WO2022022257A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022022257A1
WO2022022257A1 PCT/CN2021/105387 CN2021105387W WO2022022257A1 WO 2022022257 A1 WO2022022257 A1 WO 2022022257A1 CN 2021105387 W CN2021105387 W CN 2021105387W WO 2022022257 A1 WO2022022257 A1 WO 2022022257A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
field
frequency hopping
terminal device
offset value
Prior art date
Application number
PCT/CN2021/105387
Other languages
English (en)
French (fr)
Inventor
温容慧
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21850507.1A priority Critical patent/EP4185048A4/en
Publication of WO2022022257A1 publication Critical patent/WO2022022257A1/zh
Priority to US18/158,830 priority patent/US20230276437A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and apparatus.
  • the International Telecommunication Union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), ultrareliable and low latency communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultrareliable and low latency communications
  • mMTC massive machine type communications
  • REDCAPUE reduced capability user equipment
  • REDCAPUE may be less complex than other UEs in terms of bandwidth, power consumption, and number of antennas, such as narrower bandwidth, lower power consumption, and more antennas. And less.
  • the types of random access performed by the UE include contention-based random access and non-contention-based random access.
  • the UE In the contention-based random access process, the UE first randomly selects a preamble sequence from the preconfigured range of preamble sequences, and The preamble sequence is sent in the preconfigured random access resource. If the access network device successfully receives the preamble sequence and allows the UE to access, the access network device will respond to the preconfigured random access response (random access response, RAR) in the The RAR is sent to the UE within the window.
  • RAR random access response
  • the RAR includes downlink control information (DCI) and physical downlink control channel (PDSCH), the DCI is used to indicate the scheduling information of the PDSCH, and the PDSCH carries the message 3 Then, the access network device determines the resource for sending message 3 according to the uplink scheduling information in the PDSCH. Therefore, the access network device cannot obtain the identification information of the UE before sending the message 3 to the UE.
  • the non-contention-based random access uses dedicated random access resources and preamble sequences, so the access network device obtains the UE's identity information before sending the RAR to the UE, and the access network device can determine the UE according to the UE's identity information.
  • the RAR includes uplink scheduling information for sending message 3, and the uplink scheduling information includes a 14-bit frequency domain resource allocation field.
  • the domain resource allocation indication is determined by a joint coding value indicating the starting resource position and length. If the allocatable frequency domain bandwidth is M resource units, such as resource blocks (resource block, RB) or resource element (resource element, RE) ), the status to be indicated is , the number of bits to be indicated is (rounded up).
  • the present application provides a communication method and device, which can prevent the frequency domain resource allocation field from being truncated when performing frequency domain resource allocation instruction, more effectively utilize frequency domain resources, and avoid resource waste.
  • the present application provides a communication method, including: the method is applicable to a first terminal device, and the method includes: receiving first uplink grant information; the first uplink grant information includes a first field, and the first field indicates a frequency domain Resource allocation information, the length Y of the first field is less than X, and X is a predetermined value; or, X is the length of the second frequency domain resource allocation field associated with the second uplink grant format, and the first terminal device does not support all The second uplink grant format; the Y is related to the number N of resource blocks supported or configured by the first terminal device, where N is a positive integer, and the first terminal device determines the resources for uplink transmission according to the first field, and according to This resource is transmitted upstream.
  • the length of the frequency domain resource allocation field is the same as the length of the resource block supported or configured by the first terminal device.
  • the number N is related. That is, the length of the frequency domain resource allocation field varies with the number N of resource blocks supported or configured by the first terminal device, and is smaller than the length of the second frequency domain resource allocation field associated with the second uplink grant format. Therefore, the first terminal device
  • the length of the frequency domain resource allocation field is allocated on demand, so the frequency domain resource allocation field can be prevented from being truncated, frequency domain resources can be used more effectively, and resource waste can be avoided.
  • the first terminal equipment may be a first type terminal equipment, wherein the second uplink grant format is used for the second type terminal equipment, the first type terminal equipment and the capabilities of the second type terminal equipment or different versions or application scenarios.
  • the capabilities of the first terminal device and the second terminal device are different, and may include at least one of the following:
  • the bandwidth capabilities of the first terminal device and the second terminal device are different.
  • the numbers of transceiver antennas of the first terminal device and the second terminal device are different.
  • the maximum uplink transmit powers of the first terminal equipment and the second terminal equipment are different.
  • the protocol versions corresponding to the first terminal device and the second terminal device are different.
  • the carrier aggregation (CA) capabilities supported by the first terminal device and the second terminal device are different.
  • the first terminal device supports full-duplex Frequency Division Duplexing (FDD), while the second terminal device only supports half-duplex FDD.
  • FDD Frequency Division Duplexing
  • the first terminal device and the second terminal device have different data processing time capabilities.
  • the processing capabilities of the first terminal device and the second terminal device are different.
  • the processing capability includes, for example, the maximum number of retransmission processes supported, the maximum modulation mode supported, or the maximum data packet supported for transmission.
  • the peak uplink transmission rate and/or the peak downlink transmission rate corresponding to the first terminal device and the second terminal device are different.
  • the services corresponding to the first terminal device and the second terminal device are different.
  • the first uplink grant information further includes a second field, where the second field is used to indicate at least one of frequency hopping and an offset value, where the offset value is frequency hopping transmission on resources offset value.
  • the second field and the first field are independent of each other, and the second field is the frequency hopping indication field. Since the second field and the first field are independent of each other, the occurrence of the frequency domain resource allocation field is avoided. Idle bits, frequency hopping indication and will not lead to a decrease in the number of instructable frequency domain resource allocation states, so that frequency domain resource allocation is limited.
  • the second field can indicate at least one of the following bit states:
  • the first bit status used to indicate no frequency hopping
  • the second bit state is used to indicate that the frequency hopping and the offset value are the first offset value, or the second bit state is a reserved state;
  • the third bit state is used to indicate that the frequency hopping and the offset value are the second offset value, or the third bit state is a reserved state;
  • the fourth bit state is used to indicate that the frequency hopping and the offset value are the third offset value, or the fourth bit state is the reserved state.
  • the offset values include and at least one of them.
  • the correspondence between at least one bit state and at least one offset value is predefined or configured through signaling.
  • the offset value is determined according to a third field and first information, where the third field is included in the first uplink grant information, where the first information is predefined, or the first information is Configured by signaling.
  • the frequency hopping indication does not occupy bits in the first field, and does not result in a decrease in the number of instructable frequency domain resource allocable states, so that frequency domain resource allocation is limited.
  • the method before receiving the first uplink grant information, the method may further include:
  • frequency hopping is determined according to the second information.
  • the second information is predefined, or the second information is configured through signaling.
  • the offset during frequency hopping is determined according to the fourth field. value, the fourth field is included in the first uplink grant information.
  • the first terminal device determines whether to frequency hopping according to the second information, so that the first uplink authorization information does not need the existing frequency hopping indication field, and can be freed by 1 bit, which can be passed through the third field.
  • Indicate the offset value during frequency hopping for example, the offset value during frequency hopping can be indicated by 1 bit that is idle and 1 bit in the X bit in the frequency domain resource allocation field of the first uplink grant information, and the frequency hopping indication will not occupy the first
  • the bits in a field will not result in a decrease in the number of instructable frequency domain resource allocable states, so that frequency domain resource allocation is limited.
  • the fifth field is a field independent of the first field, and the fifth field indicates whether frequency hopping or an offset value during frequency hopping. Similarly, the frequency hopping indication will not occupy the first field. Therefore, the number of instructable frequency domain resource allocation states will not be reduced, so that frequency domain resource allocation is limited.
  • the first uplink grant information does not include a reservation field and/or a channel state information request field.
  • the reserved field and/or the channel state information request field and the existing frequency domain resources can be used.
  • 1 bit in the X bits of the allocation field indicates whether frequency hopping and the offset value during frequency hopping.
  • the frequency hopping indication will not occupy the bits in the first field, so it will not cause the number of instructable frequency domain resource allocation states to decrease, The allocation of frequency domain resources is limited.
  • the first uplink grant information includes at least one field, each of which is used to indicate an item of information, and an item of information includes any one or more of the following information:
  • the resource utilization rate of idle bits can be improved.
  • the first uplink grant information includes a sixth field.
  • the sixth field When the subcarrier spacing used by the resource is u1, at least the length of the sixth is N1 bits.
  • the sixth field The length is N2 bits, and N1 and N2 are not equal.
  • the method may also include:
  • the bandwidth resource of the first terminal device is the first resource.
  • the value or bit state of the first indication information belongs to the second set, it is determined that the bandwidth resource of the first terminal device is the second resource.
  • the first resource and the second resource are not identical, or the first resource and the second resource partially overlap;
  • the positions of the N resource blocks and/or the value of N are determined according to the bandwidth resources of the first terminal device.
  • the positions of the N resource blocks are indicated to the first terminal device through the second indication information, or the positions of the N resource blocks are predefined.
  • the method may also include:
  • the value of N is determined according to the bandwidth supported by the first terminal device.
  • the method may also include:
  • the value of N is determined according to the bandwidth resource and the first value.
  • the method may also include:
  • third indication information includes first initial uplink BWP configuration information
  • the positions of the N resource blocks and/or the value of N are determined according to the first initial uplink BWP configuration information.
  • the present application provides a communication method, the method is applicable to access network equipment, and the method includes:
  • the first uplink grant information includes a first field, the first field indicates frequency domain resource allocation information, and the length Y of the first field is less than X; the X is a predetermined value Or, the X is the length of the second frequency domain resource allocation field associated with the second uplink grant format, and the first terminal equipment does not support the second uplink grant format; the Y and the first terminal equipment
  • the number N of supported or configured resource blocks is related, where N is a positive integer, and the first uplink grant information is sent to the first terminal device.
  • the first uplink grant information is sent to the first terminal device through the access network device, and when the frequency domain resource allocation instruction is performed through the first uplink grant information, the length of the frequency domain resource allocation field is the same as the first uplink grant information.
  • the number N of resource blocks supported or configured by a terminal device is related. That is, the length of the frequency domain resource allocation field may vary with the number N of resource blocks supported or configured by the first terminal device, and is smaller than the length of the second frequency domain resource allocation field associated with the second uplink grant format, so the first terminal
  • the length of the frequency domain resource allocation field of the device is allocated on demand, so the frequency domain resource allocation field can be prevented from being truncated, frequency domain resources are more effectively used, and resource waste is avoided.
  • the first terminal equipment may be a first type terminal equipment, wherein the second uplink grant format is used for the second type terminal equipment, the first type terminal equipment and the capabilities of the second type terminal equipment different.
  • the capabilities of the first type terminal device and the second type terminal device are different, and may include at least one of the following:
  • the bandwidth capabilities of the first type of terminal equipment and the second type of terminal equipment are different.
  • the number of transmitting and receiving antennas of the first type terminal equipment and the second type terminal equipment are different.
  • the maximum uplink transmit powers of the first type of terminal equipment and the second type of terminal equipment are different.
  • the protocol versions corresponding to the first type terminal device and the second type terminal device are different.
  • the first type terminal equipment and the second type terminal equipment support different carrier aggregation (carrier aggregation, CA) capabilities.
  • the first type of terminal equipment supports full-duplex frequency division duplexing (Frequency Division Duplexing, FDD), while the second type of terminal equipment only supports half-duplex FDD.
  • FDD Frequency Division Duplexing
  • the terminal equipment of the first type and the terminal equipment of the second type have different data processing time capabilities.
  • the peak uplink transmission rate and/or the peak downlink transmission rate corresponding to the terminal equipment of the first type and the terminal equipment of the second type are different.
  • the services corresponding to the terminal equipment of the first type and the terminal equipment of the second type are different.
  • the first uplink grant information further includes a second field, where the second field is used to indicate at least one of frequency hopping and an offset value, where the offset value is frequency hopping transmission on resources offset value.
  • the second field and the first field are independent of each other, and the second field is the frequency hopping indication field. Since the second field and the first field are independent of each other, the occurrence of the frequency domain resource allocation field is avoided. Idle bits, frequency hopping indication and will not lead to a decrease in the number of instructable frequency domain resource allocation states, so that frequency domain resource allocation is limited.
  • the second field can indicate at least one of the following bit states:
  • the first bit status used to indicate no frequency hopping
  • the second bit state is used to indicate that the frequency hopping and the offset value are the first offset value, or the second bit state is a reserved state;
  • the third bit state is used to indicate that the frequency hopping and the offset value are the second offset value, or the third bit state is a reserved state;
  • the fourth bit state is used to indicate that the frequency hopping and the offset value are the third offset value, or the fourth bit state is a reserved state.
  • the offset values include and at least one of them.
  • the correspondence between at least one bit state and at least one offset value is predefined or configured through signaling.
  • the offset value is indicated to the first terminal device through a third field and the first information, and the third field is included in the first uplink grant information;
  • the first information is predefined, or the first information is configured to the first terminal device through signaling.
  • the frequency hopping indication does not occupy bits in the first field, and does not result in a decrease in the number of instructable frequency domain resource allocable states, so that frequency domain resource allocation is limited.
  • the method may further include: indicating whether frequency hopping is performed through second information, the second information is predefined, or the second information is configured to the first terminal device through signaling.
  • the second information indicates frequency hopping
  • the offset value during frequency hopping is indicated by the fourth field, and the fourth field is included in the first uplink grant information.
  • the first terminal device determines whether to frequency hopping according to the second information, so that the first uplink authorization information does not need the existing frequency hopping indication field, and can be freed by 1 bit, which can be passed through the third field.
  • Indicate the offset value during frequency hopping for example, the offset value during frequency hopping can be indicated by 1 bit that is idle and 1 bit in the X bit in the frequency domain resource allocation field of the first uplink grant information, and the frequency hopping indication will not occupy the first
  • the bits in a field will not result in a decrease in the number of instructable frequency domain resource allocable states, so that frequency domain resource allocation is limited.
  • the fifth field is a field independent of the first field, and the fifth field indicates whether frequency hopping or an offset value during frequency hopping. Similarly, the frequency hopping indication will not occupy the first field. Therefore, the number of instructable frequency domain resource allocation states will not be reduced, so that frequency domain resource allocation is limited.
  • the first uplink grant information does not include a reservation field and/or a channel state information request field.
  • the reserved field and/or the channel state information request field and the existing frequency domain resources can be used.
  • 1 bit in the X bits of the allocation field indicates whether frequency hopping and the offset value during frequency hopping.
  • the frequency hopping indication will not occupy the bits in the first field, so it will not cause the number of instructable frequency domain resource allocation states to decrease, The allocation of frequency domain resources is limited.
  • the first uplink grant information includes at least one field, each of which is used to indicate an item of information, and an item of information includes any one or more of the following information:
  • the resource utilization rate of idle bits can be improved.
  • the first uplink grant information includes a sixth field.
  • the length of the sixth field is N1 bits.
  • the sixth field The length is N2 bits, and N1 and N2 are not equal.
  • the method may also include:
  • the first indication information indicates that the bandwidth resource of the first terminal device is the first resource, so when the value or bit state of the first indication information belongs to the second set, the first indication information indicates that the bandwidth resource of the first terminal device is a second resource, and the first resource is different from the second resource, Or the first resource and the second resource partially overlap.
  • the method may also include:
  • the value of N is determined according to the bandwidth supported by the first terminal device.
  • the method may also include:
  • the value of N is determined according to the bandwidth resource and the first value.
  • the positions of the N resource blocks are indicated by the second indication information, or the positions of the N resource blocks are predefined.
  • the value of N and/or the positions of the N resource blocks are indicated by third indication information, where the third indication information includes first initial uplink BWP configuration information.
  • the present application provides a communication device, the device comprising:
  • the receiving module is configured to receive first uplink grant information, where the first uplink grant information includes a first field, the first field indicates frequency domain resource allocation information, and the length Y of the first field is less than X.
  • the X is a predetermined value; or, the X is the length of the second frequency domain resource allocation field associated with the second uplink grant format, and the communication apparatus does not support the second uplink grant format.
  • the Y is related to the number N of resource blocks supported or configured by the communication device, where N is a positive integer. Uplink transmission is performed on the resource.
  • the first uplink grant information further includes a second field, where the second field is used to indicate at least one of frequency hopping and an offset value, where the offset value is frequency hopping transmission on resources offset value.
  • the second field can indicate at least one of the following bit states:
  • the first bit status used to indicate no frequency hopping
  • the second bit state is used to indicate that the frequency hopping and the offset value are the first offset value, or the second bit state is a reserved state;
  • the third bit state is used to indicate that the frequency hopping and the offset value are the second offset value, or the third bit state is a reserved state;
  • the fourth bit state is used to indicate that the frequency hopping and the offset value are the third offset value, or the fourth bit state is the reserved state.
  • the offset values include and at least one of them.
  • the correspondence between at least one bit state and at least one offset value is predefined or configured through signaling.
  • the offset value is determined according to the third field and the first information, and the third field is included in the first uplink grant information;
  • the first information is predefined, or the first information is configured through signaling.
  • the determining module is further configured to: before the receiving module receives the first uplink grant information, determine whether to frequency hopping according to the second information, the second information is predefined, or the second information is obtained through the When the frequency hopping is determined according to the second information, the offset value of the frequency hopping is determined according to the fourth field, and the fourth field is included in the first uplink authorization information.
  • the determining module is configured to: when N is within the first numerical range, determine whether to frequency hop according to the second information, and when N is within the second numerical range, determine whether to frequency hop and/or according to the fifth field or the offset value during frequency hopping, the fifth field is included in the first uplink grant information; and/or,
  • the first uplink grant information indicates whether to frequency hopping.
  • the first uplink grant information does not include a reserved field and/or a channel state reporting channel state information request field.
  • the first uplink grant information includes at least one field, each of which is used to indicate an item of information, and an item of information includes any one or more of the following information:
  • the first uplink grant information includes a sixth field.
  • the length of the sixth field is N1 bits.
  • the sixth field The sum of is N2 bits, N1 and N2 are not equal.
  • the receiving module is further configured to: receive the first indication information
  • the determining module is further configured to: when the value or bit state of the first indication information belongs to the first set, determine that the bandwidth resource of the first terminal device is the first resource. When the value or bit state of the first indication information belongs to the second set, it is determined that the bandwidth resource of the first terminal device is the second resource.
  • the first resource and the second resource are not identical, or the first resource and the second resource partially overlap;
  • the determining module is further configured to: determine the positions of the N resource blocks and/or the value of N according to the bandwidth resources of the first terminal device.
  • the positions of the N resource blocks are indicated to the first terminal device through the second indication information, or the positions of the N resource blocks are predefined.
  • the determining module is further configured to: determine the value of N according to the bandwidth supported by the first terminal device; or,
  • the value of N is determined according to the bandwidth resource and the first value.
  • the receiving module is further configured to: receive third indication information, where the third indication information includes the first initial uplink BWP configuration information;
  • the determining module is further configured to: the positions of the N resource blocks and/or the value of the N according to the first initial uplink BWP configuration information.
  • the beneficial effects of the above-mentioned first aspect and each possible implementation of the first aspect can be referred to the beneficial effects brought by the above-mentioned first aspect, which will not be omitted here. Repeat.
  • the present application provides a communication device, comprising:
  • the determining module is configured to determine first uplink grant information, where the first uplink grant information includes a first field, the first field indicates frequency domain resource allocation information, and the length Y of the first field is less than X.
  • the X is a predetermined value; or, the X is the length of the second frequency domain resource allocation field associated with the second uplink grant format, and the first terminal device that communicates with the communication apparatus does not support the second uplink Authorization format.
  • the Y is related to the number N of resource blocks supported or configured by the first terminal device, where N is a positive integer, and the sending module is configured to send the first uplink grant information to the first terminal device.
  • the first uplink grant information further includes a second field, where the second field is used to indicate at least one of frequency hopping and an offset value, where the offset value is frequency hopping transmission on resources offset value.
  • the second field can indicate at least one of the following bit states:
  • the first bit status used to indicate no frequency hopping
  • the second bit state is used to indicate that the frequency hopping and the offset value are the first offset value, or the second bit state is a reserved state;
  • the third bit state is used to indicate that the frequency hopping and the offset value are the second offset value, or the third bit state is a reserved state;
  • the fourth bit state is used to indicate that the frequency hopping and the offset value are the third offset value, or the fourth bit state is the reserved state.
  • the offset values include and at least one of them.
  • the correspondence between at least one bit state and at least one offset value is predefined or configured through signaling.
  • the offset value is indicated to the first terminal device through a third field and the first information, and the third field is included in the first uplink grant information;
  • the first information is predefined, or the first information is configured to the first terminal device through signaling.
  • the device further includes: a processing module configured to indicate whether to frequency hopping through second information, the second information is predefined, or the second information is configured to the first terminal device through signaling , when the second information indicates frequency hopping, the offset value during frequency hopping is indicated by a fourth field, and the fourth field is included in the first uplink authorization information.
  • a processing module configured to indicate whether to frequency hopping through second information, the second information is predefined, or the second information is configured to the first terminal device through signaling , when the second information indicates frequency hopping, the offset value during frequency hopping is indicated by a fourth field, and the fourth field is included in the first uplink authorization information.
  • the processing module is configured to: when N is within the first numerical range, indicate whether to frequency hopping through the second information, and when N is within the second numerical range, indicate whether to frequency hopping or hopping through the fifth field
  • the frequency-time offset value, and the fifth field is included in the first uplink grant information.
  • the processing module is used for: when the N is within the first numerical range, indicate whether to frequency hopping through radio resource control signaling;
  • the first uplink grant information does not include a reservation field and/or a channel state information request field.
  • the first uplink grant information includes at least one field, each of which is used to indicate an item of information, and an item of information includes any one or more of the following information:
  • the first uplink grant information includes a sixth field.
  • the length of the sixth field is N1 bits.
  • the sixth field The length is N2 bits, and N1 and N2 are not equal.
  • the sending module is further configured to: send first indication information to the first terminal device, and when the value or bit state of the first indication information belongs to the first set, the first indication information When indicating that the bandwidth resource of the first terminal device is the first resource, and the value or bit state of the first indication information belongs to the second set, the first indication information indicates that the bandwidth resource of the first terminal device is the first resource.
  • Two resources, the first resource is different from the second resource, or the first resource and the second resource partially overlap.
  • the determining module is also used for:
  • the value of N is determined according to the bandwidth supported by the first terminal device.
  • the determining module is also used for:
  • the value of N is determined according to the bandwidth and the first value.
  • the positions of the N resource blocks are indicated by the second indication information, or the positions of the N resource blocks are predefined.
  • the value of N and/or the positions of the N resource blocks are indicated by third indication information, where the third indication information includes first initial uplink BWP configuration information.
  • the beneficial effects of the above-mentioned second aspect and the various possible implementations of the second aspect can refer to the beneficial effects brought by the above-mentioned second aspect. Repeat.
  • the present application provides a communication device, comprising: a processor and a communication interface;
  • the processor is configured to execute the communication method in any possible design of the first aspect and the first aspect or in any possible design of the second aspect and the second aspect by executing the executable instructions.
  • the present application provides a computer-readable storage medium, where an execution instruction is stored in the computer-readable storage medium, and when at least one processor of a communication device executes the execution instruction, the communication device executes the first aspect and the first aspect A communication method in any of the possible designs or the second aspect and any of the possible designs of the second aspect.
  • the present application provides a computer program product including execution instructions stored in a readable storage medium.
  • At least one processor of the communication device can read the executable instructions from the readable storage medium, and the at least one processor executes the executable instructions to cause the communication device to implement any possible design of the first aspect and the first aspect or the second aspect and The communication method in any possible design of the second aspect.
  • the present application provides a communication system, including a communication device in any possible design of the third aspect and the third aspect, and a communication device in any possible design of the fourth aspect and the fourth aspect.
  • FIG. 1 is a schematic structural diagram of a wireless communication system to which an embodiment of the present application is applied;
  • FIG. 2 is an interaction flow chart of an embodiment of a communication method provided by the present application
  • FIG. 3 is an interaction flowchart of an embodiment of a communication method provided by the present application.
  • FIG. 4 is a schematic structural diagram of an embodiment of a communication device provided by the present application.
  • FIG. 5 is a schematic structural diagram of an embodiment of a communication device provided by the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a communication device provided by the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by the present application.
  • words such as “exemplary” or “for example” are used to represent any embodiment or solution described as “exemplary” or “for example” in the embodiments of the present application It should not be construed as preferred or advantageous over other embodiments or arrangements. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the embodiments of the present application may be applied to wireless communication systems.
  • the wireless communication systems mentioned in the embodiments of the present application include but are not limited to: Narrow Band-Internet of Things (NB-IoT), global wireless Communication System (Global System for Mobile Communications, GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), Code Division Multiple Access 2000 system (Code Division Multiple Access, CDMA2000), time division synchronous code division multiple access system (Time Division-Synchronization Code Division Multiple Access, TD-SCDMA), long term evolution system (Long Term Evolution, LTE) and 5G wireless communication system three Large application scenarios eMBB, URLLC and mMTC.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000 system
  • time division synchronous code division multiple access system Time Division-Synch
  • FIG. 1 is a schematic structural diagram of a wireless communication system to which an embodiment of the present application is applied.
  • the wireless communication system includes a core network device 110 , an access network device 120 and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1 ).
  • the terminal device is connected with the access network device 120 in a wireless manner
  • the access network device 120 is connected with the core network device 110 in a wireless or wired manner.
  • the core network device 110 and the access network device 120 may be independent and different physical devices, or the functions of the core network device 110 and the logical functions of the access network device 120 may be integrated on the same physical device, or they may be one physical device.
  • the physical device integrates the functions of some core network devices and some access network devices.
  • Terminal devices can be either fixed or mobile.
  • FIG. 1 is only a schematic diagram, and the wireless communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, access network devices, and terminal devices included in the wireless communication system.
  • An access network device is an access device that a terminal device wirelessly accesses into the wireless communication system, and it can be a device used to communicate with the terminal device, for example, it can be a base transceiver station (base transceiver station) in the GSM system or CDMA.
  • BTS transceiver station
  • BTS base station
  • base station nodeB, NB
  • eNodeB evolved base station
  • evolutional NodeB, eNB or eNodeB evolved base station
  • next-generation base station next generation eNodeB, ng-eNB
  • the access network device can be a relay station, an access point (Access Point, AP), a vehicle-mounted device, a wearable device, and a network-side device in a 5G network or a future evolved public land mobile
  • the access network equipment in the network public land mobile network, PLMN), etc., for example, may be a new generation base station (generation nodeB, gNB or gNodeB), etc.
  • the specific device form is not limited.
  • the terminal device in this embodiment of the present application may be a wireless terminal, and the wireless terminal may be a device that only provides voice and/or other service data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem .
  • a wireless terminal may communicate with one or more core networks via a radio access network (RAN), and the wireless terminal may be a mobile terminal such as a mobile telephone (or "cellular" telephone) and a computer with a mobile terminal
  • RAN radio access network
  • Mobile devices which may be portable, pocket-sized, hand-held, computer-embedded, or vehicle-mounted, for example, exchange language and/or data with the wireless access network.
  • a wireless terminal may also be referred to as a system, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, receiver. Access Terminal, user terminal, user agent, user device or user equipment, which are not limited here.
  • Access network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of the access network device and the terminal device.
  • the embodiments of the present application may be applicable to downlink signal transmission, uplink signal transmission, and device to device (device to device, D2D) signal transmission.
  • the sending device is an access network device
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is an access network device.
  • the sending device is a terminal device
  • the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • Communication between access network equipment and terminal equipment and between terminal equipment and terminal equipment can be performed through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum), or both licensed spectrum and license-free spectrum. spectrum for communication.
  • the access network equipment and the terminal equipment and between the terminal equipment and the terminal equipment can communicate through the spectrum below 6G, can also communicate through the spectrum above 6G, and can also use the spectrum below 6G and the spectrum above 6G at the same time. communication.
  • the embodiments of the present application do not limit the spectrum resources used between the access network device and the terminal device.
  • the terminal device in the mMTC scenario may be a terminal device with reduced capability.
  • the terminal device with reduced capability may also be referred to as a light terminal device.
  • a reduced capability (REDCAP) terminal device in an NR system has lower capability than a traditional terminal device.
  • REDCAP terminal equipment has one or more of the following characteristics compared to traditional terminal equipment: supporting a narrower bandwidth, fewer antennas, supporting a lower maximum transmit power, and supporting a lower duplex capability (eg the reduced capability terminal equipment in question).
  • the 14-bit frequency domain resource allocation field in the uplink grant information of the random access response will be truncated to a length of
  • M is the number of resource blocks (resource blocks, RBs) included in the BWP configured by the access network device for the terminal device or the number of resource blocks used for the allocated frequency domain resource bandwidth.
  • the frequency domain resource allocation indication is performed according to the provisions of the existing protocol.
  • the frequency domain resource allocation field may have underutilized bits, and the resource allocation field may not be able to indicate resource allocation of certain lengths, resulting in inflexible resource indication and ineffective resources. problem of use. In order to solve this problem, the present application provides a communication method and device.
  • the length of the frequency domain resource allocation field is the same as the resource block supported or configured by the first terminal device.
  • the number N is related.
  • the first terminal device is a reduced capability terminal device.
  • the length of the frequency domain resource allocation field is related to the number N of resource blocks supported or configured by the first terminal device.
  • the frequency domain resource allocation field of the uplink grant information in the random access response sent to the first terminal device is less than 14 bits.
  • the frequency domain resource allocation field of the uplink grant information for scheduling the physical uplink shared channel of the first terminal device is less than 14 bits. Therefore, the field for allocating frequency domain resources for the first terminal equipment can flexibly allocate resource blocks, so that frequency domain resources can be used more effectively, resource waste can be avoided, and the flexibility of resource allocation can be improved.
  • FIG. 2 is an interaction flowchart of an embodiment of a communication method provided by the present application.
  • the method of this embodiment is applicable to the first terminal device.
  • the first terminal device may be a first type of terminal device.
  • the first terminal device and the first type of terminal device have the same meaning and can be interchanged.
  • the first terminal device may be a terminal device with a bandwidth less than or equal to 20MHz (or 10MHz, or 5MHz, or 3MHz, or 1.4MHz, or 200KHz).
  • the bandwidth may be the channel bandwidth, may be the maximum bandwidth supported by the terminal device, or may be the size of the BWP configured by the access network device for the terminal device.
  • the first terminal device may be a terminal device whose number of resource blocks included in the bandwidth is less than 106 RBs (or 100 RBs, or 50 RBs, or 25 RBs, or 15 RBs, or 6 RBs, or 1 RB).
  • the method of this embodiment may include:
  • An access network device sends first uplink authorization information to a first terminal device.
  • the first terminal device receives the first uplink authorization information from the access network device.
  • the access network device may send different uplink authorization information to different types of terminal devices.
  • the access network device may also send the second uplink authorization information to the second terminal device.
  • the second terminal device may be a second type of terminal device.
  • the second terminal device may also be of the same type as the first terminal device.
  • the bandwidth of the second terminal device is different from the bandwidth of the first terminal device.
  • the bandwidth of the second terminal device may be greater than the bandwidth of the first terminal device.
  • the bandwidth of the second terminal device is 100MHz or 50MHz.
  • the first terminal device and the second terminal device can use different random access resources, the access network device can learn the type of the terminal device by receiving the random access channel, and then the access network device sends the terminal device according to the type of the terminal device.
  • Uplink authorization information corresponding to the terminal device For example, if the access network device determines that the terminal device is the first type of terminal device, the access network device sends the first uplink authorization information to the first type of terminal device; the access network device determines that the terminal device is the second type of terminal device, and sends the first uplink authorization information to the first type of terminal device The second terminal device sends the second uplink authorization information.
  • the format of the first uplink grant information is different from the format of the second uplink grant information.
  • the format of the uplink grant information specifies at least one of one or more fields contained in the uplink grant information, the size of each field, the position of each field in the grant information, and the sequence of the multiple fields in the grant information.
  • the content may be at least one of the field, the content of the field, the size of the field, the position of the field in the authorization information, and the order of the field in the authorization information.
  • the format of the first uplink grant information is referred to as the first uplink grant format.
  • the format of the second uplink authorization information is referred to as the second uplink authorization format, and the second uplink authorization information is also referred to as authorization information associated with the second uplink authorization format.
  • the second frequency domain resource allocation field associated with the second uplink grant format is used to indicate frequency domain resource allocation information of the second type of terminal equipment.
  • the length of the second frequency domain resource allocation field is X bits. In one implementation, X is a fixed value. In another possible implementation, X is 14.
  • X may be a predefined value.
  • N is a positive integer related to resource allocation. For example, N is the number of resource blocks configured by the access network device for the first terminal device.
  • the access network device determines the type of the terminal device, in an implementable manner, for example, in the non-contention-based random access scenario, the non-contention-based random access uses dedicated random access resources and preamble sequence, so the access network device can determine the type of the terminal device before sending the random access response to the terminal device. For example, it may be determined that the terminal device is an eMBB terminal or a REDCAP terminal. For another example, in a contention-based random access scenario, if the access network device sends a random access response message, it can distinguish whether the terminal device that initiates random access is the first type terminal device or the second type terminal device, The access network device may send uplink authorization information corresponding to the terminal device to different types of terminal devices.
  • the method for the access network equipment to distinguish different types of terminal equipment may be by configuring different access resources for different types of terminal equipment.
  • the access resource may be one or more of the frequency domain, the time domain, the code domain and the sequence, and this embodiment does not limit the access resource.
  • the access network device may also determine the type of the terminal device in other ways, and the access network device may send corresponding uplink authorization information to the terminal device of this type according to the type of the terminal device. This embodiment does not limit this.
  • the capabilities of the terminal device of the first type and the terminal device of the second type are different, which may be embodied in at least one of the following:
  • the bandwidth capabilities of the first type of terminal equipment and the second type of terminal equipment are different.
  • the second type terminal equipment can support the simultaneous use of 100MHz frequency resources and access network equipment on one carrier for data transmission, while the first type terminal equipment can support the maximum use of 20MHz or 10MHz or 5MHz frequency resources on one carrier at the same time.
  • the access network equipment performs data transmission.
  • the number of transmitting and receiving antennas of the first type terminal equipment and the second type terminal equipment are different.
  • the minimum supported antenna configuration of the second type terminal device is 4 transmit and 2 receive, that is, under the minimum antenna configuration, four receive antennas are used to receive downlink data, and two transmit antennas are used to transmit uplink data.
  • the maximum supported antenna configuration of the first type terminal device is less than 4 transmissions and 2 receptions.
  • the second type terminal device only supports 2 receptions and 1 transmission, or can also support 2 receptions and 2 transmissions, or 1 reception and 1 transmission.
  • the maximum uplink transmit powers of the first type of terminal equipment and the second type of terminal equipment are different.
  • the maximum uplink transmit power of the second type of terminal equipment may be 23dBm or 26dBm, while the maximum uplink transmit power of the first type of terminal equipment may fall within the range of 4dBm to 20dBm.
  • NR Rel-15 and NR Rel-16 terminal equipment can be the second type terminal equipment
  • NR Rel-17 terminal equipment can be the first type. Terminal Equipment.
  • the first type terminal equipment and the second type terminal equipment support different carrier aggregation (carrier aggregation, CA) capabilities.
  • the second type of terminal equipment may support carrier aggregation, while the first type of terminal equipment does not support carrier aggregation.
  • both the first type terminal equipment and the second type terminal equipment support carrier aggregation, but the maximum number of carrier aggregations simultaneously supported by the second type terminal equipment is greater than the maximum number of carrier aggregations simultaneously supported by the first type terminal equipment.
  • the terminal equipment of the second type can support aggregation of 5 carriers or 32 carriers at the same time, while the terminal equipment of the first type can support the aggregation of 2 carriers at the same time.
  • the second type of terminal equipment supports full-duplex frequency division duplexing (Frequency Division Duplexing, FDD), while the second type of terminal equipment only supports half-duplex FDD.
  • FDD Frequency Division Duplexing
  • the terminal equipment of the first type and the terminal equipment of the second type have different data processing time capabilities.
  • the minimum delay between receiving downlink data and sending feedback on the downlink data by the second type terminal equipment is smaller than the minimum delay between receiving the downlink data and sending feedback on the downlink data by the first type terminal equipment, and/ Or, the minimum delay between sending uplink data and receiving feedback on the uplink data by the second type terminal equipment is smaller than the minimum delay between sending uplink data and receiving feedback on the uplink data by the first type terminal equipment.
  • the processing capabilities of the first type of terminal equipment and the second type of terminal equipment are different.
  • the processing capability of the first type terminal equipment is lower, such as not supporting 256 quadrature amplitude modulation (quadrature amplitude modulation, QAM); and/or, the first type terminal equipment supports a hybrid automatic repeat request (hybrid automatic repeat request) , the maximum number of HARQs is 8, and the maximum number of HARQs supported by the second type terminal equipment is 16.
  • the peak uplink transmission rate and/or the peak downlink transmission rate corresponding to the terminal equipment of the first type and the terminal equipment of the second type are different.
  • the services corresponding to the terminal equipment of the first type and the terminal equipment of the second type are different.
  • the service corresponding to the first type of terminal equipment is an IoT application (such as video surveillance), and the service corresponding to the second type of terminal equipment is mobile broadband MBB.
  • the terminal device of the first type may be, for example, a REDCAP terminal device
  • the terminal device of the second type may be, for example, an NR existing (Legacy) terminal device.
  • the first uplink grant information includes a first field, the first field indicates frequency domain resource allocation information, and the length Y of the first field is less than X.
  • X is the length of the second frequency domain resource allocation field associated with the second uplink grant format.
  • the first terminal device does not support the second uplink grant format.
  • Y is related to the number N of resource blocks supported or configured by the first terminal device, where N is a positive integer.
  • the fact that the first terminal device does not support the second uplink authorization format means that the first terminal device cannot obtain uplink authorization information according to the second uplink authorization format.
  • the length of the second frequency domain resource allocation field associated with the second uplink grant format may be considered to be the length or the number of occupied bits corresponding to the second frequency domain resource allocation field in the second uplink grant format.
  • Y is related to the number N of resource blocks supported or configured by the first terminal device.
  • N is the number of resource blocks supported or configured by the first terminal device, rounded up.
  • N may be predetermined.
  • N may also be the number of resource blocks configured by the access network device for the first terminal device.
  • N is the maximum number of resource blocks configured by the access network device for the terminal device for information transmission.
  • N is the number of resource blocks included in a bandwidth part (BWP) configured by the access network device, or N is the number of resource blocks included in the carrier configured by the access network device.
  • BWP bandwidth part
  • the BWP can be an initial BWP, or a non-initial BWP.
  • N may also be the number of resource blocks supported by the first terminal device.
  • the first terminal device determines the number of supported resource blocks according to the bandwidth of the first terminal device.
  • the number of resource blocks used by the supported bandwidth may be the maximum number of frequency domain resource blocks that can be occupied by the first terminal device when transmitting and/or receiving.
  • the supported bandwidth is 20 MHz bandwidth, and when the subcarrier spacing is 15 kHz, the supported number of resource blocks is 106 RBs.
  • the maximum bandwidth that the first terminal device can receive a signal and/or the maximum bandwidth that the first terminal device can send a signal, and so on. It should be noted that, in this application, resource blocks are used as an example for description.
  • a resource block occupies 12 subcarriers in the frequency domain.
  • a resource block may also be a resource unit of other granularity.
  • a resource block can also be a resource element (RE), a resource element group (REG), a sub-carrier (sub-carrier), a control channel element, a subframe, a radio frame, a time slot, an RB group, or a REG.
  • RE resource element
  • REG resource element group
  • sub-carrier sub-carrier
  • control channel element a subframe
  • a radio frame a time slot
  • an RB group or a REG.
  • the access network device may determine N according to the bandwidth supported by the first terminal device. Alternatively, the access network device may configure N for the first terminal device.
  • the frequency hopping indication also called enabling frequency hopping
  • M is the number of resource blocks included in the BWP configured by the access network device for the terminal device or the number of resource blocks used for the allocated frequency domain resource bandwidth.
  • the access network device uses the uplink authorization information in the random access response
  • the bits indicate frequency domain resource block allocation bits to the first terminal device.
  • none of the Y bits is used for indicating the offset value of frequency hopping. Therefore, all Y bits can be used for the indication of the resource block, so that more flexible resource allocation can be provided (eg, to avoid restricting the length indication or the start point indication of resource block allocation).
  • the access network device may also use the uplink grant information for scheduling the specific PUSCH of the terminal device.
  • the bits indicate frequency domain resource block allocation bits to the first terminal device. None of the Y bits is used for frequency hopping offset value indication. Therefore, all Y bits can be used for the indication of the resource block, so that more flexible resource allocation can be provided (eg, to avoid restricting the length indication or the start point indication of resource block allocation).
  • the first uplink authorization information may be any one of the authorization information included in the random access response information or the downlink control information, and the uplink authorization information in the downlink control information.
  • the downlink control information may be fallback mode downlink control information.
  • the fallback mode downlink control information may be, for example, DCI format 0_0.
  • the fallback mode downlink control information can also be DCI format 0_0 scrambled by TC-RNTI.
  • the downlink control information may also be non-fallback mode downlink control information.
  • the non-fallback mode downlink control information may be, for example, DCI format 0_1.
  • the second uplink authorization information may be any one of the authorization information included in the random access response information RAR or the downlink control information, and the uplink authorization information in the downlink control information DCI.
  • the downlink control information may be fallback mode downlink control information.
  • the fallback mode downlink control information may be, for example, DCI format 0_0.
  • the fallback mode downlink control information can also be DCI format 0_0 scrambled by TC-RNTI.
  • the downlink control information may also be non-fallback mode downlink control information.
  • the non-fallback mode downlink control information may be, for example, DCI format 0_1.
  • the first terminal device receives first uplink authorization information from the access network device, where the first uplink authorization information includes a first field. Further, the first terminal device determines resources for uplink transmission according to the first field.
  • the resource is a frequency domain resource allocated by the access network device to the first terminal device through the first field.
  • the frequency domain resource may be one or more resource blocks (resource block, RB), resource element (resource element, RE), resource element group (resource element group, REG), bound resource element group (REG bundle), Any of a sub-carrier (sub-carrier), a carrier (carrier), and a bandwidth part (BWP).
  • the first uplink grant information includes a first field, and the first field indicates frequency domain resource allocation information.
  • the first terminal device may determine, according to the frequency domain resource allocation information indicated by the first field, a frequency domain resource allocated to the first terminal device, where the frequency domain resource is used for uplink transmission.
  • the first terminal device performs uplink transmission according to the resource.
  • the first terminal device determines resources for uplink transmission according to the frequency domain resource allocation information indicated by the first field, and performs uplink transmission according to the determined resources.
  • uplink transmission may be performed with the access network device on the determined resource.
  • the first terminal device receives uplink authorization information from the terminal device.
  • the uplink grant information of the random access response may exist free bits.
  • the access network device sends uplink grant information to the first terminal device through a random access response, where the number of bits used to indicate frequency domain allocation in the uplink grant information may be less than 14 bits. Therefore, the idle bits in the uplink grant information can also be used for other indications.
  • the uplink grant information (such as the uplink grant information for scheduling PUSCH, or the uplink grant information included in the random access response, or the random access response) may include: one or more fields, wherein one or more fields At least one piece of information may be indicated. This piece of information includes any one or more of the following information:
  • RACH 2-step Random Access Channel
  • RACH 4-step RACH information
  • MCS modulation and coding scheme
  • PUSCH physical uplink shared channel
  • TBS transport block set
  • the uplink grant information instructs the terminal equipment to use the 4-step RACH to access the network.
  • the uplink grant information indicates to use the 2-step RACH, or instructs the terminal equipment using the 2-step RACH to fall back to the 4-step RACH for random access.
  • the MCS included in the uplink grant information in the random access response is 4 bits, so only 16 MCS indexes can be indicated at most.
  • the number of bits of the MCS indication field is 5 bits, and a maximum of 32 kinds of MCS indexes can be performed.
  • the first uplink grant information sent by the access network device to the first terminal device includes a sixth field.
  • the format of the first uplink grant information may be related to the subcarrier spacing used by the BWP of the first terminal device, or related to the subcarrier spacing used for information transmission.
  • the sixth field (which may be the content of the sixth field, the size of the sixth field, or the position of the sixth field) in the first uplink grant information is related to the subcarrier spacing used by the BWP of the first terminal device, Or related to the subcarrier spacing used for information transmission.
  • the length of the sixth field is N1 bits.
  • the resources here can be bandwidth resources.
  • the bandwidth resources are bandwidth resources configured by the access network device for the first terminal device or bandwidth resources used by the first terminal device.
  • the bandwidth resource can be BWP or carrier.
  • the length of the sixth field is N2 bits. N1 and N2 are not equal.
  • the bandwidth resource of the first terminal device is 20MHz.
  • the frequency domain resource allocation field includes 9 bits
  • the frequency hopping indication field includes 1 bit
  • the frequency domain resource allocation field includes 11 bits
  • the frequency hopping indication field includes 2 bits
  • the first grant information includes a sixth field, and the sixth field may be used to indicate any one or more of the following information:
  • the first uplink grant information may not include the sixth field.
  • the bandwidth of the first terminal device is 20MHz.
  • the first grant information also includes 2 bits of beam direction information. , that is, the first authorization information includes the sixth field.
  • the first grant information does not include beam direction information. That is, the first authorization information does not include the sixth field.
  • the length of the sixth field is less than 14-X.
  • N is the number of resource blocks supported or configured by the first terminal device.
  • the access network device Before sending the first uplink grant information, the access network device needs to determine the positions and/or values of the N resource blocks. Before receiving the first uplink grant information, the first terminal device also needs to determine the positions and/or values of the N resource blocks.
  • how to determine the positions of the N resource blocks and/or the value of N are three options as follows:
  • the first terminal device determines that the bandwidth resource of the first terminal device is the first resource or the second resource according to the first indication information sent by the access network device.
  • the bandwidth resources are bandwidth resources configured by the first terminal device or bandwidth resources used by the first terminal device.
  • the first resource is the first BWP resource.
  • the second resource is the second BWP resource.
  • the first terminal device obtains the positions of the N resource blocks and/or determines a value of N based on the bandwidth resources.
  • the N resource blocks are the resource blocks included in the bandwidth resource.
  • the first terminal device determines the positions of the N resource blocks according to the second indication information sent by the access network device.
  • the second indication information may at least indicate the location of the bandwidth resource of the first terminal device.
  • the second indication information indicates an offset in frequency, or indicates index information of resources.
  • the second indication information may indicate bandwidth information of the first terminal device, and the first terminal device determines the value of N according to the indicated bandwidth information of the first terminal device (in this case, the positions of the N resource blocks may be predefined of).
  • the first terminal device determines the value of N and/or the positions of the N resource blocks through the third indication information sent by the access network device.
  • the third indication information is initial BWP configuration information.
  • the first terminal device determines the value of N and/or the positions of the N resource blocks according to the initial BWP configuration information.
  • the initial BWP configuration information may also configure resources for the second terminal device.
  • Manner 1 may be to determine the positions and/or values of N resource blocks through the following S105-S108:
  • the access network device sends the first indication information to the first terminal device.
  • the first indication information is used to indicate whether the bandwidth resource of the first terminal device is the first resource or the second resource.
  • the first terminal device receives the first indication information.
  • the first terminal device determines that the bandwidth resource of the first terminal device is the first resource.
  • the value or bit state of the first indication information belongs to the second set, the first terminal device determines that the bandwidth resource of the first terminal device is the second resource.
  • the first resource is not the same as the second resource.
  • the difference may be that the first resource and the second resource do not overlap, or the first resource and the second resource partially overlap.
  • the access network device may configure the first resource for the first terminal device by using the first initial BWP configuration information.
  • the first initial BWP configuration information may further configure resources for the second terminal device. That is, the first terminal device and the second terminal device can read the same initial BWP configuration information.
  • the first set and the second set may include one or more bit states or values.
  • the bandwidth resource may be a resource included in an uplink initial BWP, a downlink initial BWP, a control information resource set (control resource set, CORESET), an uplink BWP, a downlink BWP, an uplink carrier, or a downlink carrier.
  • control resource set control resource set, CORESET
  • the first indication information may be included in RRC signaling, MAC CE signaling, or DCI signaling. Further, the first terminal device may determine the bandwidth resource according to the first indication information.
  • the first terminal device determines that the bandwidth resource of the first terminal device is the first resource.
  • the bit state of the first indication information belongs to the second set
  • the first terminal device determines that the bandwidth resource of the first terminal device is the second resource.
  • the resources included in the first resource and the second resource may be different.
  • the first resource and the second resource may be different BWPs.
  • the first set or the second set may include one or more bit states.
  • the first indication information is 1 bit
  • each of the first set and the second set includes one bit state.
  • the first indication information is a plurality of bits
  • the first set and the second set include one or more bit states.
  • the first indication information includes 1 bit.
  • the first set is “1” and the second set is “0".
  • the first terminal device may determine that the bandwidth resource of the first terminal device is the first resource according to the first indication information, and the first resource is, for example, the first uplink initial BWP;
  • the state of the indication information is "0", and the first indication information indicates that the bandwidth resource of the first terminal device is the second resource, and the second resource may be, for example, the second uplink initial BWP.
  • the first indication information may use a bit value to indicate the relationship between the bandwidth resource of the first terminal device and the initial uplink BWP. For example, when the state of the first indication information is "1", the bandwidth resource of the first terminal device indicated by the first indication information is within the initial uplink BWP. When the state of the first indication information is "0", the bandwidth resource of the first terminal device indicated by the first indication information is outside the initial uplink BWP.
  • the second resource and the first resource are not identical resources. In another possible implementation, the second resource and the first resource may partially overlap.
  • resources can be configured for the first terminal device and the second terminal device through a common BWP configuration information.
  • the first terminal device may determine bandwidth resources according to the common BWP configuration information.
  • the communication system can save the indication overhead of signaling, realize flexible resource indication, and improve resource utilization while realizing load balancing.
  • the first resource may be a resource configured for the first terminal device, and this application does not limit whether the first resource can be used for the second terminal device.
  • the second resource may only be used for the first terminal device.
  • the first resource may be configuration information such as uplink initial BWP, downlink initial BWP, control information resource set (control resource set, CORESET), uplink BWP, downlink BWP, downlink CORESET0, uplink carrier or downlink carrier.
  • configuration information such as uplink initial BWP, downlink initial BWP, control information resource set (control resource set, CORESET), uplink BWP, downlink BWP, downlink CORESET0, uplink carrier or downlink carrier.
  • the first terminal device determines the positions of the N resource blocks and/or the value of N according to the bandwidth resources of the first terminal device.
  • the first indication information indicates that the bandwidth resource of the first terminal device is the first resource, and the positions of the N resource blocks may be determined in the first resource.
  • the first indication information indicates that the bandwidth resource of the first terminal device is the second resource, and the positions of the N resource blocks may be determined in the second resource. Further, the positions of the N resource blocks of the first terminal device in the bandwidth resource may be determined through signaling or a predefined rule. For example, the number of resource blocks included in the bandwidth resource is N.
  • the resource blocks included in the bandwidth resource are N resource blocks.
  • the first terminal device may determine the value of N according to the bandwidth that the first terminal device can support.
  • the supportable bandwidth can be understood as at least one capability of the maximum signal bandwidth that the first terminal device can receive and/or the maximum signal bandwidth that can send.
  • the bandwidth that the first terminal device can support is 20MHz, and if the subcarrier spacing is 15KHz, the value of N is 106RB or 100RB.
  • Mode 2 specifically, can be determined by the following S105'-S107' to determine the positions of the N resource blocks and/or the value of N:
  • the access network device sends the second indication information to the first terminal device.
  • the second indication information is used to indicate the positions of the N resource blocks.
  • the second indication information is used to indicate the positions of the N resource blocks within the bandwidth resource.
  • Bandwidth resources are predefined or configured by signaling.
  • the signaling may be system information.
  • the bandwidth resource can be BWP.
  • the bandwidth resource is an uplink initial BWP.
  • the second indication information includes offset value information.
  • the offset value information is used to indicate the offset of the N resource blocks relative to the first RB in the initial uplink BWP.
  • the first RB can be understood as an RB with an index of 0.
  • the second indication information includes a resource block index value, where the resource block index value is used to indicate the positions of the N resource blocks in the bandwidth resource.
  • the positions of the N resource blocks are predefined.
  • the starting positions of N resource blocks and bandwidth resources of the first terminal device are pre-defined to be the same.
  • the first terminal device determines the starting position of the bandwidth resource according to a supported bandwidth, a predefined rule, or a signaling notification by the access network device, and then determines the positions of the N resource blocks.
  • the first terminal device determines the positions of the N resource blocks according to the first reference resource and the second indication information.
  • the first reference resource is the BWP, or a specific resource location in the BWP, or Point A, or the first public PRB, or a specific resource in the SSB.
  • the first terminal device may determine that N resource blocks are within the BWP according to the first reference resource and the second indication information.
  • the first terminal device determines, according to the first reference resource and the second indication information, that at least some of the resources in the N resource blocks are outside the BWP.
  • the first reference resource includes the 10th RB to the 19th RB.
  • the first terminal device After receiving the second indication information, the first terminal device determines the value of N according to the second indication information.
  • the specific implementation manner for the first terminal device to determine the value of N is as described in the first manner, and details are not repeated here.
  • the access network device before sending the second indication information, the access network device also needs to determine the value of the N.
  • the value of N may be determined according to the bandwidth supported by the first terminal device.
  • the supportable bandwidth can be understood as at least one capability of the maximum signal bandwidth that the first terminal device can receive and/or the maximum signal bandwidth that can send.
  • Manner 3 may be through the following S105"-S106" to determine the positions and/or values of the N resource blocks:
  • the access network device sends third indication information to the first terminal device.
  • the third indication information includes first initial uplink BWP configuration information.
  • the first initial uplink BWP configuration information may also be used for the second terminal device.
  • the first terminal device After receiving the third indication information, the first terminal device determines the positions of the N resource blocks and/or the value of N according to the first initial uplink BWP configuration information.
  • the third indication information may be system information.
  • the first initial uplink BWP configuration information is sent by the access network device, and is used to indicate the bandwidth resources of the first terminal device.
  • the bandwidth resource may be a resource used for uplink transmission by the first terminal device.
  • the first initial uplink BWP configuration information is sent by the access network device.
  • the first initial uplink BWP information may also be used to indicate bandwidth resources of the second terminal device.
  • the bandwidth resource includes the value of N and/or the positions of N resource blocks. The value of N and/or the positions of the N resource blocks may be determined according to the first initial uplink BWP configuration information.
  • the value of N and/or the positions of the N resource blocks may be determined in a default manner or a signaling manner.
  • the default value of N can be the bandwidth supported by the first terminal device, and the default frequency domain resources of the initial uplink BWP of the first terminal device are within the resource range of the first initial uplink BWP.
  • the initial resource position of the frequency domain resource of the initial uplink BWP of the first terminal device is a specific position in the first initial uplink BWP.
  • the initial resource position of the frequency domain resource of the initial uplink BWP of the first terminal device is the same as the initial resource position of the first initial uplink BWP.
  • the above-mentioned method of determining the value of N and/or the position of N resource blocks according to the first initial uplink BWP is also applicable to the first terminal device according to the first initial downlink BWP configuration information, control information resource set (control resource set). , CORESET) configuration information, uplink BWP, downlink BWP, CORESET0 configuration information, uplink carrier, or downlink carrier, etc. to determine N resource blocks.
  • the first terminal device may also determine the value of N according to S1081-S1082:
  • the first terminal device determines a first value.
  • the first value is determined according to the capability of the first terminal device (eg, the maximum supported channel bandwidth), or the first value may be pre-configured by the access network device, pre-defined by a protocol, or pre-set by a device manufacturer.
  • the first terminal device determines the value of N according to the bandwidth resource and the first value.
  • bandwidth resources are predefined or configured by signaling.
  • the signaling may be system information.
  • the bandwidth resource may be the size and/or location of the BWP.
  • it can be determined that the value of N min ⁇ bandwidth resource, first value ⁇ . For example, if the bandwidth resource is 20MHz, and the supported bandwidth of the first terminal device is 5MHz, the first terminal device determines the value of N according to 5MHz. Or, the bandwidth resource indicated by the signaling is 10 MHz, the first terminal device determines the first value is 20 MHz according to the signaling from the access network device, and the first terminal device determines the value of N according to 10 MHz.
  • the bandwidth resource is the first initial uplink BWP
  • the first terminal determines the value of N according to the first value and the size of the first initial uplink BWP.
  • the access network device may also send the first initial uplink BWP configuration information to the second terminal device.
  • the access network device before sending the first indication information, the access network device also needs to determine the N values.
  • the specific determination method is similar to the determination method on the side of the first terminal device.
  • the access network device configures the first terminal device to perform information transmission on the third resource by using the third resource configuration information.
  • the third resource configuration information may also configure resources for the second terminal device.
  • the third resource includes N11 RBs.
  • the maximum number of resource blocks that the first terminal device can use to transmit information in the third resource is N21.
  • N11 may be greater than N21.
  • the frequency domain resource allocation field of the first terminal device determines the number of bits contained in the field according to N21.
  • the frequency domain resource allocation field of the second terminal device determines the number of bits contained in this field according to N11.
  • the maximum number N of resource blocks available for data transmission determined by the first device and the second terminal device in the first resource is different.
  • the third resource includes 270 RBs.
  • the bandwidth supported by the second terminal device is greater than 50MHz or 270RB.
  • the second terminal device interprets the frequency domain resource indication field in the uplink grant information according to the number of resource blocks (eg, 270) included in the first resource notified by the access network device. For example, the length of the frequency domain resource allocation field in the first uplink grant format is determined according to N21. The length of the frequency domain resource allocation field in the second uplink grant format is determined according to N11. The value of N is determined according to a predefined manner, and no additional signaling overhead is required.
  • the length of the frequency domain resource allocation field is the same as the number of resource blocks supported or configured by the first terminal device. N related. That is, the length of the frequency domain resource allocation field is based on the number N of resource blocks supported or configured by the first terminal device, and is smaller than the length of the second frequency domain resource allocation field associated with the second uplink grant format.
  • none of the Y bits is used for indicating the offset value of frequency hopping. Therefore, all Y bits can be used for the indication of the resource block, so that more flexible resource allocation can be provided (eg, to avoid restricting the length indication or the start point indication of resource block allocation).
  • a data transmission can be divided into multiple frequency hopping transmissions in time.
  • the frequency resources corresponding to each segment transmission are not exactly the same.
  • Each segment of transmission is a one-hop transmission in a frequency-hopping transmission.
  • any hop refers to any one transmission or any section of transmission among multiple frequency hopping transmissions included in one data transmission.
  • the corresponding resources refer to the resources occupied or used by data transmission.
  • a frequency hopping indication field in the uplink scheduling information is used to indicate whether the current transmission is frequency hopping. If frequency hopping is used, the frequency hopping indication will be performed according to 1 bit or 2 bits in the frequency domain resource allocation field in the grant information. Specifically, it indicates the offset value of the frequency domain position of the second hop relative to the previous hop.
  • the allocatable bandwidth is less than 50RB, use 1 bit for frequency hopping indication.
  • the allocatable bandwidth is greater than or equal to 50RB, use 2 bits for frequency hopping indication. Due to limited capabilities of low-complexity UEs, for example, the maximum supported channel bandwidth may be less than or equal to 20M.
  • the frequency domain resource allocation field in the uplink grant information included in the random access response is fixed to 14 bits. Under the 15kHz subcarrier spacing, the number N of allocable frequency domain resource blocks corresponding to 20MHz is 106 RBs.
  • the frequency domain resource allocation field will be truncated to a length of 2 bits of the 13 bits are used to indicate the offset value, and the remaining 11 bits of the 13 bits are used to indicate the allocated frequency domain resource position.
  • the instructable state is reduced from 2 13 to 2 11 , but the remaining 1 bit is idle and unused.
  • the frequency domain resource allocation field will be truncated to a length of 2 bits of the 11 bits are used to indicate the offset value, and the remaining 9 bits of the 11 bits are used to indicate the allocated frequency domain resource location.
  • the instructable state is reduced from 2 11 to 2 9 , but the remaining 3 bits are idle and unused.
  • the indication of the frequency hopping offset value in the prior art occupies 1 or 2 bits in the frequency domain resource allocation field, which reduces the number of states used for frequency domain resource allocation, thereby making frequency domain resource allocation Limited.
  • the embodiment of the present application has the following five implementable modes:
  • the first uplink authorization information further includes a second field.
  • the second field is used to indicate whether at least one of frequency hopping and offset value.
  • the offset value may be one or more of frequency hopping offset, frequency offset value, and time offset value.
  • the offset value may be an offset value used for next-hop transmission on the determined resource. For example, in this manner, whether frequency hopping and the offset value are jointly coded indicate.
  • the terminal device determines the resources of the second hopping according to the offset value.
  • the frequency hopping in the time slot is based on the summation of the frequency domain resource allocation information and the offset value, and modulo the BWP bandwidth to determine the information position of the second hop.
  • Frequency hopping between time slots is to determine whether the resource allocation information in the frequency hopping domain is summed with the offset value according to whether i of the ith frequency hopping is an odd or even number, and take the modulo of the BWP bandwidth.
  • the BWP bandwidth refers to the maximum number of resource blocks included in a configured or predefined BWP that can transmit information.
  • the second field is independent of the foregoing first field.
  • the second field is the frequency hopping indication field.
  • the second field is independent of the first field, which can prevent the frequency hopping indication from occupying the frequency domain resource allocation field, increase the number of bits available in the frequency domain resource allocation field, and improve the flexibility of frequency domain resource allocation.
  • the second field can indicate at least one of the following bit states.
  • the second field is used to indicate whether at least one of frequency hopping and offset value is indicated by at least one of the following bit states:
  • the first bit state used to indicate no frequency hopping.
  • the second bit state is used to indicate that the frequency hopping and the offset value are the first offset value, or the second bit state is a reserved state.
  • the third bit state is used to indicate that the frequency hopping and the offset value are the second offset value, or the third bit state is a reserved state.
  • the fourth bit state is used to indicate that the frequency hopping and the offset value are the third offset value, or the fourth bit state is the reserved state.
  • the non-frequency hopping refers to that the uplink transmission does not perform frequency hopping, or disables frequency hopping (disable frequency hopping).
  • the frequency hopping offset value may be the frequency offset value of the second hop. It may also be the frequency offset value of one frequency hopping transmission in multiple frequency hopping relative to the previous frequency hopping transmission.
  • the offset value includes and at least one of them.
  • the second field may be 2 bits, which are used to indicate the offset value when frequency hopping is not performed and frequency hopping is not performed.
  • Table 1 is an example of the bit state of the second field and the indicated information. As shown in Table 1a and Table 1b, the bit state of the second field and the indicated information are shown according to the size of N.
  • the bit states of the second field include 00, 01, 10 and 11. For example, when N ⁇ 50, as shown in Table 1a. For example, when N ⁇ 50, bit state 00 is used to indicate frequency hopping and the offset value is Bit state 01 is used to indicate frequency hopping and the offset value is Bit state 10 is reserved, and bit state 11 is used to indicate no frequency hopping.
  • N when N ⁇ 50, as shown in Table 1b.
  • bit state 00 is used to indicate frequency hopping and the offset value is Bit state 01 is used to indicate frequency hopping and the offset value is Bit state 10 is used to indicate frequency hopping and the offset value is Bit state 11 is used to indicate no frequency hopping.
  • the value judgment threshold of N is 50
  • the frequency hopping offset value is and
  • the N and frequency hopping offset values may be other values.
  • Table 2 is another example of the bit state of the second field and the indicated information. As shown in Table 2, the bit state 00 is used to indicate frequency hopping and the offset value is Bit state 01 is used to indicate frequency hopping and the offset value is Bit state 10 is reserved when N ⁇ 50. When N ⁇ 50, bit state 10 is used to indicate frequency hopping and the offset value is Bit state 11 is used to indicate no frequency hopping.
  • the second field is used to indicate the offset value when frequency hopping is not performed and frequency hopping is not performed.
  • Table 3a and Table 3b are an example of the bit state of the second field and the indicated information. As shown in Table 3a, N ⁇ 50, the second field may be 2 bits.
  • the bit states of the second field include four states of 00, 01, 10 and 11. Bit state 00 is used to indicate that the frequency hopping and offset values are Bit state 01 is used to indicate that the frequency hopping and offset values are Bit state 10 is used to indicate that the frequency hopping and offset values are Bit state 11 is used to indicate no frequency hopping. As shown in Table 3b.
  • the second field is 1 bit
  • the first uplink grant information further includes a 1-bit frequency hopping enable field (used to indicate whether frequency hopping).
  • the bit states of the second field include two states of 0 and 1.
  • Bit state 0 is used to indicate that the frequency hopping and offset values are
  • Bit state 1 is used to indicate that the frequency hopping and offset values are Therefore, when N ⁇ 50, it is also indicated by 2bit whether frequency hopping and offset value.
  • bit states of the second field and the indicated information shown in Table 1, Table 2, and Table 3 above are examples, and there may be other ways, which are not limited in this embodiment.
  • the correspondence between at least one bit state and at least one offset value is predefined, or configured through signaling.
  • the access network device sends signaling to the first terminal device, and the signaling carries a correspondence between at least one bit state and at least one offset value.
  • the offset value is determined according to the third field and the first information.
  • the first information is predefined, or the first information is configured through signaling.
  • the third field is included in the first uplink grant information.
  • the access network device jointly indicates (eg, an independent indication or a joint indication) the offset value to the first terminal device through the third field and the first information.
  • the first information and the third field indicate the offset value.
  • the first information may be the first bit or the last bit of the two bits.
  • it may be a 1-bit value that is pre-defined or configured through signaling to indicate the offset value
  • the 1-bit in the third field is used to indicate the value of another bit of the offset value.
  • the bit state "01" indicating the offset value can be pre-defined or configured through signaling (such as higher layer signaling, RRC signaling, MAC CE signaling) to configure the first bit value as "0", and in the third field 1 bit is indicated as "1". Therefore, the offset value indication will not occupy the bits in the first field, and will not lead to a decrease in the number of instructable frequency domain resource allocable states, so that frequency domain resource allocation is limited.
  • the access network device uses the second method to indicate whether frequency hopping or an offset value during frequency hopping.
  • the terminal device determines whether to frequency hopping or an offset value during frequency hopping using the second method.
  • N satisfies the second condition, and the access network device indicates whether to frequency hopping or an offset value during frequency hopping using the first method or a method defined by an existing protocol.
  • the terminal device determines whether to frequency hopping or an offset value during frequency hopping using the first method or the method defined by the existing protocol. For example, when N is within the first numerical range (for example, when 91 ⁇ N ⁇ 100), the access network device uses the second method to indicate whether frequency hopping or an offset value during frequency hopping.
  • the terminal device determines whether to frequency hopping or an offset value during frequency hopping using the second method. Otherwise, the access network device uses the first mode to indicate whether frequency hopping or an offset value during frequency hopping. Correspondingly, the terminal device determines whether to use frequency hopping or an offset value when frequency hopping is used in the first mode.
  • the access network device indicates to the first terminal device whether to determine frequency hopping or an offset value when frequency hopping is determined according to the way 1 or the way 2.
  • Manner 3 When the N is within the first value range, determine whether to frequency hopping according to high-layer signaling. When the N is within the second value range, whether to frequency hopping is determined according to the first uplink grant information.
  • the high-layer signaling may be radio resource control (RRC) signaling or media access control layer control element (Media Access Control element, MACCE) signaling.
  • RRC radio resource control
  • MACCE media access control layer control element
  • the access network device uses RRC signaling to notify the terminal device whether to hop frequency.
  • the terminal device determines whether to frequency hopping according to the RRC signaling. Otherwise, the access network device indicates whether to frequency hopping in the first uplink authorization information.
  • the terminal device determines whether to frequency hop according to the information in the first uplink grant information.
  • the offset value may be included in the first uplink grant information.
  • the first terminal device determines whether to frequency hopping according to the second information.
  • the second information is predefined, or the second information is indicated by signaling.
  • the second information is predefined.
  • a certain frequency hopping of the first terminal device may be predefined.
  • the existing frequency hopping indication field is not required, and 1 bit can be left free.
  • the second information is pre-defined, for example, it may be pre-defined that the first terminal device does not frequency hop. In this way, the existing frequency hopping indication field is also not required, and 1 bit can also be freed.
  • the second information is indicated by signaling.
  • the access network device may send signaling to the first terminal device, where the signaling carries information used to indicate whether to frequency hopping.
  • the signaling can be higher layer signaling, such as RRC signaling or MAC CE signaling.
  • the existing frequency hopping indication field is not required, and 1 bit can be left free.
  • the first terminal device determines an offset value during frequency hopping according to the fourth field.
  • the fourth field is included in the first uplink grant information.
  • the first terminal device determines whether to frequency hopping according to the second information.
  • the first uplink grant information does not need the existing frequency hopping indication field, and 1 bit can be spared.
  • the offset value during frequency hopping can be indicated by the fourth field.
  • the offset value during frequency hopping may be indicated by 1 bit that is freed out and 1 bit in the X bits of the first uplink grant information frequency domain resource allocation field.
  • the frequency hopping indication does not occupy the bits in the first field, so it does not reduce the number of instructable frequency domain resource allocation states, thereby improving the flexibility of frequency domain resource allocation.
  • the access network device indicates whether to frequency hopping through the second information.
  • the access network device indicates whether frequency hopping or an offset value during frequency hopping through the fifth field.
  • the fifth field is included in the first uplink grant information.
  • the first terminal device when N is within the first value range, it is determined whether to frequency hopping according to the second information.
  • whether frequency hopping and/or an offset value during frequency hopping is determined according to the fifth field.
  • the fifth field is included in the first uplink grant information.
  • the fifth field is a field independent of the first field.
  • the fifth field indicates whether frequency hopping or the offset value of frequency hopping.
  • the frequency hopping indication will not occupy the bits in the first field, so it will not cause the number of instructable frequency domain resource allocation states to decrease, so that Frequency domain resource allocation is limited.
  • the first numerical range and the second numerical range may be different.
  • the first numerical range and the second numerical range may also partially overlap.
  • the first numerical range is the numerical value corresponding to N when the sum of the number of bits required for the frequency domain resource and the offset value is greater than X.
  • the second numerical range is the numerical value corresponding to N when the sum of the required number of bits of the frequency domain resource and the offset value is less than or equal to X.
  • the first numerical range is N ⁇ 91
  • the required number of bits for the frequency domain resource indication is 13
  • the required number of bits for the offset value is equal to 2
  • a total of 14 bits are required.
  • the second value range is 50 ⁇ N ⁇ 90, the required number of bits for the frequency domain resource indication is less than or equal to 12, the number of bits required for the offset value is equal to 2, and the number of required bits is less than or equal to 14 in total.
  • the second value range is N ⁇ 50, the number of bits required for the frequency domain resource indication is less than or equal to 11, the number of bits required for the offset value is equal to 1, and the number of required bits is less than or equal to 12 in total.
  • the first uplink grant information does not include the reserved field and/or the channel state information request field.
  • the first uplink grant information does not include a reserved field and/or a channel state information request field, but the first uplink grant information includes a field indicating whether frequency hopping and an offset value during frequency hopping .
  • the reserved field and/or the channel state information request field and 1 bit in the X bits of the existing frequency domain resource allocation field may be used to indicate whether frequency hopping and an offset value during frequency hopping.
  • the frequency hopping indication does not occupy the bits in the first field, so it does not reduce the number of instructable frequency domain resource allocation states, thereby improving the frequency domain resource allocation flexibility.
  • the first uplink grant information includes a reserved field and/or a channel state information request field.
  • Manner 5 According to a predefined rule, it is determined that the resources corresponding to any hop of uplink transmission can only be within the specific resources, or that the resources corresponding to at least one hop of the uplink transmission can be outside the specific resources; or,
  • the sixth signaling indicates that the resource corresponding to any hop of the uplink transmission can only be within the specific resource, or that the resource corresponding to at least one hop of the uplink transmission can be outside the specific resource; or,
  • the seventh field indicates that the resource corresponding to any hop of the uplink transmission can only be within a specific resource, or indicates that the uplink transmission has at least one hop corresponding to the resource.
  • a resource can be outside a specific resource.
  • the specific resource may be a resource configured by the base station.
  • it can be a BWP resource.
  • the resource corresponding to any hop of uplink transmission can only be within a specific resource, or it is determined that the resource corresponding to at least one hop of uplink transmission can be outside the specific resource.
  • it may be according to the size of the bandwidth supported by the terminal device, and/or according to the size of the resource configured by the access network device. For example, if the bandwidth supported by the terminal device is smaller than the resource size configured by the access network device, it is determined that the frequency hopping transmission can be outside the specific resource. If the bandwidth supported by the terminal device is greater than the resource size configured by the access network device, it is determined that the frequency hopping transmission can only be within a specific resource.
  • the frequency domain resource F of the current frequency hopping transmission the resource value of the previous frequency hopping transmission + the frequency offset value.
  • F mod resource bandwidth
  • the modulo may not be taken in the calculation.
  • the frequency resource corresponding to the current frequency hopping transmission is directly determined according to the result of the resource value and the frequency offset value of the previous frequency hopping transmission.
  • the sixth signaling indicates that the resource corresponding to any hop of the uplink transmission can only be within a specific resource, or that the resource corresponding to at least one hop of the uplink transmission can be in the outside of specific resources.
  • the terminal device determines whether the resource transmitted by one hop is within or outside the specific resource according to the sixth signaling.
  • the sixth signaling may be one of RRC, DCI, and MAC CE signaling.
  • different states of the sixth signaling may also indicate that the resource corresponding to any hop can only be within the specific resource or outside the specific resource. For example, as shown in Table 4. For example, state "11" indicates no frequency hopping. The state "00" indicates frequency hopping, and frequency hopping can only be performed within a specific resource.
  • the frequency hopping calculation method can be according to the prior art, (frequency domain resources of the previous hop + frequency hopping offset value) mod (resource bandwidth), mod is the modulus, or it can be the frequency domain resources of the previous hop + frequency hopping offset value.
  • the state "01” indicates frequency hopping, and frequency hopping can only be performed within a specific resource. Alternatively, "01” may also indicate a second frequency hopping offset value for frequency hopping within a specific resource, and/or adopt the first frequency hopping calculation method.
  • the state "10" indicates frequency hopping, and the uplink transmission has at least one hop corresponding to the resource that may be outside the specific resource.
  • "10" may also indicate a third frequency hopping offset value for frequency hopping within a specific resource, and/or adopt a second frequency hopping calculation method.
  • the first frequency offset value, the second frequency offset value, and the third frequency offset value may be the same value or different values.
  • the first frequency hopping calculation mode and the first frequency hopping calculation mode may be the same calculation mode or different calculation modes.
  • the seventh field in the first uplink grant information where the seventh field indicates that the resource corresponding to any hop of the uplink transmission can only be within a specific resource, or indicates that the uplink transmission exists at least The resource corresponding to a hop can be outside a specific resource.
  • the method can be the same as that of the previous embodiment, which is not repeated here.
  • the first uplink grant information may include at least one field, that is, The idle bits may correspond to at least one field, and each field in the at least one field is used to indicate an item of information, and the item of information includes any one of the following information:
  • the authorization information indicates that the terminal device uses the 4-step RACH to access the network.
  • the authorization information indicates that the terminal device using the 2-step RACH falls back to the 4-step RACH for random access.
  • the MCS included in the uplink grant information in the random response of the existing protocol is 4 bits, so it can only indicate 16 kinds of MCS indexes at most.
  • the number of bits of the MCS indication field is 5 bits, and a maximum of 32 kinds of MCS indexes can be performed.
  • the first uplink grant information may include a sixth field.
  • the length of the sixth field is N1 bits; when the subcarrier spacing used by the resource is u2 , the length of the sixth field is N2 bits, and N1 and N2 are not equal.
  • FIG. 3 is an interaction flowchart of an embodiment of a communication method provided by this application.
  • the method of this embodiment is applicable to a first terminal device.
  • This embodiment is applicable to D2D signal transmission.
  • the bandwidth of the third terminal device is different from the bandwidth of the first terminal device.
  • the first terminal device may be a terminal device with a bandwidth less than or equal to 20 MHz, or a terminal device with a bandwidth of less than 106 RB resource blocks.
  • the third terminal device may be a terminal device with a bandwidth greater than 20 MHz, or a device with a bandwidth of more than 106 RB resource blocks.
  • the third terminal device may also be a terminal device with a bandwidth greater than 20 MHz.
  • the first terminal device may also be a terminal device with a bandwidth less than 10 MHz, and the bandwidth of the third terminal device and the first terminal device is not limited in this embodiment.
  • the method of this embodiment may include:
  • the third terminal device sends the first uplink authorization information to the first terminal device.
  • the first uplink grant information includes a first field, the first field indicates frequency domain resource allocation information, and the length Y of the first field is less than X. Y is determined according to the number N of resource blocks of the bandwidth of the first terminal device, where N is a positive integer.
  • the first uplink grant information may also be sidelink grant information.
  • the sidelink grant information is used to indicate the resource of the information sent by the first terminal device to other terminal devices. Since both the uplink transmission and the sidelink transmission are sent by the terminal equipment, the uplink transmission also includes the sidelink transmission in the present invention.
  • Y is determined according to the number N of resource blocks of the bandwidth of the first terminal device.
  • N is the number of resource blocks of the bandwidth of the first terminal device, rounded up.
  • N may be determined according to one or more of the bandwidth supported by the terminal device, the configuration of the access network device, or the detection result of the terminal device.
  • X is a fixed value and X is 14 bits.
  • the 14-bit frequency domain resource allocation field in the uplink grant information of the random access response is truncated to a length of The lower bits are reserved, and there are idle bits.
  • the frequency domain resource allocation indication is performed according to the provisions of the existing protocol.
  • the frequency domain resource allocation field may have underutilized bits, and the resource allocation field may not be able to indicate resource allocation of certain lengths, resulting in inflexible resource indication and ineffective resources. problem of use.
  • the length of the frequency domain resource allocation field is related to the number N of resource blocks supported or configured by the first terminal device.
  • the frequency domain resource allocation field of the uplink grant information in the random access response to the first terminal device is less than 14 bits. Because of this, the field for frequency domain resource allocation for the first terminal device can flexibly allocate resource blocks, so it can be avoided that resource blocks of certain lengths cannot indicate more effective indications and use frequency domain resources, avoiding resource waste and improving. Flexibility in resource allocation.
  • the first uplink grant information may include any one of random access response information, sidelink control information, and uplink scheduling information.
  • the third terminal device may determine the first uplink authorization information by receiving an instruction from the network side device, and forward the first uplink authorization information to the first terminal device.
  • the third terminal device may determine the first uplink grant information through the channel monitoring result.
  • the channel monitoring may be a method such as channel sensing (sensing) or listening before talk (LBT), which is not limited in this embodiment.
  • the first terminal device receives the first uplink authorization information from the third terminal device.
  • the first uplink grant information includes a first field. Further, the first terminal device determines resources for uplink transmission according to the first field.
  • the resource is a frequency domain resource allocated by the first field to indicate that the access network device allocates the first terminal device.
  • the frequency domain resource may be one or more resource blocks (resource block, RB), resource element (resource element, RE), resource element group (resource element group, REG), bound resource element group (REG bundle), Any of a sub-carrier (sub-carrier), a carrier (carrier), and a bandwidth part (BWP).
  • the first uplink grant information includes a first field, and the first field indicates frequency domain resource allocation information.
  • the first terminal device may determine, according to the frequency domain resource allocation information indicated by the first field, a frequency domain resource allocated to the first terminal device, where the frequency domain resource is used for uplink transmission.
  • the first terminal device performs uplink transmission according to the resource.
  • the first terminal device determines resources for uplink transmission according to the frequency domain resource allocation information indicated by the first field, and performs uplink transmission according to the resources.
  • the first uplink grant information is sent to the first terminal device through the third terminal device, and when the frequency domain resource allocation instruction is performed through the first uplink grant information, the length of the frequency domain resource allocation field is the same as that of the first
  • the number N of resource blocks supported or configured by the terminal device is related to N, and the length of the frequency domain resource allocation field can be determined according to N, that is, the length of the frequency domain resource allocation field varies with the number N of resource blocks included in the bandwidth resources of the first terminal device.
  • FIG. 4 is a schematic structural diagram of an embodiment of a communication apparatus provided by the present application.
  • the apparatus of this embodiment may include: a receiving module 11 , a determining module 12 and a sending module 13 , wherein,
  • the receiving module 11 is configured to receive first uplink grant information, where the first uplink grant information includes a first field, the first field indicates frequency domain resource allocation information, and the length Y of the first field is less than X; the X is a predetermined value; or, the X is the length of the second frequency domain resource allocation field associated with the second uplink grant format, and the communication device does not support the second uplink grant format; the Y and the communication is related to the number N of resource blocks supported or configured by the device, where N is a positive integer;
  • the determining module 12 is configured to determine resources for uplink transmission according to the first field
  • the sending module 13 is used to perform uplink transmission on the resource.
  • the functions of the receiving module 11 and the functions of the transmitting module 13 may be implemented by the same module, for example, both are implemented by the transceiver module.
  • the capabilities of the first type terminal device and the first terminal device are different.
  • the first uplink grant information further includes a second field, and the second field is used to indicate: at least one of frequency hopping and an offset value, and the offset value is an offset value for frequency hopping transmission on the resource. .
  • the second field can indicate at least one of the following bit states:
  • the first bit status used to indicate no frequency hopping
  • the second bit state is used to indicate that the frequency hopping and the offset value are the first offset value, or the second bit state is a reserved state;
  • the third bit state is used to indicate that the frequency hopping and the offset value are the second offset value, or the third bit state is a reserved state;
  • the fourth bit state is used to indicate that the frequency hopping and the offset value are the third offset value, or the fourth bit state is the reserved state.
  • the offset value includes and at least one of them.
  • the offset value is determined according to a third field and the first information, the third field is included in the first uplink grant information, the first information is predefined, or the first information is configured through signaling.
  • the determination module is also used to:
  • the receiving module Before the receiving module receives the first uplink authorization information, it determines whether to frequency hopping according to the second information, the second information is predefined, or the second information is configured through signaling;
  • the offset value of the frequency hopping is determined according to a fourth field, and the fourth field is included in the first uplink grant information.
  • N When N is within the second value range, determine whether to perform frequency hopping and/or an offset value during frequency hopping according to the fifth field, where the fifth field is included in the first uplink grant information; and/or,
  • the first uplink grant information indicates whether to frequency hopping.
  • the first uplink grant information does not include a reservation field and/or a channel state information request field.
  • the first uplink authorization information includes at least one field, each of which is used to indicate an item of information, and an item of information includes any one or more of the following information:
  • the first uplink grant information includes a sixth field.
  • the length of the sixth field is N1 bits; when the subcarrier spacing used by the resource is u2, the length of the sixth field is N2. bits, N1 and N2 are not equal.
  • the receiving module 11 is further configured to: receive the first indication information
  • the determining module 12 is further configured to: when the value or bit state of the first indication information belongs to the first set, determine that the bandwidth resource of the first terminal device is the first resource; the value or bit state of the first indication information When belonging to the second set, it is determined that the bandwidth resource of the first terminal device is the second resource; the first resource is different from the second resource, or the first range and the second range partially overlap.
  • the determining module 12 is further configured to: determine the positions of the N resource blocks and/or the value of N according to the bandwidth resources of the first terminal device.
  • the positions of the N resource blocks are indicated to the first terminal device through the second indication information, or the positions of the N resource blocks are predefined.
  • the determining module 12 is further configured to: determine the value of N according to the bandwidth supported by the first terminal device.
  • the determining module 12 is further configured to: determine the first value according to the capability of the first terminal device;
  • the value of N is determined according to the bandwidth resource and the first value.
  • the receiving module 11 is further configured to: receive third indication information, where the third indication information includes the first initial uplink BWP configuration information;
  • the determining module 12 is further configured to: determine the positions of the N resource blocks and/or the value of N according to the first initial uplink BWP configuration information.
  • FIG. 5 is a schematic structural diagram of an embodiment of a communication apparatus provided by the present application. As shown in FIG. 5 , the apparatus of this embodiment may include: a determining module 21 and a sending module 22, wherein,
  • the determining module 21 is configured to determine the first uplink grant information, the first uplink grant information includes a first field, the first field indicates frequency domain resource allocation information, and the length Y of the first field is less than X; the X is a predetermined value; or, the X is the length of the second frequency domain resource allocation field associated with the second uplink grant format, and the first terminal device does not support the second uplink grant format; is related to the number N of resource blocks supported or configured by the first terminal device, where N is a positive integer;
  • the sending module 22 is configured to send the first uplink authorization information to the first terminal device.
  • the capabilities of the first type terminal device and the first terminal device are different.
  • the first uplink grant information further includes a second field, and the second field is used to indicate: at least one of frequency hopping and an offset value, and the offset value is an offset value for frequency hopping transmission on the resource. .
  • the second field can indicate at least one of the following bit states:
  • the first bit status used to indicate no frequency hopping
  • the second bit state is used to indicate that the frequency hopping and the offset value are the first offset value, or the second bit state is a reserved state;
  • the third bit state is used to indicate that the frequency hopping and the offset value are the second offset value, or the third bit state is a reserved state;
  • the fourth bit state is used to indicate that the frequency hopping and the offset value are the third offset value, or the fourth bit state is the reserved state.
  • the offset value includes and at least one of them.
  • the correspondence between at least one bit state and at least one offset value is predefined or configured through signaling.
  • the offset value is indicated to the first terminal device through a third field and the first information, and the third field is included in the first uplink authorization information;
  • the first information is predefined, or the first information is configured to the first terminal device through signaling.
  • the sending module 22 is also used for:
  • the first indication information indicates The bandwidth resource of the first terminal device is the first resource, and when the value or bit state of the first indication information belongs to the second set, the first indication information indicates that the bandwidth resource of the first terminal device is the second resource. resource, the first resource is different from the second resource, or the first resource and the second resource partially overlap.
  • the determining module 21 is also used for:
  • the value of N is determined according to the bandwidth supported by the first terminal device.
  • the determining module 21 is also used for:
  • the value of N is determined according to the bandwidth resource and the first value.
  • the positions of the N resource blocks are indicated by the second indication information, or the positions of the N resource blocks are predefined.
  • the value of N and/or the positions of the N resource blocks are indicated by third indication information, where the third indication information includes first initial uplink BWP configuration information.
  • FIG. 6 is a schematic structural diagram of an embodiment of a communication apparatus provided by the present application.
  • the apparatus of this embodiment on the basis of the embodiment shown in FIG. 5 , may further include: a processing module 23 , Wherein, the processing module 23 is used to indicate whether frequency hopping is performed through second information, which is predefined, or the second information is configured to the first terminal device through signaling; when the second information indicates frequency hopping, The offset value during frequency hopping is indicated by the fourth field, and the fourth field is included in the first uplink grant information.
  • the processing module 23 is used to indicate whether frequency hopping is performed through second information, which is predefined, or the second information is configured to the first terminal device through signaling; when the second information indicates frequency hopping, The offset value during frequency hopping is indicated by the fourth field, and the fourth field is included in the first uplink grant information.
  • the processing module 23 is configured to: when N is within the first value range, indicate whether to frequency hopping through the second information;
  • the processing module 23 is configured to: when the N is within the first value range, indicate whether to frequency hopping through radio resource control signaling;
  • the first uplink grant information does not include a reservation field and/or a channel state information request field.
  • the first uplink authorization information includes at least one field, each of which is used to indicate an item of information, and an item of information includes any one or more of the following information:
  • the first uplink grant information includes a sixth field, and when the subcarrier interval used by the resource is u1, the length of the sixth field is N1 bits;
  • the length of the sixth field is N2 bits, and N1 and N2 are not equal.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by this application. As shown in FIG. 7 , the terminal device includes: a processor 301 and a communication interface 302;
  • the processor 301 is configured to execute the computer program stored in the memory to implement the communication method in the above embodiment. For details, refer to the relevant descriptions in the foregoing method embodiments.
  • the communication interface 302 can be connected to the processor 301 through a bus 303 .
  • the processor 301 can control the communication interface 302 to implement the above-mentioned receiving and sending functions of the communication device.
  • this embodiment further includes: a memory 304 for storing computer programs.
  • the apparatus may be configured to execute various steps and/or processes corresponding to the terminal device or the access network device in the foregoing method embodiments.
  • the present application further provides a readable storage medium, where an execution instruction is stored in the readable storage medium, and when at least one processor of the communication apparatus executes the execution instruction, the communication apparatus executes the communication method provided by the above-mentioned various embodiments.
  • the present application also provides a program product including execution instructions stored in a readable storage medium.
  • At least one processor of the communication apparatus can read the execution instruction from the readable storage medium, and the execution of the execution instruction by the at least one processor causes the communication apparatus to implement the communication method provided by the various embodiments described above.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置。该方法适用于第一终端设备,该方法包括:第一终端设备接收第一上行授权信息,根据第一上行授权信息中的第一字段确定上行传输的资源,并根据该资源进行上行传输,其中的第一字段用于进行频域资源分配指示,第一字段的长度Y小于X,X是预先规定的值,或者,X是第二上行授权格式关联的第二频域资源分配字段的长度,第一终端设备不支持所述第二上行授权格式;Y与第一终端设备支持的或配置的资源块的数量N有关,因此第一终端设备的频域资源分配字段的长度是按需分配的。从而,可避免频域资源分配字段被截短,更有效的利用频域资源,避免资源浪费。

Description

通信方法及装置
本申请要求于2020年07月31日提交中国专利局、申请号为202010762088.6、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
为了应对未来爆炸性的移动数据流量增长以及不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultrareliable and low latencycommunications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。目前,低复杂度或低能力的用户设备(reduced capabilityuser equipment,REDCAPUE)可能在带宽、功耗、天线数等方面比其他UE复杂度低一些,如带宽更窄、功耗更低、天线数更少等。
UE进行随机接入的类型包括基于竞争的随机接入和基于非竞争的随机接入,在基于竞争的随机接入过程中,首先UE在预配置的前导序列范围中随机选取一个前导序列,并在预配置的随机接入资源中发送该前导序列,若接入网设备成功接收到该前导序列并且允许UE接入,则接入网设备在预配置的随机接入响应(randomaccessresponse,RAR)的窗口内向UE发送RAR,RAR包括下行控制信息(downlink control information,DCI)和物理下行控制信道(physical downlink control channel,PDSCH),该DCI用于指示PDSCH的调度信息,该PDSCH携带用于发送消息3的上行调度信息,然后接入网设备根据PDSCH中的上行调度信息确定发送消息3的资源,因此,接入网设备在向UE发送消息3之前无法获取到UE的标识信息。而基于非竞争的随机接入使用专用的随机接入资源和前导序列,所以接入网设备在向UE发送RAR之前就获取到UE的标识信息,接入网设备根据UE的标识信息可以确定UE的类型,例如可以确定UE是eMBB终端或REDCAP终端。在基于竞争的随机接入或基于非竞争的随机接入过程中,RAR中均包括用于发送消息3的上行调度信息,该上行调度信息包括14比特(bit)的频域资源分配字段,频域资源分配指示是通过指示起始资源位置和长度的联合编码值来确定的,如果可分配频域带宽为M个资源单位,如资源块(resource block,RB)或资源单元(resource element,RE),则需要指示的状态为
Figure PCTCN2021105387-appb-000001
个,需要指示的比特数为
Figure PCTCN2021105387-appb-000002
(上取整)。按照现有协议规定:如果可分配的带宽<=180RB时,会将该14bit的频域资源分配字段截短到长度为
Figure PCTCN2021105387-appb-000003
保留其中的低比特位,但频域资源分配字段始终为14比特。
可以看出,对于带宽受限的REDCAP UE而言,若按照现有协议的规定进行频域资源分配指示,频域资源分配字段会存在空闲比特,导致资源浪费。
发明内容
本申请提供一种通信方法及装置,在进行频域资源分配指示时,可避免频域资源分配字段被截短,更有效的利用频域资源,避免资源浪费。
第一方面,本申请提供一种通信方法,包括:该方法适用于第一终端设备,该方法包括:接收第一上行授权信息;第一上行授权信息包括第一字段,第一字段指示频域资源分配信息,第一字段的长度Y小于X,X是预先规定的值;或者,X是第二上行授权格式关联的第二频域资源分配字段的长度,所述第一终端设备不支持所述第二上行授权格式;所述Y与第一终端设备支持的或配置的资源块的数量N有关,所述N为正整数,第一终端设备根据第一字段确定上行传输的资源,并根据该资源上上行传输。
通过第一方面提供的通信方法,在通过第一上行授权信息进行频域资源分配指示时,对于第一终端设备,频域资源分配字段的长度与第一终端设备支持的或配置的资源块的数量N有关。即频域资源分配字段的长度随着第一终端设备支持的或配置的资源块的数量N变化,且小于第二上行授权格式关联的第二频域资源分配字段的长度,因此第一终端设备的频域资源分配字段的长度是按需分配的,因此可避免频域资源分配字段被截短,更有效的利用频域资源,避免资源浪费。
在一种可能的设计中,第一终端设备可以是第一类型终端设备,其中的第二上行授权格式是用于第二类型终端设备的,第一类型终端设备和第二类型终端设备的能力或版本或应用场景不同。
其中,可选的,第一终端设备和第二终端设备的能力不同,可以是包括以下至少一项:
1、第一终端设备和第二终端设备的带宽能力不同。
2、第一终端设备和第二终端设备的收发天线数目不同。
3、第一终端设备和第二终端设备的上行最大发射功率不同。
4、第一终端设备和第二终端设备对应的协议版本不同。
5、第一终端设备和第二终端设备支持的载波聚合(carrier aggregation,CA)能力不同。
6、第一终端设备支持全双工频分双工(Frequency Division Duplexing,FDD),而第二终端设备仅支持半双工FDD。
7、第一终端设备和第二终端设备对数据的处理时间能力不同。
8、第一终端设备和第二终端设备的处理能力不同。处理能力包括如:支持的最大重传进程数、支持的最大调制方式或支持传输最大的数据包等。
9、第一终端设备和第二终端设备对应的上行传输峰值速率和/或下行传输峰值速率不同。
10、第一终端设备和第二终端设备对应的业务不同。
在一种可能的设计中,第一上行授权信息还包括第二字段,第二字段用于指示:是否跳频和偏移值中的至少一种,偏移值为在资源上进行跳频传输的偏移值。
通过本实施方式提供的通信方法,第二字段与第一字段相互独立,第二字段即为跳频指示字段,由于第二字段与第一字段相互独立,从而,避免了频域资源分配字段 出现空闲比特,跳频指示且不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,第二字段能够指示以下至少一种比特状态:
第一比特状态,用于指示不跳频;
第二比特状态,用于指示跳频和偏移值为第一偏移值,或者,第二比特状态为预留状态;
第三比特状态,用于指示跳频和偏移值为第二偏移值,或者,第三比特状态为预留状态;
第四比特状态,用于指示跳频和偏移值为第三偏移值,或者,第四比特状态为预留状态。
在一种可能的设计中,偏移值包括
Figure PCTCN2021105387-appb-000004
Figure PCTCN2021105387-appb-000005
中的至少一种。
在一种可能的设计中,至少一种比特状态与至少一个偏移值之间的对应关系是预先定义的,或者是通过信令配置的。
在一种可能的设计中,偏移值是根据第三字段和第一信息确定的,第三字段包括于第一上行授权信息,其中,第一信息是预先定义的,或者,第一信息是通过信令配置的。
通过本实施方式提供的通信方法,跳频指示不会占用第一字段中的比特,且不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,在接收第一上行授权信息之前,该方法还可以包括:
根据第二信息确定是否跳频,第二信息是预先定义的,或者,第二信息是通过信令配置的,在根据第二信息确定跳频时,根据第四字段确定跳频时的偏移值,第四字段包括于第一上行授权信息。
通过本实施方式提供的通信方法,第一终端设备根据第二信息确定是否跳频,这样第一上行授权信息就不需要现有的跳频指示域,可以空闲出1比特,可以通过第三字段指示跳频时的偏移值,例如可以用空闲出的1比特和第一上行授权信息频域资源分配字段X比特中的1比特指示跳频时的偏移值,跳频指示不会占用第一字段中的比特,因此不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,N在第一数值范围内时,根据第二信息确定是否跳频;
N在第二数值范围内时,根据第五字段确定是否跳频和/或跳频时的偏移值,第五字段包括于第一上行授权信息。
通过本实施方式提供的通信方法,第五字段为与第一字段相互独立的字段,通过第五字段指示是否跳频或跳频时的偏移值,同样地,跳频指示不会占用第一字段中的比特,因此不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,所述N在第一数值范围内时,根据无线资源控制信令确定是否跳频;
所述N在第二数值范围内时,根据所述第一上行授权信息确定是否跳频。
在一种可能的设计中,第一上行授权信息中不包括预留字段和/或信道状态信息请求字段。
通过本实施方式提供的通信方法,由于第一上行授权信息中不包括预留字段和/ 或信道状态信息请求字段,可以是使用预留字段和/或信道状态信息请求字段和现有频域资源分配字段X比特中的1比特指示是否跳频以及跳频时的偏移值,跳频指示不会占用第一字段中的比特,因此不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,第一上行授权信息包括至少一个字段中的每一个字段分别用于指示一项信息,一项信息包括以下信息中的任意一种或多种:
是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道RACH的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息和TBS门限信息。
通过本实施方式提供的通信方法,可以提高空闲比特的资源利用率。
在一种可能的设计中,第一上行授权信息包括第六字段,资源所用的子载波间隔为u1时,至少第六的长度是N1比特,资源所用的子载波间隔为u2时,第六字段的长度是N2比特,N1与N2不相等。
在一种可能的设计中,该方法还可以包括:
接收第一指示信息;
所述第一指示信息的值或比特状态属于第一集合时,确定第一终端设备的带宽资源为第一资源。所述第一指示信息的值或比特状态属于第二集合时,确定第一终端设备的带宽资源为第二资源。所述第一资源与所述第二资源不完全相同,或者所述第一资源与所述第二资源有部分重叠;
根据所述第一终端设备的带宽资源确定所述N个资源块的位置和/或N的取值。
在一种可能的设计中,所述N个资源块的位置是通过第二指示信息指示给第一终端设备的,或者,所述N个资源块的位置为预定义的。
在一种可能的设计中,该方法还可以包括:
根据所述第一终端设备可支持的带宽确定所述N的取值。
在一种可能的设计中,该方法还可以包括:
根据所述第一终端设备的能力确定第一数值;
根据带宽资源和所述第一数值,确定所述N的取值。
在一种可能的设计中,该方法还可以包括:
接收第三指示信息,第三指示信息包括第一初始上行BWP配置信息;
根据所述第一初始上行BWP配置信息确定所述N个资源块的位置和/或所述N的取值。
第二方面,本申请提供一种通信方法,该方法适用于接入网设备,该方法包括:
确定第一上行授权信息,所述第一上行授权信息包括第一字段,所述第一字段指示频域资源分配信息,所述第一字段的长度Y小于X;所述X是预先规定的值;或者,所述X是第二上行授权格式关联的第二频域资源分配字段的长度,所述第一终端设备不支持所述第二上行授权格式;所述Y与所述第一终端设备支持的或配置的资源块的 数量N有关,所述N为正整数,向第一终端设备发送所述第一上行授权信息。
通过第二方面提供的通信方法,通过接入网设备向第一终端设备发送第一上行授权信息,在通过第一上行授权信息进行频域资源分配指示时,频域资源分配字段的长度与第一终端设备支持的或配置的资源块的数量N有关。即频域资源分配字段的长度可以随着第一终端设备支持的或配置的资源块的数量N变化,且小于第二上行授权格式关联的第二频域资源分配字段的长度,因此第一终端设备的频域资源分配字段的长度是按需分配的,因此可避免频域资源分配字段被截短,更有效的利用频域资源,避免资源浪费。
在一种可能的设计中,第一终端设备可以是第一类型终端设备,其中的第二上行授权格式是用于第二类型终端设备的,第一类型终端设备和第二类型终端设备的能力不同。
其中,可选的,第一类型终端设备和第二类型终端设备的能力不同,可以是包括以下至少一项:
1、第一类型终端设备和第二类型终端设备的带宽能力不同。
2、第一类型终端设备和第二类型终端设备的收发天线数目不同。
3、第一类型终端设备和第二类型终端设备的上行最大发射功率不同。
4、第一类型终端设备和第二类型终端设备对应的协议版本不同。
5、第一类型终端设备和第二类型终端设备支持的载波聚合(carrier aggregation,CA)能力不同。
6、第一类型终端设备支持全双工频分双工(Frequency Division Duplexing,FDD),而第二类型终端设备仅支持半双工FDD。
7、第一类型终端设备和第二类型终端设备对数据的处理时间能力不同。
8、第一类型终端设备和第二类型终端设备的处理能力不同。
9、第一类型终端设备和第二类型终端设备对应的上行传输峰值速率和/或下行传输峰值速率不同。
10、第一类型终端设备和第二类型终端设备对应的业务不同。
在一种可能的设计中,第一上行授权信息还包括第二字段,第二字段用于指示:是否跳频和偏移值中的至少一种,偏移值为在资源上进行跳频传输的偏移值。
通过本实施方式提供的通信方法,第二字段与第一字段相互独立,第二字段即为跳频指示字段,由于第二字段与第一字段相互独立,从而,避免了频域资源分配字段出现空闲比特,跳频指示且不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,第二字段能够指示以下至少一种比特状态:
第一比特状态,用于指示不跳频;
第二比特状态,用于指示跳频和偏移值为第一偏移值,或者,第二比特状态为预留状态;
第三比特状态,用于指示跳频和偏移值为第二偏移值,或者,第三比特状态为预留状态;
第四比特状态,用于指示跳频和偏移值为第三偏移值,或者,第四比特状态为预 留状态。
在一种可能的设计中,偏移值包括
Figure PCTCN2021105387-appb-000006
Figure PCTCN2021105387-appb-000007
中的至少一种。
在一种可能的设计中,至少一种比特状态与至少一个偏移值之间的对应关系是预先定义的,或者是通过信令配置的。
在一种可能的设计中,偏移值是通过第三字段和第一信息指示给第一终端设备的,第三字段包括于第一上行授权信息;
第一信息是预先定义的,或者,第一信息是通过信令配置给第一终端设备的。
通过本实施方式提供的通信方法,跳频指示不会占用第一字段中的比特,且不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,该方法还可以包括:通过第二信息指示是否跳频,第二信息是预先定义的,或者,第二信息是通过信令配置给第一终端设备的,在第二信息指示跳频时,通过第四字段指示跳频时的偏移值,第四字段包括于第一上行授权信息。
通过本实施方式提供的通信方法,第一终端设备根据第二信息确定是否跳频,这样第一上行授权信息就不需要现有的跳频指示域,可以空闲出1比特,可以通过第三字段指示跳频时的偏移值,例如可以用空闲出的1比特和第一上行授权信息频域资源分配字段X比特中的1比特指示跳频时的偏移值,跳频指示不会占用第一字段中的比特,因此不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,N在第一数值范围内时,通过第二信息指示是否跳频;
N在第二数值范围内时,通过第五字段指示是否跳频或跳频时的偏移值,第五字段包括于第一上行授权信息。
通过本实施方式提供的通信方法,第五字段为与第一字段相互独立的字段,通过第五字段指示是否跳频或跳频时的偏移值,同样地,跳频指示不会占用第一字段中的比特,因此不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,所述N在第一数值范围内时,通过无线资源控制信令指示是否跳频;
所述N在第二数值范围内时,通过所述第一上行授权信息指示是否跳频。
在一种可能的设计中,第一上行授权信息中不包括预留字段和/或信道状态信息请求字段。
通过本实施方式提供的通信方法,由于第一上行授权信息中不包括预留字段和/或信道状态信息请求字段,可以是使用预留字段和/或信道状态信息请求字段和现有频域资源分配字段X比特中的1比特指示是否跳频以及跳频时的偏移值,跳频指示不会占用第一字段中的比特,因此不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
在一种可能的设计中,第一上行授权信息包括至少一个字段中的每一个字段分别用于指示一项信息,一项信息包括以下信息中的任意一种或多种:
是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道RACH的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终 端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息和TBS门限信息。
通过本实施方式提供的通信方法,可以提高空闲比特的资源利用率。
在一种可能的设计中,第一上行授权信息包括第六字段,资源所用的子载波间隔为u1时,第六字段的长度是N1比特,资源所用的子载波间隔为u2时,第六字段的长度是N2比特,N1与N2不相等。
在一种可能的设计中,该方法还可以包括:
向第一终端设备发送第一指示信息,所述第一指示信息的值或比特状态属于第一集合时,所述第一指示信息指示所述第一终端设备的带宽资源为第一资源,所述第一指示信息的值或比特状态属于第二集合时,所述第一指示信息指示所述第一终端设备的带宽资源为第二资源,所述第一资源与所述第二资源不同,或者所述第一资源与所述第二资源有部分重叠。
在一种可能的设计中,该方法还可以包括:
根据所述第一终端设备可支持的带宽确定所述N的取值。
在一种可能的设计中,该方法还可以包括:
根据第一终端设备的能力确定第一数值;
根据带宽资源和所述第一数值,确定所述N的取值。
在一种可能的设计中,所述N个资源块的位置通过第二指示信息指示,或者,所述N个资源块的位置为预定义的。
在一种可能的设计中,所述N的取值和/或所述N个资源块的位置通过第三指示信息指示,所述第三指示信息包括第一初始上行BWP配置信息。
第三方面,本申请提供一种通信装置,该装置包括:
接收模块,用于接收第一上行授权信息,所述第一上行授权信息包括第一字段,所述第一字段指示频域资源分配信息,所述第一字段的长度Y小于X。所述X是预先规定的值;或者,所述X是第二上行授权格式关联的第二频域资源分配字段的长度,所述通信装置不支持所述第二上行授权格式。所述Y与所述通信装置支持的或配置的资源块的数量N有关,所述N为正整数,确定模块,用于根据所述第一字段确定上行传输的资源,发送模块,用于在所述资源上进行上行传输。
在一种可能的设计中,第一上行授权信息还包括第二字段,第二字段用于指示:是否跳频和偏移值中的至少一种,偏移值为在资源上进行跳频传输的偏移值。
在一种可能的设计中,第二字段能够指示以下至少一种比特状态:
第一比特状态,用于指示不跳频;
第二比特状态,用于指示跳频和偏移值为第一偏移值,或者,第二比特状态为预留状态;
第三比特状态,用于指示跳频和偏移值为第二偏移值,或者,第三比特状态为预留状态;
第四比特状态,用于指示跳频和偏移值为第三偏移值,或者,第四比特状态为预留状态。
在一种可能的设计中,偏移值包括
Figure PCTCN2021105387-appb-000008
Figure PCTCN2021105387-appb-000009
中的至少一种。
在一种可能的设计中,至少一种比特状态与至少一个偏移值之间的对应关系是预先定义的,或者是通过信令配置的。
在一种可能的设计中,偏移值是根据第三字段和第一信息确定的,第三字段包括于第一上行授权信息;
第一信息是预先定义的,或者,第一信息是通过信令配置的。
在一种可能的设计中,确定模块还用于:在接收模块接收第一上行授权信息之前,根据第二信息确定是否跳频,第二信息是预先定义的,或者,第二信息是通过信令配置的;在根据第二信息确定跳频时,根据第四字段确定跳频时的偏移值,第四字段包括于第一上行授权信息。
在一种可能的设计中,确定模块用于:N在第一数值范围内时,根据第二信息确定是否跳频,N在第二数值范围内时,根据第五字段确定是否跳频和/或跳频时的偏移值,第五字段包括于第一上行授权信息;和/或,
所述N在第一数值范围内时,无线资源控制信令配置是否跳频;
所述N在第二数值范围内时,所述第一上行授权信息指示是否跳频。
在一种可能的设计中,第一上行授权信息中不包括预留字段和/或信道状态上报信道状态信息请求字段。
在一种可能的设计中,第一上行授权信息包括至少一个字段中的每一个字段分别用于指示一项信息,一项信息包括以下信息中的任意一种或多种:
是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道RACH的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息和TBS门限信息。
在一种可能的设计中,第一上行授权信息包括第六字段,资源所用的子载波间隔为u1时,第六字段的长度是N1比特,资源所用的子载波间隔为u2时,第六段的之和是N2比特,N1与N2不相等。
在一种可能的设计中,所述接收模块还用于:接收第一指示信息;
所述确定模块还用于:所述第一指示信息的值或比特状态属于第一集合时,确定第一终端设备的带宽资源为第一资源。所述第一指示信息的值或比特状态属于第二集合时,确定第一终端设备的带宽资源为第二资源。所述第一资源与所述第二资源不完全相同,或者所述第一资源与所述第二资源有部分重叠;
所述确定模块还用于:根据所述第一终端设备的带宽资源确定所述N个资源块的位置和/或N的取值。
在一种可能的设计中,所述N个资源块的位置是通过第二指示信息指示给第一终端设备的,或者,所述N个资源块的位置为预定义的。
在一种可能的设计中,所述确定模块还用于:根据所述第一终端设备可支持的带宽确定所述N的取值;或者,
根据所述第一终端设备的能力确定第一数值;
据带宽资源和所述第一数值,确定所述N的取值。
在一种可能的设计中,所述接收模块还用于:接收第三指示信息,第三指示信息包括第一初始上行BWP配置信息;
所述确定模块还用于:根据所述第一初始上行BWP配置信息所述N个资源块的位置和/或所述N的取值。
上述第三方面以及上述第三方面的各可能的设计中所提供的装置,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第四方面,本申请提供一种通信装置,包括:
确定模块,用于确定第一上行授权信息,所述第一上行授权信息包括第一字段,所述第一字段指示频域资源分配信息,所述第一字段的长度Y小于X。所述X是预先规定的值;或者,所述X是第二上行授权格式关联的第二频域资源分配字段的长度,与所述通信装置通信的第一终端设备不支持所述第二上行授权格式。所述Y与所述第一终端设备支持的或配置的资源块的数量N有关,所述N为正整数,发送模块,用于向第一终端设备发送所述第一上行授权信息。
在一种可能的设计中,第一上行授权信息还包括第二字段,第二字段用于指示:是否跳频和偏移值中的至少一种,偏移值为在资源上进行跳频传输的偏移值。
在一种可能的设计中,第二字段能够指示以下至少一种比特状态:
第一比特状态,用于指示不跳频;
第二比特状态,用于指示跳频和偏移值为第一偏移值,或者,第二比特状态为预留状态;
第三比特状态,用于指示跳频和偏移值为第二偏移值,或者,第三比特状态为预留状态;
第四比特状态,用于指示跳频和偏移值为第三偏移值,或者,第四比特状态为预留状态。
在一种可能的设计中,偏移值包括
Figure PCTCN2021105387-appb-000010
Figure PCTCN2021105387-appb-000011
中的至少一种。
在一种可能的设计中,至少一种比特状态与至少一个偏移值之间的对应关系是预先定义的,或者是通过信令配置的。
在一种可能的设计中,偏移值是通过第三字段和第一信息指示给第一终端设备的,第三字段包括于第一上行授权信息;
第一信息是预先定义的,或者,第一信息是通过信令配置给第一终端设备的。
在一种可能的设计中,设备还包括:处理模块,用于通过第二信息指示是否跳频,第二信息是预先定义的,或者,第二信息是通过信令配置给第一终端设备的,在第二信息指示跳频时,通过第四字段指示跳频时的偏移值,第四字段包括于第一上行授权信息。
在一种可能的设计中,处理模块用于:N在第一数值范围内时,通过第二信息指示是否跳频,N在第二数值范围内时,通过第五字段指示是否跳频或跳频时的偏移值,第五字段包括于第一上行授权信息。
在一种可能的设计中,处理模块用于:所述N在第一数值范围内时,通过无线资 源控制信令指示是否跳频;
所述N在第二数值范围内时,通过所述第一上行授权信息指示是否跳频。
在一种可能的设计中,第一上行授权信息中不包括预留字段和/或信道状态信息请求字段。
在一种可能的设计中,第一上行授权信息包括至少一个字段中的每一个字段分别用于指示一项信息,一项信息包括以下信息中的任意一种或多种:
是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道RACH的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息和TBS门限信息。
在一种可能的设计中,第一上行授权信息包括第六字段,资源所用的子载波间隔为u1时,第六字段的长度是N1比特,资源所用的子载波间隔为u2时,第六字段的长度是N2比特,N1与N2不相等。
在一种可能的设计中,所述发送模块还用于:向第一终端设备发送第一指示信息,所述第一指示信息的值或比特状态属于第一集合时,所述第一指示信息指示所述第一终端设备的带宽资源为第一资源,所述第一指示信息的值或比特状态属于第二集合时,所述第一指示信息指示所述第一终端设备的带宽资源为第二资源,所述第一资源与所述第二资源不同,或者所述第一资源与所述第二资源有部分重叠。
在一种可能的设计中,所述确定模块还用于:
根据所述第一终端设备可支持的带宽确定所述N的取值。
在一种可能的设计中,所述确定模块还用于:
根据第一终端设备的能力确定第一数值;
根据带宽和所述第一数值,确定所述N的取值。
在一种可能的设计中,所述N个资源块的位置通过第二指示信息指示,或者,所述N个资源块的位置为预定义的。
在一种可能的设计中,所述N的取值和/或所述N个资源块的位置通过第三指示信息指示,所述第三指示信息包括第一初始上行BWP配置信息。
上述第四方面以及上述第四方面的各可能的设计中所提供的通信装置,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第五方面,本申请提供一种通信装置,包括:处理器和通信接口;
其中,处理器配置为经由执行可执行指令来执行第一方面及第一方面任一种可能的设计中或第二方面及第二方面任一种可能的设计中的通信方法。
第六方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有执行指令,当通信装置的至少一个处理器执行该执行指令时,通信装置执行第一方面及第一方面任一种可能的设计中或第二方面及第二方面任一种可能的设计中的通信方法。
第七方面,本申请提供一种计算机程序产品,该计算机程序产品包括执行指令,该执行指令存储在可读存储介质中。通信装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得通信装置实施第一方面及第一方面任一种可能的设计中或第二方面及第二方面任一种可能的设计中的通信方法。
第八方面,本申请提供一种通信系统,包括第三方面及第三方面任一种可能的设计中的通信装置和第四方面及第四方面任一种可能的设计中的通信装置。
附图说明
图1是本申请的实施例应用的无线通信系统的架构示意图;
图2为本申请提供的一种通信方法实施例的交互流程图;
图3为本申请提供的一种通信方法实施例的交互流程图;
图4为本申请提供的一种通信装置实施例的结构示意图;
图5为本申请提供的一种通信装置实施例的结构示意图;
图6为本申请提供的一种通信装置实施例的结构示意图;
图7为本申请提供的一种通信装置结构示意图。
具体实施方式
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明,本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或方案不应被解释为比其它实施例或方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球无线通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及5G无线通信系统的三大应用场景eMBB、URLLC以及mMTC。
图1是本申请的实施例应用的无线通信系统的架构示意图。如图1所示,该无线通信系统包括核心网设备110、接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与接入网设备120相连,接入网设备120通过无线或有线方式与核心网设备110连接。核心网设备110与接入网设备120可以是独立的不同的物理设备,也可以是将核心网设备110的功能与接入网设备120的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的接入网设备的功能。终端设备可以是固定位置的,也可以 是可移动的。图1只是示意图,该无线通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该无线通信系统中包括的核心网设备、接入网设备和终端设备的数量不做限定。
接入网设备是终端设备通过无线方式接入到该无线通信系统中的接入设备,可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站收发台(base transceiver station,BTS),也可以是WCDMA系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional NodeB,eNB或eNodeB),还可以是LTE系统中的下一代基站(next generation eNodeB,ng-eNB),或者该接入网设备可以为中继站、接入点(Access Point,AP)、车载设备、可穿戴设备以及5G网络中的网络侧设备或未来演进的公共陆地移动网络(public land mobile network,PLMN)中的接入网设备等,例如,可以是新一代基站(generation nodeB,gNB或gNodeB)等,本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定。
本申请实施例的终端设备可以是无线终端,无线终端可以是只向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、远程终端(remote terminal)、接入终端(access Terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device or user equipment),在此不作限定。
接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对接入网设备和终端设备之间所使用的频谱资源不做限定。
现有NR(newradio)系统中,在随机接入响应的上行授权信息中的频域资源分配字段固定为14比特。mMTC场景下的终端设备可以是降低能力的终端设备。其中,降低能力的终端设备还可以被称为轻型(light)终端设备。例如,NR系统中的(reduced capability,REDCAP)终端设备相对于传统的终端设备能力更低。例如,REDCAP终端设备相对于传统的终端设备具有以下特点中的一种或多种:支持更窄的带宽、配置的天线数更少、支持的最大发射功率更小、支持更低的双工能力(例如正在讨论的降低能力的终端设备)。对于降低能力的终端设备,按照现有协议的规定,随机接入响应的上行授权信息中的14比特的频域资源分配字段会截短到长度为
Figure PCTCN2021105387-appb-000012
其中,M是接入网设备为终端设备配置的BWP包含的资源块(resource block,RB)个数或者可分配的频域资源带宽所用的资源块数量。按照现有协议的规定进行频域资源分配指示,频域资源分配字段可能会存在比特未充分使用,且资源分配字段可能无法指示某些长度的资源分配,从而造成资源指示不灵活和资源不能有效利用的问题。为解决这一问题,本申请提供一种通信方法及装置,在进行频域资源分配指示时,对于第一终端设备,频域资源分配字段的长度与第一终端设备支持的或配置的资源块的数量N有关。例如,第一终端设备是降低能力的终端设备。本申请中,频域资源分配字段的长度与第一终端设备支持的或配置的资源块的数量N有关。例如,在发送给第一终端设备的随机接入响应中的上行授权信息的频域资源分配字段小于14比特。再如,调度第一终端设备物理上行共享信道的上行授权信息的频域资源分配字段小于14比特。从而,为第一终端设备进行频域资源分配的字段可以灵活地进行资源块的分配,因此可更有效的利用频域资源,避免资源浪费和提高资源分配的灵活性。
下面结合附图详细说明本申请提供的通信方法及装置。
图2为本申请提供的一种通信方法实施例的交互流程图。本实施例的方法适用于第一终端设备。第一终端设备可以为第一类型终端设备。下文中第一终端设备和第一类型终端设备含义相同,可以互换。例如,第一终端设备可以是带宽小于或等于20MHz(或10MHz,或5MHz,或3MHz,或1.4MHz,或200KHz)的终端设备。其中,带宽可以是信道带宽,可以是终端设备支持的最大带宽,还可以是接入网设备为终端设备配置的BWP的大小。又例如,第一终端设备可以是带宽包含的资源块的数量小于106个RB(或100RB,或50RB,或25RB,或15RB,或6RB,或1RB)的终端设备。如图2所示,本实施例的方法可以包括:
S101、接入网设备向第一终端设备发送第一上行授权信息。相应的,所述第一终端设备接收来自所述接入网设备的所述第一上行授权信息。
具体来说,接入网设备可以向不同类型终端设备发送不同的上行授权信息。如接入网设备还可以向第二终端设备发送第二上行授权信息。第二终端设备可以是第二类型的终端设备。第二终端设备也可以和第一终端设备的类型相同。第二终端设备的带宽与第一终端设备的带宽不同。例如,可以是第二终端设备的带宽大于第一终端设备的带宽。如,第二终端设备的带宽是100MHz或50MHz。第一终端设备和第二终端设备可以使用不同的随机接入资源,接入网设备通过接收随机接入信道可获知终端设备的类型,进而接入网设备根据终端设备的类型向该终端设备发送与该终端设备对应的上行授权信息。例如,接入网设备确定终端设备为第一类型终端设备,则接入网设备向第一类型终端设备发送第一上行授权信息;接入网设备确定终端设备为第二类型终端设备,则向第二终端设备发送第二上行授权信息。第一上行授权信息的格式与第二 上行授权信息的格式不同。上行授权信息的格式规定了上行授权信息包含的一个或多个字段、每个字段的大小、每个字段在授权信息中的位置、多个字段在授权信息中的顺序中的至少一项。一种上行授权信息格式规定的上行授权信息中包含的内容和另一种不同的上行授权信息格式规定的上行授权信息中包含的内容不同,则认为两种授权信息格式不同。此处的内容可以是字段、字段的内容、字段的大小、字段在授权信息中的位置和字段在授权信息中的顺序中的至少一项。
本实施例中,将第一上行授权信息的格式称为第一上行授权格式。将第二上行授权信息的格式称为第二上行授权格式,第二上行授权信息也称为第二上行授权格式关联的授权信息。例如,第二上行授权格式关联的第二频域资源分配字段用于指示第二类型终端设备的频域资源分配信息。第二频域资源分配字段的长度为X比特。在一种可实施的方式中,X为固定值。在另一种可实施的方式中,X为14。
在本申请实施例中,X可以是预先定义的值。如,一种可实施的方式中(如随机接入响应中包含的上行授权信息),X为固定值。如X=14。如,另一种可实施的方式中(如下行控制信息包含的上行授权信息或下行授权信息),
Figure PCTCN2021105387-appb-000013
Figure PCTCN2021105387-appb-000014
N是与资源分配相关的正整数。例如N是接入网设备为第一终端设备配置的资源块的数量。
对于接入网设备如何确定终端设备的类型,在一种可实施的方式中,例如,在基于非竞争的随机接入场景下,由于基于非竞争的随机接入使用专用的随机接入资源和前导序列,所以接入网设备在向终端设备发送随机接入响应之前就可以确定终端设备的类型。例如可以确定终端设备是eMBB终端或REDCAP终端。又例如,在基于竞争的随机接入场景下,若接入网设备在发送随机接入响应消息时,可以区分出发起随机接入的终端设备是第一类型终端设备还是第二类型终端设备,接入网设备可以向不同类型的终端设备发送与该终端设备对应的上行授权信息。接入网设备区分不同类型终端设备的方法可以是通过为不同类型终端设备配置不同的接入资源。接入资源可以是频域、时域、码域和序列中的一种或多种,本实施例对接入资源不做限制。
可以理解的是,在另一场景中,接入网设备还可以通过其它方式确定终端设备的类型,接入网设备可以根据终端设备的类型向该类型的终端设备发送对应的上行授权信息。本实施例对此不作限定。
本实施例中,第一类型终端设备和第二类型终端设备的能力不同,具体可以体现在以下至少一项:
1、第一类型终端设备和第二类型终端设备的带宽能力不同。例如第二类型终端设备最大可以支持在一个载波上同时使用100MHz频率资源和接入网设备进行数据传输,而第一类型终端设备最大可以支持在一个载波上同时使用20MHz或者10MHz或者5MHz频率资源和接入网设备进行数据传输。
2、第一类型终端设备和第二类型终端设备的收发天线数目不同。例如第二类型终端设备最小支持的天线配置为4发2收,即在最小天线配置下,使用4根接收天线接收下行数据,使用2根发送天线发送上行数据。而第一类型终端设备最大支持的天线配置低于4发2收,例如第二类型终端设备只支持2收1发,或者也可以支持2收2发,或者1收1发。
3、第一类型终端设备和第二类型终端设备的上行最大发射功率不同。例如第二类型终端设备的上行最大发射功率可以为23dBm或者26dBm,而第一类型终端设备的上行最大发射功率可能属于4dBm~20dBm范围。
4、第一类型终端设备和第二类型终端设备对应的协议版本不同,例如NR Rel-15、NR Rel-16终端设备可以是第二类型终端设备,NR Rel-17终端设备可以是第一类型终端设备。
5、第一类型终端设备和第二类型终端设备支持的载波聚合(carrier aggregation,CA)能力不同。例如,第二类型终端设备可以支持载波聚合,而第一类型终端设备不支持载波聚合。又例如,第一类型终端设备和第二类型终端设备都支持载波聚合,但是第二类型终端设备同时支持的载波聚合的最大个数大于第一类型终端设备同时支持的载波聚合的最大个数。例如第二类型终端设备可以最多同时支持5个载波或者32个载波的聚合,而第一类型终端设备最多同时支持2个载波的聚合。
6、第二类型终端设备支持全双工频分双工(Frequency Division Duplexing,FDD),而第二类型终端设备仅支持半双工FDD。
7、第一类型终端设备和第二类型终端设备对数据的处理时间能力不同。例如,第二类型终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延小于第一类型终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延,和/或,第二类型终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延小于第一类型终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延。
8、第一类型终端设备和第二类型终端设备的处理能力不同。例如,第一类型终端设备的处理能力更低,如不支持256正交幅度调制(quadrature amplitude modulation,QAM);和/或,第一类型终端设备支持的混合自动重传请求(hybrid automatic repeat request,HARQ)数最大为8,第二类型终端设备支持的HARQ数最大为16。
9、第一类型终端设备和第二类型终端设备对应的上行传输峰值速率和/或下行传输峰值速率不同。
10、第一类型终端设备和第二类型终端设备对应的业务不同。例如第一类型终端设备对应的业务是物联应用(如视频监控),第二类型终端设备对应的业务是移动宽带MBB。
可选的,第一类型终端设备例如可以是REDCAP终端设备,第二类型终端设备例如可以是NR现有的(Legacy)终端设备。
其中,第一上行授权信息包括第一字段,第一字段指示频域资源分配信息,第一字段的长度Y小于X。X是预先固定的值,如X=14。或者X是第二上行授权格式关联的第二频域资源分配字段的长度。其中第一终端设备不支持第二上行授权格式。Y与第一终端设备支持的或配置的资源块的数量N有关,N为正整数。例如,第一终端设备不支持所述第二上行授权格式,指的是第一终端设备不能按照第二上行授权格式来获取上行授权信息。第二上行授权格式关联的第二频域资源分配字段的长度,可以认为是第二上行授权格式中第二频域资源分配字段对应的长度或占用的比特数。
其中,Y与第一终端设备支持的或配置的资源块的数量N有关。在一种可实施的方式中,可以是
Figure PCTCN2021105387-appb-000015
其中,N为第一终端设备支持的或配置的资源块 的数量,
Figure PCTCN2021105387-appb-000016
为上取整。可选的,N可以是预先规定的。N还可以是接入网设备为第一终端设备配置的资源块的数量。如,N是接入网设备为终端设备配置的用于信息传输的最大资源块的数量。如N是接入网设备配置的部分带宽(bandwidth part,BWP)包括的资源块的数量,或N是接入网设备配置的载波包括的资源块的数量。BWP可以是初始BWP,或者非初始BWP。N还可以是第一终端设备支持的资源块的数量。例如,第一终端设备根据第一终端设备的带宽确定支持的资源块的数量。支持的带宽所用资源块数量可以是第一终端设备发送和/或接收时能够占用的最大频域资源块的数量。如,支持的带宽为20MHz带宽,在子载波间隔为15kHz时,支持的资源块数量为106个RB。如,第一终端设备能够接收信号的最大带宽,和/或第一终端设备能够发送信号的最大带宽等。需要说明的是,本申请中是以资源块为例进行说明。通常一个资源块在频域上占用12个子载波。本申请中,资源块还可以是其他粒度的资源单位。资源块还是可以是资源元素(resource element,RE)、资源元素组(resource element group,REG)、子载波(sub-carrier)、控制信道元素、子帧、无线帧、时隙、RB组、REG捆绑(bundle)、控制信道元素(control channel element,CCE)或符号中的一种。接入网设备可以根据第一终端设备支持的带宽确定N。或者,接入网设备可以为第一终端设备配置N。
现有技术中,随机接入响应的上行授权信息中频域资源分配字段固定为14比特。即X=14。例如,现有技术中为终端设备进行资源块的指示时,利用14bit中的截短的
Figure PCTCN2021105387-appb-000017
比特进行资源块的指示。因此有
Figure PCTCN2021105387-appb-000018
个空闲比特。并且在随机接入响应的上行授权信息中进行跳频指示(也称使能跳频)时,
Figure PCTCN2021105387-appb-000019
中还有1个或2个比特用于指示跳频的偏移值,因此
Figure PCTCN2021105387-appb-000020
个比特中用于指示资源块分配的比特会更少,从而会对资源块的分配带来限制(如某些长度,和/或某些起点的资源分配无法指示)。这里M是接入网设备为终端设备配置的BWP包含的资源块个数或者可分配的频域资源带宽所用的资源块数量。
本申请中,接入网设备在随机接入响应的上行授权信息中用
Figure PCTCN2021105387-appb-000021
个比特对第一终端设备指示频域资源块分配比特。本实施例中,Y个比特中没有比特用于跳频的偏移值指示。因此Y个比特可以全部用于资源块的指示,从而可以提供更灵活的资源分配(如避免对资源块分配的长度指示或者起点指示造成限制)。
本申请中,接入网设备在调度终端设备特定的PUSCH的上行授权信息中也可以用
Figure PCTCN2021105387-appb-000022
个比特对第一终端设备指示频域资源块分配比特。Y个比特中没有比特用于跳频的偏移值指示。因此Y个比特可以全部用于资源块的指示,从而可以提供更灵活的资源分配(如避免对资源块分配的长度指示或者起点指示造成限制)。
本实施例中,可选的,第一上行授权信息可以是包括在随机接入响应信息中或者下行控制信息的授权信息、下行控制信息中的上行授权信息中的任一种。当第一上行授权信息包括含在下行控制信息中时,下行控制信息可以是回退模式下行控制信息。回退模式下行控制信息例如可以是DCI format 0_0。回退模式下行控制信息例如还可以是TC-RNTI加扰的DCI format 0_0。下行控制信息还可以是非回退模式下行控制信息。非回退模式下行控制信息例如可以是DCI format 0_1。
本实施例中,可选的,第二上行授权信息可以是包括在随机接入响应信息RAR中或者下行控制信息中的授权信息、下行控制信息DCI中的上行授权信息中的任一种。 当第二上行授权信息包含在下行控制信息时当第二上行授权信息包括在下行控制信息时,下行控制信息可以是回退模式下行控制信息。回退模式下行控制信息例如可以是DCI format 0_0。回退模式下行控制信息例如还可以是TC-RNTI加扰的DCI format 0_0。下行控制信息还可以是非回退模式下行控制信息。非回退模式下行控制信息例如可以是DCI format 0_1。
S102、第一终端设备接收来自接入网设备的第一上行授权信息,第一上行授权信息包括第一字段。进一步,第一终端设备根据第一字段确定上行传输的资源。所述资源为接入网设备通过第一字段为第一终端设备分配的频域资源。所述频域资源可以是一个或多个资源块(resource block,RB)、资源单元(resource element,RE)、资源单元组(resource element group,REG)、绑定资源单元组(REG bundle)、子载波(sub-carrier)、载波(carrier)、部分带宽(bandwidthpart,BWP)中的任一种。
具体来说,第一上行授权信息包括第一字段,第一字段指示频域资源分配信息。第一终端设备根据第一字段指示的频域资源分配信息可以确定分配给第一终端设备的频域资源,该频域资源用于进行上行传输。
S103、第一终端设备根据所述资源进行上行传输。
具体地,第一终端设备根据第一字段指示的频域资源分配信息确定上行传输的资源,根据所确定的资源进行上行传输。本实施例中,可以是在所确定的资源上与接入网设备进行上行传输。在另一种场景中,还可以是在所确定的资源上与另一终端设备进行上行传输,即进行D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。在该场景下,第一终端设备从终端设备接收上行授权信息。
进一步地,如前所述,随机接入响应的上行授权信息中可能存在
Figure PCTCN2021105387-appb-000023
个空闲比特。接入网设备通过随机接入响应为第一终端设备发送上行授权信息,该上行授权信息中用于指示频域分配的比特个数可能少于14比特。因此上行授权信息中的空闲比特还可以做其他的指示。本实施例中,上行授权信息(如调度PUSCH的上行授权信息,或随机接入响应包括的上行授权信息,或随机接入响应)中可以包括:一个或多个字段,其中一个或多个字段可以指示至少一项信息。该一项信息包括以下信息中的任意一种或多种:
是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道(Random Access Channel,RACH)的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法(modulation and coding scheme,MCS)的信息、调度的物理上行共享信道(physical uplink shared channel,PUSCH)的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集(transport block set,TBS)信息和TBS门限信息。
例如,上行授权信息中指示终端设备采用4步RACH接入网络。再如,上行授权信息中指示使用2步RACH,或者指示使用2步RACH的终端设备回退到4步RACH进行随机接入。
现有协议中,随机接入响应中的上行授权信息包括的MCS是4比特,因此最多只能指示16种MCS索引。本实施例中MCS指示域的比特数为5bits,可以进行最多32种MCS索引。
在一种可实施的方式中,接入网设备向第一终端设备发送的第一上行授权信息包括第六字段。第一上行授权信息的格式可以是与第一终端设备的BWP所用的子载波间隔有关,或与信息传输所用的子载波间隔有关。具体地,例如,第一上行授权信息中的第六字段(可以是第六字段的内容、第六字段的大小或第六字段的位置)与第一终端设备的BWP所用的子载波间隔有关,或与信息传输所用的子载波间隔有关。
当资源所用的子载波间隔为u1时,第六字段的长度是N1比特。此处的资源可以是带宽资源。带宽资源为接入网设备为第一终端设备配置的带宽资源或者第一终端设备使用的带宽资源。带宽资源可以是BWP或载波。当资源所用的子载波间隔为u2时,第六字段的长度是N2比特。N1与N2不相等。例如,第一终端设备的带宽资源是20MHz。子载波间隔为60kHz时,u1=2,频域资源分配字段包括9比特,跳频指示域包括1bit,重复次数指示包括4比特,即N1=4。子载波间隔为30kHz时,u2=1,频域资源分配字段包括11比特,跳频指示域包括2bit,重复次数指示包括2比特,即N2=2。即,在u1=2时,N1=4,在u2=1时,N2=2。
进一步地,当资源所用的子载波间隔为u1时,第一授权信息包括第六字段,第六字段可以用于指示以下信息中的任意一种或多种:
是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息、TBS门限信息、波束方向信息。
当资源所用的子载波间隔为u2时,第一上行授权信息可以不包括第六字段。例如,第一终端设备的带宽是20MHz。子载波间隔为60kHz时,u1=2,频域资源分配字段包括9比特,跳频指示域包括1bit,重复次数指示包括3比特,此时,第一授权信息中还包括波束方向信息2比特。,即第一授权信息包括第六字段。子载波间隔为30kHz时,u2=1,频域资源分配字段包括11比特,跳频指示域包括2bit,重复次数指示包括2比特,此时,第一授权信息中不包括波束方向信息。即第一授权信息不包括第六字段。
可选的,第六字段的长度小于14-X。
本实施例中,N是第一终端设备支持的或配置的资源块的数量。接入网设备在发送第一上行授权信息之前,需要确定所述N个资源块的位置和/或取值。第一终端设备在接收第一上行授权信息之前,也需要确定所述N个资源块的位置和/或取值。
本实施例中,如何确定所述N个资源块的位置和/或N的取值。例如有如下三种可选的方式:
方式一中第一终端设备根据接入网设备发送的第一指示信息确定第一终端设备的带宽资源为第一资源或第二资源。所述带宽资源为第一终端设备配置的带宽资源或者第一终端设备使用的带宽资源。例如,第一资源是第一BWP资源。第二资源是第二BWP资源。第一终端设备基于所述带宽资源得到所述N个资源块的位置和/或确定N的取值。例如,N个资源块就是带宽资源包含的资源块。
方式二中第一终端设备根据接入网设备发送的第二指示信息确定N个资源块的位置。例如,第二指示信息至少可以指示第一终端设备的带宽资源的位置。例如第二指示信息指示了频率上的偏移,或者指示资源的索引信息。或者,第二指示信息可以指示第一终端设备的带宽信息,第一终端设备根据所述指示的第一终端设备的带宽信息确定N的取值(此时N个资源块的位置可以是预定义的)。
方式三中第一终端设备通过接入网设备发送的第三指示信息确定N的取值和/或N个资源块的位置。例如第三指示信息是初始BWP配置信息。第一终端设备根据初始BWP配置信息确定N的取值和/或N个资源块的位置。特别地,初始BWP配置信息还可以对第二终端设备配置资源。
下面具体描述三种方式:
方式一、具体地,可以是通过下述S105-S108确定N个资源块的位置和/或取值:
S105、接入网设备向第一终端设备发送第一指示信息。所述第一指示信息用于指示第一终端设备的带宽资源是第一资源或第二资源。
S106、所述第一终端设备接收第一指示信息。所述第一指示信息的值或比特状态(或比特值)属于第一集合时,第一终端设备确定第一终端设备的带宽资源为第一资源。所述第一指示信息的值或比特状态属于第二集合时,第一终端设备确定第一终端设备的带宽资源为第二资源。所述第一资源与所述第二资源不相同。不完全相同可以是第一资源与所述第二资源没有重叠,或者是第一资源与所述第二资源有部分重叠。例如,所述第一资源与所述第二资源有部分重叠。接入网设备可以通过第一初始BWP配置信息为第一终端设备配置第一资源。可选地,第一初始BWP配置信息还可以对第二终端设备配置资源。即,第一终端设备和第二终端设备可以读取相同的初始BWP配置信息。需要说明的是,第一集合与第二集合可以包括一个或多个比特状态或数值。
具体地,所述带宽资源可以是上行初始BWP、下行初始BWP、控制信息资源集合(control resource set,CORESET)、上行BWP、下行BWP、上行载波、或下行载波等包括的资源。
其中,第一指示信息可以包含在RRC信令,MAC CE信令,或DCI信令中。进一步,第一终端设备可以根据第一指示信息确定带宽资源。
可选的,当所述第一指示信息的比特状态属于第一集合时,所述第一终端设备确定第一终端设备的带宽资源为第一资源。所述第一指示信息的比特状态属于第二集合时,所述第一终端设备确定第一终端设备的带宽资源为第二资源。第一资源和第二资源包括的资源可以不同。第一资源和第二资源可以是不同的BWP。所述第一集合或第二集合可以包括一个或多个比特状态。例如,第一指示信息为1个比特,第一集合和第二集合各包括一个比特状态。又例如,第一指示信息为多个比特,第一集合和第二集合包括一个或多个比特状态。可选的,第一指示信息包括1比特。例如,第一集合为“1”,第二集合为“0”。例如,第一指示信息的比特状态为“1”,第一终端设备可以根据第一指示信息确定第一终端设备的带宽资源为第一资源,第一资源例如是第一上行初始BWP;如果第一指示信息的状态为“0”,第一指示信息指示第一终端设备的带宽资源为第二资源,第二资源可以例如是第二上行初始BWP。
可选的,根据预定义的指示规则,第一指示信息可以通过一个比特值来指示第一 终端设备的带宽资源与上行初始BWP之间的关系。例如,当第一指示信息的状态为“1”时,第一指示信息指示的第一终端设备的带宽资源是在上行初始BWP之内。当第一指示信息的状态为“0”时,第一指示信息指示的第一终端设备的带宽资源是在上行初始BWP之外。
在一种可能的实现中,第二资源和第一资源为不完全相同的资源。在另一种可能的实现中,第二资源和第一资源可以有部分重叠。
本方法中,可以通过一个共同的BWP配置信息为第一终端设备和第二终端设备配置资源。第一终端设备可以根据该共同的BWP配置信息确定带宽资源。通信系统可以节省信令的指示开销,实现灵活资源指示,进而在实现负载均衡的同时提高资源利用率。
本方法中,第一资源可以是为第一终端设备配置的资源,本申请不限定所述第一资源是否可以用于第二终端设备。所述第二资源可以只用于第一终端设备。
可选的,所述第一资源可以是上行初始BWP、下行初始BWP、控制信息资源集合(control resource set,CORESET)、上行BWP、下行BWP、下行CORESET0、上行载波或下行载波等的配置信息。
S107、第一终端设备根据第一终端设备的带宽资源确定所述N个资源块的位置和/或N的取值。
第一指示信息指示第一终端设备的带宽资源为第一资源,则N个资源块的位置可以在第一资源中确定。第一指示信息指示第一终端设备的带宽资源为第二资源,则N个资源块的位置可以在第二资源中确定。进一步地,可以通过信令或预定义规则确定第一终端设备的N个资源块在带宽资源中的位置。例如,带宽资源包含的资源块的数目就是N。带宽资源包含的资源块就是N个资源块。
具体地,所述第一终端设备可以是根据第一终端设备可支持的带宽确定所述N的取值。可支持的带宽可以理解为根据第一终端设备能够接收的最大信号带宽和/或能够发送最大信号带宽中的至少一种能力。例如,第一终端设备可支持的带宽为20MHz,若子载波间隔为15KHz,则N的取值为106RB或100RB。
需要说明的是,确定N个资源块的位置和确定N的取值这两个步骤的执行顺序可以相互调换,本申请不限定执行顺序。
方式二、具体地,可以是通过下述S105’-S107’确定N个资源块的位置和/或N的取值:
S105’、接入网设备向第一终端设备发送第二指示信息。所述第二指示信息用于指示所述N个资源块的位置。
具体的,第二指示信息用于指示N个资源块在带宽资源内的位置。带宽资源是预定义的或者是信令配置的。其中信令可以是系统信息。带宽资源可以是BWP。例如,所述带宽资源为上行初始BWP。所述第二指示信息包括偏移值信息。例如,所述偏移值信息用于指示所述N个资源块相对上行初始BWP中第一个RB的偏移量。所述第一个RB可以理解为索引为0的RB。又例如,所述第二指示信息包括资源块索引值, 所述资源块索引值用于指示所述N个资源块在带宽资源中的位置。
在第一种可能的实现中,所述N个资源块的位置为预定义。例如,预先定义第一终端设备的N个资源块和带宽资源的起始位置相同。又例如,第一终端设备根据可支持的带宽、预定义规则或接入网设备通过信令通知等方式确定带宽资源的起始位置,进而确定N个资源块的位置。
在第二种可能的实现中,第一终端设备根据第一参考资源和第二指示信息确定N个资源块的位置。例如,第一参考资源是BWP,或者是BWP中的一个特定资源位置,或者是Point A,或者是第一个公共的PRB,或者是SSB中的特定资源。例如,当第一参考资源是BWP时,第一终端设备可以根据第一参考资源和第二指示信息确定N个资源块在BWP之内。又例如,第一终端设备根据第一参考资源和第二指示信息确定N个资源块中至少有部分资源是在BWP之外。
如,第一参考资源包括第10RB~第19RB。第二指示信息指示的偏移值的取值范围为{-5RB,0RB,5RB,10RB}。如果第二指示信息指示的值为-5RB,则N个资源块的起始位置为第(10-5)RB=5RB。假设第一终端设备支持的带宽为5个RB,则第一终端设备的带宽资源包括第5RB~第9RB,则第一终端设备的N个资源块在第一参考资源之外。如果第二指示信息指示的偏移值为0,第一终端设备的N个资源块起始位置为第(10-0)RB=10RB。第一终端设备支持的带宽为5RB,则第一终端设备的N个资源块在第一参考资源内。
S106’、所述第一终端设备接收到第二指示信息后,根据所述第二指示信息确定所述N的取值。
第一终端设备确定N的取值的具体实施方式如方式一中所述,此处不再赘述。
需要说明的是,接入网设备在发送第二指示信息之前,也需要确定所述N的取值。具体可以是根据第一终端设备可支持的带宽确定所述N的取值。可支持的带宽可以理解为根据第一终端设备能够接收的最大信号带宽和/或能够发送最大信号带宽中的至少一种能力。
方式三、具体地,可以是通过下述S105”-S106”确定N个资源块的位置和/或取值:
S105”、接入网设备向第一终端设备发送第三指示信息。第三指示信息包括第一初始上行BWP配置信息。所述第一初始上行BWP配置信息还可以用于第二终端设备。
S106”、所述第一终端设备接收到第三指示信息后,根据所述第一初始上行BWP配置信息确定N个资源块的位置和/或N的取值。
其中,所述第三指示信息可以是系统信息。
具体的,所述第一初始上行BWP配置信息是接入网设备发送的,用于指示第一终端设备的带宽资源。该带宽资源可以是用于第一终端设备上行发送的资源。所述第一初始上行BWP配置信息是接入网设备发送的。第一初始上行BWP信息还可用于指示第二终端设备的带宽资源。该带宽资源包括N的取值和/或N个资源块的位置。可以根据第一初始上行BWP配置信息确定N的取值和/或N个资源块的位置。
如第一终端设备支持的带宽小于第一初始上行BWP的配置的带宽时,可以通过默认方式或信令通知方式确定N的取值和/或N个资源块的位置。如可以默认N的取 值为第一终端设备支持的带宽,默认第一终端设备的初始上行BWP的频域资源在第一初始上行BWP的资源范围内。如,第一终端设备的初始上行BWP的频域资源的起始资源位置在第一初始上行BWP内的特定位置。如,第一终端设备的初始上行BWP的频域资源的起始资源位置和第一初始上行BWP的起始资源位置相同。
进一步的,上述根据第一初始上行BWP确定N的取值和/或N个资源块的位置的方法也适用于第一终端设备根据第一初始下行BWP配置信息、控制信息资源集合(control resource set,CORESET)配置信息、上行BWP、下行BWP、CORESET0配置信息、上行载波、或下行载波等确定N个资源块。
可选的,第一终端设备还可以是根据S1081-S1082确定所述N的取值:
S1081、第一终端设备确定第一数值。
所述第一数值根据第一终端设备的能力(如支持的最大信道带宽)确定,或者第一数值可以是接入网设备预配置的、协议预定义的或者由设备商预设置的。
S1082、第一终端设备根据带宽资源和第一数值,确定所述N的取值。
例如,带宽资源是预定义的或者是信令配置的。其中信令可以是系统信息。带宽资源可以是BWP的大小和/或位置。具体地,可以确定N的取值=min{带宽资源,第一数值}。如,带宽资源为20MHz,第一终端设备的可支持的带宽为5MHz,则第一终端设备根据5MHz确定N的取值。或者,信令指示的带宽资源为10MHz,第一终端设备根据来自接入网设备的信令确定第一数值为20MHz,则第一终端设备根据10MHz确定N的取值。
可选的,所述带宽资源为第一初始上行BWP,那么第一终端根据第一数值和第一初始上行BWP的大小确定N的取值。可选的,接入网设备还可以发送第一初始上行BWP配置信息给第二终端设备。
需要说明的是,接入网设备在发送第一指示信息之前,也需要确定所述N个取值。具体的确定方式和第一终端设备侧的确定方式类似。
在一种可实施的方式中,接入网设备通过第三资源配置信息配置第一终端设备在第三资源上进行信息传输。第三资源配置信息还可以给第二终端设备配置资源。第三资源包括N11个RB。第一终端设备在第三资源中可用于传输信息的最大的资源块数量为N21。N11可以大于N21。此时,第一终端设备的频域资源分配字段按照N21确定该字段包含的比特数。第二终端设备的频域资源分配字段按照N11确定该字段包含的比特数。
第一设备和第二终端设备在所述第一资源中确定的可用于数据传输的最大资源块数量N是不同的。例如,子载波间隔为15kHz时,第三资源包括270RB。第二终端设备支持的带宽大于50MHz或270RB。第一终端设备支持的带宽等于20MHz或106RB。可以确定第二终端设备可用于数据传输的最大资源块数量N21=270RB。第一终端设备可用于数据传输的最大资源块数量N11=106RB。即在确定上行授权信息时,第一终端设备按照可支持的带宽(如106)来解读上行授权信息中的频域资源指示域。第二终端设备按照接入网设备通知的第一资源包括的资源块数量(如270)来解读上行授权信息中的频域资源指示域。例如,第一上行授权格式中频域资源分配字段的长度是根据N21确定的。第二上行授权格式中频域资源分配字段的长度是根据N11确定的。根 据预定义方式确定N的数值,不需要额外的信令开销。
本实施例提供的通信方法,在通过第一上行授权信息进行频域资源分配指示时,对于第一终端设备,频域资源分配字段的长度与第一终端设备支持的或配置的资源块的数量N有关。即频域资源分配字段的长度基于第一终端设备支持的或配置的资源块的数量N,且小于第二上行授权格式关联的第二频域资源分配字段的长度。本实施例中,Y个比特中没有比特用于跳频的偏移值指示。因此Y个比特可以全部用于资源块的指示,从而可以提供更灵活的资源分配(如避免对资源块分配的长度指示或者起点指示造成限制)。
为了获得分集增益,可以将一次数据传输在时间上分成多段跳频传输。各段传输对应的频率资源不完全相同。每段传输就是跳频传输中的一跳传输。本发明中,任一跳指的是一次数据传输包括的多次跳频传输中的任意一次传输或任意一段传输。对应的资源指的是数据传输所占用的或使用的资源。
现有技术中,在进行跳频指示时,通过上行调度信息中的1比特的跳频指示域指示本次传输是否跳频。如果跳频,则会根据授权信息中的频域资源分配字段中的1bit或2bit进行跳频指示。具体是指示第二跳的频域位置相对前一跳的偏移值。当可分配带宽<50RB时,使用1bit进行跳频指示。可分配带宽≥50RB时,使用2bit进行跳频指示。低复杂度UE由于能力受限,如可支持的最大信道带宽可能小于等于20M。
例如,随机接入响应包含的上行授权信息中的频域资源分配字段固定为14比特。在15kHz子载波间隔下,20MHz对应的可分配频域资源块数量N为106个RB。指示跳频时,如果仍然按照现有协议,频域资源分配字段会被截短到长度为
Figure PCTCN2021105387-appb-000024
13bit中的2bit用于指示偏移值,13bit中剩下11bit用于指示分配的频域资源位置,可指示的状态从2 13减少到2 11,但是却剩余1bit空闲未使用。同样的,在可分配频域资源块数量N为50个RB时,频域资源分配字段会被截短到长度为
Figure PCTCN2021105387-appb-000025
11bit中的2bit用于指示偏移值,11bit中剩下9bit用于指示分配的频域资源位置,可指示的状态从2 11减少到2 9,但是却剩余3bit空闲未使用。可见,现有技术中进行跳频偏移值的指示因为要占用频域资源分配字段中的1个或2个比特,会导致用于频域资源分配的状态数减少,从而使得频域资源分配受限。同时还存在空闲比特得不到利用,造成比特资源浪费。为解决这一问题,在图2所示方法的基础上,进一步地,本申请实施例有如下五种可实施的方式:
方式一、第一上行授权信息还包括第二字段。第二字段用于指示:是否跳频和偏移值中的至少一种。偏移值可以跳频偏移、频率偏移值、时间偏移值中的一种或多种。偏移值可以为在所确定的资源上进行下一跳传输所用的偏移值。例如,本方式中将是否跳频和偏移值联合编码指示。其中,如果第二字段指示跳频和跳频偏移值,终端设备根据偏移值确定第二跳的资源。现有协议中,时隙内跳频为根据频域资源分配信息和偏移值求和,并用BWP带宽取模,确定第二跳的信息位置。时隙间跳频为根据第i次跳频的i为奇数或偶数,来确定该跳频域资源分配信息是否和偏移值求和,并用BWP带宽取模。BWP带宽指的是配置的或预定义的BWP包括的可进行信息传输的最大资源块的数量。
其中,第二字段与前述第一字段相互独立。第二字段为跳频指示字段。第二字段与第一字段相互独立,可以避免跳频指示占用频域资源分配字段,增加了频域资源分 配字段可用的比特数,提升了频域资源分配的灵活性。
在方式一中,可选的,第二字段能够指示以下至少一种比特状态。第二字段用于指示是否跳频和偏移值中的至少一种是通过以下至少一种比特状态指示的:
第一比特状态,用于指示不跳频。
第二比特状态,用于指示跳频和偏移值为第一偏移值,或者,第二比特状态为预留状态。
第三比特状态,用于指示跳频和偏移值为第二偏移值,或者,第三比特状态为预留状态。
第四比特状态,用于指示跳频和偏移值为第三偏移值,或者,第四比特状态为预留状态。
其中,不跳频指的是所述上行传输不跳频,或不使能跳频(disablefrequencyhopping)。跳频偏移值可以是第二跳的频率偏移值。也可以是多次跳频中的一次跳频传输相对于前一次跳频传输的频率偏移值。
可选的,偏移值包括
Figure PCTCN2021105387-appb-000026
Figure PCTCN2021105387-appb-000027
中的至少一种。
具体地,在一种可实施的方式中,第二字段可以是2比特,用于指示不跳频和跳频时的偏移值。表一为第二字段的比特状态与所指示的信息的一种示例。如表一a和表一b所示,是按照N的大小示出了第二字段的比特状态与所指示的信息。第二字段的比特状态包括00、01、10和11。例如,N<50时,如表一a所示。例如,N<50时,比特状态00用于指示跳频且偏移值为
Figure PCTCN2021105387-appb-000028
比特状态01用于指示跳频且偏移值为
Figure PCTCN2021105387-appb-000029
比特状态10保留,比特状态11用于指示不跳频。例如,N≥50时,如表一b所示。例如,N≥50时,比特状态00用于指示跳频且偏移值为
Figure PCTCN2021105387-appb-000030
比特状态01用于指示跳频且偏移值为
Figure PCTCN2021105387-appb-000031
比特状态10用于指示跳频且偏移值为
Figure PCTCN2021105387-appb-000032
比特状态11用于指示不跳频。本申请中,N的取值判断门限为50,跳频偏移值以
Figure PCTCN2021105387-appb-000033
Figure PCTCN2021105387-appb-000034
但可以理解此处仅为举例,N和跳频偏移值可以是其他数值。
表一a
Figure PCTCN2021105387-appb-000035
表一b
Figure PCTCN2021105387-appb-000036
表二为第二字段的比特状态与所指示的信息的另一种示例。如表二所示,比特状态00用于指示跳频且偏移值为
Figure PCTCN2021105387-appb-000037
比特状态01用于指示跳频且偏移值为
Figure PCTCN2021105387-appb-000038
当N<50时比特状态10保留。当N≥50时,比特状态10用于指示跳频且偏移值为
Figure PCTCN2021105387-appb-000039
比特状态11用于指示不跳频。
表二
Figure PCTCN2021105387-appb-000040
在另一种可实施的方式中,第二字段用于指示不跳频和跳频时的偏移值。表三a和表三b为第二字段的比特状态与所指示的信息的一种示例。如表三a所示,N≥50,第二字段可以是2比特。第二字段的比特状态包括四种状态00、01、10和11。比特状态00用于指示跳频和偏移值为
Figure PCTCN2021105387-appb-000041
比特状态01用于指示跳频和偏移值为
Figure PCTCN2021105387-appb-000042
比特状态10用于指示跳频和偏移值为
Figure PCTCN2021105387-appb-000043
比特状态11用于指示不跳频。如表三b所示。N<50时,第二字段是1比特,第一上行授权信息中还包括1bit跳频使能字段(用于指示是否跳频)。此时,第二字段的比特状态包括两种状态0和1。比特状态0用于指示跳频和偏移值为
Figure PCTCN2021105387-appb-000044
比特状态1用于指示跳频和偏移值为
Figure PCTCN2021105387-appb-000045
因此,N<50时,也是通过2bit来指示是否跳频和偏移值。
表三a
Figure PCTCN2021105387-appb-000046
表三b
Figure PCTCN2021105387-appb-000047
可以理解的是,上述表一、表二和表三所示的第二字段比特状态与所指示的信息是示例,还可以有别的方式,本实施例对此不作限制。
在方式一中,可选的,至少一种比特状态与至少一个偏移值之间的对应关系是预先定义的,或者是通过信令配置的。如,接入网设备向第一终端设备发送信令,信令中携带至少一种比特状态与至少一个偏移值之间的对应关系。
方式二、偏移值是根据第三字段和第一信息确定的。第一信息是预先定义的,或者,第一信息是通过信令配置的。第三字段包括于第一上行授权信息。
具体地,接入网设备通过第三字段和第一信息共同指示(如独立指示、或联合指示)偏移值给第一终端设备。如第一信息联合第三字段指示偏移值。如,第一信息可以为两个比特中的第一个比特或后一个比特。例如,具体可以是预先定义或通过信令配置用于指示偏移值的1比特的数值,第三字段中的1比特用于指示偏移值的另一个比特的数值。例如,指示偏移值的比特状态“01”,可以预先定义或通过信令(如高层信令,RRC信令、MAC CE信令)配置第一个比特值为“0”,第三字段中的1比特指示为“1”。从而,偏移值指示不会占用第一字段中的比特,不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
进一步的,N满足第一条件,接入网设备使用方式二指示是否跳频或跳频时的偏移值。相应地,终端设备使用方式二确定是否跳频或跳频时的偏移值。N满足第二条件,接入网设备使用方式一或现有协议定义的方式指示是否跳频或跳频时的偏移值。相应地,终端设备使用方式一或现有协议定义的方式确定是否跳频或跳频时的偏移值。例如,当N在第一数值范围内时(如,91≤N≤100时),接入网设备使用方式二指示是否跳频或跳频时的偏移值。相应地,终端设备使用方式二确定是否跳频或跳频时的偏移值。否则,接入网设备使用方式一指示是否跳频或跳频时的偏移值。相应地,终端设备使用方式一确定是否跳频或跳频时的偏移值。
或者,接入网设备向第一终端设备指示是按照方式1还是方式2确定是否跳频或跳频时的偏移值。
方式三、所述N在第一数值范围内时,根据高层信令确定是否跳频。所述N在第二数值范围内时,根据所述第一上行授权信息确定是否跳频。
具体的,高层信令可以是无线资源控制(RRC)信令或媒体介入控制层控制单元(Media Access Control element,MACCE)信令。例如,当N在第一数值范围内时(如,91≤N≤100时),接入网设备使用RRC信令通知终端设备是否跳频。相应地,终端设备根据RRC信令确定是否跳频。否则,接入网设备在第一上行授权信息中指示是否跳频。相应地,终端设备根据第一上行授权信息中的信息确定是否跳频。偏移值可以包括在第一上行授权信息中。
例如,第一终端设备根据第二信息确定是否跳频。第二信息是预先定义的,或者,第二信息是通过信令指示的。
可选的,第二信息是预先定义的。例如,可以是预先定义第一终端设备一定跳频。这样就不需要现有的跳频指示域,可以空闲出1比特。或者,预先定义第二信息,例如可以是预先定义第一终端设备不跳频。这样也不需要现有的跳频指示域,也可以空闲出1比特。
可选的,第二信息通过信令指示。例如,可以是接入网设备向第一终端设备发送信令,该信令携带用于指示是否跳频的信息。该信令可以是高层信令,如RRC信令或MAC CE信令。同样地,也不需要现有的跳频指示域,可以空闲出1比特。
第一终端设备在根据第二信息确定跳频时,根据第四字段确定跳频时的偏移值。第四字段包括于第一上行授权信息。
具体来说,第一终端设备根据第二信息确定是否跳频。这样第一上行授权信息就不需要现有的跳频指示域,可以空闲出1比特。可以通过第四字段指示跳频时的偏移值。例如可以用空闲出的1比特和第一上行授权信息频域资源分配字段X比特中的1比特指示跳频时的偏移值。跳频指示不会占用第一字段中的比特,因此不会导致可指示的频域资源可分配状态数减少,从而提升频域资源分配的灵活性。
在方式三中,进一步地,N在第一数值范围内时,接入网设备通过第二信息指示是否跳频。N在第二数值范围内时,接入网设备通过第五字段指示是否跳频或跳频时的偏移值。第五字段包括于第一上行授权信息。相应地,对于第一终端设备而言,N在第一数值范围内时,根据第二信息确定是否跳频。N在第二数值范围内时,根据第五字段确定是否跳频和/或跳频时的偏移值。第五字段包括于第一上行授权信息。其中,第五字段为与第一字段相互独立的字段。通过第五字段指示是否跳频或跳频时的偏移值,同样地,跳频指示不会占用第一字段中的比特,因此不会导致可指示的频域资源可分配状态数减少,使得频域资源分配受限。
第一数值范围与第二数值范围可以不相同。第一数值范围与第二数值范围还可以有部分重叠。例如,第一数值范围为频域资源和偏移值所需比特数和大于X时,N对应的数值。第二数值范围为频域资源和偏移值所需比特数和小于或等于X时,N对应的数值。例如,第一数值范围为N≥91,频域资源指示需要比特数等于13、偏移值需要比特数等于2,共需要14比特。第二数值范围为50≤N≤90,频域资源指示需要比特数小于或等于12,偏移值需要比特数等于2,共需要比特数小于或等于14。或第二数值范围为N<50,频域资源指示需要比特数小于或等于11,偏移值需要比特数等于 1,共需要比特数小于或等于12。
方式四、第一上行授权信息中不包括预留字段和/或信道状态信息请求字段。
具体来说,在方式四中,第一上行授权信息中不包括预留字段和/或信道状态信息请求字段,但第一上行授权信息包括指示是否跳频以及跳频时的偏移值的字段。可以是使用预留字段和/或信道状态信息请求字段和现有频域资源分配字段X比特中的1比特指示是否跳频以及跳频时的偏移值。跳频指示不会占用第一字段中的比特,因此不会导致可指示的频域资源可分配状态数减少,从而提高频域资源分配灵活性。需要说明的是,现有技术中第一上行授权信息中是包括预留字段和/或信道状态信息请求字段的。
方式五、根据预定义规则确定上行传输的任一跳对应的资源只能在特定资源内,或确定上行传输至少存在一跳对应的资源可以在特定资源外;或,
接收第六信令,所述第六信令指示所述上行传输的任一跳对应的资源只能在特定资源内,或指示所述上行传输至少存在一跳对应的资源可以在特定资源外;或,
接收所述第一上行授权信息中的第七字段,所述第七字段指示所述上行传输的任一跳对应的资源只能在特定资源内,或指示所述上行传输至少存在一跳对应的资源可以在特定资源外。
其中特定资源可以是基站配置的资源。如,可以是BWP资源。
可选的,根据预定义规则确定上行传输的任一跳对应的资源只能在特定资源内,或确定上行传输至少存在一跳对应的资源可以在特定资源外。具体的,根据预定义规则,可以是根据终端设备支持的带宽大小,和/或根据接入网设备配置的资源大小。如,终端设备支持的带宽小于接入网设备配置的资源大小,则确定跳频传输可以在特定资源外。终端设备支持的带宽大于接入网设备配置的资源大小,则确定跳频传输只能在特定资源内。
进一步,可以根据接入网设备配置的资源来确定跳频偏移值。在特定资源外为,终端设备的资源在接入网设备预先配置的资源之外,或终端设备的资源在预先规定的资源之外,或终端设备的资源大于终端设备能够支持的带宽。如,终端设备可支持的带宽为20MHz,接入网设备配置的资源为100Mhz,则规定终端设备的跳频偏移值中的N按照100MH在计算。如N/2=100MHz/2=50MHz,即本次跳频传输的频率偏移值相对于前一次为50MHz。或者,规定本次跳频传输的频域资源F=前一次跳频传输的资源值+频率偏移值。现有技术中,需要将F mod(资源带宽)。本发明中如果确定一跳对应的资源在特定资源之外,则计算中可以不再取模。直接根据前一次跳频传输的资源值和频率偏移值的结果确定本次跳频传输对应的频率资源。
可选的,接收第六信令,所述第六信令指示所述上行传输的任一跳对应的资源只能在特定资源内,或指示所述上行传输至少存在一跳对应的资源可以在特定资源外。具体的,终端设备是根据第六信令确定一跳传输的资源是在特定资源之内还是之外的。第六信令可以是RRC、DCI、MAC CE信令中的一种。可选的,还可以通过第六信令的不同状态指示任一跳对应的资源只能在特定资源之内还是在特定资源之外的。例如表四所示。如,状态“11”指示不跳频。状态“00”指示跳频,且只能在特定资源内跳频。或“00”指示在特定资源内跳频的第一跳频偏移值,和/或采用第一跳频计算方式。 跳频计算方式可以是按照现有技术,(前一跳的频域资源+跳频偏移值)mod(资源带宽),mod为取模,也可以是前一跳的频域资源+跳频偏移值。状态“01”指示跳频,且只能在特定资源内跳频。或者,“01”还可以指示在特定资源内跳频的第二跳频偏移值,和/或采用第一跳频计算方式。状态“10”指示跳频,且所述上行传输至少存在一跳对应的资源可以在特定资源外。或者,“10”还可以指示在特定资源内跳频的第三跳频偏移值,和/或采用第二跳频计算方式。其中,所述第一频率偏移值、所述第二频率偏移值、所述第三频率偏移值可以是相同的数值也可以是不同的数值。所述第一跳频计算方式、所述第一跳频计算方式可以是相同的计算方式也可以是不同的计算方式。
表四
Figure PCTCN2021105387-appb-000048
可选的,接收所述第一上行授权信息中的第七字段,所述第七字段指示所述上行传输的任一跳对应的资源只能在特定资源内,或指示所述上行传输至少存在一跳对应的资源可以在特定资源外。具体的是指方法可以和前一个实施例相同,这里不再赘述。
在一种可能的实施例中,若第一上行授权信息中存在空闲比特,为提高空闲比特的资源利用率,在一种可实施的方式中,第一上行授权信息可以包括至少一个字段,即空闲比特可以对应至少一个字段,至少一个字段中的每一个字段分别用于指示一项信息,该一项信息包括以下信息中的任意一种:
是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息和TBS门限信息。
例如,授权信息中指示终端设备采用4步RACH接入网络。再如,授权信息中指示使用2步RACH的终端设备回退到4步RACH进行随机接入。
现有协议随机响应中的上行授权信息包括的MCS是4比特,因此最多只能指示16种MCS索引。本实施例中MCS指示域的比特数为5bits,可以进行最多32种MCS索引。
在一种可能的实施例中,第一上行授权信息可以包括第六字段,当资源所用的子载波间隔为u1时,第六字段的长度是N1比特;当资源所用的子载波间隔为u2时,第六字段的长度是N2比特,N1与N2不相等。
图3为本申请提供的一种通信方法实施例的交互流程图,如图3所示,本实施例的方法适用于第一终端设备。本实施例适用于D2D的信号传输。第三终端设备的带宽 与第一终端设备的带宽不同。例如,其中第一终端设备可以是带宽小于或等于20MHz的终端设备,或者是带宽的资源块的数量小于106RB的终端设备。相应地,第三终端设备可以是带宽大于20MHz的终端设备,或者是带宽的资源块的数量大于106RB的设备。例如,第三终端设备还可以是带宽大于20MHz的终端设备。相应地,第一终端设备还可以是带宽小于10MHz的终端设备,本实施例对第三终端设备和第一终端设备的带宽不作限定。通过采用本申请实施例的方法,可避免频域资源分配字段被截短导致的资源分配受限问题,同时更有效的利用频域资源,避免资源浪费。本实施例的方法可以包括:
S201、第三终端设备向第一终端设备发送第一上行授权信息。
其中,第一上行授权信息包括第一字段,第一字段指示频域资源分配信息,第一字段的长度Y小于X。Y是根据第一终端设备的带宽的资源块的数量N确定的,N为正整数。第一上行授权信息也可以是侧行链路授权信息。侧行链路授权信息用于指示第一终端设备发送给其他终端设备的信息的资源。因为上行传输和侧行链路传输都是终端设备发送的,因而本发明中上行传输也包括侧行链路传输。
其中,Y根据第一终端设备的带宽的资源块的数量N确定。作为一种可实施的方式,可以是
Figure PCTCN2021105387-appb-000049
其中,N为第一终端设备的带宽的资源块的数量,
Figure PCTCN2021105387-appb-000050
为上取整。其中,N可以是根据终端设备支持的带宽、接入网设备配置或者终端设备检测结果中的一种或多种确定。
例如,X为固定值,X为14比特。对于降低能力的终端设备,按照现有协议的规定,随机接入响应的上行授权信息中的14bit的频域资源分配字段截短到长度为
Figure PCTCN2021105387-appb-000051
保留其中的低比特位,存在空闲比特,。按照现有协议的规定进行频域资源分配指示,频域资源分配字段可能会存在比特未充分使用,且资源分配字段可能无法指示某些长度的资源分配,从而造成资源指示不灵活和资源不能有效利用的问题。本发明中,频域资源分配字段的长度与第一终端设备支持的或配置的资源块的数量N有关。例如,在给第一终端设备的随机接入响应中的上行授权信息的频域资源分配字段小于14比特。因这样,为第一终端设备进行频域资源分配的字段可以灵活地进行资源块的分配,因此可避免某些长度的资源块无法指示更有效的指示和利用频域资源,避免资源浪费和提高资源分配的灵活性。
本实施例中,可选的,第一上行授权信息可以包括在是随机接入响应信息、侧行链路控制信息和上行调度信息中的任一种。
具体来说,本实施例中第三终端设备可以是通过接收网络侧设备的指令确定第一上行授权信息,并将第一上行授权信息转发给第一终端设备。或者,第三终端设备可以通过信道监测结果来确定第一上行授权信息。信道监测可以为信道感知(sensing)或发前监听(listenbefore talk,LBT)等方法,本实施例对此不做限制。
S202、第一终端设备接收来自第三终端设备的第一上行授权信息。第一上行授权信息包括第一字段。进一步,第一终端设备根据第一字段确定上行传输的资源。所述资源为第一字段指示接入网设备为第一终端设备分配的频域资源。所述频域资源可以是一个或多个资源块(resource block,RB)、资源单元(resource element,RE)、资源单元组(resource element group,REG)、绑定资源单元组(REG bundle)、子载波(sub-carrier)、载波(carrier)、部分带宽(bandwidthpart,BWP)中的任一种。
具体来说,第一上行授权信息包括第一字段,第一字段指示频域资源分配信息。第一终端设备根据第一字段指示的频域资源分配信息可以确定分配给第一终端设备的频域资源,该频域资源用于进行上行传输。
S203、第一终端设备根据所述资源进行上行传输。
具体地,第一终端设备根据第一字段指示的频域资源分配信息确定上行传输的资源,根据所述资源进行上行传输。
本实施例中,如何确定第一终端设备的带宽资源包括的资源块的数量N个资源块的位置和取值,有三种可选的方式,详细可参见图2所示实施例中的方式一至方式三的描述,此处不再赘述,与图2所示实施例中的区别仅在于本实施例中第一指示信息和第二指示信息是来自第三终端设备的。
本实施例提供的通信方法,通过第三终端设备向第一终端设备发送第一上行授权信息,在通过第一上行授权信息进行频域资源分配指示时,频域资源分配字段的长度与第一终端设备支持的或配置的资源块的数量N有关,频域资源分配字段的长度可以根据N确定,即频域资源分配字段的长度随着第一终端设备的带宽资源包括的资源块的数量N变化,且小于第二终端设备的频域资源分配字段的长度,第一终端设备的频域资源分配字段的长度按需分配,因此可避免频域资源分配字段被截短,避免了频域资源分配字段出现空闲比特,更有效的利用频域资源,避免资源浪费。
进一步地,为解决现有技术中在进行跳频指示时占用频域资源分配字段中的比特,会导致可指示的频域资源可分配状态数减少使得频域资源分配受限的问题,本申请实施例有四种可实施的方式,与上文实施例中所示的四种可实施的方式相同,详细可参见上述方式一、方式二、方式三、方式四和方式五,此处不再赘述。
图4为本申请提供的一种通信装置实施例的结构示意图,如图4所示,本实施例的装置可以包括:接收模块11、确定模块12和发送模块13,其中,
接收模块11用于接收第一上行授权信息,所述第一上行授权信息包括第一字段,所述第一字段指示频域资源分配信息,所述第一字段的长度Y小于X;所述X是预先规定的值;或者,所述X是第二上行授权格式关联的第二频域资源分配字段的长度,所述通信装置不支持所述第二上行授权格式;所述Y与所述通信装置支持的或配置的资源块的数量N有关,所述N为正整数;
确定模块12用于根据第一字段确定上行传输的资源;
发送模块13用于在资源上进行上行传输。
需要说明的是,上述接收模块11的功能和发送模块13的功能可以是同一个模块实现,例如均由收发模块实现。
可选的,第一类型终端设备和第一终端设备的能力不同。
可选的,第一上行授权信息还包括第二字段,第二字段用于指示:是否跳频和偏移值中的至少一种,偏移值为在资源上进行跳频传输的偏移值。
可选的,第二字段能够指示以下至少一种比特状态:
第一比特状态,用于指示不跳频;
第二比特状态,用于指示跳频和偏移值为第一偏移值,或者,第二比特状态为预留状态;
第三比特状态,用于指示跳频和偏移值为第二偏移值,或者,第三比特状态为预留状态;
第四比特状态,用于指示跳频和偏移值为第三偏移值,或者,第四比特状态为预留状态。
可选的,偏移值包括
Figure PCTCN2021105387-appb-000052
Figure PCTCN2021105387-appb-000053
中的至少一种。
可选的,偏移值是根据第三字段和第一信息确定的,第三字段包括于第一上行授权信息,第一信息是预先定义的,或者,第一信息是通过信令配置的。
可选的,确定模块还用于:
在接收模块接收第一上行授权信息之前,根据第二信息确定是否跳频,第二信息是预先定义的,或者,第二信息是通过信令配置的;
在根据第二信息确定跳频时,根据第四字段确定跳频时的偏移值,第四字段包括于第一上行授权信息。
可选的,确定模块用于:
N在第一数值范围内时,根据第二信息确定是否跳频;
N在第二数值范围内时,根据第五字段确定是否跳频和/或跳频时的偏移值,第五字段包括于第一上行授权信息;和/或,
所述N在第一数值范围内时,无线资源控制信令配置是否跳频;
所述N在第二数值范围内时,所述第一上行授权信息指示是否跳频。
可选的,第一上行授权信息中不包括预留字段和/或信道状态信息请求字段。
可选的,第一上行授权信息包括至少一个字段中的每一个字段分别用于指示一项信息,一项信息包括以下信息中的任意一种或多种:
是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、TBS信息和TBS门限信息。。
可选的,第一上行授权信息包括第六字段,资源所用的子载波间隔为u1时,第六字段的长度是N1比特;资源所用的子载波间隔为u2时,第六字段的长度是N2比特,N1与N2不相等。
可选的,接收模块11还用于:接收第一指示信息;
所述确定模块12还用于:所述第一指示信息的值或比特状态属于第一集合时,确定第一终端设备的带宽资源为第一资源;所述第一指示信息的值或比特状态属于第二集合时,确定第一终端设备的带宽资源为第二资源;所述第一资源与所述第二资源不同,或者所述第一范围与所述第二范围有部分重叠。
可选的,所述确定模块12还用于:根据所述第一终端设备的带宽资源确定所述N个资源块的位置和/或N的取值。
可选的,所述N个资源块的位置是通过第二指示信息指示给第一终端设备的,或者,所述N个资源块的位置为预定义的。
可选的,所述确定模块12还用于:根据所述第一终端设备可支持的带宽确定所述 N的取值。
可选的,所述确定模块12还用于:根据所述第一终端设备的能力确定第一数值;
根据带宽资源和所述第一数值,确定所述N的取值。
在一种可能的设计中,所述接收模块11还用于:接收第三指示信息,第三指示信息包括第一初始上行BWP配置信息;
所述确定模块12还用于:根据所述第一初始上行BWP配置信息确定所述N个资源块的位置和/或所述N的取值。
本实施例的装置,可以用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图5为本申请提供的一种通信装置实施例的结构示意图,如图5所示,本实施例的装置可以包括:确定模块21和发送模块22,其中,
确定模块21用于确定第一上行授权信息,所述第一上行授权信息包括第一字段,所述第一字段指示频域资源分配信息,所述第一字段的长度Y小于X;所述X是预先规定的值;或者,所述X是第二上行授权格式关联的第二频域资源分配字段的长度,所述第一终端设备不支持所述第二上行授权格式;所述Y与所述第一终端设备支持的或配置的资源块的数量N有关,所述N为正整数;
发送模块22用于向第一终端设备发送所述第一上行授权信息。
可选的,第一类型终端设备和第一终端设备的能力不同。
可选的,第一上行授权信息还包括第二字段,第二字段用于指示:是否跳频和偏移值中的至少一种,偏移值为在资源上进行跳频传输的偏移值。
可选的,第二字段能够指示以下至少一种比特状态:
第一比特状态,用于指示不跳频;
第二比特状态,用于指示跳频和偏移值为第一偏移值,或者,第二比特状态为预留状态;
第三比特状态,用于指示跳频和偏移值为第二偏移值,或者,第三比特状态为预留状态;
第四比特状态,用于指示跳频和偏移值为第三偏移值,或者,第四比特状态为预留状态。
可选的,偏移值包括
Figure PCTCN2021105387-appb-000054
Figure PCTCN2021105387-appb-000055
中的至少一种。
可选的,至少一种比特状态与至少一个偏移值之间的对应关系是预先定义的,或者是通过信令配置的。
可选的,偏移值是通过第三字段和第一信息指示给第一终端设备的,第三字段包括于第一上行授权信息;
第一信息是预先定义的,或者,第一信息是通过信令配置给第一终端设备的。
可选的,所述发送模块22还用于:
向第一终端设备发送第一指示信息,所述第一指示信息为第一集合或第二集合,所述第一指示信息的值或比特状态属于第一集合时,所述第一指示信息指示所述第一终端设备的带宽资源为第一资源,所述第一指示信息的值或比特状态属于第二集合时,所述第一指示信息指示所述第一终端设备的带宽资源为第二资源,所述第一资源与所 述第二资源不同,或者所述第一资源与所述第二资源有部分重叠。
可选的,所述确定模块21还用于:
根据所述第一终端设备可支持的带宽确定所述N的取值。
可选的,所述确定模块21还用于:
根据第一终端设备的能力确定第一数值;
根据带宽资源和所述第一数值,确定所述N的取值。
可选的,所述N个资源块的位置通过第二指示信息指示,或者,所述N个资源块的位置为预定义的。
可选的,所述N的取值和/或所述N个资源块的位置通过第三指示信息指示,所述第三指示信息包括第一初始上行BWP配置信息。
本实施例的装置,可以用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图6为本申请提供的一种通信装置实施例的结构示意图,如图6所示,本实施例的装置在图5所示实施例的基础上,进一步地,还可以包括:处理模块23,其中,处理模块23用于通过第二信息指示是否跳频,第二信息是预先定义的,或者,第二信息是通过信令配置给第一终端设备的;在第二信息指示跳频时,通过第四字段指示跳频时的偏移值,第四字段包括于第一上行授权信息。
可选的,处理模块23用于:N在第一数值范围内时,通过第二信息指示是否跳频;
N在第二数值范围内时,通过第五字段指示是否跳频或跳频时的偏移值,第五字段包括于第一上行授权信息。
可选的,处理模块23用于:所述N在第一数值范围内时,通过无线资源控制信令指示是否跳频;
所述N在第二数值范围内时,通过所述第一上行授权信息指示是否跳频。
可选的,第一上行授权信息中不包括预留字段和/或信道状态信息请求字段。
可选的,第一上行授权信息包括至少一个字段中的每一个字段分别用于指示一项信息,一项信息包括以下信息中的任意一种或多种:
是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、TBS信息和TBS门限信息。
可选的,第一上行授权信息包括第六字段,资源所用的子载波间隔为u1时,第六字段的长度是N1比特;
资源所用的子载波间隔为u2时,第六字段的长度是N2比特,N1与N2不相等。
本实施例的装置,可以用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图7为本申请提供的一种终端设备结构示意图,如图7所示,该终端设备包括:处理器301和通信接口302;
处理器301,用于执行存储器存储的计算机程序,以实现上述实施例中的通信方 法。具体可以参见前述方法实施例中的相关描述。
该通信接口302可以通过总线303与处理器301连接。处理器301可以控制通信接口302来实现通信装置的上述的接收和发送的功能。
可选地,本实施例还包括:存储器304,用于存储计算机程序。
该装置可以用于执行上述方法实施例中终端设备或接入网设备对应的各个步骤和/或流程。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当通信装置的至少一个处理器执行该执行指令时,通信装置执行上述的各种实施方式提供的通信方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。通信装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得通信装置实施上述的各种实施方式提供的通信方法。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (33)

  1. 一种通信方法,其特征在于,所述方法适用于第一终端设备,所述方法包括:
    接收第一上行授权信息,所述第一上行授权信息包括第一字段,所述第一字段指示频域资源分配信息,所述第一字段的长度Y小于X;
    所述X是预先规定的值;或者,
    所述X是第二上行授权格式关联的第二频域资源分配字段的长度,所述第一终端设备不支持所述第二上行授权格式;
    所述Y与所述第一终端设备支持的或配置的资源块的数量N有关,所述N为正整数;
    根据所述第一字段确定上行传输的资源,并根据所述资源进行上行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一上行授权信息还包括第二字段,所述第二字段用于指示:是否跳频和偏移值中的至少一种。
  3. 根据权利要求2所述的方法,其特征在于,所述第二字段指示以下至少一种比特状态:
    第一比特状态,用于指示不跳频;
    第二比特状态,用于指示跳频和所述偏移值为第一偏移值,或者,所述第二比特状态为预留状态;
    第三比特状态,用于指示跳频和所述偏移值为第二偏移值,或者,所述第三比特状态为预留状态;
    第四比特状态,用于指示跳频和所述偏移值为第三偏移值,或者,所述第四比特状态为预留状态。
  4. 根据权利要求1所述的方法,其特征在于,
    偏移值是根据第三字段和第一信息确定的,所述第三字段包括于所述第一上行授权信息;
    所述第一信息是预先定义的,或者,所述第一信息是通过信令配置的。
  5. 根据权利要求1所述的方法,其特征在于,在所述接收第一上行授权信息之前,还包括:
    根据第二信息确定是否跳频,所述第二信息是预先定义的,或者,所述第二信息是通过信令配置的;
    在根据所述第二信息确定跳频时,根据第四字段确定跳频时的偏移值,所述第四字段包括于所述第一上行授权信息。
  6. 根据权利要求5所述的方法,其特征在于,
    所述N在第一数值范围内时,根据所述第二信息确定是否跳频;
    所述N在第二数值范围内时,根据第五字段确定是否跳频和/或跳频时的偏移值,所述第五字段包括于所述第一上行授权信息。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一上行授权信息包括的至少一个字段中的每一个字段分别用于指示一项信息,所述一项信息包括以下信息中的任意一种或多种:
    是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道 RACH的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息和TBS门限信息。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一上行授权信息包括第六字段,所述资源所用的子载波间隔为u1时,所述第六字段的长度是N1比特;
    所述资源所用的子载波间隔为u2时,所述第六字段的长度是N2比特,所述N1与所述N2不相等。
  9. 一种通信方法,其特征在于,所述方法适用于接入网设备,包括:
    确定第一上行授权信息,所述第一上行授权信息包括第一字段,所述第一字段指示频域资源分配信息,所述第一字段的长度Y小于X;
    所述X是预先规定的值;或者,
    所述X是第二上行授权格式关联的第二频域资源分配字段的长度,第一终端设备不支持所述第二上行授权格式;
    所述Y与所述第一终端设备支持的或配置的资源块的数量N有关,所述N为正整数;
    向所述第一终端设备发送所述第一上行授权信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第一上行授权信息还包括第二字段,所述第二字段用于指示:是否跳频和偏移值中的至少一种。
  11. 根据权利要求10所述的方法,其特征在于,所述第二字段指示以下至少一种比特状态:
    第一比特状态,用于指示不跳频;
    第二比特状态,用于指示跳频和所述偏移值为第一偏移值,或者,所述第二比特状态为预留状态;
    第三比特状态,用于指示跳频和所述偏移值为第二偏移值,或者,所述第三比特状态为预留状态;
    第四比特状态,用于指示跳频和所述偏移值为第三偏移值,或者,所述第四比特状态为预留状态。
  12. 根据权利要求9所述的方法,其特征在于,
    偏移值是通过第三字段和第一信息指示给所述第一终端设备的,所述第三字段包括于所述第一上行授权信息;
    所述第一信息是预先定义的,或者,所述第一信息是通过信令配置给所述第一终端设备的。
  13. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    通过第二信息指示是否跳频,所述第二信息是预先定义的,或者,所述第二信息是通过信令配置给所述第一终端设备的;
    在所述第二信息指示跳频时,通过第四字段指示跳频时的偏移值,所述第四字段包括于所述第一上行授权信息。
  14. 根据权利要求13所述的方法,其特征在于,
    所述N在第一数值范围内时,通过所述第二信息指示是否跳频;
    所述N在第二数值范围内时,通过第五字段指示是否跳频和/或跳频时的偏移值,所述第五字段包括于所述第一上行授权信息;和/或,
    所述N在第一数值范围内时,无线资源控制信令配置是否跳频;
    所述N在第二数值范围内时,所述第一上行授权信息指示是否跳频。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,所述第一上行授权信息包括的至少一个字段中的每一个字段分别用于指示一项信息,所述一项信息包括以下信息中的任意一种或多种:
    是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道RACH的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息和TBS门限信息。
  16. 根据权利要求9-14任一项所述的方法,其特征在于,所述第一上行授权信息包括第六字段,
    所述资源所用的子载波间隔为u1时,所述第六字段的长度是N1比特;
    所述资源所用的子载波间隔为u2时,所述第六字段的长度是N2比特,所述N1与所述N2不相等。
  17. 一种通信装置,其特征在于,所述装置包括:
    接收模块,用于接收第一上行授权信息,所述第一上行授权信息包括第一字段,所述第一字段指示频域资源分配信息,所述第一字段的长度Y小于X;
    所述X是预先规定的值;或者,
    所述X是第二上行授权格式关联的第二频域资源分配字段的长度,所述装置不支持所述第二上行授权格式;
    所述Y与所述装置支持的或配置的资源块的数量N有关,所述N为正整数;
    确定模块,用于根据所述第一字段确定上行传输的资源;
    发送模块,用于根据所述资源进行上行传输。
  18. 根据权利要求17所述的装置,其特征在于,所述第一上行授权信息还包括第二字段,所述第二字段用于指示:是否跳频和偏移值中的至少一种,所述偏移值为在所述资源上进行跳频传输的偏移值。
  19. 根据权利要求18所述的装置,其特征在于,所述第二字段能够指示以下至少一种比特状态:
    第一比特状态,用于指示不跳频;
    第二比特状态,用于指示跳频和所述偏移值为第一偏移值,或者,所述第二比特状态为预留状态;
    第三比特状态,用于指示跳频和所述偏移值为第二偏移值,或者,所述第三比特状态为预留状态;
    第四比特状态,用于指示跳频和所述偏移值为第三偏移值,或者,所述第四比特状态为预留状态。
  20. 根据权利要求17所述的装置,其特征在于,
    偏移值是根据第三字段和第一信息确定的,所述第三字段包括于所述第一上行授权信息;
    所述第一信息是预先定义的,或者,所述第一信息是通过信令配置的。
  21. 根据权利要求17所述的装置,其特征在于,所述确定模块还用于:
    在所述接收模块接收第一上行授权信息之前,根据第二信息确定是否跳频,所述第二信息是预先定义的,或者,所述第二信息是通过信令配置的;
    在根据所述第二信息确定跳频时,根据第四字段确定跳频时的偏移值,所述第四字段包括于所述第一上行授权信息。
  22. 根据权利要求21所述的装置,其特征在于,所述确定模块用于:
    所述N在第一数值范围内时,根据所述第二信息确定是否跳频;
    所述N在第二数值范围内时,根据第五字段确定是否跳频和/或跳频时的偏移值,所述第五字段包括于所述第一上行授权信息;和/或,
    所述N在第一数值范围内时,无线资源控制信令配置是否跳频;
    所述N在第二数值范围内时,所述第一上行授权信息指示是否跳频。
  23. 根据权利要求17-22任一项所述的装置,其特征在于,所述第一上行授权信息包括的至少一个字段中的每一个字段分别用于指示一项信息,所述一项信息包括以下信息中的任意一种或多种:
    是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道RACH的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息和TBS门限信息。
  24. 根据权利要求17-22任一项所述的装置,其特征在于,所述第一上行授权信息包括第六字段,所述资源所用的子载波间隔为u1时,所述第六字段的长度是N1比特;
    所述资源所用的子载波间隔为u2时,所述第六字段的长度是N2比特,所述N1与所述N2不相等。
  25. 一种通信装置,其特征在于,包括:
    确定模块,用于确定第一上行授权信息,所述第一上行授权信息包括第一字段,所述第一字段指示频域资源分配信息,所述第一字段的长度Y小于X;
    所述X是预先规定的值;或,
    所述X是第二上行授权格式关联的第二频域资源分配字段的长度,第一终端设备不支持所述第二上行授权格式;
    所述Y与所述第一终端设备支持的或配置的资源块的数量N有关,所述N为正整数;
    发送模块,用于向所述第一终端设备发送所述第一上行授权信息。
  26. 根据权利要求25所述的装置,其特征在于,所述第一上行授权信息还包括第二字段,所述第二字段用于指示:是否跳频和偏移值中的至少一种,所述偏移值为在所述资源上进行跳频传输的偏移值。
  27. 根据权利要求26所述的装置,其特征在于,所述第二字段能够指示以下至少一种比特状态:
    第一比特状态,用于指示不跳频;
    第二比特状态,用于指示跳频和所述偏移值为第一偏移值,或者,所述第二比特状态为预留状态;
    第三比特状态,用于指示跳频和所述偏移值为第二偏移值,或者,所述第三比特状态为预留状态;
    第四比特状态,用于指示跳频和所述偏移值为第三偏移值,或者,所述第四比特状态为预留状态。
  28. 根据权利要求25所述的装置,其特征在于,
    偏移值是通过第三字段和第一信息指示给所述第一终端设备的,所述第三字段包括于所述第一上行授权信息;
    所述第一信息是预先定义的,或者,所述第一信息是通过信令配置给所述第一终端设备的。
  29. 根据权利要求25所述的装置,其特征在于,所述装置还包括:
    处理模块,用于通过第二信息指示是否跳频,所述第二信息是预先定义的,或者,所述第二信息是通过信令配置给所述第一终端设备的;
    在所述第二信息指示跳频时,通过第四字段指示跳频时的偏移值,所述第四字段包括于所述第一上行授权信息。
  30. 根据权利要求29所述的装置,其特征在于,所述处理模块用于:
    所述N在第一数值范围内时,通过所述第二信息指示是否跳频;
    所述N在第二数值范围内时,通过第五字段指示是否跳频和/或跳频时的偏移值,所述第五字段包括于所述第一上行授权信息;和/或,
    所述N在第一数值范围内时,无线资源控制信令配置是否跳频;
    所述N在第二数值范围内时,所述第一上行授权信息指示是否跳频。
  31. 根据权利要求25-30任一项所述的装置,其特征在于,所述第一上行授权信息包括的至少一个字段中的每一个字段分别用于指示一项信息,所述一项信息包括以下信息中的任意一种或多种:
    是否允许小包传输的信息、允许小包传输时的小包传输信息、2步随机接入信道RACH的信息、4步RACH的信息、是否允许第一终端设备接入网络的信息、5比特的调制与编码方法的信息、调度的物理上行共享信道PUSCH的重复次数的信息、调度的PUSCH的重复类型的信息、所述第一终端设备上报能力指示信息、所述第一终端设备的类型信息、所述第一终端设备的业务类型信息、子载波间隔信息、传输块集TBS信息和TBS门限信息。
  32. 根据权利要求25-30任一项所述的装置,其特征在于,所述第一上行授权信 息包括第六字段,
    所述资源所用的子载波间隔为u1时,所述第六字段的长度是N1比特;
    所述资源所用的子载波间隔为u2时,所述第六字段的长度是N2比特,所述N1与所述N2不相等。
  33. 一种计算机可读存储介质,所述计算机可读存储介质中存储有执行指令,其特征在于,当通信装置的至少一个处理器执行所述执行指令时,所述通信装置执行权利要求1-8或9-16任一项所述的通信方法。
PCT/CN2021/105387 2020-07-31 2021-07-09 通信方法及装置 WO2022022257A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21850507.1A EP4185048A4 (en) 2020-07-31 2021-07-09 COMMUNICATION METHOD AND DEVICE
US18/158,830 US20230276437A1 (en) 2020-07-31 2023-01-24 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010762088.6 2020-07-31
CN202010762088.6A CN114071728A (zh) 2020-07-31 2020-07-31 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/158,830 Continuation US20230276437A1 (en) 2020-07-31 2023-01-24 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022022257A1 true WO2022022257A1 (zh) 2022-02-03

Family

ID=80037474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105387 WO2022022257A1 (zh) 2020-07-31 2021-07-09 通信方法及装置

Country Status (4)

Country Link
US (1) US20230276437A1 (zh)
EP (1) EP4185048A4 (zh)
CN (1) CN114071728A (zh)
WO (1) WO2022022257A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117560125A (zh) * 2022-08-02 2024-02-13 大唐移动通信设备有限公司 频域资源确定方法、指示方法、装置、终端及网络设备
CN116582231B (zh) * 2023-07-12 2023-12-22 深圳传音控股股份有限公司 处理方法、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324897A (zh) * 2018-03-28 2019-10-11 北京展讯高科通信技术有限公司 频域资源分配的指示信息发送方法及装置、接收方法及装置、存储介质、基站、用户终端
JP2019198014A (ja) * 2018-05-10 2019-11-14 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN110832931A (zh) * 2017-09-07 2020-02-21 Lg电子株式会社 在无线通信系统中分配资源的方法和使用该方法的设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740073C1 (ru) * 2017-09-07 2021-01-11 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи
KR102532301B1 (ko) * 2017-12-15 2023-05-15 삼성전자주식회사 무선 통신 시스템에서 하향링크 제어정보 설정 방법 및 장치
CN110475371B (zh) * 2018-05-09 2023-10-27 夏普株式会社 用户设备执行的方法、用户设备和基站
CN110839291B (zh) * 2018-08-19 2024-02-02 华为技术有限公司 传输下行控制信息的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832931A (zh) * 2017-09-07 2020-02-21 Lg电子株式会社 在无线通信系统中分配资源的方法和使用该方法的设备
CN110324897A (zh) * 2018-03-28 2019-10-11 北京展讯高科通信技术有限公司 频域资源分配的指示信息发送方法及装置、接收方法及装置、存储介质、基站、用户终端
JP2019198014A (ja) * 2018-05-10 2019-11-14 シャープ株式会社 端末装置、基地局装置、および、通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4185048A4
VIVO: "Remaining issues on physical UL channel design in unlicensed spectrum", 3GPP DRAFT; R1-2000308, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051852797 *

Also Published As

Publication number Publication date
EP4185048A1 (en) 2023-05-24
CN114071728A (zh) 2022-02-18
EP4185048A4 (en) 2024-01-03
US20230276437A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
TWI658709B (zh) 指示以及實現新ue能力的方法以及裝置
EP2992625B1 (en) Channel set allocation in frequency multiplexed communication in dense wireless environments
EP3637821A1 (en) Control information transmission method and apparatus
US11589384B2 (en) Data transmission method, terminal device, and network device
EP2327263B1 (en) Multi-carrier design for control and procedures comprising pairing of carriers
US20170373741A1 (en) Uplink control information transmitting method and user equipment, and uplink control information receiving method and base station
EP3711410A1 (en) Communication system
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
US20160353357A1 (en) Methods and systems for multiplexed communication in dense wireless environments
WO2020069111A1 (en) Resource selection and reservation associated with vehicle to everything sidelink
KR20200054068A (ko) 무선 통신 시스템에서 서브밴드 기반 채널 접속 방법 및 장치
TW202027525A (zh) 帶內非連續頻譜的有效寬頻操作方法及使用者設備
KR102288180B1 (ko) 데이터 전송 방법, 장치 및 통신 시스템
US20230276437A1 (en) Communication method and apparatus
CN113424618B (zh) 一种通信方法、装置及计算机可读存储介质
CN113692771A (zh) 用于在无线通信系统中确定信道接入过程的方法和装置
CN114667796A (zh) 在无线通信系统中使用一个载波中的保护频带发送和接收信道的方法及其装置
JP7339350B2 (ja) 伝送帯域幅の決定方法、デバイス、及び記憶媒体
WO2015014125A1 (zh) 接入信道的方法和设备
US20220304057A1 (en) Methods, terminal device and network node for uplink transmission
WO2021227071A1 (zh) 保护间隔的确定方法、设备及存储介质
US20240073966A1 (en) Methods and systems for improved resource unit utilization
WO2020200193A1 (zh) 一种数据传输方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021850507

Country of ref document: EP

Effective date: 20230217

NENP Non-entry into the national phase

Ref country code: DE