WO2024029228A1 - Sintered zirconia object - Google Patents
Sintered zirconia object Download PDFInfo
- Publication number
- WO2024029228A1 WO2024029228A1 PCT/JP2023/023396 JP2023023396W WO2024029228A1 WO 2024029228 A1 WO2024029228 A1 WO 2024029228A1 JP 2023023396 W JP2023023396 W JP 2023023396W WO 2024029228 A1 WO2024029228 A1 WO 2024029228A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sintered body
- zirconia sintered
- group element
- vanadium group
- concentration
- Prior art date
Links
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims abstract description 320
- 239000002344 surface layer Substances 0.000 claims abstract description 35
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 105
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 34
- 239000010955 niobium Substances 0.000 claims description 32
- 239000003381 stabilizer Substances 0.000 claims description 20
- 239000013078 crystal Substances 0.000 claims description 18
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 11
- 238000002441 X-ray diffraction Methods 0.000 claims description 8
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 claims description 8
- 229910003454 ytterbium oxide Inorganic materials 0.000 claims description 7
- 229940075624 ytterbium oxide Drugs 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 239000000843 powder Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 20
- 238000001035 drying Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 238000013507 mapping Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 238000010304 firing Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 238000009694 cold isostatic pressing Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000005548 dental material Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 238000004445 quantitative analysis Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000000177 wavelength dispersive X-ray spectroscopy Methods 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910000421 cerium(III) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- ZXGIFJXRQHZCGJ-UHFFFAOYSA-N erbium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Er+3].[Er+3] ZXGIFJXRQHZCGJ-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/818—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/822—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising rare earth metal oxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/824—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising transition metal oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
Definitions
- the present invention relates to a zirconia sintered body.
- This application claims priority based on Japanese Patent Application No. 2022-124979 filed on August 4, 2022, and the entire content of that application is incorporated herein by reference. There is.
- Zirconia sintered bodies with a small amount of yttria (Y 2 O 3 ) dissolved in solid solution are used as dental materials (for example, dentures) due to their high strength, toughness, and aesthetics. It is widely used as a biomaterial for products such as dental prosthetics, denture mill blanks, orthodontic brackets), etc.
- Patent Document 1 contains yttrium oxide and/or ytterbium oxide in a proportion of 3.5 mol% to 5.0 mol%, and contains niobium oxide and/or tantalum oxide in a proportion of 0.3 mol% to 1.5 mol%.
- a zirconia sintered body comprising: This zirconia sintered body has excellent fracture toughness, excellent translucency, and excellent hydrothermal deterioration resistance.
- Patent Documents 2 and 3 disclose techniques for distributing a desired compound in a zirconia cut object with high uniformity. Further, Patent Document 4 discloses a technique regarding a zirconia cut object with adjusted porosity.
- the present inventor is considering adding a vanadium group element to the zirconia sintered body to improve fracture toughness.
- a vanadium group element is contained in a zirconia sintered body, the coefficient of thermal expansion becomes high. That is, there is a trade-off relationship between the fracture toughness value and the coefficient of thermal expansion, and it is difficult to achieve both.
- the coefficient of thermal expansion of the zirconia sintered body increases, for example, when porcelain is baked on the surface of the zirconia sintered body (for example, when used as a dental material and colored), the zirconia sintered body and the porcelain may Problems such as cracking may occur due to a difference in thermal expansion coefficients.
- the present invention was made in view of the above-mentioned circumstances, and its main purpose is to provide a zirconia sintered body that has excellent fracture toughness on at least a portion of its surface and has a suppressed coefficient of thermal expansion. It is about providing.
- the zirconia sintered body disclosed herein contains zirconia and a vanadium group element, and the vanadium group element is unevenly distributed in at least a part of the surface layer. This makes it easier for stress-induced phase transformation to occur in the surface layer of the zirconia sintered body, thereby improving fracture toughness at the surface of the surface layer. Additionally, in general, when a zirconia sintered body contains a vanadium group element, the thermal expansion coefficient increases; Since the concentration of the elements is relatively low, an increase in the coefficient of thermal expansion can be suppressed. As a result, it is possible to improve the fracture toughness and suppress the coefficient of thermal expansion in at least a portion of the surface.
- the concentration of the vanadium group element at the surface layer where the vanadium group element is unevenly distributed is the lowest concentration of the vanadium group element in the depth direction of the surface.
- the vanadium group element is not contained in the portion where the concentration of the vanadium group element is 1.5 times or more higher than the concentration of the vanadium group element in the portion, or where the concentration of the vanadium group element is the lowest. This achieves a higher level of improvement in fracture toughness and suppression of the coefficient of thermal expansion.
- the tetragonal c/a axis length ratio at the surface of the surface layer where the vanadium group elements are unevenly distributed obtained from the X-ray diffraction pattern, and the depth direction of the surface layer.
- the difference between the c/a axis length ratio of the tetragonal crystal and the portion where the concentration of the vanadium group element is lowest is 0.001 or more. This achieves a higher level of improvement in fracture toughness and suppression of the coefficient of thermal expansion.
- niobium (Nb) may be included as the vanadium group element.
- zirconia sintered body disclosed herein may further contain yttrium oxide and/or ytterbium oxide as a stabilizer. Further, in one embodiment of the zirconia sintered body disclosed herein, when the total of the zirconia and the stabilizer is 100 mol%, the concentration of the stabilizer may be 3 mol% or more and 6 mol% or less.
- the fracture toughness value of at least a part of the surface of the surface layer where the vanadium group element is unevenly distributed is 4.5 MPa ⁇ m or more, and the average fracture toughness value at 25°C to 500°C is The coefficient of linear expansion may be 10 ⁇ 10 ⁇ 6 /K or less.
- FIG. 1 is a Nb mapping image (magnification: 100) of a cut surface of the zirconia sintered body of Example 1.
- FIG. 2 is a Nb mapping image (magnification: 100) of the cut surface of the zirconia sintered body of Reference Example 1.
- FIG. 3 is a graph showing the Nb 2 O 5 concentration distribution of the zirconia sintered body based on elemental mapping.
- FIG. 4 is a graph showing the Nb 2 O 5 concentration distribution of the zirconia sintered body based on quantitative analysis of all elements.
- FIG. 5 is a graph showing the c/a axis length ratio of the tetragonal crystal in the cut plane of the zirconia sintered body of Example 1.
- FIG. 6 is a graph showing fracture toughness values in each example.
- FIG. 7 is a graph showing the average coefficient of linear expansion in each example.
- the zirconia sintered body disclosed herein contains at least zirconia (ZrO 2 ) and a vanadium group element. Moreover, the zirconia sintered body may further contain a stabilizer.
- the zirconia sintered body contains zirconia as a main component.
- "containing zirconia as a main component” means that zirconia accounts for the largest proportion of the compounds constituting the zirconia sintered body.
- the proportion of zirconia is, for example, 70% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more.
- a high proportion of zirconia can improve the strength, toughness, etc. of the zirconia sintered body.
- vanadium group elements examples include vanadium (V), niobium (Nb), and tantalum (Ta).
- the zirconia sintered body contains at least one of V, Nb, and Ta.
- the vanadium group element is contained in the zirconia sintered body, for example, as an oxide.
- oxides containing vanadium group elements include X 2 O 5 (X represents a vanadium group element).
- vanadium group elements are dissolved in zirconia and increase the c/a axis length ratio (tetragonality) of the tetragonal crystal of the zirconia sintered body (that is, distort the crystal). This makes it easier for stress-induced phase transformation (phase transformation from tetragonal to monoclinic) to occur, thereby improving the fracture toughness value of the zirconia sintered body.
- vanadium group elements are unevenly distributed at least in a part of the surface layer of the zirconia sintered body.
- the vanadium group element may be unevenly distributed (exist) in the surface layer in a range of 2% or more of the surface area, for example, 5% or more, 10% or more, 20% or more, Vanadium group elements may be unevenly distributed in the surface layer in a range of 30% or more, 50% or more, 70% or more, 90% or more, or 100% (that is, the entire surface of the zirconia sintered body).
- the concentration of vanadium group elements is relatively low in parts other than the surface layer of the zirconia sintered body (for example, inside the surface layer of the zirconia sintered body), so that the concentration of vanadium group elements is not increased. It is possible to suppress an increase in the coefficient of thermal expansion that may occur accordingly.
- the surface layer of the zirconia sintered body exhibits excellent fracture toughness, and the increase in the coefficient of thermal expansion inside the zirconia sintered body can be suppressed, resulting in improved fracture toughness and thermal expansion. It is estimated that this will result in a reduction in the rate. Note that this mechanism is an estimate and does not limit the present technology in any way.
- the concentration of the vanadium group element at the surface layer where the vanadium group element is unevenly distributed is the concentration of the vanadium group element at the part where the concentration of the vanadium group element is the lowest in the depth direction of the surface. for example, 1.5 times or more, 2 times or more, 5 times or more, 10 times or more, 20 times or more, or 30 times or more. Note that in the portion where the concentration of the vanadium group element is the lowest, the concentration of the vanadium group element may be 0 mol % (that is, no vanadium group element is included). As a result, a zirconia sintered body having superior fracture toughness and a suppressed coefficient of thermal expansion is realized.
- the "depth direction” refers to a direction from a plane in contact with the surface of the zirconia sintered body and the point of contact with the surface, perpendicular to the plane, toward the inside of the zirconia sintered body. say.
- the concentration of vanadium group elements on the surface layer of the zirconia sintered body where vanadium group elements are unevenly distributed is, for example, 0.1 mol% or more in terms of X 2 O 5 (X represents a vanadium group element), and is preferably is 0.3 mol% or more, more preferably 0.5 mol% or more, even more preferably 0.7 mol% or more, particularly preferably 0.9 mol% or more.
- a high concentration of vanadium group elements tends to increase the tetragonal crystallinity of the zirconia sintered body (that is, the c/a axis length ratio of the tetragonal crystal increases).
- the concentration of vanadium group elements on the surface of the zirconia sintered body is, for example, 10 mol % or less in terms of X 2 O 5 (X represents a vanadium group element), and 5 mol %. % or less, 3 mol % or less, or 2 mol % or less.
- concentration of vanadium group elements in the zirconia sintered body can be measured by scanning electron microscopy-wavelength dispersive X-ray spectroscopy (SEM-WDX).
- the concentration of vanadium group elements in the part where the concentration of vanadium group elements in the depth direction from the surface of the zirconia sintered body is lowest is calculated as X 2 O 5 (X represents a vanadium group element), for example, less than 0.1 mol%, 0.05 mol% or less, 0.03 mol% or less, 0.01 mol% or less, or 0 mol% (that is, the vanadium group element (not included).
- X represents a vanadium group element
- the increase in the coefficient of thermal expansion can be suppressed by having a low concentration of vanadium group elements or by not including vanadium group elements inside the zirconia sintered body.
- the region from the surface of the surface layer where vanadium group elements are unevenly distributed to the part where the concentration of vanadium group elements is lowest in the depth direction of the surface is equally divided into two regions, a surface side region and an inner side region.
- the concentration of vanadium group elements in the surface side region is higher than the concentration of vanadium group elements in the inner side region.
- the concentration of vanadium group elements in the surface side region of the zirconia sintered body may be 1.5 times or more, 2 times or more, 5 times higher than the concentration of vanadium group elements in the inner side region of the zirconia sintered body. It may be higher than 10 times, 20 times or more, or 30 times or more.
- the vanadium group element does not need to be included in the inner region.
- the "surface side region” refers to a region closer to the surface than the midpoint of the distance from the surface of the zirconia sintered body where vanadium group elements are unevenly distributed to the part where the concentration of vanadium group elements is lowest in the depth direction of the surface. It refers to the area on the near side. Furthermore, the "inner region” refers to the region farther from the surface than the midpoint of the distance from the surface of the zirconia sintered body to the part with the lowest concentration of vanadium group elements in the depth direction of the surface. means.
- the tetragonal c/a axis length ratio (hereinafter also referred to as "tetragonality A") at the surface layer where vanadium group elements are unevenly distributed in the zirconia sintered body is the concentration of vanadium group elements in the depth direction of the surface.
- the difference between tetragonal crystallinity A and tetragonal crystallinity B can be, for example, 0.001 or more, 0.00125 or more, 0.0015 or more, or 0.00175 or more.
- tetragonal crystallinity The higher the value of tetragonal crystallinity, the more likely phase transformation to monoclinic crystal occurs when stress is applied, and the fracture toughness value can be improved.
- a high value of tetragonal crystallinity can increase the coefficient of thermal expansion. Therefore, as mentioned above, the large difference between the tetragonal crystallinity A and the tetragonal crystallinity B makes it possible to improve the fracture toughness in the surface layer of the zirconia sintered body and suppress the increase in the coefficient of thermal expansion. can.
- the "tetragonal c/a axis length ratio" is determined by measuring the profile of the X-ray diffraction pattern in the cross section of the zirconia sintered body using integrated powder X-ray analysis software: PDXL2 (manufactured by Rigaku Software Co., Ltd.). be able to.
- the software automatically determines the peak position from the explanatory profile.
- the c/a axis length ratio is calculated from the d value. In this way, the c/a axis length ratio of the tetragonal crystal can be obtained.
- tetragonal crystallinity A is not particularly limited, but may be 1.0165 or more, 1.0170 or more, 1.0175 or more, or 1.018 or more. The higher the tetragonal crystallinity, the more likely phase transformation to monoclinic crystal occurs when stress is applied, and the fracture toughness value can be improved. Further, although not particularly limited, the value of tetragonal crystallinity A may be, for example, 1.02 or less, 1.019 or less, or 1.0185 or less.
- tetragonal crystallinity B is not particularly limited, but may be, for example, 1.012 or more, 1.013 or more, or 1.014 or more. Further, the tetragonal crystallinity B is not particularly limited, but may be, for example, less than 1.017 or 1.0168 or less. When the tetragonal crystallinity B is within the above range, an increase in the coefficient of thermal expansion can be suppressed.
- Examples of the stabilizer that can be included in the zirconia sintered body include yttrium oxide ( Y2O3 ), ytterbium oxide ( Yb2O3 ), cerium oxide ( Ce2O3 ) , and erbium oxide ( Er2O3 ) . ), oxides containing alkaline earth metal elements such as calcium oxide (CaO) and magnesium oxide (MgO), and oxides containing other transition metal elements. Among these, yttrium oxide and ytterbium oxide are preferably used.
- the proportion of tetragonal crystals in the zirconia sintered body can be increased, and the fracture toughness value and strength can be improved.
- one type of stabilizer may be contained alone, or two or more types may be contained.
- all of the stabilizers may be solid-dissolved in the zirconia, or a non-solid-dissolved stabilizer that is not solid-dissolved in the zirconia may be included.
- the concentration of the stabilizer is not particularly limited, but when the total of zirconia and the stabilizer is 100 mol%, for example, it is 1.5 mol% or more, 2 mol% or more, 2.5 mol%. or more, or 3 mol% or more. Further, the concentration of the stabilizer may be, for example, 6 mol% or less, 5 mol% or less, 4.5 mol% or less, 4.2 mol% or less, or 3.5 mol% or less. Note that when yttrium oxide and/or ytterbium oxide is included as a stabilizer, the above concentration range of the stabilizer is particularly preferably employed.
- the zirconia sintered body may further contain aluminum oxide (alumina: Al 2 O 3 ).
- Aluminum oxide can lower the firing temperature for producing zirconia sintered bodies. Further, in a zirconia sintered body containing alumina, abnormal grain growth is suppressed, so that the strength and translucency of the zirconia sintered body can be improved. Furthermore, since the low temperature deterioration resistance can be improved, the strength and translucency of the zirconia sintered body can be maintained for a long period of time. On the other hand, since alumina remains as an impurity inside the sintered body and acts as a light scattering factor, the alumina content should not be too high.
- the content of alumina is preferably 0.30% by mass or less, 0.15% by mass or less, 0.1% by mass or less, or 0. It can be up to .05% by weight.
- the zirconia sintered body may contain a conventionally known coloring agent to the extent that the effects of the technology disclosed herein are not significantly impaired.
- the colorant include transition metal elements, lanthanoid rare earth elements, and the like. Examples of such elements include iron, nickel, cobalt, manganese, praseodymium, neodymium, europium, gadolinium, and erbium.
- the amount of the colorant may be, for example, 5% by mass or less, 1% by mass or less, and 0.5% by mass or less based on the entire zirconia sintered body.
- the zirconia sintered body may contain elements that may be unavoidably mixed. Examples include hafnium, silicon, titanium, and the like. The total content of these elements is preferably 2.5% by mass or less, more preferably 2% by mass or less, for example 1.8% by mass or less in terms of oxide, based on the entire zirconia sintered body. It would be good if it were.
- the shape of the zirconia sintered body is not particularly limited, but includes, for example, a columnar shape such as a disc, a cylinder, or a prismatic shape; a polyhedral shape such as a rectangular parallelepiped, a cube, or a polygon; a spherical shape; a rugby ball. It may have a shape or an irregular shape.
- the zirconia sintered body may be in the shape of a dental material, for example, a denture such as a denture for front teeth or a denture for back teeth, a denture mill blank, an orthodontic bracket, a dental prosthesis, a bridge, a crown, etc. .
- the shortest distance from the surface of the surface layer where vanadium group elements are unevenly distributed in the zirconia sintered body to the part of the surface where the concentration of vanadium group elements is lowest in the depth direction is not particularly limited, but is 1.5 mm. It is preferably 2 mm or more, 2.5 mm or more, or 3 mm or more. Thereby, it is possible to improve the fracture toughness in the surface layer portion of the zirconia sintered body and to suppress an increase in the coefficient of thermal expansion.
- the fracture toughness value of at least a part of the surface of the surface layer where vanadium group elements are unevenly distributed in the zirconia sintered body is, for example, 4.5 MPa ⁇ m or more, 6 MPa ⁇ m or more, 9 MPa ⁇ m or more, 10 MPa ⁇ m or more, It may be 11 MPa ⁇ m or more, or 12 MPa ⁇ m or more.
- the "fracture toughness value" in this specification refers to a value measured in accordance with the IF method specified in JIS R 1607:2015.
- the thermal expansion coefficient of the zirconia sintered body is evaluated using the average linear expansion coefficient at 25° C. to 500° C. measured according to JIS R 1618 as an index.
- the average linear expansion coefficient of the zirconia sintered body at 25° C. to 500° C. is, for example, 10 ⁇ 10 ⁇ 6 /K or less, and 9.9 ⁇ 10 ⁇ 6 /K or less, or 9.8 ⁇ 10 ⁇ 6 /K or less.
- the zirconia sintered body disclosed herein may include a forming process, a calcination process, a vanadium group element imparting process, a drying process, and a firing process.
- the manufacturing process including these steps is an example of manufacturing the zirconia sintered body disclosed herein, and does not limit the manufacturing method of the zirconia sintered body disclosed herein. Further, these steps may be omitted as necessary, and other steps may be included in an appropriate order.
- raw material powder for the zirconia sintered body disclosed herein is prepared.
- the raw material powder at least zirconia powder is prepared.
- the zirconia powder may be appropriately changed depending on the composition of the zirconia sintered body to be produced, and may be, for example, a partially stabilized zirconia powder containing a stabilizer in a proportion that can be included in the above-mentioned zirconia sintered body.
- the aluminum oxide powder may be mixed with the zirconia powder in a proportion that can be contained in the above-mentioned zirconia sintered body.
- the raw material powder may be used in its powder form, or may be prepared into granules by spray drying or the like.
- the molding method is not particularly limited, and for example, pressure molding, injection molding, extrusion molding, casting molding, etc. can be adopted.
- pressure molding for example, cold isostatic pressing (CIP), hot isostatic pressing (HIP), etc. are preferably adopted.
- CIP or HIP a high-density molded body can be manufactured, so that the fracture toughness value can be further improved.
- the compact is pre-sintered by heating to obtain a pre-sintered body.
- heating may remove components such as moisture and impurities that may be contained in the molded article.
- pre-sintering can reduce voids that may exist in the molded object (object to be processed), so it is possible to suitably prevent cracks that may occur during sintering due to high-temperature and high-speed heating.
- Preliminary sintering can be carried out at a heating temperature of, for example, 800°C to 1200°C, preferably 900°C to 1100°C. Since the heating time may vary depending on the shape, size, composition, etc.
- the molded body can be heated by a known method, and for example, a heating device such as a muffle furnace, an electric furnace, or a microwave firing furnace can be used.
- a heating device such as a muffle furnace, an electric furnace, or a microwave firing furnace can be used.
- a vanadium group element-containing material containing a vanadium group element is applied to the temporary sintered body.
- the vanadium group element-containing material may be, for example, a solution, a sol, etc., and a sol is particularly preferred.
- the solution include a chloride solution of a vanadium group element, a metal alkoxide solution, and the like.
- the vanadium group element-containing material is a sol, particles containing the vanadium group element are preferably dispersed in a dispersion medium.
- the particles include oxides containing vanadium group elements. Specific examples of such oxides include V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 and the like.
- the dispersion medium is not particularly limited, and may be, for example, water, an organic solvent, or the like.
- the proportion of particles containing vanadium group elements in the entire sol is not particularly limited, but is, for example, about 1% by mass to 10% by mass, preferably about 5% by mass to 10% by mass. If the sol concentration (ratio of particles) is too low, vanadium group elements will not be sufficiently placed on the surface of the temporary sintered body, resulting in insufficient improvement in fracture toughness when producing a zirconia sintered body. It may happen.
- Examples of methods for applying the vanadium group element material to the temporary sintered body include impregnating a part or the whole of the temporary sintered body with the vanadium group element-containing material, and applying the vanadium group element-containing material to the surface of the temporary sintered body. For example, applying
- the impregnation time may be changed as appropriate depending on the shape and size of the temporary sintered body, for example, about 0.1 hour to 48 hours, preferably. It can be about 4 hours to 24 hours.
- the drying step is a step in which the temporary sintered body after the vanadium group element imparting step is dried to remove liquid components (for example, dispersion medium) contained in the vanadium group element-containing material.
- the drying method is not particularly limited, and can be appropriately selected from natural drying, blast drying, hot air drying, drying by heating using a heating furnace, vacuum drying, suction drying, freeze drying, and the like. As an example of drying by heating, drying can be carried out under conditions of 80° C. to 150° C. for about 0.5 hours to 20 hours. Note that the drying step is not an essential step and can be omitted as appropriate.
- a zirconia sintered body is obtained by firing the temporary sintered body.
- the firing method can be performed by a known method, for example, by using a heating device such as a muffle furnace, an electric furnace, or a microwave firing furnace.
- the firing temperature is not particularly limited, but may be, for example, 1300°C to 1600°C, or 1400°C to 1500°C.
- the holding time after reaching the firing temperature may be, for example, 1 hour to 5 hours, or 1.5 hours to 3 hours.
- the zirconia sintered body disclosed herein can be used in various applications where zirconia sintered bodies have been conventionally used, and can be suitably used for structural members, dental materials, etc., for example.
- dental materials include dentures such as dentures for front teeth and dentures for back teeth, denture mill blanks, orthodontic brackets, dental prostheses, bridges, and crowns.
- Item 1 A zirconia sintered body containing zirconia and a vanadium group element, the vanadium group element being unevenly distributed in at least a part of the surface layer.
- Item 2 The concentration of the vanadium group element at the surface of the surface layer where the vanadium group element is unevenly distributed is 1.
- Item 2. The zirconia sintered body according to Item 1, wherein the vanadium group element is not contained in the portion where the concentration of the vanadium group element is 5 times or more higher or the lowest concentration of the vanadium group element.
- Item 3 The c/a axis length ratio of the tetragonal crystal at the surface of the surface layer where the vanadium group element is unevenly distributed, obtained from the X-ray diffraction pattern, and the part where the concentration of the vanadium group element in the depth direction of the surface layer is the lowest.
- Item 3 The zirconia sintered body according to item 1 or 2, wherein the difference from the c/a axis length ratio of the tetragonal crystal is 0.001 or more.
- Item 4 The zirconia sintered body according to any one of Items 1 to 3, containing niobium (Nb) as the vanadium group element.
- Item 5 The zirconia sintered body according to any one of Items 1 to 4, further comprising yttrium oxide and/or ytterbium oxide as a stabilizer.
- Item 6 The zirconia sintered body according to item 5, wherein the concentration of the stabilizer is 3 mol% or more and 6 mol% or less when the total of the zirconia and the stabilizer is 100 mol%.
- Item 7 The fracture toughness value of at least a part of the surface of the surface layer where the vanadium group element is unevenly distributed is 4.5 MPa ⁇ m or more, and the average linear expansion coefficient at 25° C. to 500° C. is 10 ⁇ 10 ⁇ 6 /K.
- Test 1 the distribution of Nb and the c/a axis length ratio (tetragonal crystallinity) in the zirconia sintered body were analyzed.
- Example 1 Zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol % of yttrium oxide (Y 2 O 3 ) was prepared. After filling 15 g of this powder into a mold with a bottom surface measuring 50 mm long and 15 mm wide, preforming was performed at a pressure of 20 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. The molded body was a rectangular parallelepiped with a length of 50 mm, a width of 14 mm, and a height of 6.8 mm. This molded body was calcined at 1000° C.
- the calcined body was impregnated with Nb 2 O 5 sol (manufactured by Taki Chemical Co., Ltd., product number: Nb-G6000, sol concentration: 6% by mass) for 24 hours, and then dried at 120° C. for 16 hours. . After drying, sintering was performed at 1450° C. for 2 hours to obtain the zirconia sintered body of Example 1.
- the sintered body was a rectangular parallelepiped with a length of 40 mm, a width of 11.5 mm, and a height of 5.6 mm.
- a raw material powder was prepared by mixing Nb 2 O 5 powder to zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol % of yttrium oxide (Y 2 O 3 ) in an amount of 1 mol % of the entire powder. After filling 15 g of the raw material powder into a mold with a bottom surface measuring 50 mm long and 15 mm wide, preforming was performed by applying a pressure of 20 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product.
- the molded body was a rectangular parallelepiped with a length of 50 mm, a width of 14 mm, and a height of 6.8 mm. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. This calcined body was fired at 1450° C. for 2 hours to obtain a zirconia sintered body of Reference Example 1.
- the sintered body was a rectangular parallelepiped with a length of 40 mm, a width of 11.5 mm, and a height of 5.6 mm.
- Elemental mapping was performed using a detector: Nb WDS detector PET, accelerating voltage: 15.0 kV, irradiation current: 5.0 ⁇ 10 -8 A, collection time: 10 ms, pixel size: 0.025 ⁇ m (at magnification: 10000), It was carried out under the condition of 2.5 ⁇ m (at magnification: 100). Elemental mapping was performed along the short side direction of the cut surface, passing through the center of the cut surface. A mapping image (magnification: 100) of Nb in Example 1 is shown in FIG. Further, a mapping image (magnification: 100) of Nb of Reference Example 1 is shown in FIG.
- the Nb 2 O 5 concentration of the zirconia sintered body of Example 1 was determined by setting the value obtained by subtracting the background from the average value of the characteristic X-ray intensity of Nb of Reference Example 1 as 1 mol % of Nb 2 O 5 . Specifically, a number line is drawn with the origin (0 mm) at the center of the cut plane in the short side direction (vertical direction in FIG.
- Quantitative analysis of all elements was carried out under the following conditions: detector: Nb WDS detector PET, accelerating voltage: 15.0 kV, irradiation current: 5.0 ⁇ 10 -8 A, collection time: 500 ms. Quantitative analysis of all elements was performed from the midpoint of one long side (11.5 mm side) of the cut surface toward the center of the cut surface (in the depth direction). The Nb concentration measured on the cut surface of the test piece of Reference Example 1 was converted into Nb 2 O 5 concentration, and the average concentration was set to 1 mol%. Then, the Nb concentration at the cut surface of the test piece of Example 1 was converted into Nb 2 O 5 concentration and standardized using the results of Reference Example 1. The results are shown in Figure 4. In the graph shown in FIG. 4, the horizontal axis indicates the distance (depth) from the surface in the short side direction of the cut surface, and the vertical axis indicates the Nb 2 O 5 concentration.
- XRD X-ray diffraction
- Example 2 Zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol% of Y2O3 was prepared. Approximately 1.5 g of this powder was filled into a mold with a diameter of 7 mm, and then preformed at a pressure of 0.78 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body.
- the calcined body was impregnated with Nb 2 O 5 sol (manufactured by Taki Chemical Co., Ltd., product number: Nb-G6000, sol concentration: 6% by mass) for 4.5 hours, and then dried at 120°C for 16 hours. went. After drying, sintering was performed at 1450° C. for 2 hours to obtain a zirconia sintered body of Example 2.
- the sintered body had a cylindrical shape with a diameter of 5.5 mm and a height of 10 mm.
- Example 3 A zirconia sintered body of Example 3 was obtained in the same manner except that the Y 2 O 3 concentration of Example 2 was changed from 3 mol % to 4.2 mol %.
- a raw material powder was prepared by mixing Nb 2 O 5 powder to zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol % of yttrium oxide (Y 2 O 3 ) in an amount of 1 mol % of the entire powder. Approximately 1.5 g of this powder was filled into a mold with a diameter of 7 mm, and then preformed at a pressure of 0.78 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. This calcined body was fired at 1450° C. for 2 hours to obtain a zirconia sintered body of Reference Example 2. The sintered body had a cylindrical shape with a diameter of 5.5 mm and a height of 10 mm.
- Reference example 3 A zirconia sintered body of Reference Example 3 was obtained in the same manner as in the method for producing the zirconia sintered body of Reference Example 2, except that the Y 2 O 3 concentration was changed from 3 mol % to 4.2 mol %.
- Comparative example 1 A zirconia sintered body of Comparative Example 1 was obtained in the same manner as in the method for manufacturing the zirconia sintered body of Reference Example 2 except that Nb 2 O 5 powder was not mixed.
- Comparative example 2 A zirconia sintered body of Comparative Example 2 was obtained in the same manner as in the method for manufacturing the zirconia sintered body of Reference Example 3 except that Nb 2 O 5 powder was not mixed.
- the surface of the zirconia sintered body was mirror-polished to a depth of about 0.05 mm, and the fracture toughness value on this surface was measured. The measurement was performed according to the IF method of JIS R 1607:2015.
- the indentation load of the Vickers indenter was 10 kgf (approximately 98 N), and the indentation time of the Vickers indenter was 30 seconds. The results are shown in FIG.
- thermomechanical analyzer manufactured by NETZSCH, product name: TMA4000SA. The measurement was performed according to JIS R 1618. Note that the load: 20 g, the temperature increase rate: 5 K/min, and the measurement atmosphere: air. The results are shown in FIG.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Engineering & Computer Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Veterinary Medicine (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dental Preparations (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
The present invention provides a sintered zirconia object that has a surface, at least some of which has excellent breaking toughness, and that has a reduced degree of thermal expansion. This sintered zirconia object comprises zirconia and a vanadium-group element, wherein the vanadium-group element localizes in at least some of a surface layer. In one embodiment of this sintered zirconia object, the concentration of the vanadium-group element in the surface-layer surface where the vanadium-group element localizes is at least 1.5 times as high as the concentration of the vanadium-group element in a portion that is lowest in the concentration of the vanadium-group element along the depth direction from said surface, or the portion that is lowest in the concentration of the vanadium-group element does not contain the vanadium-group element.
Description
本発明は、ジルコニア焼結体に関する。なお、本出願は2022年8月4日に出願された日本国特許出願第2022-124979号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a zirconia sintered body. This application claims priority based on Japanese Patent Application No. 2022-124979 filed on August 4, 2022, and the entire content of that application is incorporated herein by reference. There is.
イットリア(Y2O3)を少量固溶させたジルコニア焼結体(以下「部分安定化ジルコニア焼結体」ともいう)は、その強度、靭性および審美性の高さから歯科材料(例えば、義歯、歯科補綴物、義歯ミルブランク、歯科矯正ブラケット)等の生体材料として広く用いられている。例えば、特許文献1には、酸化イットリウム及び/又は酸化イッテルビウムを3.5mol%~5.0mol%の割合で含み、酸化ニオブ及び/又は酸化タンタルを0.3mol%~1.5mol%の割合で含むジルコニア焼結体が開示されている。このジルコニア焼結体では、優れた破壊靭性、優れた透光性、及び優れた耐水熱劣化特性が実現されている。
Zirconia sintered bodies with a small amount of yttria (Y 2 O 3 ) dissolved in solid solution (hereinafter also referred to as "partially stabilized zirconia sintered bodies") are used as dental materials (for example, dentures) due to their high strength, toughness, and aesthetics. It is widely used as a biomaterial for products such as dental prosthetics, denture mill blanks, orthodontic brackets), etc. For example, Patent Document 1 contains yttrium oxide and/or ytterbium oxide in a proportion of 3.5 mol% to 5.0 mol%, and contains niobium oxide and/or tantalum oxide in a proportion of 0.3 mol% to 1.5 mol%. A zirconia sintered body comprising: This zirconia sintered body has excellent fracture toughness, excellent translucency, and excellent hydrothermal deterioration resistance.
また、特許文献2および3では、ジルコニア被切削体に所望の化合物を均一性高く分布させる技術が開示されている。また、特許文献4では、空孔率が調整されたジルコニア被切削体に関する技術が開示されている。
Additionally, Patent Documents 2 and 3 disclose techniques for distributing a desired compound in a zirconia cut object with high uniformity. Further, Patent Document 4 discloses a technique regarding a zirconia cut object with adjusted porosity.
ところで、本発明者は、ジルコニア焼結体にバナジウム族元素を含有させ、破壊靭性を向上させることを検討している。しかしながら、ジルコニア焼結体にバナジウム族元素を含有させると、熱膨張率が高くなってしまう。即ち、破壊靭性値と熱膨張率とはトレードオフの関係にあり、両立させることが困難である。ジルコニア焼結体の熱膨張率が高くなると、例えば、ジルコニア焼結体の表面に陶材を焼き付けるとき(例えば、歯科材料として使用し着色するとき)、ジルコニア焼結体と陶材との間で熱膨張率差が生じて割れてしまう等の不具合が生じ易くなり得る。
By the way, the present inventor is considering adding a vanadium group element to the zirconia sintered body to improve fracture toughness. However, when a vanadium group element is contained in a zirconia sintered body, the coefficient of thermal expansion becomes high. That is, there is a trade-off relationship between the fracture toughness value and the coefficient of thermal expansion, and it is difficult to achieve both. When the coefficient of thermal expansion of the zirconia sintered body increases, for example, when porcelain is baked on the surface of the zirconia sintered body (for example, when used as a dental material and colored), the zirconia sintered body and the porcelain may Problems such as cracking may occur due to a difference in thermal expansion coefficients.
そこで、本発明は、上述した事情に鑑みてなされたものであり、その主な目的は、表面の少なくとも一部において優れた破壊靭性を有し、熱膨張率が抑えられたジルコニア焼結体を提供することにある。
Therefore, the present invention was made in view of the above-mentioned circumstances, and its main purpose is to provide a zirconia sintered body that has excellent fracture toughness on at least a portion of its surface and has a suppressed coefficient of thermal expansion. It is about providing.
ここで開示されるジルコニア焼結体は、ジルコニアと、バナジウム族元素とを含み、上記バナジウム族元素は、少なくとも表層の一部に偏在している。これにより、ジルコニア焼結体の表層において応力誘起相変態が起こり易くなるため、該表層の表面において破壊靭性が向上する。また、一般的に、ジルコニア焼結体がバナジウム族元素を含有する場合に熱膨張率が増大してしまうが、ジルコニア焼結体の表層以外の部分(例えばジルコニア焼結体の内部)においてバナジウム族元素の濃度が比較的低くなるため、熱膨張率の増大を抑制することができる。この結果、表面の少なくとも一部における破壊靭性の向上と熱膨張率の抑制とが実現される。
The zirconia sintered body disclosed herein contains zirconia and a vanadium group element, and the vanadium group element is unevenly distributed in at least a part of the surface layer. This makes it easier for stress-induced phase transformation to occur in the surface layer of the zirconia sintered body, thereby improving fracture toughness at the surface of the surface layer. Additionally, in general, when a zirconia sintered body contains a vanadium group element, the thermal expansion coefficient increases; Since the concentration of the elements is relatively low, an increase in the coefficient of thermal expansion can be suppressed. As a result, it is possible to improve the fracture toughness and suppress the coefficient of thermal expansion in at least a portion of the surface.
ここで開示されるジルコニア焼結体の好ましい一態様では、上記バナジウム族元素が偏在する表層の表面における上記バナジウム族元素の濃度が、該表面の深さ方向の上記バナジウム族元素の濃度が最も低い部分の上記バナジウム族元素の濃度よりも1.5倍以上高い、または、上記バナジウム族元素の濃度が最も低い部分に上記バナジウム族元素が含まれない。これにより、より高いレベルで破壊靭性の向上と熱膨張率の抑制とが実現される。
In a preferred embodiment of the zirconia sintered body disclosed herein, the concentration of the vanadium group element at the surface layer where the vanadium group element is unevenly distributed is the lowest concentration of the vanadium group element in the depth direction of the surface. The vanadium group element is not contained in the portion where the concentration of the vanadium group element is 1.5 times or more higher than the concentration of the vanadium group element in the portion, or where the concentration of the vanadium group element is the lowest. This achieves a higher level of improvement in fracture toughness and suppression of the coefficient of thermal expansion.
ここで開示されるジルコニア焼結体の好ましい一態様では、X線回折パターンから得られる上記バナジウム族元素が偏在する表層の表面における正方晶のc/a軸長比と、上記表層の深さ方向の上記バナジウム族元素の濃度が最も低い部分における正方晶のc/a軸長比との差が0.001以上である。これにより、より高いレベルで破壊靭性の向上と熱膨張率の抑制とが実現される。
In a preferred embodiment of the zirconia sintered body disclosed herein, the tetragonal c/a axis length ratio at the surface of the surface layer where the vanadium group elements are unevenly distributed obtained from the X-ray diffraction pattern, and the depth direction of the surface layer. The difference between the c/a axis length ratio of the tetragonal crystal and the portion where the concentration of the vanadium group element is lowest is 0.001 or more. This achieves a higher level of improvement in fracture toughness and suppression of the coefficient of thermal expansion.
ここで開示されるジルコニア焼結体の一態様では、上記バナジウム族元素としてニオブ(Nb)を含み得る。
In one embodiment of the zirconia sintered body disclosed herein, niobium (Nb) may be included as the vanadium group element.
ここで開示されるジルコニア焼結体の一態様では、さらに、安定化剤として酸化イットリウム及び/又は酸化イッテルビウムを含み得る。また、ここで開示されるジルコニア焼結体の一態様では、上記ジルコニアと上記安定化剤の合計を100mol%としたとき、上記安定化剤の濃度が3mol%以上6mol%以下であり得る。
One embodiment of the zirconia sintered body disclosed herein may further contain yttrium oxide and/or ytterbium oxide as a stabilizer. Further, in one embodiment of the zirconia sintered body disclosed herein, when the total of the zirconia and the stabilizer is 100 mol%, the concentration of the stabilizer may be 3 mol% or more and 6 mol% or less.
ここで開示されるジルコニア焼結体の一態様では、上記バナジウム族元素が偏在する上記表層の表面の少なくとも一部における破壊靭性値が4.5MPa√m以上であり、25℃~500℃における平均線膨張係数が10×10-6/K以下であり得る。
In one aspect of the zirconia sintered body disclosed herein, the fracture toughness value of at least a part of the surface of the surface layer where the vanadium group element is unevenly distributed is 4.5 MPa√m or more, and the average fracture toughness value at 25°C to 500°C is The coefficient of linear expansion may be 10×10 −6 /K or less.
以下、ここで開示される技術の実施形態について説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、本明細書により教示されている技術内容と、当該分野における当業者の一般的な技術常識とに基づいて理解することができる。ここで開示される技術の内容は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、本明細書において、数値範囲を「A~B(ここでA、Bは任意の数値)」と記載している場合は、「A以上B以下」を意味すると共に、「Aを超えてB未満」、「Aを超えてB以下」、および「A以上B未満」の意味を包含する。
Hereinafter, embodiments of the technology disclosed herein will be described. Matters other than those specifically mentioned in this specification that are necessary for implementation are based on the technical content taught in this specification and the general technical common knowledge of a person skilled in the art in the relevant field. can be understood based on The contents of the technology disclosed herein can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field. In addition, in this specification, when a numerical range is described as "A to B (where A and B are arbitrary numbers)", it means "above A and below B", and "beyond A" It includes the meanings of "less than B", "more than A and less than B", and "more than A and less than B".
ここで開示されるジルコニア焼結体は、少なくともジルコニア(ZrO2)と、バナジウム族元素とを含んでいる。また、ジルコニア焼結体は、さらに安定化剤を含み得る。ジルコニア焼結体は、ジルコニアを主成分として含んでいる。ここで、「ジルコニアを主成分として含む」とは、ジルコニア焼結体を構成する化合物のうち、ジルコニアが占める割合が最も多いことを意味する。ジルコニア焼結体全体を100質量%としたとき、ジルコニアが占める割合は、例えば70質量%以上であって、80質量%以上が好ましく、90質量%以上がより好ましい。ジルコニアの割合が高いことで、ジルコニア焼結体の強度、靭性等が向上し得る。
The zirconia sintered body disclosed herein contains at least zirconia (ZrO 2 ) and a vanadium group element. Moreover, the zirconia sintered body may further contain a stabilizer. The zirconia sintered body contains zirconia as a main component. Here, "containing zirconia as a main component" means that zirconia accounts for the largest proportion of the compounds constituting the zirconia sintered body. When the entire zirconia sintered body is 100% by mass, the proportion of zirconia is, for example, 70% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more. A high proportion of zirconia can improve the strength, toughness, etc. of the zirconia sintered body.
バナジウム族元素としては、バナジウム(V)、ニオブ(Nb)、およびタンタル(Ta)が例示される。ジルコニア焼結体は、V、Nb、およびTaのうちの少なくとも1種を含んでいる。バナジウム族元素は、例えば、酸化物としてジルコニア焼結体に含まれている。バナジウム族元素を含む酸化物としては、例えばX2O5(Xはバナジウム族元素を示す)が挙げられる。非特許文献1によれば、バナジウム族元素はジルコニア中に固溶し、ジルコニア焼結体の正方晶のc/a軸長比(正方晶性)を増大させる(即ち、結晶を歪ませる)。これにより、応力誘起相変態(正方晶から単斜晶への相変態)が起こり易くなり、ジルコニア焼結体の破壊靭性値を向上させることができる。
Examples of vanadium group elements include vanadium (V), niobium (Nb), and tantalum (Ta). The zirconia sintered body contains at least one of V, Nb, and Ta. The vanadium group element is contained in the zirconia sintered body, for example, as an oxide. Examples of oxides containing vanadium group elements include X 2 O 5 (X represents a vanadium group element). According to Non-Patent Document 1, vanadium group elements are dissolved in zirconia and increase the c/a axis length ratio (tetragonality) of the tetragonal crystal of the zirconia sintered body (that is, distort the crystal). This makes it easier for stress-induced phase transformation (phase transformation from tetragonal to monoclinic) to occur, thereby improving the fracture toughness value of the zirconia sintered body.
ここで開示されるジルコニア焼結体では、バナジウム族元素が少なくともジルコニア焼結体の表層の一部に偏在している。バナジウム族元素は、ジルコニア焼結体の表面積を100%としたとき、例えば2%以上の表面積の範囲における表層に偏在(存在)してもよく、5%以上、10%以上、20%以上、30%以上、50%以上、70%以上、90%以上、または100%(即ち、ジルコニア焼結体の表面全体)の範囲における表層にバナジウム族元素が偏在していてもよい。これにより、ジルコニア焼結体のバナジウム族元素が偏在する表層(表面を含む)において、応力誘起相変態が起こり易くなり得、ジルコニア焼結体表面における破壊靭性値を向上させることができる。また、かかる構成により、ジルコニア焼結体の表層以外の部分(例えばジルコニア焼結体の表層よりも内部側)においては、バナジウム族元素の濃度が比較的低くなるため、バナジウム族元素の濃度増大に伴って生じ得る熱膨張率の増大を抑制することができる。この結果、バナジウム族元素が偏在したジルコニア焼結体の表層で優れた破壊靭性を発揮させ、ジルコニア焼結体の内部で熱膨張率の増大を抑えることができるため、破壊靭性の向上と熱膨張率の抑制とが実現されると推定される。なお、かかるメカニズムは推定であり、本技術を何ら限定するものではない。
In the zirconia sintered body disclosed herein, vanadium group elements are unevenly distributed at least in a part of the surface layer of the zirconia sintered body. When the surface area of the zirconia sintered body is 100%, the vanadium group element may be unevenly distributed (exist) in the surface layer in a range of 2% or more of the surface area, for example, 5% or more, 10% or more, 20% or more, Vanadium group elements may be unevenly distributed in the surface layer in a range of 30% or more, 50% or more, 70% or more, 90% or more, or 100% (that is, the entire surface of the zirconia sintered body). As a result, stress-induced phase transformation can easily occur in the surface layer (including the surface) of the zirconia sintered body where vanadium group elements are unevenly distributed, and the fracture toughness value on the surface of the zirconia sintered body can be improved. In addition, with this configuration, the concentration of vanadium group elements is relatively low in parts other than the surface layer of the zirconia sintered body (for example, inside the surface layer of the zirconia sintered body), so that the concentration of vanadium group elements is not increased. It is possible to suppress an increase in the coefficient of thermal expansion that may occur accordingly. As a result, the surface layer of the zirconia sintered body, where vanadium group elements are unevenly distributed, exhibits excellent fracture toughness, and the increase in the coefficient of thermal expansion inside the zirconia sintered body can be suppressed, resulting in improved fracture toughness and thermal expansion. It is estimated that this will result in a reduction in the rate. Note that this mechanism is an estimate and does not limit the present technology in any way.
ここで開示されるジルコニア焼結体において、バナジウム族元素が偏在する表層の表面におけるバナジウム族元素の濃度は、該表面の深さ方向におけるバナジウム族元素の濃度が最も低い部分のバナジウム族元素の濃度よりも高く、例えば、1.5倍以上、2倍以上、5倍以上、10倍以上、20倍以上、または30倍以上高くあってよい。なお、バナジウム族元素の濃度が最も低い部分では、バナジウム族元素の濃度が0mol%(即ち、バナジウム族元素が含まれない)であってよい。これにより、より優れた破壊靭性を有し、熱膨張率が抑えられたジルコニア焼結体が実現される。なお、本明細書において「深さ方向」とは、ジルコニア焼結体の表面に接する平面と該表面との接点から、該平面と垂直となるようにジルコニア焼結体内部に向かう方向のことをいう。
In the zirconia sintered body disclosed herein, the concentration of the vanadium group element at the surface layer where the vanadium group element is unevenly distributed is the concentration of the vanadium group element at the part where the concentration of the vanadium group element is the lowest in the depth direction of the surface. for example, 1.5 times or more, 2 times or more, 5 times or more, 10 times or more, 20 times or more, or 30 times or more. Note that in the portion where the concentration of the vanadium group element is the lowest, the concentration of the vanadium group element may be 0 mol % (that is, no vanadium group element is included). As a result, a zirconia sintered body having superior fracture toughness and a suppressed coefficient of thermal expansion is realized. In this specification, the "depth direction" refers to a direction from a plane in contact with the surface of the zirconia sintered body and the point of contact with the surface, perpendicular to the plane, toward the inside of the zirconia sintered body. say.
ジルコニア焼結体のバナジウム族元素が偏在する表層の表面におけるバナジウム族元素の濃度は、X2O5換算(Xはバナジウム族元素を示す)で、例えば、0.1mol%以上であって、好ましくは0.3mol%以上、より好ましくは0.5mol%以上、さらに好ましくは0.7mol%以上、特に好ましくは0.9mol%以上である。バナジウム族元素の濃度が高いことで、ジルコニア焼結体の正方晶性が増大する傾向がみられる(即ち、正方晶のc/a軸長比が増加する)。これにより、ジルコニア焼結体の表面への応力付与時に体積変化を伴う相変態が起こり易くなり、破壊靭性値をより高めることができる。また、特に限定されるものではないが、ジルコニア焼結体の表面におけるバナジウム族元素の濃度は、X2O5換算(Xはバナジウム族元素を示す)で、例えば10mol%以下であって、5mol%以下、3mol%以下、または2mol%以下であり得る。なお、ジルコニア焼結体のバナジウム族元素の濃度は、走査型電子顕微鏡-波長分散型X線分光法(SEM-WDX)により測定することができる。
The concentration of vanadium group elements on the surface layer of the zirconia sintered body where vanadium group elements are unevenly distributed is, for example, 0.1 mol% or more in terms of X 2 O 5 (X represents a vanadium group element), and is preferably is 0.3 mol% or more, more preferably 0.5 mol% or more, even more preferably 0.7 mol% or more, particularly preferably 0.9 mol% or more. A high concentration of vanadium group elements tends to increase the tetragonal crystallinity of the zirconia sintered body (that is, the c/a axis length ratio of the tetragonal crystal increases). This makes it easier for phase transformation accompanied by a volume change to occur when stress is applied to the surface of the zirconia sintered body, making it possible to further increase the fracture toughness value. Further, although not particularly limited, the concentration of vanadium group elements on the surface of the zirconia sintered body is, for example, 10 mol % or less in terms of X 2 O 5 (X represents a vanadium group element), and 5 mol %. % or less, 3 mol % or less, or 2 mol % or less. Note that the concentration of vanadium group elements in the zirconia sintered body can be measured by scanning electron microscopy-wavelength dispersive X-ray spectroscopy (SEM-WDX).
ジルコニア焼結体の表面からの深さ方向のバナジウム族元素の濃度が最も低い部分(典型的には、ジルコニア焼結体の内部の中央付近)におけるバナジウム族元素の濃度は、X2O5換算(Xはバナジウム族元素を示す)で、例えば、0.1mol%未満であって、0.05mol%以下、0.03mol%以下、0.01mol%以下、または0mol%(即ち、バナジウム族元素が含まれない)であり得る。ジルコニア焼結体の内部側においてバナジウム族元素の濃度が低い又はバナジウム族元素が含まれないことで、熱膨張率の増大を抑制することができる。
The concentration of vanadium group elements in the part where the concentration of vanadium group elements in the depth direction from the surface of the zirconia sintered body is lowest (typically near the center inside the zirconia sintered body) is calculated as X 2 O 5 (X represents a vanadium group element), for example, less than 0.1 mol%, 0.05 mol% or less, 0.03 mol% or less, 0.01 mol% or less, or 0 mol% (that is, the vanadium group element (not included). The increase in the coefficient of thermal expansion can be suppressed by having a low concentration of vanadium group elements or by not including vanadium group elements inside the zirconia sintered body.
ジルコニア焼結体において、バナジウム族元素が偏在する表層の表面から該表面の深さ方向におけるバナジウム族元素の濃度が最も低い部分までの領域を表面側領域と内部側領域との2領域に等分したとき、表面側領域におけるバナジウム族元素の濃度が、内部側領域におけるバナジウム族元素の濃度よりも高い。例えば、ジルコニア焼結体の表面側領域におけるバナジウム族元素の濃度は、ジルコニア焼結体の内部側領域におけるバナジウム族元素の濃度よりも1.5倍以上高くてもよく、2倍以上、5倍以上、10倍以上、20倍以上、または30倍以上高くあってもよい。また、内部側領域にバナジウム族元素が含まれなくてもよい。これにより、より優れた破壊靭性を有し、熱膨張率が抑えられたジルコニア焼結体が実現される。
In a zirconia sintered body, the region from the surface of the surface layer where vanadium group elements are unevenly distributed to the part where the concentration of vanadium group elements is lowest in the depth direction of the surface is equally divided into two regions, a surface side region and an inner side region. At this time, the concentration of vanadium group elements in the surface side region is higher than the concentration of vanadium group elements in the inner side region. For example, the concentration of vanadium group elements in the surface side region of the zirconia sintered body may be 1.5 times or more, 2 times or more, 5 times higher than the concentration of vanadium group elements in the inner side region of the zirconia sintered body. It may be higher than 10 times, 20 times or more, or 30 times or more. Moreover, the vanadium group element does not need to be included in the inner region. As a result, a zirconia sintered body having superior fracture toughness and a suppressed coefficient of thermal expansion is realized.
なお、「表面側領域」とは、ジルコニア焼結体のバナジウム族元素が偏在する表面から該表面の深さ方向におけるバナジウム族元素の濃度が最も低い部分までの距離の中点よりも該表面に近い側の領域のことをいう。また、「内部側領域」とは、ジルコニア焼結体の表面から該表面の深さ方向におけるバナジウム族元素の濃度が最も低い部分までの距離の中点よりも該表面から遠い側の領域のことをいう。
Note that the "surface side region" refers to a region closer to the surface than the midpoint of the distance from the surface of the zirconia sintered body where vanadium group elements are unevenly distributed to the part where the concentration of vanadium group elements is lowest in the depth direction of the surface. It refers to the area on the near side. Furthermore, the "inner region" refers to the region farther from the surface than the midpoint of the distance from the surface of the zirconia sintered body to the part with the lowest concentration of vanadium group elements in the depth direction of the surface. means.
ジルコニア焼結体のバナジウム族元素が偏在する表層の表面における正方晶のc/a軸長比(以下、「正方晶性A」ともいう)は、該表面の深さ方向におけるバナジウム族元素の濃度が最も低い部分における正方晶のc/a軸長比(以下、「正方晶性B」ともいう)よりも高くあってよい。正方晶性Aと、正方晶性Bとの差(ただしA>B)は、例えば0.001以上、0.00125以上、0.0015以上、または0.00175以上であり得る。正方晶性の値が高いほど、応力付与時に単斜晶への相変態が生じやすくなり、破壊靭性値を向上させることができる。一方で、正方晶性の値が高いことで熱膨張率が増大し得る。そのため、上記のように正方晶性Aと正方晶性Bとの差が大きいことで、ジルコニア焼結体の表層部における破壊靭性の向上と、熱膨張率の増大の抑制とを実現することができる。
なお、「正方晶のc/a軸長比」は、ジルコニア焼結体の断面におけるX線回折パターンのプロファイルを、統合粉末X線解析ソフトウェア:PDXL2(株式会社リガクソフトウェア製)を用いて測定することができる。具体的な解析方法の一例では、まず、上記ソフトにより自動的に解説プロファイルからピーク位置を決定する。次に、回折角(2θ)が73°付近であるc軸に対応する(004)面の格子定数(d値)、および、2θが74.5°付近のa軸に対応する(400)面のd値から、c/a軸長比を算出する。このようにして、正方晶のc/a軸長比を得ることができる。 The tetragonal c/a axis length ratio (hereinafter also referred to as "tetragonality A") at the surface layer where vanadium group elements are unevenly distributed in the zirconia sintered body is the concentration of vanadium group elements in the depth direction of the surface. may be higher than the c/a axis length ratio of the tetragonal crystal (hereinafter also referred to as "tetragonal crystallinity B") at the lowest portion. The difference between tetragonal crystallinity A and tetragonal crystallinity B (where A>B) can be, for example, 0.001 or more, 0.00125 or more, 0.0015 or more, or 0.00175 or more. The higher the value of tetragonal crystallinity, the more likely phase transformation to monoclinic crystal occurs when stress is applied, and the fracture toughness value can be improved. On the other hand, a high value of tetragonal crystallinity can increase the coefficient of thermal expansion. Therefore, as mentioned above, the large difference between the tetragonal crystallinity A and the tetragonal crystallinity B makes it possible to improve the fracture toughness in the surface layer of the zirconia sintered body and suppress the increase in the coefficient of thermal expansion. can.
The "tetragonal c/a axis length ratio" is determined by measuring the profile of the X-ray diffraction pattern in the cross section of the zirconia sintered body using integrated powder X-ray analysis software: PDXL2 (manufactured by Rigaku Software Co., Ltd.). be able to. In one example of a specific analysis method, first, the software automatically determines the peak position from the explanatory profile. Next, the lattice constant (d value) of the (004) plane corresponding to the c-axis where the diffraction angle (2θ) is around 73°, and the (400) plane corresponding to the a-axis where the 2θ is around 74.5°. The c/a axis length ratio is calculated from the d value. In this way, the c/a axis length ratio of the tetragonal crystal can be obtained.
なお、「正方晶のc/a軸長比」は、ジルコニア焼結体の断面におけるX線回折パターンのプロファイルを、統合粉末X線解析ソフトウェア:PDXL2(株式会社リガクソフトウェア製)を用いて測定することができる。具体的な解析方法の一例では、まず、上記ソフトにより自動的に解説プロファイルからピーク位置を決定する。次に、回折角(2θ)が73°付近であるc軸に対応する(004)面の格子定数(d値)、および、2θが74.5°付近のa軸に対応する(400)面のd値から、c/a軸長比を算出する。このようにして、正方晶のc/a軸長比を得ることができる。 The tetragonal c/a axis length ratio (hereinafter also referred to as "tetragonality A") at the surface layer where vanadium group elements are unevenly distributed in the zirconia sintered body is the concentration of vanadium group elements in the depth direction of the surface. may be higher than the c/a axis length ratio of the tetragonal crystal (hereinafter also referred to as "tetragonal crystallinity B") at the lowest portion. The difference between tetragonal crystallinity A and tetragonal crystallinity B (where A>B) can be, for example, 0.001 or more, 0.00125 or more, 0.0015 or more, or 0.00175 or more. The higher the value of tetragonal crystallinity, the more likely phase transformation to monoclinic crystal occurs when stress is applied, and the fracture toughness value can be improved. On the other hand, a high value of tetragonal crystallinity can increase the coefficient of thermal expansion. Therefore, as mentioned above, the large difference between the tetragonal crystallinity A and the tetragonal crystallinity B makes it possible to improve the fracture toughness in the surface layer of the zirconia sintered body and suppress the increase in the coefficient of thermal expansion. can.
The "tetragonal c/a axis length ratio" is determined by measuring the profile of the X-ray diffraction pattern in the cross section of the zirconia sintered body using integrated powder X-ray analysis software: PDXL2 (manufactured by Rigaku Software Co., Ltd.). be able to. In one example of a specific analysis method, first, the software automatically determines the peak position from the explanatory profile. Next, the lattice constant (d value) of the (004) plane corresponding to the c-axis where the diffraction angle (2θ) is around 73°, and the (400) plane corresponding to the a-axis where the 2θ is around 74.5°. The c/a axis length ratio is calculated from the d value. In this way, the c/a axis length ratio of the tetragonal crystal can be obtained.
正方晶性Aの値は、特に限定されるものではないが、1.0165以上であって、1.0170以上、1.0175以上、または1.018以上であってよい。正方晶性が高いほど、応力付与時に単斜晶への相変態が生じやすくなり、破壊靭性値を向上させることができる。また、特に限定されるものではないが、正方晶性Aの値は、例えば、1.02以下であって、1.019以下、または1.0185以下であり得る。
The value of tetragonal crystallinity A is not particularly limited, but may be 1.0165 or more, 1.0170 or more, 1.0175 or more, or 1.018 or more. The higher the tetragonal crystallinity, the more likely phase transformation to monoclinic crystal occurs when stress is applied, and the fracture toughness value can be improved. Further, although not particularly limited, the value of tetragonal crystallinity A may be, for example, 1.02 or less, 1.019 or less, or 1.0185 or less.
正方晶性Bの値は、特に限定されるものではないが、例えば、1.012以上、1.013以上、または1.014以上であり得る。また、正方晶性Bは、特に限定されるものではないが、例えば、1.017未満、または1.0168以下であり得る。正方晶性Bが上記範囲内であることで、熱膨張率の増大を抑制することができる。
The value of tetragonal crystallinity B is not particularly limited, but may be, for example, 1.012 or more, 1.013 or more, or 1.014 or more. Further, the tetragonal crystallinity B is not particularly limited, but may be, for example, less than 1.017 or 1.0168 or less. When the tetragonal crystallinity B is within the above range, an increase in the coefficient of thermal expansion can be suppressed.
ジルコニア焼結体に含まれ得る安定化剤としては、例えば、酸化イットリウム(Y2O3)、酸化イッテルビウム(Yb2O3)、酸化セリウム(Ce2O3)、酸化エルビウム(Er2O3)等の希土類元素を含む酸化物、酸化カルシウム(CaO)、酸化マグネシウム(MgO)等のアルカリ土類金属元素を含む酸化物、およびその他遷移金属元素を含む酸化物等が挙げられる。このなかでも、酸化イットリウムおよび酸化イッテルビウムが好ましく用いられる。酸化イットリウム及び/又は酸化イッテルビウムを含むことにより、ジルコニア焼結体における正方晶の割合を高めることができ、破壊靭性値や強度を向上させることができる。なお、安定化剤は1種単独で含まれてもよく、2種以上が含まれていてもよい。また、安定化剤は全てがジルコニアに固溶していてもよく、またはジルコニアに固溶していない未固溶の安定化剤が含まれていてもよい。
Examples of the stabilizer that can be included in the zirconia sintered body include yttrium oxide ( Y2O3 ), ytterbium oxide ( Yb2O3 ), cerium oxide ( Ce2O3 ) , and erbium oxide ( Er2O3 ) . ), oxides containing alkaline earth metal elements such as calcium oxide (CaO) and magnesium oxide (MgO), and oxides containing other transition metal elements. Among these, yttrium oxide and ytterbium oxide are preferably used. By containing yttrium oxide and/or ytterbium oxide, the proportion of tetragonal crystals in the zirconia sintered body can be increased, and the fracture toughness value and strength can be improved. In addition, one type of stabilizer may be contained alone, or two or more types may be contained. Furthermore, all of the stabilizers may be solid-dissolved in the zirconia, or a non-solid-dissolved stabilizer that is not solid-dissolved in the zirconia may be included.
安定化剤の濃度は、特に限定されるものではないが、ジルコニアと安定化剤との合計を100mol%としたとき、例えば、1.5mol%以上であって、2mol%以上、2.5mol%以上、または3mol%以上であり得る。また、安定化剤の濃度は、例えば、6mol%以下であって、5mol%以下、4.5mol%以下、4.2mol%以下、または3.5mol%以下であり得る。なお、安定化剤として酸化イットリウム及び/又は酸化イッテルビウムを含む場合に、上述の安定化剤の濃度範囲は特に好ましく採用される。
The concentration of the stabilizer is not particularly limited, but when the total of zirconia and the stabilizer is 100 mol%, for example, it is 1.5 mol% or more, 2 mol% or more, 2.5 mol%. or more, or 3 mol% or more. Further, the concentration of the stabilizer may be, for example, 6 mol% or less, 5 mol% or less, 4.5 mol% or less, 4.2 mol% or less, or 3.5 mol% or less. Note that when yttrium oxide and/or ytterbium oxide is included as a stabilizer, the above concentration range of the stabilizer is particularly preferably employed.
ジルコニア焼結体は、さらに酸化アルミニウム(アルミナ:Al2O3)を含み得る。酸化アルミニウムは、ジルコニア焼結体を製造するための焼成温度を下げることができる。また、アルミナを含むジルコニア焼結体では、異常粒成長が抑制されるため、ジルコニア焼結体の強度および透光性を向上し得る。また、耐低温劣化特性が向上し得るため、ジルコニア焼結体の強度および透光性を長期にわたり保持することができ得る。一方で、アルミナは、焼結体内部で不純物として残留し光散乱因子として働くためアルミナ含有量は高すぎない方がよい。そのため、アルミナの含有量は、ジルコニア焼結体全体を100質量%としたとき、例えば、0.30質量%以下であるとよく、0.15質量%以下、0.1質量%以下、または0.05質量%以下であり得る。
The zirconia sintered body may further contain aluminum oxide (alumina: Al 2 O 3 ). Aluminum oxide can lower the firing temperature for producing zirconia sintered bodies. Further, in a zirconia sintered body containing alumina, abnormal grain growth is suppressed, so that the strength and translucency of the zirconia sintered body can be improved. Furthermore, since the low temperature deterioration resistance can be improved, the strength and translucency of the zirconia sintered body can be maintained for a long period of time. On the other hand, since alumina remains as an impurity inside the sintered body and acts as a light scattering factor, the alumina content should not be too high. Therefore, when the entire zirconia sintered body is taken as 100% by mass, the content of alumina is preferably 0.30% by mass or less, 0.15% by mass or less, 0.1% by mass or less, or 0. It can be up to .05% by weight.
また、ジルコニア焼結体は、ここで開示される技術の効果が著しく損なわれない範囲で、従来公知の着色剤を含み得る。着色剤としては、例えば、遷移金属元素やランタノイド系希土類元素等が挙げられる。このような元素としては、例えば、鉄、ニッケル、コバルト、マンガン、プラセオジム、ネオジム、ユーロピウム、ガドリニウム、エルビウム等が挙げられる。着色剤は、例えば、ジルコニア焼結体全体に対して5質量%以下であるとよく、1質量%以下、0.5質量%以下であり得る。
Furthermore, the zirconia sintered body may contain a conventionally known coloring agent to the extent that the effects of the technology disclosed herein are not significantly impaired. Examples of the colorant include transition metal elements, lanthanoid rare earth elements, and the like. Examples of such elements include iron, nickel, cobalt, manganese, praseodymium, neodymium, europium, gadolinium, and erbium. The amount of the colorant may be, for example, 5% by mass or less, 1% by mass or less, and 0.5% by mass or less based on the entire zirconia sintered body.
また、ジルコニア焼結体は、不可避的に混入し得る元素を含み得る。例えば、ハフニウム、ケイ素、チタン等が挙げられる。これらの元素の合計の含有量は、ジルコニア焼結体全体に対して、酸化物換算で2.5質量%以下であることが好ましく、2質量%以下がより好ましく、例えば1.8質量%以下であるとよい。
Furthermore, the zirconia sintered body may contain elements that may be unavoidably mixed. Examples include hafnium, silicon, titanium, and the like. The total content of these elements is preferably 2.5% by mass or less, more preferably 2% by mass or less, for example 1.8% by mass or less in terms of oxide, based on the entire zirconia sintered body. It would be good if it were.
ジルコニア焼結体の形状は、特に限定されるものではないが、例えば、円盤状、円柱状、角柱状等の柱状;直方体状、立方体状、多角体状等の多面体状:球形状、ラグビーボール状、または不定形状等であり得る。なお、ジルコニア焼結体は歯科材料としての形状であり得、例えば、前歯用義歯、奥歯用義歯等の義歯、義歯ミルブランク、歯科矯正ブラケット、歯科補綴物、ブリッジ、クラウン等の形状であり得る。
The shape of the zirconia sintered body is not particularly limited, but includes, for example, a columnar shape such as a disc, a cylinder, or a prismatic shape; a polyhedral shape such as a rectangular parallelepiped, a cube, or a polygon; a spherical shape; a rugby ball. It may have a shape or an irregular shape. The zirconia sintered body may be in the shape of a dental material, for example, a denture such as a denture for front teeth or a denture for back teeth, a denture mill blank, an orthodontic bracket, a dental prosthesis, a bridge, a crown, etc. .
ジルコニア焼結体のバナジウム族元素が偏在する表層の表面から、該表面の深さ方向のバナジウム族元素の濃度が最も低い部分までの最短距離は、特に限定されるものではないが、1.5mm以上であることが好ましく、2mm以上、2.5mm以上、または3mm以上であり得る。これにより、ジルコニア焼結体の表層部における破壊靭性の向上と、熱膨張率の増大の抑制とを実現することができる。
The shortest distance from the surface of the surface layer where vanadium group elements are unevenly distributed in the zirconia sintered body to the part of the surface where the concentration of vanadium group elements is lowest in the depth direction is not particularly limited, but is 1.5 mm. It is preferably 2 mm or more, 2.5 mm or more, or 3 mm or more. Thereby, it is possible to improve the fracture toughness in the surface layer portion of the zirconia sintered body and to suppress an increase in the coefficient of thermal expansion.
ジルコニア焼結体のバナジウム族元素が偏在する表層の表面の少なくとも一部における破壊靭性値は、例えば4.5MPa√m以上であって、6MPa√m以上、9MPa√m以上、10MPa√m以上、11MPa√m以上、又は12MPa√m以上であり得る。本明細書における「破壊靭性値」は、JIS R 1607:2015に規定されているIF法に準拠して測定されたものをいう。
The fracture toughness value of at least a part of the surface of the surface layer where vanadium group elements are unevenly distributed in the zirconia sintered body is, for example, 4.5 MPa√m or more, 6 MPa√m or more, 9 MPa√m or more, 10 MPa√m or more, It may be 11 MPa√m or more, or 12 MPa√m or more. The "fracture toughness value" in this specification refers to a value measured in accordance with the IF method specified in JIS R 1607:2015.
本明細書において、ジルコニア焼結体の熱膨張率は、JIS R 1618に準じて測定された25℃~500℃における平均線膨張係数を指標として評価される。ジルコニア焼結体の25℃~500℃における平均線膨張係数は、例えば、10×10-6/K以下であって、9.9×10-6/K以下、または9.8×10-6/K以下であり得る。
In this specification, the thermal expansion coefficient of the zirconia sintered body is evaluated using the average linear expansion coefficient at 25° C. to 500° C. measured according to JIS R 1618 as an index. The average linear expansion coefficient of the zirconia sintered body at 25° C. to 500° C. is, for example, 10×10 −6 /K or less, and 9.9×10 −6 /K or less, or 9.8×10 −6 /K or less.
ここで開示されるジルコニア焼結体は、大まかにいって、成形工程と、仮焼工程と、バナジウム族元素付与工程、乾燥工程と、焼成工程とを含み得る。なお、これらの工程を含む製造工程は、ここで開示されるジルコニア焼結体を製造する一例であって、ここで開示されるジルコニア焼結体の製造方法を限定するものではない。また、これらの工程は必要に応じて省略することもでき、他の工程を適当な順序で含んでいてもよい。
Roughly speaking, the zirconia sintered body disclosed herein may include a forming process, a calcination process, a vanadium group element imparting process, a drying process, and a firing process. Note that the manufacturing process including these steps is an example of manufacturing the zirconia sintered body disclosed herein, and does not limit the manufacturing method of the zirconia sintered body disclosed herein. Further, these steps may be omitted as necessary, and other steps may be included in an appropriate order.
成形工程では、まず、ここで開示されるジルコニア焼結体の原料粉末を準備する。原料粉末としては、少なくともジルコニア粉末を準備する。ジルコニア粉末は、製造するジルコニア焼結体の組成によって適宜変更すればよく、例えば、安定化剤を上述したジルコニア焼結体に含まれ得る割合で含む部分安定化ジルコニア粉末であってもよい。また、酸化アルミニウム粉末を上述したジルコニア焼結体に含まれ得る割合となるようジルコニア粉末と混合してもよい。原料粉末は、粉末状のまま使用してもよく、噴霧乾燥等により顆粒状に調製して使用してもよい。
In the forming process, first, raw material powder for the zirconia sintered body disclosed herein is prepared. As the raw material powder, at least zirconia powder is prepared. The zirconia powder may be appropriately changed depending on the composition of the zirconia sintered body to be produced, and may be, for example, a partially stabilized zirconia powder containing a stabilizer in a proportion that can be included in the above-mentioned zirconia sintered body. Further, the aluminum oxide powder may be mixed with the zirconia powder in a proportion that can be contained in the above-mentioned zirconia sintered body. The raw material powder may be used in its powder form, or may be prepared into granules by spray drying or the like.
次に、準備した原料粉末を成形し、成形体を得る。成形方法は特に限定されず、例えば、加圧成形、射出成形、押出成形、鋳込成形等を採用することができる。加圧成形としては、例えば、冷間静水圧加圧成形(Cold Isostatic Pressing:CIP)、熱間静水圧加圧成形(Hot Isostatic Pressing:HIP)等が好ましく採用される。CIPまたはHIPによれば、高密度な成形体を製造できるため、破壊靭性値をより向上させることができる。
Next, the prepared raw material powder is molded to obtain a molded body. The molding method is not particularly limited, and for example, pressure molding, injection molding, extrusion molding, casting molding, etc. can be adopted. As the pressure forming, for example, cold isostatic pressing (CIP), hot isostatic pressing (HIP), etc. are preferably adopted. According to CIP or HIP, a high-density molded body can be manufactured, so that the fracture toughness value can be further improved.
仮焼工程では、成形体を加熱することで仮焼結し、仮焼結体を得る。かかる加熱により、成形体中に含まれ得る水分、不純物等の成分を除去することができ得る。また、仮焼結により、成形体(被処理体)中に存在し得る空隙を低減させることができるため、高温かつ高速の加熱による焼結において生じ得るクラックを好適に防止することができる。仮焼結は、例えば、800℃~1200℃、好ましくは900℃~1100℃の加熱温度で実施することができる。加熱時間は、成形体の形状、大きさ、組成等により変動し得るため、適宜調整すればよいが、例えば、0.5時間~5時間であり得る。成形体の加熱は、公知方法によって行うことができ、例えば、マッフル炉、電気炉、マイクロ波焼成炉等の加熱装置を用いることができる。
In the calcination step, the compact is pre-sintered by heating to obtain a pre-sintered body. Such heating may remove components such as moisture and impurities that may be contained in the molded article. In addition, pre-sintering can reduce voids that may exist in the molded object (object to be processed), so it is possible to suitably prevent cracks that may occur during sintering due to high-temperature and high-speed heating. Preliminary sintering can be carried out at a heating temperature of, for example, 800°C to 1200°C, preferably 900°C to 1100°C. Since the heating time may vary depending on the shape, size, composition, etc. of the molded article, it may be adjusted as appropriate, and may be, for example, from 0.5 hours to 5 hours. The molded body can be heated by a known method, and for example, a heating device such as a muffle furnace, an electric furnace, or a microwave firing furnace can be used.
バナジウム族元素付与工程では、バナジウム族元素を含むバナジウム族元素含有材料を仮焼結体に付与する。バナジウム族元素含有材料は、例えば、溶液、ゾル等であり得、特にゾルであることが好ましい。溶液としては、例えば、バナジウム族元素の塩化物溶液、金属アルコキシド溶液等が挙げられる。バナジウム族元素含有材料がゾルである場合、バナジウム族元素を含む粒子が分散媒に分散していることが好ましい。該粒子としては、例えば、バナジウム族元素を含む酸化物が挙げられる。かかる酸化物の具体例としては、V2O5、Nb2O5、Ta2O5等が挙げられる。分散媒は、特に限定されないが、例えば、水、有機溶媒等であり得る。ゾルにおいて、バナジウム族元素を含む粒子がゾル全体に占める割合(ゾル濃度)は特に限定されないが、例えば、1質量%~10質量%、好ましくは5質量%~10質量%程度であるとよい。ゾル濃度(粒子の占める割合)が低すぎる場合には、仮焼結体の表面にバナジウム族元素が十分に配置されず、ジルコニア焼結体を作製した際に、破壊靭性の向上が不十分になる場合がある。
In the vanadium group element application step, a vanadium group element-containing material containing a vanadium group element is applied to the temporary sintered body. The vanadium group element-containing material may be, for example, a solution, a sol, etc., and a sol is particularly preferred. Examples of the solution include a chloride solution of a vanadium group element, a metal alkoxide solution, and the like. When the vanadium group element-containing material is a sol, particles containing the vanadium group element are preferably dispersed in a dispersion medium. Examples of the particles include oxides containing vanadium group elements. Specific examples of such oxides include V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 and the like. The dispersion medium is not particularly limited, and may be, for example, water, an organic solvent, or the like. In the sol, the proportion of particles containing vanadium group elements in the entire sol (sol concentration) is not particularly limited, but is, for example, about 1% by mass to 10% by mass, preferably about 5% by mass to 10% by mass. If the sol concentration (ratio of particles) is too low, vanadium group elements will not be sufficiently placed on the surface of the temporary sintered body, resulting in insufficient improvement in fracture toughness when producing a zirconia sintered body. It may happen.
バナジウム族元素材料を仮焼結体に付与する方法としては、例えば、仮焼結体の一部または全体をバナジウム族元素含有材料に含浸すること、仮焼結体の表面にバナジウム族元素含有材料を塗布すること等が挙げられる。
Examples of methods for applying the vanadium group element material to the temporary sintered body include impregnating a part or the whole of the temporary sintered body with the vanadium group element-containing material, and applying the vanadium group element-containing material to the surface of the temporary sintered body. For example, applying
仮焼結体をバナジウム族元素含有材料に含浸する場合には、仮焼結体の形状や大きさ等により含浸時間を適宜変更すればよく、例えば、0.1時間~48時間程度、好ましくは4時間~24時間程度とすることができる。
When impregnating the temporary sintered body with a vanadium group element-containing material, the impregnation time may be changed as appropriate depending on the shape and size of the temporary sintered body, for example, about 0.1 hour to 48 hours, preferably. It can be about 4 hours to 24 hours.
乾燥工程は、上記バナジウム族元素付与工程後の仮焼結体を乾燥させ、バナジウム族元素含有材料に含まれる液体成分(例えば分散媒)等を除く工程である。乾燥方法は特に限定されず、自然乾燥、送風乾燥、熱風乾燥、加熱炉等を利用した加熱による乾燥、真空乾燥、吸引乾燥、凍結乾燥等を適宜選択することができる。加熱による乾燥の一例では、80℃~150℃条件下で0.5時間~20時間程度の乾燥を行うことができる。なお、乾燥工程は必須の工程ではなく、適宜省略することもできる。
The drying step is a step in which the temporary sintered body after the vanadium group element imparting step is dried to remove liquid components (for example, dispersion medium) contained in the vanadium group element-containing material. The drying method is not particularly limited, and can be appropriately selected from natural drying, blast drying, hot air drying, drying by heating using a heating furnace, vacuum drying, suction drying, freeze drying, and the like. As an example of drying by heating, drying can be carried out under conditions of 80° C. to 150° C. for about 0.5 hours to 20 hours. Note that the drying step is not an essential step and can be omitted as appropriate.
焼成工程では、仮焼結体を焼成することでジルコニア焼結体を得る。焼成方法は、公知方法によって行うことができ、例えば、マッフル炉、電気炉、マイクロ波焼成炉等の加熱装置を用いて焼成することができる。焼成温度は、特に限定されないが、例えば、1300℃~1600℃であってよく、1400℃~1500℃であってよい。焼成温度に達した後の保持時間は、例えば、1時間~5時間であってよく、1.5時間~3時間であってもよい。
In the firing process, a zirconia sintered body is obtained by firing the temporary sintered body. The firing method can be performed by a known method, for example, by using a heating device such as a muffle furnace, an electric furnace, or a microwave firing furnace. The firing temperature is not particularly limited, but may be, for example, 1300°C to 1600°C, or 1400°C to 1500°C. The holding time after reaching the firing temperature may be, for example, 1 hour to 5 hours, or 1.5 hours to 3 hours.
ここで開示されるジルコニア焼結体は、従来ジルコニア焼結体が使用される各種用途に使用することができ、例えば、構造部材、歯科材料等に好適に用いることができる。歯科材料としては、例えば、前歯用義歯、奥歯用義歯等の義歯、義歯ミルブランク、歯科矯正ブラケット、歯科補綴物、ブリッジ、クラウン等が挙げられる。
The zirconia sintered body disclosed herein can be used in various applications where zirconia sintered bodies have been conventionally used, and can be suitably used for structural members, dental materials, etc., for example. Examples of dental materials include dentures such as dentures for front teeth and dentures for back teeth, denture mill blanks, orthodontic brackets, dental prostheses, bridges, and crowns.
以上の通り、ここで開示される技術の具体的な態様として、以下の各項に記載のものが挙げられる。
項1:ジルコニアと、バナジウム族元素とを含み、上記バナジウム族元素は、少なくとも表層の一部に偏在している、ジルコニア焼結体。
項2:上記バナジウム族元素が偏在する表層の表面における上記バナジウム族元素の濃度が、該表面の深さ方向の上記バナジウム族元素の濃度が最も低い部分の上記バナジウム族元素の濃度よりも1.5倍以上高い、または、上記バナジウム族元素の濃度が最も低い部分に上記バナジウム族元素が含まれない、項1に記載のジルコニア焼結体。
項3:X線回折パターンから得られる上記バナジウム族元素が偏在する表層の表面における正方晶のc/a軸長比と、上記表層の深さ方向の上記バナジウム族元素の濃度が最も低い部分における正方晶のc/a軸長比との差が0.001以上である、項1または2に記載のジルコニア焼結体。
項4:上記バナジウム族元素としてニオブ(Nb)を含む、項1~3のいずれか一項に記載のジルコニア焼結体。
項5:さらに、安定化剤として酸化イットリウム及び/又は酸化イッテルビウムを含む、項1~4のいずれか一項に記載のジルコニア焼結体。
項6:前記ジルコニアと前記安定化剤との合計を100mol%としたとき、前記安定化剤の濃度が3mol%以上6mol%以下である、項5に記載のジルコニア焼結体。
項7:上記バナジウム族元素が偏在する前記表層の表面の少なくとも一部における破壊靭性値が4.5MPa√m以上であり、25℃~500℃における平均線膨張係数が10×10-6/K以下である、項1~6のいずれか一項に記載のジルコニア焼結体。 As mentioned above, specific aspects of the technology disclosed herein include those described in the following sections.
Item 1: A zirconia sintered body containing zirconia and a vanadium group element, the vanadium group element being unevenly distributed in at least a part of the surface layer.
Item 2: The concentration of the vanadium group element at the surface of the surface layer where the vanadium group element is unevenly distributed is 1. Item 2. The zirconia sintered body according to Item 1, wherein the vanadium group element is not contained in the portion where the concentration of the vanadium group element is 5 times or more higher or the lowest concentration of the vanadium group element.
Item 3: The c/a axis length ratio of the tetragonal crystal at the surface of the surface layer where the vanadium group element is unevenly distributed, obtained from the X-ray diffraction pattern, and the part where the concentration of the vanadium group element in the depth direction of the surface layer is the lowest. Item 3. The zirconia sintered body according to item 1 or 2, wherein the difference from the c/a axis length ratio of the tetragonal crystal is 0.001 or more.
Item 4: The zirconia sintered body according to any one of Items 1 to 3, containing niobium (Nb) as the vanadium group element.
Item 5: The zirconia sintered body according to any one of Items 1 to 4, further comprising yttrium oxide and/or ytterbium oxide as a stabilizer.
Item 6: The zirconia sintered body according to item 5, wherein the concentration of the stabilizer is 3 mol% or more and 6 mol% or less when the total of the zirconia and the stabilizer is 100 mol%.
Item 7: The fracture toughness value of at least a part of the surface of the surface layer where the vanadium group element is unevenly distributed is 4.5 MPa√m or more, and the average linear expansion coefficient at 25° C. to 500° C. is 10×10 −6 /K. The zirconia sintered body according to any one of Items 1 to 6 below.
項1:ジルコニアと、バナジウム族元素とを含み、上記バナジウム族元素は、少なくとも表層の一部に偏在している、ジルコニア焼結体。
項2:上記バナジウム族元素が偏在する表層の表面における上記バナジウム族元素の濃度が、該表面の深さ方向の上記バナジウム族元素の濃度が最も低い部分の上記バナジウム族元素の濃度よりも1.5倍以上高い、または、上記バナジウム族元素の濃度が最も低い部分に上記バナジウム族元素が含まれない、項1に記載のジルコニア焼結体。
項3:X線回折パターンから得られる上記バナジウム族元素が偏在する表層の表面における正方晶のc/a軸長比と、上記表層の深さ方向の上記バナジウム族元素の濃度が最も低い部分における正方晶のc/a軸長比との差が0.001以上である、項1または2に記載のジルコニア焼結体。
項4:上記バナジウム族元素としてニオブ(Nb)を含む、項1~3のいずれか一項に記載のジルコニア焼結体。
項5:さらに、安定化剤として酸化イットリウム及び/又は酸化イッテルビウムを含む、項1~4のいずれか一項に記載のジルコニア焼結体。
項6:前記ジルコニアと前記安定化剤との合計を100mol%としたとき、前記安定化剤の濃度が3mol%以上6mol%以下である、項5に記載のジルコニア焼結体。
項7:上記バナジウム族元素が偏在する前記表層の表面の少なくとも一部における破壊靭性値が4.5MPa√m以上であり、25℃~500℃における平均線膨張係数が10×10-6/K以下である、項1~6のいずれか一項に記載のジルコニア焼結体。 As mentioned above, specific aspects of the technology disclosed herein include those described in the following sections.
Item 1: A zirconia sintered body containing zirconia and a vanadium group element, the vanadium group element being unevenly distributed in at least a part of the surface layer.
Item 2: The concentration of the vanadium group element at the surface of the surface layer where the vanadium group element is unevenly distributed is 1. Item 2. The zirconia sintered body according to Item 1, wherein the vanadium group element is not contained in the portion where the concentration of the vanadium group element is 5 times or more higher or the lowest concentration of the vanadium group element.
Item 3: The c/a axis length ratio of the tetragonal crystal at the surface of the surface layer where the vanadium group element is unevenly distributed, obtained from the X-ray diffraction pattern, and the part where the concentration of the vanadium group element in the depth direction of the surface layer is the lowest. Item 3. The zirconia sintered body according to item 1 or 2, wherein the difference from the c/a axis length ratio of the tetragonal crystal is 0.001 or more.
Item 4: The zirconia sintered body according to any one of Items 1 to 3, containing niobium (Nb) as the vanadium group element.
Item 5: The zirconia sintered body according to any one of Items 1 to 4, further comprising yttrium oxide and/or ytterbium oxide as a stabilizer.
Item 6: The zirconia sintered body according to item 5, wherein the concentration of the stabilizer is 3 mol% or more and 6 mol% or less when the total of the zirconia and the stabilizer is 100 mol%.
Item 7: The fracture toughness value of at least a part of the surface of the surface layer where the vanadium group element is unevenly distributed is 4.5 MPa√m or more, and the average linear expansion coefficient at 25° C. to 500° C. is 10×10 −6 /K. The zirconia sintered body according to any one of Items 1 to 6 below.
以下、ここで開示される技術に関する実施例を説明するが、かかる実施例はここで開示される技術を限定することを意図したものではない。
Examples related to the technology disclosed herein will be described below, but these examples are not intended to limit the technology disclosed herein.
<試験1>
試験1では、ジルコニア焼結体中のNbの分布およびc/a軸長比(正方晶性)について解析した。 <Test 1>
In Test 1, the distribution of Nb and the c/a axis length ratio (tetragonal crystallinity) in the zirconia sintered body were analyzed.
試験1では、ジルコニア焼結体中のNbの分布およびc/a軸長比(正方晶性)について解析した。 <Test 1>
In Test 1, the distribution of Nb and the c/a axis length ratio (tetragonal crystallinity) in the zirconia sintered body were analyzed.
(実施例1)
3mol%の酸化イットリウム(Y2O3)を含むジルコニア粉末(共立マテリアル株式会社製)を準備した。この粉末を、縦50mm、横15mmの底面の金型に15g充填した後、20MPaの圧力で予備成型を行い、予備成型体を作製した。かかる予備成型体を金型から取り出した後、この予備成型体に対し196MPaの圧力でCIP成形を行い、成形体を作製した。かかる成形体は、縦50mm、横14mm、高さ6.8mmの直方体であった。この成形体を1000℃、30分間仮焼し、仮焼体を得た。かかる仮焼体をNb2O5ゾル(多木化学株式会社製、製品番号:Nb-G6000、ゾル濃度:6質量%)に24時間含浸させた後、120℃、16時間の乾燥を行った。乾燥後、1450℃、2時間の焼成を行い、実施例1のジルコニア焼結体を得た。なお、かかる焼結体は縦40mm、横11.5mm、高さ5.6mmの直方体であった。 (Example 1)
Zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol % of yttrium oxide (Y 2 O 3 ) was prepared. After filling 15 g of this powder into a mold with a bottom surface measuring 50 mm long and 15 mm wide, preforming was performed at a pressure of 20 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. The molded body was a rectangular parallelepiped with a length of 50 mm, a width of 14 mm, and a height of 6.8 mm. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. The calcined body was impregnated with Nb 2 O 5 sol (manufactured by Taki Chemical Co., Ltd., product number: Nb-G6000, sol concentration: 6% by mass) for 24 hours, and then dried at 120° C. for 16 hours. . After drying, sintering was performed at 1450° C. for 2 hours to obtain the zirconia sintered body of Example 1. The sintered body was a rectangular parallelepiped with a length of 40 mm, a width of 11.5 mm, and a height of 5.6 mm.
3mol%の酸化イットリウム(Y2O3)を含むジルコニア粉末(共立マテリアル株式会社製)を準備した。この粉末を、縦50mm、横15mmの底面の金型に15g充填した後、20MPaの圧力で予備成型を行い、予備成型体を作製した。かかる予備成型体を金型から取り出した後、この予備成型体に対し196MPaの圧力でCIP成形を行い、成形体を作製した。かかる成形体は、縦50mm、横14mm、高さ6.8mmの直方体であった。この成形体を1000℃、30分間仮焼し、仮焼体を得た。かかる仮焼体をNb2O5ゾル(多木化学株式会社製、製品番号:Nb-G6000、ゾル濃度:6質量%)に24時間含浸させた後、120℃、16時間の乾燥を行った。乾燥後、1450℃、2時間の焼成を行い、実施例1のジルコニア焼結体を得た。なお、かかる焼結体は縦40mm、横11.5mm、高さ5.6mmの直方体であった。 (Example 1)
Zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol % of yttrium oxide (Y 2 O 3 ) was prepared. After filling 15 g of this powder into a mold with a bottom surface measuring 50 mm long and 15 mm wide, preforming was performed at a pressure of 20 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. The molded body was a rectangular parallelepiped with a length of 50 mm, a width of 14 mm, and a height of 6.8 mm. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. The calcined body was impregnated with Nb 2 O 5 sol (manufactured by Taki Chemical Co., Ltd., product number: Nb-G6000, sol concentration: 6% by mass) for 24 hours, and then dried at 120° C. for 16 hours. . After drying, sintering was performed at 1450° C. for 2 hours to obtain the zirconia sintered body of Example 1. The sintered body was a rectangular parallelepiped with a length of 40 mm, a width of 11.5 mm, and a height of 5.6 mm.
(参考例1)
3mol%の酸化イットリウム(Y2O3)を含むジルコニア粉末(共立マテリアル株式会社製)に、粉末全体の1mol%となるようにNb2O5粉末を混合し、原料粉末を準備した。かかる原料粉末を、縦50mm、横15mmの底面の金型に15g充填した後、20MPaの圧力を付加して予備成型を行い、予備成型体を作製した。かかる予備成型体を金型から取り出した後、この予備成型体に対し196MPaの圧力でCIP成形を行い、成形体を作製した。かかる成形体は、縦50mm、横14mm、高さ6.8mmの直方体であった。この成形体を1000℃、30分間仮焼し、仮焼体を得た。かかる仮焼体を1450℃、2時間焼成し、参考例1のジルコニア焼結体を得た。なお、かかる焼結体は縦40mm、横11.5mm、高さ5.6mmの直方体であった。 (Reference example 1)
A raw material powder was prepared by mixing Nb 2 O 5 powder to zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol % of yttrium oxide (Y 2 O 3 ) in an amount of 1 mol % of the entire powder. After filling 15 g of the raw material powder into a mold with a bottom surface measuring 50 mm long and 15 mm wide, preforming was performed by applying a pressure of 20 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. The molded body was a rectangular parallelepiped with a length of 50 mm, a width of 14 mm, and a height of 6.8 mm. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. This calcined body was fired at 1450° C. for 2 hours to obtain a zirconia sintered body of Reference Example 1. The sintered body was a rectangular parallelepiped with a length of 40 mm, a width of 11.5 mm, and a height of 5.6 mm.
3mol%の酸化イットリウム(Y2O3)を含むジルコニア粉末(共立マテリアル株式会社製)に、粉末全体の1mol%となるようにNb2O5粉末を混合し、原料粉末を準備した。かかる原料粉末を、縦50mm、横15mmの底面の金型に15g充填した後、20MPaの圧力を付加して予備成型を行い、予備成型体を作製した。かかる予備成型体を金型から取り出した後、この予備成型体に対し196MPaの圧力でCIP成形を行い、成形体を作製した。かかる成形体は、縦50mm、横14mm、高さ6.8mmの直方体であった。この成形体を1000℃、30分間仮焼し、仮焼体を得た。かかる仮焼体を1450℃、2時間焼成し、参考例1のジルコニア焼結体を得た。なお、かかる焼結体は縦40mm、横11.5mm、高さ5.6mmの直方体であった。 (Reference example 1)
A raw material powder was prepared by mixing Nb 2 O 5 powder to zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol % of yttrium oxide (Y 2 O 3 ) in an amount of 1 mol % of the entire powder. After filling 15 g of the raw material powder into a mold with a bottom surface measuring 50 mm long and 15 mm wide, preforming was performed by applying a pressure of 20 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. The molded body was a rectangular parallelepiped with a length of 50 mm, a width of 14 mm, and a height of 6.8 mm. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. This calcined body was fired at 1450° C. for 2 hours to obtain a zirconia sintered body of Reference Example 1. The sintered body was a rectangular parallelepiped with a length of 40 mm, a width of 11.5 mm, and a height of 5.6 mm.
(Nb濃度分布の解析)
ジルコニア焼結体を長辺方向(40mmの辺方向)に垂直となるように切断し、長辺の中点の位置における切断面(11.5mm×5.6mm)を有する試験片を作製した。かかる切断面を鏡面加工した後、該切断面を走査型電子顕微鏡-波長分散型X線分光法(SEM-WDX)により解析した。SEM-WDXには、電子プローブマイクロアナライザ(EPMA)として、日本電子株式会社製のJXA-iHP200F Hyper Probeを用いた。Nb濃度分布の測定方法としては、元素マッピング像のNb特性X線強度の結果を用いた方法と、全元素定量分析の結果を用いた方法との2種類の方法を行った。 (Analysis of Nb concentration distribution)
The zirconia sintered body was cut perpendicularly to the long side direction (40 mm side direction) to prepare a test piece having a cut surface (11.5 mm x 5.6 mm) at the midpoint of the long side. After mirror-finishing the cut surface, the cut surface was analyzed using a scanning electron microscope-wavelength dispersive X-ray spectroscopy (SEM-WDX). For SEM-WDX, JXA-iHP200F Hyper Probe manufactured by JEOL Ltd. was used as an electron probe microanalyzer (EPMA). Two methods were used to measure the Nb concentration distribution: a method using the results of the Nb characteristic X-ray intensity of the elemental mapping image, and a method using the results of quantitative analysis of all elements.
ジルコニア焼結体を長辺方向(40mmの辺方向)に垂直となるように切断し、長辺の中点の位置における切断面(11.5mm×5.6mm)を有する試験片を作製した。かかる切断面を鏡面加工した後、該切断面を走査型電子顕微鏡-波長分散型X線分光法(SEM-WDX)により解析した。SEM-WDXには、電子プローブマイクロアナライザ(EPMA)として、日本電子株式会社製のJXA-iHP200F Hyper Probeを用いた。Nb濃度分布の測定方法としては、元素マッピング像のNb特性X線強度の結果を用いた方法と、全元素定量分析の結果を用いた方法との2種類の方法を行った。 (Analysis of Nb concentration distribution)
The zirconia sintered body was cut perpendicularly to the long side direction (40 mm side direction) to prepare a test piece having a cut surface (11.5 mm x 5.6 mm) at the midpoint of the long side. After mirror-finishing the cut surface, the cut surface was analyzed using a scanning electron microscope-wavelength dispersive X-ray spectroscopy (SEM-WDX). For SEM-WDX, JXA-iHP200F Hyper Probe manufactured by JEOL Ltd. was used as an electron probe microanalyzer (EPMA). Two methods were used to measure the Nb concentration distribution: a method using the results of the Nb characteristic X-ray intensity of the elemental mapping image, and a method using the results of quantitative analysis of all elements.
元素マッピングは、検出器:Nb WDS detector PET、加速電圧:15.0kV、照射電流:5.0×10-8A、収集時間:10ms、ピクセルサイズ:0.025μm(倍率:10000のとき)、2.5μm(倍率:100のとき)の条件で実施した。元素マッピングは、上記切断面の中心を通るよう、該切断面の短辺方向に沿って実施した。実施例1のNbのマッピング像(倍率:100)を図1に示す。また、参考例1のNbのマッピング像(倍率100)を図2に示す。Nbのマッピング像において、比較的明るい部分(比較的白色に近い部分)はNb濃度が高いことを示し、比較的暗い部分(比較的黒色に近い部分)はNb濃度が低いことを示す。参考例1のNbの特性X線強度の平均値からバックグラウンドを引いた値を1mol%のNb2O5として、実施例1のジルコニア焼結体のNb2O5濃度を求めた。具体的には、上記切断面の短辺方向(図1中の上下方向)に該切断面の中心を原点(0mm)とする数直線を引き、マッピング像の上方向を正の方向、下方向を負の方向として、0mm、±0.5mm、±1.5mm、±2.5mm、±2.7mmの位置におけるNb2O5濃度を求めた。結果を図3に示す。
Elemental mapping was performed using a detector: Nb WDS detector PET, accelerating voltage: 15.0 kV, irradiation current: 5.0 × 10 -8 A, collection time: 10 ms, pixel size: 0.025 μm (at magnification: 10000), It was carried out under the condition of 2.5 μm (at magnification: 100). Elemental mapping was performed along the short side direction of the cut surface, passing through the center of the cut surface. A mapping image (magnification: 100) of Nb in Example 1 is shown in FIG. Further, a mapping image (magnification: 100) of Nb of Reference Example 1 is shown in FIG. In the Nb mapping image, relatively bright areas (relatively close to white) indicate high Nb concentration, and relatively dark areas (relatively close to black) indicate low Nb concentration. The Nb 2 O 5 concentration of the zirconia sintered body of Example 1 was determined by setting the value obtained by subtracting the background from the average value of the characteristic X-ray intensity of Nb of Reference Example 1 as 1 mol % of Nb 2 O 5 . Specifically, a number line is drawn with the origin (0 mm) at the center of the cut plane in the short side direction (vertical direction in FIG. 1) of the cut plane, and the upward direction of the mapping image is the positive direction, and the downward direction is The Nb 2 O 5 concentration was determined at positions of 0 mm, ±0.5 mm, ±1.5 mm, ±2.5 mm, and ±2.7 mm, with the value being the negative direction. The results are shown in Figure 3.
全元素定量分析は、検出器:Nb WDS detector PET、加速電圧:15.0kV、照射電流:5.0×10-8A、収集時間:500msの条件で実施した。全元素定量分析は、上記切断面の一方の長辺(11.5mmの辺)の中点から該切断面の中心に向かって(深さ方向に向かって)行った。参考例1の試験片の切断面で測定されたNb濃度をNb2O5濃度換算し、その平均濃度を1mol%とした。そして、実施例1の試験片の切断面におけるNb濃度をNb2O5濃度換算し、参考例1の結果を用いて標準化した。結果を図4に示す。図4に示すグラフは、横軸に上記切断面の短辺方向における表面からの距離(深さ)を示しており、縦軸にNb2O5濃度を示している。
Quantitative analysis of all elements was carried out under the following conditions: detector: Nb WDS detector PET, accelerating voltage: 15.0 kV, irradiation current: 5.0 × 10 -8 A, collection time: 500 ms. Quantitative analysis of all elements was performed from the midpoint of one long side (11.5 mm side) of the cut surface toward the center of the cut surface (in the depth direction). The Nb concentration measured on the cut surface of the test piece of Reference Example 1 was converted into Nb 2 O 5 concentration, and the average concentration was set to 1 mol%. Then, the Nb concentration at the cut surface of the test piece of Example 1 was converted into Nb 2 O 5 concentration and standardized using the results of Reference Example 1. The results are shown in Figure 4. In the graph shown in FIG. 4, the horizontal axis indicates the distance (depth) from the surface in the short side direction of the cut surface, and the vertical axis indicates the Nb 2 O 5 concentration.
(c/a軸長比の測定)
X線回折装置(装置名:UltimaIV、株式会社リガク製)を用いて、実施例1の上記試験片の上記切断面におけるX線回折パターンのプロファイルを得た。X線回折パターンのプロファイルを、統合粉末X線解析ソフトウェア:PDXL2(株式会社リガクソフトウェア製)を用いて正方晶のc/a軸長比を測定した。結果を図5に示す。図5のグラフの横軸は、上記切断面の短辺方向における表面からの距離を示し、縦軸は正方晶のc/a軸長比を示す。なお、X線回折(XRD)の測定条件は以下のとおりである。
・X線検出器:D/tex Ultra(付属装置)
・スキャンスピード:0.4°/min
・サンプリング幅:0.02°
・発散スリット:1.0mm
・発散縦スリット:10mm
・散乱スリット:8mm
・受光スリット:開放
・電圧:40kV
・電流:40mA
・測定領域:72~76° (Measurement of c/a axis length ratio)
Using an X-ray diffraction device (device name: Ultima IV, manufactured by Rigaku Co., Ltd.), an X-ray diffraction pattern profile on the cut surface of the test piece of Example 1 was obtained. The c/a axis length ratio of the tetragonal crystal was measured from the profile of the X-ray diffraction pattern using integrated powder X-ray analysis software: PDXL2 (manufactured by Rigaku Software Co., Ltd.). The results are shown in Figure 5. The horizontal axis of the graph in FIG. 5 indicates the distance from the surface in the short side direction of the cut plane, and the vertical axis indicates the c/a axis length ratio of the tetragonal crystal. Note that the measurement conditions for X-ray diffraction (XRD) are as follows.
・X-ray detector: D/tex Ultra (attached device)
・Scan speed: 0.4°/min
・Sampling width: 0.02°
・Divergence slit: 1.0mm
・Divergent vertical slit: 10mm
・Scattering slit: 8mm
・Light receiving slit: Open ・Voltage: 40kV
・Current: 40mA
・Measurement area: 72~76°
X線回折装置(装置名:UltimaIV、株式会社リガク製)を用いて、実施例1の上記試験片の上記切断面におけるX線回折パターンのプロファイルを得た。X線回折パターンのプロファイルを、統合粉末X線解析ソフトウェア:PDXL2(株式会社リガクソフトウェア製)を用いて正方晶のc/a軸長比を測定した。結果を図5に示す。図5のグラフの横軸は、上記切断面の短辺方向における表面からの距離を示し、縦軸は正方晶のc/a軸長比を示す。なお、X線回折(XRD)の測定条件は以下のとおりである。
・X線検出器:D/tex Ultra(付属装置)
・スキャンスピード:0.4°/min
・サンプリング幅:0.02°
・発散スリット:1.0mm
・発散縦スリット:10mm
・散乱スリット:8mm
・受光スリット:開放
・電圧:40kV
・電流:40mA
・測定領域:72~76° (Measurement of c/a axis length ratio)
Using an X-ray diffraction device (device name: Ultima IV, manufactured by Rigaku Co., Ltd.), an X-ray diffraction pattern profile on the cut surface of the test piece of Example 1 was obtained. The c/a axis length ratio of the tetragonal crystal was measured from the profile of the X-ray diffraction pattern using integrated powder X-ray analysis software: PDXL2 (manufactured by Rigaku Software Co., Ltd.). The results are shown in Figure 5. The horizontal axis of the graph in FIG. 5 indicates the distance from the surface in the short side direction of the cut plane, and the vertical axis indicates the c/a axis length ratio of the tetragonal crystal. Note that the measurement conditions for X-ray diffraction (XRD) are as follows.
・X-ray detector: D/tex Ultra (attached device)
・Scan speed: 0.4°/min
・Sampling width: 0.02°
・Divergence slit: 1.0mm
・Divergent vertical slit: 10mm
・Scattering slit: 8mm
・Light receiving slit: Open ・Voltage: 40kV
・Current: 40mA
・Measurement area: 72~76°
(試験1の評価)
図1、3、4に示すように、実施例1では、Nbがジルコニア焼結体の内部側ではほとんど検出されず、Nbが表層に偏在していることがわかる。また、図5に示すように、Nbが偏在している表面では、正方晶のc/a軸長比が大きくなっていることがわかる。一方、図2~4に示すように、参考例1では、Nbがジルコニア焼結体にほぼ均等に分布していることがわかる。 (Evaluation of test 1)
As shown in FIGS. 1, 3, and 4, in Example 1, almost no Nb was detected inside the zirconia sintered body, and it was found that Nb was unevenly distributed in the surface layer. Moreover, as shown in FIG. 5, it can be seen that the c/a axis length ratio of the tetragonal crystal is large on the surface where Nb is unevenly distributed. On the other hand, as shown in FIGS. 2 to 4, it can be seen that in Reference Example 1, Nb is almost evenly distributed in the zirconia sintered body.
図1、3、4に示すように、実施例1では、Nbがジルコニア焼結体の内部側ではほとんど検出されず、Nbが表層に偏在していることがわかる。また、図5に示すように、Nbが偏在している表面では、正方晶のc/a軸長比が大きくなっていることがわかる。一方、図2~4に示すように、参考例1では、Nbがジルコニア焼結体にほぼ均等に分布していることがわかる。 (Evaluation of test 1)
As shown in FIGS. 1, 3, and 4, in Example 1, almost no Nb was detected inside the zirconia sintered body, and it was found that Nb was unevenly distributed in the surface layer. Moreover, as shown in FIG. 5, it can be seen that the c/a axis length ratio of the tetragonal crystal is large on the surface where Nb is unevenly distributed. On the other hand, as shown in FIGS. 2 to 4, it can be seen that in Reference Example 1, Nb is almost evenly distributed in the zirconia sintered body.
<試験2>
試験2では、破壊靭性および平均線膨張率について評価した。 <Test 2>
In Test 2, fracture toughness and average coefficient of linear expansion were evaluated.
試験2では、破壊靭性および平均線膨張率について評価した。 <Test 2>
In Test 2, fracture toughness and average coefficient of linear expansion were evaluated.
(実施例2)
3mol%のY2O3を含むジルコニア粉末(共立マテリアル株式会社製)を準備した。この粉末を、直径7mmの金型に約1.5g充填した後、0.78MPaの圧力で予備成型を行い、予備成型体を作製した。かかる予備成型体を金型から取り出した後、この予備成型体に対し196MPaの圧力でCIP成形を行い、成形体を作製した。この成形体を1000℃、30分間仮焼し、仮焼体を得た。かかる仮焼体をNb2O5ゾル(多木化学株式会社製、製品番号:Nb-G6000、ゾル濃度:6質量%)に4.5時間含浸させた後、120℃、16時間の乾燥を行った。乾燥後、1450℃、2時間の焼成を行い、実施例2のジルコニア焼結体を得た。なお、かかる焼結体は直径5.5mm、高さ10mmの円柱形であった。 (Example 2)
Zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol% of Y2O3 was prepared. Approximately 1.5 g of this powder was filled into a mold with a diameter of 7 mm, and then preformed at a pressure of 0.78 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. The calcined body was impregnated with Nb 2 O 5 sol (manufactured by Taki Chemical Co., Ltd., product number: Nb-G6000, sol concentration: 6% by mass) for 4.5 hours, and then dried at 120°C for 16 hours. went. After drying, sintering was performed at 1450° C. for 2 hours to obtain a zirconia sintered body of Example 2. The sintered body had a cylindrical shape with a diameter of 5.5 mm and a height of 10 mm.
3mol%のY2O3を含むジルコニア粉末(共立マテリアル株式会社製)を準備した。この粉末を、直径7mmの金型に約1.5g充填した後、0.78MPaの圧力で予備成型を行い、予備成型体を作製した。かかる予備成型体を金型から取り出した後、この予備成型体に対し196MPaの圧力でCIP成形を行い、成形体を作製した。この成形体を1000℃、30分間仮焼し、仮焼体を得た。かかる仮焼体をNb2O5ゾル(多木化学株式会社製、製品番号:Nb-G6000、ゾル濃度:6質量%)に4.5時間含浸させた後、120℃、16時間の乾燥を行った。乾燥後、1450℃、2時間の焼成を行い、実施例2のジルコニア焼結体を得た。なお、かかる焼結体は直径5.5mm、高さ10mmの円柱形であった。 (Example 2)
Zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol% of Y2O3 was prepared. Approximately 1.5 g of this powder was filled into a mold with a diameter of 7 mm, and then preformed at a pressure of 0.78 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. The calcined body was impregnated with Nb 2 O 5 sol (manufactured by Taki Chemical Co., Ltd., product number: Nb-G6000, sol concentration: 6% by mass) for 4.5 hours, and then dried at 120°C for 16 hours. went. After drying, sintering was performed at 1450° C. for 2 hours to obtain a zirconia sintered body of Example 2. The sintered body had a cylindrical shape with a diameter of 5.5 mm and a height of 10 mm.
(実施例3)
実施例2のY2O3濃度を3mol%から4.2mol%に変更した以外は同様にして実施例3のジルコニア焼結体を得た。 (Example 3)
A zirconia sintered body of Example 3 was obtained in the same manner except that the Y 2 O 3 concentration of Example 2 was changed from 3 mol % to 4.2 mol %.
実施例2のY2O3濃度を3mol%から4.2mol%に変更した以外は同様にして実施例3のジルコニア焼結体を得た。 (Example 3)
A zirconia sintered body of Example 3 was obtained in the same manner except that the Y 2 O 3 concentration of Example 2 was changed from 3 mol % to 4.2 mol %.
(参考例2)
3mol%の酸化イットリウム(Y2O3)を含むジルコニア粉末(共立マテリアル株式会社製)に、粉末全体の1mol%となるようにNb2O5粉末を混合し、原料粉末を準備した。この粉末を、直径7mmの金型に約1.5g充填した後、0.78MPaの圧力で予備成型を行い、予備成型体を作製した。かかる予備成型体を金型から取り出した後、この予備成型体に対し196MPaの圧力でCIP成形を行い、成形体を作製した。この成形体を1000℃、30分間仮焼し、仮焼体を得た。かかる仮焼体を1450℃、2時間の焼成を行い、参考例2のジルコニア焼結体を得た。なお、かかる焼結体は直径5.5mm、高さ10mmの円柱形であった。 (Reference example 2)
A raw material powder was prepared by mixing Nb 2 O 5 powder to zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol % of yttrium oxide (Y 2 O 3 ) in an amount of 1 mol % of the entire powder. Approximately 1.5 g of this powder was filled into a mold with a diameter of 7 mm, and then preformed at a pressure of 0.78 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. This calcined body was fired at 1450° C. for 2 hours to obtain a zirconia sintered body of Reference Example 2. The sintered body had a cylindrical shape with a diameter of 5.5 mm and a height of 10 mm.
3mol%の酸化イットリウム(Y2O3)を含むジルコニア粉末(共立マテリアル株式会社製)に、粉末全体の1mol%となるようにNb2O5粉末を混合し、原料粉末を準備した。この粉末を、直径7mmの金型に約1.5g充填した後、0.78MPaの圧力で予備成型を行い、予備成型体を作製した。かかる予備成型体を金型から取り出した後、この予備成型体に対し196MPaの圧力でCIP成形を行い、成形体を作製した。この成形体を1000℃、30分間仮焼し、仮焼体を得た。かかる仮焼体を1450℃、2時間の焼成を行い、参考例2のジルコニア焼結体を得た。なお、かかる焼結体は直径5.5mm、高さ10mmの円柱形であった。 (Reference example 2)
A raw material powder was prepared by mixing Nb 2 O 5 powder to zirconia powder (manufactured by Kyoritsu Materials Co., Ltd.) containing 3 mol % of yttrium oxide (Y 2 O 3 ) in an amount of 1 mol % of the entire powder. Approximately 1.5 g of this powder was filled into a mold with a diameter of 7 mm, and then preformed at a pressure of 0.78 MPa to produce a preformed body. After taking out the preform from the mold, the preform was subjected to CIP molding at a pressure of 196 MPa to produce a molded product. This molded body was calcined at 1000° C. for 30 minutes to obtain a calcined body. This calcined body was fired at 1450° C. for 2 hours to obtain a zirconia sintered body of Reference Example 2. The sintered body had a cylindrical shape with a diameter of 5.5 mm and a height of 10 mm.
(参考例3)
参考例2のジルコニア焼結体の製造方法のうち、Y2O3濃度を3mol%から4.2mol%に変更した以外は同様にして参考例3のジルコニア焼結体を得た。 (Reference example 3)
A zirconia sintered body of Reference Example 3 was obtained in the same manner as in the method for producing the zirconia sintered body of Reference Example 2, except that the Y 2 O 3 concentration was changed from 3 mol % to 4.2 mol %.
参考例2のジルコニア焼結体の製造方法のうち、Y2O3濃度を3mol%から4.2mol%に変更した以外は同様にして参考例3のジルコニア焼結体を得た。 (Reference example 3)
A zirconia sintered body of Reference Example 3 was obtained in the same manner as in the method for producing the zirconia sintered body of Reference Example 2, except that the Y 2 O 3 concentration was changed from 3 mol % to 4.2 mol %.
(比較例1)
参考例2のジルコニア焼結体の製造方法のうち、Nb2O5粉末を混合しなかったこと以外は同様にして比較例1のジルコニア焼結体を得た。 (Comparative example 1)
A zirconia sintered body of Comparative Example 1 was obtained in the same manner as in the method for manufacturing the zirconia sintered body of Reference Example 2 except that Nb 2 O 5 powder was not mixed.
参考例2のジルコニア焼結体の製造方法のうち、Nb2O5粉末を混合しなかったこと以外は同様にして比較例1のジルコニア焼結体を得た。 (Comparative example 1)
A zirconia sintered body of Comparative Example 1 was obtained in the same manner as in the method for manufacturing the zirconia sintered body of Reference Example 2 except that Nb 2 O 5 powder was not mixed.
(比較例2)
参考例3のジルコニア焼結体の製造方法のうち、Nb2O5粉末を混合しなかったこと以外は同様にして比較例2のジルコニア焼結体を得た。 (Comparative example 2)
A zirconia sintered body of Comparative Example 2 was obtained in the same manner as in the method for manufacturing the zirconia sintered body of Reference Example 3 except that Nb 2 O 5 powder was not mixed.
参考例3のジルコニア焼結体の製造方法のうち、Nb2O5粉末を混合しなかったこと以外は同様にして比較例2のジルコニア焼結体を得た。 (Comparative example 2)
A zirconia sintered body of Comparative Example 2 was obtained in the same manner as in the method for manufacturing the zirconia sintered body of Reference Example 3 except that Nb 2 O 5 powder was not mixed.
(破壊靭性値の測定)
ジルコニア焼結体の表面を約0.05mm鏡面研磨し、かかる表面における破壊靭性値を測定した。測定はJIS R 1607:2015のIF法に準じて行った。なお、ビッカース圧子の押し込み荷重を10kgf(約98N)、ビッカース圧子の押し込み保持時間を30秒とした。結果を図6に示す。 (Measurement of fracture toughness value)
The surface of the zirconia sintered body was mirror-polished to a depth of about 0.05 mm, and the fracture toughness value on this surface was measured. The measurement was performed according to the IF method of JIS R 1607:2015. The indentation load of the Vickers indenter was 10 kgf (approximately 98 N), and the indentation time of the Vickers indenter was 30 seconds. The results are shown in FIG.
ジルコニア焼結体の表面を約0.05mm鏡面研磨し、かかる表面における破壊靭性値を測定した。測定はJIS R 1607:2015のIF法に準じて行った。なお、ビッカース圧子の押し込み荷重を10kgf(約98N)、ビッカース圧子の押し込み保持時間を30秒とした。結果を図6に示す。 (Measurement of fracture toughness value)
The surface of the zirconia sintered body was mirror-polished to a depth of about 0.05 mm, and the fracture toughness value on this surface was measured. The measurement was performed according to the IF method of JIS R 1607:2015. The indentation load of the Vickers indenter was 10 kgf (approximately 98 N), and the indentation time of the Vickers indenter was 30 seconds. The results are shown in FIG.
(平均線膨張率の測定)
熱機械分析装置(NETZSCH社製、製品名:TMA4000SA)を用いて、25℃~500℃における平均線膨張率を測定した。測定は、JIS R 1618に準じて行った。なお、荷重:20g、昇温速度:5K/min、測定雰囲気:大気雰囲気とした。結果を図7に示す。 (Measurement of average linear expansion coefficient)
The average linear expansion coefficient at 25° C. to 500° C. was measured using a thermomechanical analyzer (manufactured by NETZSCH, product name: TMA4000SA). The measurement was performed according to JIS R 1618. Note that the load: 20 g, the temperature increase rate: 5 K/min, and the measurement atmosphere: air. The results are shown in FIG.
熱機械分析装置(NETZSCH社製、製品名:TMA4000SA)を用いて、25℃~500℃における平均線膨張率を測定した。測定は、JIS R 1618に準じて行った。なお、荷重:20g、昇温速度:5K/min、測定雰囲気:大気雰囲気とした。結果を図7に示す。 (Measurement of average linear expansion coefficient)
The average linear expansion coefficient at 25° C. to 500° C. was measured using a thermomechanical analyzer (manufactured by NETZSCH, product name: TMA4000SA). The measurement was performed according to JIS R 1618. Note that the load: 20 g, the temperature increase rate: 5 K/min, and the measurement atmosphere: air. The results are shown in FIG.
(試験2の評価)
図6に示すように、Nb2O5を含む実施例2、3、参考例2、3のジルコニア焼結体では、Nb2O5を含まない比較例1、2と比べて、破壊靭性値が高くなった。一方で、図7に示すように、参考例2、3では平均線膨張率が比較例1、2よりも大きくなったのに対し、実施例2、3ではかかる平均線膨張率の増大が抑制されていた。したがって、Nbがジルコニア焼結体の表層に偏在することで、Nbがほぼ均一に分布しているジルコニア焼結体と同等の破壊靭性が実現され、かつ、Nbを含まないジルコニア焼結体と同等の熱膨張率が実現されることがわかる。 (Evaluation of Test 2)
As shown in FIG. 6, the zirconia sintered bodies of Examples 2 and 3 and Reference Examples 2 and 3 containing Nb 2 O 5 have a higher fracture toughness value than Comparative Examples 1 and 2 that do not contain Nb 2 O 5 . has become higher. On the other hand, as shown in FIG. 7, in Reference Examples 2 and 3, the average coefficient of linear expansion was larger than that in Comparative Examples 1 and 2, whereas in Examples 2 and 3, the increase in the average coefficient of linear expansion was suppressed. It had been. Therefore, by unevenly distributing Nb on the surface layer of the zirconia sintered body, a fracture toughness equivalent to that of a zirconia sintered body in which Nb is distributed almost uniformly is achieved, and it is also equivalent to a zirconia sintered body that does not contain Nb. It can be seen that a coefficient of thermal expansion of is achieved.
図6に示すように、Nb2O5を含む実施例2、3、参考例2、3のジルコニア焼結体では、Nb2O5を含まない比較例1、2と比べて、破壊靭性値が高くなった。一方で、図7に示すように、参考例2、3では平均線膨張率が比較例1、2よりも大きくなったのに対し、実施例2、3ではかかる平均線膨張率の増大が抑制されていた。したがって、Nbがジルコニア焼結体の表層に偏在することで、Nbがほぼ均一に分布しているジルコニア焼結体と同等の破壊靭性が実現され、かつ、Nbを含まないジルコニア焼結体と同等の熱膨張率が実現されることがわかる。 (Evaluation of Test 2)
As shown in FIG. 6, the zirconia sintered bodies of Examples 2 and 3 and Reference Examples 2 and 3 containing Nb 2 O 5 have a higher fracture toughness value than Comparative Examples 1 and 2 that do not contain Nb 2 O 5 . has become higher. On the other hand, as shown in FIG. 7, in Reference Examples 2 and 3, the average coefficient of linear expansion was larger than that in Comparative Examples 1 and 2, whereas in Examples 2 and 3, the increase in the average coefficient of linear expansion was suppressed. It had been. Therefore, by unevenly distributing Nb on the surface layer of the zirconia sintered body, a fracture toughness equivalent to that of a zirconia sintered body in which Nb is distributed almost uniformly is achieved, and it is also equivalent to a zirconia sintered body that does not contain Nb. It can be seen that a coefficient of thermal expansion of is achieved.
以上、ここで開示される技術の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
Although specific examples of the technology disclosed herein have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes to the specific examples illustrated above.
Although specific examples of the technology disclosed herein have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes to the specific examples illustrated above.
Claims (7)
- ジルコニアと、バナジウム族元素とを含み、
前記バナジウム族元素は、少なくとも表層の一部に偏在している、
ジルコニア焼結体。 Contains zirconia and vanadium group elements,
The vanadium group element is unevenly distributed in at least a part of the surface layer,
Zirconia sintered body. - 前記バナジウム族元素が偏在する表層の表面おける前記バナジウム族元素の濃度が、該表面の深さ方向の前記バナジウム族元素の濃度が最も低い部分の前記バナジウム族元素の濃度よりも1.5倍以上高い、または、前記バナジウム族元素の濃度が最も低い部分に前記バナジウム族元素が含まれない、請求項1に記載のジルコニア焼結体。 The concentration of the vanadium group element at the surface of the surface layer where the vanadium group element is unevenly distributed is 1.5 times or more than the concentration of the vanadium group element at the lowest concentration of the vanadium group element in the depth direction of the surface. The zirconia sintered body according to claim 1, wherein the vanadium group element is not contained in a portion where the concentration of the vanadium group element is high or the lowest.
- X線回折パターンから得られる前記バナジウム族元素が偏在する表層の表面における正方晶のc/a軸長比と、前記表面の深さ方向の前記バナジウム族元素の濃度が最も低い部分における正方晶のc/a軸長比との差が0.001以上である、請求項1に記載のジルコニア焼結体。 The c/a axis length ratio of the tetragonal crystal at the surface of the surface layer where the vanadium group element is unevenly distributed obtained from the X-ray diffraction pattern, and the tetragonal crystal c/a axis length ratio of the tetragonal crystal at the part where the concentration of the vanadium group element in the depth direction of the surface is lowest. The zirconia sintered body according to claim 1, wherein the difference from the c/a axis length ratio is 0.001 or more.
- 前記バナジウム族元素としてニオブ(Nb)を含む、請求項1~3のいずれか一項に記載のジルコニア焼結体。 The zirconia sintered body according to any one of claims 1 to 3, containing niobium (Nb) as the vanadium group element.
- さらに、安定化剤として酸化イットリウム及び/又は酸化イッテルビウムを含む、請求項1~3のいずれか一項に記載のジルコニア焼結体。 The zirconia sintered body according to any one of claims 1 to 3, further comprising yttrium oxide and/or ytterbium oxide as a stabilizer.
- 前記ジルコニアと前記安定化剤との合計を100mol%としたとき、前記安定化剤の濃度が3mol%以上6mol%以下である、請求項5に記載のジルコニア焼結体。 The zirconia sintered body according to claim 5, wherein the concentration of the stabilizer is 3 mol% or more and 6 mol% or less when the total of the zirconia and the stabilizer is 100 mol%.
- 前記バナジウム族元素が偏在する前記表層の表面の少なくとも一部における破壊靭性値が4.5MPa√m以上であり、
25℃~500℃における平均線膨張係数が10×10-6/K以下である、
請求項1~3のいずれか一項に記載のジルコニア焼結体。 A fracture toughness value of at least a part of the surface of the surface layer where the vanadium group element is unevenly distributed is 4.5 MPa√m or more,
The average linear expansion coefficient at 25°C to 500°C is 10 × 10 -6 /K or less,
The zirconia sintered body according to any one of claims 1 to 3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022124979A JP7568234B2 (en) | 2022-08-04 | 2022-08-04 | Zirconia sintered body |
JP2022-124979 | 2022-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024029228A1 true WO2024029228A1 (en) | 2024-02-08 |
Family
ID=89848844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/023396 WO2024029228A1 (en) | 2022-08-04 | 2023-06-23 | Sintered zirconia object |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7568234B2 (en) |
WO (1) | WO2024029228A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021229840A1 (en) * | 2020-05-12 | 2021-11-18 | 共立マテリアル株式会社 | Translucent and highly toughened zirconia sintered body |
US20220081369A1 (en) * | 2020-09-14 | 2022-03-17 | James R. Glidewell Dental Ceramics, Inc. | Method For Enhancing Mechanical Properties In Sintered Ceramic Bodies Having Applications In Dental Restorations |
-
2022
- 2022-08-04 JP JP2022124979A patent/JP7568234B2/en active Active
-
2023
- 2023-06-23 WO PCT/JP2023/023396 patent/WO2024029228A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021229840A1 (en) * | 2020-05-12 | 2021-11-18 | 共立マテリアル株式会社 | Translucent and highly toughened zirconia sintered body |
US20220081369A1 (en) * | 2020-09-14 | 2022-03-17 | James R. Glidewell Dental Ceramics, Inc. | Method For Enhancing Mechanical Properties In Sintered Ceramic Bodies Having Applications In Dental Restorations |
Also Published As
Publication number | Publication date |
---|---|
JP7568234B2 (en) | 2024-10-16 |
JP2024021848A (en) | 2024-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ramesh et al. | A review on the hydrothermal ageing behaviour of Y-TZP ceramics | |
JP5366398B2 (en) | Composite ceramics and manufacturing method thereof | |
CN107573035B (en) | Control of sintering kinetics of oxide ceramics | |
JP5752712B2 (en) | Body made from ceramic material | |
JP4157679B2 (en) | Implant element | |
EP2443077B1 (en) | Dental application coating | |
Li et al. | Microstructure and mechanical properties of ZrO2 (Y2O3)–Al2O3 nanocomposites prepared by spark plasma sintering | |
JP2024105614A (en) | Manufacturing method of zirconia sintered body | |
Ormanci et al. | Spark plasma sintered Al2O3–YSZ–TiO2 composites: Processing, characterization and in vivo evaluation | |
KR20150034177A (en) | CeO2-STABILIZED ZrO2 CERAMICS FOR DENTAL APPLICATIONS | |
Li et al. | Optimized sintering and mechanical properties of Y-TZP ceramics for dental restorations by adding lithium disilicate glass ceramics | |
Özer et al. | The effect of yttrium oxide in hydroxyapatite/aluminum oxide hybrid biocomposite materials: Phase, mechanical and morphological evaluation | |
JPH11116328A (en) | Zirconia-based sintered compact | |
JP4398840B2 (en) | Zirconia composite sintered body and biomaterial using the same | |
WO2024029228A1 (en) | Sintered zirconia object | |
US7527866B2 (en) | Glass infiltrated metal oxide infrastructures | |
JP2005075659A (en) | Ceramic sintered compact, method for producing the same, and biomaterial | |
Abden et al. | Microstructure and mechanical properties of ZrO2–40 wt% Al2O3 composite ceramics | |
Ting et al. | The influence of manganese oxide on the densification and mechanical properties of 3Y-TZP ceramics | |
JP6030531B2 (en) | Zirconia sintered body and manufacturing method thereof | |
Guedes et al. | Processing and characterization of alumina/LAS bioceramics for dental applications | |
Hasan et al. | Effect of sintering temperature and time on microstructure and properties of zirconia toughened alumina (Zta) | |
RU2795866C1 (en) | Ceramic material with low sintering temperature based on tetragonal zirconia for additive manufacturing | |
KR102390133B1 (en) | Method for producing colored zirconia with mechanical properties | |
JPH01145064A (en) | Preparation of inorganic bio-material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23849788 Country of ref document: EP Kind code of ref document: A1 |