源对应的数据传输操作为:在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDSCH时频资源中的与所述RO时频资源不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源中与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述 UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDSCH时频资源中的与所述SBFD时频资源以及所述RO时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行控制信道PDCCH所在的PDCCH时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,具体用于:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发 送起始点,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDCCH时频资源中的与所述RO时频资源不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标RO的发送起始点,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源重叠或不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠,则:在没有随机接入信号要被发送的情况下,确定与所述目标时频资源对应的数据传输操作为:忽略所述目标RO,并在所述PDCCH时频资源接收所述目标PDCCH承载的数据或禁止接收所述目标PDCCH承载的数据。
在本申请的一个示例中,在所述UE通过2步随机接入过程接入网络的情况下,所述目标时频资源包括:用于发送随机接入消息MsgA的目标MsgA随机接入信道机会RO所在的MsgA RO时频资源以及与目标MsgA RO相关联的目标MsgA物理上行共享信道PUSCH所在的MsgA PUSCH时频资源;目标MsgA RO和目标MsgA PUSCH满足:目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在未分配SBFD时频资源的时隙;或者目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙;MsgA PUSCH与MsgA RO对应不同的时隙;或者目标MsgA PUSCH配置在未分配SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内; 所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述SSB时频资源接收所述SSB承载的数据,以及在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;或者当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源接收所述SSB承载的数据,以及在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;以及在不满足所述条件时,禁止在所述MsgA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,仅在所述SSB时频资源接收所述SSB承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:禁止在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;或者在所述MsgA PUSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送所述目标MsgA PUSCH承载的数据中与所述剩余资源关联的部分数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并且在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并且在所述PDCCH时频资源中的与所述SBFD时频资源、所述 MSGA PUSCH时频资源均不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源重叠或不重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:在没有随机接入信号要被发送的情况下,确定与所述目标时频资源对应的数据传输操作为:
忽略所述目标MSGA PUSCH,并在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源不重叠,则:
当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;或者
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源不重叠,则:
当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;或者
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源存在部分重叠,则:
当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并在所述PDSCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源存在部分重叠,则:
当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并在所述PDSCH时频资源中的与MSGA PUSCH时频资源以及所述SBFD时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDS CH时频资源接收所述目标PDSCH承载的数据。
在本申请的一个示例中,当所述目标MsgA RO无效时,禁止在所述MsgA RO时频资源发送数据,以及禁止在与所述目标MsgA RO相关联的目标MsgA PUSCH所在的MsgA PUSCH时频资源发送数据;或者
当禁止在目标MsgA PUSCH所在的MsgA PUSCH时频资源发送数据时,如果允许在所述目标MsgA PUSCH相关联的目标MsgA RO所在的MsgA RO时频资源发送数据,则在所述MsgA RO时频资源发送随机接入信号。
在本申请的一个示例中,所述目标RO或所述目标MsgA RO属于针对SBFD模式配置的专有RO组;和/或,
所述目标RO或所述目标MsgA RO承载的随机接入信号为针对SBFD模式配置的专有随机接入信号或协议规定的常规随机接入信号。
在本申请的一个示例中,所述配置信息被携带在广播信令或下行控制信息DCI中下发给所述UE。
在本申请的一个示例中,所述目标RO为MsgA RO。
基于与上述数据传输方法同样的构思,本申请一个示例中提出一种应用于基站的数据传输装置。
在本申请的一个示例中,所述装置应用于支持子带全双工SBFD模式的基站,并且所述装置包括:
第一确定模块,用于确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;
第二确定模块,用于根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定 与所述目标时频资源对应的数据传输操作;
执行模块,用于在所述目标时隙执行所确定的数据传输操作。
在本申请的一个示例中,所述目标时隙为上行UL时隙、下行DL时隙或特殊时隙;所述SBFD时频资源在时域上占用所述目标时隙的至少一个符号,在频域针对每个符号占用至少一个物理资源块。
在本申请的一个示例中,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及同步信号块SSB所在的SSB时频资源;
所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
仅在所述SSB时频资源发送所述SSB承载的数据,并禁止在所述RO时频资源执行随机接入信号的检测;或者
在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源中的剩余资源接收所述目标RO承载的随机接入信号中的与所述剩余资源相关联的部分随机接入信号;所述剩余资源为所述RO时频资源中不与所述SSB时频资源重叠的时频资源。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源不重叠,则:
若待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
在不满足所述条件时,禁止在所述RO时频资源执行随机接入信号的检测,仅在所述SSB时频资源发送所述SSB承载的数据。
在本申请的一个示例中,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行共享信道PDSCH所在的PDSCH时频资源;
所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,
若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,
若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
对所述目标PDSCH承载的数据执行速率匹配;
在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配,在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
对所述目标PDSCH承载的数据执行速率匹配;
在所述PDSCH时频资源中的与所述RO时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
对所述目标PDSCH承载的数据执行速率匹配;
在所述PDSCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
对所述目标PDSCH承载的数据执行速率匹配;
在所述PDSCH时频资源中的与所述RO时频资源、所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
在不满足所述条件时,在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行控制信道PDCCH所在的PDCCH时频资源;
所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
所述RO时频资源位于所述SBFD时频资源中。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:
当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,
若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
对所述目标PDCCH承载的数据执行速率匹配;
在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号; 或者
若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配,在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:
若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若待从所述基站接收数据的UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
对所述目标PDCCH承载的数据执行速率匹配;
在所述PDCCH时频资源中的与所述RO时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
在不满足所述条件时,仅在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
在本申请的一个示例中,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:
若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
对所述目标PDCCH承载的数据执行速率匹配;
在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
对所述目标PDCCH承载的数据执行速率匹配;
在所述PDCCH时频资源中的与所述RO时频资源以及所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
在不满足所述条件时,仅在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
在本申请的一个示例中,所述目标RO为MsgA RO。
在本申请的一个示例中,所述目标时频资源包括:用于发送随机接入消息MsgA的目标MsgA随机接入信道机会RO所在的MsgA RO时频资源以及与目标MsgA RO相关联的目标MsgA物理上行共享信道PUSCH所在的MsgA PUSCH时频资源;
目标MsgA RO和目标MsgA PUSCH满足:
目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在未分配SBFD时频资源的时隙;或者
目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙;MsgA PUSCH与MsgA RO对应不同的时隙;或者
目标MsgA PUSCH配置在未分配SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源不重叠,则:
当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在所述SSB时频资源发送所述SSB承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述SSB与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源发送所述SSB承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
在不满足所述条件时,禁止在所述MsgA PUSCH时频资源接收MsgA PUSCH承载的数据,仅在所述SSB时频资源发送所述SSB承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
禁止在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
在所述MsgA PUSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,接收所述目标MsgA PUSCH承载的数据中与所述剩余资源关联的部分数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在所述PDCCH时频资源发送所述PDCCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDCCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源发送所述PDCCH的承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MsgA PUSCH的发送起始点;
若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若待从所述基站接收数据的UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
对所述目标PDCCH承载的数据执行速率匹配;
在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
对所述目标PDCCH承载的数据执行速率匹配;
在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDCCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配,在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源发送所述目标PDCCH的承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MsgA PUSCH的发送起始点;
若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
对所述目标PDCCH承载的数据执行速率匹配;
在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
对所述目标PDCCH承载的数据执行速率匹配;
在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源以及所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行共享信道PDSCH所在的PDSCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源存在部分重叠,则:
若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,
对所述目标PDSCH承载的数据执行速率匹配;
在所述PDSCH时频资源中的与所述MsgA PUSCH时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内; 所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源存在部分重叠,则:
若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
对所述目标PDSCH承载的数据执行速率匹配;
在所述PDSCH时频资源中的与所述SBFD时频资源、所述MsgA PUSCH时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,
对所述目标PDSCH承载的数据执行速率匹配;
在所述PDSCH时频资源中的与所述MsgA PUSCH时频资源、所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行共享信道PDSCH所在的PDSCH时频资源;
所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
对所述目标PDSCH承载的数据执行速率匹配;
在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作 为:
在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配,在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
在本申请的一个示例中,所述装置进一步包括:当所述目标MsgA RO无效时,禁止在所述MsgA RO时频资源执行MsgA RO的探测,以及禁止在在与所述目标MsgA RO相关联的目标MsgA PUSCH所在的MsgA PUSCH时频资源接收MsgA PUSCH承载的数据;或者
禁止在目标MsgA PUSCH所在的MsgA PUSCH时频资源MsgA PUSCH的探测,但是在所述MsgA RO时频资源接收随机接入信号。
在本申请的一个示例中,所述目标RO或所述目标MsgA RO属于针对SBFD模式配置的专有RO组;和/或,
所述目标RO或所述目标MsgA RO承载的随机接入信号为针对SBFD模式配置的专有随机接入信号或协议规定的常规随机接入信号。
在本申请的一个示例中,所述装置进一步包括:发送模块,用于将所述SBFD时频资源的配置信息携带在广播信令中发送给UE;或者将所述SBFD时频资源的配置信息携带在下行控制信息DCI中发送给UE。
基于与上述方法同样的申请构思,本申请一个例子中提出一种电子设备(如上述例子的基站或用户设备),如图18所示,电子设备包括处理器1801和机器可读存储介质1802,机器可读存储介质1802存储有能够被处理器执行的机器可执行指令;处理器1801用于执行机器可执行指令,以实现本申请上述示例公开的数据传输方法。
基于与上述方法同样的申请构思,本申请一个例子还提供一种机器可读存储介质,所述机器可读存储介质上存储有若干计算机指令,所述计算机指令被处理器执行时,能够实现本申请上述示例公开的数据传输方法。
其中,上述机器可读存储介质可以是任何电子、磁性、光学或其它物理存储装置,可以包含或存储信息,如可执行指令、数据,等等。例如,机器可读存储介质可以是:RAM(Radom Access Memory,随机存取存储器)、易失存储器、非易失性存储器、闪存、存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、dvd等),或者类似的存储介质,或者它们的组合。
上述实施例阐明的设备、装置或模块,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可以由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其它可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
而且,这些计算机程序指令也可以存储在能引导计算机或其它可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或者多个流程和/或方框图一个方框或者多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备上,使得在计算机或者其它可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (130)

  1. 一种数据传输方法,其特征在于,所述方法应用于支持子带全双工SBFD模式的UE,并且所述方法包括:
    基于基站下发的配置信息确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;
    根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;
    在所述目标时隙执行所确定的数据传输操作。
  2. 根据权利要求1所述的方法,其特征在于,所述目标时隙为上行UL时隙、下行DL时隙或特殊时隙;所述SBFD时频资源在时域上占用所述目标时隙的至少一个符号,在频域针对每个符号占用至少一个物理资源块。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述UE通过4步随机接入过程接入网络的情况下,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述RO时频资源位于所述SBFD时频资源内,则:
    当所述SBFD时频资源对应的符号为上行UL符号或灵活F符号时,确定与所述目标时频资源对应的数据传输操作为:在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述SBFD时频资源对应的符号为下行DL符号时,确定与所述目标时频资源对应的数据传输操作为:禁止发送所述随机接入信号。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:若所述重叠结果为:所述RO时频资源与所述SBFD时频资源存在部分重叠,则:
    当所述SBFD时频资源对应的符号为上行UL符号或灵活F符号时,确定与所述目标时频资源对应的数据传输操作为:
    禁止发送所述目标RO承载的随机接入信号;或者
    在所述SBFD时频资源中的与所述RO时频资源相重叠的重叠资源,发送所述随机接入信号中的与所述重叠资源相对应的部分随机接入信号;或者
    当所述SBFD时频资源对应的符号为下行DL符号时,确定与所述目标时频资源对应的数据传输操作为:
    禁止发送所述随机接入信号。
  6. 根据权利要求1所述的方法,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及同步信号块SSB所在的SSB时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
    仅在所述SSB时频资源接收所述SSB承载的数据,并禁止在所述RO时频资源发送所述目标RO承载的随机接入信号;或者
    在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源中的剩余资源发送所述随机接入信号中的与所述剩余资源相关联的部分随机接入信号;所述剩余资源为所述RO时频资源中不与所述SSB时频资源重叠的时频资源。
  8. 根据权利要求6所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,禁止在所述RO时频资源发送所述随机接入信号,仅在所述SSB时频资源接收所述SSB承载的数据。
  9. 根据权利要求1所述的方法,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行共享信道PDSCH所在的PDSCH时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  11. 根据权利要求9所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目 标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  12. 根据权利要求9所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDSCH时频资源中的与所述RO时频资源不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  13. 根据权利要求9所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源中与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDSCH时频资源中 的与所述SBFD时频资源以及所述RO时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
    在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  14. 根据权利要求1所述的方法,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  16. 根据权利要求14所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  17. 根据权利要求14所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述 PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDCCH时频资源中的与所述RO时频资源不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  18. 根据权利要求14所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标RO的发送起始点,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  19. 根据权利要求14所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源重叠或不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠,则:
    在没有随机接入信号要被发送的情况下,确定与所述目标时频资源对应的数据传输操作为:
    忽略所述目标RO,并在所述PDCCH时频资源接收所述目标PDCCH承载的数据或禁止接收所述目标PDCCH承载的数据。
  20. 根据权利要求1或2所述的方法,其特征在于,在所述UE通过2步随机接入过程接入网络的情况下,所述目标时频资源包括:用于发送随机接入消息MsgA的目标MsgA随机接入信道机会RO所在的MsgA RO时频资源以及与目标MsgA RO相关联的目标MsgA物理上行共享信道PUSCH所在的MsgA PUSCH时频资源;
    目标MsgA RO和目标MsgA PUSCH满足:
    目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在未分配SBFD时频资源的时隙;或者
    目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙;MsgA PUSCH与MsgA RO对应不同的时隙;或者
    目标MsgA PUSCH配置在未分配SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙。
  21. 根据权利要求20所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述SSB时频资源接收所述SSB承载的数据,以及在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源接收所述SSB承载的数据,以及在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,禁止在所述MsgA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,仅在所述SSB时频资源接收所述SSB承载的数据。
  22. 根据权利要求20所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
    禁止在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;或者
    在所述MsgA PUSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送所述目标MsgA PUSCH承载的数据中与所述剩余资源关联的部分数据。
  23. 根据权利要求20所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述 PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  24. 根据权利要求20所述的方法,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并且在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  25. 根据权利要求20所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  26. 根据权利要求20所述的方法,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并且在所述PDCCH时频资源中的与所述SBFD时频资源、所述MSGA PUSCH时频资源均不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  27. 根据权利要求20所述的方法,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源重叠或不重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:在没有随机接入信号要被发送的情况下,确定与所述目标时频资源对应的数据传输操作为:
    忽略所述目标MSGA PUSCH,并在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  28. 根据权利要求20所述的方法,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  29. 根据权利要求20所述的方法,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  30. 根据权利要求20所述的方法,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源存在部分重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并在所述PDSCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  31. 根据权利要求20所述的方法,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源存在部分重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并在所述PDSCH时频资源中的与MSGA PUSCH时频资源以及所述SBFD时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDS CH时频资源接收所述目标PDSCH承载的数据。
  32. 根据权利要求20至31任意一项所述的方法,其特征在于,所述方法进一步包括:
    当所述目标MsgA RO无效时,禁止在所述MsgA RO时频资源发送数据,以及禁止在与所述目标MsgA RO相关联的目标MsgA PUSCH所在的MsgA PUSCH时频资源发送数据;或者
    当禁止在目标MsgA PUSCH所在的MsgA PUSCH时频资源发送数据时,如果允许在所述目标MsgA PUSCH相关联的目标MsgA RO所在的MsgA RO时频资源发送数据,则在所述MsgA RO时频资源发送随机接入信号。
  33. 根据权利要求3至32任意一项所述的方法,其特征在于,
    所述目标RO或所述目标MsgA RO属于针对SBFD模式配置的专有RO组;和/或,
    所述目标RO或所述目标MsgA RO承载的随机接入信号为针对SBFD模式配置的专有随机接入信号或协议规定的常规随机接入信号。
  34. 根据权利要求1所述的方法,其特征在于,所述配置信息被携带在广播信令或下行控制信息DCI中下发给所述UE。
  35. 根据权利要求1至19任意一项所述的方法,其特征在于,所述目标RO为MsgA RO。
  36. 一种数据传输方法,其特征在于,所述方法应用于支持子带全双工SBFD模式的基站,并且所述方法包括:
    确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;
    根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;
    在所述目标时隙执行所确定的数据传输操作。
  37. 根据权利要求36所述的方法,其特征在于,所述目标时隙为上行UL时隙、下行DL时隙或特殊时隙;所述SBFD时频资源在时域上占用所述目标时隙的至少一个符号,在频域针对每个符号占用至少一个物理资源块。
  38. 根据权利要求36或37所述的方法,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及同步信号块SSB所在的SSB时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  39. 根据权利要求38所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
    仅在所述SSB时频资源发送所述SSB承载的数据,并禁止在所述RO时频资源执行随机接入信号的检测;或者
    在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源中的剩余资源接收所述目标RO承载的随机接入信号中的与所述剩余资源相关联的部分随机接入信号;所述剩余资源为所述RO时频资源中不与所述SSB时频资源重叠的时频资源。
  40. 根据权利要求38所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源不重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,禁止在所述RO时频资源执行随机接入信号的检测,仅在所述SSB时频资源发送所述SSB承载的数据。
  41. 根据权利要求36或37所述的方法,其特征在于,所述目标时频资源包括:目标随 机接入信道机会RO所在的RO时频资源,以及物理下行共享信道PDSCH所在的PDSCH时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  42. 根据权利要求41所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  43. 根据权利要求41所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配,在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  44. 根据权利要求41所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的 数据传输操作为:
    在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述RO时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  45. 根据权利要求41所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述RO时频资源、所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    在不满足所述条件时,在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  46. 根据权利要求36或37所述的方法,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  47. 根据权利要求46所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应 的数据传输操作为:
    在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
  48. 根据权利要求46所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配,在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
  49. 根据权利要求46所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若待从所述基站接收数据的UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述RO时频资源不重叠的剩余资源,发送执行所述速 率匹配后获得的数据;以及
    在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    在不满足所述条件时,仅在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
  50. 根据权利要求46所述的方法,其特征在于,所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述RO时频资源以及所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    在不满足所述条件时,仅在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
  51. 根据权利要求36至50任意一项所述的方法,其特征在于,所述目标RO为MsgA RO。
  52. 根据权利要求36或37所述的方法,其特征在于,所述目标时频资源包括:用于发送随机接入消息MsgA的目标MsgA随机接入信道机会RO所在的MsgA RO时频资源以及与目标MsgA RO相关联的目标MsgA物理上行共享信道PUSCH所在的MsgA PUSCH时频资源;
    目标MsgA RO和目标MsgA PUSCH满足:
    目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在未分配SBFD时频资源的时隙;或者
    目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙;MsgA PUSCH与MsgA RO对应不同的时隙;或者
    目标MsgA PUSCH配置在未分配SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙。
  53. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资 源对应的数据传输操作,包括:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述SSB时频资源发送所述SSB承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述SSB与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源发送所述SSB承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,禁止在所述MsgA PUSCH时频资源接收MsgA PUSCH承载的数据,仅在所述SSB时频资源发送所述SSB承载的数据。
  54. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
    禁止在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在所述MsgA PUSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,接收所述目标MsgA PUSCH承载的数据中与所述剩余资源关联的部分数据。
  55. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源发送所述PDCCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH 承载的数据,禁止在所述PDCCH时频资源发送所述PDCCH的承载的数据。
  56. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MsgA PUSCH的发送起始点;
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若待从所述基站接收数据的UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  57. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配,在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源发送所述目标PDCCH的承载的数据。
  58. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MsgA PUSCH的发送起始点;
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源以及所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  59. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行共享信道PDSCH所在的PDSCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  60. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源存在部分重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述MsgA PUSCH时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  61. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源存在部分重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述SBFD时频资源、所述MsgA PUSCH时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述MsgA PUSCH时频资源、所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  62. 根据权利要求52所述的方法,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行共享信道PDSCH所在的PDSCH时频资源;
    所述根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,包括:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配,在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  63. 根据权利要求52至62任意一项所述的方法,所述方法进一步包括:当所述目标MsgA RO无效时,禁止在所述MsgA RO时频资源执行MsgA RO的探测,以及禁止在在与所述目标MsgA RO相关联的目标MsgA PUSCH所在的MsgA PUSCH时频资源接收MsgA PUSCH承载的数据;或者
    禁止在目标MsgA PUSCH所在的MsgA PUSCH时频资源MsgA PUSCH的探测,但是在所述MsgA RO时频资源接收随机接入信号。
  64. 根据权利要求38至63任意一项所述的方法,其特征在于,
    所述目标RO或所述目标MsgA RO属于针对SBFD模式配置的专有RO组;和/或,
    所述目标RO或所述目标MsgA RO承载的随机接入信号为针对SBFD模式配置的专有随机接入信号或协议规定的常规随机接入信号。
  65. 根据权利要求36所述的方法,其特征在于,所述方法进一步包括:
    将所述SBFD时频资源的配置信息携带在广播信令中发送给UE;或者
    将所述SBFD时频资源的配置信息携带在下行控制信息DCI中发送给UE。
  66. 一种数据传输装置,其特征在于,所述装置应用于支持子带全双工SBFD模式的UE,并且所述装置包括:
    第一确定模块,用于基于基站下发的配置信息确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;
    第二确定模块,用于根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;
    执行模块,用于在所述目标时隙执行所确定的数据传输操作。
  67. 根据权利要求66所述的装置,其特征在于,所述目标时隙为上行UL时隙、下行DL时隙或特殊时隙;所述SBFD时频资源在时域上占用所述目标时隙的至少一个符号,在频域针对每个符号占用至少一个物理资源块。
  68. 根据权利要求66或67所述的装置,其特征在于,在所述UE通过4步随机接入过程接入网络的情况下,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源;所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO。
  69. 根据权利要求68所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述RO时频资源位于所述SBFD时频资源内,则:
    当所述SBFD时频资源对应的符号为上行UL符号或灵活F符号时,确定与所述目标时频资源对应的数据传输操作为:在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述SBFD时频资源对应的符号为下行DL符号时,确定与所述目标时频资源对应的数据传输操作为:禁止发送所述随机接入信号。
  70. 根据权利要求68所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:若所述重叠结果为:所述RO时频资源与所述SBFD时频资源存在部分重叠,则:
    当所述SBFD时频资源对应的符号为上行UL符号或灵活F符号时,确定与所述目标时频资源对应的数据传输操作为:
    禁止发送所述目标RO承载的随机接入信号;或者
    在所述SBFD时频资源中的与所述RO时频资源相重叠的重叠资源,发送所述随机接入信号中的与所述重叠资源相对应的部分随机接入信号;或者
    当所述SBFD时频资源对应的符号为下行DL符号时,确定与所述目标时频资源对应的数据传输操作为:
    禁止发送所述随机接入信号。
  71. 根据权利要求66所述的装置,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及同步信号块SSB所在的SSB时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  72. 根据权利要求71所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述 SSB时频资源与所述RO时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
    仅在所述SSB时频资源接收所述SSB承载的数据,并禁止在所述RO时频资源发送所述目标RO承载的随机接入信号;或者
    在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源中的剩余资源发送所述随机接入信号中的与所述剩余资源相关联的部分随机接入信号;所述剩余资源为所述RO时频资源中不与所述SSB时频资源重叠的时频资源。
  73. 根据权利要求71所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源接收所述SSB承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,禁止在所述RO时频资源发送所述随机接入信号,仅在所述SSB时频资源接收所述SSB承载的数据。
  74. 根据权利要求66所述的装置,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行共享信道PDSCH所在的PDSCH时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  75. 根据权利要求74所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  76. 根据权利要求74所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  77. 根据权利要求74所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDSCH时频资源中的与所述RO时频资源不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  78. 根据权利要求74所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源中与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的数据,以及在所述RO时 频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDSCH时频资源中的与所述SBFD时频资源以及所述RO时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
    在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  79. 根据权利要求66所述的装置,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  80. 根据权利要求79所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  81. 根据权利要求79所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述RO时频资源发送所述 目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源发送所述随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  82. 根据权利要求79所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDCCH时频资源中的与所述RO时频资源不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  83. 根据权利要求79所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标RO的发送起始点,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述RO时频资源发送所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述RO时频资源发送所述目标RO承载的随机接入信号,并且在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,仅在所述RO时频资源发送所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  84. 根据权利要求79所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源重叠或不重叠,并且 所述PDCCH时频资源与所述RO时频资源存在部分重叠,则:
    在没有随机接入信号要被发送的情况下,确定与所述目标时频资源对应的数据传输操作为:
    忽略所述目标RO,并在所述PDCCH时频资源接收所述目标PDCCH承载的数据或禁止接收所述目标PDCCH承载的数据。
  85. 根据权利要求66或67所述的装置,其特征在于,在所述UE通过2步随机接入过程接入网络的情况下,所述目标时频资源包括:用于发送随机接入消息MsgA的目标MsgA随机接入信道机会RO所在的MsgA RO时频资源以及与目标MsgA RO相关联的目标MsgA物理上行共享信道PUSCH所在的MsgA PUSCH时频资源;
    目标MsgA RO和目标MsgA PUSCH满足:
    目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在未分配SBFD时频资源的时隙;或者
    目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙;MsgA PUSCH与MsgA RO对应不同的时隙;或者
    目标MsgA PUSCH配置在未分配SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙。
  86. 根据权利要求85所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述SSB时频资源接收所述SSB承载的数据,以及在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源接收所述SSB承载的数据,以及在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,禁止在所述MsgA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,仅在所述SSB时频资源接收所述SSB承载的数据。
  87. 根据权利要求85所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
    禁止在所述MsgA PUSCH时频资源发送所述目标MsgA PUSCH承载的数据;或者
    在所述MsgA PUSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送所述目标MsgA PUSCH承载的数据中与所述剩余资源关联的部分数据。
  88. 根据权利要求85所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  89. 根据权利要求85所述的装置,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并且在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  90. 根据权利要求85所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频 资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  91. 根据权利要求85所述的装置,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并且在所述PDCCH时频资源中的与所述SBFD时频资源、所述MSGA PUSCH时频资源均不重叠的剩余资源,接收所述目标PDCCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  92. 根据权利要求85所述的装置,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源重叠或不重叠,并且所述PDCCH时频资源与所述MSGA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MSGA PUSCH的发送起始点,则:在没有随机接入信号要被发送的情况下,确定与所述目标时频资源对应的数据传输操作为:
    忽略所述目标MSGA PUSCH,并在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  93. 根据权利要求85所述的装置,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  94. 根据权利要求85所述的装置,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源不重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源中不与所述SBFD时频资源重叠的剩余资源接收所述目标PDSCH承载的数据中与所述剩余资源相关联的部分数据,以及在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承 载的数据,并禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  95. 根据权利要求85所述的装置,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源存在部分重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源接收所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并在所述PDSCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDSCH时频资源接收所述目标PDSCH承载的数据。
  96. 根据权利要求85所述的装置,其特征在于,所述MSGA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MSGA PUSCH时频资源存在部分重叠,则:
    当所述UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源接收所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源发送所述MSGA PUSCH承载的数据;当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MSGA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并在所述PDSCH时频资源中的与MSGA PUSCH时频资源以及所述SBFD时频资源均不重叠的剩余资源,接收所述目标PDSCH承载的数据中与所述剩余资源关联的部分数据;或者
    在不满足所述条件时,在所述MSGA PUSCH时频资源发送所述目标MSGA PUSCH承载的数据,并禁止在所述PDS CH时频资源接收所述目标PDSCH承载的数据。
  97. 根据权利要求85至96任意一项所述的装置,其特征在于:
    当所述目标MsgA RO无效时,禁止在所述MsgA RO时频资源发送数据,以及禁止在与所述目标MsgA RO相关联的目标MsgA PUSCH所在的MsgA PUSCH时频资源发送数据;或者
    当禁止在目标MsgA PUSCH所在的MsgA PUSCH时频资源发送数据时,如果允许在所述目标MsgA PUSCH相关联的目标MsgA RO所在的MsgA RO时频资源发送数据,则在所述MsgA RO时频资源发送随机接入信号。
  98. 根据权利要求68至97任意一项所述的装置,其特征在于,
    所述目标RO或所述目标MsgA RO属于针对SBFD模式配置的专有RO组;和/或,
    所述目标RO或所述目标MsgA RO承载的随机接入信号为针对SBFD模式配置的专有随机接入信号或协议规定的常规随机接入信号。
  99. 根据权利要求66所述的装置,其特征在于,所述配置信息被携带在广播信令或下行控制信息DCI中下发给所述UE。
  100. 根据权利要求66至84任意一项所述的装置,其特征在于,所述目标RO为MsgA RO。
  101. 一种数据传输装置,其特征在于,所述装置应用于支持子带全双工SBFD模式的基站,并且所述装置包括:
    第一确定模块,用于确定目标时隙对应的SBFD时频资源以及与所述目标时隙相关联的目标时频资源;
    第二确定模块,用于根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作;
    执行模块,用于在所述目标时隙执行所确定的数据传输操作。
  102. 根据权利要求101所述的装置,其特征在于,所述目标时隙为上行UL时隙、下行DL时隙或特殊时隙;所述SBFD时频资源在时域上占用所述目标时隙的至少一个符号,在频域针对每个符号占用至少一个物理资源块。
  103. 根据权利要求101或102所述的装置,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及同步信号块SSB所在的SSB时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  104. 根据权利要求103所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述RO时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
    仅在所述SSB时频资源发送所述SSB承载的数据,并禁止在所述RO时频资源执行随机接入信号的检测;或者
    在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源中的剩余资源接收所述目标RO承载的随机接入信号中的与所述剩余资源相关联的部分随机接入信号;所述剩余资源为所述RO时频资源中不与所述SSB时频资源重叠的时频资源。
  105. 根据权利要求103所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述 SSB时频资源与所述RO时频资源不重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述SSB与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源发送所述SSB承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,禁止在所述RO时频资源执行随机接入信号的检测,仅在所述SSB时频资源发送所述SSB承载的数据。
  106. 根据权利要求101或102所述的装置,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行共享信道PDSCH所在的PDSCH时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  107. 根据权利要求106所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  108. 根据权利要求106所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述 速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配,在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  109. 根据权利要求106所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述RO时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  110. 根据权利要求106所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源存在部分重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述RO时频资源、所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    在不满足所述条件时,在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  111. 根据权利要求101或102所述的装置,其特征在于,所述目标时频资源包括:目标随机接入信道机会RO所在的RO时频资源,以及物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述目标RO为针对所述目标时隙配置的至少一个RO中的任一RO;
    所述RO时频资源位于所述SBFD时频资源中。
  112. 根据权利要求111所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
  113. 根据权利要求111所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述RO时频资源不重叠,
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时, 对所述目标PDCCH承载的数据执行速率匹配,在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;以及
    在不满足所述条件时,仅在所述RO时频资源接收所述随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
  114. 根据权利要求111所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若待从所述基站接收数据的UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述RO时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    在不满足所述条件时,仅在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
  115. 根据权利要求111所述的装置,其特征在于,所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述RO时频资源存在部分重叠、但是所述PDCCH的接收起始点早于所述目标RO的发送起始点,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述RO时频资源以及所述SBFD时频资源均不重叠的 剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述RO时频资源接收所述目标RO承载的随机接入信号;或者
    在不满足所述条件时,仅在所述RO时频资源接收所述目标RO承载的随机接入信号,禁止在所述PDCCH时频资源发送所述目标PDCCH承载的数据。
  116. 根据权利要求101至115任意一项所述的装置,其特征在于,所述目标RO为MsgA RO。
  117. 根据权利要求101或102所述的装置,其特征在于,所述目标时频资源包括:用于发送随机接入消息MsgA的目标MsgA随机接入信道机会RO所在的MsgA RO时频资源以及与目标MsgA RO相关联的目标MsgA物理上行共享信道PUSCH所在的MsgA PUSCH时频资源;
    目标MsgA RO和目标MsgA PUSCH满足:
    目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在未分配SBFD时频资源的时隙;或者
    目标MsgA PUSCH配置在分配有SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙;MsgA PUSCH与MsgA RO对应不同的时隙;或者
    目标MsgA PUSCH配置在未分配SBFD时频资源的时隙,与目标MsgA PUSCH关联的目标MsgA RO配置在分配有SBFD时频资源的时隙。
  118. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述SSB时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述SSB时频资源发送所述SSB承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述SSB与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述SSB时频资源发送所述SSB承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,禁止在所述MsgA PUSCH时频资源接收MsgA PUSCH承载的数据,仅在所述SSB时频资源发送所述SSB承载的数据。
  119. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括同步信号块SSB所在的SSB时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述SSB时频资源与所述SBFD时频资源重叠或不重叠,并且所述 SSB时频资源与所述MsgA PUSCH时频资源存在部分重叠,则确定与所述目标时频资源对应的数据传输操作为:
    禁止在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在所述MsgA PUSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,接收所述目标MsgA PUSCH承载的数据中与所述剩余资源关联的部分数据。
  120. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源发送所述PDCCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源发送所述PDCCH的承载的数据。
  121. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源不重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MsgA PUSCH的发送起始点;
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDCCH时频资源发送所述目标PDCCH承载的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若待从所述基站接收数据的UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  122. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDCCH承载的数据执行速率匹配,在所述PDCCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送所述目标PDCCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源发送所述目标PDCCH的承载的数据。
  123. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDCCH所在的PDCCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDCCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDCCH时频资源与所述MsgA PUSCH时频资源存在部分重叠、但是所述PDCCH的接收起始点晚于所述目标MsgA PUSCH的发送起始点;
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述SBFD时频资源、所述RO时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述RO时频资源接收所述目标RO承载的随机接入信号;或者若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDCCH与所述目标RO之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDCCH承载的数据执行速率匹配;
    在所述PDCCH时频资源中的与所述MSGA PUSCH时频资源以及所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,禁止在所述PDCCH时频资源接收所述目标PDCCH承载的数据。
  124. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行共享信道PDSCH所在的PDSCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  125. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源不重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源存在部分重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
    在所述PDSCH时频资源发送所述目标PDSCH承载的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述MsgA PUSCH时频资源不重叠的剩余资源,发送执 行所述速率匹配后获得的数据;以及
    在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  126. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行控制信道PDSCH所在的PDSCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源存在部分重叠,则:
    若待从所述基站接收数据的UE处于全双工TDD模式,确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述SBFD时频资源、所述MsgA PUSCH时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    若所述UE处于半双工TDD模式,则确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述MsgA PUSCH时频资源、所述SBFD时频资源均不重叠的剩余资源,发送执行所述速率匹配后获得的数据;以及
    在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  127. 根据权利要求117所述的装置,其特征在于,所述MsgA PUSCH时频资源位于所述SBFD时频资源内;所述目标时频资源还包括物理下行共享信道PDSCH所在的PDSCH时频资源;
    所述第二确定模块在根据所述SBFD时频资源与所述目标时频资源的重叠结果,确定与所述目标时频资源对应的数据传输操作时,具体用于:
    若所述重叠结果为:所述PDSCH时频资源与所述SBFD时频资源存在部分重叠,并且所述PDSCH时频资源与所述MsgA PUSCH时频资源不重叠,则:
    当待从所述基站接收数据的UE处于全双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    对所述目标PDSCH承载的数据执行速率匹配;
    在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;或者
    当所述UE处于半双工TDD模式时,确定与所述目标时频资源对应的数据传输操作为:
    在满足所述目标PDSCH与所述目标MsgA PUSCH之间的时间间隔大于上下行转换时间的条件时,对所述目标PDSCH承载的数据执行速率匹配,在所述PDSCH时频资源中的与所述SBFD时频资源不重叠的剩余资源,发送执行所述速率匹配后获得的数据,以及在所述MSGA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据;以及
    在不满足所述条件时,仅在所述MsgA PUSCH时频资源接收所述目标MsgA PUSCH承载的数据,并禁止在所述PDSCH时频资源发送所述目标PDSCH承载的数据。
  128. 根据权利要求117至127任意一项所述的装置,所述装置进一步包括:当所述目标MsgA RO无效时,禁止在所述MsgA RO时频资源执行MsgA RO的探测,以及禁止在在与所述目标MsgA RO相关联的目标MsgA PUSCH所在的MsgA PUSCH时频资源接收MsgA PUSCH承载的数据;或者
    禁止在目标MsgA PUSCH所在的MsgA PUSCH时频资源MsgA PUSCH的探测,但是在所述MsgA RO时频资源接收随机接入信号。
  129. 根据权利要求103至128任意一项所述的装置,其特征在于,
    所述目标RO或所述目标MsgA RO属于针对SBFD模式配置的专有RO组;和/或,
    所述目标RO或所述目标MsgA RO承载的随机接入信号为针对SBFD模式配置的专有随机接入信号或协议规定的常规随机接入信号。
  130. 根据权利要求101所述的装置,其特征在于,所述装置进一步包括:
    发送模块,用于将所述SBFD时频资源的配置信息携带在广播信令中发送给UE;或者将所述SBFD时频资源的配置信息携带在下行控制信息DCI中发送给UE。
PCT/CN2022/112308 2022-08-12 2022-08-12 数据传输方法、装置及电子设备 WO2024031708A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/112308 WO2024031708A1 (zh) 2022-08-12 2022-08-12 数据传输方法、装置及电子设备
CN202280002728.0A CN117882346A (zh) 2022-08-12 2022-08-12 数据传输方法、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112308 WO2024031708A1 (zh) 2022-08-12 2022-08-12 数据传输方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024031708A1 true WO2024031708A1 (zh) 2024-02-15

Family

ID=89850398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112308 WO2024031708A1 (zh) 2022-08-12 2022-08-12 数据传输方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN117882346A (zh)
WO (1) WO2024031708A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836398A (zh) * 2019-08-20 2020-10-27 维沃移动通信有限公司 一种传输方法、终端设备和网络侧设备
CN111867134A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种随机接入前导发送方法及通信装置
WO2021226506A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Frequency domain resource allocation techniques for full duplex communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867134A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种随机接入前导发送方法及通信装置
CN111836398A (zh) * 2019-08-20 2020-10-27 维沃移动通信有限公司 一种传输方法、终端设备和网络侧设备
WO2021226506A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Frequency domain resource allocation techniques for full duplex communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Subband non-overlapping full duplex for NR duplex evolution", 3GPP DRAFT; R1-2203904, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153242 *
VIVO: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2203558, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153033 *

Also Published As

Publication number Publication date
CN117882346A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
EP3541133B1 (en) Uplink information processing method and device
US10412760B2 (en) Uplink control signaling for joint FDD and TDD carrier aggregation
WO2019098019A1 (en) Communication system
US20180288625A1 (en) Uplink channel access, reservation and data transmission for licensed assist access long term evolution (laa-lte)
CN107534992B (zh) 上行链路数据发送方法和用户设备以及上行链路数据接收方法和基站
WO2014067140A1 (zh) 一种信息传输方法、用户设备及基站
WO2021062602A1 (en) Method and apparatus for sharing channel occupancy time on unlicensed spectrum
EP3142446B1 (en) Method for processing plurality of signals in communication system supporting direct communication between terminals and apparatus therefor
EP3251460B1 (en) System and method for handling uplink transmissions
WO2022017157A1 (zh) 随机接入前导码序列的发送、接收方法、终端及网络设备
US20210391959A1 (en) Uplink Transmission Method and Communications Apparatus
US20200396728A1 (en) Communication Method And Communications Apparatus
JP2019502278A (ja) 無線通信の方法、ネットワーク装置及び端末機器
WO2022022257A1 (zh) 通信方法及装置
US10986651B2 (en) Information transmission method and apparatus
WO2020052533A1 (zh) 使用免授权频段的通信方法和通信装置
WO2024031708A1 (zh) 数据传输方法、装置及电子设备
US11134378B2 (en) Data transmission method and apparatus
CN110831239B (zh) 一种数据传输方法、数据传输装置及通信设备
WO2018171504A1 (zh) 数据传输的方法和装置
WO2024067429A1 (zh) 通信方法及通信装置
CN111586851A (zh) 一种通信方法及装置
WO2024031703A1 (zh) 数据传输方法、装置及电子设备
WO2024016278A1 (en) Methods and devices for subband full duplex random access
WO2022028589A1 (en) Performance enhancement of pusch repetition method in wireless communication systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002728.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954659

Country of ref document: EP

Kind code of ref document: A1