WO2024029808A1 - 무선 통신 시스템에서 멀티 패널 동시 전송을 위한 위상 추적 참조 신호 송신 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 멀티 패널 동시 전송을 위한 위상 추적 참조 신호 송신 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2024029808A1 WO2024029808A1 PCT/KR2023/010649 KR2023010649W WO2024029808A1 WO 2024029808 A1 WO2024029808 A1 WO 2024029808A1 KR 2023010649 W KR2023010649 W KR 2023010649W WO 2024029808 A1 WO2024029808 A1 WO 2024029808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- port
- information
- dci
- sri
- pusch
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 130
- 238000000034 method Methods 0.000 title claims abstract description 127
- 238000004891 communication Methods 0.000 title claims abstract description 89
- 238000012545 processing Methods 0.000 claims description 10
- 230000015654 memory Effects 0.000 description 53
- 239000010410 layer Substances 0.000 description 41
- 230000008569 process Effects 0.000 description 27
- 238000005516 engineering process Methods 0.000 description 22
- 230000006870 function Effects 0.000 description 17
- 230000004044 response Effects 0.000 description 16
- 230000011664 signaling Effects 0.000 description 15
- 238000012544 monitoring process Methods 0.000 description 8
- 101150006914 TRP1 gene Proteins 0.000 description 7
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 7
- 238000013473 artificial intelligence Methods 0.000 description 7
- 230000003252 repetitive effect Effects 0.000 description 7
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 6
- 238000013507 mapping Methods 0.000 description 5
- 230000008054 signal transmission Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000013468 resource allocation Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000010408 sweeping Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 description 1
- 241000295146 Gallionellaceae Species 0.000 description 1
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 description 1
- 101000687448 Homo sapiens REST corepressor 1 Proteins 0.000 description 1
- 101100274486 Mus musculus Cited2 gene Proteins 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 102100024864 REST corepressor 1 Human genes 0.000 description 1
- 101150096622 Smr2 gene Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- This specification relates to a wireless communication system. More specifically, it relates to a method and device for transmitting a Phase Tracking-Reference Signal (PT-RS) for Simultaneous Transmission across Multi-Panel (STxMP) in a wireless communication system.
- PT-RS Phase Tracking-Reference Signal
- STxMP Simultaneous Transmission across Multi-Panel
- Wireless communication systems are being widely deployed to provide various types of communication services such as voice and data.
- a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) systems, etc.
- a method performed by UE (User Equipment) in a wireless communication system includes: receiving Downlink Control Information (DCI) for simultaneous transmission across multiple panels (STxMP) from a Base Station (BS); And based on the association information of the PT (Phase Tracking)-RS (Reference Signal) port to the DM (Demodulation)-RS port included in the DCI, the first PT-RS port is transmitted to the BS on the first PT-RS port. transmitting an RS, and transmitting a second PT-RS on a second PT-RS port, wherein the first information of the association information of the PT-RS port to the DM-RS port is a first sounding reference signal (SRI).
- DCI Downlink Control Information
- STxMP Base Station
- the second information of the association information indicates a second DM-RS port associated with the second PT-RS port among DM-RS ports corresponding to at least one of the second SRI and the second precoding information.
- UE user equipment
- the user device includes: at least one transceiver; at least one processor; and at least one computer memory operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations.
- the operations include: receiving Downlink Control Information (DCI) for simultaneous transmission across multiple panels (STxMP) from a Base Station (BS); And based on the association information of the PT (Phase Tracking)-RS (Reference Signal) port to the DM (Demodulation)-RS port included in the DCI, the first PT-RS port is transmitted to the BS on the first PT-RS port.
- DCI Downlink Control Information
- STxMP Base Station
- PT Phase Tracking
- DM Demodulation
- the first information of the association information of the PT-RS port to the DM-RS port is a first sounding reference signal (SRI).
- SRI sounding reference signal
- the second information of the association information indicates a second DM-RS port associated with the second PT-RS port among DM-RS ports corresponding to at least one of the second SRI and the second precoding information. do.
- a processing device in a wireless communication system.
- the processing device may include: at least one processor; and at least one computer memory operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations for a user equipment (UE).
- the operations include: receiving Downlink Control Information (DCI) for simultaneous transmission across multiple panels (STxMP) from a Base Station (BS); And based on the association information of the PT (Phase Tracking)-RS (Reference Signal) port to the DM (Demodulation)-RS port included in the DCI, the first PT-RS port is transmitted to the BS on the first PT-RS port.
- DCI Downlink Control Information
- STxMP Base Station
- PT Phase Tracking
- RS Reference Signal
- the first information of the association information of the PT-RS port to the DM-RS port is a first sounding reference signal (SRI).
- SRI sounding reference signal
- the second information of the association information indicates a second DM-RS port associated with the second PT-RS port among DM-RS ports corresponding to at least one of the second SRI and the second precoding information. do.
- a computer-readable storage medium stores at least one computer program including instructions that, when executed by at least one processor, cause the at least one processor to perform operations for User Equipment (UE).
- the operations include: receiving Downlink Control Information (DCI) for simultaneous transmission across multiple panels (STxMP) from a Base Station (BS); And based on the association information of the PT (Phase Tracking)-RS (Reference Signal) port to the DM (Demodulation)-RS port included in the DCI, the first PT-RS port is transmitted to the BS on the first PT-RS port.
- DCI Downlink Control Information
- STxMP Base Station
- PT Phase Tracking
- DM Demodulation
- the first information of the association information of the PT-RS port to the DM-RS port is a first sounding reference signal (SRI).
- SRI sounding reference signal
- the second information of the association information indicates a second DM-RS port associated with the second PT-RS port among DM-RS ports corresponding to at least one of the second SRI and the second precoding information. do.
- a method performed by a BS (Base Station) in a wireless communication system includes: transmitting Downlink Control Information (DCI) for simultaneous transmission across multiple panels (STxMP) to a User Equipment (UE); And based on the association information of (Phase Tracking)-RS (Reference Signal) (port) to DM (Demodulation)-RS port included in the DCI, receive the first PT-RS from the UE on the first PT port, and , receiving a second PT-RS on a second PT-RS port, wherein the first information of the association information of the PT-RS port to the DM-RS port includes a first Sounding reference signal Resource Indicator (SRI) and Indicates a first DM-RS port associated with the first PT-RS port among DM-RS ports corresponding to at least one of the first precoding information, and the association information of the PT-RS port to the DM-RS port
- the second information is characterized in that it indicates a second
- a Base Station in a wireless communication system.
- the user device includes: at least one transceiver; at least one processor; and at least one computer memory operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations.
- the operations include: transmitting Downlink Control Information (DCI) for simultaneous transmission across multiple panels (STxMP) to a User Equipment (UE); And based on the association information of (Phase Tracking)-RS (Reference Signal) (port) to DM (Demodulation)-RS port included in the DCI, receive the first PT-RS from the UE on the first PT port, and , receiving a second PT-RS on a second PT-RS port, wherein the first information of the association information of the PT-RS port to the DM-RS port includes a first Sounding reference signal Resource Indicator (SRI) and Indicates a first DM-RS port associated with the first PT-RS port among DM-RS ports corresponding to at least one of the first precoding information, and the association information of the PT-RS port to the DM-RS port
- the second information is characterized in that it indicates a second DM-RS port associated with the second PT-RS port among DM-RS ports corresponding to at least one of the
- the UE may receive information from the BS that the maximum number of PT-RSs is 2.
- the first information is the first bit of the association information of the PT-RS port to the DM-RS port
- the second information is the second bit of the association information of the PT-RS port to the DM-RS port.
- the UE receives information about DM-RS ports corresponding to at least one of the first SRI and first precoding information from the BS and at least one of the second SRI and second precoding information. Receive information about DM-RS ports.
- a first DM-RS port is associated with a first PUSCH transmitted on a first panel
- a second DM-RS port is associated with a second PUSCH transmitted on a second panel, wherein the first PUSCH and the The second PUSCH is transmitted to the BS at the same time and through the same frequency resource.
- wireless signal transmission and reception can be efficiently performed in a wireless communication system.
- Figure 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using them.
- Figure 2 illustrates the structure of a radio frame.
- Figure 3 illustrates a resource grid of slots.
- Figure 4 shows an example of mapping a physical channel within a slot.
- Figure 5 illustrates the PDSCH and ACK/NACK transmission process.
- Figure 6 illustrates the PUSCH transmission process
- Figure 7 is a flowchart for transmitting PT-RS for simultaneous transmission across multiple panels (STxMP) according to the present disclosure.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA can be implemented with radio technology such as UTRA (Universal Terrestrial Radio Access) or CDMA2000.
- TDMA can be implemented with wireless technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), etc.
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA
- LTE-A Advanced
- 3GPP NR New Radio or New Radio Access Technology
- 3GPP LTE/LTE-A is an evolved version of 3GPP LTE/LTE-A.
- next-generation communications As more communication devices require larger communication capacity, the need for improved mobile broadband communication compared to existing RAT (Radio Access Technology) is emerging. Additionally, massive MTC (Machine Type Communications), which connects multiple devices and objects to provide a variety of services anytime, anywhere, is also one of the major issues to be considered in next-generation communications. Additionally, communication system design considering services/terminals sensitive to reliability and latency is being discussed. In this way, the introduction of next-generation RAT considering eMBB (enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication), etc. is being discussed, and in this disclosure, for convenience, the technology is referred to as NR (New Radio or New RAT). It is called.
- NR New Radio or New RAT
- 3GPP NR is mainly described, but the technical idea of the present disclosure is not limited thereto.
- the expression “setting” may be replaced with the expression “configure/configuration,” and the two may be used interchangeably.
- conditional expressions e.g., “if”, “in a case”, or “when”, etc.
- the operation of the terminal/base station or SW/HW configuration according to the satisfaction of the relevant conditions can be inferred/understood.
- wireless communication devices e.g., base stations, terminals
- the process on the receiving (or transmitting) side can be inferred/understood from the process on the transmitting (or receiving) side
- the description may be omitted.
- signal decision/generation/encoding/transmission on the transmitting side can be understood as signal monitoring reception/decoding/decision, etc. on the receiving side.
- the expression that the terminal performs (or does not perform) a specific operation can also be interpreted as operating with the base station expecting/assuming that the terminal performs a specific operation (or expecting/assuming that it does not perform).
- the expression that the base station performs (or does not perform) a specific operation can also be interpreted to mean that the terminal expects/assumes that the base station performs a specific operation (or expects/assumes that it does not perform) and operates.
- the division and index of each section, embodiment, example, option, method, plan, etc. are for convenience of explanation and do not mean that each necessarily constitutes an independent disclosure, or that each must be carried out only individually. It should not be construed as intended.
- a terminal receives information from a base station through downlink (DL), and the terminal transmits information to the base station through uplink (UL).
- the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist depending on the type/purpose of the information they transmit and receive.
- Figure 1 is a diagram to explain physical channels used in the 3GPP NR system and a general signal transmission method using them.
- a terminal that is turned on again from a power-off state or newly entered a cell performs an initial cell search task such as synchronizing with the base station in step S101.
- the terminal receives SSB (Synchronization Signal Block) from the base station.
- SSB includes Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), and Physical Broadcast Channel (PBCH).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- PBCH Physical Broadcast Channel
- the terminal synchronizes with the base station based on PSS/SSS and obtains information such as cell ID (cell identity). Additionally, the terminal can obtain intra-cell broadcast information based on the PBCH. Meanwhile, the terminal can check the downlink channel status by receiving a downlink reference signal (DL RS) in the initial cell search stage.
- DL RS downlink reference signal
- the terminal After completing the initial cell search, the terminal receives a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the physical downlink control channel information in step S102 to provide more detailed information.
- PDCCH physical downlink control channel
- PDSCH physical downlink shared channel
- the terminal may perform a random access procedure such as steps S103 to S106 to complete access to the base station.
- the terminal transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through the physical downlink control channel and the corresponding physical downlink shared channel. can be received (S104).
- PRACH physical random access channel
- S104 a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of the physical downlink control channel and the corresponding physical downlink shared channel (S106) ) can be performed.
- the terminal that has performed the above-described procedure then receives a physical downlink control channel/physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
- Physical uplink control channel (PUCCH) transmission (S108) can be performed.
- the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
- UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK), SR (Scheduling Request), and CSI (Channel State Information).
- CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), etc.
- UCI is generally transmitted through PUCCH, but when control information and traffic data must be transmitted simultaneously, it can be transmitted through PUSCH. Additionally, UCI can be transmitted aperiodically through PUSCH at the request/ins
- FIG. 2 illustrates the structure of a radio frame.
- uplink and downlink transmission consists of frames.
- Each radio frame is 10ms long and is divided into two 5ms half-frames (HF).
- Each half-frame is divided into five 1ms subframes (Subframe, SF).
- a subframe is divided into one or more slots, and the number of slots in a subframe depends on SCS (Subcarrier Spacing).
- Each slot contains 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols depending on the cyclic prefix (CP).
- OFDM Orthogonal Frequency Division Multiplexing
- CP cyclic prefix
- Table 1 shows the number of OFDM symbols per slot ( N slot symb ), the number of slots per frame ( N frame,u slot ), and the number of slots per subframe ( N subframe,u slot ) according to the SCS for regular CP. will be.
- Table 2 shows the number of OFDM symbols per slot according to SCS ( N slot symb ), the number of slots per frame ( N frame ,u slot ), and the number of slots per subframe ( N subframe,u slot ) when extended CP is used. ) is shown.
- the structure of the frame is only an example, and the number of subframes, number of slots, and number of symbols in the frame can be changed in various ways.
- OFDM numerology eg, SCS
- the (absolute time) interval of time resources e.g., SF, slot, or TTI
- TU Time Unit
- the symbol may include an OFDM symbol (or CP-OFDM symbol) or SC-FDMA symbol (or Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
- Figure 3 illustrates a resource grid of slots.
- a slot includes a plurality of symbols in the time domain. For example, in the case of regular CP, one slot includes 14 symbols, but in the case of extended CP, one slot includes 12 symbols.
- a carrier wave includes a plurality of subcarriers in the frequency domain.
- RB Resource Block
- a Bandwidth Part (BWP) is defined as a plurality of consecutive PRBs (Physical RBs) in the frequency domain and may correspond to one numerology (e.g., SCS, CP length, etc.).
- a carrier wave may contain up to N (e.g., 5) BWPs. Data communication is performed through an activated BWP, and only one BWP can be activated for one terminal.
- Each element in the resource grid is referred to as a Resource Element (RE), and one complex symbol can be mapped.
- RE Resource Element
- Figure 4 shows an example of mapping a physical channel within a slot.
- PDCCH may be transmitted in the DL control area, and PDSCH may be transmitted in the DL data area.
- PUCCH may be transmitted in the UL control area, and PUSCH may be transmitted in the UL data area.
- GP provides a time gap during the process of the base station and the terminal switching from transmission mode to reception mode or from reception mode to transmission mode. Some symbols at the point of transition from DL to UL within a subframe may be set to GP.
- PDCCH carries Downlink Control Information (DCI).
- DCI Downlink Control Information
- PCCCH includes transmission format and resource allocation for downlink shared channel (DL-SCH), resource allocation information for uplink shared channel (UL-SCH), paging information for paging channel (PCH), It carries system information on the DL-SCH, resource allocation information for upper layer control messages such as random access responses transmitted on the PDSCH, transmission power control commands, activation/deactivation of CS (Configured Scheduling), etc.
- DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (e.g.
- Radio Network Temporary Identifier depending on the owner or purpose of use of the PDCCH. For example, if the PDCCH is for a specific UE, the CRC is masked with the UE identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH is related to paging, the CRC is masked with P-RNTI (Paging-RNTI). If the PDCCH is about system information (e.g., System Information Block, SIB), the CRC is masked with System Information RNTI (SI-RNTI). If the PDCCH relates to a random access response, the CRC is masked with Random Access-RNTI (RA-RNTI).
- SIB System Information Block
- PDCCH consists of 1, 2, 4, 8, or 16 CCE (Control Channel Elements) depending on AL (Aggregation Level).
- CCE is a logical allocation unit used to provide PDCCH of a certain code rate according to the wireless channel status.
- CCE consists of six REGs (Resource Element Groups).
- REG is defined as one OFDM symbol and one (P)RB.
- PDCCH is transmitted through CORESET (Control Resource Set).
- CORESET is defined as a set of REGs with a given pneumonology (e.g. SCS, CP length, etc.). Multiple CORESETs for one terminal may overlap in the time/frequency domain.
- CORESET can be set through system information (eg, Master Information Block, MIB) or UE-specific upper layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of OFDM symbols (maximum 3) constituting CORESET can be set by higher layer signaling.
- MIB Master Information Block
- RRC Radio Resource Control
- the UE monitors PDCCH candidates.
- the PDCCH candidate represents the CCE(s) that the UE must monitor for PDCCH detection.
- Each PDCCH candidate is defined as 1, 2, 4, 8, or 16 CCEs depending on the AL. Monitoring includes (blind) decoding of PDCCH candidates.
- the set of PDCCH candidates monitored by the UE is defined as the PDCCH Search Space (SS).
- the search space includes a common search space (CSS) or a UE-specific search space (USS).
- the UE can obtain DCI by monitoring PDCCH candidates in one or more search spaces set by MIB or higher layer signaling.
- Each CORESET is associated with one or more search spaces, and each search space is associated with one COREST.
- the search space can be defined based on the following parameters.
- controlResourceSetId Indicates CORESET related to the search space
- - monitoringSymbolsWithinSlot Indicates the PDCCH monitoring symbols within the slot (e.g., indicates the first symbol(s) of CORESET)
- PDCCH monitoring
- One or more PDCCH (monitoring) opportunities may be configured within a slot.
- Table 3 illustrates the characteristics of each search space type.
- Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) UE Specific UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
- Table 4 illustrates DCI formats transmitted through PDCCH.
- DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
- DCI format 0_1 is used to schedule TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH.
- DCI format 1_0 is used to schedule a TB-based (or TB-level) PDSCH
- DCI format 1_1 is used to schedule a TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH. (DL grant DCI).
- DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
- DCI format 1_0/1_1 may be referred to as DL grant DCI or DL scheduling information
- DCI format 2_0 is used to deliver dynamic slot format information (e.g., dynamic SFI) to the terminal
- DCI format 2_1 is used to deliver downlink pre-emption information to the terminal.
- DCI format 2_0 and/or DCI format 2_1 can be delivered to terminals within the group through group common PDCCH, which is a PDCCH delivered to terminals defined as one group.
- DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
- DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
- the DCI size/field configuration remains the same regardless of terminal settings.
- the non-fallback DCI format the DCI size/field configuration varies depending on the terminal settings.
- PDSCH carries downlink data (e.g., DL-SCH transport block, DL-SCH TB), and modulation methods such as QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, and 256 QAM are applied. do.
- a codeword is generated by encoding TB.
- PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to resources along with DMRS (Demodulation Reference Signal), generated as an OFDM symbol signal, and transmitted through the corresponding antenna port.
- DMRS Demodulation Reference Signal
- UCI Uplink Control Information
- UCI includes:
- Hybrid Automatic Repeat reQuest-ACK Acknowledgement: A response to a downlink data packet (e.g., codeword) on the PDSCH. Indicates whether the downlink data packet has been successfully received. 1 bit of HARQ-ACK may be transmitted in response to a single codeword, and 2 bits of HARQ-ACK may be transmitted in response to two codewords.
- the HARQ-ACK response includes positive ACK (simply ACK), negative ACK (NACK), DTX or NACK/DTX.
- HARQ-ACK is used interchangeably with HARQ ACK/NACK and ACK/NACK.
- MIMO-related feedback information includes a Rank Indicator (RI) and a Precoding Matrix Indicator (PMI).
- Table 5 illustrates PUCCH formats. Depending on the PUCCH transmission length, it can be divided into Short PUCCH (formats 0, 2) and Long PUCCH (formats 1, 3, 4).
- PUCCH format 0 carries UCI of up to 2 bits in size and is mapped and transmitted based on sequence. Specifically, the terminal transmits one sequence among a plurality of sequences through PUCCH, which is PUCCH format 0, and transmits a specific UCI to the base station. The UE transmits a PUCCH with PUCCH format 0 within the PUCCH resource for SR configuration only when transmitting a positive SR.
- PUCCH format 1 carries UCI of up to 2 bits in size, and the modulation symbols are spread by an orthogonal cover code (OCC) (set differently depending on whether or not there is frequency hopping) in the time domain.
- OCC orthogonal cover code
- DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, it is transmitted after TDM (Time Division Multiplexing)).
- PUCCH format 2 carries UCI with a bit size larger than 2 bits, and the modulation symbol is transmitted using DMRS and FDM (Frequency Division Multiplexing).
- DM-RS is located at symbol indices #1, #4, #7, and #10 within a given resource block at a density of 1/3.
- the PN (Pseudo Noise) sequence is used for the DM_RS sequence.
- frequency hopping can be activated.
- PUCCH format 3 does not multiplex terminals within the same physical resource blocks, and carries UCI with a bit size larger than 2 bits.
- PUCCH resources in PUCCH format 3 do not include an orthogonal cover code. Modulation symbols are transmitted using DMRS and TDM (Time Division Multiplexing).
- PUCCH format 4 supports multiplexing of up to 4 terminals within the same physical resource blocks and carries UCI with a bit size larger than 2 bits.
- the PUCCH resource of PUCCH format 3 includes an orthogonal cover code. Modulation symbols are transmitted using DMRS and TDM (Time Division Multiplexing).
- At least one of one or two or more cells configured in the terminal may be configured for PUCCH transmission.
- At least the Primary Cell can be set as a cell for PUCCH transmission.
- At least one PUCCH cell group may be configured in the terminal based on at least one cell configured for PUCCH transmission, and each PUCCH cell group includes one or two or more cells.
- the PUCCH cell group may be briefly referred to as PUCCH group.
- PUCCH transmission can be set not only in the primary cell but also in the SCell.
- the primary cell belongs to the primary PUCCH group, and the PUCCH-SCell for which PUCCH transmission is set belongs to the secondary PUCCH group.
- PUCCH on the Primary Cell can be used, and for cells belonging to the Secondary PUCCH group, PUCCH on the PUCCH-SCell can be used.
- PUSCH carries uplink data (e.g., UL-SCH transport block, UL-SCH TB) and/or uplink control information (UCI), and uses CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on the DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) waveform.
- the terminal transmits the PUSCH by applying transform precoding.
- PUSCH can be transmitted based on the OFDM waveform or the DFT-s-OFDM waveform.
- PUSCH transmission is scheduled dynamically by UL grant within DCI, or semi-statically based on upper layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)). Can be scheduled (configured grant).
- PUSCH transmission can be performed based on codebook or non-codebook.
- FIG. 5 illustrates the ACK/NACK transmission process.
- the UE can detect the PDCCH in slot #n.
- PDCCH includes downlink scheduling information (e.g., DCI format 1_0, 1_1), and PDCCH indicates DL assignment-to-PDSCH offset (K0) and PDSCH-HARQ-ACK reporting offset (K1).
- DCI format 1_0, 1_1 may include the following information.
- K0 e.g. slot offset
- K0 indicates the start position of the PDSCH in slot #n+K0 (e.g. OFDM symbol index) and the length of the PDSCH (e.g. number of OFDM symbols)
- HARQ process ID (Identity) for data (e.g. PDSCH, TB)
- - PUCCH resource indicator Indicates the PUCCH resource to be used for UCI transmission among a plurality of PUCCH resources in the PUCCH resource set.
- the terminal receives the PDSCH from slot #(n+K0) according to the scheduling information of slot #n, and when the PDSCH is received from slot #n1 (where, n+K0 ⁇ n1), the terminal receives the PDSCH from slot #(n1+K1). ), UCI can be transmitted through PUCCH.
- UCI may include a HARQ-ACK response to PDSCH.
- the HARQ-ACK response may consist of 1-bit.
- the HARQ-ACK response may consist of 2-bits if spatial bundling is not configured, and may consist of 1-bit if spatial bundling is configured. If the HARQ-ACK transmission point for multiple PDSCHs is designated as slot #(n+K1), UCI transmitted in slot #(n+K1) includes HARQ-ACK responses for multiple PDSCHs.
- Whether the UE must perform spatial bundling for the HARQ-ACK response can be configured for each cell group (e.g., RRC/higher layer signaling).
- spatial bundling may be individually configured for each HARQ-ACK response transmitted through PUCCH and/or HARQ-ACK response transmitted through PUSCH.
- Spatial bundling can be supported when the maximum number of TBs (or codewords) that can be received at once in the corresponding serving cell (or schedulable through 1 DCI) is 2 (or more than 2) (e.g., upper layer if the parameter maxNrofCodeWordsScheduledByDCI corresponds to 2-TB). Meanwhile, more than 4 layers can be used for 2-TB transmission, and up to 4 layers can be used for 1-TB transmission. As a result, when spatial bundling is configured in the corresponding cell group, spatial bundling can be performed on serving cells in which more than four layers are schedulable among serving cells in the corresponding cell group. On the corresponding serving cell, a terminal that wishes to transmit a HARQ-ACK response through spatial bundling can generate a HARQ-ACK response by performing a (bit-wise) logical AND operation on the A/N bits for multiple TBs.
- the UE performing spatial bundling receives the 1st A/N for the 1st TB.
- a single A/N bit can be generated by performing a logical AND operation on the bit and the second A/N bit for the second TB.
- the terminal reports the ACK bit value to the base station, and if any one TB is NACK, the terminal reports the NACK bit value to the base station.
- the terminal For example, if only 1-TB is actually scheduled on a serving cell that is configured to receive 2-TB, the terminal performs a logical AND operation on the A/N bit for the 1-TB and the bit value 1 to receive a single A/TB. N bits can be generated. As a result, the terminal reports the A/N bit for the corresponding 1-TB to the base station as is.
- a plurality of parallel DL HARQ processes exist in the base station/terminal for DL transmission. Multiple parallel HARQ processes allow DL transmission to be performed continuously while waiting for HARQ feedback on successful or unsuccessful reception of the previous DL transmission.
- Each HARQ process is associated with a HARQ buffer in the MAC (Medium Access Control) layer.
- Each DL HARQ process manages state variables related to the number of transmissions of MAC PDUs (Physical Data Blocks) in the buffer, HARQ feedback for MAC PDUs in the buffer, and current redundancy version.
- Each HARQ process is distinguished by its HARQ process ID.
- Figure 6 illustrates the PUSCH transmission process.
- the UE can detect the PDCCH in slot #n.
- PDCCH includes uplink scheduling information (eg, DCI format 0_0, 0_1).
- DCI format 0_0, 0_1 may include the following information.
- Time domain resource assignment Indicates the slot offset K2, the starting position (e.g. symbol index) and length (e.g. number of OFDM symbols) of the PUSCH within the slot.
- the start symbol and length can be indicated through SLIV (Start and Length Indicator Value) or can be indicated separately.
- the terminal can transmit PUSCH in slot #(n+K2) according to the scheduling information of slot #n.
- PUSCH includes UL-SCH TB.
- Channel characteristics may include one or more of Delay spread, Doppler spread, Frequency/Doppler shift, Average received power, Received Timing/average delay, and Spatial RX parameter.
- a list of multiple TCI-State configurations can be set in the terminal through the upper layer parameter PDSCH-Config.
- Each TCI-State is associated with a QCL configuration parameter between one or two DL reference signals and the DM-RS port of the PDSCH.
- QCL may include qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS.
- QCL type may correspond to one of the following:
- the BM process is a set of BS (or transmission and reception point (TRP)) and/or UE beams that can be used for downlink (DL) and uplink (UL) transmission/reception. ), which may include the following processes and terms.
- - Beam measurement An operation in which the BS or UE measures the characteristics of the received beamforming signal.
- Tx beam transmission beam
- Rx beam reception beam
- - Beam report An operation in which the UE reports information about a beamformed signal based on beam measurement.
- the BM process can be divided into (1) a DL BM process using SSB or CSI-RS, and (2) a UL BM process using a sounding reference signal (SRS). Additionally, each BM process may include Tx beam sweeping to determine the Tx beam and Rx beam sweeping to determine the Rx beam.
- SRS sounding reference signal
- the DL BM process may include (1) transmission of beamformed DL RSs (e.g., CSI-RS or SSB) by the BS, and (2) beam reporting by the UE.
- beamformed DL RSs e.g., CSI-RS or SSB
- the beam report may include preferred DL RS ID(s) and the corresponding reference signal received power (RSRP).
- the DL RS ID may be an SSB Resource Indicator (SSBRI) or a CSI-RS Resource Indicator (CRI).
- M-TRP multi-transmission and reception point
- one of the SDM method/FDM method/TDM method can be used in more detail.
- one TB is transmitted through multiple layers, and layers belonging to different DM-RS CDM groups are transmitted using different transmission beams (Tx beams), that is, different QCL RS or different TCI states.
- Tx beams transmission beams
- This allows transmission capacity to be improved by increasing the number of layers compared to the existing S-TRP transmission method.
- some layers are transmitted to TRP 1 and the remaining layers are transmitted to TRP 2, thereby improving channel reliability due to diversity gain.
- Scheme 2a transmits one TB to multiple RBs, but transmits RBs belonging to different RB groups through different transmission beams (i.e., QCL RS or TCI state).
- Scheme 2b transmits the same TB to different RB groups, but transmits RBs belonging to different RB groups using different transmission beams (i.e., QCL RS or TCI state).
- Scheme 4 is inter-slot TDM, which repeatedly transmits the same TB in multiple slots, but transmits slots belonging to different slot groups with different transmission beams (i.e., QCL RS or TCI state).
- Scheme 4 shows that intra-slot TDM repeatedly transmits the same TB in several OFDM symbol groups, but transmits some OFDM symbol groups and the remaining OFDM symbol groups with different transmission beams (i.e., QCL RS or TCI state). This is the method of transmission.
- M-DCI-based M-TRP PDSCH transmission is a method in which each TRP schedules and transmits the PDSCH through DCI. That is, TRP 1 transmits PDSCH 1 through DCI 1 and TRP 2 transmits PDSCH 2 through DCI 2. If PDSCH 1 and PDSCH 2 overlap on the same frequency time resource, two PDSCHs are received for the same RE, thereby increasing resource efficiency and increasing transmission capacity.
- NR Release 16 introduced the CORESET pool, which is a group of several CORESETs, and TRP 1 transmits the PDCCH through the CORESET belonging to CORESET pool 0, and the PDSCH scheduled by the PDCCH is also transmitted by TRP 1.
- TRP 2 transmits PDCCH through CORESET belonging to CORESET pool 1, and TRP 2 also transmits the PDSCH scheduled by the corresponding PDCCH.
- PUSCH can also be scheduled by a specific TRP to transmit PUSCH to the UE through CORESET belonging to each CORESET pool.
- PUCCH some PUCCH resources are scheduled by TRP 1 to receive UCI, and the remaining PUCCH resources are scheduled by TRP 2 to receive UCI.
- the channels scheduled or used by each TRP are TDM each other so that no overlap occurs, so an increase in transmission capacity cannot be expected.
- the UE can transmit independent PUSCH/PUCCH for each of TRP 1 and TRP 2. .
- M-TRP PDCCH repetitive transmission In NR standard release 17, M-TRP PDCCH repetitive transmission, M-TRP PDCCH/PDSCH SFN transmission, S-DCI-based M-TRP PUSCH repetitive transmission, and single PUCCH resource-based M-TRP PUCCH repetitive transmission are supported.
- the same content i.e. DCI, UL TB or UCI
- URLLC-targeted enhancements to increase reliability.
- M-TRP PDCCH repetitive transmission it is transmitted repeatedly as TDM or FDM
- M-TRP PDCCH/PDSCH SFN is repeatedly transmitted at the same time/frequency/layer
- S-DCI-based M-TRP PUSCH repeated transmission is TDM and single PUCCH.
- Resource-based M-TRP PUCCH repeated transmission is TDM and transmitted repeatedly.
- a plurality of CORESETs with different TCI states are set to the UE for repeated M-TRP PDCCH transmission, and a plurality of SS (Search Space) sets each connected to the corresponding CORESETs are set.
- the base station instructs/configures to the UE that the SS set connected to one CORESET and the SS set connected to another CORESET are linked for repeated transmission, so that the UE can know that the PDCCH candidates of the corresponding SS set are transmitted repeatedly.
- CORESET #0 and CORESET #1 are set to the UE, CORESET #0 and CORESET #1 are linked to SS sets #0 and 1, respectively, and SS sets #0 and SS sets #1 are linked. It may be (link).
- the UE can see that the PDCCH candidate in SS set #0 and the PDCCH candidate in SS set #1 have repeatedly transmitted the same DCI, and a specific PDCCH candidate in SS set #0 and a specific PDCCH candidate in SS set #1 are transmitted through a specific rule. It can be seen that the PDCCH candidate is a pair set to repeatedly transmit the same DCI.
- These two PDCCH candidates are called linked PDCCH candidates, and the UE can successfully decode the corresponding DCI if it correctly receives either of the two PDCCH candidates.
- the UE when receiving the PDCCH candidate of SS set #0, use the QCL RS (i.e. downlink beam) of the TCI state of CORESET #0 connected to SS set #0, and when receiving the PDCCH candidate of SS set #1 By using the QCL RS (i.e. downlink beam) of the TCI state of CORESET #1 connected to SS set #1, the linked PDCCH candidates are received on different beams.
- QCL RS i.e. downlink beam
- multiple TRPs can repeatedly transmit the same DCI through the same time/frequency/DM-RS port, which can be referred to as SFN PDCCH transmission.
- the base station sets multiple TCI states in one CORESET instead of setting multiple CORESETs with different TCI states.
- the UE receives a PDCCH candidate through the SS set connected to one CORESET, it attempts to estimate the channel of the PDCCH DM-RS and decode it using all of the plurality of TCI states.
- the two TRPs When repeatedly transmitting the M-TRP PDSCH, the two TRPs repeatedly transmit the corresponding channel on different resources.
- the resources used by the two TRPs are the same, that is, when the same channel is repeatedly transmitted through the same frequency, time, and layer (or DM-RS port), the reliability of the channel can be improved.
- the resources of the same channel that are repeatedly transmitted are not differentiated and are received together over the air, so they are recognized as one channel from the receiving end.
- two downlink TCI states for PDSCH DM-RS reception can be set for PDSCH SFN transmission.
- the base station sets two SRS sets to the UE for S-DCI-based M-TRP PUSCH transmission, and each SRS set indicates an uplink transmission port and uplink beam/QCL information toward TRP #1 and TRP #2, respectively. It is used for purposes.
- the base station performs SRS resource indication for each SRS set through two SRI fields in one DCI, and can indicate up to two power control (PC) parameter sets.
- the first SRI field may indicate the SRS resource and PC parameter set defined in set
- the second SRI field may indicate the SRS resource and PC parameter set defined in set 1.
- the UE receives instructions for the uplink transmission port, PC parameter set, and uplink beam/QCL information toward TRP #1 through the first SRI field, and through this, performs PUSCH transmission in the TO corresponding to SRS set #0. Likewise, the UE receives instructions for the uplink transmission port, PC parameter set, and uplink beam/QCL information toward TRP #2 through the second SRI field, and through this, performs PUSCH transmission in the TO corresponding to SRS set #1.
- the base station activates/configures two spatial relation info on a single PUCCH resource to the UE, and the UE sends each UL UCI when UL UCI is transmitted through the corresponding PUCCH resource.
- Spatial relation info is used to indicate spatial relation info towards TRP #1 and TRP #2, respectively.
- the UE is instructed to transmit beam/PC parameters toward TRP #1 and uses this information to perform PUCCH transmission in the TO corresponding to TRP #1.
- the UE is instructed to transmit beam/PC parameters toward TRP #2, and uses this information to perform PUCCH transmission in the TO corresponding to TRP #2.
- a PUCCH resource with two spatial relation info set is called an M-TRP PUCCH resource
- a PUCCH resource with one spatial relation info set is called an S-TRP PUCCH resource.
- a specific TCI state (or TCI) is used or mapped when receiving data/DCI/UCI for a certain frequency/time/space resource.
- the frequency/time/space resource is used by the corresponding downlink TCI state. This may mean that a channel is estimated from the DM-RS using the indicated QCL type and QCL RS, and data/DCI is received/demodulated through the estimated channel.
- this may mean transmitting/modulating DM-RS and data/UCI using the transmission beam and/or transmission power indicated by the corresponding uplink TCI state in the frequency/time/space resources.
- the uplink TCI state contains the UE's transmission beam or transmission power information, and may be set to the UE through other parameters such as spatial relation info instead of the TCI state.
- the uplink TCI state may be indicated directly to the DCI delivering the uplink grant, or may mean spatial relation info of the SRS resource indicated through the SRI field of the UL grant DCI. Alternatively, it may mean an open-loop transmission power control parameter connected to the value indicated through the SRI field of the UL grant DCI. Alternatively, uplink TCI can be indicated using DL grant DCI.
- the proposed method was applied assuming cooperative transmission/reception between two TRPs, but it can be expanded and applied in an environment with three or more TRPs, and can also be applied in a multi-panel environment.
- Different TRPs may be recognized by the UE as different TCI states, and the fact that the UE transmits and receives data/DCI/UCI using TCI state 1 means that it transmits and receives data/DCI/UCI with TRP 1.
- TO refers to each channel transmitted at different times when multiple channels are TDM, and when FDM is used, it refers to each channel transmitted at different frequencies/RBs, and when SDM is used, it refers to each channel transmitted at different times/beams.
- )/DM-RS refers to each channel transmitted to the port.
- One TCI state is mapped to each TO.
- a complete DCI/data/UCI is transmitted to one TO, and the receiving end receives multiple TOs to increase the reception success rate.
- NR standard release 18 a method for the UE to transmit multiple channels/reference signals of the same type simultaneously or a method to transmit multiple channels/reference signals of different types simultaneously is discussed.
- the operation of transmitting multiple channels/reference signals at one time is limited. For example, it is possible to simultaneously transmit multiple SRS resources of different SRS sets for uplink beam measurement, but it is impossible to simultaneously transmit multiple PUSCHs.
- STxMP UEs For example, two PUSCHs corresponding to two uplink TBs are scheduled on the same RE, and spatial relation RS 1 and PC (power control) parameter set 1 (i.e., uplink TCI state) are used for transmission of PUSCH 1 and PUSCH 2, respectively. 1) and set spatial relation RS 2 and PC parameter set 2 (i.e., uplink TCI state 2).
- the UE transmits PUSCH 1 using panel 1 corresponding to uplink TCI state 1, and simultaneously transmits PUSCH 2 using panel 2 corresponding to uplink TCI state 2.
- the base station When the base station schedules the PUSCH through DCI, it can indicate whether to transmit the PUSCH as STxMP, as a single panel, or as repeatedly transmitting the M-TRP PUSCH.
- STxMP the existing SRS resource set indicator field can be redefined and used, or a new DCI field can be introduced.
- the rank to be transmitted by each panel is indicated through DCI (for example, RI1 is indicated for panel 1 and RI2 is indicated for panel 2), and the rank sum of the two panels is (RI1+RI2) determines the rank of PUSCH. For example, if panel 1 of the UE is indicated with RI1 and panel 2 is indicated with RI2, the rank of the PUSCH is determined as RI1+RI2 as the rank sum of the two panels.
- (RI1+RI2) corresponding DM-RS ports are indicated through the DM-RS port indicator field in the DCI.
- the 2-bit SRS resource set indicator is set to 10 or 11, and SDM STxMP PUSCH can be enabled through a separate indicator or SDM STxMP PUSCH can be enabled under specific conditions.
- the base station when transmitting SDM STxMP PUSCH, two PT-RSs are transmitted from each of the two panels. That is, the base station associates PT-RS and DM-RS ports by indicating one of the DM-RS ports transmitted from panel 1, and DM-RS ports are associated by indicating one of the DM-RS ports transmitted from panel 2. Associate RS port.
- This disclosure proposes a method for associating PT-RS and DM-RS for each panel.
- This method of linking DM-RS to PT-RS ports for each panel was previously supported. Specifically, the indicated DM-RS ports are divided into two groups and one PT-RS and one DM-RS port are associated with each group.
- each group may refer to a DM-RS port transmitted by each panel.
- one PUSCH transmission occasion is scheduled through a single CB (Codebook Based) SRS resource set/single NCB (Non Codebook Based) SRS resource set/single TPMI field/single SRI field.
- the M-TRP PUSCH transmission method uses each PUSCH transmission opportunity. is scheduled through a single CB SRS resource set/single NCB SRS resource set/single TPMI field/single SRI field.
- SDM STxMP PUSCH For SDM STxMP PUSCH, if one PUSCH transmission opportunity is scheduled through multiple CB SRS resource sets/multiple NCB SRS resource sets/multiple TPMI fields/multiple SRI fields, the existing DM-RS to PT-RS port association method is not valid. not.
- the DM-RS port corresponding to precoder 1 and the DM-RS port corresponding to precoder 2 cannot be grouped using the existing method.
- the existing grouping determines the layer transmitted using PUSCH antenna ports 1000 and 1002 as one group and the layer transmitted using PUSCH antenna port 1001 and 1003 as another group, corresponding to precoder 1 and precoder 2. You cannot group layers in this way.
- each element of 2-port SRS resource 1 or precoder 1 is mapped to the PUSCH antenna ports 1000 and 1002, and 2-port SRS resource 2 (or each element of precoder 2) is mapped to the PUSCH antenna. An additional assumption is required that they map to ports 1001 and 1003.
- SRS resource 1 to SRS resource 4 are set, and panel 1 is set using four TPMI fields.
- precoder1 [1 1] T
- 2-port SRS resource 1 (or each element of precoder 1) is mapped to PUSCH antenna ports 1000 and 1004, and 2-port SRS resource 2 (or each element of precoder 2) is mapped to PUSCH antenna ports 1001 and 1005, 2-port SRS resource 3 (or each element of precoder 3) is mapped to PUSCH antenna ports 1002 and 1006, and 2-port SRS resource 4 ( Or each element of precoder 4) requires an additional assumption that the PUSCH antenna ports 1003 and 1007.
- the layers transmitted using PUSCH antenna ports 1000 and 1004 are grouped into one group
- the layers transmitted using PUSCH antenna ports 1001 and 1005 are grouped into another group
- the layers transmitted using PUSCH antenna ports 1002 and 1006 are grouped into one group.
- One group must be determined, and the layer transmitted using PUSCH antenna ports 1003 and 1007 must be determined as another group.
- the PT-RS field size must be increased to associate the four PT-RS ports with the DM-RS for each panel.
- the first field of the field is used for the PT-RS to DM-RS association of panel 1
- the second field is used for the PT-RS to DM-RS association of panel 1.
- the third field is used for the PT-RS to DM-RS association in panel 2
- the third field is used for the PT-RS to DM-RS association in panel 3
- the fourth field is used for the PT-RS to DM-RS association in panel 4. It is used for.
- PT-RS port 1 selects one DM-RS port from group 1 and group 2 using a 2-bit indicator and associate it with PT-RS port 0, and use another 2-bit indicator.
- PT-RS port 1 can be associated by selecting one DM-RS port from another group (e.g., group 2) using another 1-bit indicator.
- SRS Resource 1 and SRS Resource 2 are set as two 4-port SRS resources from two SRS resource sets through two SRI fields, and for panel 1 using two TPMI fields.
- the DM-RS port corresponding to precoder 1 and the DM-RS port corresponding to precoder 2 cannot be grouped using the existing method.
- the existing grouping determines the layers transmitted using PUSCH antenna ports 1000 and 1002 as one group and the layers transmitted using PUSCH antenna ports 1001 and 1003 as another group, corresponding to precoder 1 and precoder 2.
- 4-port SRS resource 1 (or each element of precoder 1) is mapped to PUSCH antenna ports 1000, 1002, 1004, and 1006, and 4-port SRS resource 2 (or each element of precoder 2) is mapped to PUSCH antenna ports 1000, 1002, 1004, and 1006. element) is mapped to PUSCH antenna ports 1001, 1003, 1005, and 1007.
- the layers transmitted using PUSCH antenna ports 1000, 1002, 1004, and 1006 must be determined as one group, and the layers transmitted using PUSCH antenna ports 1001, 1003, 1005, and 1007 must be determined as another group. do.
- SRS resources can be selected from SRS resource set 0 and SRS resource set 1 through two SRI fields, respectively.
- the DM-RS ports corresponding to the SRS resources selected from SRS resource set 0 i.e., DM-RS ports created by applying the same precoding as the precoding already applied to each SRS resource
- the DM-RS ports corresponding to the SRS resources selected in SRS resource set 1 are the DM-RS ports of panel 2.
- n1 SRS resources are selected from SRS resource set 0
- the DM-RS ports corresponding to these SRS resources are DM-RS ports indicated by the DM-RS port indicator (e.g., n1+n2 DM-RS ports), it may be n1 lower index DM-RS ports, and if n2 SRS resources are selected from SRS resource set 1, the DM-RS ports corresponding to these SRS resources are indicated by the DM-RS port indicator. It may be the remaining n2 DM-RS ports among the DM-RS ports indicated.
- the DM-RS port indicator e.g., n1+n2 DM-RS ports
- each field can indicate the DM-RS port used by each panel.
- the indicated DM-RS ports can be divided into the DM-RS port of panel 1 and the DM-RS port of panel 2 using a specific rule.
- DM-RS ports belonging to the first CDM group are defined as DM-RS ports corresponding to panel 1
- DM-RS ports belonging to the second CDM group are defined as DM-RS ports corresponding to panel 1.
- DM-RS port corresponding to panel 2 is defined as the DM-RS port corresponding to panel 2.
- RI1 DM-RS port indicated first is defined as the DM-RS port corresponding to panel 1, and the remaining DM-RS ports are defined as panel 2. It is defined as the corresponding DM-RS port.
- two PT-RSs can be associated with each DM-RS port using a 2-bit PT-RS to DM-RS association field according to the proposed method below. there is.
- PT-RS port 0 is associated with one DM-RS port transmitted by panel 1.
- PT-RS port 1 is associated with one of the two DM-RS ports on which panel 2 transmits, via the PT-RS to DM-RS association field in the DCI (using only 1 bit MSB or 1 bit LSB of the 2-bit size fields). It is instructed.
- PT-RS port 1 is associated with one DM-RS port transmitted by panel 2.
- PT-RS port 0 is associated with one of the two DM-RS ports on which panel 1 transmits and is associated with it via the PT-RS to DM-RS association field in the DCI (using only 1 bit MSB or 1 bit LSB of the 2-bit size fields). It is instructed.
- PT-RS port 0 is associated with one of the two DM-RS ports transmitted by panel 1, and the PT-RS to DM-RS association field in DCI (among the 2-bit size fields) It is indicated via 1 bit MSB or 1 bit LSB only).
- PT-RS port 1 is associated with one of the two DM-RS ports transmitted by panel 2 and is associated with the PT-RS to DM-RS association field in the DCI (using only 1 bit MSB or 1 bit LSB of the 2-bit size field). It is instructed.
- PT-RS port 0 is associated with one DM-RS port transmitted by panel 1.
- PT-RS port 1 is associated with one of the three DM-RS ports transmitted by panel 2 and is indicated through the PT-RS to DM-RS association field (all 2 bits used) in the DCI.
- PT-RS port 1 is associated with one DM-RS port transmitted by panel 2.
- PT-RS port 0 is associated with one of the three DM-RS ports transmitted by panel 1 and is indicated through the PT-RS to DM-RS association field (all 2 bits used) in the DCI.
- the 2-bit PT-RS to DM-RS association field is interpreted differently depending on the (RI1, RI2) combination. That is, in the case of (1,2), (2,1), (2,2), 1 bit is used to indicate DM-RS association for each PT-RS, but (1,3), (3, In case 1), all 2 bits are used to indicate PT-RS for the panel transmitting 3 layers.
- the number of PT-RSs is set to 1. For example, if the SRS resource set indicator is set to 00 or 01, it is possible to fallback to single panel transmission rather than STxMP transmission. In this case, the number of PT-RS is set to 1, and the indicated DM-RS ports One of the PT-RSs is associated through the PT-RS to DM-RS association field.
- the present invention is applied when the repetition number is 1, and when the repetition number is 2 or more, the 3GPP NR standard PT-RS to DM-RS association can be indicated in Release 17 fashion.
- STxMP which performs PUSCH transmission using two panels in one transmission opportunity (TO), and TDM repeated transmission, where the same TB is transmitted across multiple TOs
- a new indicator is defined, and if the indicator is 1, Repeated transmission is performed by mapping two SRS resource sets to a single TO and repeatedly applying them to multiple TOs to transmit PUSCH. If the indicator is 0, only one SRS resource set is mapped to one TO (i.e., 3GPP NR Standard Release 17 It is also possible to apply the M-TRP PUSCH transmission method.
- 4 SRI/TPMI can be indicated with the goal of 4 TRP, and 2 pairs can be indicated by pairing 2 of them, and the pairs can be applied alternately to each TO. .
- the base station dynamically instructs the UE to use one of SDM STxMP and the remaining STxMP techniques (i.e., SFN STxMP, FDM STxMP), or the base station dynamically instructs the UE to use one of SDM STxMP and existing M-TRP repeated transmission.
- SDM STxMP requires the PUSCH rank to be set to 2 or higher
- SDM STxMP can be distinguished from the remaining STxMP techniques depending on whether the rank is 2 or higher.
- the remaining STxMP techniques must be transmitted only at rank 1.
- PT-RS ports When the maximum number of PT-RSs is set to 2 (or 2 or more) through RRC signaling, 2 (or 2 or more) PT-RS ports are used in SDM STxMP, but 1 PT-RS port (or 2 or more) is used in SFN STxMP. That is, only PT-RS port 0) is used. In other words, it is proposed that the number of PT-RS ports actually used is determined according to the STxMP technique. In SFN STxMP, multiple panels transmit the same DM-RS port. Therefore, no matter which DM-RS port the PT-RS port is associated with, the PT-RS port is associated with both panels. Therefore, separate PT-RS ports cannot be set for each panel, and as a result, one PT-RS port is sufficient.
- the maximum number of PT-RSs is set to 2 for a UE whose SDM STxMP transmission mode is enabled by RRC signaling, when PUSCH is transmitted using a single panel or a single SRS resource set, the number of PT-RSs is set to 1.
- the UE ignores that the maximum number of PT-RS is set to 2. And assuming the maximum number of PT-RSs is 1 (i.e., assuming the number of PT-RS ports is 1), the PT-RS to DM-RS association field of the uplink scheduling DCI is interpreted. In other words, the UE ignores that the maximum number of PT-RS is set to 2 and interprets the PT-RS to DM-RS association field using Tables 6 to 8 below. This is because if CSR is a codebook of fullyAndPartialAndNonCoherent, phase tracking is possible with one PT-RS because the coherence of all PUSCH antenna ports is correct.
- CSR codebook subset restriction
- the codebook corresponding to the SRS resource set refers to the codebook used by the TPMI field connected to SRS resource set 0 (e.g., the first TPMI field) and the TPMI field connected to SRS resource set 1 (e.g., the second TPMI field). can do.
- the UE ignores that the maximum number of PT-RS is set to 2, Assume the maximum number of PT-RS is 1 (i.e., assume the number of PT-RS ports is 1) and interpret the PT-RS to DM-RS association field of the uplink scheduling DCI. In other words, the UE ignores that the maximum number of PT-RS is set to 2 and interprets the PT-RS to DM-RS association field using Tables 6 to 8. This is because coherence between SRS antenna ports is guaranteed for the SRS resources of the SRS resource set indicated by the SRS resource set indicator, so phase tracking is possible with one PT-RS.
- the UE ignores that the maximum number of PT-RSs is set to 2, and assumes the maximum number of PT-RSs is 1 or the number of PT-RS ports is 1, and uplink scheduling DCI's PT-RS vs. DM- Interpret RS association fields. That is, the UE ignores that the maximum number of PT-RS is set to 2 and interprets the PT-RS to DM-RS association field using Table 7.3.1.1.2-25. In the same sense, the UE assumes that all indicated PUSCH DM-RS ports share PT-RS port 0.
- the UE ignores the maximum number of PT-RSs set by RRC signaling and assumes the maximum number of PT-RSs is 2 or sets the number of PT-RSs. Assuming 2, the PT-RS to DM-RS association field of the uplink scheduling DCI is interpreted. Specifically, the UE performs the following operations for NCB PUSCH and CB PUSCH, respectively.
- the number of PT-RSs is assumed to be 2, and the SRS resources of SRS resource set 0 indicated by the first SRI field and the DM-RS ports corresponding to those SRS resources use PT-RS port 0. Assuming sharing, it is assumed that the SRS resources of SRS resource set 0 indicated by the second SRI field and the DM-RS ports corresponding to the SRS resources share PT-RS port 1.
- the number of PT-RSs is 2 and generate by applying the PMI indicated by the first TPMI field to the SRS resource of SRS resource set 0 indicated by the first SRI field and the antenna port of the SRS resource. Assuming that one DM-RS port shares PT-RS port 0, it is generated by applying the PMI indicated by the second TPMI field to the SRS resource of SRS resource set 1 indicated by the second SRI field and the antenna port of the SRS resource. Assume that one DM-RS port shares PT-RS port 1.
- the UE can transmit the maximum PT set by RRC.
- RRC Radio Resource Control
- Figure 7 is a flowchart for transmitting PT-RS for simultaneous transmission across multiple panels (STxMP) according to the present disclosure.
- the UE is a UE that performs STxMP by receiving information in advance from the BS that the maximum number of PT-RSs is 2.
- the UE receives DCI for STxMP from the BS.
- the 2-bit SRS resource set indicator included in the DCI is set to 10 or 11, and SDM STxMP PUSCH is enabled through a separate indicator or SDM STxMP PUSCH is enabled under specific conditions. It can be enabled.
- the UE checks the association information between the PT-RS port and the DM-RS port included in the DCI.
- the first information of the PT-RS port to DM-RS port association information is associated with the first PT-RS port among DM-RS ports corresponding to at least one of first SRI and first precoding information.
- the second information of the PT-RS port to DM-RS port association information is one of the DM-RS ports corresponding to at least one of a second SRI and second precoding information. Confirm that the second DM-RS port associated with the second PT-RS port is indicated.
- the first information is the first bit of the association information of the PT-RS port to the DM-RS port
- the second information is the second bit of the association information of the PT-RS port to the DM-RS port.
- the UE receives from the BS information about DM-RS ports corresponding to at least one of the first SRI and first precoding information and at least one of the second SRI and second precoding information.
- Information about the corresponding DM-RS ports is received in advance through RRC signaling, etc.
- step A15 the UE transmits the first PT-RS to the BS on the first PT-RS port and the second PT-RS on the second PT-RS port.
- the UE transmits to the BS a first PUSCH based on the first DM-RS associated with the first PT-RS, and transmits a second PUSCH based on the second DM-RS associated with the second PT-RS.
- a first DM-RS port is associated with a first PUSCH transmitted on a first panel
- a second DM-RS port is associated with a second PUSCH transmitted on a second panel, wherein the first PUSCH and the second PUSCH PUSCH is transmitted to the BS at the same time and through the same frequency resource.
- the number of PT-RS refers to the number of PT-RS ports.
- a plurality of panels may correspond to a plurality of SRS resource sets configured for CB/NCB use in the case of PUSCH, or may correspond to SRS resources indicated by a plurality of SRI fields.
- panel 1 and panel 2 may correspond to SRS resource set 0 and SRS resource set 1, respectively.
- panel 1 and panel 2 may correspond to the SRS resource indicated by the first SRI field and the SRS resource indicated by the second SRI field.
- a plurality of panels may correspond to a PMI indicated by a plurality of TPMI fields. there is.
- panel 1 may correspond to the PMI indicated by the first TPMI field
- panel 2 may correspond to the PMI indicated by the second TPMI field.
- PUCCH may correspond to multiple spatial relation info set in PUCCH resources.
- panel 1 may correspond to spatial relation info 0, and panel 2 may correspond to spatial relation info 1.
- a panel ID could be introduced into the standard for direct indication of the panel.
- a plurality of panels may correspond to a plurality of uplink TCI states indicated using a unified TCI framework.
- the panel can be defined as an antenna port group with coherency.
- PUSCH antenna ports 1000, 1002 can be defined as panel 1
- (1001, 1003) can be defined as panel 2.
- PUSCH antenna ports (1000, 1002, 1004, 1006) can be defined as panel 1
- (1001, 1003, 1005, 1007) can be defined as panel 2.
- a PT-RS port index can be set for each SRS resource, and SRS resources with the same PT-RS port index can be assumed to be transmitted on the same panel.
- the above proposal assumed two STxMP panels, two uplink TCI states, and two spatial relation info/RS and PC (Power Control) sets set for UL M-TRP transmission, but these were N1, N2, Each can be expanded and applied to N3.
- the factors used in the proposal can be indicated by the base station to the UE through DCI/MAC-CE/RRC signaling or reported by the UE to the base station.
- Figure 8 illustrates a communication system 1 to which the present disclosure is applicable.
- the communication system 1 includes a wireless device, a base station, and a network.
- a wireless device refers to a device that performs communication using wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device.
- wireless devices include robots (100a), vehicles (100b-1, 100b-2), XR (eXtended Reality) devices (100c), hand-held devices (100d), and home appliances (100e). ), IoT (Internet of Thing) device (100f), and AI device/server (400).
- vehicles may include vehicles equipped with wireless communication functions, autonomous vehicles, vehicles capable of inter-vehicle communication, etc.
- the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
- UAV Unmanned Aerial Vehicle
- XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, HMD (Head-Mounted Device), HUD (Head-Up Display) installed in vehicles, televisions, smartphones, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
- Portable devices may include smartphones, smart pads, wearable devices (e.g., smartwatches, smart glasses), and computers (e.g., laptops, etc.).
- Home appliances may include TVs, refrigerators, washing machines, etc.
- IoT devices may include sensors, smart meters, etc.
- a base station and network may also be implemented as wireless devices, and a specific wireless device 200a may operate as a base station/network node for other wireless devices.
- Wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
- AI Artificial Intelligence
- the network 300 may be configured using a 3G network, 4G (eg, LTE) network, or 5G (eg, NR) network.
- Wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g., sidelink communication) without going through the base station/network.
- vehicles 100b-1 and 100b-2 may communicate directly (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication).
- an IoT device eg, sensor
- another IoT device eg, sensor
- another wireless device 100a to 100f
- Wireless communication/connection may be established between the wireless devices (100a to 100f)/base station (200) and the base station (200)/base station (200).
- wireless communication/connection includes uplink/downlink communication (150a), sidelink communication (150b) (or D2D communication), and inter-base station communication (150c) (e.g., relay, integrated access backhaul (IAB), etc.
- IAB integrated access backhaul
- This can be achieved through various wireless access technologies (e.g., 5G NR).
- wireless communication/connection 150a, 150b, 150c
- a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to each other.
- wireless communication/connection 150a, 150b, 150c may transmit/receive signals through various physical channels.
- transmission/reception of wireless signals At least some of various configuration information setting processes for reception, various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation processes, etc. may be performed.
- FIG 9 illustrates a wireless device to which the present disclosure can be applied.
- the first wireless device 100 and the second wireless device 200 can transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
- ⁇ first wireless device 100, second wireless device 200 ⁇ refers to ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) in FIG. ⁇ can be responded to.
- the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may additionally include one or more transceivers 106 and/or one or more antennas 108.
- Processor 102 controls memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
- the processor 102 may process information in the memory 104 to generate first information/signal and then transmit a wireless signal including the first information/signal through the transceiver 106.
- the processor 102 may receive a wireless signal including the second information/signal through the transceiver 106 and then store information obtained from signal processing of the second information/signal in the memory 104.
- the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may perform some or all of the processes controlled by processor 102 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
- the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
- Transceiver 106 may be coupled to processor 102 and may transmit and/or receive wireless signals via one or more antennas 108. Transceiver 106 may include a transmitter and/or receiver. The transceiver 106 can be used interchangeably with an RF (Radio Frequency) unit.
- a wireless device may mean a communication modem/circuit/chip.
- the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
- Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
- the processor 202 may process the information in the memory 204 to generate third information/signal and then transmit a wireless signal including the third information/signal through the transceiver 206.
- the processor 202 may receive a wireless signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
- the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, memory 204 may perform some or all of the processes controlled by processor 202 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
- the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
- Transceiver 206 may be coupled to processor 202 and may transmit and/or receive wireless signals via one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. Transceiver 206 may be used interchangeably with an RF unit.
- a wireless device may mean a communication modem/circuit/chip.
- one or more protocol layers may be implemented by one or more processors 102, 202.
- one or more processors 102, 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
- One or more processors 102, 202 may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed herein. can be created.
- PDUs Protocol Data Units
- SDUs Service Data Units
- One or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
- One or more processors 102, 202 generate signals (e.g., baseband signals) containing PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , can be provided to one or more transceivers (106, 206).
- One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
- PDU, SDU, message, control information, data or information can be obtained.
- One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
- One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc.
- Firmware or software configured to perform the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be included in one or more processors (102, 202) or stored in one or more memories (104, 204). It may be driven by the above processors 102 and 202.
- the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
- One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
- One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
- One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
- One or more transceivers 106, 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of this document to one or more other devices.
- One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein, etc. from one or more other devices. there is.
- one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
- one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may be connected to the description and functions disclosed in this document through one or more antennas (108, 208). , may be set to transmit and receive user data, control information, wireless signals/channels, etc.
- one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports).
- One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal.
- One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals.
- one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
- FIG. 10 shows another example of a wireless device to which the present disclosure is applied.
- Wireless devices can be implemented in various forms depending on usage-examples/services (see FIG. 8).
- wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 9 and include various elements, components, units/units, and/or modules. ) can be composed of.
- the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
- the communication unit may include communication circuitry 112 and transceiver(s) 114.
- communication circuitry 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 9 .
- transceiver(s) 114 may include one or more transceivers 106, 206 and/or one or more antennas 108, 208 of FIG. 9.
- the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls overall operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (e.g., another communication device) through the communication unit 110 through a wireless/wired interface, or to the outside (e.g., to another communication device) through the communication unit 110. Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
- the outside e.g., another communication device
- Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
- the additional element 140 may be configured in various ways depending on the type of wireless device.
- the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
- wireless devices include robots (FIG. 8, 100a), vehicles (FIG. 8, 100b-1, 100b-2), XR devices (FIG. 8, 100c), portable devices (FIG. 8, 100d), and home appliances. (FIG. 8, 100e), IoT device (FIG.
- digital broadcasting terminal digital broadcasting terminal
- hologram device public safety device
- MTC device medical device
- fintech device or financial device
- security device climate/environment device
- It can be implemented in the form of an AI server/device (FIG. 8, 400), a base station (FIG. 8, 200), a network node, etc.
- Wireless devices can be mobile or used in fixed locations depending on the usage/service.
- various elements, components, units/parts, and/or modules within the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a portion may be wirelessly connected through the communication unit 110.
- the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (e.g., 130 and 140) are connected through the communication unit 110.
- the control unit 120 and the first unit e.g., 130 and 140
- each element, component, unit/part, and/or module within the wireless devices 100 and 200 may further include one or more elements.
- the control unit 120 may be comprised of one or more processor sets.
- control unit 120 may be comprised of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, and a memory control processor.
- memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
- a vehicle or autonomous vehicle can be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc.
- AV manned/unmanned aerial vehicle
- One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
- One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
- One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
- One or more transceivers 106, 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of this document to one or more other devices.
- One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein, etc. from one or more other devices. there is.
- one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
- one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may be connected to the description and functions disclosed in this document through one or more antennas (108, 208). , may be set to transmit and receive user data, control information, wireless signals/channels, etc.
- one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports).
- One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal.
- One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals.
- one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
- FIG. 10 shows another example of a wireless device to which the present disclosure is applied.
- Wireless devices can be implemented in various forms depending on usage-examples/services (see FIG. 8).
- wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 9 and include various elements, components, units/units, and/or modules. ) can be composed of.
- the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
- the communication unit may include communication circuitry 112 and transceiver(s) 114.
- communication circuitry 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 9 .
- transceiver(s) 114 may include one or more transceivers 106, 206 and/or one or more antennas 108, 208 of FIG. 9.
- the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls overall operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (e.g., another communication device) through the communication unit 110 through a wireless/wired interface, or to the outside (e.g., to another communication device) through the communication unit 110. Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
- the outside e.g., another communication device
- Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
- the additional element 140 may be configured in various ways depending on the type of wireless device.
- the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
- wireless devices include robots (FIG. 8, 100a), vehicles (FIG. 8, 100b-1, 100b-2), XR devices (FIG. 8, 100c), portable devices (FIG. 8, 100d), and home appliances. (FIG. 8, 100e), IoT device (FIG.
- digital broadcasting terminal digital broadcasting terminal
- hologram device public safety device
- MTC device medical device
- fintech device or financial device
- security device climate/environment device
- It can be implemented in the form of an AI server/device (FIG. 8, 400), a base station (FIG. 8, 200), a network node, etc.
- Wireless devices can be mobile or used in fixed locations depending on the usage/service.
- various elements, components, units/parts, and/or modules within the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a portion may be wirelessly connected through the communication unit 110.
- the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (e.g., 130 and 140) are connected through the communication unit 110.
- the control unit 120 and the first unit e.g., 130 and 140
- each element, component, unit/part, and/or module within the wireless devices 100 and 200 may further include one or more elements.
- the control unit 120 may be comprised of one or more processor sets.
- control unit 120 may be comprised of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, and a memory control processor.
- memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
- a vehicle or autonomous vehicle can be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc.
- AV manned/unmanned aerial vehicle
- the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a drive unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a portion 140d.
- the antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130/140a to 140d respectively correspond to blocks 110/130/140 in FIG. 10.
- the communication unit 110 may transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g., base stations, road side units, etc.), and servers.
- the control unit 120 may control elements of the vehicle or autonomous vehicle 100 to perform various operations.
- the control unit 120 may include an Electronic Control Unit (ECU).
- the driving unit 140a can drive the vehicle or autonomous vehicle 100 on the ground.
- the driving unit 140a may include an engine, motor, power train, wheels, brakes, steering device, etc.
- the power supply unit 140b supplies power to the vehicle or autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, etc.
- the sensor unit 140c can obtain vehicle status, surrounding environment information, user information, etc.
- the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward sensor. / May include a reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc.
- the autonomous driving unit 140d provides technology for maintaining the driving lane, technology for automatically adjusting speed such as adaptive cruise control, technology for automatically driving along a set route, and technology for automatically setting and driving when a destination is set. Technology, etc. can be implemented.
- the communication unit 110 may receive map data, traffic information data, etc. from an external server.
- the autonomous driving unit 140d can create an autonomous driving route and driving plan based on the acquired data.
- the control unit 120 may control the driving unit 140a so that the vehicle or autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (e.g., speed/direction control).
- the communication unit 110 may acquire the latest traffic information data from an external server irregularly/periodically and obtain surrounding traffic information data from surrounding vehicles.
- the sensor unit 140c can obtain vehicle status and surrounding environment information.
- the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information.
- the communication unit 110 may transmit information about vehicle location, autonomous driving route, driving plan, etc. to an external server.
- An external server can predict traffic information data in advance using AI technology, etc., based on information collected from vehicles or self-driving vehicles, and provide the predicted traffic information data to the vehicles or self-driving vehicles.
- the present invention can be used in terminals, base stations, or other equipment in a wireless mobile communication system.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 개시는 무선 통신 시스템에서 UE (User Equipment)가 수행하는 방법에 관한 것이다. 구체적으로, 상기 방법은 BS (Base Station)로부터 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 수신하는 단계; 및 상기 DCI에 포함된 PT (Phase Tracking)-RS (Reference Signal) 포트 (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신하는 단계를 포함하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 한다.
Description
본 명세는 무선 통신 시스템에 관한 것이다. 보다 상세하게는, 무선 통신 시스템에서 멀티 패널 동시 전송 (Simultaneous Transmission across Multi-Panel; STxMP)을 위한 위상 추적 참조 신호 (Phase Tracking-Reference Signal; PT-RS) 송신 방법 및 이를 위한 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 멀티 패널 동시 전송을 위한 위상 추적 참조 신호 송신 방법 및 이를 위한 장치를 제안하고자 한다.
본 명세가 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 상세한 설명으로부터 본 명세와 관련된 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세의 일 양상으로, 무선 통신 시스템에서 UE (User Equipment)가 수행하는 방법이 제공된다. 상기 방법은: BS (Base Station)로부터 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 수신하는 단계; 및 상기 DCI에 포함된 PT (Phase Tracking)-RS (Reference Signal) 포트 (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신하는 단계를 포함하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 한다.
본 명세의 다른 양상으로, 무선 통신 시스템에서 UE (User equipment)가 제공된다. 상기 사용자기기는: 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함한다. 상기 동작들은: BS (Base Station)로부터 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 수신하는 단계; 및 상기 DCI에 포함된 PT (Phase Tracking)-RS (Reference Signal) 포트 (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신하는 단계를 포함하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 한다.
본 명세의 또 다른 양상으로, 무선 통신 시스템에서 프로세싱 장치가 제공된다. 상기 프로세싱 장치는: 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 UE (User Equipment)를 위한 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함한다. 상기 동작들은: BS (Base Station)로부터 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 수신하는 단계; 및 상기 DCI에 포함된 PT (Phase Tracking)-RS (Reference Signal) 포트 (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신하는 단계를 포함하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 한다.
본 명세의 또 다른 양상으로, 컴퓨터 판독가능한 저장 매체가 제공된다. 상기 컴퓨터 판독가능한 저장 매체는: 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서로 하여금 UE (User Equipment)를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장한다. 상기 동작들은: BS (Base Station)로부터 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 수신하는 단계; 및 상기 DCI에 포함된 PT (Phase Tracking)-RS (Reference Signal) 포트 (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신하는 단계를 포함하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 한다.
본 명세의 또 다른 양상으로, 무선 통신 시스템에서 BS (Base Station)가 수행하는 방법이 제공된다. 상기 방법은: UE (User Equipment)로 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 송신하는 단계; 및 상기 DCI에 포함된 (Phase Tracking)-RS (Reference Signal) (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 UE로부터 제 1 PT 포트 상에서 제 1 PT-RS를 수신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 수신하는 단계를 포함하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 한다.
본 명세의 다른 양상으로, 무선 통신 시스템에서 BS (Base Station)가 제공된다. 상기 사용자기기는: 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함한다. 상기 동작들은: UE (User Equipment)로 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 송신하는 단계; 및 상기 DCI에 포함된 (Phase Tracking)-RS (Reference Signal) (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 UE로부터 제 1 PT 포트 상에서 제 1 PT-RS를 수신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 수신하는 단계를 포함하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 한다.
바람직하게는, 상기 UE는 상기 BS로부터 상기 PT-RS의 최대 개수가 2라는 정보를 수신할 수 있다.
바람직하게는, 상기 제 1 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 첫 번째 비트이고, 상기 제 2 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 두 번째 비트이다.
바람직하게는, 상기 UE는 상기 BS로부터 상기 제 1 SRI 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보 및 상기 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보를 수신한다.
바람직하게는, 제 1 DM-RS 포트는 제 1 패널 상에서 송신되는 제 1 PUSCH와 연관되고, 제 2 DM-RS 포트는 제 2 패널 상에서 송신되는 제 2 PUSCH와 연관되며, 상기 제 1 PUSCH와 상기 제 2 PUSCH는 상기 BS로 동일한 시간 및 동일한 주파수 자원을 통하여 송신된다.
상기 과제 해결방법들은 본 명세의 예들 중 일부에 불과하며, 본 명세의 기술적 특징들이 반영된 다양한 예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 개시에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 개시에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세의 구현들에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 명세의 구현들에 대한 예들을 제공하고, 상세한 설명과 함께 본 명세의 구현들을 설명한다:
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 5는 PDSCH 및 ACK/NACK 전송 과정을 예시한다.
도 6은 PUSCH 전송 과정을 예시한다.
도 7은 본 개시에 따라 STxMP (simultaneous transmission across multiple panels)를 위한 PT-RS를 송신하기 위한 순서도이다.
도 8 내지 도 11는 본 개시에 적용 가능한 통신 시스템(1)과 무선 기기를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 개시에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 개시의 기술적 사상이 이에 제한되는 것은 아니다.
본 명세서에서 "설정"의 표현은 "구성(configure/configuration)"의 표현으로 대체될 수 있으며, 양자는 혼용될 수 있다. 또한 조건적 표현(예를 들어, "~~이면(if)", "~~ 일 경우(in a case)" 또는 "~~일 때(when)" 등)은 "~~인 것에 기초하여(based on that ~~)" 또는 "~~인 상태에서(in a state/status)"의 표현으로 대체될 수 있다. 또한, 해당 조건의 충족에 따른 단말/기지국의 동작 또는 SW/HW 구성이 유추/이해될 수 있다. 또한, 무선 통신 장치들 (e.g., 기지국, 단말) 간의 신호 송수신에서 송신 (또는 수신) 측의 프로세스로부터 수신 (또는 송신) 측의 프로세스가 유추/이해될 수 있다면 그 설명이 생략될 수 있다. 예를 들어, 송신 측의 신호 결정/생성/인코딩/송신 등은 수신측의 신호 모니터링 수신/디코딩/결정 등으로 이해될 수 있다. 또한, 단말이 특정 동작을 수행한다(또는 수행하지 않는다)는 표현은, 기지국이 단말의 특정 동작 수행을 기대/가정(또는 수행하지 않는다고 기대/가정)하고 동작한다는 것으로도 해석될 수 있다. 기지국이 특정 동작을 수행한다(또는 수행하지 않는다)는 표현은, 단말이 기지국의 특정 동작 수행을 기대/가정(또는 수행하지 않는다고 기대/가정)하고 동작한다는 것으로도 해석될 수 있다.또한, 후술하는 설명에서 각 섹션, 실시예, 예시, 옵션, 방법, 방안 등의 구분과 인덱스는 설명의 편의를 위한 것이지 각각이 반드시 독립된 개시를 구성한다는 것을 의미하거나, 각각이 반드시 개별적으로만 실시되어야 한다는 것을 의미하는 의도로 해석되지 않아야 한다. 또한, 각 섹션, 실시예, 예시, 옵션, 방법, 방안 등을 설명함에 있어서 명시적으로 충돌/반대되는 기술이 없다면 이들의 적어도 일부 조합하여 함께 실시될 수도 있고, 적어도 일부가 생략된 채로 실시될 수도 있는 것으로 유추/해석될 수 있다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 정규(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 정규 CP에 대한 SCS에 따른 슬롯별 OFDM 심볼들의 개수(N
slot
symb), 프레임별 슬롯의 개수(N
frame,u
slot) 및 서브프레임별 슬롯의 개수(N
subframe,u
slot)를 나타낸 것이다.
SCS (15*2^u) | Nslot symb | Nframe,u slot | Nsubframe,u slot |
15KHz (u=0) | 14 | 10 | 1 |
30KHz (u=1) | 14 | 20 | 2 |
60KHz (u=2) | 14 | 40 | 4 |
120KHz (u=3) | 14 | 80 | 8 |
240KHz (u=4) | 14 | 160 | 16 |
표 2는 확장 CP가 사용되는 경우, SCS에 따른 슬롯별 OFDM 심볼들의 개수(N
slot
symb), 프레임별 슬롯의 개수(N
frame,u
slot) 및 서브프레임별 슬롯의 개수(N
subframe,u
slot)를 나타낸 것이다.
SCS (15*2^u) | Nslot symb | Nframe,u slot | Nsubframe,u slot |
60KHz (u=2) | 12 | 40 | 4 |
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 정규 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16개의 CCE(Control Channel Element)로 구성된다. CCE는 무선 채널 상태에 따라 소정 부호율의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 6개의 REG(Resource Element Group)로 구성된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB 개수 및 OFDM 심볼 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PDCCH 수신/검출을 위해, 단말은 PDCCH 후보들을 모니터링 한다. PDCCH 후보는 PDCCH 검출을 위해 단말이 모니터링 해야 하는 CCE(들)을 나타낸다. 각 PDCCH 후보는 AL에 따라 1, 2, 4, 8, 16개의 CCE로 정의된다. 모니터링은 PDCCH 후보들을 (블라인드) 디코딩 하는 것을 포함한다. 단말이 모니터링 하는 PDCCH 후보들의 세트를 PDCCH 검색 공간(Search Space, SS)이라고 정의한다. 검색 공간은 공통 검색 공간(Common Search Space, CSS) 또는 단말-특정 검색 공간(UE-specific search space, USS)을 포함한다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간에서 PDCCH 후보를 모니터링 하여 DCI를 획득할 수 있다. 각각의 CORESET는 하나 이상의 검색 공간과 연관되고, 각 검색 공간은 하나의 COREST과 연관된다. 검색 공간은 다음의 파라미터들에 기초하여 정의될 수 있다.
- controlResourceSetId: 검색 공간과 관련된 CORESET를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: 슬롯 내 PDCCH 모니터링 심볼을 나타냄(예, CORESET의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타냄
* PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 검색 공간 타입별 특징을 예시한다.
Type | Search Space | RNTI | Use Case |
Type0-PDCCH | Common | SI-RNTI on a primary cell | SIB Decoding |
Type0A-PDCCH | Common | SI-RNTI on a primary cell | SIB Decoding |
Type1-PDCCH | Common | RA-RNTI or TC-RNTI on a primary cell | Msg2, Msg4 decoding in RACH |
Type2-PDCCH | Common | P-RNTI on a primary cell | Paging Decoding |
Type3-PDCCH | Common | INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) | |
UE Specific | UE Specific | C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) | User specific PDSCH decoding |
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format | Usage |
0_0 | Scheduling of PUSCH in one cell |
0_1 | Scheduling of PUSCH in one cell |
1_0 | Scheduling of PDSCH in one cell |
1_1 | Scheduling of PDSCH in one cell |
2_0 | Notifying a group of UEs of the slot format |
2_1 | Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE |
2_2 | Transmission of TPC commands for PUCCH and PUSCH |
2_3 | Transmission of a group of TPC commands for SRS transmissions by one or more UEs |
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 DL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 5는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format | Length in OFDM symbols NPUCCH symb | Number of bits | Usage | Etc |
0 | 1 - 2 | ≤2 | HARQ, SR | Sequence selection |
1 | 4 - 14 | ≤2 | HARQ, [SR] | Sequence modulation |
2 | 1 - 2 | >2 | HARQ, CSI, [SR] | CP-OFDM |
3 | 4 - 14 | >2 | HARQ, CSI, [SR] | DFT-s-OFDM (no UE multiplexing) |
4 | 4 - 14 | >2 | HARQ, CSI, [SR] | DFT-s-OFDM (Pre DFT OCC) |
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.
PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
단말에는 설정된 하나 또는 둘 이상의 셀들 중 적어도 하나는 PUCCH 송신을 위해 설정될 수 있다. 적어도 Primary Cell은 PUCCH 송신을 위한 셀로 설정될 수 있다. PUCCH 송신이 설정된 적어도 하나의 Cell에 기초하여 단말에 적어도 하나의 PUCCH cell group이 설정될 수 있으며, 각 PUCCH cell group은 하나 또는 둘 이상의 셀들을 포함한다. PUCCH cell group은 간략히 PUCCH group으로 지칭될 수 있다. Primary Cell 뿐 아니라 SCell에도 PUCCH 송신이 설정될 수 있으며, Primary Cell은 Primary PUCCH group에 속하고, PUCCH 송신이 설정된 PUCCH-SCell은 secondary PUCCH group에 속한다. Primary PUCCH group에 속하는 Cell들에 대해서는 Primary Cell 상의 PUCCH가 사용되고, Secondary PUCCH group에 속하는 Cell들에 대해서는 PUCCH-SCell 상의 PUCCH가 사용될 수 있다.
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 5는 ACK/NACK 전송 과정을 예시한다. 도 5를 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0 (예, 슬롯 오프셋), 슬롯 #n+K0 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 PDSCH의 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
- PUCCH resource indicator (PRI): PUCCH 자원 세트 내의 복수의 PUCCH 자원들 중에서 UCI 전송에 사용될 PUCCH 자원을 지시함
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서부터 PDSCH를 수신한 뒤, 슬롯 #n1(where, n+K0≤ n1)에서 PDSCH의 수신이 끝나면 슬롯 #(n1+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함할 수 있다. 도 5에서는 편의상 PDSCH에 대한 SCS와 PUCCH에 대한 SCS가 동일하고, 슬롯# n1= 슬롯#n+K0 라고 가정하였으나, 본 개시는 이에 한정되지 않는다. SCS들이 상이한 경우 PUCCH의 SCS를 기반으로 K1 지시/해석될 수 있다.
PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
HARQ-ACK 응답을 위해 단말이 공간(spatial) 번들링을 수행하여야 하는지 여부는 셀 그룹 별로 구성(configure)(e.g., RRC/상위계층 시그널링)될 수 있다. 일 예로 공간 번들링은 PUCCH를 통해서 송신되는 HARQ-ACK 응답 및/또는 PUSCH를 통해서 송신되는 HARQ-ACK 응답 각각에 개별적으로 구성될 수 있다.
공간 번들링은 해당 서빙 셀에서 한번에 수신 가능한(또는 1 DCI를 통해 스케줄 가능한) TB (또는 코드워드)의 최대 개수가 2개 인경우 (또는 2개 이상인 경우)에 지원될 수 있다(e.g., 상위계층파라미터 maxNrofCodeWordsScheduledByDCI 가 2-TB에 해당하는 경우). 한편, 2-TB 전송을 위해서는 4개 보다 더 많은 개수의 레이어들이 사용될 수 있으며, 1-TB 전송에는 최대 4개 레이어가 사용될 수 있다. 결과적으로, 공간 번들링이 해당 셀 그룹에 구성된 경우, 해당 셀 그룹 내의 서빙 셀들 중 4 개 보다 많은 개수의 레이어가 스케줄 가능한 서빙 셀에 대하여 공간 번들링이 수행될 수 있다. 해당 서빙 셀 상에서, 공간 번들링을 통해서 HARQ-ACK 응답을 송신하고자 하는 단말은 복수 TB들에 대한 A/N 비트들을 (bit-wise) logical AND 연산하여 HARQ-ACK 응답을 생성할 수 있다.
예컨대, 단말이 2-TB를 스케줄링하는 DCI를 수신하고, 해당 DCI에 기초하여 PDSCH를 통해서 2-TB를 수신하였다고 가정할 때, 공간 번들링을 수행하는 단말은 제1 TB에 대한 제1 A/N 비트와 제2 TB에 대한 제2 A/N 비트를 논리적 AND 연산하여 단일 A/N 비트를 생성할 수 있다. 결과적으로, 제1 TB와 제2 TB가 모두 ACK 인 경우 단말은 ACK 비트 값을 기지국에 보고하고, 어느 하나의 TB라도 NACK 인경우 단말은 NACK 비트 값을 기지국에 보고한다.
예컨대, 2-TB가 수신 가능하도록 구성(configure)된 서빙 셀 상에서 실제로 1-TB 만 스케줄된 경우, 단말은 해당 1-TB에 대한 A/N 비트와 비트 값 1을 논리적 AND 연산하여 단일 A/N 비트를 생성할 수 있다. 결과적으로, 단말은 해당 1-TB에 대한 A/N 비트를 그대로 기지국에 보고하게 된다.
기지국/단말에는 DL 전송을 위해 복수의 병렬 DL HARQ 프로세스가 존재한다. 복수의 병렬 HARQ 프로세스는 이전 DL 전송에 대한 성공 또는 비성공 수신에 대한 HARQ 피드백을 기다리는 동안 DL 전송이 연속적으로 수행되게 한다. 각각의 HARQ 프로세스는 MAC(Medium Access Control) 계층의 HARQ 버퍼와 연관된다. 각각의 DL HARQ 프로세스는 버퍼 내의 MAC PDU(Physical Data Block)의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전(redundancy version) 등에 관한 상태 변수를 관리한다. 각각의 HARQ 프로세스는 HARQ 프로세스 ID에 의해 구별된다.
도 6은 PUSCH 전송 과정을 예시한다. 도 6을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
QCL (quasi-co location)
안테나 포트의 채널 특성(property)이 다른 안테나 포트의 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 quasi co-located이다. 채널 특성은 Delay spread, Doppler spread, Frequency/Doppler shift, Average received power, Received Timing/average delay, Spatial RX parameter 중 하나 이상을 포함할 수 있다.
단말에는 상위 계층 파라미터 PDSCH-Config를 통해 복수개 TCI-State configuration의 리스트가 설정될 수 있다. 각각의 TCI-State는 하나 또는 두 개의 DL 참조 신호와 PDSCH의 DM-RS 포트 사이의 QCL 설정 파라미터에 연계된다. QCL은 첫 번째 DL RS에 대한 qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2를 포함할 수 있다. QCL type은 다음 중 하나에 해당할 수 있다.
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
빔 관리(Beam Management, BM)
BM 과정은 하향링크(downlink, DL) 및 상향링크(uplink, UL) 전송/수신에 사용될 수 있는 BS(혹은 전송 및 수신 포인트(transmission and reception point, TRP)) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 과정들로서, 아래와 같은 과정 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): BS 또는 UE가 수신된 빔포밍 신호의 특성을 측정하는 동작.
- 빔 결정(beam determination): BS 또는 UE가 자신의 송신 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.
- 빔 스위핑(beam sweeping): 미리 결정된 방식으로 일정 시간 인터벌 동안 전송 및/또는 수신 빔을 이용하여 공간 도메인을 커버하는 동작.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔포밍된 신호의 정보를 보고하는 동작.
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
이 때, DL BM 과정은 (1) BS에 의한 빔포밍된 DL RS들(예, CSI-RS 또는 SSB) 전송과, (2) UE에 의한 빔 보고(beam reporting)를 포함할 수 있다.
여기서, 빔 보고는 선호하는(preferred) DL RS ID(들) 및 이에 대응하는 참조 신호 수신 전력(reference signal received power, RSRP)를 포함할 수 있다. DL RS ID는 SSBRI(SSB Resource Indicator) 또는 CRI(CSI-RS Resource Indicator)일 수 있다.
NR 릴리즈 16에서의 M-TRP (multi-transmission and reception point) 전송
NR 표준 릴리즈 16에서는 S-DCI 기반 M-TRP PDSCH와 M-DCI 기반 M-TRP PDSCH 전송 방식이 지원된다.
- NR 표준 릴리즈 16의 S-DCI 기반 M-TRP PDSCH
S-DCI 기반 M-TRP PDSCH 전송의 경우 보다 세분화하여 SDM 방식/FDM 방식/TDM 방식 중 하나가 사용될 수 있다. SDM 방식의 경우 하나의 TB를 다중 레이어로 전송하되, 서로 다른 DM-RS CDM 그룹에 속한 레이어를 서로 다른 송신 빔 (Tx beam), 즉 서로 다른 QCL RS 혹은 서로 다른 TCI 스테이트로 전송한다. 이로써 기존 S-TRP 전송방식 대비 레이어 수를 증가 시켜 전송 용량을 향상 시킬 수 있다. 또한 하나의 TB가 다중 레이어로 전송될 때, 일부 레이어는 TRP 1에게 나머지 레이어는 TRP 2에게 전송됨으로써, 다이버시티 이득 (diversity gain)으로 인한 채널 신뢰성을 향상 시킬 수 있다.
FDM 방식의 경우 두 가지 방식인 scheme 2a, scheme 2b가 지원된다. scheme 2a 는 하나의 TB를 다중 RB로 전송하되, 서로 다른 RB 그룹에 속한 RB를 서로 다른 송신 빔 (즉, QCL RS 혹은 TCI 스테이트)으로 전송하는 방식이다. Scheme 2b는 동일 TB를 서로 다른 RB 그룹에 전송하되, 서로 다른 RB 그룹에 속한 RB를 서로 다른 송신 빔 (즉, QCL RS 혹은 TCI 스테이트)으로 전송하는 방식이다.
TDM의 경우 두 가지 방식인 scheme 3, scheme 4가 지원된다. scheme 4는 인터슬롯 (inter-slot) TDM으로서 여러 슬롯에서 동일 TB를 반복 전송하되, 서로 다른 슬롯 그룹에 속한 슬롯을 서로 다른 송신 빔 (즉, QCL RS 혹은 TCI 스테이트)으로 전송하는 방식이다. 이와 달리, Scheme 4는 인트라 (intra-slot) TDM은 여러 OFDM 심볼 그룹에서 동일 TB를 반복 전송하되, 일부 OFDM 심볼 그룹과 나머지 OFDM 심볼 그룹을 서로 다른 송신 빔 (즉, QCL RS 혹은 TCI 스테이트)으로 전송하는 방식이다.
- NR 표준 릴리즈 16의 M-DCI 기반 M-TRP PDSCH
M-DCI 기반 M-TRP PDSCH 전송은, 각 TRP 가 DCI를 통해 PDSCH를 스케줄링하고 전송하는 방식이다. 즉, TRP 1은 DCI 1을 통해 PDSCH 1을 전송하며 TRP 2은 DCI 2을 통해 PDSCH 2을 전송한다. PDSCH 1과 PDSCH 2가 동일 주파수 시간 자원에 중첩(overlap)되는 경우 동일 RE에 대해 두 개의 PDSCH가 수신되므로 자원 효율이 높아져 전송 용량이 늘어난다.
이를 위해 NR 릴리즈16에서는 여러 CORESET들의 그룹인 CORESET 풀(pool)을 도입하였고, TRP 1은 CORESET 풀 0에 속한 CORESET을 통해 PDCCH를 전송하고 해당 PDCCH가 스케줄링 한 PDSCH역시 TRP 1이 전송한다. TRP 2는 CORESET 풀 1에 속한 CORESET을 통해 PDCCH를 전송하고 해당 PDCCH가 스케줄링 한 PDSCH역시 TRP 2가 전송한다. PUSCH 역시 각 CORESET 풀에 속한 CORESET을 통해 특정 TRP가 UE에게 PUSCH 전송을 스케줄링할 수 있다. PUCCH는 일부 PUCCH 자원은 TRP 1이 스케줄링하여 UCI를 수신받고, 나머지 PUCCH 자원은 TRP 2가 스케줄링하여 UCI를 수신 받는다. PUSCH나 PUCCH의 경우 각 TRP 가 스케줄링하는 혹은 사용하는 채널은 서로 TDM 되어 중첩이 발생하지 않아 전송 용량 증가는 기대할 수 없으나, UE는 TRP 1 및 TRP 2 각각에 대해 독립적인 PUSCH/PUCCH를 전송할 수 있다.
NR 릴리즈 17에서의 M-TRP 전송
NR 표준 릴리즈 17에서는 M-TRP PDCCH 반복 전송, M-TRP PDCCH/PDSCH SFN 전송, S-DCI 기반 M-TRP PUSCH 반복 전송, 단일 (single) PUCCH 자원 기반 M-TRP PUCCH 반복 전송이 지원된다.
해당 전송 기법들은 모두 신뢰성 (reliability) 증가를 위한 URLLC 대상 인센스먼트 (enhancement)로 동일 컨텐트 (즉, DCI, UL TB 또는 UCI)가 반복 전송된다. M-TRP PDCCH 반복 전송의 경우 TDM 또는 FDM되어 반복 전송되며, M-TRP PDCCH/PDSCH SFN은 동일 시간/주파수/레이어에 반복 전송되며, S-DCI 기반 M-TRP PUSCH 반복 전송은 TDM, 단일 PUCCH 자원 기반 M-TRP PUCCH 반복 전송은 TDM되어 반복 전송된다.
- NR 표준 릴리즈 17의 S-DCI 기반 M-TRP PDCCH 반복 전송
NR 표준 릴리즈 17에서는 M-TRP PDCCH 반복 전송을 위해 서로 다른 TCI 스테이트(즉, 서로 다른 QCL RS)가 설정된 복수의 CORESET들이 UE에게 설정되며, 해당 CORESET 들과 각각 연결된 복수의 SS (Search Space) 세트들이 설정된다. 기지국은 UE에게 하나의 CORESET에 연결된 SS 세트와 다른 CORESET에 연결된 SS 세트가 반복 전송을 위해 link되어 있음을 지시/설정해 줌으로서 UE는 해당 SS 세트의 PDCCH 후보들이 반복 전송됨을 알 수 있다.
예를 들어 2개의 CORESET인 CORESET #0 및 CORESET #1이 UE에게 설정되고 CORESET #0 및 CORESET #1은 각각 SS 세트 #0, 1이 연결되어 있으며, SS 세트 #0과 SS 세트 #1은 링크(link)되어 있을 수 있다. UE는 SS 세트 #0의 PDCCH 후보(candidate)과 SS 세트 #1의 PDCCH 후보가 동일 DCI를 반복 전송되었음을 알 수 있고, 특정 규칙을 통해 SS 세트 #0의 특정 PDCCH 후보와 SS 세트 #1의 특정 PDCCH 후보가 동일 DCI를 반복 전송하기 위해 설정된 페어(pair)임을 알 수 있다. 이 두 개의 PDCCH 후보를 링크된 PDCCH 후보이라 부르며 UE는 두 PDCCH 후보 중 어느 하나라도 올바르게 수신하면 해당 DCI를 성공적으로 디코딩할 수 있다. 단, SS 세트 #0의 PDCCH 후보를 수신할 때 SS 세트 #0에 연결된 CORESET #0의 TCI 스테이트의 QCL RS (즉, 하향링크 빔)를 이용하고, SS 세트 #1의 PDCCH 후보를 수신할 때 SS 세트 #1에 연결된 CORESET #1의 TCI 스테이트의 QCL RS (즉, 하향링크 빔)를 이용함으로써 링크된 PDCCH 후보를 서로 다른 빔으로 수신하게 된다.
- NR 표준 릴리즈 17의 M-TRP SFN PDCCH
M-TRP PDCCH 반복 전송의 특별한 경우로서, 다수의 TRP가 동일 시간/주파수/DM-RS 포트를 통해 동일 DCI를 반복 전송할 수 있으며, 이를 SFN PDCCH전송이라 할 수 있다. 다만, SFN PDCCH 전송을 위해서 기지국은 서로 다른 TCI 스테이트 가 설정된 복수 개의 CORESET을 설정하는 대신 하나의 CORESET에 복수 개의 TCI 스테이트를 설정한다. UE는 그 하나의 CORESET에 연결된 SS 세트를 통해 PDCCH 후보를 수신할 때 해당 복수개의 TCI 스테이트를 모두 이용하여 PDCCH DM-RS의 채널 추정을 수해하고 및 디코딩을 시도한다.
- NR 표준 릴리즈 17의 M-TRP SFN PDSCH
상기 M-TRP PDSCH 반복 전송 시, 두 TRP는 서로 다른 자원에 해당 채널을 반복 전송 한다. 하지만 특이 케이스로서, 두 TRP가 사용하는 자원이 동일한 경우 즉, 동일 주파수, 시간, 레이어 (또는 DM-RS 포트)를 통해 동일 채널을 반복 전송하는 경우도 해당 채널을 신뢰성을 향상시킬 수 있다. 이 경우 반복 전송되는 동일 채널은 자원이 구분되지 않아 에어(air) 상에서 합쳐져 수신되므로, 수신단 입장에서 하나의 채널로 인식된다. NR 표준에서는 PDSCH SFN 전송을 위해 PDSCH DM-RS 수신을 위한 두 개의 하향링크 TCI 스테이트가 설정될 수 있다.
- NR 표준 릴리즈 17의 S-DCI 기반 M-TRP PUSCH 반복 전송
기지국은 S-DCI 기반 M-TRP PUSCH 전송을 위해서 UE에게 두 개의 SRS 세트를 설정해주며 각 SRS 세트는 각각 TRP #1과 TRP #2을 향한 상향링크 송신 포트, 상향링크 빔/QCL 정보를 지시하는 용도로 사용된다. 또한 기지국은 하나의 DCI에 두 개의 SRI 필드를 통해 SRS 세트 별 SRS 자원 지시를 수행하며, 전력 제어(Power control; PC) 파라미터 세트를 두개까지 지시할 수 있다. 예를 들어 첫 번째 SRI 필드는 set 0에 정의된SRS 자원과 PC 파라미터 세트를 지시할 수 있으며 두 번째 SRI 필드는 set 1에 정의된SRS 자원과 PC 파라미터 세트를 지시할 수 있다.
UE는 첫 번째 SRI 필드를 통해 TRP #1을 향한 상향링크 송신 포트, PC 파라미터 세트, 상향링크 빔/QCL 정보를 지시 받게 되며 이를 통해 SRS 세트 #0에 상응하는 TO에서 PUSCH 전송을 수행한다. 마찬가지로 UE는 두 번째 SRI 필드를 통해 TRP #2을 향한 상향링크 송신 포트, PC 파라미터 세트, 상향링크 빔/QCL 정보를 지시 받게 되며 이를 통해 SRS 세트 #1에 상응하는 TO에서 PUSCH 전송을 수행한다.
- NR 표준 릴리즈 17의 단일 PUCCH 자원 기반 M-TRP PUCCH 반복 전송
기지국은 단일 PUCCH 자원 기반 M-TRP PUCCH 전송을 위해서 UE에게 단일 PUCCH 자원에 두개의 spatial relation info를 활성화(activation)/설정(configure) 하고, UE는 해당 PUCCH 자원을 통해 UL UCI가 전송되는 경우 각 spatial relation info는 각각 TRP #1과 TRP #2을 향한 spatial relation info를 지시하는 용도로 사용된다.
예를 들어, 첫 번째 spatial relation info에 지시된 값을 통해 UE는 TRP #1을 향한 송신 빔/PC 파라미터를 지시받게 되며 이 정보를 이용하여 TRP #1에 상응하는 TO에서 PUCCH 전송을 수행한다. 마찬가지로 두 번째 spatial relation info에 지시된 값을 통해 UE는 TRP #2을 향한 송신 빔/PC 파라미터를 지시받게 되며 이 정보를 이용하여 TRP #2에 상응하는 TO에서 PUCCH 전송을 수행한다.
Rel 17 표준화 회의에서 M-TRP PUCCH 반복 전송을 위해, PUCCH 자원에 두 개의 spatial relation info가 설정될 수 있도록 설정 방식을 인핸스(enhance)하였다. 즉, 각 spatial relation info에는 PC 파라미터가 설정되면 spatial relation RS 를 설정할 수 있다. 결과적으로 두 개의 spatial relation info를 통해 두 개의 TRP에 대응하는 PC 정보와 spatial relation RS 정보를 설정할 수 있으며, UE는 TO 1에서는 첫 번째 spatial relation info를 이용하여 PUCCH로 전송하며 TO 2에서는 두 번째 spatial relation info를 이용하여 동일 UCI (즉 CSI, ACKNAK, SR) PUCCH로 전송한다.
이하 두 개의 spatial relation info가 설정된 PUCCH 자원을 M-TRP PUCCH 자원이라 명명하고 한 개의 spatial relation info가 설정된 PUCCH 자원을 S-TRP PUCCH 자원이라 명명한다.
TCI 스테이트/ beam indication의 의미
어떤 주파수/시간/공간 자원에 대해 데이터/DCI/UCI 수신 시 특정 TCI 스테이트 (또는 TCI)를 사용 또는 매핑한다는 의미는, 하향링크의 경우 그 주파수/시간/공간 자원에서 해당 하향링크 TCI 스테이트에 의해 지시된 QCL 타입 및 QCL RS를 이용하여 DM-RS로부터 채널을 추정하고, 추정된 채널로 데이터/DCI를 수신/복조한다는 것을 의미할 수 있다.
상향링크의 경우 그 주파수/시간/공간 자원에서 해당 상향링크 TCI 스테이트에 의해 지시된 송신 빔 및/또는 송신 전력을 이용하여 DM-RS 및 데이터/UCI를 송신/변조한다는 것을 의미할 수 있다.
상향링크 TCI 스테이트는 UE의 송신 빔 또는 송신 전력 정보를 담고 있으며, TCI 스테이트 대신 Spatial relation info 등을 다른 파라미터를 통해 UE에게 설정될 수도 있다.
상향링크 TCI 스테이트는 상향링크 그랜트를 전달하는 DCI에 직접 지시될 수 있으며 또는 UL grant DCI의 SRI 필드를 통해 지시된 SRS 자원의 spatial relation info를 의미할 수 있다. 또는 UL grant DCI의 SRI 필드를 통해 지시된 값에 연결된 개루프 송신 전력 제어 파라미터를 의미할 수 있다. 또는 DL grant DCI를 이용하여 상향링크 TCI를 지시할 수 있다.
본 발명은 설명의 편의를 위해 2개의 TRP 간의 협력 전송/수신을 가정하여 제안 방식을 적용하였으나 3개 이상의 다중 TRP 환경에서도 확장 적용이 가능하며, 다중 패널 환경에서도 확장 적용이 가능하다. 서로 다른 TRP는 UE에게 서로 다른 TCI 스테이트로 인식될 수 있으며, UE가 TCI 스테이트 1을 이용하여 데이터/DCI/UCI를 송수신한 것은 TRP 1과 데이터/DCI/UCI를 송수신한 것을 의미한다.
본 발명에서 TO란 다수 채널이 TDM되는 경우 서로 다른 시간에 전송된 각 채널을 의미하며, FDM 되는 경우 서로 다른 주파수/RB에 전송된 각 채널을 의미하고, SDM되는 경우 서로 다른 레이어/빔(beam)/DM-RS 포트(port)에 전송된 각 채널을 의미한다. 각 TO에는 하나의 TCI 스테이트가 매핑된다. 동일 채널을 반복 전송하는 경우 하나의 TO에는 온전한 DCI/데이터/UCI가 전송되며 수신 단은 여러 TO를 수신하여 수신 성공률을 높인다.
STxMP (Simultaneous Transmission across Multi-Panel)
NR 표준 릴리즈 18에서 UE가 서로 같은 종류의 여러 채널/참조 신호를 동시에 전송하는 방법 또는 서로 다른 종류의 여러 채널/참조 신호를 동시에 전송하는 방법을 논의 하고 있다. 기존 UE의 경우 한 순간에 다수의 채널/참조 신호 전송하는 동작이 제한된다. 예를 들어, 상향링크 빔 측정을 위하여 서로 다른 SRS 세트의 복수 SRS 자원들을 동시 전송하는 것은 가능하나, PUSCH를 복수 개 동시 전송하는 것은 불가능하다.
그러나, NR 표준 릴리즈 18에서 논의하는 진보된 단말의 경우 이러한 제한을 완화하고 다수개의 송신 패널을 이용하여 다수의 채널 또는 RS를 동시에 전송할 수 있으며 이러한 UE를 STxMP UE라고 한다. 예를 들어, 두 개의 상향링크 TB에 해당하는 두 PUSCH를 동일 RE에 스케줄링하고, PUSCH 1및 PUSCH 2 전송을 위해 각각 Spatial relation RS 1 및 PC (power control) 파라미터 세트 1 (즉, 상향링크 TCI 스테이트 1)과 Spatial relation RS 2 및 PC 파라미터 세트 2 (즉, 상향링크 TCI 스테이트 2)을 설정해준다. UE는 상향링크 TCI 스테이트 1에 대응하는 패널 1을 이용하여 PUSCH 1를 전송하고, 동시에 상향링크 TCI 스테이트 2에 대응하는 패널 2을 이용하여 PUSCH 2를 전송한다.
기지국이 DCI를 통해 PUSCH 스케줄링을 할 때, 해당 PUSCH를 STxMP 전송할지, 단일 패널로 전송할지, M-TRP PUSCH 반복 전송할지 등을 지시해줄 수 있다. 물론 해당 UE는 STxMP 능력을 가지고 있어야 하는 것은 물론이고, STxMP 모드가 RRC 시그널링 등으로 사전에 가용한 상태가 되어야 한다. 이를 위해 기존 SRS 자원 세트 지시자 필드를 재정의하여 사용하거나 새로운 DCI 필드가 도입될 수 있다.
STxMP PUSCH 전송 시 PT-RS와 DM-RS 관계
이하에서는 SDM STxMP PUSCH 전송 시 패널 별로 PT-RS와 DM-RS를 연관(association)하기 위한 방법을 제안한다.
상술한 SDM STxMP의 경우 DCI를 통해 각 패널 (즉, UE의 송신 패널)이 전송해야할 랭크가 지시되고 (예를 들어, 패널 1은 RI1, 패널 2는 RI2가 지시되고) 두 패널의 랭크합인 (RI1+RI2)이 PUSCH의 랭크이 결정된다. 예를 들어, UE의 패널 1은 RI1이 지시되고, 패널 2는 RI2가 지시된 경우, 두 패널의 랭크합으로 RI1+RI2로 PUSCH의 랭크가 결정된다.
또한, DCI내 DM-RS 포트 지시자 필드를 통해 (RI1+RI2)개에 해당하는 DM-RS 포트가 지시된다. SDM STxMP PUSCH 전송을 지시하기 위해 2비트 크기의 SRS 자원 세트 지시자는 10 또는 11이 설정되며, 별도의 지시자를 통해 SDM STxMP PUSCH가 enable 되거나 특정 조건에 의해 SDM STxMP PUSCH가 enable될 수 있다.
만약, RRC 시그널링을 통하여 최대 PT-RS 개수가 2로 설정된 경우, SDM STxMP PUSCH 전송 시, 두 개의 PT-RS는 두 패널에서 각각 전송한다. 즉 기지국은 패널 1에서 전송하는 DM-RS 포트들 중 하나를 지시하여 PT-RS와 DM-RS 포트를 연관(association) 시키고, 패널 2에서 전송하는 DM-RS 포트들 중 하나를 지시하여 DM-RS 포트를 연관시킨다. 본 개시에서는 패널 별로 PT-RS와 DM-RS를 연관하기 위한 방법을 제안한다.
이러한 패널 별 DM-RS 대 PT-RS 포트 연관 방식은 기존에서 지원한 바 있다. 구체적으로, 지시된 DM-RS 포트를 두 그룹으로 나누고 그룹 당 하나의 PT-RS와 하나의 DM-RS 포트를 연관시킨다. 여기서 각 그룹은 각 패널이 전송하는 DM-RS 포트를 의미할 수 있다. 그러나 기존 방식의 경우, 하나의 PUSCH 전송 기회 (transmission occasion)가 단일 CB (Codebook Based) SRS 자원 세트/단일 NCB (Non Codebook Based) SRS 자원 세트/단일 TPMI 필드/단일 SRI 필드를 통해 스케줄링이 되는 방식에만 유효하다. M-TRP PUSCH 전송 방식의 경우, PUSCH 스케줄을 위해 두 개의 SRS 자원 세트/두 개의 필드를 사용하지만 이는 서로 다른 PUSCH 전송 기회의 스케줄링을 위해 사용되므로, 결국 M-TRP PUSCH 전송 방식에서도 각 PUSCH 전송 기회는 단일 CB SRS 자원 세트 /단일 NCB SRS 자원 세트/단일 TPMI 필드/단일 SRI 필드를 통해 스케줄링된다.
SDM STxMP PUSCH를 위해 하나의 PUSCH 전송 기회가 다중 CB SRS 자원 세트/다중 NCB SRS 자원 세트/다중 TPMI 필드/다중 SRI 필드를 통해 스케줄링되는 경우, 기존 DM-RS 대 PT-RS 포트 연관 방식은 유효하지 않다. 예를 들어, CB PUSCH에서 2개의 SRI 필드를 통해 두 개의 SRS 자원 세트로부터 두 개의 2 포트 SRS 자원으로서 SRS 자원 1 및 SRS 자원 2가 설정되고, 2개의 TPMI 필드를 사용하여 패널 1을 위해 RI1=1, 프리코더1=[1 1]T, 패널 2을 위해 RI2=1, 프리코더2=[1 -1]T이 설정되었다고 가정한다. 이 경우 프리코더1에 대응하는 DM-RS 포트와 프리코더2에 대응하는 DM-RS 포트는 기존 방식에 의해 그룹핑할 수 없다. 기존 그룹핑은 PUSCH antenna port 1000, 1002를 이용하여 전송되는 레이어를 하나의 그룹으로 PUSCH antenna port 1001, 1003를 이용하여 전송되는 레이어를 다른 하나의 그룹으로 결정하는데, 프리코더1 및 프리코더2에 해당하는 레이어를 이러한 방식으로 그룹핑할 수 없다. 기존 방식을 적용하여 그룹핑하기 위해서는 2 포트 SRS 자원 1 또는 프리코더1의 각 엘리먼트(element)는 PUSCH 안테나 포트 1000 및 1002에 맵핑되고 2 포트 SRS 자원 2 (또는 프리코더2의 각 엘리먼트)은 PUSCH 안테나 포트 1001 및 1003에 맵핑된다는 추가 가정이 필요하다.
또 다른 예를 들어, CB PUSCH에서 4개의 SRI 필드를 통해 4 개의 SRS 자원 세트로부터 네 개의 2 포트 SRS 자원으로서, SRS 자원 1 내지 SRS 자원 4가 설정되고, 4개의 TPMI 필드를 사용하여 패널 1을 위해 RI1=1, 프리코더1=[1 1 ]T, 패널 2을 위해 RI2=1, 프리코더2=[1 -1]T, 패널 3을 위해 RI3=1, 프리코더3=[1 j]T, 패널 4을 위해 RI4=1, 프리코더4=[1 -1]T 이 설정되었다고 가정한다. 이 경우 프리코더1 내지 프리코더4에 대응하는 DM-RS 포트들을 그룹핑하기 위하여, 2 포트 SRS 자원 1 (또는 프리코더1의 각 엘리먼트)은 PUSCH 안테나 포트 1000 및 1004에 맵핑되고 2 포트 SRS 자원 2 (또는 프리코더2의 각 엘리먼트)은 PUSCH 안테나 포트 1001 및 1005에 맵핑되고, 2 포트 SRS 자원 3 (또는 프리코더3의 각 엘리먼트)은 PUSCH 안테나 포트 1002 및 1006에 맵핑되고 2 포트 SRS 자원 4 (또는 프리코더4의 각 엘리먼트)은 PUSCH 안테나 포트 1003 및 1007된다는 추가 가정이 필요하다. 또한, PUSCH 안테나 포트 1000 및 1004를 이용하여 전송되는 레이어를 하나의 그룹으로 PUSCH 안테나 포트 1001 및 1005 를 이용하여 전송되는 레이어를 다른 하나의 그룹, PUSCH 안테나 포트 1002 및 1006를 이용하여 전송되는 레이어를 하나의 그룹으로 결정하고, PUSCH 안테나 포트 1003 및 1007 를 이용하여 전송되는 레이어를 다른 하나의 그룹으로 결정해야 한다.
이렇게 레이어/DM-RS 포트를 패널 별로 그룹핑한 뒤, 4개의 PT-RS 포트를 각 패널 별 DM-RS에 연관시키기 위해 PT-RS 필드 사이즈를 늘려야한다. 예를 들어, 4 비트 크기의 PT-RS 대 DM-RS 연관 (association) 필드를 이용하여, 해당 필드의 첫 번째 필드가 패널 1의 PT-RS 대 DM-RS 연관을 위해 사용되고, 두 번째 필드가 패널 2의 PT-RS 대 DM-RS 연관을 위해 사용되며, 세 번째 필드가 패널 3의 PT-RS 대 DM-RS 연관을 위해 사용되고, 네 번째 필드가 패널 4의 PT-RS 대 DM-RS 연관을 위해 사용된다. 또는 여전히 2개의 PT-RS 포트만을 지원하는 경우, 2 비트 지시자를 이용하여 그룹 1 및 그룹 2에서 하나의 DM-RS 포트를 선택하여 PT-RS 포트 0를 연관시키고, 또 다른 2 비트 지시자를 이용하여 그룹 3 및 그룹 4에서 하나의 DM-RS 포트를 선택하여 PT-RS 포트 1을 연관시킬 수 있다. 또는 여전히 2 여전히 2개의 PT-RS 포트만을 지원하는 경우, 1 비트 지시자를 이용하여 특정 그룹 (예를 들어, 그룹 1)에서 하나의 DM-RS 포트를 하나 선택하여 PT-RS 포트 0를 연관시키고, 또다른 1 비트 지시자를 이용하여 다른 그룹 (예를 들어, 그룹 2)에서 하나의 DM-RS 포트를 선택하여 PT-RS 포트 1을 연관시킬 수 있다.
또 다른 예를 들어, CB PUSCH에서 2개의 SRI 필드를 통해 두 개의 SRS 자원 세트로부터 두 개의 4 포트 SRS 자원으로서 SRS 자원 1 및 SRS 자원 2가 설정되고, 2개의 TPMI 필드를 사용하여 패널 1을 위해 RI1=1, 프리코더1 = [1 1 1 1]T, 패널 2을 위해 RI2=1, 프리코더2 = [1 1 -1 -1]T이 설정되었다고 가정한다. 이 경우 프리코더1에 대응하는 DM-RS 포트와 프리코더2에 대응하는 DM-RS 포트는 기존 방식에 의해 그룹핑할 수 없다. 기존 그룹핑은 PUSCH 안테나 포트 1000 및 1002를 이용하여 전송되는 레이어를 하나의 그룹으로 PUSCH 안테나 포트 1001 및 1003를 이용하여 전송되는 레이어를 다른 하나의 그룹으로 결정하는데, 프리코더1 및 프리코더2에 해당하는 레이어를 이러한 방식으로 그룹핑할 수 없다. 기존 방식을 확장 적용하여 그룹핑하기 위해서는 4 포트 SRS 자원 1 (또는 프리코더1의 각 엘리먼트)은 PUSCH 안테나 포트 1000, 1002, 1004 및 1006에 맵핑되고, 4 포트 SRS 자원 2 (또는 프리코더2의 각 엘리먼트)은 PUSCH 안테나 포트 1001, 1003, 1005 및 1007에 맵핑된다는 추가 가정이 필요하다. 또한, PUSCH 안테나 포트 1000, 1002, 1004 및 1006를 이용하여 전송되는 레이어를 하나의 그룹으로 결정하고, PUSCH 안테나 포트 1001, 1003, 1005 및 1007를 이용하여 전송되는 레이어를 다른 하나의 그룹으로 결정해야 한다.
또 다른 예를 들어, NCB PUSCH에서 2개의 SRI 필드를 통해 SRS 자원 세트 0과 SRS 자원 세트 1에서 각각 SRS 자원을 선택할 수 있다. 이때 SRS 자원 세트 0에서 선택된 SRS 자원 들에 해당하는 DM-RS 포트 (즉, 각 SRS 자원에 이미 적용된 프리코딩과 동일 프리코딩을 적용하여 생성한 DM-RS 포트)들은 패널 1의 DM-RS 포트들로 가정할 수 있으며, SRS 자원 세트 1에서 선택된 SRS 자원들에 해당하는 DM-RS 포트들은 패널 2의 DM-RS 포트들로 가정할 수 있다. SRS 자원 세트 0에서 n1개의 SRS 자원이 선택되었다면, 이 SRS 자원들에 해당하는 DM-RS 포트는 DM-RS 포트 지시자로 지시된 DM-RS 포트들 (예를 들어, n1+n2개 DM-RS 포트들) 중 n1 개의 낮은 인덱스의 (lower index) DM-RS 포트일 수 있으며, SRS 자원 세트 1에서 n2개의 SRS 자원이 선택되었다면 이 SRS 자원들에 해당하는 DM-RS 포트는 DM-RS 포트 지시자로 지시된 DM-RS 포트들중 나머지 n2개의 DM-RS 포트일 수 있다.
레이어/DM-RS 포트를 패널 별로 그룹핑 하기 위한 다른 방법으로는 다음과 같은 것들을 고려할 수 있다.
DM-RS 포트 지시자 필드를 기존 한 개에서 두 개로 확장하여 각 패널이 사용하는 DM-RS 포트를 각 필드가 지시해줄 수 있다.
또는 한 개의 필드를 사용하되, 지시된 DM-RS 포트들을 특정 규칙을 이용하여 패널 1의 DM-RS 포트와 패널 2의 DM-RS 포트로 구분할 수 있다. 예를 들어, 지시된 DM-RS 포트들이 속한 CDM 그룹 중 첫 번째 CDM 그룹에 속한 DM-RS 포트들을 패널 1에 대응하는 DM-RS 포트로 규정하고, 두 번째 CDM 그룹에 속한 DM-RS 포트들을 패널 2에 대응하는 DM-RS 포트로 규정한다.
또는 예를 들어 지시된 DM-RS 포트들 중 먼저 지시된 (또는 낮은 인덱스를 갖는) RI1개 DM-RS 포트를 패널 1에 대응하는 DM-RS 포트로 규정하고, 나머지 DM-RS 포트를 패널 2에 대응하는 DM-RS 포트로 규정한다.
레이어/DM-RS 포트를 패널 별로 그룹핑한 뒤, 이하의 제안 방식에 따라 2비트 크기의 PT-RS 대 DM-RS 연관 필드를 이용하여 두 개의 PT-RS를 각각 DM-RS 포트와 연관시킬 수 있다.
1) RI1=1, RI2=1 인 경우, 각 패널이 전송하는 레이어는 1개뿐이므로 PT-RS 포트 0 및 1는 각각 패널 1,2가 전송하는 DM-RS 포트와 연관시킨다.
2) RI1=1, RI2=2 인 경우, PT-RS 포트 0는 패널 1이 전송하는 한 개의 DM-RS 포트와 연관된다. PT-RS 포트 1는 패널 2가 전송하는 DM-RS 포트 두 개중 하나와 연관되며 DCI 내 PT-RS 대 DM-RS 연관 필드 (2 비트 크기 필드 중 1 비트 MSB 또는 1 비트 LSB만 사용)를 통해 지시된다.
3) RI1=2, RI2=1 인 경우, PT-RS 포트 1는 패널 2이 전송하는 한 개의 DM-RS 포트와 연관된다. PT-RS 포트 0는 패널 1가 전송하는 DM-RS 포트 두 개중 하나와 연관되며 DCI 내 PT-RS 대 DM-RS 연관 필드 (2 비트 크기 필드 중 1 비트 MSB 또는 1 비트 LSB만 사용)를 통해 지시된다.
4) RI1=2, RI2=2 인 경우, PT-RS 포트 0는 패널 1가 전송하는 DM-RS 포트 두 개중 하나와 연관되며 DCI내 PT-RS 대 DM-RS 연관 필드 (2 비트 크기 필드 중 1 비트 MSB 또는 1 비트 LSB만 사용)를 통해 지시된다. PT-RS 포트 1는 패널 2가 전송하는 DM-RS 포트 두 개중 하나와 연관되며 DCI내 PT-RS 대 DM-RS 연관 필드 (2 비트 크기 필드 중 1 비트 MSB 또는 1 비트 LSB만 사용)를 통해 지시된다.
5) RI1=1, RI2=3 인 경우, PT-RS 포트 0는 패널 1이 전송하는 한 개의 DM-RS 포트와 연관 된다. PT-RS 포트 1는 패널 2가 전송하는 DM-RS 포트 세 개중 하나와 연관 되며 DCI내 PT-RS 대 DM-RS 연관 필드(2bit 모두 사용)를 통해 지시된다.
6) RI1=3, RI2=1 인 경우, PT-RS 포트 1는 패널 2이 전송하는 한 개의 DM-RS 포트와 연관 된다. PT-RS 포트 0는 패널 1가 전송하는 DM-RS 포트 세 개중 하나와 연관 되며 DCI내 PT-RS 대 DM-RS 연관 필드(2bit 모두 사용)를 통해 지시된다.
위 제안에서 2비트 크기의 PT-RS 대 DM-RS 연관 필드는 (RI1, RI2) 조합에 따라 다르게 해석된다. 즉, (1,2), (2,1), (2,2)인 경우 각 PT-RS에 대한 DM-RS 연관 지시를 위해 1비트씩 사용하게 되지만, (1,3), (3,1)인 경우 3 레이어를 전송하는 패널에 대한 PT-RS 지시를 위해 2비트를 모두 사용한다.
최대 PT-RS 개수가 2로 설정되더라도 단일 패널을 이용한 PUSCH 전송이 되면 PT-RS 개수는 1개로 설정된다. 예를 들어, SRS 자원 세트 지시자가 00 또는 01로 설정된 경우 STxMP 전송이 아닌 단일 패널 전송을 폴백 (fallback)할 수 있으며, 이 경우 PT-RS 개수를 1개로 설정되고, 지시된 DM-RS 포트들 중 하나와 PT-RS가 PT-RS 대 DM-RS 연관 필드를 통해 연관된다.
종래의 M-TRP PUSCH 반복 전송, 보다 구체적으로 3GPP NR 표준 릴리즈 17의 M-TRP PUSCH 반복 전송과의 호환성을 위해 반복 횟수가 1인 경우 본 발명을 적용하고, 반복 횟수가 2 이상일 경우 3GPP NR 표준 릴리즈 17 방식으로 PT-RS 대 DM-RS 연관을 지시할 수 있다.
또는, 한 전송 기회 (TO)에서 두 패널을 이용하여 PUSCH 전송을 수행하는 STxMP와 여러 TO에 걸쳐 동일한 TB가 전송되는 TDM 반복 전송을 함께 적용하기 위하여, 새로운 지시자를 정의하고, 해당 지시자가 1이면 two SRS 자원 세트를 단일 TO에 맵핑하고 이를 여러 TO에 반복 적용하여 PUSCH 전송을 함으로서 반복 전송을 수행하고, 해당 지시자가 0이면 한 TO에 하나의 SRS 자원 세트만 맵핑 (즉, 3GPP NR 표준 릴리즈 17의 M-TRP PUSCH 전송 방식을 적용)하도록 할 수도 있다. 더 나아가 4 TRP를 목표로 4개의 SRI/TPMI를 지시하고, 그 중 2개의 SRI/TPMI를 페어링(pairing)하여 2 페어(pair)가 지시될 수 있으며 각 TO에 페어를 번갈아 적용하도록 할 수 있다.
SDM STxMP와 나머지 STxMP 기법 (즉, SFN STxMP, FDM STxMP) 중 한가지를 동적으로 (dynamically) 기지국이 UE에게 지시해주기 위해서 또는 SDM STxMP와 기존 M-TRP 반복 전송 중 한가지를 동적으로 기지국이 UE에게 지시해주기 위해서 PUSCH의 랭크(rank)를 이용할 수 있다. SDM STxMP는 PUSCH 랭크가 2이상으로 설정되어야 하므로 랭크가 2 이상인지 아닌지에 따라 SDM STxMP와 나머지 STxMP 기법들을 구분할 수 있다. 이를 위해 나머지 STxMP 기법들은 랭크 1로만 전송되어야 하는 제한이 발생한다.
한편, SDM STxMP 와 SFN STxMP 간의 동적 스위칭 (dynamic switching)이 MAC CE 또는 DCI를 통해 가능한 경우 다음 방식을 고려할 수 있다.
최대 PT-RS 개수가 2 (또는 2 이상)로 RRC 시그널링을 통하여 설정되었을 때, SDM STxMP에서는 2개 (또는 2 이상)의 PT-RS 포트가 이용되지만, SFN STxMP 에서는 1개의 PT-RS 포트 (즉, PT-RS 포트 0)만 이용한다. 즉, STxMP 기법에 따라서 실제로 사용하는 PT-RS 포트 개수가 결정되는 것을 제안한다. SFN STxMP 에서는 다수 패널이 동일 DM-RS 포트를 전송한다. 따라서, PT-RS 포트가 어떤 DM-RS 포트와 연관되더라도 PT-RS 포트는 두 패널 모두와 연관된다. 따라서 패널 별로 PT-RS 포트를 따로 설정할 수 없으며 그 결과 하나의 PT-RS 포트면 충분하다.
또한, SDM STxMP 전송 모드가 RRC 시그널링으로 enable된 UE에 대해 최대 PT-RS 개수가 2로 설정되더라도, 단일 패널 또는 단일 SRS 자원 세트를 이용한 PUSCH 전송이 되면 PT-RS 개수는 1개로 설정된다.
예를 들어 SRS 자원 세트 지시자가 00 또는 01이고, SRS 자원 세트 지시자로 선택된 SRS 자원 세트에 대응하는 코드북의 CSR (codebook subset restriction)이 fullyAndPartialAndNonCoherent라면, UE는 최대 PT-RS 개수가 2로 설정된 것을 무시하고 최대 PT-RS 개수를 1 가정하여 (즉, PT-RS 포트의 개수를 1로 가정하여) 상향링크 스케줄링 DCI의 PT-RS 대 DM-RS 연관 필드를 해석한다. 다시 말해, UE는 최대 PT-RS 개수가 2로 설정된 것을 무시하고 아래 표 6 내지 표 8을 이용하여 PT-RS 대 DM-RS 연관 필드를 해석한다. 이는 CSR이 fullyAndPartialAndNonCoherent인 코드북이라면, 모든 PUSCH 안테나 포트들의 가간섭성이 맞기 때문에 하나의 PT-RS로 위상 추적 (phase tracking)이 가능하기 때문이다.
SRS 자원 세트에 대응하는 코드북이란 SRS 자원 세트 0에 연결된 TPMI 필드 (예를 들어, 첫 번째 TPMI 필드)와 SRS 자원 세트 1에 연결된 TPMI 필드 (예를 들어, 두 번째 TPMI 필드)가 이용하는 코드북을 의미할 수 있다.
또 다른 예로, SRS 자원 세트 지시자가 00 또는 01인 경우 그리고 UE가 UE capability로 완전 가간섭성 (full coherency)를 지원하는 것을 보고하였다면, UE는 최대 PT-RS 개수가 2로 설정된 것을 무시하고, 최대 PT-RS 개수를 1로 가정 (즉, PT-RS 포트 개수를 1로 가정)하고 상향링크 스케줄링 DCI의 PT-RS 대 DM-RS 연관 필드를 해석한다. 다시 말해, UE는 최대 PT-RS 개수가 2로 설정된 것을 무시하고, 표 6 내지 도 8을 이용하여 PT-RS 대 DM-RS 연관 필드를 해석한다. 이는 SRS 자원 세트 지시자가 지시한 SRS 자원 세트의 SRS 자원은 SRS 안테나 포트들 간 가간섭성이 보장되기에 하나의 PT-RS로 위상 추적 (phase tracking)이 가능하기 때문이다.
상기 제안에서 UE는 최대 PT-RS 개수가 2로 설정된 것을 무시하고, 최대 PT-RS 개수를 1로 가정하거나 PT-RS 포트의 개수를 1로 가정하여 상향링크 스케줄링 DCI의 PT-RS 대 DM-RS 연관 필드를 해석한다. 즉, UE는 최대 PT-RS 개수가 2로 설정된 것을 무시하고 Table 7.3.1.1.2-25를 이용하여 PT-RS 대 DM-RS 연관 필드를 해석한다. 동일 의미로 UE는 지시된 모든 PUSCH DM-RS 포트들이 PT-RS 포트 0를 공유한다고 가정하게 된다.
또는 SDM STxMP 전송 모드가 RRC 시그널링으로 enable된 UE에 대해 SDM STxMP 전송이 지시되면 (예를 들어, UL DCI에 설정된 SRS 자원 세트 지시자 필드가 10 또는 11이면서 PUSCH 반복 횟수가 1 또는 0으로 설정된 경우 또는 UL DCI에 설정된 SRS 자원 세트 지시자 필드가 10 또는 11인 경우), 그 UE는 RRC 시그널링으로 설정된 최대 PT-RS 개수를 무시하고 최대 PT-RS 개수를 2로 가정하고 또는 PT-RS 개수의 개수를 2로 가정하고 상향링크 스케줄링 DCI의 PT-RS 대 DM-RS 연관 필드를 해석한다. 구체적으로, UE는 NCB PUSCH와 CB PUSCH에 대해 각각 다음 동작을 수행한다.
NCB PUSCH 전송 시에는 PT-RS의 개수를 2로 가정하고, 첫 번째 SRI 필드가 지시한 SRS 자원 세트 0의 SRS 자원들 및 그 SRS 자원들에 해당하는 DM-RS 포트들이 PT-RS 포트 0를 공유(share)한다고 가정하고, 두 번째 SRI 필드가 지시한 SRS 자원 세트 0의 SRS 자원들 및 그 SRS 자원들 에 해당하는 DM-RS 포트들이 PT-RS 포트 1를 공유한다고 가정한다.
CB PUSCH 전송 시에는 PT-RS의 개수를 2로 가정하고, 첫 번째 SRI 필드가 지시한 SRS 자원 세트 0의 SRS 자원 및 그 SRS 자원의 안테나 포트에 첫 번째 TPMI 필드가 지시한 PMI를 적용하여 생성한 DM-RS 포트들이 PT-RS 포트 0를 공유한다고 가정하고 두 번째 SRI 필드가 지시한 SRS 자원 세트 1의 SRS 자원 및 그 SRS 자원의 안테나 포트에 두 번째 TPMI 필드가 지시한 PMI를 적용하여 생성한 DM-RS 포트들이 PT-RS 포트 1를 공유한다고 가정한다.
반면 SDM STxMP 전송 모드가 RRC 시그널링으로 enable된 UE에 대해 S-TRP 전송이 지시되면 (예를 들어, UL DCI에 설정된 SRS 자원 세트 지시자 필드가 00 또는 01이 설정되면) 그 UE는 RRC 설정된 최대 PT-RS 개수에 따라 기존 방식대로 PT-RS와 DM-RS의 연관을 정의한다.
도 7은 본 개시에 따라 STxMP (simultaneous transmission across multiple panels)를 위한 PT-RS를 송신하기 위한 순서도이다. 우선 도 7에서는 UE가 BS로부터 PT-RS의 최대 개수가 2라는 정보를 사전에 수신하여 STxMP 를 수행하는 UE라는 것을 가정한다.
도 7을 참조하면, 단계 A05에서 UE는 BS로부터 STxMP를 위한 DCI를 수신한다. 특히, SDM STxMP PUSCH 전송을 지시하기 위해 해당 DCI에 포함된 2비트 크기의 SRS 자원 세트 지시자는 10 또는 11이 설정되며, 별도의 지시자를 통해 SDM STxMP PUSCH가 enable 되거나 특정 조건에 의해 SDM STxMP PUSCH가 enable될 수 있다.
다음으로, 단계 A10에서 UE는 상기 DCI에 포함된 PT-RS 포트 대 DM-RS 포트의 연관 정보를 확인한다. 특히, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고, 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 확인한다.
바람직하게는, 상기 제 1 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 첫 번째 비트이고, 상기 제 2 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 두 번째 비트이다.
또한, 단계 A10을 위하여, UE는 BS로부터 상기 제 1 SRI 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보 및 상기 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보를 사전에 RRC 시그널링 등으로 수신하는한다.
이후, 단계 A15에서 UE는 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신한다.
마지막으로, 단계 A20에서 UE는 BS로 제 1 PT-RS와 연관된 제 1 DM-RS에 기반하여 제 1 PUSCH 송신하고, 제 2 PT-RS와 연관된 제 2 DM-RS에 기반하여 제 2 PUSCH 송신한다. 특히, 제 1 DM-RS 포트는 제 1 패널 상에서 송신되는 제 1 PUSCH와 연관되고, 제 2 DM-RS 포트는 제 2 패널 상에서 송신되는 제 2 PUSCH와 연관되며, 상기 제 1 PUSCH와 상기 제 2 PUSCH는 상기 BS로 동일한 시간 및 동일한 주파수 자원을 통하여 송신된다.
본 개시에서 PT-RS 개수란 PT-RS 포트의 개수를 의미한다.
본 개시에서 복수의 패널들은, PUSCH의 경우 CB/NCB 용도로 설정된 복수의 SRS 자원 세트에 해당하거나, 복수의 SRI 필드가 지시한 SRS 자원에 해당할 수 있다. 예를 들어, 패널 1 및 패널 2는 각각 SRS 자원 세트 0 및 SRS 자원 세트 1에 해당할 수 있다. 또는 패널 1 및 패널 2는 첫 번째 SRI 필드가 지시한 SRS 자원 및 두 번째 SRI 필드가 지시한 SRS 자원에 해당할 수 있다 또는, 복수의 패널들은, 복수의 TPMI 필드가 지시한 PMI 에 해당할 수 있다. 예를 들어, 패널 1은 첫 번째 TPMI 필드가 지시한 PMI에 해당하고, 패널 2는 두 번째 TPMI 필드가 지시한 PMI에 해당할 수 있다. 또한, PUCCH의 경우 PUCCH 자원에 설정된 복수의 Spatial relation info 에 해당할 수도 있다. 예를 들어, 패널 1은 Spatial relation info 0에 해당하고, 패널 2 Spatial relation info 1에 해당할 수 있다. 또는 패널의 직접적인 지시를 위해 표준에 패널 ID가 도입될 수 있다. 또는 복수의 패널은 통합(unified) TCI 프레임워크(framework)을 이용하여 지시된 복수의 상향링크 TCI 스테이트에 해당할 수 있다.
또는 패널에 대한 정의를 가간섭성(coherency)을 가지는 안테나 포트 그룹으로 정의 될 수 있다. 예를 들어, 기존 표준에서 4 Tx 코드북이 설정된 경우, PUSCH 안테나 포트 (1000,1002)을 패널 1로 정의하고, (1001, 1003)을 패널 2로 정의할 수 있다. 향후 8 Tx 코드북이 도입된 경우에도 이와 유사하게 PUSCH 안테나 포트 (1000,1002, 1004, 1006)을 패널 1로 정의하고, (1001, 1003, 1005, 1007)을 패널 2로 정의할 수 있다. NCB PUSCH의 경우 SRS 자원 별로 PT-RS 포트 인덱스가 설정될 수 있는데, 동일 PT-RS 포트 인덱스가 설정된 SRS 자원들은 동일 패널에서 전송되는 것으로 가정할 수 있다
상기 제안은 설명의 편의를 위해 두 개의 STxMP 패널, 두 개의 상향링크 TCI 스테이트와 UL M-TRP 전송을 위해 설정된 두 개의 Spatial relation info/RS 및 PC (Power Control) 세트를 가정하였으나 이를 N1, N2, N3개로 각각 확장하여 적용할 수 있다.
상기 제안들의 조합/결합을 통해 최종 적용될 수 있다.
상기 제안은 PUSCH를 기준으로 설명하였으나 PUCCH/PDSCH/PDCCH 등 다른 채널에 대해서도 확장 적용할 있다.
상기 제안의 적용 유무, 제안에서 사용하는 인자들은 기지국이 UE에게 DCI/MAC-CE/RRC 시그널링을 통해 지시하거나 UE가 기지국에게 보고할 수 있다.
도 8은 본 개시가 적용 가능한 통신 시스템(1)을 예시한다.
도 8을 참조하면, 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(예를 들어, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예를 들어, V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(예를 들어, relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 9은 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 9을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 8의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 10은 본 개시에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 8 참조).
도 10을 참조하면, 무선 기기(100, 200)는 도 9의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 9의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 9의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 8, 100a), 차량(도 8, 100b-1, 100b-2), XR 기기(도 8, 100c), 휴대 기기(도 8, 100d), 가전(도 8, 100e), IoT 기기(도 8, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 8, 400), 기지국(도 8, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 10에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 11는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 10은 본 개시에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 8 참조).
도 10을 참조하면, 무선 기기(100, 200)는 도 9의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 9의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 9의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 8, 100a), 차량(도 8, 100b-1, 100b-2), XR 기기(도 8, 100c), 휴대 기기(도 8, 100d), 가전(도 8, 100e), IoT 기기(도 8, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 8, 400), 기지국(도 8, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 10에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 11는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 11를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 10의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(예를 들어, 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 개시의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시예를 구성하는 것도 가능하다. 본 개시의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 개시는 본 개시의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.
Claims (18)
- 무선 통신 시스템에서 UE (User Equipment)가 수행하는 방법으로서,BS (Base Station)로부터 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 수신하는 단계; 및상기 DCI에 포함된 PT (Phase Tracking)-RS (Reference Signal) 포트 (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신하는 단계를 포함하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 하는,방법.
- 제 1 항에 있어서,상기 BS로부터 상기 PT-RS의 최대 개수가 2라는 정보를 수신하는 단계를 더 포함하는 것을 특징으로 하는,방법.
- 제 1 항에 있어서,상기 제 1 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 첫 번째 비트이고,상기 제 2 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 두 번째 비트인 것을 특징으로 하는,방법.
- 제 1 항에 있어서,상기 제 1 SRI 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보 및 상기 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보를 상기 BS로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는,방법.
- 제 1 항에 있어서,제 1 DM-RS 포트는 제 1 패널 상에서 송신되는 제 1 PUSCH와 연관되고,제 2 DM-RS 포트는 제 2 패널 상에서 송신되는 제 2 PUSCH와 연관되며,상기 제 1 PUSCH와 상기 제 2 PUSCH는 상기 BS로 동일한 시간 및 동일한 주파수 자원을 통하여 송신되는 것을 특징으로 하는,방법.
- 무선 통신 시스템에서 UE (User equipment)로서,적어도 하나의 송수신기;적어도 하나의 프로세서; 및상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은:BS (Base Station)로부터 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 수신하는 단계; 및상기 DCI에 포함된 PT (Phase Tracking)-RS (Reference Signal) 포트 (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신하는 단계를 포함하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 하는,UE.
- 제 6 항에 있어서,상기 동작들은,상기 BS로부터 상기 PT-RS의 최대 개수가 2라는 정보를 수신하는 단계를 더 포함하는 것을 특징으로 하는,UE.
- 제 6 항에 있어서,상기 제 1 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 첫 번째 비트이고,상기 제 2 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 두 번째 비트인 것을 특징으로 하는,UE.
- 제 6 항에 있어서,상기 동작들은,상기 제 1 SRI 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보 및 상기 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보를 상기 BS로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는,UE.
- 제 6 항에 있어서,제 1 DM-RS 포트는 제 1 패널 상에서 송신되는 제 1 PUSCH와 연관되고,제 2 DM-RS 포트는 제 2 패널 상에서 송신되는 제 2 PUSCH와 연관되며,상기 제 1 PUSCH와 상기 제 2 PUSCH는 상기 BS로 동일한 시간 및 동일한 주파수 자원을 통하여 송신되는 것을 특징으로 하는,UE.
- 무선 통신 시스템에서 프로세싱 장치에 있어서,적어도 하나의 프로세서; 및상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 UE (User Equipment)를 위한 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은:BS (Base Station)로부터 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 수신하는 단계; 및상기 DCI에 포함된 PT (Phase Tracking)-RS (Reference Signal) 포트 (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신하는 단계를 포함하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 하는,프로세싱 장치.
- 컴퓨터 판독가능한 저장 매체에 있어서,상기 저장 매체는 실행될 때 적어도 하나의 프로세서로 하여금 UE (User Equipment)를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 프로그램 코드를 저장하고, 상기 동작들은:BS (Base Station)로부터 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 수신하는 단계; 및상기 DCI에 포함된 PT (Phase Tracking)-RS (Reference Signal) 포트 (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 BS로 제 1 PT-RS 포트 상에서 제 1 PT-RS를 송신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 송신하는 단계를 포함하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 하는,저장매체.
- 무선 통신 시스템에서 BS (Base Station)가 수행하는 방법으로서,UE (User Equipment)로 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 송신하는 단계; 및상기 DCI에 포함된 (Phase Tracking)-RS (Reference Signal) (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 UE로부터 제 1 PT 포트 상에서 제 1 PT-RS를 수신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 수신하는 단계를 포함하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 하는,방법.
- 제 13 항에 있어서,상기 UE로 상기 PT-RS의 최대 개수가 2라는 정보를 송신하는 단계를 더 포함하는 것을 특징으로 하는,방법.
- 제 13 항에 있어서,상기 제 1 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 첫 번째 비트이고,상기 제 2 정보는 상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 두 번째 비트인 것을 특징으로 하는,방법.
- 제 13 항에 있어서,상기 제 1 SRI 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보 및 상기 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들에 관한 정보를 상기 UE로 송신하는 단계를 더 포함하는 것을 특징으로 하는,방법.
- 제 13 항에 있어서,제 1 DM-RS 포트는 제 1 패널 상에서 송신되는 제 1 PUSCH와 연관되고,제 2 DM-RS 포트는 제 2 패널 상에서 송신되는 제 2 PUSCH와 연관되며,상기 제 1 PUSCH와 상기 제 2 PUSCH는 상기 UE로부터 동일한 시간 및 동일한 주파수 자원을 통하여 수신되는 것을 특징으로 하는,방법.
- 무선 통신 시스템에서 BS (Base Station)로서,적어도 하나의 송수신기;적어도 하나의 프로세서; 및상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은:UE (User Equipment)로 STxMP (simultaneous transmission across multiple panels)을 위한 DCI (Downlink Control Information)를 송신하는 단계; 및상기 DCI에 포함된 (Phase Tracking)-RS (Reference Signal) (port) 대 DM (Demodulation)-RS 포트의 연관 정보에 기반하여, 상기 UE로부터 제 1 PT 포트 상에서 제 1 PT-RS를 수신하고, 제 2 PT-RS 포트 상에서 제 2 PT-RS를 수신하는 단계를 포함하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 1 정보는 제 1 SRI (Sounding reference signal Resource Indicator) 및 제 1 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 1 PT-RS 포트와 연관된 제 1 DM-RS 포트를 지시하고,상기 PT-RS 포트 대 DM-RS 포트의 연관 정보의 제 2 정보는 제 2 SRI 및 제 2 프리코딩 정보 중 적어도 하나에 대응하는 DM-RS 포트들 중 상기 제 2 PT-RS 포트와 연관된 제 2 DM-RS 포트를 지시하는 것을 특징으로 하는,BS.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20220097239 | 2022-08-04 | ||
KR10-2022-0097239 | 2022-08-04 | ||
KR10-2022-0121989 | 2022-09-26 | ||
KR20220121989 | 2022-09-26 | ||
KR10-2023-0013727 | 2023-02-01 | ||
KR20230013727 | 2023-02-01 | ||
KR20230021540 | 2023-02-17 | ||
KR10-2023-0021540 | 2023-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024029808A1 true WO2024029808A1 (ko) | 2024-02-08 |
Family
ID=89849283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/010649 WO2024029808A1 (ko) | 2022-08-04 | 2023-07-24 | 무선 통신 시스템에서 멀티 패널 동시 전송을 위한 위상 추적 참조 신호 송신 방법 및 이를 위한 장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024029808A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180100067A (ko) * | 2016-11-09 | 2018-09-06 | 엘지전자 주식회사 | 무선 통신 시스템에서 위상 잡음 제거를 위한 ptrs의 파워 부스팅 레벨 결정 방법 및 그 장치 |
KR20190097265A (ko) * | 2016-12-28 | 2019-08-20 | 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 | 참고신호의 송신 방법 및 위상잡음의 결정 방법 및 장치 |
US10419087B2 (en) * | 2016-08-05 | 2019-09-17 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving phase compensation reference signal |
KR102229986B1 (ko) * | 2017-04-24 | 2021-03-19 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치 |
KR20220103569A (ko) * | 2021-01-15 | 2022-07-22 | 삼성전자주식회사 | 네트워크 협력 통신 시스템을 위한 상향링크 위상 추적 기준 신호 송수신 방법 및 장치 |
-
2023
- 2023-07-24 WO PCT/KR2023/010649 patent/WO2024029808A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10419087B2 (en) * | 2016-08-05 | 2019-09-17 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving phase compensation reference signal |
KR20180100067A (ko) * | 2016-11-09 | 2018-09-06 | 엘지전자 주식회사 | 무선 통신 시스템에서 위상 잡음 제거를 위한 ptrs의 파워 부스팅 레벨 결정 방법 및 그 장치 |
KR20190097265A (ko) * | 2016-12-28 | 2019-08-20 | 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 | 참고신호의 송신 방법 및 위상잡음의 결정 방법 및 장치 |
KR102229986B1 (ko) * | 2017-04-24 | 2021-03-19 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치 |
KR20220103569A (ko) * | 2021-01-15 | 2022-07-22 | 삼성전자주식회사 | 네트워크 협력 통신 시스템을 위한 상향링크 위상 추적 기준 신호 송수신 방법 및 장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020032558A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2022071755A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020067847A1 (ko) | Nr v2x에서 참조 신호에 기반하여 dtx를 판단하는 방법 및 장치 | |
WO2022154637A1 (ko) | 무선 통신 시스템에서 신호 송수신 방법 및 장치 | |
WO2020032757A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2020032670A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020167056A1 (ko) | 다중 전송 블록 스케줄링을 위한 하향링크 신호의 송수신 방법 및 이를 위한 장치 | |
WO2020226403A1 (ko) | 무선 통신 시스템에서 무선 신호를 송수신하는 방법 및 장치 | |
WO2019216727A1 (ko) | 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치 | |
WO2022154614A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2021033952A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020204496A1 (ko) | 무선 통신 시스템에서 무선 신호를 송수신하는 방법 및 장치 | |
WO2020204560A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2022154393A1 (ko) | 무선 통신 시스템에서 신호 송수신 방법 및 장치 | |
WO2022030991A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020032575A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2022030989A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020091212A1 (ko) | Nr v2x에서 그룹 기반 통신에서 피드백을 수신하는 방법 및 장치 | |
WO2022086254A1 (ko) | 무선 통신 시스템에서 신호 송수신 방법 및 장치 | |
WO2022154392A1 (ko) | 무선 통신 시스템에서 신호 송수신 방법 및 장치 | |
WO2024029808A1 (ko) | 무선 통신 시스템에서 멀티 패널 동시 전송을 위한 위상 추적 참조 신호 송신 방법 및 이를 위한 장치 | |
WO2024034972A1 (ko) | 무선 통신 시스템에서 dm-rs 설정 정보를 제공하는 방법 및 이를 위한 장치 | |
WO2023211163A1 (ko) | 무선 통신 시스템에서 신호 송수신 방법 및 장치 | |
WO2020032521A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2024034973A1 (ko) | 무선 통신 시스템에서 멀티 패널 동시 전송을 위한 송신 전력 제어 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23850315 Country of ref document: EP Kind code of ref document: A1 |