WO2024029089A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2024029089A1
WO2024029089A1 PCT/JP2022/030180 JP2022030180W WO2024029089A1 WO 2024029089 A1 WO2024029089 A1 WO 2024029089A1 JP 2022030180 W JP2022030180 W JP 2022030180W WO 2024029089 A1 WO2024029089 A1 WO 2024029089A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
base station
regarding
model
positioning
Prior art date
Application number
PCT/JP2022/030180
Other languages
English (en)
French (fr)
Inventor
春陽 越後
浩樹 原田
チーピン ピ
リュー リュー
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/030180 priority Critical patent/WO2024029089A1/ja
Publication of WO2024029089A1 publication Critical patent/WO2024029089A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 is a specification for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel. 8, 9). was made into
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • AI artificial intelligence
  • ML machine learning
  • CSI channel state information reference signal
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can realize suitable overhead reduction/channel estimation/resource utilization.
  • a terminal includes a receiving unit that receives beam information for positioning regarding a position of a base station using at least one of upper layer signaling and physical layer signaling; and a control unit that performs positioning of the base station.
  • suitable overhead reduction/channel estimation/resource utilization can be achieved.
  • FIG. 1 shows Rel. 17 is a diagram illustrating an example of the bit width of parameters included in a CSI report defined up to 17.
  • FIG. 2 is a diagram illustrating an example of an AI model management framework.
  • FIG. 3 is a diagram illustrating an example of specifying an AI model.
  • FIG. 4 is a diagram illustrating an example of a UE positioning method.
  • FIG. 5 is a diagram illustrating an example of a UE positioning method.
  • FIG. 6 is a diagram illustrating an example of a UE positioning method.
  • FIG. 7 is a diagram illustrating an example of a UE positioning method.
  • FIGS. 8A and 8B are diagrams illustrating examples of spatial domain beam prediction and time domain beam prediction, respectively.
  • FIG. 9A and 9B are diagrams illustrating an example of a beam information reception process according to Embodiment 1-1.
  • FIG. 10 is a diagram illustrating an example of a beam information reception process according to Embodiment 2-1.
  • FIG. 11A and FIG. 11B are diagrams showing an example of a beam report according to Embodiment 3-1.
  • 12A and 12B are diagrams showing other examples of beam reports according to Embodiment 3-1.
  • 13A and 13B are diagrams showing other examples of beam reports according to Embodiment 3-1.
  • 14A and 14B are diagrams showing other examples of beam reports according to Embodiment 3-1.
  • FIG. 15 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 16 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 17 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 18 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 19 is a diagram illustrating an example of a vehicle according to an embodiment.
  • a terminal also referred to as a user terminal, User Equipment (UE), etc. transmits channel state information based on a reference signal (RS) (or resources for the RS).
  • RS reference signal
  • CSI channel state information
  • CSI is generated (also referred to as determination, calculation, estimation, measurement, etc.), and the generated CSI is transmitted (also referred to as report, feedback, etc.) to the network (for example, a base station).
  • the CSI may be transmitted to the base station using, for example, an uplink control channel (eg, Physical Uplink Control Channel (PUCCH)) or an uplink shared channel (eg, Physical Uplink Shared Channel (PUSCH)).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the RS used to generate CSI is, for example, a channel state information reference signal (CSI-RS), a synchronization signal/physical broadcast channel (SS/PBCH) block, or a synchronization signal/physical broadcast channel (SS/PBCH) block.
  • CSI-RS channel state information reference signal
  • SS/PBCH synchronization signal/physical broadcast channel
  • SS/PBCH synchronization signal/physical broadcast channel
  • DMRS demodulation reference signal
  • the CSI-RS may include at least one of a Non-Zero Power (NZP) CSI-RS and a CSI-Interference Management (CSI-IM).
  • the SS/PBCH block is a block that includes SS and PBCH (and corresponding DMRS), and may be called an SS block (SSB) or the like. Further, the SS may include at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CSI includes a channel quality indicator (CQI), a precoding matrix indicator (PMI), a CSI-RS resource indicator (CRI), and a SS /PBCH block resource indicator (SSBRI), layer indicator (LI), rank indicator (RI), L1-RSRP (reference signal reception in layer 1) At least one of the even if it includes one good.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SS /PBCH block resource indicator
  • LI layer indicator
  • RI rank indicator
  • L1-RSRP reference signal reception in layer 1
  • the UE may receive information regarding CSI reporting (report configuration information) and control CSI reporting based on the report configuration information.
  • the report configuration information may be, for example, "CSI-ReportConfig" of an information element (IE) of radio resource control (RRC).
  • IE information element
  • RRC radio resource control
  • the report configuration information may include, for example, at least one of the following.
  • - Information about the type of CSI report (report type information, e.g. "reportConfigType” of RRC IE)
  • - Information regarding one or more quantities of CSI to be reported (one or more CSI parameters)
  • report quantity information e.g. "reportQuantity” of RRC IE
  • report quantity information e.g. "reportQuantity” of RRC IE
  • resource information for example, "CSI-ResourceConfigId" of the RRC IE
  • frequency domain information e.g. "reportFreqConfiguration" of RRC IE
  • report type information may include periodic CSI (P-CSI) reporting, aperiodic CSI (A-CSI) reporting, or semi-persistent (semi-persistent, semi-persistent) reporting.
  • P-CSI periodic CSI
  • A-CSI aperiodic CSI
  • SP-CSI Semi-Persistent CSI
  • the report amount information may specify at least one combination of the above CSI parameters (for example, CRI, RI, PMI, CQI, LI, L1-RSRP, etc.).
  • the CRI/SSBRI fields are determined based on the number of CSI-RS resources or the number of SS/PBCH blocks in the resource set, respectively (see FIG. 1).
  • the CSI report includes information regarding the CRI/SSBRI/L1-RSRP/L1-SINR and the corresponding panel. This information may be called Capability Index and has a bit width of 2 bits (see FIG. 1).
  • AI Artificial Intelligence
  • ML machine learning
  • improved Channel State Information Reference Signal e.g., reduced overhead, improved accuracy, prediction
  • improved beam management e.g., improved accuracy, time
  • positioning e.g., position estimation/prediction in the spatial domain
  • position measurement e.g., position estimation/prediction
  • FIG. 2 is a diagram illustrating an example of an AI model management framework.
  • each stage related to the AI model is represented by a block.
  • This example is also expressed as AI model life cycle management.
  • the data collection stage corresponds to the stage of collecting data for generating/updating an AI model.
  • the data collection stage includes data reduction (e.g., deciding which data to transfer for model training/model inference), data transfer (e.g., to entities performing model training/model inference (e.g., UE, gNB)), and transfer data).
  • model training is performed based on the data (training data) transferred from the collection stage.
  • This stage includes data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model training/validation, and model testing (e.g., ensuring that the trained model meets performance thresholds).
  • model exchange e.g., transferring a model for distributed learning
  • model deployment/updating deploying/updating a model to entities performing model inference
  • model inference is performed based on the data (inference data) transferred from the collection stage.
  • This stage includes data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), and model performance feedback (the entity performing model training). (feedback of model performance to actors), output (provide model output to actors), etc.
  • the actor stage includes action triggers (e.g., deciding whether to trigger an action on other entities), feedback (e.g., feeding back information necessary for training data/inference data/performance feedback), etc. May include.
  • action triggers e.g., deciding whether to trigger an action on other entities
  • feedback e.g., feeding back information necessary for training data/inference data/performance feedback
  • training of a model for mobility optimization may be performed, for example, in Operation, Administration and Maintenance (Management) (OAM) in a network (Network (NW)) / gNodeB (gNB).
  • OAM Operation, Administration and Maintenance
  • NW Network
  • gNodeB gNodeB
  • the former has advantages in interoperability, large storage capacity, operator manageability, and model flexibility (e.g., feature engineering). In the latter case, the advantage is that there is no need for model update latency or data exchange for model development.
  • Inference of the above model may be performed in the gNB, for example.
  • the entity that performs training/inference may be different.
  • the OAM/gNB may perform model training and the gNB may perform model inference.
  • a Location Management Function may perform model training, and the LMF may perform model inference.
  • the OAM/gNB/UE may perform model training and the gNB/UE (jointly) may perform model inference.
  • the OAM/gNB/UE may perform model training and the UE may perform model inference.
  • Identifier (ID)-based model approaches can be one way to manage AI models in such scenarios.
  • the NW/gNB does not know the details of the AI model, but may only know some information about the AI model (for example, which ML model is used for what purpose in the UE) for AI model management. I can do it.
  • FIG. 3 is a diagram showing an example of specifying an AI model.
  • the UE and NW eg, base station (BS)
  • NW eg, base station (BS)
  • the UE may report, for example, the performance of model #1 and the performance of model #2 to the NW, and the NW may instruct the UE about the AI model to use.
  • Fingerprinting localization which uses the propagation characteristics of wireless signals to estimate the location of wireless devices, is widely used in both Line Of Site (LOS) and Non-Line Of Site (NLOS) scenarios. .
  • LOS may mean that the UE and base station are in line-of-sight (or unobstructed) to each other
  • NLOS may mean that the UE and base station are not in line-of-sight (or unobstructed) to each other. It can also mean something.
  • the location of the UE is estimated from the fingerprints of multiple transmission paths (multipaths) of the UE based on a database/AI model.
  • the multipath information may be, for example, information regarding the angle of arrival (AoA)/angle of departure (AoD) of the signal on the optimal/candidate transmission path.
  • AoA angle of arrival
  • AoD angle of departure
  • the information regarding AoA may include, for example, information regarding at least one of azimuth angles of arrival and zenith angles of arrival. Further, the information regarding the AoD may include, for example, information regarding at least one of radial azimuth angles of departure and radial zenith angles of depth.
  • 3GPP Rel. 16 NR supports the following positioning technologies. ⁇ Positioning based on DL/UL Time Difference Of Arrival (TDOA) ⁇ Positioning based on angle (DL AoD/UL AoA) ⁇ Positioning based on multi-Round Trip Time (RTT) ⁇ Positioning based on Enhanced Cell ID (E-CID)
  • TDOA Time Difference Of Arrival
  • DL AoD/UL AoA angle
  • RTT multi-Round Trip Time
  • E-CID Enhanced Cell ID
  • FIG. 4 is a diagram illustrating an example of positioning based on DL/UL TDOA.
  • TRP #0-#2 base stations
  • the position of the UE is estimated (measured) using a measured value of reference signal time difference (RSTD).
  • RSTD reference signal time difference
  • T i - T j the points where RSTD (T i - T j ) takes a certain value (k i , j ) for two specific base stations (TRP #i, #j (i, j are integers)
  • TRP #i, #j i, j are integers
  • a hyperbola H is drawn. I can draw i and j .
  • the intersection of multiple such hyperbolas in this example, the intersection of H 0,1, H 1,2, H 2,0
  • the position of the UE may be estimated using the RSRP of the reference signal.
  • FIG. 5 is a diagram showing an example of positioning based on DL AoD/UL AoA.
  • the position of the UE is estimated using a measured value of DL AoD (for example, ⁇ or ⁇ ) or a measured value of UL AoA (for example, ⁇ or ⁇ ). Additionally, the location of the UE may be estimated using RSRP.
  • FIG. 6 is a diagram illustrating an example of positioning based on multi-RTT.
  • the position of the UE is estimated using a plurality of RTTs calculated from the Tx/Rx time difference of reference signals (and additionally RSRP, RSRQ, etc.). For example, a geometric circle based on RTT can be drawn around each base station. The intersection of these multiple circles may be estimated as the location of the UE.
  • FIG. 7 is a diagram showing an example of positioning based on E-CID.
  • the location of the UE is estimated based on the geometric location of the serving cell and additional measurements (Tx-Rx time difference, RSRP, RSRQ, etc.).
  • the above-described positioning in DL may be performed on the UE side or the LMF side.
  • the UE may calculate the UE position based on various measurement results of the UE and assistance information from the LMF.
  • the UE may report various measurement results to the LMF, and the LMF may calculate the position of the UE.
  • the assist information may be information for assisting in position estimation of the UE.
  • the above-described positioning in UL may be performed on the LMF side.
  • the base station may report various measurement results to the LMF, and the LMF may calculate the location of the UE.
  • the above-described positioning in DL and UL may be performed on the LMF side.
  • the UE/base station may report various measurement results to the LMF, and the LMF may calculate the location of the UE.
  • 3GPP Rel. No. 17 proposes a positioning method using assist information with the aim of further improving positioning accuracy.
  • the assist information may be transmitted between the UE, the base station, and the LMF as measurement information for the above-mentioned DL/UL-TDOA, DL-AoD/UL-AoA, multi-RTT, and E-CID.
  • the assist information may include information regarding at least one of the following: ⁇ Timing Error Group (TEG), ⁇ RSRPP (path specific RSRP), ⁇ Expected angle, ⁇ Adjacent beam information ⁇ TRP antenna (location/setting)/beam information, ⁇ LOS/NLOS indicator, -Additional path reporting.
  • the TEG may indicate one or more PRS (Positioning Reference Signal) resources whose transmission/reception timing errors (Rx/Tx timing errors) are within a certain margin.
  • PRS Positioning Reference Signal
  • RSRPP may indicate the measurement result of RSRP in the first path.
  • the assist information regarding the expected angle may indicate expected UL-AoA/ZoA.
  • the assist information may be transmitted from the LMF to the base station. Further, the assist information may support positioning of at least one of UL TDOA, UL AoA, and multi-RTT.
  • the assist information regarding the expected angle may include information regarding expected DL-AoA/ZoA (expected DL-AoA/ZoA) or DL-AoD/ZoD (expected DL-AoD/ZoD).
  • the assist information may be transmitted from the LMF to the UE. Further, the assist information may support positioning of at least one of DL TDOA, DL AoA, and multi-RTT. This improves the accuracy of angle-based UE positioning and allows optimization of Rx beamforming of the UE or base station.
  • the assist information regarding the predicted angle may include information indicating the range of uncertainty of these values.
  • adjacent beam information can either be a subset of DL-PRS resources (option 1) for prioritization of DL-AoD reports, or the boresight direction of each DL-PRS resource (option 2). ) may also include information regarding. This allows optimization of the UE's Rx beam sweeping and DL-AoD measurements.
  • the assist information may include PRS beam pattern information as additional beam information.
  • This PRS beam pattern information may include information regarding the relative power between DL-PRS resources for each angle for each TRP.
  • the LOS/NLOS indicator may indicate information regarding Line Of Site (LOS)/Non-Line Of Site (NLOS).
  • measurement gaps that are set in advance, MG activation via lower layers, MG-less position, PRS Rx/Tx in RRC_INACTIVE state, or on-demand PRS, etc. may be configured for (and may be utilized by) the UE.
  • antenna configuration/beam information is considered useful for AI/Ml models.
  • the AI model requires metadata (antenna configuration information/beam information) as input to provide better performance.
  • the existing specifications support that assist information of beam information of a base station (gNB) from the network (NW) toward the UE is used only for positioning.
  • gNB base station
  • NW network
  • ⁇ Use beam information for beam management is similarly used in interfaces other than positioning protocols (for example, LTE Positioning Protocol (LPP)).
  • LTP LTE Positioning Protocol
  • PRS positioning reference signal
  • - Beam information (of the UE) at the UE is used.
  • beam information indicating the beam direction (boresight direction) for each PRS is used as beam information from the LMF to the UE (beam information for UE-based positioning, information regarding the transmission beam of the base station). is supported.
  • the beam information may be information indicating a boresight direction for each PRS.
  • Beam information indicating the beam direction for each PRS is "DL-PRS-BeamInfoElement" included in "NR-DL-PRS-BeamInfo" of the common NR positioning information element.
  • DL-PRS-BeamInfoElement includes information regarding the azimuth angle and the elevation angle of the beam transmitted from the base station (TRP).
  • the information regarding the azimuth angle is "dl-PRS-Azimuth” and "dl-PRS-Azimuth-fine”.
  • dl-PRS-Azimuth is information shown as a value from 0° to 359° in 1° units
  • dl-PRS-Azimuth-fine is information shown in 0.1° units from 0° to 0.9 It is expressed as a value in °.
  • the information regarding the elevation angle is "dl-PRS-Elevation” and "dl-PRS-Elevation-fine”.
  • dl-PRS-Elevation has a granularity of 1° and is information shown as a value from 0° to 180°
  • dl-PRS-Elevation-fine has a granularity of 0.1° and is 0° It is shown as a value of 0.9° from .
  • beam information indicating the relative power of DL PRS at each angle is supported as beam information from LMF to UE (beam information for UE-based positioning, information regarding base station transmission beam). ing.
  • the beam information indicating the relative power is included in the TRP beam antenna information ("NR-TRP-BeamAntennaInfo") in the common NR positioning information element.
  • NR-TRP-BeamAntennaInfo includes information "NR-TRP-BeamAntennaInfoAzimuthElevation” regarding TRP beam antenna information for azimuth and elevation.
  • NR-TRP-BeamAntennaInfoAzimuthElevation contains "azimuth” which indicates the azimuth angle of grain size in units of 1 degree, “azimuth-fine” which indicates the azimuth angle of grain size in units of 0.1 degree, and “elevationList” which is a list of elevation angles. include.
  • the list of elevation angles “elevationList” includes “elevation” indicating the elevation angle with a granularity of 1 degree, “elevation-fine” indicating the elevation angle with a granularity of 0.1 degree, and a list of beam power "beamPowerList”.
  • the beam power list "beamPowerList” includes "nr-dl-prs-ResourceSetID” indicating the resource set ID of DL PRS, "nr-dl-prs-ResourceID” indicating the resource ID of DL PRS, and the granularity of 1 dB. "nr-dl-prs-RelativePower” indicating the relative power of the resource given by “nr-dl-prs-ResourceID” and “nr-dl-prs-ResourceID” with granularity of 0.1 dB. "nr-dl-prs-RelativePowerFine” indicating the relative power of the resource is included.
  • Rel. 17, information indicating an antenna reference point (ARP) is supported as beam (antenna) information (information regarding a base station's transmission beam) from the LMF to the UE.
  • ARP antenna reference point
  • NR-TRP-LocationInfo is the TRP location information of the common NR positioning information element.
  • the TRP location information "NR-TRP-LocationInfo" is expressed by the relative positions between reference points.
  • the ARP location of the PRS resource is expressed as a relative position associated with the ARP location of the PRS resource set.
  • the antenna reference point is indicated by altitude, latitude and longitude.
  • information regarding the spatial direction of DL PRS is supported as information (information regarding the base station's transmission beam) from the base station (e.g., gNB, NG-RAN (Next Generation-Radio Access Network) node) to the LMF. .
  • the base station e.g., gNB, NG-RAN (Next Generation-Radio Access Network) node
  • the information includes information indicating the boresight direction of the azimuth and elevation of the PRS resource.
  • the information also includes transition information from a local coordinate system (LCS) to a global coordinate system (GCS).
  • LCS local coordinate system
  • GCS global coordinate system
  • a GCS may be defined for a system including multiple base stations and multiple UEs. Also, in the LCS, an array antenna for one base station or one UE may be defined.
  • the LCS is used as a reference to define the vector far-field of each antenna element in the array.
  • the vector far field is the pattern and polarization.
  • the arrangement of arrays within the GCS may be defined by converting between the GCS and LCS.
  • GCS/LCS may be derived, for example, based on definitions and conversion formulas (defined in specifications) that can be recognized by those skilled in the art.
  • information indicating a TRP beam/antenna is supported as information from a base station (for example, gNB) to LMF (information regarding a base station's transmission beam).
  • a base station for example, gNB
  • LMF information regarding a base station's transmission beam
  • the information includes information indicating the relative power of the DL PRS at each angle (azimuth/elevation angle).
  • the information includes at least one of a PRS resource ID, a PRS resource set ID, and an SSB index.
  • the information indicates the ID/index of a specific RS (for example, SSB/CSI-RS/SRS/DL PRS).
  • Rel. 17, the number of received beams of the UE in beam sweeping for positioning is defined.
  • the UE may report support for UE capabilities to the LMF.
  • the UE uses one receive beam.
  • the number of beams is used as the value indicated by the information "numberOfRxBeamSweepingFactor" indicating the number of Rx beam sweeping factors for FR2. Otherwise, the UE uses eight receive beams.
  • nr-DL-PRS-RxBeamIndex information regarding the reception beam used by the UE for measurement.
  • the UE may report measurements received on the same receive beam if different beams are used within the DL PRS resource set.
  • the beam information transmitted by the UE is information indicating whether the same beam is used between resource sets.
  • Beam prediction in beam management In future wireless communication systems (for example, Rel. 18 and later), the introduction of beam management with beam prediction is being considered.
  • Spatial domain beam prediction and temporal beam prediction may be performed in the UE and/or the base station.
  • the UE/base station inputs measurements (beam quality, e.g. RSRP) based on sparse (or thick/wide) beams into the AI model and (see FIG. 8A).
  • beam quality e.g. RSRP
  • sparse (or thick/wide) beams into the AI model and (see FIG. 8A).
  • the UE/BS inputs time-series (past, current, etc.) measurements (beam quality, e.g. RSRP) into an AI model and outputs future beam quality. (See Figure 8B).
  • time-series past, current, etc.
  • beam quality e.g. RSRP
  • a sparse (or thick/wide) beam may mean a sparsely distributed beam (pattern) in a spatial/angular domain.
  • a dense (or thin/narrow) beam may mean a beam (pattern) that is densely distributed in the spatial/angular domain.
  • the configuration/control method regarding the beam information transmitted to the UE and the beam information transmitted by the UE has not been sufficiently studied. If these issues are not properly considered, appropriate overhead reduction, highly accurate channel estimation, and highly efficient resource utilization may not be achieved, and improvements in communication throughput/communication quality may be suppressed.
  • each embodiment of the present disclosure may be applied when AI/prediction is not used.
  • A/B and “at least one of A and B” may be interchanged.
  • A/B/C may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, LPP messages, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • groups e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups
  • resources e.g., reference signal resources, SRS resource
  • resource set for example, reference signal resource set
  • CORESET pool downlink Transmission Configuration Indication state (TCI state) (DL TCI state), up
  • CSI-RS Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, and CSI Interference Measurement (CSI-IM) are: They may be read interchangeably. Additionally, the CSI-RS may include other reference signals.
  • NZP Non Zero Power
  • ZP Zero Power
  • CSI-IM CSI Interference Measurement
  • RS to be measured/reported may mean RS to be measured/reported for CSI reporting.
  • timing, time, time, time instance, slot, subslot, symbol, subframe, etc. may be read interchangeably.
  • direction, axis, dimension, domain, polarization, polarization component, etc. may be read interchangeably.
  • the RS may be, for example, a CSI-RS, an SS/PBCH block (SS block (SSB)), or the like.
  • the RS index may be a CSI-RS resource indicator (CSI-RS resource indicator (CRI)), an SS/PBCH block resource indicator (SS/PBCH block indicator (SSBRI)), or the like.
  • channel measurement/estimation includes, for example, a channel state information reference signal (CSI-RS), a synchronization signal (SS), a synchronization signal/broadcast channel (Synchronization Signal/Physical It may be performed using at least one of a Broadcast Channel (SS/PBCH) block, a demodulation reference signal (DMRS), a measurement reference signal (Sounding Reference Signal (SRS)), and the like.
  • CSI-RS channel state information reference signal
  • SS synchronization signal
  • SS/PBCH Broadcast Channel
  • DMRS demodulation reference signal
  • SRS Sounding Reference Signal
  • CSI includes a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a CSI-RS resource indicator (CRI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SS/PBCH Block Resource Indicator
  • LI Layer Indicator
  • RI Rank Indicator
  • L1-RSRP Reference in Layer 1 Signal received power (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio), channel matrix (or channel information regarding the precoding matrix (or precoding coefficients), and the like.
  • UCI UCI
  • CSI report CSI feedback
  • feedback information feedback bit, etc.
  • bits, bit strings, bit sequences, sequences, values, information, values obtained from bits, information obtained from bits, etc. may be interchanged.
  • the relevant entities are the UE and the BS in order to explain an AI model regarding communication between the UE and the BS, but the application of each embodiment of the present disclosure is not limited to this.
  • the UE and BS in the embodiment below may be replaced with a first UE and a second UE.
  • the UE, BS, etc. of the present disclosure may be replaced with any UE/BS.
  • the NW and UE may exchange (transmit/receive) antenna configuration/beam information for a specific application.
  • the specific application may be, for example, at least one of beam management, AI-based beam management, CSI feedback, and positioning.
  • information regarding antennas information regarding beams, information regarding antennas/beams, antenna settings, antenna information, beam information, beam settings, transmission (Tx) beam information, reception (Rx) beam information, assistance information, Assist data, meta information, meta data, etc. may be read interchangeably.
  • antenna configuration/beam information may be associated with a particular reference signal (RS).
  • RS reference signal
  • the specific reference signal may be at least one of SRS, positioning SRS, SSB, CSI-RS, DMRS, TRS, and PRS (DL-PRS/UL-PRS).
  • SRS, positioning SRS, and UL-PRS may be read interchangeably.
  • NW may be read interchangeably.
  • the UE may receive information regarding the antenna/beam of the base station from the NW.
  • Embodiment 1-1 reception control in the UE of information regarding the antenna/beam of the base station will be described.
  • the UE/NW may follow at least one of the following options 1-1-1 and 1-1-2.
  • the UE may request information regarding the base station's antennas/beams (which may be referred to as beam information). In other words, the UE may send a request for beam information of the base station.
  • the request may be sent based on the method described in Supplement 3 below.
  • the UE may include information regarding the granularity of the requested beam information in the request.
  • the information regarding the granularity includes information regarding the granularity of the beam angle (e.g. azimuth/elevation angle), information regarding the granularity of the (relative/absolute) power of the beam, and information regarding the granularity of the ARP/TRP/base station position. It may be at least one of the following.
  • the information regarding the angular grain size of the beam may include, for example, at least one of information represented by a first grain size (e.g., in units of 1°) and information represented by a second grain size (e.g., in units of 0.1°). It may be one.
  • the information regarding the granularity of the power of the beam is, for example, at least one of information indicated by a first granularity (for example, 1 dB unit) and information indicated by a second granularity (for example, 0.1 dB unit). There may be.
  • the information regarding the granularity of the location of the ARP/TRP/base station may be, for example, information indicating the number of bits (sequences) of information indicating the location (spatial distance) of the ARP/TRP/base station.
  • the UE may include information for identifying the RS (resource) of the requested beam information in the request.
  • the information for identifying the RS includes, for example, at least one of the following: RS resource ID, RS resource set ID, information indicating TRP, DL PRS ID (dl-PRS-ID), frequency layer, and serving cell ID. It may also be information that indicates.
  • the UE may include information indicating the type of beam information for which the report is requested in the request.
  • the types of beam information will be described in detail in Embodiment 1-2 below.
  • the UE may transmit the request by transmitting a PRACH that includes specific PRACH resources. Also, for example, the UE may send the request by reporting UE capability information.
  • the UE may receive a response to the request from the NW.
  • the UE may receive beam information. Additionally, the UE may receive beam information along with the response.
  • the UE may receive the response based on the method described in Supplement 2 below.
  • the UE may assume that the response includes information indicating failure of detection/reception of the request (option 1-1-1-1).
  • the UE may receive a response that includes information indicating failure to detect/receive the request.
  • the information indicating a failure to detect/receive a request may include information indicating one or more error causes/reasons.
  • the reason for the error may be defined in advance in the specifications.
  • Reasons for this error include, for example, failure to receive assist information, failure to measure even one TRP, attempt to measure adjacent cells but failure, failure to measure the angle of the DL signal.
  • the reason may be at least one of: not having sufficient signal, not being able to receive location calculation assist information, and an undefined reason.
  • the UE may decide whether to retransmit the request or stop transmitting the request based on the reason for the error indicated in the response.
  • the UE may assume that beam information is included in the response (option 1-1-1-2).
  • the UE may receive a response that includes beam information.
  • the UE may determine that the NW has failed to receive the request (option 1-1-1-3). The UE may decide whether to retransmit the request to the NW or stop transmitting the request based on specific rules.
  • FIG. 9A is a diagram illustrating an example of a beam information reception process according to Embodiment 1-1.
  • the UE first transmits a request for beam information to the NW (gNB) (step S901).
  • the UE receives a response to the request from the NW (gNB) (step S902) and receives beam information.
  • option 1-1-2 the UE does not have to send the request in option 1-1-1 above.
  • the UE may receive beam information according to at least one of options 1-1-2-1 to 1-1-2-3 below.
  • the UE may receive beam information based on the method described in Supplement 2 below.
  • the beam information received by the UE may be UE-specific signaling.
  • the UE may receive beam information after reporting the corresponding UE capabilities to the NW.
  • resource utilization efficiency can be improved when a large number of UEs do not need beam information.
  • the UE may receive beam information using system information.
  • the beam information may be included in the system information.
  • the system information may be, for example, SIB X (X is any integer, for example, 1).
  • resource utilization efficiency can be improved when a large number of UEs require beam information.
  • the UE may receive beam information using signaling common to the group (common to a plurality of UEs).
  • the beam information may be included in group-common (common to a plurality of UEs) signaling.
  • the signaling common to the group may be, for example, a multicast/broadcast signal.
  • the signal to be broadcast (for example, PDSCH, PDCCH common to the group) may be scheduled in, for example, the DCI format for broadcast (DCI format 4_0).
  • the signal to be multicast (for example, PDSCH, PDCCH common to the group) may be scheduled in, for example, the DCI format for multicast (DCI format 4_1/4_2).
  • resource utilization efficiency can be improved when a large number of UEs require beam information.
  • FIG. 9B is a diagram illustrating another example of the beam information reception process according to Embodiment 1-1.
  • the UE receives beam information from the NW (gNB) without transmitting a beam information request to the NW (gNB) (step S903).
  • Embodiment 1-2 beam information transmitted from the NW to the UE will be described.
  • the beam information may include information/elements described in at least one of options 1-2-1 to 1-2-6 below.
  • the beam information may include information indicating the direction of the beam (boresight direction) related to the RS.
  • the information may be information indicating the angle of the beam direction (boresight direction) related to the RS.
  • the angle may be, for example, an azimuth/elevation angle.
  • the angle may be the angle of the transmit beam at the base station/TRP.
  • the beam information may include information indicating the power (beam power) of the RS.
  • the power of the RS may be the absolute power of the RS, or the relative power of the RS with respect to a specific RS.
  • the information indicating the power of the RS may be information indicating the power of the RS for each angle.
  • the angle may be, for example, an azimuth/elevation angle.
  • the angle may be the angle of the transmit beam at the base station/TRP.
  • the power of the RS (beam power) may be expressed as the relative power between the RSs compared to the peak power of the corresponding angle.
  • the UE may determine the RS that achieves the peak power for the corresponding angle based on certain rules/parameters. For example, when power is expressed as a parameter on a series, the RS corresponding to a specific (eg, first) element may be determined as the RS that achieves the peak power.
  • the beam information may include information regarding an antenna reference point (ARP) of the RS.
  • ARP antenna reference point
  • the information regarding ARP may be, for example, information indicating the location of ARP.
  • the information indicating the location of the ARP may be indicated by information indicating the absolute position (for example, altitude/latitude/longitude).
  • the ARP location may be the ARP location of the RS resource.
  • the ARP position of the RS resource may be indicated by a relative position from at least one of the ARP of the RS resource set, the UE position, and the TRP position.
  • the ARP location may be the ARP location of the RS resource set.
  • the ARP location of the RS resource set may be indicated as a relative location from at least one of a reference point, a UE location, and a TRP location.
  • the reference point may be indicated in altitude/latitude/longitude.
  • At least one of the UE location and the TRP location may be indicated as a relative location from a reference point.
  • the reference point may be indicated in altitude/latitude/longitude.
  • At least one of the ARP position of the RS resource, the ARP position of the RS resource set, the TRP position, the UE position, and the reference point may be indicated by information indicating an absolute position.
  • the absolute position is, for example, a point on an ellipsoid (optionally) with altitude, a point on an uncertainty circle, a point on an uncertainty ellipse, and a point on an uncertainty ellipsoid. It may be at least one of the following.
  • the beam information may include information regarding the number of antenna ports.
  • Information regarding the number of antenna ports includes, for example, information on the total number of antenna ports, information on the number of antenna ports per angle, information on the total number of antenna panels, information on the number of antenna panels per angle, and information on the number of antenna ports (per angle). It may be at least one of distance information and distance information (for each angle) between antenna panels.
  • Information regarding the number of antenna ports may be defined/set for each RS resource/RS resource set.
  • the beam information may include information regarding RSs transmitted using the same spatial domain filter/beam.
  • Information regarding RSs transmitted using the same spatial domain filter/beam may be, for example, information indicating mapping/correspondence regarding relative relationships between beams (parameters regarding beams).
  • beam relative relationships e.g., QCL type D (spatial reception parameters)
  • spatial relationships e.g., spatial relationships, etc.
  • the UE may assume that at least one of the boresight direction of the RS and the (absolute/relative) power of the RS per angle are the same. You can assume/judge.
  • the overhead associated with reporting beam information can be reduced.
  • the beam information may include information regarding the area.
  • the information regarding the area may be, for example, information indicating an area where the corresponding beam information is valid.
  • the information indicating the area where the corresponding beam information is valid may include at least one of the following information (list of information): ⁇ Area ID. - Global ID of the (NR) cell. - Physical cell ID (Identifier) (of NR). ⁇ ARFCN (Absolute Radio Frequency Channel Number). ⁇ Evolved Cell Global ID (ECGI).
  • the information regarding the area ID may include at least one of the global ID of the NR cell, the NR physical cell ID, and the ARFCN.
  • the UE may be provided with a list of area IDs corresponding to the assist data from the LMF/base station in the assist data.
  • the list of area IDs may be a list of cell IDs (information including at least two of the (NR) cell global ID, (NR) physical cell ID, and ARFCN).
  • the same beam information can be applied to different cells, and signaling overhead can be reduced.
  • a specific index may be assigned to at least one information of options 1-2-1 to 1-2-6 above.
  • the allocation may be specified in advance in the specifications, may be notified from the UE to the NW based on the method described in Supplement 3 below, or may be notified from the NW to the UE based on the method described in Supplement 2 below. may be notified.
  • beam information based on the index can be realized in the UE/NW, so signaling overhead can be reduced.
  • angles may be expressed in multiple scales.
  • the angle may be expressed as an azimuth angle and an elevation angle.
  • the azimuth/elevation angle may be determined based on certain parameters.
  • the parameter indicating the azimuth/elevation angle may be expressed by a plurality of different parameters depending on the granularity.
  • parameters indicating azimuth/elevation angles may include a first parameter expressed in a first granularity (e.g., in units of 1°) and a second parameter indicative of a second granularity (e.g., in units of 0.1°). 2 parameters.
  • the angle may be expressed/displayed in LCS/GCS.
  • the azimuth/elevation angle may be expressed/displayed in LCS/GCS.
  • the UE/NW may assume that the angle is expressed/displayed in GCS.
  • the configuration of beam information transmitted from the NW to the UE and the control operation related to the beam information can be appropriately defined.
  • the UE may transmit information regarding the UE's antenna/beam (which may be referred to as beam information) to the NW.
  • beam information information regarding the UE's antenna/beam (which may be referred to as beam information) to the NW.
  • Embodiment 2-1 transmission control of information regarding the antenna/beam of the UE will be described.
  • the UE/NW may follow at least one of the following options 2-1-1 and 2-1-2.
  • the UE may receive an instruction (indication information, request) to report beam information.
  • the UE may receive the instruction information based on the method described in Supplement 2 below.
  • the instruction information may be UE-specific signaling (option 2-1-1-1).
  • the UE may receive the instruction information after reporting the corresponding UE capabilities to the NW.
  • resource utilization efficiency can be improved when a large number of UEs do not require beam information.
  • the UE may receive the instruction information using system information (option 2-1-1-2).
  • the instruction information may be included in the system information.
  • the system information may be, for example, SIB X (X is any integer, for example, 1).
  • resource utilization efficiency can be improved when a large number of UEs require beam information.
  • the UE may receive beam information using signaling common to the group (common to multiple UEs) (option 2-1-1-3).
  • the beam information may be included in group-common (common to a plurality of UEs) signaling.
  • the signaling common to the group may be, for example, a multicast/broadcast signal.
  • the signal to be broadcast (for example, PDSCH, PDCCH common to the group) may be scheduled in, for example, the DCI format for broadcast (DCI format 4_0).
  • the signal to be multicast (for example, PDSCH, PDCCH common to the group) may be scheduled in, for example, the DCI format for multicast (DCI format 4_1/4_2).
  • resource utilization efficiency can be improved when a large number of UEs require beam information.
  • the UE may be requested for specific information in the instruction information.
  • the specific information may be, for example, information for specifying the RS (resource) of the beam information that is requested to be reported.
  • the information for identifying the RS includes, for example, at least one of the following: RS resource ID, RS resource set ID, information indicating TRP, DL PRS ID (dl-PRS-ID), frequency layer, and serving cell ID. It may also be information that indicates.
  • the specific information may be information indicating which information is requested to be reported (the type of beam information for which the report is requested).
  • the types of beam information will be described in detail in Embodiment 2-2 below.
  • the specific information may be, for example, information regarding the granularity of the requested beam information.
  • the information regarding the granularity includes information regarding the granularity of the beam angle (e.g. azimuth/elevation angle), information regarding the granularity of the (relative/absolute) power of the beam, and information regarding the granularity of the ARP/TRP/base station position. It may be at least one of the following.
  • the information regarding the angular grain size of the beam may include, for example, at least one of information represented by a first grain size (e.g., in units of 1°) and information represented by a second grain size (e.g., in units of 0.1°). It may be one.
  • the information regarding the granularity of the power of the beam is, for example, at least one of information indicated by a first granularity (for example, in units of 1 dB) and information indicated by a second granularity (for example, in units of 0.1 dB). There may be.
  • the information regarding the granularity of the location of the ARP/TRP/base station may be, for example, information indicating the number of bits (sequences) of information indicating the location (spatial distance) of the ARP/TRP/base station.
  • the UE may send an indication information/response to the request regarding the UE's beam information.
  • the UE may transmit its beam information after transmitting the response. Further, the UE may transmit beam information of the UE along with transmitting the response.
  • the response/beam information may be transmitted based on the method described in Supplement 3 below.
  • the UE may follow at least one of options 2-1-2-1 to 2-1-2-4 below.
  • the UE may include information indicating failure of detection/reception of the instruction information/request in the response (option 2-1-2-1).
  • the UE may send a response that includes indication information/information indicating failure to detect/receive the request.
  • the information indicating failure of detection/reception of the instruction information/request may include information indicating one or more error causes/reasons.
  • the reason for the error may be defined in advance in the specifications.
  • the NW may determine whether to resend the instruction information/request or stop sending the instruction information/request.
  • the UE may include beam information in the response (option 2-1-2-2).
  • the UE may send a response that includes beam information.
  • the UE may ignore the indication information/request in certain cases (option 2-1-2-3).
  • the UE may ignore the instruction information/request in at least one of when detecting a specific error and when transmitting only a failure detection message.
  • the UE may transmit the UE's beam information in reporting the UE capability information (option 2-1-2-4).
  • FIG. 10 is a diagram illustrating an example of a beam information reception process according to Embodiment 2-1.
  • the UE first receives a request for beam information from the NW (gNB) (step S1001).
  • the UE transmits a response to the request to the NW (gNB) (step S1002), and transmits beam information.
  • Embodiment 2-2 beam information transmitted from the UE to the NW will be described.
  • Embodiment 2-2 the beam information described in Embodiment 1-2 above may be applied as appropriate to the beam information transmitted from the UE to the NW.
  • beam information may be used in which "NW/base station/TRP" in the above-described embodiment 1-2 is replaced with “UE”, and "UE” is replaced with “NW/base station/TRP”. .
  • the UE may report assistance information/metadata for AI/ML models.
  • the AI/ML model may be an AI/ML model that is registered/configured/compiled/activated in the UE.
  • the assist information/metadata of the AI/ML model may be transmitted together with the beam information in the second embodiment, or in place of the beam information.
  • the assist information/metadata of the AI/ML model may be at least one piece of information described below.
  • the assist information/metadata of the AI/ML model may be the ID of the AI/ML model.
  • the AI/ML model ID may be a global/local AI/ML model ID.
  • the assist information/metadata of the AI/ML model may be information regarding the applicable bandwidth corresponding to the AI/ML model ID.
  • the bandwidth may be indicated as the applicable minimum/maximum bandwidth.
  • the information regarding the bandwidth may include, for example, information indicating a band indicator (for example, "freqBandIndicatorNR").
  • Information indicating the band indicator may be represented by a specific number of bits (for example, 10 bits).
  • the information regarding the bandwidth may include, for example, information indicating the bandwidth of the RS associated with the corresponding AI/ML model (for example, "supportedBandwidth").
  • the information indicating the bandwidth of the RS associated with the corresponding AI/ML model may indicate the frequency for each frequency range (for example, FR1/FR2 (FR2-1/FR2-2)/FR3/FR4/FR5). .
  • the assist information/metadata of the AI/ML model may be information regarding the applicable area corresponding to the AI/ML model ID.
  • the information regarding the applicable area corresponding to the AI/ML model may include at least one of the following information (list of information): ⁇ Area ID. - Global ID of the (NR) cell. - Physical cell ID (Identifier) (of NR). ⁇ ARFCN (Absolute Radio Frequency Channel Number). ⁇ Evolved Cell Global ID (ECGI).
  • the area ID may include at least one of the global ID of the NR cell, the NR physical cell ID, and the ARFCN.
  • the assist information/metadata of the AI/ML model may be antenna settings/beam information corresponding to the AI/ML model ID.
  • the beam information may be the beam information in the second embodiment (Embodiment 2-1/2-2).
  • the NW may update/change/determine antenna settings using an AI/ML model based on the assist information/metadata received from the UE.
  • the configuration of beam information transmitted from the UE to the NW and the control operation related to the beam information can be appropriately defined.
  • the UE may transmit/report beam information along with reporting (results) of specific measurements.
  • a report (result) of a specific measurement (measurement) may be read as a CSI/beam report.
  • This embodiment may be applied, for example, when a NW (base station) performs an operation based on beam management/positioning.
  • the UE/NW may follow at least one of Embodiments 3-1 and 3-2 below.
  • Embodiment 3-1 below may be applied mainly to AI-based beam management of the NW side model, but may also be applied to cases where an AI/ML model is not used.
  • Embodiment 3-2 below may be applied mainly to AI-based positioning of a model on the NW side, but may also be applied to cases where an AI/ML model is not used.
  • the AI-based beam management on the NW side may be, for example, at least one of spatial domain beam prediction and temporal beam prediction.
  • a CSI report, a beam report, and an L1-RSRP/SINR report may be read interchangeably. Further, in the present disclosure, RSRP and SINR may be read interchangeably.
  • the UE may report information regarding reception beams (reception beam information).
  • the UE may report the received beam information along with the CSI (L1-RSRP/SINR) report.
  • the reception beam information may be, for example, an RS resource indicator.
  • the RS resource indicator may be, for example, at least one of an RS resource ID, an RS resource set ID, and an SRS resource indicator (for example, srs-ResourceIndicator).
  • the RS resource indicator may be information of an SRS resource/resource set that uses the same spatial domain transmit filter/transmit beam as the spatial domain receive filter/receive beam used for the corresponding measurement.
  • the UE may be configured with an SRS resource set for reporting received beam information.
  • the usage of the SRS resource set may be set to at least one of reception beam determination and L1-RSRP with reception beam information.
  • the bit width of the field of the reported RS resource indicator may be determined based on specific rules/parameters.
  • bit width may be determined by, for example, ceil(log 2 (N)).
  • the N may be the number of SRS resources in the associated SRS resource set.
  • ceil(X) may mean multiplying X by a ceiling function.
  • the RS resource indicator/RS resource set indicator may be reported together with the panel index (CapabilityIndex).
  • FIGS. 11A and 11B are diagrams showing an example of a beam report according to Embodiment 3-1.
  • the examples shown in FIGS. 11A and 11B describe a case where the RS resource indicator is reported together with the panel index (CapabilityIndex) in the beam report (CSI report).
  • the example shown in FIG. 11A shows the bit width of information included in the beam report.
  • the number of bits (X) of the RS resource indicator may be determined based on the above method.
  • the beam report includes CRI or SSBRI (#1-#4), RSRP corresponding to CRI or SSBRI #1 (RSRP #1), differential RSRP corresponding to CRI or SSBRI #2-#4 (differential RSRP #2), - #4), panel indexes (CapabilityIndex) #1-#4 corresponding to CRI or SSBRI #1-#4, respectively, and RS resource indicators # corresponding to CRI or SSBRI #1-#4, respectively.
  • RSRP RSRP corresponding to CRI or SSBRI #1
  • Differential RSRP #2 differential RSRP corresponding to CRI or SSBRI #2-#4
  • Panel indexes CapabilityIndex
  • a beam report includes a plurality of RS resource indicators, that is, RS resource indicators corresponding to each CRI or SSBRI, but only one RS resource indicator is included in a beam report. It may be.
  • the one RS resource indicator may correspond to each CRI or SSBRI. Whether the RS resource indicator corresponding to each CRI or SSBRI is included in the beam report, or whether only one RS resource indicator is included in the beam report may be determined based on higher layer signaling.
  • the RS resource indicator/RS resource set indicator may be reported separately from the panel index (CapabilityIndex).
  • FIGS. 12A and 12B are diagrams showing other examples of beam reports according to Embodiment 3-1.
  • the examples shown in FIGS. 12A and 12B describe a case where the RS resource indicator is reported separately from the panel index (CapabilityIndex) in the beam report (CSI report).
  • FIGS. 12A and 12B differ from FIGS. 11A and 11B only in that information about the panel index (CapabilityIndex) is not included.
  • reception beam information may be, for example, a beam index.
  • the beam index may be, for example, the index of the UE's receive beam/spatial domain receive filter used for the corresponding measurement.
  • the same beam index may be reported.
  • the UE may decide to include the beam index in the beam report and transmit it.
  • the bit width of the reported beam index field may be determined based on specific rules/parameters.
  • the bit width may be determined by, for example, ceil(log 2 (M)).
  • the M may be a number indicated by the UE's receive beam sweeping factor.
  • bit width may be determined separately for each frequency range (for example, FR1/FR2 (FR2-1/FR2-2)/FR3/FR4/FR5).
  • the beam index may be reported together with the panel index (CapabilityIndex).
  • FIGS. 13A and 13B are diagrams showing other examples of beam reports according to Embodiment 3-1.
  • a receiving beam index RxbeamIndex
  • CapabilityIndex a panel index in a beam report
  • the example shown in FIG. 13A shows the bit width of information included in the beam report.
  • the number of bits (X) of the receive beam index may be determined based on the above method.
  • the beam report includes CRI or SSBRI (#1-#4), RSRP corresponding to CRI or SSBRI #1 (RSRP #1), differential RSRP corresponding to CRI or SSBRI #2-#4 (differential RSRP #2), - #4), panel index (CapabilityIndex) #1-#4 corresponding to each of CRI or SSBRI #1-#4, and receive beam index # corresponding to each of CRI or SSBRI #1-#4 1-#4 is included.
  • a beam report includes a plurality of receive beam indexes, that is, receive beam indexes corresponding to each CRI or SSBRI, but only one receive beam index is included in a beam report. It may be.
  • the one receive beam index may correspond to each CRI or SSBRI. Whether the receive beam index corresponding to each CRI or SSBRI is included in the beam report, or whether there is only one receive beam index included in the beam report may be determined based on upper layer signaling.
  • reception beam index may be reported separately from the panel index (CapabilityIndex).
  • FIGS. 14A and 14B are diagrams showing other examples of beam reports according to Embodiment 3-1.
  • the examples shown in FIGS. 14A and 14B describe a case where the receive beam index is reported separately from the panel index (CapabilityIndex) in the beam report (CSI report).
  • FIGS. 13A and 13B differ from FIGS. 13A and 13B only in that information about the panel index (CapabilityIndex) is not included.
  • the UE/NW may assume/determine that a different beam/spatial domain filter corresponds to the report result even if the beam index corresponding to the report result is the same. .
  • the UE may report information regarding reception beams (reception beam information).
  • the UE may report received beam information together with signal measurement information for positioning regarding DL measurements.
  • the positioning may be, for example, at least one of NR E-CID-based positioning, DL-TDOA-based positioning, DL-AoD-based positioning, and multi-RTT positioning.
  • the reception beam information may be, for example, an RS resource indicator.
  • the RS resource indicator may be, for example, at least one of an RS resource ID, an RS resource set ID, and an SRS resource indicator (for example, srs-ResourceIndicator).
  • the RS resource indicator may be information of an SRS resource/resource set that uses the same spatial domain transmit filter/transmit beam as the spatial domain receive filter/receive beam used for the corresponding measurement.
  • the UE may be configured with an SRS resource set for reporting received beam information.
  • the usage of the SRS resource set may be set to at least one of reception beam determination and L1-RSRP with reception beam information.
  • the UE/NW may expect/assume/determine that it is the same UE Rx TEG.
  • the number of candidate beams measured by the NW (first number), the number of candidate beams including the beam to be notified to the UE (second number), may be determined separately (variation 1).
  • the first number and the second number may be different.
  • the first number may be less than the second number.
  • the UE may assume that the number of transmit beams of the UE is different from the number of receive beams that are requested to be measured by the NW.
  • the UE may assume that the number of CRI/SSBRI/RS resource indicators/beam indices to report is different (or set differently) based on the beam prediction of the NW.
  • the receiving panel UE capability index/UE capability index
  • the receiving beam may be equal (variation 2).
  • the UE (always) filter) For each measurement/measurement result included in one report (e.g. UCI/CSI report/beam measurement report), the UE (always) filter) may be determined/assumed to be equal.
  • variation 2 may be applicable to both the case where the UE reports information regarding the received beam (beam information), and the case where the UE reports beam information.
  • beam information can be appropriately transmitted from the UE to the NW.
  • AI model information may mean information including at least one of the following: ⁇ AI model input/output information, ⁇ Pre-processing/post-processing information for AI model input/output, ⁇ Information on AI model parameters, ⁇ Training information for AI models (training information), ⁇ Inference information for AI models, ⁇ Performance information regarding AI models.
  • the input/output information of the AI model may include information regarding at least one of the following: - Contents of input/output data (e.g. RSRP, SINR, amplitude/phase information in channel matrix (or precoding matrix), information on angle of arrival (AoA), angle of departure (AoD)) ), location information), ⁇ Data auxiliary information (may be called meta information), - type of input/output data (e.g. immutable value, floating point number), - bit width of input/output data (e.g. 64 bits for each input value), - Quantization interval (quantization step size) of input/output data (for example, 1 dBm for L1-RSRP), - The range that input/output data can take (for example, [0, 1]).
  • - Contents of input/output data e.g. RSRP, SINR, amplitude/phase information in channel matrix (or precoding matrix), information on angle of arrival (AoA), angle of departure (AoD))
  • the information regarding AoA may include information regarding at least one of the azimuth angle of arrival and the zenith angle of arrival (ZoA). Further, the information regarding the AoD may include, for example, information regarding at least one of a radial azimuth angle of departure and a radial zenith angle of depth (ZoD).
  • the location information may be location information regarding the UE/NW.
  • Location information includes information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.), and information (e.g., latitude, longitude, altitude) adjacent to the UE.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • Information on the serving (or serving) BS e.g., BS/cell identifier (ID), BS-UE distance, direction/angle of the BS (UE) as seen from the UE (BS),
  • the information may include at least one of the coordinates of the BS (UE) as seen from the BS (e.g., X/Y/Z axis coordinates, etc.), the specific address of the UE (e.g., Internet Protocol (IP) address), etc.
  • IP Internet Protocol
  • the location information of the UE is not limited to information based on the location of the BS, but may be information based on a specific point.
  • the location information may include information regarding its own implementation (for example, location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
  • the location information may include mobility information.
  • the mobility information may include information indicating at least one of the mobility type, the moving speed of the UE, the acceleration of the UE, the moving direction of the UE, and the like.
  • the mobility types are fixed location UE, movable/moving UE, no mobility UE, low mobility UE, and medium mobility UE.
  • environmental information may be information regarding the environment in which the data is acquired/used, such as frequency information (band ID, etc.), environment type information (indoor, etc.). , outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.), Line Of Site (LOS)/Non-Line Of Site (NLOS), etc. Good too.
  • frequency information band ID, etc.
  • environment type information indoor, etc.
  • outdoor Urban Macro (UMa), Urban Micro (Umi), etc.
  • LOS Line Of Site
  • NLOS Non-Line Of Site
  • LOS may mean that the UE and BS are in an environment where they can see each other (or there is no shielding), and NLOS may mean that the UE and BS are not in an environment where they can see each other (or there is a shield). It can also mean The information indicating LOS/NLOS may indicate a soft value (for example, probability of LOS/NLOS) or may indicate a hard value (for example, either LOS/NLOS).
  • meta information may mean, for example, information regarding input/output information suitable for an AI model, information regarding acquired/obtainable data, etc.
  • the meta information includes information regarding beams of RS (for example, CSI-RS/SRS/SSB, etc.) (for example, the pointing angle of each beam, 3 dB beam width, the shape of the pointing beam, (number of beams), gNB/UE antenna layout information, frequency information, environment information, meta information ID, etc.
  • RS for example, CSI-RS/SRS/SSB, etc.
  • the meta information may be used as input/output of the AI model.
  • the pre-processing/post-processing information for the input/output of the AI model may include information regarding at least one of the following: - whether to apply normalization (e.g., Z-score normalization, min-max normalization); - Parameters for normalization (e.g. mean/variance for Z-score normalization, minimum/maximum for min-max normalization), - Whether to apply a specific numerical conversion method (e.g. one hot encoding, label encoding, etc.); - Selection rules for whether or not to be used as training data.
  • normalization e.g., Z-score normalization, min-max normalization
  • Parameters for normalization e.g. mean/variance for Z-score normalization, minimum/maximum for min-max normalization
  • a specific numerical conversion method e.g. one hot encoding, label encoding, etc.
  • Selection rules for whether or not to be used as training data.
  • the information on the parameters of the AI model may include information regarding at least one of the following: ⁇ Weight (e.g. neuron coefficient (coupling coefficient)) information in the AI model, ⁇ Structure of the AI model, ⁇ Type of AI model as a model component (e.g. ResNet, DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short Memory -Term Memory (LSTM)), Gated Recurrent Unit (GRU)), - Functions of the AI model as a model component (e.g. decoder, encoder).
  • ⁇ Weight e.g. neuron coefficient (coupling coefficient)
  • ⁇ Structure of the AI model e.g. ResNet, DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short Memory -Term Memory (LSTM)), Gated Recurrent Unit (GRU)
  • - Functions of the AI model as a model component e.g. decoder
  • the weight information in the AI model may include information regarding at least one of the following: ⁇ Bit width (size) of weight information, ⁇ Quantization interval of weight information, - Granularity of weight information, ⁇ The range that weight information can take, ⁇ Weight parameters in the AI model, ⁇ Difference information from the AI model before update (if updating), ⁇ Weight initialization methods (e.g. zero initialization, random initialization (based on normal distribution/uniform distribution/truncated normal distribution), Xavier initialization (for sigmoid functions), He initialization (rectified) For Rectified Linear Units (ReLU)).
  • ⁇ Bit width (size) of weight information e.g. zero initialization, random initialization (based on normal distribution/uniform distribution/truncated normal distribution), Xavier initialization (for sigmoid functions), He initialization (rectified) For Rectified Linear Units (ReLU)).
  • the structure of the AI model may include information regarding at least one of the following: ⁇ Number of layers, - Type of layer (e.g. convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer), ⁇ Layer information, - Time series specific parameters (e.g. bidirectionality, time step), - Parameters for training (e.g. type of function (L2 regularization, dropout function, etc.), where to put this function (e.g. after which layer)).
  • ⁇ Number of layers e.g. convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer
  • ⁇ Layer information e.g. bidirectionality, time step
  • Parameters for training e.g. type of function (L2 regularization, dropout function, etc.), where to put this function (e.g. after which layer)).
  • the layer information may include information regarding at least one of the following: ⁇ Number of neurons in each layer, ⁇ Kernel size, ⁇ Stride for pooling layer/convolution layer, ⁇ Pooling method (MaxPooling, AveragePooling, etc.), ⁇ Residual block information, ⁇ Number of heads, ⁇ Normalization methods (batch normalization, instance normalization, layer normalization, etc.), - Activation function (sigmoid, tanh function, ReLU, leaky ReLU information, Maxout, Softmax).
  • an AI model may be included as a component of another AI model.
  • an AI model may be an AI model in which processing proceeds in the following order: ResNet as model component #1, a transformer model as model component #2, a dense layer, and a normalization layer.
  • the training information for the AI model may include information regarding at least one of the following: ⁇ Information for the optimization algorithm (e.g., optimization type (Stochastic Gradient Descent (SGD), AdaGrad, Adam, etc.), optimization parameters (learning rate, momentum, etc.) information, etc.), ⁇ Information on the loss function (for example, information on the metrics of the loss function (Mean Absolute Error (MAE), Mean Square Error (MSE)), cross entropy loss, NLLLoss, Kullback- Leibler (KL) divergence, etc.), parameters to be frozen for training (e.g. layers, weights), - parameters to be updated (e.g.
  • optimization type Stochastic Gradient Descent (SGD), AdaGrad, Adam, etc.
  • optimization parameters learning rate, momentum, etc.
  • ⁇ Information on the loss function for example, information on the metrics of the loss function (Mean Absolute Error (MAE), Mean Square Error (MSE)),
  • ⁇ Parameters e.g., layers, weights
  • How to train/update the AI model e.g. (recommended) number of epochs, batch size, number of data used for training.
  • the inference information for the AI model may include information regarding branch pruning of a decision tree, parameter quantization, functions of the AI model, and the like.
  • the function of the AI model may correspond to at least one of, for example, time domain beam prediction, spatial domain beam prediction, an autoencoder for CSI feedback, an autoencoder for beam management, etc.
  • An autoencoder for CSI feedback may be used as follows: - The UE inputs the CSI/channel matrix/precoding matrix into the encoder's AI model and transmits the output encoded bits as CSI feedback (CSI report). - The BS inputs the received encoded bits into the decoder's AI model and reconstructs the output CSI/channel matrix/precoding matrix.
  • the UE/BS inputs sparse (or thick) beam-based measurements (beam quality, e.g. RSRP) into an AI model and outputs dense (or thin) beam quality.
  • beam quality e.g. RSRP
  • the UE/BS may input time-series (past, current, etc.) measurement results (beam quality, e.g. RSRP) to the AI model and output future beam quality.
  • time-series past, current, etc.
  • beam quality e.g. RSRP
  • the performance information regarding the AI model may include information regarding the expected value of a loss function defined for the AI model.
  • the AI model information in the present disclosure may include information regarding the applicable range (applicable range) of the AI model.
  • the applicable range may be indicated by a physical cell ID, a serving cell index, etc.
  • Information regarding the scope of application may be included in the above-mentioned environmental information.
  • AI model information regarding a specific AI model may be predefined in a standard, or may be notified to the UE from a network (NW).
  • the AI model defined in the standard may be called a reference AI model.
  • AI model information regarding the reference AI model may be referred to as reference AI model information.
  • the AI model information in the present disclosure may include an index (for example, may be referred to as an AI model index, AI model ID, model ID, etc.) for identifying an AI model.
  • the AI model information in the present disclosure may include an AI model index in addition to/instead of the input/output information of the AI model described above.
  • the association between the AI model index and the AI model information (for example, input/output information of the AI model) may be predetermined in the standard, or may be notified from the NW to the UE.
  • the AI model information in the present disclosure may be associated with the AI model, and may also be referred to as AI model relevant information, simply related information, or the like.
  • the AI model related information does not need to explicitly include information for identifying the AI model.
  • the AI model related information may be information containing only meta information, for example.
  • the notification of any information to the UE is performed using physical layer signaling (e.g., DCI), upper layer signaling (e.g., RRC).
  • MAC CE MAC CE
  • specific signals/channels eg, PDCCH, PDSCH, reference signals
  • the MAC CE may be identified by including a new logical channel ID (LCID) that is not specified in the existing standard in the MAC subheader. Further, the MAC CE may be an extended MAC CE (for example, a new octet is added) to an existing MAC CE.
  • LCID logical channel ID
  • the MAC CE may be an extended MAC CE (for example, a new octet is added) to an existing MAC CE.
  • the above notification When the above notification is performed by a DCI, the above notification includes a specific field of the DCI, a radio network temporary identifier (Radio Network Temporary Identifier (RNTI)), the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • the DCI field included in the DCI may be an existing DCI field or a newly defined DCI field (after Rel. 18).
  • the RNTI corresponding to the DCI may be an existing RNTI or a new RNTI (after Rel. 18).
  • the DCI format of the DCI may be an existing DCI format or a newly defined DCI format (after Rel. 18).
  • notification of any information to the UE in the above embodiments may be periodic, semi-persistent (may be triggered by the UE or may be triggered by instructions from the base station), or aperiodic (may be triggered by the base station's instructions). (may be triggered by the UE or may be triggered by instructions from the base station).
  • the notification of any information from the UE (to the NW) is performed using physical layer signaling (e.g., UCI), upper layer signaling (e.g., RRC MAC CE, LPP messages), specific signals/channels (eg, PUCCH, PUSCH, reference signals), or a combination thereof.
  • physical layer signaling e.g., UCI
  • upper layer signaling e.g., RRC MAC CE, LPP messages
  • specific signals/channels eg, PUCCH, PUSCH, reference signals
  • the MAC CE may be identified by including a new LCID that is not defined in the existing standard in the MAC subheader. Further, the MAC CE may be an extended MAC CE (for example, a new octet is added) to an existing MAC CE.
  • the above notification may be transmitted using PUCCH or PUSCH.
  • notification of any information from the UE in the above embodiments may be periodic, semi-persistent (which may be triggered by the UE or may be triggered by instructions from the base station), or (which may be triggered by the UE). (or may be triggered by instructions from the base station) may be performed aperiodically.
  • At least one of the embodiments described above may be applied if certain conditions are met.
  • the specific conditions may be specified in the standard, or may be notified to the UE/BS using upper layer signaling/physical layer signaling.
  • At least one of the embodiments described above may be applied only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: ⁇ Supporting specific processing/operation/control/information regarding at least one of the above embodiments/options/choices; ⁇ Supporting specific processing/operation/control/information regarding at least two combinations of the above embodiments/options/choices; ⁇ Location (area) where the UE can use beam information, ⁇ Types/options of beam information that the UE can use, - Types of RSs that can be used/applied by the UE (for example, CSI-RS/SSB/(DL/UL) PRS/DMRS/TRS/SRS/positioning SRS).
  • the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or a capability that is applied across all frequencies (for example, a cell, a band, a BWP, a band combination, a component carrier, etc.). or a combination thereof), or it may be a capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • SCS subcarrier spacing
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the UE configures/activates specific information related to the embodiment described above (or performs the operation of the embodiment described above) by upper layer signaling/physical layer signaling. / May be applied when triggered.
  • the specific information may be information indicating that the use of the AI model is enabled, arbitrary RRC parameters for a specific release (for example, Rel. 18), or the like.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
  • Appendix A Regarding one embodiment of the present disclosure, the following invention will be added.
  • Appendix A-1 a receiving unit that receives beam information for positioning regarding the location of the base station using at least one of upper layer signaling and physical layer signaling;
  • a terminal comprising: a control unit that performs positioning of the base station based on the beam information.
  • Appendix A-2 The terminal according to Appendix A-1, wherein the beam information is transmitted in response to a request regarding the beam information.
  • Appendix A-3 The terminal according to Appendix A-1 or A-2, wherein the beam information is included in a response signal to a request regarding the beam information.
  • the beam information includes information indicating the beam direction of the reference signal, information indicating the power for each angle, information regarding the antenna reference point, information regarding the number of antenna ports, information regarding the reference signal transmitted using the same spatial domain filter, and information regarding an area to which the beam information is applicable, the terminal according to any one of Appendix A-1 to Appendix A-3.
  • Appendix B Regarding one embodiment of the present disclosure, the following invention will be added.
  • Appendix B-1 a receiving unit that receives a request regarding beam information for positioning regarding the position of the terminal; a control unit that controls transmission of the beam information based on the request,
  • the beam information includes information indicating the beam direction of the reference signal, information indicating the power for each angle, information regarding the antenna reference point, information regarding the number of antenna ports, information regarding the reference signal transmitted using the same spatial domain filter, and information regarding an area to which the beam information is applicable.
  • Appendix B-2 The terminal according to Appendix B-1, wherein the beam information is transmitted after transmitting a response signal transmitted in response to the request.
  • Appendix B-3 The terminal according to Appendix B-1 or B-2, wherein the beam information is included in a response signal to the request.
  • Appendix B-4 The terminal according to any one of appendices B-1 to B-3, wherein the beam direction includes information regarding an azimuth angle and information regarding an elevation angle.
  • Appendix C-1 a control unit that measures the first reference signal;
  • a terminal comprising: a transmitter that transmits the measurement result including beam information for positioning regarding the position of the terminal.
  • Appendix C-2 The result of said measurement is a beam report;
  • the terminal according to Appendix C-1 wherein the beam information is a resource indicator of a second reference signal corresponding to a received beam related to the first reference signal.
  • Appendix C-3 The result of said measurement is a beam report;
  • the measurement result is signal measurement information for positioning regarding downlink measurements, The terminal according to any one of appendices C-1 to C-3, wherein the beam information is a resource indicator of a second reference signal corresponding to a received beam related to the first reference signal.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 15 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management
  • UDM Unified Data Management.
  • AF ApplicationFunction
  • DN Data Network
  • NF Location Management Network Functions
  • NF Location Management Network Functions
  • LMF Location Management Network Functions
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 16 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20.
  • signals backhaul signaling
  • devices included in the core network 30 for example, network nodes providing NF, other base stations 10, etc.
  • User data user plane data
  • control plane data etc. may be acquired and transmitted.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit beam information for positioning regarding the location of the base station using at least one of upper layer signaling and physical layer signaling.
  • the control unit 110 may use the beam information to instruct positioning of the base station (first embodiment).
  • the transmitting/receiving unit 120 may transmit a request regarding beam information for positioning regarding the position of the terminal.
  • the control unit 110 may control reception of the beam information based on the request.
  • the beam information includes information indicating the beam direction (boresight direction) of the reference signal, information indicating the power for each angle, information regarding the antenna reference point, information regarding the number of antenna ports, and is transmitted using the same spatial domain filter. It may include at least one of information regarding reference signals and information regarding areas to which the beam information is applicable (second embodiment).
  • the transmitting/receiving unit 120 may receive beam information for positioning regarding the position of the terminal included in the measurement result.
  • the control unit 110 may perform positioning regarding the position of the terminal based on the beam information (third embodiment).
  • FIG. 17 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitting/receiving unit 220 may receive beam information for positioning regarding the location of the base station using at least one of upper layer signaling and physical layer signaling.
  • the control unit 210 may perform positioning of the base station based on the beam information (first embodiment).
  • the beam information may be transmitted in response to a request regarding the beam information (first embodiment).
  • the beam information may be included in a response signal to a request regarding the beam information (first embodiment).
  • the beam information includes information indicating the beam direction of the reference signal (boresight own direction), information indicating the power for each angle, information regarding the antenna reference point, information regarding the number of antenna ports, and information indicating whether the beam is transmitted using the same spatial domain filter.
  • the beam information may include at least one of information regarding a reference signal to which the beam information is applied, and information regarding an area to which the beam information is applicable (first embodiment).
  • the transmitting/receiving unit 220 may receive a request regarding beam information for positioning regarding the position of the terminal.
  • the control unit 210 may control the transmission of the beam information based on the request.
  • the beam information includes information indicating the beam direction (boresight direction) of the reference signal, information indicating the power for each angle, information regarding the antenna reference point, information regarding the number of antenna ports, and is transmitted using the same spatial domain filter. It may include at least one of information regarding reference signals and information regarding areas to which the beam information is applicable (second embodiment).
  • the beam information may be transmitted after a response signal is transmitted in response to the request (second embodiment).
  • the beam information may be included in a response signal to the request (second embodiment).
  • the beam direction may include information regarding the azimuth angle and information regarding the elevation angle (second embodiment).
  • the control unit 210 may measure the first reference signal.
  • the transmitting/receiving unit 220 may transmit the measurement result including beam information for positioning regarding the position of the terminal (third embodiment).
  • the measurement result may be a beam report.
  • the beam information may be a resource indicator of a second reference signal corresponding to a reception beam related to the first reference signal (third embodiment).
  • the measurement result may be a beam report.
  • the beam information may be an index of a received beam related to the first reference signal (third embodiment).
  • the measurement result may be signal measurement information for positioning regarding downlink measurements.
  • the beam information may be a resource indicator of a second reference signal corresponding to a received beam related to the first reference signal (third embodiment).
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 18 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is realized by controlling at least one of reading and writing data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmitting/receiving unit 120 220
  • etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, etc.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 19 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60.
  • current sensor 50 including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service section 59 including a communication module 60.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be done by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in the present disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified,
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure, ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access.”
  • microwave when two elements are connected, they may be connected using one or more wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、基地局の位置に関する測位のためのビーム情報を、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて受信する受信部と、前記ビーム情報に基づいて、前記基地局の位置の測位を行う制御部と、を有する。本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。
 例えば、ビーム予測を用い得るチャネル状態情報(Channel State Information Reference Signal(CSI))フィードバックが検討されている。
 しかしながら、ビーム予測を用い得るケースにおけるCSIの規定について検討が十分でない。これらの検討が十分でなければ、適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。
 そこで、本開示は、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、基地局の位置に関する測位のためのビーム情報を、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて受信する受信部と、前記ビーム情報に基づいて、前記基地局の位置の測位を行う制御部と、を有する。
 本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。
図1は、Rel.17までに規定されるCSIレポートに含まれるパラメータのビット幅の一例を示す図である。 図2は、AIモデルの管理のフレームワークの一例を示す図である。 図3は、AIモデルの指定の一例を示す図である。 図4は、UE測位方法の一例を示す図である。 図5は、UE測位方法の一例を示す図である。 図6は、UE測位方法の一例を示す図である。 図7は、UE測位方法の一例を示す図である。 図8A及び図8Bは、それぞれ空間ドメインビーム予測及び時間ドメインビーム予測の一例を示す図である。 図9A及び図9Bは、実施形態1-1に係るビーム情報の受信プロセスの一例を示す図である。 図10は、実施形態2-1に係るビーム情報の受信プロセスの一例を示す図である。 図11A及び図11Bは、実施形態3-1に係るビームレポートの一例を示す図である。 図12A及び図12Bは、実施形態3-1に係るビームレポートの他の例を示す図である。 図13A及び図13Bは、実施形態3-1に係るビームレポートの他の例を示す図である。 図14A及び図14Bは、実施形態3-1に係るビームレポートの他の例を示す図である。 図15は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図16は、一実施形態に係る基地局の構成の一例を示す図である。 図17は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図18は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図19は、一実施形態に係る車両の一例を示す図である。
(CSI報告(CSI report又はreporting))
 Rel.15/16 NRでは、端末(ユーザ端末、User Equipment(UE)等ともいう)は、参照信号(Reference Signal(RS))(又は、当該RS用のリソース)に基づいてチャネル状態情報(Channel State Information(CSI))を生成(決定、計算、推定、測定等ともいう)し、生成したCSIをネットワーク(例えば、基地局)に送信(報告、フィードバック等ともいう)する。当該CSIは、例えば、上り制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))又は上り共有チャネル(例えば、Physical Uplink Shared Channel(PUSCH))を用いて基地局に送信されてもよい。
 CSIの生成に用いられるRSは、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、同期信号(Synchronization Signal(SS))、復調用参照信号(DeModulation Reference Signal(DMRS))等の少なくとも一つであってもよい。
 CSI-RSは、ノンゼロパワー(Non Zero Power(NZP))CSI-RS及びCSI-Interference Management(CSI-IM)の少なくとも1つを含んでもよい。SS/PBCHブロックは、SS及びPBCH(及び対応するDMRS)を含むブロックであり、SSブロック(SSB)などと呼ばれてもよい。また、SSは、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも一つを含んでもよい。
 なお、CSIは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)などの少なくとも1つを含んでもよい。
 UEは、CSI報告に関する情報(報告設定(report configuration)情報)を受信し、当該報告設定情報に基づいてCSI報告を制御してもよい。当該報告設定情報は、例えば、無線リソース制御(Radio Resource Control(RRC))の情報要素(Information Element(IE))の「CSI-ReportConfig」であってもよい。なお、本開示において、RRC IEは、RRCパラメータ、上位レイヤパラメータなどと互いに読み替えられてもよい。
 当該報告設定情報(例えば、RRC IEの「CSI-ReportConfig」)は、例えば、以下の少なくとも一つを含んでもよい。
・CSI報告のタイプに関する情報(報告タイプ情報、例えば、RRC IEの「reportConfigType」)
・報告すべきCSIの一以上の量(quantity)(一以上のCSIパラメータ)に関する情報(報告量情報、例えば、RRC IEの「reportQuantity」)
・当該量(当該CSIパラメータ)の生成に用いられるRS用リソースに関する情報(リソース情報、例えば、RRC IEの「CSI-ResourceConfigId」)
・CSI報告の対象となる周波数ドメイン(frequency domain)に関する情報(周波数ドメイン情報、例えば、RRC IEの「reportFreqConfiguration」)
 例えば、報告タイプ情報は、周期的なCSI(Periodic CSI(P-CSI))報告、非周期的なCSI(Aperiodic CSI(A-CSI))報告、又は、半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI報告(Semi-Persistent CSI(SP-CSI))報告を示し(indicate)てもよい。
 また、報告量情報は、上記CSIパラメータ(例えば、CRI、RI、PMI、CQI、LI、L1-RSRP等)の少なくとも一つの組み合わせを指定してもよい。
 Rel.17では、CRI/SSBRIフィールドは、リソースセット内のCSI-RSリソースの数、又はSS/PBCHブロックの数に基づいてそれぞれ決定される(図1参照)。
 また、Rel.17では、CSIレポートにおいて、CRI/SSBRI/L1-RSRP/L1-SINRと対応するパネルに関する情報が含まれる。当該情報は、Capability Indexと呼ばれてもよく、2ビットのビット幅を有する(図1参照)。
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
 例えば、将来の無線通信技術について、チャネル状態情報(Channel State Information Reference Signal(CSI))フィードバックの向上(例えば、オーバーヘッド低減、正確度改善、予測)、ビームマネジメントの改善(例えば、正確度改善、時間/空間領域での予測)、位置測定の改善(例えば、位置推定/予測の改善)などのためにAI技術を活用することが検討されている。
 図2は、AIモデルの管理のフレームワークの一例を示す図である。本例では、AIモデルに関連する各ステージがブロックで示されている。本例は、AIモデルのライフサイクル管理とも表現される。
 データ収集ステージは、AIモデルの生成/更新のためのデータを収集する段階に該当する。データ収集ステージは、データ整理(例えば、どのデータをモデル訓練/モデル推論のために転送するかの決定)、データ転送(例えば、モデル訓練/モデル推論を行うエンティティ(例えば、UE、gNB)に対して、データを転送)などを含んでもよい。
 モデル訓練ステージでは、収集ステージから転送されるデータ(訓練用データ)に基づいてモデル訓練が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル訓練/バリデーション、モデルテスティング(例えば、訓練されたモデルが性能の閾値を満たすかの確認)、モデル交換(例えば、分散学習のためのモデルの転送)、モデルデプロイメント/更新(モデル推論を行うエンティティに対してモデルをデプロイ/更新)などを含んでもよい。
 モデル推論ステージでは、収集ステージから転送されるデータ(推論用データ)に基づいてモデル推論が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル推論、モデルモニタリング(例えば、モデル推論の性能をモニタ)、モデル性能フィードバック(モデル訓練を行うエンティティに対してモデル性能をフィードバック)、出力(アクターに対してモデルの出力を提供)などを含んでもよい。
 アクターステージは、アクショントリガ(例えば、他のエンティティに対してアクションをトリガするか否かの決定)、フィードバック(例えば、訓練用データ/推論用データ/性能フィードバックのために必要な情報をフィードバック)などを含んでもよい。
 なお、例えばモビリティ最適化のためのモデルの訓練は、例えば、ネットワーク(Network(NW))における保守運用管理(Operation、Administration and Maintenance(Management)(OAM))/gNodeB(gNB)において行われてもよい。前者の場合、相互運用、大容量ストレージ、オペレータの管理性、モデルの柔軟性(フィーチャーエンジニアリングなど)が有利である。後者の場合、モデル更新のレイテンシ、モデル展開のためのデータ交換などが不要な点が有利である。上記モデルの推論は、例えば、gNBにおいて行われてもよい。
 また、ユースケースに応じて、訓練/推論を行うエンティティは異なってもよい。
 例えば、メジャメントレポートに基づくAI支援ビーム管理については、OAM/gNBがモデル訓練を行い、gNBがモデル推論を行ってもよい。
 AI支援UEアシステッドポジショニングについては、Location Management Function(LMF)がモデル訓練を行い、当該LMFがモデル推論を行ってもよい。
 自己符号化器(オートエンコーダ(autoencoder))を用いるCSIフィードバック/チャネル推定については、OAM/gNB/UEがモデル訓練を行い、gNB/UEが(ジョイントで)モデル推論を行ってもよい。
 ビーム測定に基づくAI支援ビーム管理又はAI支援UEベースドポジショニングについては、OAM/gNB/UEがモデル訓練を行い、UEがモデル推論を行ってもよい。
 ところで、データ/AIモデルは、プロプライエタリな資産として扱われることが望ましい。例えば、高精度なAIモデルの作成には膨大な費用/時間がかかるため、ある企業が作成したAIモデルの内容が他社にわかってしまうと、大きな不利益となる。このため、異なるベンダーから提供されるUE/gNBに対して、AIモデルに関する情報の一部を利用不可能にする(又は推察できなくする)ことが検討されている。
 識別子(Identifier(ID))ベースのモデルアプローチは、そのようなシナリオにおけるAIモデルの管理方法の1つになり得る。例えば、NW/gNBはAIモデルの詳細を知らないが、AIモデル管理のために、AIモデルの一部情報(例えば、UEにおいてどのMLモデルが何のために利用されているか)のみを知ることができる。
 図3は、AIモデルの指定の一例を示す図である。本例において、UE及びNW(例えば、基地局(Base Station(BS)))は、モデル#1及び#2を認識できる(モデルの詳細については完全には理解しなくてもよい)。UEは、例えばモデル#1の性能及びモデル#2の性能をNWに報告し、NWは、利用するAIモデルについてUEに指示してもよい。
《AI技術を用いたUE測位》
 無線信号の伝搬特性を利用して無線機器の位置を推定するフィンガープリンティング定位(Fingerprinting localization)は、Line Of Site(LOS)/Non-Line Of Site(NLOS)のシナリオの両方で広く利用されている。
 本開示において、LOSは、UE及び基地局が互いに見通せる環境にある(又は遮蔽物がない)ことを意味してもよく、NLOSは、UE及び基地局が互いに見通せる環境にない(又は遮蔽物がある)ことを意味してもよい。
 フィンガープリンティング定位では、UEの複数の伝送経路(マルチパス)のフィンガープリントから、データベース/AIモデルに基づき、UEの位置を推定する。
 マルチパスの情報は、例えば、最適な(optimal)/候補の伝送経路における信号の到来角度(Angle of Arrival(AoA))/放射角度(Angle of Departure(AoD))に関する情報であってもよい。
 なお、本開示において、AoAに関する情報は、例えば、到来方位角度(azimuth angles of arrival)、及び、到来天頂角度(zenith angles of arrival)の少なくとも1つに関する情報を含んでもよい。また、AoDに関する情報は、例えば、放射方位角度(azimuth angles of departure)、及び、放射天頂角度(zenith angles of  depature)の少なくとも1つに関する情報を含んでもよい。
 3GPP Rel.16 NRでは、以下に示す測位(ポジショニング)技術がサポートされている。
・DL/UL Time Difference Of Arrival(TDOA)に基づくポジショニング
・角度(DL AoD/UL AoA)に基づくポジショニング
・マルチRound Trip Time(RTT)に基づくポジショニング
・Enhanced Cell ID(E-CID)に基づくポジショニング
 図4は、DL/UL TDOAに基づくポジショニングの一例を示す図である。例えば、UEの周囲に複数の基地局(TRP#0-#2)が配置されている場合を想定する。この測位方法では、参照信号の受信時間差(Reference Signal Time Difference(RSTD))の測定値を用いてUEの位置が推定(測定)される。例えば、特定の2つの基地局(TRP#i、#j(i、jは整数))についてのRSTD(T-T)がある値(ki,j)を取る点を結んで双曲線Hi,jが描ける。複数のこのような双曲線の交点(本例では、H0,1、1,2、2,0の交点)がUEの位置として推定されてもよい。また、追加で当該参照信号のRSRPを用いてUEの位置が推定されてもよい。
 図5は、DL AoD/UL AoAに基づくポジショニングの一例を示す図である。この測位方法では、DL AoDの測定値(例えばθ又はφ)、又はUL AoAの測定値(例えばθ又はφ)を用いてUEの位置が推定される。また、RSRPを用いてUEの位置が推定されてもよい。
 図6は、マルチRTTに基づくポジショニングの一例を示す図である。この測位方法では、参照信号のTx/Rx時間差(及び追加でRSRP、RSRQ等)から算出された複数のRTTを用いてUEの位置が推定される。例えば、各基地局を中心にRTTに基づく幾何学的な円が描ける。これら複数の円の交点がUEの位置として推定されてもよい。
 図7は、E-CIDに基づくポジショニングの一例を示す図である。この測位方法では、サービングセルの幾何学的位置と追加の測定結果(Tx-Rx時間差、RSRP、RSRQ等)に基づいてUEの位置が推定される。
 上記したDL(DL TDOA、DL AoD)における測位は、UE側又はLMF側で実施されてもよい。例えば、UEベースの測位では、UEの各種測定結果とLMFからのアシスト情報(assistance information)に基づいて、UEがUE位置を算出してもよい。また、UEアシスト測位(UE assisted potitioning)では、UEが各種測定結果をLMFに報告し、LMFがUEの位置を算出してもよい。アシスト情報は、UEの位置推定をアシストするための情報であってよい。
 上記したUL(UL TDOA、UL AoA)における測位は、LMF側で実施されてもよい。この場合、基地局は、各種測定結果をLMFに報告し、LMFがUEの位置を算出してもよい。
 上記したDL及びUL(マルチRTT、E-CID)における測位は、LMF側で実施されてもよい。この場合、UE/基地局は、各種測定結果をLMFに報告し、LMFがUEの位置を算出してもよい。
 また、3GPP Rel.17では、測位精度の更なる向上を目的として、アシスト情報を用いた測位方法が提案されている。アシスト情報は、上記したDL/UL-TDOA、DL-AoD/UL-AoA、マルチRTT、E-CIDのための測定情報として、UE、基地局、及びLMF間で伝送されてもよい。
 アシスト情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・Timing Error Group(TEG)、
 ・RSRPP(パス固有RSRP)、
 ・予想角度(Expected angle)、
 ・隣接ビーム情報(Adjacent beam information)、
 ・TRPアンテナ(配置/設定)/ビーム情報、
 ・LOS/NLOSインジケータ、
 ・追加のパス報告。
 TEGは、送受信タイミング誤差(Rx/Tx timing errors)が一定のマージン内にある1つまたは複数のPRS(Positioning Reference Signal)リソースを示してもよい。
 RSRPPは、最初のパスにおけるRSRPの測定結果を示してもよい。
 UL測位において、予想角度に関するアシスト情報は、予想されるUL-AoA/ZoA(expected UL-AoA/ZoA)を示してもよい。当該アシスト情報は、LMFから基地局に送信されてもよい。また、当該アシスト情報は、UL TDOA、UL AoA、及びマルチRTTのうち、少なくとも1つのポジショニングをサポートしてもよい。
 DL測位において、予想角度に関するアシスト情報は、予想されるDL-AoA/ZoA(expected DL-AoA/ZoA)、又はDL-AoD/ZoD(expected DL-AoD/ZoD)に関する情報を含んでもよい。当該アシスト情報は、LMFからUEに送信されてもよい。また、当該アシスト情報は、DL TDOA、DL AoA、及びマルチRTTのうち、少なくとも1つのポジショニングをサポートしてもよい。これにより、角度に基づくUEポジショニングの精度が向上されると共に、UE又は基地局のRxビームフォーミングの最適化が可能である。
 なお、予想角度に関するアシスト情報は、上述のようなAoA/ZoA/AoD/ZoD自体の値の情報に加えて、これらの値の不確実性の範囲を示す情報を含んでもよい。
 追加のビーム情報として、隣接ビーム情報は、DL-AoD レポートの優先順位付けを目的とした DL-PRS リソースのサブセット(オプション1)、又は各DL-PRSリソースのボアサイト(Boresight)方向(オプション2)に関する情報を含んでもよい。これにより、UEのRxビームスウィーピング及びDL-AoD測定の最適化が可能である。
 また、追加のビーム情報として、アシスト情報は、PRSビームパターン情報を含んでもよい。このPRSビームパターン情報は、TRPごとに角度ごとのDL-PRSリソース間の相対電力に関する情報を含んでもよい。
 LOS/NLOSインジケータは、Line Of Site(LOS)/Non-Line Of Site(NLOS)に関する情報を示してもよい。
 また、UEの測位遅延の改善を目的として、予め設定されるmeasurement gaps(MG)、下位レイヤを介するMGのアクティベーション、MG-lessの位置、RRC_INACTIVE状態のPRS Rx/Tx、又はオンデマンドPRSなどが、UEに対して設定されてもよい(UEによって利用されてもよい)。
《UE測位用のビーム情報》
 上述のように、アンテナ(配置)設定/ビーム情報は、AI/Mlモデルに有用であると考えられる。
 アンテナ(配置)設定/ビーム情報が利用されるシナリオとして、以下のシナリオA及びBが考えられる。
[シナリオA]
 アンテナ設定/周波数/エリアに基づいて、より適切なAIモデルが選択される。
[シナリオB]
 AIモデルが、よりよいパフォーマンスを提供するために、メタデータ(アンテナ設定情報/ビーム情報)を入力として必要とする。
 既存の仕様では、ネットワーク(NW)からUEに向けての基地局(gNB)のビーム情報のアシスト情報が、測位のためにのみ利用されることがサポートされている。
 将来の無線通信方法に向けて、以下が検討されている:
 ・ビーム情報をビームマネジメントのために用いること。
 ・測位用プロトコル(例えば、LTE Positioning Protocol(LPP))以外のインターフェースでも同様に、ビーム情報が用いられること。
 ・測位用参照信号(Positioning Reference Signal(PRS))以外のRSのビーム情報が、測位に用いられること。
 ・UEにおける(UEの)ビーム情報が用いられること。
 Rel.17では、LMFからUEに対するビーム情報(UEベースの測位(UE-based positioning)用のビーム情報、基地局の送信ビームに関する情報)として、PRSごとのビームの方向(ボアサイト方向)を示すビーム情報がサポートされている。当該ビーム情報は、PRSごとのボアサイト方向を示す情報であってもよい。
 PRSごとのビームの方向を示すビーム情報は、共通NR測位情報要素の「NR-DL-PRS-BeamInfo」に含まれる「DL-PRS-BeamInfoElement」である。
 「DL-PRS-BeamInfoElement」は、基地局(TRP)から送信されるビームの方位角(azimuth angle)に関する情報と、仰角(elevation angle)に関する情報と、を含む。
 方位角(azimuth angle)に関する情報は、「dl-PRS-Azimuth」及び「dl-PRS-Azimuth-fine」である。「dl-PRS-Azimuth」は1°単位で、0°から359°の値で示される情報であり、「dl-PRS-Azimuth-fine」は0.1°単位で、0°から0.9°の値で示される。
 仰角(elevation angle)に関する情報は、「dl-PRS-Elevation」及び「dl-PRS-Elevation-fine」である。「dl-PRS-Elevation」は1°単位の粒度で、0°から180°の値で示される情報であり、「dl-PRS-Elevation-fine」は0.1°単位の粒度で、0°から0.9°の値で示される。
 また、Rel.17では、LMFからUEに対するビーム情報(UEベースの測位用のビーム情報、基地局の送信ビームに関する情報)として、角度ごと(方位角/仰角)におけるDL PRSの相対電力を示すビーム情報がサポートされている。
 当該相対電力を示すビーム情報は、共通NR測位情報要素内のTRPのビームアンテナ情報(「NR-TRP-BeamAntennaInfo」)に含まれる。
 「NR-TRP-BeamAntennaInfo」は、方位角及び仰角に対するTRPのビームアンテナ情報に関する情報「NR-TRP-BeamAntennaInfoAzimuthElevation」を含む。
 「NR-TRP-BeamAntennaInfoAzimuthElevation」は、1°単位の粒度の方位角を示す「azimuth」、0.1°単位の粒度の方位角を示す「azimuth-fine」、及び、仰角のリスト「elevationList」を含む。
 仰角のリスト「elevationList」は、1°単位の粒度の仰角を示す「elevation」、0.1°単位の粒度の仰角を示す「elevation-fine」、及び、ビーム電力のリスト「beamPowerList」を含む。
 ビーム電力のリスト「beamPowerList」は、DL PRSのリソースセットIDを示す「nr-dl-prs-ResourceSetID」、DL PRSのリソースIDを示す「nr-dl-prs-ResourceID」、1dB単位の粒度での「nr-dl-prs-ResourceID」で与えられるリソースの相対電力を示す「nr-dl-prs-RelativePower」、及び、0.1dB単位の粒度での「nr-dl-prs-ResourceID」で与えられるリソースの相対電力を示す「nr-dl-prs-RelativePowerFine」、が含まれる。
 また、Rel.17では、LMFからUEに対するビーム(アンテナ)情報(基地局の送信ビームに関する情報)として、アンテナの参照ポイント(antenna reference point(ARP))を示す情報がサポートされている。
 当該情報は、共通NR測位情報要素の、TRPの位置情報である「NR-TRP-LocationInfo」内の「referencePoint」で示される。
 TRPの位置情報「NR-TRP-LocationInfo」は、参照ポイントと参照ポイントとの相対位置によって表現される。
 PRSリソースのARPの位置(location)は、PRSリソースセットのARP位置に関連付けられる相対位置で表現される。
 アンテナ参照ポイントは、高度、緯度及び経度で示される。
 また、Rel.17では、基地局(例えば、gNB、NG-RAN(Next Generation‐Radio Access Network)ノード)からLMFに対する情報(基地局の送信ビームに関する情報)として、DL PRSの空間方向に関する情報がサポートされている。
 当該情報は、PRSリソースの方位角及び仰角のボアサイト方向を示す情報を含む。
 また、当該情報は、ローカル座標系(local coordinate system(LCS))からグローバル座標系(global coordinate system(GCS))への移行(transition)情報を含む。
 GCSは、複数の基地局及び複数のUEを含むシステムのために定義されてもよい。また、LCSにおいて、1つの基地局又は1つのUEのためのアレーアンテナが定義されてもよい。
 LCSは、アレーにおける各アンテナ素子のベクトル遠方界(vector far-field)を定義するための参照として用いられる。当該ベクトル遠方界は、パターン及び偏波(polarization)である。GCS内のアレーの配置は、GCSとLCSとの変換によって定義されてもよい。GCS/LCSは、例えば、当業者であれば認識しうる(仕様に規定される)定義、変換式に基づいて導出されてもよい。
 また、Rel.17では、基地局(例えば、gNB)からLMFに対する情報(基地局の送信ビームに関する情報)として、TRPのビーム/アンテナを示す情報がサポートされている。
 当該情報は、各角度(方位角/仰角)におけるDL PRSの相対電力を示す情報を含む。
 また、Rel.17では、基地局(例えば、gNB)からLMFに対する情報(基地局の受信ビームに関する情報)として、UL信号測定時における受信ビームに関する情報がサポートされている。
 当該情報は、PRSリソースID、PRSリソースセットID、及び、SSBインデックスの少なくとも1つを含む。
 また、Rel.17では、UEからNWに対して送信される情報(UEの送信ビームに関する情報)として、空間関係に関する情報がサポートされている。
 当該情報は、特定のRS(例えば、SSB/CSI-RS/SRS/DL PRS)のID/インデックスを示す。
 また、Rel.17では、測位用のビームスイーピングにおけるUEの受信ビーム数が規定される。UEは、LMFに対してUE能力のサポートを報告してもよい。
 例えば、FR1では、UEは1つの受信ビームを用いる。
 また、FR2では、UEが特定のUE能力をサポートする場合には、FR2用のRxビームスイーピングファクタの数を示す情報「numberOfRxBeamSweepingFactor」で指示される値のビーム数を用いる。そうでない場合には、UEは、8つの受信ビームを用いる。
 また、UEが測定に用いる受信ビームに関する情報(例えば、「nr-DL-PRS-RxBeamIndex」)がサポートされる。
 当該情報について、DL PRSリソースセット内で異なるビームが使用されている場合に、UEは、同じ受信ビームで受信した測定値を報告してもよい。
 言い換えれば、UEが送信するビーム情報は、リソースセット間で同一のビームが使用されているか否かを示す情報である。
(ビームマネジメントにおけるビーム予測)
 将来の無線通信システム(例えば、Rel.18以降)では、ビーム予測を伴うビームマネジメントの導入が検討されている。
 ビーム予測のうち、空間ドメイン(spatial domain)ビーム予測と、時間ドメイン(temporal)ビーム予測と、これら空間ドメインビーム予測及び時間ドメインビーム予測の組み合わせと、が検討されている。
 空間ドメイン(spatial domain)ビーム予測及び時間ドメイン(temporal)ビーム予測は、UE及び基地局の少なくとも一方において実施されてもよい。
 空間ドメイン(spatial domain)ビーム予測では、UE/基地局は、AIモデルに、疎な(又は太い/広い)ビームに基づく測定結果(ビーム品質。例えば、RSRP)を入力して、密な(又は細い/狭い)ビーム品質を出力してもよい(図8A参照)。
 時間ドメイン(temporal)ビーム予測では、UE/BSは、AIモデルに、時系列(過去、現在などの)測定結果(ビーム品質。例えば、RSRP)を入力して、将来のビーム品質を出力してもよい(図8B参照)。
 本開示において、疎な(又は太い/広い)ビームとは、空間/角度領域で疎に分布したビーム(パターン)を意味してもよい。また、密な(又は細い/狭い)ビームとは、空間/角度領域で密に分布したビーム(パターン)を意味してもよい。
 ところで、将来の無線通信システム(例えば、Rel.18以降)では、上述のような測位においてサポートされるビーム情報/アンテナ情報を、RRCシグナリング等でUEに対して送信することが検討されている。
 また、NW(基地局)においてAI/MLモデルが利用される場合には、UE側のビーム情報をNWに報告することが検討されている。
 しかしながら、当該UEに送信されるビーム情報及び当該UEが送信するビーム情報に関する構成/制御方法について十分検討されていない。これらについて受分な検討がなされなければ、適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。
 そこで、本発明者らは、好適なビーム情報に関する構成/制御方法を着想した。なお、本開示の各実施形態は、AI/予測が利用されない場合に適用されてもよい。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報、LPPメッセージなどのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 本開示において、CSI-RS、ノンゼロパワー(Non Zero Power(NZP))CSI-RS、ゼロパワー(Zero Power(ZP))CSI-RS及びCSI干渉測定(CSI Interference Measurement(CSI-IM))は、互いに読み替えられてもよい。また、CSI-RSは、その他の参照信号を含んでもよい。
 本開示において、測定/報告されるRSは、CSIレポートのために測定/報告されるRSを意味してもよい。
 本開示において、タイミング、時刻、時間、時間インスタンス、スロット、サブスロット、シンボル、サブフレームなどは、互いに読み替えられてもよい。
 本開示において、方向、軸、次元、ドメイン、偏波、偏波成分などは、互いに読み替えられてもよい。
 本開示において、RSは、例えば、CSI-RS、SS/PBCHブロック(SSブロック(SSB))などであってもよい。また、RSインデックスは、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Indicator(SSBRI))などであってもよい。
 本開示において、チャネル測定/推定は、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号(Synchronization Signal(SS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、復調用参照信号(DeModulation Reference Signal(DMRS))、測定用参照信号(Sounding Reference Signal(SRS))などの少なくとも1つを用いて行われてもよい。
 本開示において、CSIは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)、チャネル行列(又はチャネル係数)に関する情報、プリコーディング行列(又はプリコーディング係数)に関する情報などの少なくとも1つを含んでもよい。
 本開示において、UCI、CSIレポート、CSIフィードバック、フィードバック情報、フィードバックビットなどは、互いに読み替えられてもよい。また、本開示において、ビット、ビット列、ビット系列、系列、値、情報、ビットから得られる値、ビットから得られる情報などは、互いに読み替えられてもよい。
 以下の実施形態では、UE-BS間の通信に関するAIモデルを説明するため、関連する主体はUE及びBSであるが、本開示の各実施形態の適用は、これに限られない。例えば、別の主体間の通信(例えば、UE-UE間の通信)については、下記実施形態のUE及びBSを、第1のUE及び第2のUEで読み替えてもよい。言い換えると、本開示のUE、BSなどは、いずれも任意のUE/BSで読み替えられてもよい。
(無線通信方法)
 以下本開示において、NW及びUEは、特定の用途のためのアンテナ設定/ビーム情報を交換(送信/受信)してもよい。
 当該特定の用途は、例えば、ビームマネジメント、AIベースのビームマネジメント、CSIフィードバック、及び、測位(positioning)の少なくとも1つであってもよい。
 本開示において、アンテナに関する情報、ビームに関する情報、アンテナ/ビームに関する情報、アンテナ設定、アンテナ情報、ビーム情報、ビーム設定、送信(Tx)ビーム情報、受信(Rx)ビーム情報、アシスト(assistance)情報、アシストデータ、メタ情報、メタデータ等は互いに読み替えられてもよい。
 本開示において、アンテナ設定/ビーム情報は、特定の参照信号(RS)に関連付けられてもよい。
 当該特定の参照信号は、SRS、ポジショニング用SRS、SSB、CSI-RS、DMRS、TRS、及び、PRS(DL-PRS/UL-PRS)の少なくとも1つであってもよい。本開示において、SRS、ポジショニング用SRS、UL-PRSは互いに読み替えられてもよい。
 本開示において、NW、基地局、gNB、NG-RANノード、は互いに読み替えられてもよい。
<第1の実施形態>
 第1の実施形態では、NWからUEに送信されるアンテナ/ビームに関する情報について説明する。
 UEは、基地局のアンテナ/ビームに関する情報を、NWから受信してもよい。
《実施形態1-1》
 実施形態1-1では、基地局のアンテナ/ビームに関する情報のUEにおける受信制御について説明する。
 UE/NWは、以下の選択肢1-1-1及び選択肢1-1-2の少なくとも一方に従ってもよい。
[選択肢1-1-1]
 UEは、基地局のアンテナ/ビームに関する情報(ビーム情報と呼ばれてもよい)を要求してもよい。言い換えれば、UEは、基地局のビーム情報の要求を送信してもよい。
 当該要求は、下記補足3に記載される方法に基づいて送信されてもよい。
 UEは、当該要求に、要求されるビーム情報の粒度に関する情報を含めてもよい。
 当該粒度に関する情報は、ビームの角度(例えば、方位角/仰角)の粒度に関する情報、ビームの(相対/絶対)電力の粒度に関する情報、及び、ARP/TRP/基地局の位置の粒度に関する情報、の少なくとも1つであってもよい。
 ビームの角度の粒度に関する情報は、例えば、第1の粒度(例えば、1°単位)で示される情報、及び、第2の粒度(例えば、0.1°単位)で示される情報、の少なくとも1つであってもよい。
 ビームの電力の粒度に関する情報は、例えば、第1の粒度(例えば、1dB単位)で示される情報、及び、第2の粒度(例えば、0.1dB単位)で示される情報、の少なくとも1つであってもよい。
 ARP/TRP/基地局の位置の粒度に関する情報は、例えば、ARP/TRP/基地局の位置(空間的距離)を示す情報のビット(系列)数を示す情報であってもよい。
 UEは、当該要求に、要求されるビーム情報のRS(リソース)を特定するための情報を含めてもよい。
 当該RSを特定するための情報は、例えば、RSリソースID、RSリソースセットID、TRPを示す情報、DL PRS ID(dl-PRS-ID)、周波数レイヤ、及び、サービングセルID、の少なくとも1つを示す情報であってもよい。
 UEは、当該要求に、報告を要求するビーム情報の種類を示す情報を含めてもよい。ビーム情報の種類については、以下実施形態1-2で詳述する。
 例えば、UEは、特定のPRACHリソースを含むPRACHを送信することによって、当該要求を送信してもよい。また、例えば、UEは、UE能力情報の報告によって当該要求を送信してもよい。
 UEは、NWから当該要求に対する応答を受信してもよい。
 UEは、当該応答の受信後、ビーム情報を受信してもよい。また、UEは、当該応答とともにビーム情報を受信してもよい。
 UEは、下記補足2に記載される方法に基づいて、当該応答を受信してもよい。
 UEは、当該応答内に、要求の検出/受信の失敗を示す情報が含まれることを想定してもよい(オプション1-1-1-1)。UEは、要求の検出/受信の失敗を示す情報が含まれる応答を受信してもよい。
 要求の検出/受信の失敗を示す情報は、1つ以上のエラーの理由(error cause/reason)を示す情報が含まれてもよい。エラーの理由は、予め仕様で規定されてもよい。
 当該エラーの理由は、例えば、アシスト情報を受信できなかったこと、1つのTRPも測定できなかったこと、隣接セルの測定を試みたが測定できなかったこと、DL信号の角度の測定のための十分な信号が存在しなかったこと、位置計算アシスト情報を受信できなかったこと、及び、未定義の理由、の少なくとも1つであってもよい。
 UEは、当該応答で示されるエラーの理由に基づいて、要求を再送するか、要求の送信を中止するか、を判断してもよい。
 UEは、当該応答内に、ビーム情報が含まれると想定してもよい(オプション1-1-1-2)。UEは、ビーム情報が含まれる応答を受信してもよい。
 UEは、当該応答を特定の期間受信しなかった場合、NWが要求の受信に失敗したと判断してもよい(オプション1-1-1-3)。UEは、特定のルールに基づいて、NWに対し要求を再送するか、要求の送信を中止するか、を判断してもよい。
 図9Aは、実施形態1-1に係るビーム情報の受信プロセスの一例を示す図である。図9Aに示す例では、UEはまず、NW(gNB)に対して、ビーム情報の要求を送信する(ステップS901)。次いで、UEは、NW(gNB)から、当該要求に対する応答を受信し(ステップS902)、ビーム情報を受信する。
[選択肢1-1-2]
 選択肢1-1-2では、UEは、上記選択肢1-1-1における要求を送信しなくてもよい。
 UEは、下記オプション1-1-2-1から1-1-2-3の少なくとも1つに従って、ビーム情報を受信してもよい。
[[オプション1-1-2-1]]
 UEは、下記補足2に記載される方法に基づいて、ビーム情報を受信してもよい。
 UEが受信するビーム情報は、UE固有(dedicated)のシグナリングであってもよい。
 UEは、対応するUE能力をNWに報告した後、ビーム情報を受信してもよい。
 オプション1-1-2-1によれば、多数のUEがビーム情報を必要としない場合に、リソースの利用効率を向上させることができる。
[[オプション1-1-2-2]]
 UEは、システム情報を利用してビーム情報を受信してもよい。言い換えれば、当該ビーム情報は、システム情報に含まれてもよい。
 当該システム情報は、例えば、SIB X(Xは任意の整数、例えば、1)であってもよい。
 オプション1-1-2-2によれば、多数のUEがビーム情報を必要とする場合に、リソースの利用効率を向上させることができる。
[[オプション1-1-2-3]]
 UEは、グループ共通(複数のUE共通)のシグナリングを利用してビーム情報を受信してもよい。言い換えれば、当該ビーム情報は、グループ共通(複数のUE共通)のシグナリングに含まれてもよい。
 当該グループ共通(複数のUE共通)のシグナリングは、例えば、マルチキャスト/ブロードキャストされる信号であってもよい。
 ブロードキャストされる信号(例えば、PDSCH、グループ共通のPDCCH)は、例えば、ブロードキャスト用のDCIフォーマット(DCIフォーマット4_0)でスケジュールされてもよい。
 マルチキャストされる信号(例えば、PDSCH、グループ共通のPDCCH)は、例えば、マルチキャスト用のDCIフォーマット(DCIフォーマット4_1/4_2)でスケジュールされてもよい。
 オプション1-1-2-3によれば、多数のUEがビーム情報を必要とする場合に、リソースの利用効率を向上させることができる。
 図9Bは、実施形態1-1に係るビーム情報の受信プロセスの他の例を示す図である。図9Bに示す例では、UEは、NW(gNB)に対してビーム情報の要求を送信することなく、NW(gNB)から、ビーム情報を受信する(ステップS903)。
《実施形態1-2》
 実施形態1-2では、NWからUEに送信されるビーム情報について説明する。
 ビーム情報は、以下のオプション1-2-1から1-2-6の少なくとも1つに記載される情報/要素を含んでもよい。
[オプション1-2-1]
 ビーム情報に、RSに関連するビームの方向(ボアサイト方向)を示す情報が含まれてもよい。
 当該情報は、RSに関連するビームの方向(ボアサイト方向)の角度を示す情報であってもよい。
 当該角度は、例えば、方位角/仰角であってもよい。
 当該角度は、基地局/TRPにおける送信ビームの角度であってもよい。
[オプション1-2-2]
 ビーム情報に、RSの電力(ビームパワー)を示す情報が含まれてもよい。
 当該RSの電力は、RSの絶対電力であってもよいし、特定のRSに対するRSの相対電力であってもよい。
 当該RSの電力を示す情報は、角度ごとのRSの電力を示す情報であってもよい。
 当該角度は、例えば、方位角/仰角であってもよい。
 当該角度は、基地局/TRPにおける送信ビームの角度であってもよい。
 当該RSの電力(ビームパワー)は、対応する角度のピーク電力と比較したRS間の相対的な電力で表されてもよい。
 UEは、特定のルール/パラメータに基づいて、対応する角度のピークパワーを達成するRSを決定してもよい。例えば、系列上のパラメータで電力を表現する場合には、特定の(例えば、最初の)要素に対応するRSを、ピーク電力を達成するRSと決定してもよい。
[オプション1-2-3]
 ビーム情報に、RSのアンテナ参照ポイント(antenna reference point(ARP))に関する情報が含まれてもよい。
 ARPに関する情報は、例えば、ARPの位置(location)を示す情報であってもよい。
 ARPの位置(location)を示す情報は、絶対的な位置を示す情報(例えば、高度/緯度/経度)で示されてもよい。
 ARPの位置は、RSリソースのARPの位置であってもよい。RSリソースのARPの位置は、RSリソースセットのARP、UE位置、及び、TRP位置の少なくとも1つからの相対位置で示されてもよい。
 ARPの位置は、RSリソースセットのARPの位置であってもよい。RSリソースセットのARPの位置は、参照ポイント、UE位置、及び、TRP位置の少なくとも1つからの相対位置で示されてもよい。当該参照ポイントは、高度/緯度/経度で示されてもよい。
 UE位置、及び、TRP位置の少なくとも1つは、参照ポイントからの相対位置で示されてもよい。当該参照ポイントは、高度/緯度/経度で示されてもよい。
 RSリソースのARP位置、RSリソースセットのARP位置、TRP位置、UE位置、及び、参照ポイントの少なくとも1つは、絶対的な位置を示す情報で示されてもよい。当該絶対的な位置は、例えば、(オプションで)高度を伴う楕円体上の点(Ellipsoid point (optionally) with altitude)、uncertainty circle上の点、uncertainty ellipse上の点、及び、uncertainty ellipsoid上の点、の少なくとも1つであってもよい。
[オプション1-2-4]
 ビーム情報に、アンテナポート数に関する情報が含まれてもよい。
 アンテナポート数に関する情報は、例えば、アンテナポートの総数の情報、角度ごとのアンテナポート数の情報、アンテナパネルの総数の情報、角度ごとのアンテナパネル数の情報、(角度ごとの)アンテナポート間の距離の情報、及び、(角度ごとの)アンテナパネル間の距離の情報、の少なくとも1つであってもよい。
 アンテナポート数に関する情報は、RSリソースごと/RSリソースセットごとに規定/設定されてもよい。
[オプション1-2-5]
 ビーム情報に、同一の空間ドメインフィルタ/ビームを用いて送信されるRSに関する情報が含まれてもよい。
 同一の空間ドメインフィルタ/ビームを用いて送信されるRSに関する情報は、例えば、ビームの相対関係(ビームに関するパラメータ)についてのマッピング/対応関係を示す情報であってもよい。
 本開示において、ビームの相対関係、特定のQCLタイプ(例えば、QCLタイプD(空間受信パラメータ))、空間関係、等は互いに読み替えられてもよい。
 例えば、複数のRSが同じビームの相対関係に対応(マップ)する場合、UEは、RSのボアサイト方向、及び、角度ごとのRSの(絶対/相対)電力、の少なくとも1つが同じであると想定/判断してもよい。
 オプション1-2-5によれば、ビーム情報の報告にようするオーバヘッドを削減することができる。
[オプション1-2-6]
 ビーム情報に、エリアに関する情報が含まれてもよい。
 エリアに関する情報は、例えば、対応するビーム情報が有効であるエリアを示す情報であってもよい。
 対応するビーム情報が有効であるエリアを示す情報は、以下の少なくとも1つの情報(情報のリスト)を含んでもよい:
 ・エリアID。
 ・(NRの)セルのグローバルID。
 ・(NRの)物理セルID(Identifier)。
 ・ARFCN(Absolute Radio Frequency Channel Number)。
 ・Evolved CellのグローバルID(ECGI)。
 当該エリアIDに関する情報は、NRのセルのグローバルID、NRの物理セルID、及び、ARFCNの少なくとも1つを含んでもよい。
 UEは、LMF/基地局から、アシストデータにおいて、当該アシストデータに対応するエリアIDのリストを提供されてもよい。当該エリアIDのリストは、セルIDのリスト((NRの)セルのグローバルID、(NRの)物理セルID、及びARFCNの少なくとも2つを含む情報)であってもよい。
 オプション1-2-6によれば、例えば基地局のアンテナ構成が同じである場合に、異なるセルに対して同じビーム情報を適用することができ、シグナリングオーバヘッドを削減することができる。
 上記オプション1-2-1から1-2-6の少なくとも1つの情報に対して、特定のインデックスが割り当てられてもよい。当該割り当ては、予め仕様で規定されてもよいし、下記補足3に記載される方法に基づいてUEからNWに通知されてもよいし、下記補足2に記載される方法に基づいてNWからUEに通知されてもよい。
 これによれば、インデックスに基づく(インデックスで特定できる)ビーム情報をUE/NWにおいて実現できるため、シグナリングオーバヘッドを削減することができる。
《第1の実施形態のバリエーション》
 本開示において、角度に関する情報は、特定の方法で表現されてもよい。
 例えば、本開示において、角度は、複数のスケールで表現されてもよい。
 例えば、角度は、方位角(azimuth angle)及び仰角(elevation angle)で表現されてもよい。方位角/仰角は、特定のパラメータに基づいて決定されてもよい。
 方位角/仰角を示すパラメータは、粒度に従う異なる複数のパラメータで表現されてもよい。
 例えば、方位角/仰角を示すパラメータは、第1の粒度(例えば、1°単位)で表される第1のパラメータと、第2の粒度(例えば、0.1°単位)で表される第2のパラメータと、で表現されてもよい。
 また、例えば、本開示において、角度は、LCS/GCSで表現/表示されてもよい。
 例えば、方位角/仰角は、LCS/GCSで表現/表示されてもよい。
 角度がLCSで表現される場合、LCS及びGCSの変換用の情報がUE/NWに通知/提供されてもよい。
 当該変換用の情報が提供されない場合、UE/NWは、角度がGCSで表現/表示されることを想定してもよい。
 なお、本実施形態の記載は、第1の実施形態だけでなく、その他の実施形態にも適用可能である。
 以上第1の実施形態によれば、NWからUEに送信されるビーム情報の構成及びビーム情報に係る制御動作を適切に規定することができる。
<第2の実施形態>
 第2の実施形態では、UEからNWに送信されるアンテナ/ビームに関する情報について説明する。
 UEは、UEのアンテナ/ビームに関する情報(ビーム情報と呼ばれてもよい)を、NWへ送信してもよい。
《実施形態2-1》
 実施形態2-1では、UEのアンテナ/ビームに関する情報の送信制御について説明する。
 UE/NWは、以下の選択肢2-1-1及び選択肢2-1-2の少なくとも一方に従ってもよい。
[選択肢2-1-1]
 UEは、ビーム情報を報告する指示(指示情報、要求)を受信してもよい。
 UEは、下記補足2に記載される方法に基づいて、当該指示情報を受信してもよい。
 当該指示情報は、UE固有(dedicated)のシグナリングであってもよい(オプション2-1-1-1)。
 UEは、対応するUE能力をNWに報告した後、当該指示情報を受信してもよい。
 オプション2-1-1-1によれば、多数のUEがビーム情報を必要としない場合に、リソースの利用効率を向上させることができる。
 UEは、システム情報を利用して当該指示情報を受信してもよい(オプション2-1-1-2)。言い換えれば、当該指示情報は、システム情報に含まれてもよい。
 当該システム情報は、例えば、SIB X(Xは任意の整数、例えば、1)であってもよい。
 オプション2-1-1-2によれば、多数のUEがビーム情報を必要とする場合に、リソースの利用効率を向上させることができる。
 UEは、グループ共通(複数のUE共通)のシグナリングを利用してビーム情報を受信してもよい(オプション2-1-1-3)。言い換えれば、当該ビーム情報は、グループ共通(複数のUE共通)のシグナリングに含まれてもよい。
 当該グループ共通(複数のUE共通)のシグナリングは、例えば、マルチキャスト/ブロードキャストされる信号であってもよい。
 ブロードキャストされる信号(例えば、PDSCH、グループ共通のPDCCH)は、例えば、ブロードキャスト用のDCIフォーマット(DCIフォーマット4_0)でスケジュールされてもよい。
 マルチキャストされる信号(例えば、PDSCH、グループ共通のPDCCH)は、例えば、マルチキャスト用のDCIフォーマット(DCIフォーマット4_1/4_2)でスケジュールされてもよい。
 オプション2-1-1-3によれば、多数のUEがビーム情報を必要とする場合に、リソースの利用効率を向上させることができる。
 UEは、当該指示情報において、特定の情報を要求されてもよい。
 当該特定の情報は、例えば、報告を要求されるビーム情報のRS(リソース)を特定するための情報であってもよい。
 当該RSを特定するための情報は、例えば、RSリソースID、RSリソースセットID、TRPを示す情報、DL PRS ID(dl-PRS-ID)、周波数レイヤ、及び、サービングセルID、の少なくとも1つを示す情報であってもよい。
 また、当該特定の情報は、どの情報が報告を要求されるか(報告を要求するビーム情報の種類)を示す情報であってもよい。ビーム情報の種類については、以下実施形態2-2で詳述する。
 また、当該特定の情報は、例えば、要求されるビーム情報の粒度に関する情報であってもよい。
 当該粒度に関する情報は、ビームの角度(例えば、方位角/仰角)の粒度に関する情報、ビームの(相対/絶対)電力の粒度に関する情報、及び、ARP/TRP/基地局の位置の粒度に関する情報、の少なくとも1つであってもよい。
 ビームの角度の粒度に関する情報は、例えば、第1の粒度(例えば、1°単位)で示される情報、及び、第2の粒度(例えば、0.1°単位)で示される情報、の少なくとも1つであってもよい。
 ビームの電力の粒度に関する情報は、例えば、第1の粒度(例えば、1dB単位)で示される情報、及び、第2の粒度(例えば、0.1dB単位)で示される情報、の少なくとも1つであってもよい。
 ARP/TRP/基地局の位置の粒度に関する情報は、例えば、ARP/TRP/基地局の位置(空間的距離)を示す情報のビット(系列)数を示す情報であってもよい。
[選択肢2-1-2]
 UEは、UEのビーム情報に関する指示情報/要求に対する応答を送信してもよい。
 UEは、当該応答の送信後にUEのビーム情報を送信してもよい。また、UEは、当該応答の送信とともに、UEのビーム情報を送信してもよい。
 当該応答/ビーム情報は、下記補足3に記載される方法に基づいて送信されてもよい。
 UEは、下記オプション2-1-2-1から2-1-2-4の少なくとも1つに従ってもよい。
 UEは、当該応答内に、指示情報/要求の検出/受信の失敗を示す情報が含めてもよい(オプション2-1-2-1)。UEは、指示情報/要求の検出/受信の失敗を示す情報が含まれる応答を送信してもよい。
 指示情報/要求の検出/受信の失敗を示す情報は、1つ以上のエラーの理由(error cause/reason)を示す情報が含まれてもよい。エラーの理由は、予め仕様で規定されてもよい。
 NWは、当該応答で示されるエラーの理由に基づいて、指示情報/要求を再送するか、指示情報/要求の送信を中止するか、を判断してもよい。
 UEは、当該応答内に、ビーム情報を含めてもよい(オプション2-1-2-2)。UEは、ビーム情報が含まれる応答を送信してもよい。
 UEは、特定のケースにおいて当該指示情報/要求を無視してもよい(オプション2-1-2-3)。
 例えば、UEは、特定のエラーを検出した場合、及び、障害検出のメッセージのみを送信した場合、の少なくとも一方において、当該指示情報/要求を無視してもよい。
 UEは、UE能力情報の報告において、UEのビーム情報を送信してもよい(オプション2-1-2-4)。
 図10は、実施形態2-1に係るビーム情報の受信プロセスの一例を示す図である。図10に示す例では、UEはまず、NW(gNB)から、ビーム情報の要求を受信する(ステップS1001)。次いで、UEは、NW(gNB)に、当該要求に対する応答を送信し(ステップS1002)、ビーム情報を送信する。
《実施形態2-2》
 実施形態2-2では、UEからNWに送信されるビーム情報について説明する。
 実施形態2-2において、UEからNWに送信されるビーム情報について、上述の実施形態1-2に記載されるビーム情報が適宜適用されてもよい。
 例えば、上述の実施形態1-2における「NW/基地局/TRP」を「UE」に読み替え、また、「UE」を「NW/基地局/TRP」に読み替えたビーム情報が利用されてもよい。
《実施形態2-3》
 UEは、AI/MLモデルのアシスト情報/メタデータを報告してもよい。
 当該AI/MLモデルは、UEにおいて登録(registered)/設定(configured)/コンパイル(compiled)/アクティベート(activated)されるAI/MLモデルであってもよい。
 AI/MLモデルのアシスト情報/メタデータは、第2の実施形態におけるビーム情報とともに、又は、ビーム情報に代えて、送信されてもよい。
 AI/MLモデルのアシスト情報/メタデータは、以下に記載する少なくとも1つの情報であってもよい。
 AI/MLモデルのアシスト情報/メタデータは、AI/MLモデルのIDであってもよい。
 AI/MLモデルのIDは、グローバル/ローカルなAI/MLモデルのIDであってもよい。
 AI/MLモデルのアシスト情報/メタデータは、AI/MLモデルIDに対応する適用可能な帯域幅に関する情報であってもよい。
 当該帯域幅は、適用可能な最小/最大の帯域幅として示されてもよい。
 当該帯域幅に関する情報は、例えば、バンドインディケータを示す情報(例えば、「freqBandIndicatorNR」)を含んでもよい。当該バンドインディケータを示す情報は、特定のビット数(例えば、10ビット)で表されてもよい。
 当該帯域幅に関する情報は、例えば、対応するAI/MLモデルに関連付けられるRSの帯域幅を示す情報(例えば、「supportedBandwidth」)を含んでもよい。
 対応するAI/MLモデルに関連付けられるRSの帯域幅を示す情報は、周波数レンジ(例えば、FR1/FR2(FR2-1/FR2-2)/FR3/FR4/FR5)ごとの周波数を示してもよい。
 AI/MLモデルのアシスト情報/メタデータは、AI/MLモデルIDに対応する適用可能なエリアに関する情報であってもよい。
 AI/MLモデルに対応する適用可能なエリアに関する情報は、以下の少なくとも1つの情報(情報のリスト)を含んでもよい:
 ・エリアID。
 ・(NRの)セルのグローバルID。
 ・(NRの)物理セルID(Identifier)。
 ・ARFCN(Absolute Radio Frequency Channel Number)。
 ・Evolved CellのグローバルID(ECGI)。
 当該エリアIDは、NRのセルのグローバルID、NRの物理セルID、及び、ARFCNの少なくとも1つを含んでもよい。
 AI/MLモデルのアシスト情報/メタデータは、AI/MLモデルIDに対応するアンテナ設定/ビーム情報であってもよい。
 当該ビーム情報は、第2の実施形態(実施形態2-1/2-2)におけるビーム情報であってもよい。
 NWは、UEから受信するアシスト情報/メタデータに基づいて、AI/MLモデルを用いて、アンテナ設定を更新/変更/決定してもよい。
 以上第2の実施形態によれば、UEからNWに送信されるビーム情報の構成及びビーム情報に係る制御動作を適切に規定することができる。
<第3の実施形態>
 UEは、特定の測定(メジャメント)の報告(結果)とともに、ビーム情報を送信/報告してもよい。例えば、特定の測定(メジャメント)の報告(結果)は、CSI/ビーム報告と読み替えられてもよい。
 本実施形態は、例えば、NW(基地局)がビームマネジメント/測位(ポジショニング)に基づく動作を行う場合に適用されてもよい。
 UE/NWは、下記実施形態3-1及び3-2の少なくとも一方に従ってもよい。
 下記実施形態3-1は、主にNW側のモデルのAIベースのビームマネジメントに適用されてもよいが、AI/MLモデルを用いないケースにも適用されてもよい。
 下記実施形態3-2は、主にNW側のモデルのAIベースのポジショニングに適用されてもよいが、AI/MLモデルを用いないケースにも適用されてもよい。
 本開示において、NW側のAIベースのビームマネジメントは、例えば、空間ドメイン(spatial domain)ビーム予測、及び、時間ドメイン(temporal)ビーム予測、の少なくとも一方であってもよい。
 本開示において、CSIレポート、ビームレポート、L1-RSRP/SINRレポート、は互いに読み替えられてもよい。また、本開示において、RSRP、SINRは互いに読み替えられてもよい。
《実施形態3-1》
 UEは、受信ビームに関する情報(受信ビーム情報)を報告してもよい。
 UEは、受信ビーム情報を、CSI(L1-RSRP/SINR)レポートとともに報告してもよい。
 受信ビーム情報は、例えば、RSリソースインディケータであってもよい。
 当該RSリソースインディケータは、例えば、RSリソースID、RSリソースセットID、及び、SRSリソースインディケータ(例えば、srs-ResourceIndicator)、の少なくとも1つであってもよい。
 RSのリソースのインディケータは、対応するメジャメントに使用される空間ドメイン受信フィルタ/受信ビームと同じ空間ドメイン送信フィルタ/送信ビームを使用するSRSリソース/リソースセットの情報であってもよい。
 UEは、受信ビーム情報の報告用のSRSリソースセットを設定されてもよい。この場合、例えば、SRSリソースセットの用途(usage)が、受信ビーム決定、及び、受信ビーム情報を伴うL1-RSRP、の少なくとも一方にセットされてもよい。
 報告されるRSリソースインディケータのフィールドのビット幅は、特定のルール/パラメータに基づいて決定されてもよい。
 例えば、当該ビット幅は、例えば、ceil(log(N))で決定されてもよい。当該Nは、関連するSRSリソースセット内のSRSリソースの数であってもよい。本開示において、ceil(X)は、Xに天井関数をかけることを意味してもよい。
 RSリソースインディケータ/RSリソースセットインディケータは、パネルインデックス(CapabilityIndex)とともに報告されてもよい。
 図11A及び図11Bは、実施形態3-1に係るビームレポートの一例を示す図である。図11A及び図11Bに示す例では、ビームレポート(CSIレポート)において、RSリソースインディケータが、パネルインデックス(CapabilityIndex)とともに報告されるケースを記載している。
 図11Aに示す例では、ビームレポートに含まれる情報のビット幅を示している。RSリソースインディケータのビット数(X)は、上記方法に基づいて決定されてもよい。
 図11Bに示す例では、ビームレポートに含まれる情報が記載される。当該ビームレポートには、CRI又はSSBRI(#1-#4)、CRI又はSSBRI#1に対応するRSRP(RSRP#1)、CRI又はSSBRI#2-#4に対応する差分RSRP(差分RSRP#2-#4)、CRI又はSSBRI#1-#4のそれぞれに対応する、パネルのインデックス(CapabilityIndex)#1-#4、及び、CRI又はSSBRI#1-#4のそれぞれに対応するRSリソースインディケータ#1-#4が含まれる。
 なお、図11Bに示す例では、複数のRSリソースインディケータ、すなわち、各CRI又はSSBRIに対応するRSリソースインディケータがビームレポートに含まれる例を示したが、ビームレポートに含まれるRSリソースインディケータは1つであってもよい。この場合、当該1つのRSリソースインディケータは、各CRI又はSSBRIに対応してもよい。各CRI又はSSBRIに対応するRSリソースインディケータがビームレポートに含まれるか、又は、ビームレポートに含まれるRSリソースインディケータが1つであるかが、上位レイヤシグナリングに基づいて決定されてもよい。
 また、RSリソースインディケータ/RSリソースセットインディケータは、パネルインデックス(CapabilityIndex)とは別に報告されてもよい。
 図12A及び図12Bは、実施形態3-1に係るビームレポートの他の例を示す図である。図12A及び図12Bに示す例では、ビームレポート(CSIレポート)において、RSリソースインディケータが、パネルインデックス(CapabilityIndex)とは別に報告されるケースを記載している。
 図12A及び図12Bは、図11A及び図11Bと比較して、パネルのインデックス(CapabilityIndex)についての情報が含まれない点のみが異なる。
 このように、RSリソースに関する情報をCSI(L1-RSRP/SINR)レポートとともに報告することで、SRSリソースに関連するビーム情報が利用可能である場合、メジャメントに使用した受信ビームに関する情報をNWに報告できる。
 また、受信ビーム情報は、例えば、ビームインデックスであってもよい。
 ビームインデックスは、例えば、対応するメジャメントに使用されるUEの受信ビーム/空間ドメイン受信フィルタのインデックスであってもよい。
 例えば、UEがメジャメントにおいて信号の受信に同一のビームを用いた場合、同一のビームインデックスが報告されてもよい。
 UEは、メジャメントにおいて同じ(又は、異なる)ビームを用いた場合、ビームインデックスをビームレポートに含めて送信すると判断してもよい。
 報告されるビームインデックスのフィールドのビット幅は、特定のルール/パラメータに基づいて決定されてもよい。
 例えば、当該ビット幅は、例えば、ceil(log(M))で決定されてもよい。当該Mは、UEの受信ビームスイーピングファクタで示される数であってもよい。
 例えば、当該ビット幅は、周波数レンジ(例えば、FR1/FR2(FR2-1/FR2-2)/FR3/FR4/FR5)ごと別々に決定されてもよい。
 ビームインデックスは、パネルインデックス(CapabilityIndex)とともに報告されてもよい。
 図13A及び図13Bは、実施形態3-1に係るビームレポートの他の例を示す図である。図13A及び図13Bに示す例では、ビームレポート(CSIレポート)において、受信ビームインデックス(RxbeamIndex)が、パネルインデックス(CapabilityIndex)とともに報告されるケースを記載している。
 図13Aに示す例では、ビームレポートに含まれる情報のビット幅を示している。受信ビームインデックスのビット数(X)は、上記方法に基づいて決定されてもよい。
 図13Bに示す例では、ビームレポートに含まれる情報が記載される。当該ビームレポートには、CRI又はSSBRI(#1-#4)、CRI又はSSBRI#1に対応するRSRP(RSRP#1)、CRI又はSSBRI#2-#4に対応する差分RSRP(差分RSRP#2-#4)、CRI又はSSBRI#1-#4のそれぞれに対応する、パネルのインデックス(CapabilityIndex)#1-#4、及び、CRI又はSSBRI#1-#4のそれぞれに対応する受信ビームインデックス#1-#4が含まれる。
 なお、図13Bに示す例では、複数の受信ビームインデックス、すなわち、各CRI又はSSBRIに対応する受信ビームインデックスがビームレポートに含まれる例を示したが、ビームレポートに含まれる受信ビームインデックスは1つであってもよい。この場合、当該1つの受信ビームインデックスは、各CRI又はSSBRIに対応してもよい。各CRI又はSSBRIに対応する受信ビームインデックスがビームレポートに含まれるか、又は、ビームレポートに含まれる受信ビームインデックスが1つであるかが、上位レイヤシグナリングに基づいて決定されてもよい。
 また、受信ビームインデックスは、パネルインデックス(CapabilityIndex)とは別に報告されてもよい。
 図14A及び図14Bは、実施形態3-1に係るビームレポートの他の例を示す図である。図14A及び図14Bに示す例では、ビームレポート(CSIレポート)において、受信ビームインデックスが、パネルインデックス(CapabilityIndex)とは別に報告されるケースを記載している。
 図14A及び図14Bは、図13A及び図13Bと比較して、パネルのインデックス(CapabilityIndex)についての情報が含まれない点のみが異なる。
 UE/NWは、報告結果に対応するパネルインデックス(CapabilityIndex)が異なる場合、当該報告結果に対応するビームインデックスが同じであっても、異なるビーム/空間ドメインフィルタが対応すると想定/判断してもよい。
 このように、ビームインデックスをCSI(L1-RSRP/SINR)レポートとともに報告することで、ビーム(L1-RSRP/SINR)メジャメントにおける信号のメジャメントと同様のメカニズムでビームの報告を行うことができるため、UEの実装を簡単にすることができる。
《実施形態3-2》
 UEは、受信ビームに関する情報(受信ビーム情報)を報告してもよい。
 UEは、受信ビーム情報を、DLメジャメントに関する測位のための信号測定情報とともに報告してもよい。
 当該測位は、例えば、NR E-CIDに基づく測位、DL-TDOAに基づく測位、DL-AoDに基づく測位、及び、マルチRTT測位、の少なくとも1つであってもよい。
 受信ビーム情報は、例えば、RSリソースインディケータであってもよい。
 当該RSリソースインディケータは、例えば、RSリソースID、RSリソースセットID、及び、SRSリソースインディケータ(例えば、srs-ResourceIndicator)、の少なくとも1つであってもよい。
 RSのリソースのインディケータは、対応するメジャメントに使用される空間ドメイン受信フィルタ/受信ビームと同じ空間ドメイン送信フィルタ/送信ビームを使用するSRSリソース/リソースセットの情報であってもよい。
 UEは、受信ビーム情報の報告用のSRSリソースセットを設定されてもよい。この場合、例えば、SRSリソースセットの用途(usage)が、受信ビーム決定、及び、受信ビーム情報を伴うL1-RSRP、の少なくとも一方にセットされてもよい。
 UE/NWは、同じSRSリソースID/SRSリソースセットIDが示された場合、同じUE Rx TEGであることを期待/想定/判断してもよい。
《第3の実施形態のバリエーション》
 NWにおいて、空間ドメインのビーム予測が行われる場合、NWが測定する候補ビームの数(第1の数)と、UEに対して通知するビームを含む候補ビームの数(第2の数)と、が別々に決定されてもよい(バリエーション1)。
 例えば、第1の数と第2の数とが異なってもよい。例えば、第1の数は第2の数より少なくてもよい。
 UEは、UEの送信ビームの数と、NWから測定を要求される受信ビームとの数が異なることを想定してもよい。
 UEは、NWのビーム予測に基づいて、報告するCRI/SSBRI/RSリソースインディケータ/ビームインデックスの数が異なる(又は、別々に設定される)ことを想定してもよい。
 また、特定の上位レイヤパラメータが設定される場合、1つの報告(例えば、UCI/CSI報告/ビームメジャメント報告)に含まれる各測定/計測結果について、(常に)受信パネル(UE capability index/UE capability value set)/受信ビーム(受信空間ドメインフィルタ)が等しくてもよい(バリエーション2)。
 UEは、1つの報告(例えば、UCI/CSI報告/ビームメジャメント報告)に含まれる各測定/計測結果について、(常に)受信パネル(UE capability index/UE capability value set)/受信ビーム(受信空間ドメインフィルタ)が等しいと判断/想定してもよい。
 なお、バリエーション2は、UEが受信ビームに関する情報(ビーム情報)を報告する場合、及び、UEがビーム情報を報告する場合、のいずれにも適用可能であってもよい。
 以上第3の実施形態によれば、UEからNWへのビーム情報を適切に送信することができる。
<補足>
[AIモデル情報(補足1)]
 本開示において、AIモデル情報は、以下の少なくとも1つを含む情報を意味してもよい:
 ・AIモデルの入力/出力の情報、
 ・AIモデルの入力/出力のための前処理/後処理の情報、
 ・AIモデルのパラメータの情報、
 ・AIモデルのための訓練情報(トレーニング情報)、
 ・AIモデルのための推論情報、
 ・AIモデルに関する性能情報。
 ここで、上記AIモデルの入力/出力の情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・入力/出力データの内容(例えば、RSRP、SINR、チャネル行列(又はプリコーディング行列)における振幅/位相情報、到来角度(Angle of Arrival(AoA))に関する情報、放射角度(Angle of Departure(AoD))に関する情報、位置情報)、
 ・データの補助情報(メタ情報と呼ばれてもよい)、
 ・入力/出力データのタイプ(例えば、不変値(immutable value)、浮動小数点数)、
 ・入力/出力データのビット幅(例えば、各入力値について64ビット)、
 ・入力/出力データの量子化間隔(量子化ステップサイズ)(例えば、L1-RSRPについて、1dBm)、
 ・入力/出力データが取り得る範囲(例えば、[0、1])。
 なお、本開示において、AoAに関する情報は、到来方位角度(azimuth angle of arrival)及び到来天頂角度(zenith angle of arrival(ZoA))の少なくとも1つに関する情報を含んでもよい。また、AoDに関する情報は、例えば、放射方位角度(azimuth angle of departure)及び放射天頂角度(zenith angle of depature(ZoD))の少なくとも1つに関する情報を含んでもよい。
 本開示において、位置情報は、UE/NWに関する位置情報であってもよい。位置情報は、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))を用いて得られる情報(例えば、緯度、経度、高度)、当該UEに隣接する(又はサービング中の)BSの情報(例えば、BS/セルの識別子(Identifier(ID))、BS-UE間の距離、UE(BS)から見たBS(UE)の方向/角度、UE(BS)から見たBS(UE)の座標(例えば、X/Y/Z軸の座標)など)、UEの特定のアドレス(例えば、Internet Protocol(IP)アドレス)などの少なくとも1つを含んでもよい。UEの位置情報は、BSの位置を基準とする情報に限られず、特定のポイントを基準とする情報であってもよい。
 位置情報は、自身の実装に関する情報(例えば、アンテナの位置(location/position)/向き、アンテナパネルの位置/向き、アンテナの数、アンテナパネルの数など)を含んでもよい。
 位置情報は、モビリティ情報を含んでもよい。モビリティ情報は、モビリティタイプを示す情報、UEの移動速度、UEの加速度、UEの移動方向などの少なくとも1つを示す情報を含んでもよい。
 ここで、モビリティタイプは、固定位置UE(fixed location UE)、移動可能/移動中UE(movable/moving UE)、モビリティ無しUE(no mobility UE)、低モビリティUE(low mobility UE)、中モビリティUE(middle mobility UE)、高モビリティUE(high mobility UE)、セル端UE(cell-edge UE)、非セル端UE(not-cell-edge UE)などの少なくとも1つに該当してもよい。
 本開示において、(データのための)環境情報は、データが取得される/利用される環境に関する情報であってもよく、例えば、周波数情報(バンドIDなど)、環境タイプ情報(屋内(indoor)、屋外(outdoor)、Urban Macro(UMa)、Urban Micro(Umi)などの少なくとも1つを示す情報)、Line Of Site(LOS)/Non-Line Of Site(NLOS)を示す情報などに該当してもよい。
 ここで、LOSは、UE及びBSが互いに見通せる環境にある(又は遮蔽物がない)ことを意味してもよく、NLOSは、UE及びBSが互いに見通せる環境にない(又は遮蔽物がある)ことを意味してもよい。LOS/NLOSを示す情報は、ソフト値(例えば、LOS/NLOSの確率)を示してもよいし、ハード値(例えば、LOS/NLOSのいずれか)を示してもよい。
 本開示において、メタ情報は、例えば、AIモデルに適した入力/出力情報に関する情報、取得した/取得できるデータに関する情報などを意味してもよい。メタ情報は、具体的には、RS(例えば、CSI-RS/SRS/SSBなど)のビームに関する情報(例えば、各ビームの指向している角度、3dBビーム幅、指向しているビームの形状、ビームの数)、gNB/UEのアンテナのレイアウト情報、周波数情報、環境情報、メタ情報IDなどを含んでもよい。なお、メタ情報は、AIモデルの入力/出力として用いられてもよい。
 上記AIモデルの入力/出力のための前処理/後処理の情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・正規化(例えば、Zスコア正規化(標準化)、最小-最大(min-max)正規化)を適用するか否か、
 ・正規化のためのパラメータ(例えば、Zスコア正規化については平均/分散、最小-最大正規化については最小値/最大値)、
 ・特定の数値変換方法(例えば、ワンホットエンコーディング(one hot encoding)、ラベルエンコーディング(label encoding)など)を適用するか否か、
 ・訓練データとして用いられるか否かの選択ルール。
 例えば、入力情報xに対して前処理としてZスコア正規化(xnew=(x-μ)/σ。ここで、μはxの平均、σは標準偏差)を行った正規化済み入力情報xnewをAIモデルに入力してもよく、AIモデルからの出力youtに後処理を掛けて最終的な出力yが得られてもよい。
 上記AIモデルのパラメータの情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・AIモデルにおける重み(例えば、ニューロンの係数(結合係数))情報、
 ・AIモデルの構造(structure)、
 ・モデルコンポーネントとしてのAIモデルのタイプ(例えば、Residual Network(ResNet)、DenseNet、RefineNet、トランスフォーマー(Transformer)モデル、CRBlock、回帰型ニューラルネットワーク(Recurrent Neural Network(RNN))、長・短期記憶(Long Short-Term Memory(LSTM))、ゲート付き回帰型ユニット(Gated Recurrent Unit(GRU)))、
 ・モデルコンポーネントとしてのAIモデルの機能(例えば、デコーダ、エンコーダ)。
 なお、上記AIモデルにおける重み情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・重み情報のビット幅(サイズ)、
 ・重み情報の量子化間隔、
 ・重み情報の粒度、
 ・重み情報が取り得る範囲、
 ・AIモデルにおける重みのパラメータ、
 ・更新前のAIモデルからの差分の情報(更新する場合)、
 ・重み初期化(weight initialization)の方法(例えば、ゼロ初期化、ランダム初期化(正規分布/一様分布/切断正規分布に基づく)、Xavier初期化(シグモイド関数向け)、He初期化(整流化線形ユニット(Rectified Linear Units(ReLU))向け))。
 また、上記AIモデルの構造は、以下の少なくとも1つに関する情報を含んでもよい:
 ・レイヤ数、
 ・レイヤのタイプ(例えば、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層)、
 ・レイヤ情報、
 ・時系列特有のパラメータ(例えば、双方向性、時間ステップ)、
 ・訓練のためのパラメータ(例えば、機能のタイプ(L2正則化、ドロップアウト機能など)、どこに(例えば、どのレイヤの後に)この機能を置くか)。
 上記レイヤ情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・各レイヤにおけるニューロン数、
 ・カーネルサイズ、
 ・プーリング層/畳み込み層のためのストライド、
 ・プーリング方法(MaxPooling、AveragePoolingなど)、
 ・残差ブロックの情報、
 ・ヘッド(head)数、
 ・正規化方法(バッチ正規化、インスタンス正規化、レイヤ正規化など)、
 ・活性化関数(シグモイド、tanh関数、ReLU、リーキーReLUの情報、Maxout、Softmax)。
 あるAIモデルは、別のAIモデルのコンポーネントとして含まれてもよい。例えば、あるAIモデルは、モデルコンポーネント#1であるResNet、モデルコンポーネント#2であるトランスフォーマーモデル、デンス層及び正規化層の順に処理が進むAIモデルであってもよい。
 上記AIモデルのための訓練情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・最適化アルゴリズムのための情報(例えば、最適化の種類(確率的勾配降下法(Stochastic Gradient Descent(SGD)))、AdaGrad、Adamなど)、最適化のパラメータ(学習率(learning rate)、モメンタム情報など)、
 ・損失関数の情報(例えば、損失関数の指標(metrics)に関する情報(平均絶対誤差(Mean Absolute Error(MAE))、平均二乗誤差(Mean Square Error(MSE))、クロスエントロピーロス、NLLLoss、Kullback-Leibler(KL)ダイバージェンスなど))、
 ・訓練用に凍結されるべきパラメータ(例えば、レイヤ、重み)、
 ・更新されるべきパラメータ(例えば、レイヤ、重み)、
 ・訓練用の初期パラメータであるべき(初期パラメータとして用いられるべき)パラメータ(例えば、レイヤ、重み)、
 ・AIモデルの訓練/更新方法(例えば、(推奨)エポック数、バッチサイズ、訓練に使用するデータ数)。
 上記AIモデルのための推論情報は、決定木の枝剪定(branch pruning)、パラメータ量子化、AIモデルの機能などに関する情報を含んでもよい。ここで、AIモデルの機能は、例えば、時間ドメインビーム予測、空間ドメインビーム予測、CSIフィードバック向けのオートエンコーダ、ビーム管理向けのオートエンコーダなどの少なくとも1つに該当してもよい。
 CSIフィードバック向けのオートエンコーダは、以下のように用いられてもよい:
 ・UEは、エンコーダのAIモデルに、CSI/チャネル行列/プリコーディング行列を入力して出力される、エンコードされるビットを、CSIフィードバック(CSIレポート)として送信する、
 ・BSは、デコーダのAIモデルに、受信したエンコードされるビットを入力して出力される、CSI/チャネル行列/プリコーディング行列を再構成する。
 空間ドメインビーム予測では、UE/BSは、AIモデルに、疎な(又は太い)ビームに基づく測定結果(ビーム品質。例えば、RSRP)を入力して、密な(又は細い)ビーム品質を出力してもよい。
 時間ドメインビーム予測では、UE/BSは、AIモデルに、時系列(過去、現在などの)測定結果(ビーム品質。例えば、RSRP)を入力して、将来のビーム品質を出力してもよい。
 上記AIモデルに関する性能情報は、AIモデルのために定義される損失関数の期待値に関する情報を含んでもよい。
 本開示におけるAIモデル情報は、AIモデルの適用範囲(適用可能範囲)に関する情報を含んでもよい。当該適用範囲は、物理セルID、サービングセルインデックスなどによって示されてもよい。適用範囲に関する情報は、上述の環境情報に含まれてもよい。
 特定のAIモデルに関するAIモデル情報は、規格において予め定められてもよいし、ネットワーク(Network(NW))からUEに通知されてもよい。規格において規定されるAIモデルは、参照(reference)AIモデルと呼ばれてもよい。参照AIモデルに関するAIモデル情報は、参照AIモデル情報と呼ばれてもよい。
 なお、本開示におけるAIモデル情報は、AIモデルを特定するためのインデックス(例えば、AIモデルインデックス、AIモデルID、モデルIDなどと呼ばれてもよい)を含んでもよい。本開示におけるAIモデル情報は、上述のAIモデルの入力/出力の情報などに加えて/の代わりに、AIモデルインデックスを含んでもよい。AIモデルインデックスとAIモデル情報(例えば、AIモデルの入力/出力の情報)との関連付けは、規格において予め定められてもよいし、NWからUEに通知されてもよい。
 本開示におけるAIモデル情報は、AIモデルに関連付けられてもよく、AIモデル関連情報(relevant information)、単に関連情報などと呼ばれてもよい。AIモデル関連情報には、AIモデルを特定するための情報は明示的に含まれなくてもよい。AIモデル関連情報は、例えばメタ情報のみを含んだ情報であってもよい。
[UEへの情報の通知(補足2)]
 上述の実施形態における(NWから)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。また、当該MAC CEは、既存のMAC CEが拡張された(例えば、新たなオクテットが追加された)MAC CEであってもよい。
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
 当該DCIに含まれるDCIフィールドは、既存のDCIフィールドであってもよいし、(Rel.18以降に)新たに規定されるDCIフィールドであってもよい。当該DCIに対応するRNTIは、既存のRNTIであってもよいし、(Rel.18以降に)新たなRNTIであってもよい。当該DCIのDCIフォーマットは、既存のDCIフォーマットであってもよいし、(Rel.18以降に)新たに規定されるDCIフォーマットであってもよい。
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント(UEによってトリガされてもよい、又は、基地局の指示によってトリガされてもよい)又は非周期的(UEによってトリガされてもよい、又は、基地局の指示によってトリガされてもよい)に行われてもよい。
[UEからの情報の通知(補足3)]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE、LPPメッセージ)、特定の信号/チャネル(例えば、PUCCH、PUSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。また、当該MAC CEは、既存のMAC CEが拡張された(例えば、新たなオクテットが追加された)MAC CEであってもよい。
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント(UEによってトリガされてもよい、又は、基地局の指示によってトリガされてもよい)又は(UEによってトリガされてもよい、又は、基地局の指示によってトリガされてもよい)非周期的に行われてもよい。
[各実施形態の適用について(補足4)]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態/オプション/選択肢の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること、
 ・上記実施形態/オプション/選択肢の少なくとも2つの組み合わせについての特定の処理/動作/制御/情報をサポートすること、
 ・UEがビーム情報を利用することができる場所(エリア)、
 ・UEは利用することができるビーム情報の種類/オプション、
 ・UEが利用/適用可能なRSの種類(例えば、CSI-RS/SSB/(DL/UL)PRS/DMRS/TRS/SRS/ポジショニング用SRS)。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、BWP、バンドコンビネーション、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、AIモデルの利用を有効化することを示す情報、特定のリリース(例えば、Rel.18)向けの任意のRRCパラメータなどであってもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
(付記A)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記A-1]
 基地局の位置に関する測位のためのビーム情報を、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて受信する受信部と、
 前記ビーム情報に基づいて、前記基地局の位置の測位を行う制御部と、を有する端末。
[付記A-2]
 前記ビーム情報は、前記ビーム情報に関する要求に対して送信される、付記A-1に記載の端末。
[付記A-3]
 前記ビーム情報は、前記ビーム情報に関する要求に対する応答信号に含まれる、付記A-1又は付記A-2に記載の端末。
[付記A-4]
 前記ビーム情報は、参照信号のビーム方向を示す情報、角度ごとの電力を示す情報、アンテナ参照ポイントに関する情報、アンテナポート数に関する情報、同一の空間ドメインフィルタを用いて送信される参照信号に関する情報、及び、前記ビーム情報を適用可能なエリアに関する情報、の少なくとも1つを含む、付記A-1から付記A-3のいずれかに記載の端末。
(付記B)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記B-1]
 端末の位置に関する測位のためのビーム情報に関する要求を受信する受信部と、
 前記要求に基づいて、前記ビーム情報の送信を制御する制御部と、を有し、
 前記ビーム情報は、参照信号のビーム方向を示す情報、角度ごとの電力を示す情報、アンテナ参照ポイントに関する情報、アンテナポート数に関する情報、同一の空間ドメインフィルタを用いて送信される参照信号に関する情報、及び、前記ビーム情報を適用可能なエリアに関する情報、の少なくとも1つを含む、端末。
[付記B-2]
 前記ビーム情報は、前記要求に対して送信される応答信号の送信後に送信される、付記B-1に記載の端末。
[付記B-3]
 前記ビーム情報は、前記要求に対する応答信号に含まれる、付記B-1又は付記B-2に記載の端末。
[付記B-4]
 前記ビーム方向は、方位角に関する情報と、仰角に関する情報と、を含む、付記B-1から付記B-3のいずれかに記載の端末。
(付記C)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記C-1]
 第1の参照信号のメジャメントを行う制御部と、
 前記メジャメントの結果に、端末の位置に関する測位のためのビーム情報を含めて送信する送信部と、を有する端末。
[付記C-2]
 前記メジャメントの結果は、ビームレポートであり、
 前記ビーム情報は、前記第1参照信号に関連する受信ビームに対応する第2の参照信号のリソースインディケータである、付記C-1に記載の端末。
[付記C-3]
 前記メジャメントの結果は、ビームレポートであり、
 前記ビーム情報は、前記第1参照信号に関連する受信ビームのインデックスである、付記C-1又は付記C-2に記載の端末。
[付記C-4]
 前記メジャメントの結果は、下りリンクメジャメントに関する測位のための信号測定情報であり、
 前記ビーム情報は、前記第1参照信号に関連する受信ビームに対応する第2の参照信号のリソースインディケータである、付記C-1から付記C-3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図15は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、ApplicationFunction(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図16は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、基地局の位置に関する測位のためのビーム情報を、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて送信してもよい。制御部110は、前記ビーム情報を用いて、前記基地局の位置の測位を指示してもよい(第1の実施形態)。
 送受信部120は、端末の位置に関する測位のためのビーム情報に関する要求を送信してもよい。制御部110は、前記要求に基づいて、前記ビーム情報の受信を制御してもよい。前記ビーム情報は、参照信号のビーム方向(ボアサイト方向)を示す情報、角度ごとの電力を示す情報、アンテナ参照ポイントに関する情報、アンテナポート数に関する情報、同一の空間ドメインフィルタを用いて送信される参照信号に関する情報、及び、前記ビーム情報を適用可能なエリアに関する情報、の少なくとも1つを含んでもよい(第2の実施形態)。
 送受信部120は、メジャメントの結果に含まれる端末の位置に関する測位のためのビーム情報を受信してもよい。制御部110は、前記ビーム情報に基づいて、前記端末の位置に関する測位を行ってもよい(第3の実施形態)。
(ユーザ端末)
 図17は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、基地局の位置に関する測位のためのビーム情報を、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて受信してもよい。制御部210は、前記ビーム情報に基づいて、前記基地局の位置の測位を行ってもよい(第1の実施形態)。
 前記ビーム情報は、前記ビーム情報に関する要求に対して送信されてもよい(第1の実施形態)。
 前記ビーム情報は、前記ビーム情報に関する要求に対する応答信号に含まれてもよい(第1の実施形態)。
 前記ビーム情報は、参照信号のビーム方向(ボアサイト自方向)を示す情報、角度ごとの電力を示す情報、アンテナ参照ポイントに関する情報、アンテナポート数に関する情報、同一の空間ドメインフィルタを用いて送信される参照信号に関する情報、及び、前記ビーム情報を適用可能なエリアに関する情報、の少なくとも1つを含んでもよ(第1の実施形態)。
 送受信部220は、端末の位置に関する測位のためのビーム情報に関する要求を受信してもよい。制御部210は、前記要求に基づいて、前記ビーム情報の送信を制御してもよい。前記ビーム情報は、参照信号のビーム方向(ボアサイト方向)を示す情報、角度ごとの電力を示す情報、アンテナ参照ポイントに関する情報、アンテナポート数に関する情報、同一の空間ドメインフィルタを用いて送信される参照信号に関する情報、及び、前記ビーム情報を適用可能なエリアに関する情報、の少なくとも1つを含んでもよい(第2の実施形態)。
 前記ビーム情報は、前記要求に対して送信される応答信号の送信後に送信されてもよい(第2の実施形態)。
 前記ビーム情報は、前記要求に対する応答信号に含まれてもよい(第2の実施形態)。
 前記ビーム方向は、方位角に関する情報と、仰角に関する情報と、を含んでもよい(第2の実施形態)。
 制御部210は、第1の参照信号のメジャメントを行ってもよい。送受信部220は、前記メジャメントの結果に、端末の位置に関する測位のためのビーム情報を含めて送信してもよい(第3の実施形態)。
 前記メジャメントの結果は、ビームレポートであってもよい。前記ビーム情報は、前記第1参照信号に関連する受信ビームに対応する第2の参照信号のリソースインディケータであってもよい(第3の実施形態)。
 前記メジャメントの結果は、ビームレポートであってもよい。前記ビーム情報は、前記第1参照信号に関連する受信ビームのインデックスであってもよい(第3の実施形態)。
 前記メジャメントの結果は、下りリンクメジャメントに関する測位のための信号測定情報であってもよい。前記ビーム情報は、前記第1参照信号に関連する受信ビームに対応する第2の参照信号のリソースインディケータであってもよい(第3の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図19は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」などを意味する文言は、互いに読み替えられてもよい(原級、比較級、最上級を限らず)。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」などを意味する文言は、「i番目に」を付けた表現として互いに読み替えられてもよい(原級、比較級、最上級を限らず)(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  基地局の位置に関する測位のためのビーム情報を、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて受信する受信部と、
     前記ビーム情報に基づいて、前記基地局の位置の測位を行う制御部と、を有する端末。
  2.  前記ビーム情報は、前記ビーム情報に関する要求に対して送信される、請求項1に記載の端末。
  3.  前記ビーム情報は、前記ビーム情報に関する要求に対する応答信号に含まれる、請求項1に記載の端末。
  4.  前記ビーム情報は、参照信号のビーム方向を示す情報、角度ごとの電力を示す情報、アンテナ参照ポイントに関する情報、アンテナポート数に関する情報、同一の空間ドメインフィルタを用いて送信される参照信号に関する情報、及び、前記ビーム情報を適用可能なエリアに関する情報、の少なくとも1つを含む、請求項1に記載の端末。
  5.  基地局の位置に関する測位のためのビーム情報を、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて受信するステップと、
     前記ビーム情報に基づいて、前記基地局の位置の測位を行うステップと、を有する端末の無線通信方法。
  6.  基地局の位置に関する測位のためのビーム情報を、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて送信する送信部と、
     前記ビーム情報を用いて、前記基地局の位置の測位を指示する制御部と、を有する基地局。
PCT/JP2022/030180 2022-08-05 2022-08-05 端末、無線通信方法及び基地局 WO2024029089A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030180 WO2024029089A1 (ja) 2022-08-05 2022-08-05 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030180 WO2024029089A1 (ja) 2022-08-05 2022-08-05 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2024029089A1 true WO2024029089A1 (ja) 2024-02-08

Family

ID=89848970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030180 WO2024029089A1 (ja) 2022-08-05 2022-08-05 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2024029089A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126039A (zh) * 2020-08-28 2022-03-01 中国移动通信集团设计院有限公司 一种定位方法、装置及存储介质
JP2022517223A (ja) * 2019-01-11 2022-03-07 ソニーグループ株式会社 ビーム情報を用いた測位方法及び測位装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022517223A (ja) * 2019-01-11 2022-03-07 ソニーグループ株式会社 ビーム情報を用いた測位方法及び測位装置
CN114126039A (zh) * 2020-08-28 2022-03-01 中国移动通信集团设计院有限公司 一种定位方法、装置及存储介质

Similar Documents

Publication Publication Date Title
WO2024029089A1 (ja) 端末、無線通信方法及び基地局
WO2024029087A1 (ja) 端末、無線通信方法及び基地局
WO2024029088A1 (ja) 端末、無線通信方法及び基地局
WO2024053064A1 (ja) 端末、無線通信方法及び基地局
WO2024053063A1 (ja) 端末、無線通信方法及び基地局
WO2024038616A1 (ja) 端末、無線通信方法及び基地局
WO2024038613A1 (ja) 端末、無線通信方法及び基地局
WO2024038617A1 (ja) 端末、無線通信方法及び基地局
WO2024038615A1 (ja) 端末、無線通信方法及び基地局
WO2024038614A1 (ja) 端末、無線通信方法及び基地局
WO2024004220A1 (ja) 端末、無線通信方法及び基地局
WO2024004219A1 (ja) 端末、無線通信方法及び基地局
WO2023228382A1 (ja) 端末、無線通信方法及び基地局
WO2023218544A1 (ja) 端末、無線通信方法及び基地局
WO2023218650A1 (ja) 端末、無線通信方法及び基地局
WO2023218543A1 (ja) 端末、無線通信方法及び基地局
WO2024004187A1 (ja) 端末、無線通信方法及び基地局
WO2024004189A1 (ja) 端末、無線通信方法及び基地局
WO2024214194A1 (ja) 端末、無線通信方法及びlmf
WO2024004186A1 (ja) 端末、無線通信方法及び基地局
WO2024004188A1 (ja) 端末、無線通信方法及び基地局
WO2024013852A1 (ja) 端末、無線通信方法及び基地局
WO2024013851A1 (ja) 端末、無線通信方法及び基地局
WO2024161471A1 (ja) 端末、無線通信方法及び基地局
WO2024161472A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954077

Country of ref document: EP

Kind code of ref document: A1