WO2024027685A1 - 条件切换方法及装置、计算机可读存储介质 - Google Patents

条件切换方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2024027685A1
WO2024027685A1 PCT/CN2023/110489 CN2023110489W WO2024027685A1 WO 2024027685 A1 WO2024027685 A1 WO 2024027685A1 CN 2023110489 W CN2023110489 W CN 2023110489W WO 2024027685 A1 WO2024027685 A1 WO 2024027685A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
time
switching
conditional
configuration information
Prior art date
Application number
PCT/CN2023/110489
Other languages
English (en)
French (fr)
Inventor
黄曲芳
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2024027685A1 publication Critical patent/WO2024027685A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present invention relates to the field of communication technology, and specifically to a conditional switching method and device, and a computer-readable storage medium.
  • NTN non-terrestrial access network
  • UE User Equipment
  • the existing time-based conditional handover strategy cannot balance the reduction of signaling load and effectively avoid the centralized triggering of conditional handover by UEs.
  • the technical problem solved by the present invention is how to both reduce the signaling load and effectively avoid UE centralized trigger condition switching.
  • embodiments of the present invention provide a conditional switching method, including It includes: receiving configuration information, the configuration information is used to configure the first time window and the preset maximum backoff interval; judging whether the switching condition is satisfied within the first time window; when the judgment result is that the switching condition is satisfied, starting from the second The conditional switching is initiated after a second time period has elapsed since the time unit, wherein the second time unit is a time unit determined to satisfy the switching condition, and the second time period is a random number selected from the preset maximum backoff interval.
  • the second duration is a random number selected from the preset maximum backoff interval, including: if the second time window exceeds the first time window, the second duration is selected from the A random number in the overlapping interval of the first time window and the second time window, wherein the starting point of the second time window is the second time unit, and the length of the second time window is the preset maximum backoff interval. .
  • the value of the preset maximum backoff interval is less than or equal to the length of the first time window.
  • the configuration information is received through broadcast.
  • the configuration information is carried through system information block SIB.
  • the configuration information is carried through dedicated signaling of the connected terminal.
  • the configuration information includes a value of the preset maximum backoff interval, or the configuration information includes a first coefficient, and the preset maximum backoff interval is based on the first coefficient and the first time window. The length is calculated.
  • the method further includes: reporting a conditional switching report after the conditional switching process ends, wherein the conditional switching report includes the time interval between the third time unit and the first time unit, the time interval between the third time unit and the first time unit, and the time interval between the third time unit and the first time unit. At least one of the time interval between two time units and the time interval between the second time unit and the first time unit, the third time unit is the time unit for initiating conditional switching, and the first time unit is The starting point of the first time window.
  • the action of reporting the conditional switching report after the conditional switching process is completed is performed periodically, or is performed after receiving a reporting request.
  • the parameters included in the conditional handover report are configured by the base station.
  • embodiments of the present invention also provide a conditional switching device, including: a receiving module, used to receive configuration information, the configuration information is used to configure the first time window and the preset maximum backoff interval; a judgment module, Used to determine whether the switching condition is met within the first time window; the conditional switching module, when the judgment result is that the switching condition is met, initiates the conditional switching after a second duration from the second time unit, wherein the second The time unit is a time unit determined to satisfy the switching condition, and the second duration is a random number selected from the preset maximum backoff interval.
  • embodiments of the present invention also provide a conditional switching method, including: sending configuration information, the configuration information is used to configure the first time window and the preset maximum backoff interval; wherein, the initiating action of conditional switching is in It is executed when a second duration has elapsed since the second time unit.
  • the second time unit is the time unit determined to satisfy the switching condition.
  • the second duration is a random number selected from the preset maximum backoff interval. Determine whether the switching conditions are met within the first time window.
  • the sending the configuration information includes: broadcasting the configuration information.
  • the configuration information is carried through system information block SIB.
  • the configuration information is carried through dedicated signaling of the connected terminal.
  • embodiments of the present invention also provide a conditional switching device, including: a sending module for sending configuration information, the configuration information is used to configure the first time window and the preset maximum backoff interval; wherein, the condition The initiating action of switching is executed when a second duration has elapsed since the second time unit, the second time unit is the time unit determined to satisfy the switching condition, and the second duration is selected from the preset maximum backoff interval. A random number is used to determine whether the switching condition is met within the first time window.
  • an embodiment of the present invention also provides a conditional switching method, including: receiving a conditional switching report, where the conditional switching report includes the time interval between the third time unit and the first time unit, the third time unit and at least one of the time intervals between the second time unit and the time interval between the second time unit and the first time unit.
  • the third time unit is the time unit for initiating conditional switching
  • the second time unit is the time unit for determining that the switching condition is met
  • the first time unit is the starting point of the first time window
  • the The third time unit is a time unit that has elapsed for a second duration since the second time unit.
  • the second duration is a random number selected from a preset maximum backoff interval.
  • the preset maximum backoff interval and the third time unit are A time window is configured through configuration information.
  • the method further includes: sending a reporting request, where the reporting request is used to request a successfully accessed terminal to report the conditional handover report.
  • the method further includes: adjusting the parameter configuration in the configuration information according to the conditional switching report.
  • an embodiment of the present invention also provides a conditional switching device, including: a receiving module, configured to receive a conditional switching report, where the conditional switching report includes the time interval between the third time unit and the first time unit. , at least one of the time interval between the third time unit and the second time unit and the time interval between the second time unit and the first time unit, the third time unit being the time unit for initiating conditional switching,
  • the second time unit is a time unit determined to satisfy the switching condition, and the first time unit is the starting point of the first time window; wherein, the third time unit is the second time length that has elapsed since the second time unit.
  • time unit, the second duration is a random number selected from a preset maximum backoff interval, and the preset maximum backoff interval and the first time window are configured through configuration information.
  • embodiments of the present invention also provide a computer-readable storage medium.
  • the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, and a computer program is stored thereon. The steps of the above method are performed when the computer program is run by the processor.
  • an embodiment of the present invention also provides a condition switching device, which includes a memory and a processor.
  • the memory stores a computer program that can be run on the processor.
  • the processor runs the computer.
  • the program performs the steps of the above method.
  • embodiments of the present invention provide a conditional switching method, which includes: receiving configuration information, the configuration information being used to configure a first time window and a preset maximum backoff interval; and determining whether the conditions are met within the first time window.
  • Switching condition when the judgment result is that the switching condition is met, conditional switching is initiated after a second time period elapses from the second time unit, where the second time unit is a time unit that determines that the switching condition is met, and the second time period is A random number selected from the preset maximum backoff interval.
  • the time-based conditional switching strategy provided by the disclosed solution can avoid centralized triggering of conditional switching by UEs with a lighter signaling load. Specifically, by configuring a preset maximum backoff interval, the terminal delays a random time value before actually initiating a conditional handover when the handover condition is met. Therefore, by causing all terminals in the same source cell to postpone the initiation of conditional handover by a random time value, it can effectively ensure that multiple terminals initiate conditional handover at different times, avoid random access conflicts, increase the probability of successful conditional handover, and reduce the risk of conditional handover. The access delay of conditional handover is reduced.
  • the configuration information is received in a broadcast manner, so that the source base station to which the source cell belongs can configure the conditional handover in a broadcast manner.
  • the signaling load on the base station side is reduced.
  • the terminal side does not need to wait for and receive configuration information sent separately by the source base station, and the energy consumption of the terminal side is reduced.
  • embodiments of the present invention also provide a conditional handover method, including: sending configuration information, the configuration information is used to configure the first time window and the preset maximum backoff interval; wherein, the initiating action of conditional handover is in It is executed when a second duration has elapsed since the second time unit.
  • the second time unit is the time unit determined to satisfy the switching condition.
  • the second duration is a random number selected from the preset maximum backoff interval.
  • the disclosed solution adds the parameter of configuring the preset maximum backoff interval, so that all terminals delay initiating conditional handover by a random time value. This ensures that multiple terminals in the same source cell initiate conditional handover at different times, avoids random access conflicts, and improves conditional handover. The success probability of switching is reduced, and the access delay of conditional switching is reduced.
  • the configuration information is sent in a broadcast manner, so that the source base station can configure conditional handover in a broadcast manner. As a result, the signaling load on the base station side is reduced.
  • an embodiment of the present invention also provides a conditional handover method, including: receiving a conditional handover report, where the conditional handover report includes the time interval between the third time unit and the first time unit, the time interval between the third time unit and the first time unit, and the time interval between the third time unit and the first time unit.
  • the third time unit is the time unit for initiating conditional switching
  • the second time unit In order to determine the time unit that satisfies the switching condition, the first time unit is the starting point of the first time window; wherein the third time unit is the time unit that has elapsed for a second length of time since the second time unit, and the The second duration is a random number selected from the preset maximum backoff interval, and the preset maximum backoff interval and the first time window are configured through configuration information.
  • the terminals in the source cell initiate conditional handovers in a staggered manner, the probability of successful handover to the target cell under the target base station is improved.
  • the number of successful batch handovers of terminals from the source cell to the target cell in the satellite network is increased, which is beneficial to improving the terminal network rate.
  • the target base station can optimize the parameter configuration in the configuration information so that the terminal's access behavior is more consistent with its own access strategy.
  • Figure 1 is a schematic diagram of a switching process in the prior art
  • Figure 2 is a schematic diagram of conditional switching in the prior art
  • Figure 3 is a flow chart of a conditional switching method according to the first embodiment of the present invention.
  • Figure 4 is a schematic diagram of a time-based conditional switching in the embodiment shown in Figure 1;
  • FIG. 5 is a schematic diagram of another time-based condition switching in the embodiment shown in Figure 1;
  • Figure 6 is a schematic structural diagram of a condition switching device according to the second embodiment of the present invention.
  • Figure 7 is a flow chart of a conditional switching method according to the third embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of a condition switching device according to the fourth embodiment of the present invention.
  • Figure 9 is a flow chart of a conditional switching method according to the fifth embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of a condition switching device according to the sixth embodiment of the present invention.
  • Figure 11 is a signaling interaction diagram of a typical application scenario according to the embodiment of the present invention.
  • conditional handover strategy cannot balance the reduction of signaling load and effectively avoid the centralized triggering of conditional handover by UEs.
  • the base stations of existing cellular communication systems are built on the ground, and the area radius that a cell can cover ranges from a few kilometers to more than 100 kilometers.
  • the communication demand is extremely uneven across the earth's surface. In areas with high population density, the communication demand is also large. On the contrary, in areas with low population density, the communication demand is also small. For areas such as deserts, grasslands, Gobis, and oceans, communication needs are small but still sporadic. If cellular network coverage is also provided through ground base stations in such areas, a large number of base stations will need to be established, and the cost will be too high. Therefore, in the above areas, operators tend to use satellite cells for coverage. The coverage radius of satellite cells can reach hundreds or even thousands of kilometers, which can greatly reduce coverage costs.
  • wireless signals need to be transmitted through satellites, so the transmission delay is much longer than that of terrestrial cells.
  • the UE In traditional wireless cellular communication networks, as the UE moves, it is necessary to change the UE from one cell to another cell through a handover process.
  • the UE will send a measurement report to the source cell; the source cell selects the target cell and sends a handover request to the target cell; the target cell If the UE handover is agreed to, a handover response is sent to the source cell at time t1, and the handover response can be transmitted through optical fiber; the source cell then sends a handover command to the UE, and the handover command can also be sent through the Physical Downlink Shared Channel (Physical Downlink Shared Channel, (referred to as PDSCH) transmission; finally, the UE establishes a connection with the target cell through random access at time t2.
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • conditional handover means that the source base station configures some handover conditions for the UE in advance, and the UE determines whether the handover conditions are met. If the handover conditions are met, the UE starts the handover process and enters the target cell. Therefore, conditional handover avoids the step of the source base station sending a handover command to the UE, and the handover process can be optimized.
  • the handover condition for conditional handover is usually the quality of the wireless channel.
  • the quality of wireless channels does not change much in various places in the cell, so it is not appropriate to use the quality of wireless channels as the handover condition for conditional handover.
  • the trajectory of the satellite is predictable, and the source base station can predict the time period during which the next satellite will cover a certain UE, regardless of significant changes in the UE's position.
  • the satellite network introduces time-based conditional handover, that is, the source base station configures a time starting point and a time length, and the UE determines the timing of conditional handover based on these two parameters, as shown in Figure 2.
  • the source base station configures two parameters when configuring conditional handover for the UE: T1 and duration (Duration). Starting from T1, the UE determines whether other handover conditions are met within a time window of duration Duration. The other handover conditions may be, for example, signal quality. If satisfied, conditional switching is performed.
  • the base station may use broadcast messages to configure conditional handover. If this method is adopted, all UEs in the source cell will follow the same time window to determine whether to perform conditional handover. For fixed cells, since the signal quality measured by these UEs is almost the same, these UEs will initiate conditional handover at the same time. This situation where a large number of UEs perform conditional handover at the same time will undoubtedly lead to random access conflicts and reduce the success rate of accessing the target cell.
  • An existing solution is to use dedicated signaling by the source base station to which the source cell belongs. Configure different conditional switching time windows for each UE. However, this will seriously increase the signaling load on the base station side, because the source base station needs to configure conditional handover related parameters for each connected UE.
  • embodiments of the present invention provide a conditional switching method, which includes: receiving configuration information, the configuration information is used to configure a first time window and a preset maximum backoff interval; and determining whether the switch is within the first time window. Whether the switching condition is met; when the judgment result is that the switching condition is met, conditional switching is initiated after the second time period has elapsed since the second time unit, where the second time unit is the time unit when it is determined that the switching condition is met, and the second The duration is a random number selected from the preset maximum backoff interval.
  • the time-based conditional switching strategy provided by the disclosed solution can avoid UEs from triggering conditional switching in a centralized manner with a lighter signaling load. Specifically, by configuring a preset maximum backoff interval, the terminal delays a random time value before actually initiating a conditional handover when the handover condition is met. Therefore, by causing all terminals in the same source cell to postpone the initiation of conditional handover by a random time value, it can effectively ensure that multiple terminals initiate conditional handover at different times, avoid random access conflicts, increase the probability of successful conditional handover, and reduce the risk of conditional handover. The access delay of conditional handover is reduced.
  • Figure 3 is a flow chart of a conditional switching method according to the first embodiment of the present invention.
  • This implementation can be applied to a time-based condition handover (CHO) scenario in a satellite network.
  • the satellite network can be, for example, an NTN network, and other satellite networks suitable for time-based condition handover in the future are not excluded.
  • the conditional switching method provided in the following steps S101 to S103 can be executed by a chip with a conditional switching function in the user equipment (also called a terminal/UE), or can be executed by a baseband chip in the user equipment. implement.
  • the cell where the UE currently camping in this implementation solution is recorded as the source cell, and the base station to which the source cell belongs is recorded as the source base station.
  • the UE may be, for example, a connected UE.
  • the UE can send random access to the target cell at an appropriate time when the handover conditions are met.
  • conditional switching method may include the following steps:
  • Step S101 receive configuration information, the configuration information is used to configure the first time window and the preset maximum backoff interval;
  • Step S102 determine whether switching conditions are met within the first time window
  • step S103 is executed, and conditional switching is initiated after a second time period has elapsed since the second time unit, where the second time unit is the time when it is determined that the switching condition is met.
  • Time unit, the second duration is a random number selected from the preset maximum backoff interval.
  • step S102 When the judgment result of step S102 is negative, that is, the switching condition is not satisfied, the execution can be restarted from step S101 until the judgment result of step S102 is positive or the first time window is exceeded.
  • the configuration information may include the first time unit (denoted as T1) and the first duration. Based on these two parameters, the specific window position and duration of the first time window (denoted as w1) can be determined, as shown in Figure 4 shown.
  • the first duration is the length of the first time window w1.
  • the first time unit T1 is the starting point of the first time window w1, which is used to indicate the starting time unit to start judging whether the switching condition is met.
  • the starting point refers to the starting time.
  • the time unit may be the communication granularity of the terminal device and the network device in the time domain.
  • the time unit may be a slot, a mini-slot, a subframe, a symbol, a frame, etc.
  • the same time unit refers to the same time unit, for example, two frequency domain resources on the same time slot 0.
  • the first duration may be, for example, a duration, which is used to indicate the total duration for condition switching determination. Taking the first time unit T1 as the starting point and the first duration as the length, the first time window w1 shown in the unfilled area in Figures 4 and 5 can be obtained. If the handover condition is not met when the first time window w1 expires, the UE does not trigger the conditional handover action.
  • the configuration information may include a first time unit T1 and a fourth time unit (denoted as T4), where the fourth time unit T4 is the end point of the first time window w1. Among them, the end point refers to the end time.
  • the specific window position and duration of the first time window w1 can also be determined through the first time unit T1 and the fourth time unit T4, as shown in Figure 5.
  • the handover condition may be pre-configured by the network side, such as configured by the source base station to the UE through interaction with the UE.
  • the first time unit T1 in the configuration information can be regarded as a switching condition.
  • the source base station can also configure other handover conditions, such as whether the channel quality is lower than a preset threshold.
  • the first time unit T1 is the time unit determined to satisfy the switching conditions (ie, the second time unit T2 described below). If other switching conditions are configured, it is determined whether the other switching conditions are satisfied starting from the first time unit T1, and the time unit in which all other switching conditions are satisfied is determined as the second time unit T2.
  • the other switching conditions may include: distance.
  • the UE may determine whether the distance between the UE and the reference point of the source cell is greater than a threshold value, and/or whether the distance between the UE and the reference point of the target cell is less than the threshold value.
  • the above two distance-related threshold values can be used individually with the first time window w1, or can be used together with the first time window w1 to determine whether the UE meets the handover condition.
  • the preset maximum backoff interval may be, for example, a Max-backoff parameter, used to indicate a length of time.
  • the specific value of the preset maximum backoff interval may be less than or equal to the first duration (ie, the length of the first time window w1).
  • the time unit determined to satisfy the switching condition in step S102 is recorded as the second time unit T2.
  • the second time unit T2 Taking the second time unit T2 as the starting point and presetting the value of the maximum backoff interval as the length, the second time window w2 shown in the diagonally filled area in Figures 4 and 5 can be obtained.
  • the UE that satisfies the handover condition may switch to the UE at a certain time within the second time window w2.
  • Meta initiates conditional switching.
  • the time unit in which the UE actually initiates the conditional handover is recorded as the third time unit T3.
  • the second time length between the third time unit T3 and the second time unit T2 is a random time value taken from [0, Max-backoff parameter].
  • the UE actually triggers condition switching in the third time unit T3 after delaying the random time value from the second time unit T2.
  • the UE centralized trigger condition switching can be effectively avoided. Specifically, since the random number (i.e., the second duration) selected by each UE from the preset maximum backoff interval has a high probability to be different, each UE initiates a conditional handover even within the same second time window w2.
  • the third time unit T3 also has a high probability of being staggered.
  • the configuration information may include a specific value of the preset maximum backoff interval.
  • the configuration information may include a first coefficient, where 0 ⁇ first coefficient ⁇ 1.
  • the preset maximum backoff interval can be calculated based on the first coefficient and the first duration. For example, the first coefficient is multiplied by the first duration to obtain the preset maximum backoff interval.
  • the configuration information may include an index of the preset maximum backoff interval.
  • the network can pre-configure multiple numerical preset maximum backoff intervals and indicate them to the UE in advance, and each preset maximum backoff interval can be uniquely corresponding through an index.
  • the source base station can indicate the index of the preset maximum backoff interval configured this time in the configuration information, and the UE searches its own stored preconfiguration information based on the index to obtain the preset maximum backoff interval.
  • the preset maximum backoff interval can be divided into multiple sub-intervals, and the configuration information can include the index and starting time unit of each sub-interval, and the starting time unit can be relative to the second time unit.
  • the configured sub-network of the UE can be determined based on the UE's identity (Identification, ID for short). interval.
  • the starting time unit of the sub-interval with index 2 10
  • the starting time unit of the sub-interval with index 3 15.
  • the value of the pre-configured UE ID mod x is the index of the sub-interval in which the UE is configured, where x is the preset parameter.
  • the second time window w2 can be determined to be [T2+10, T2+15).
  • the calculation result of the UE executing this embodiment based on the foregoing formula is 1, indicating that the sub-interval with an index of 1 is configured, then the second time window w2 can be determined to be [T2, T2+10).
  • the calculation result of the UE executing this embodiment based on the foregoing formula is 3, indicating that the sub-interval with an index of 3 is configured, then the second time window w2 can be determined to be [T2+15, T2+20].
  • multiple UEs in the source cell can be dispersed into different sub-intervals of the preset maximum backoff interval for random number selection, which is conducive to further staggering the triggering timing of the UE's conditional handover.
  • the time-based conditional handover strategy provided by the disclosed solution can avoid UEs from centrally triggering conditional handover with lighter signaling load. Specifically, by configuring a preset maximum backoff interval, the terminal delays a random time value before actually initiating a conditional handover when the handover condition is met. Therefore, by causing all terminals in the same source cell to postpone the initiation of conditional handover by a random time value, it can effectively ensure that multiple terminals initiate conditional handover at different times, avoid random access conflicts, increase the probability of successful conditional handover, and reduce the risk of conditional handover. The access delay of conditional handover is reduced.
  • the second duration may be selected from the overlapping interval of the first time window w1 and the second time window w2. random number. That is to say, when the situation described in this specific implementation occurs, in step S103, the UE randomly selects a moment in the time period from the second time unit T2 to the fourth time unit T4 to initiate the conditional handover.
  • the second time window w2 exceeding the first time window w1 may, for example, mean that, in the time domain,
  • the end time of the second time window w2 (denoted as the fifth time unit T5) is later than the fourth time unit T4.
  • the second duration may be determined after it is determined that the switching condition is met.
  • the UE may randomly select the second duration from the preset maximum backoff interval when performing step S103. If the second time window w2 starting from the current time unit (i.e., the second time unit T2) exceeds the first time window w1 at this time, the UE can randomly select a time unit as the third time unit in the overlapping area of the two time windows. Three time unit T3.
  • the UE may determine the specific value of the second duration before determining that the handover condition is met. For example, the UE may randomly select from the preset maximum backoff interval to obtain the second duration after performing step S101, or before/while performing step S102.
  • the UE can reselect a random number from the preset maximum backoff interval to ensure that the redetermined second time window w2 is within the coverage of the first time window w1.
  • the UE may reduce the previously selected second time period so that the reduced second time window w2 falls into the first time window w1.
  • a previously selected second duration can be multiplied by a factor to achieve scaling down.
  • the configuration information can be received through broadcast.
  • configuration information can be carried through System Information Block (SIB).
  • SIB System Information Block
  • the source base station to which the source cell belongs can configure conditional handover in a broadcast manner.
  • the signaling load on the base station side is reduced.
  • the terminal side does not need to wait for and receive configuration information sent separately by the source base station, and the energy consumption of the terminal side is reduced.
  • the configuration information can be carried through dedicated signaling of connected terminals, such as multicast/broadcast service (MBS) service or Radio Resource Control (RRC) signaling.
  • MBS multicast/broadcast service
  • RRC Radio Resource Control
  • condition switching method described in this implementation may further include the step of reporting a condition switching report after the condition switching process ends.
  • condition switching report may include at least one of the following:
  • the parameters that need to be included in the conditional handover report can be pre-configured by the base station, and the UE generates and reports the corresponding conditional handover report according to the configuration of the base station.
  • the UE can perform reporting actions periodically.
  • the reporting period can be configured by the base station or by the core network control network element.
  • the UE can report conditional handover reports to the base station periodically according to the period configured by the base station.
  • the reporting object may be the successfully accessed target base station or any other base station that can receive the UE's conditional handover report. Therefore, no matter which base station the UE accesses the network through, the conditional handover situation is reported to the core network element through the corresponding base station.
  • the UE may also report the conditional handover report when it receives a reporting request sent by the target base station after successfully accessing the target base station.
  • the UE proactively reports information related to the time window of this conditional handover, which is helpful for the base station to subsequently optimize the parameter configuration in the configuration information, so that the terminal's access behavior is more consistent with its access policy.
  • Figure 6 is a schematic structural diagram of a condition switching device 2 according to the second embodiment of the present invention.
  • the condition switching device 2 described in this embodiment can be used to implement the method technical solutions described in the embodiments described in FIGS. 3 to 5 .
  • the condition switching device 2 may include: a receiving module 21, used to receive configuration information, the configuration information is used to configure the first time window and the preset maximum backoff interval; a judging module 22, used to judge whether Whether the switching condition is satisfied within the first time window; the conditional switching module 23, when the judgment result is that the switching condition is satisfied, initiates conditional switching after a second time period has elapsed since the second time unit, wherein the second time unit is A time unit that satisfies the switching condition is determined, and the second duration is a random number selected from the preset maximum backoff interval.
  • the above conditional switching device may correspond to a chip with a conditional switching function in the user equipment, or a chip with a data processing function, such as a system-on-a-chip (SOC), baseband Chips, etc.; or correspond to a chip module including a chip with a conditional switching function in the user equipment; or correspond to a chip module having a chip with a data processing function, or correspond to the user equipment.
  • SOC system-on-a-chip
  • Figure 7 is a flow chart of a conditional switching method according to the third embodiment of the present invention.
  • This embodiment can be applied to a time-based conditional switching scenario in a satellite network.
  • the satellite network can be, for example, an NTN network. It does not exclude other satellite networks that are suitable for time-based conditional switching in the future.
  • the conditional switching method provided in the following step S301 may be executed by a chip with a conditional switching function in the network device, or may be executed by a baseband chip in the network device.
  • the network device that executes this embodiment may be, for example, the base station to which the source cell where the UE currently camps belongs, which is recorded as the source base station.
  • the source base station can configure handover conditions for the managed UEs with a lighter signaling load, and the configured handover conditions can greatly avoid UEs from triggering conditional handovers in a centralized manner. This is beneficial to increase the success rate of UE handover to access the target cell based on conditions.
  • the conditional switching method may include: step S301, sending configuration information, where the configuration information is used to configure the first time window and the preset maximum backoff interval.
  • step S301 In response to receiving the configuration information sent by the network device in step S301, the UE may perform the above steps S101 to S103 shown in FIGS. 3 to 5 to perform conditional switching according to the parameters configured in the configuration information.
  • step S301 can be regarded as an execution step that echoes steps S101 to S103 in the embodiment shown in FIGS. 3 to 5 , and the two complement each other in terms of specific implementation principles and logic. . Therefore, for explanations of nouns involved in this embodiment, reference can be made to the relevant descriptions of the embodiments shown in FIGS. 3 to 5 , which will not be described again here.
  • the UE that receives the configuration information determines whether the handover condition is met within the first time window.
  • the initiating action of conditional handover is performed by the UE that receives the configuration information when the second duration elapses since the second time unit.
  • the second time unit is a time unit determined to satisfy the switching condition
  • the second duration is a random number selected from the preset maximum backoff interval.
  • step S301 may include the step of broadcasting configuration information.
  • the configuration information can be carried through the SIB to broadcast the configuration information to all UEs in the source cell.
  • the signaling load on the base station side (such as the source base station) is reduced.
  • the configuration information can be carried through dedicated signaling of the connected terminal.
  • Figure 8 is a schematic structural diagram of a condition switching device 4 according to the fourth embodiment of the present invention. Those skilled in the art understand that the condition switching device 4 described in this embodiment can be used to implement the method technical solution described in the embodiment described in FIG. 7 .
  • the condition switching device 4 may include: a sending module 41, configured to For sending configuration information, the configuration information is used to configure the first time window and the preset maximum backoff interval.
  • the initiating action of conditional switching is executed when a second duration has elapsed since the second time unit, the second time unit is a time unit determined to satisfy the switching condition, and the second duration is selected from the preset maximum
  • the random number of the backoff interval is used to determine whether the switching condition is met within the first time window.
  • the above conditional switching device may correspond to a chip with a conditional switching function in a network device, or a chip with a data processing function, such as a system-on-a-chip (SOC), baseband Chips, etc.; or correspond to a chip module including a chip with a conditional switching function in a network device; or correspond to a chip module having a chip with a data processing function, or correspond to a network device.
  • the network device may be, for example, a source base station.
  • Figure 9 is a flow chart of a conditional switching method according to the fifth embodiment of the present invention.
  • the satellite network can be, for example, an NTN network. It does not exclude other satellite networks that are suitable for time-based conditional switching in the future.
  • conditional switching method provided in step S501 below may be executed by a chip with a conditional switching function in the network device, or may be executed by a baseband chip in the network device.
  • the network device that implements this embodiment may be, for example, the base station to which the target cell belongs that the UE performs time-based conditional handover access, which is denoted as the target base station.
  • the conditional switching method may include: step S501, receiving a conditional switching report, where the conditional switching report includes the time interval between the third time unit and the first time unit, the third time unit and the second time At least one of the time interval between units and the time interval between the second time unit and the first time unit, the third time unit is the time unit for initiating conditional switching, and the second time unit is the time unit for determining that the condition is satisfied The time unit of the switching condition, the first time unit is the starting point of the first time window.
  • step S501 can be regarded as an execution step that echoes the step of reporting a conditional handover report performed by the UE after step S103 in the embodiment shown in FIGS. 3 to 5 .
  • the two are implemented in detail. Principles and logic are complementary to each other. Therefore, for explanations of nouns involved in this embodiment, reference can be made to the relevant descriptions of the embodiments shown in FIGS. 3 to 5 , which will not be described again here.
  • the third time unit is a time unit that has elapsed for a second duration since the second time unit.
  • the second duration is a random number selected from a preset maximum backoff interval, and the preset maximum backoff interval and the first time window are configured by the source base station through configuration information.
  • the target base station may further perform the step of adjusting the parameter configuration in the configuration information according to the conditional handover report. Therefore, by summarizing the conditional handover reports reported by terminals with successful handovers, the target base station can optimize the parameter configuration in the configuration information so that the terminal's access behavior is more consistent with its own access policy.
  • conditional handover reports reported by multiple successfully accessed UEs can be counted. If statistics reveal that the time interval between the third time unit and the first time unit is generally relatively long, it may be determined that the first time unit T1 is configured too early. At this time, the target base station can appropriately delay the first time unit T1 in the configuration information issued by itself.
  • the target base station appropriately advances the first time unit T1 in the configuration information issued by the target base station.
  • the target base station can also optimize the specific numerical configuration of the first duration in the configuration information based on the statistical results. This allows the handover access of multiple UEs to be relatively centralized instead of being scattered throughout the entire communication time window of the base station to avoid affecting other communication needs of the base station.
  • the base station here can be the target base station that implements this implementation plan, or it can be the base station that the UE will subsequently use based on Time conditional handover action to access other base stations.
  • the target base station may further perform the step of: sending a reporting request, where the reporting request is used to request the successfully accessed terminal to report the conditional handover report.
  • the reporting request may include parameters that need to be reported by the UE.
  • the target base station may instruct the UE to report the time interval between the second time unit T2 and the first time unit T1, and the time interval between the third time unit T3 and the first time unit T1.
  • conditional handover reports may be periodically reported by a UE that successfully accesses the target base station.
  • conditional handover reports reported by the UE may be periodically received.
  • the target base station can interact with the source base station that implements the solution described in the embodiment shown in Figure 7 to update the adjusted configuration information to the source base station.
  • the target base station may broadcast the adjusted configuration information received from the target base station in its own cell. Therefore, the access situation of the UE that subsequently switches from the source base station to the target base station through time-based condition switching can better meet the access policy of the target base station.
  • the terminals in the source cell since the terminals in the source cell initiate conditional handovers in a staggered manner, the probability of successful handover to the target cell under the target base station is improved. As a result, the number of successful batch handovers of terminals from the source cell to the target cell in the satellite network is increased, which is beneficial to improving the terminal network rate.
  • Figure 10 is a schematic structural diagram of a condition switching device 6 according to the sixth embodiment of the present invention. Those skilled in the art understand that the condition switching device 6 described in this embodiment can be used to implement the method technical solution described in the embodiment described in FIG. 9 .
  • the condition switching device 6 may include: a receiving module 61 for receiving a condition switching report, where the condition switching report includes the time interval between the third time unit and the first time unit, the third time unit and at least one of the time interval between the second time unit and the time interval between the second time unit and the first time unit, the third time unit is the time unit for initiating conditional switching, the second time unit The unit is the time unit determined to satisfy the switching condition, and the first time unit is the first time window. starting point.
  • the third time unit is a time unit that has passed a second duration since the second time unit, and the second duration is a random number selected from a preset maximum backoff interval, and the preset maximum backoff interval and the third time unit are A time window is configured through configuration information.
  • the above conditional switching device may correspond to a chip with a conditional switching function in a network device, or a chip with a data processing function, such as a system-on-a-chip (SOC), baseband Chips, etc.; or correspond to a chip module including a chip with a conditional switching function in a network device; or correspond to a chip module having a chip with a data processing function, or correspond to a network device.
  • the network device may be, for example, a target base station.
  • each module/unit included in each device and product described in the above embodiments may be a software module/unit or a hardware module/unit, or it may be partly a software module/unit and partly is a hardware module/unit.
  • each module/unit included therein can be implemented in the form of hardware such as circuits, or at least some of the modules/units can be implemented in the form of a software program.
  • the software program Running on the processor integrated inside the chip the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for various devices and products applied to or integrated into the chip module, each module/unit included in it can They are all implemented in the form of hardware such as circuits. Different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components. Alternatively, at least some modules/units can be implemented in the form of software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for each device or product that is applied or integrated into the terminal, each module it contains /Units can all be implemented in the form of hardware such as circuits. Different modules/units can be located in the same component (for example, chip, circuit module, etc.) or in different components in the terminal, or at least some of the modules/units can It is implemented by using a software program, which runs on the processor integrated inside the terminal. The remaining (if any) modules/units can be implemented by circuits and other hardware methods.
  • Figure 11 is a signaling interaction diagram of a typical application scenario according to the embodiment of the present invention.
  • the source base station may perform operation s71 to broadcast configuration information, and the configuration information may be used to indicate the first time unit T1, the first duration and the preset maximum backoff interval.
  • the source base station can configure relevant parameters of conditional handover for all connected UEs in the cell through broadcast, that is, the aforementioned first time unit T1, first duration and preset maximum backoff interval.
  • the UE may perform operation s72 to determine whether the configured switching condition is met starting from the first time unit T1, and if it is met, generate a value from [0, preset maximum backoff interval] The random value is used as the second duration, and the conditional switching is triggered after the second duration (ie, in the third time unit T3) after the second duration (ie, the third time unit T3) is delayed from the time when the switching condition is determined to be satisfied (ie, the second time unit T2).
  • the UE successfully accesses the target cell of the target base station.
  • the target base station that learns that the UE has successfully accessed can perform operation s73 to send a reporting request.
  • the reporting request may be used to instruct the UE to report the time interval between the third time unit T3 and the first time unit T1.
  • the UE may perform operation s74 to report the conditional handover report to the target base station.
  • the conditional switching report may include a time interval between the third time unit T3 and the first time unit T1.
  • the target base station may perform operation s75 to adjust relevant parameters in the configuration information according to the conditional handover reports. For example, the target base station can count the time intervals in the conditional handover report, and adjust relevant parameters in the configuration information based on the statistical results.
  • the target base station can interact with the source base station, so that the source base station updates the adjusted configuration information.
  • the UE when performing operation s72, if the second time unit T2 increases The preset maximum backoff interval exceeds the first time unit T1 plus the first duration, that is, the second time window w2 exceeds the first time window w1, then the UE can be in [T2, the first time unit T1 plus the first duration] Randomly select a moment within the limited time period to trigger condition switching.
  • the first time unit T1 plus the time unit corresponding to the first duration is the end point of the first time window w1 (the fourth time unit T4).
  • the program can be stored in a computer-readable storage medium.
  • the storage medium can include: ROM, RAM, magnetic disk or CD, etc.
  • the technical solution proposed by this invention can be applied to 5G (5generation) communication systems, 4G, 3G communication systems, and various subsequently evolved communication systems, such as 6G, 7G, etc.
  • the technical solution of this invention is also applicable to different network architectures, including but not limited to relay network architecture, dual-link architecture, and Vehicle-to-Everything (vehicle to any object communication) architecture.
  • the 5G CN described in the embodiments of this application may also be called a new core network (new core), or 5G NewCore, or a next generation core network (next generation core, NGC), etc.
  • 5G-CN is set up independently from existing core networks, such as evolved packet core (EPC).
  • EPC evolved packet core
  • the base station (BS) in the embodiment of the present application is a device deployed in a wireless access network to provide wireless communication functions.
  • the equipment that provides base station functions in the 2G network includes the base transceiver station (BTS) and the base station controller (BSC).
  • the equipment that provides the base station function in the 3G network includes the Node B (NodeB) and the wireless radio.
  • Network controller radio network controller, RNC
  • the equipment that provides base station functions in 4G networks including evolved NodeB (eNB), in wireless local area networks (WLAN), provides base station functions
  • the device is an access point (AP).
  • the devices that provide base station functions in 5G New Radio (NR) include the Node B (gNB) that continues to evolve, as well as the devices that provide base station functions in new communication systems in the future. wait.
  • the terminal in the embodiment of this application may refer to various forms of user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), remote station, remote terminal, Mobile device, user terminal, terminal equipment, wireless communication equipment, user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), or a device with wireless communications Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or future evolved Public Land Mobile Communications Networks (Public Land Mobile Network, PLMN) Terminal equipment, etc., the embodiments of this application are not limited to this.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the embodiment of this application defines the one-way communication link from the access network to the terminal as a downlink, the data transmitted on the downlink is downlink data, and the transmission direction of downlink data is called the downlink direction; while the transmission direction from the terminal to the access network is
  • the one-way communication link is the uplink, the data transmitted on the uplink is uplink data, and the transmission direction of the uplink data is called the uplink direction.
  • Multiple appearing in the embodiments of this application refers to two or more than two.
  • the first, second, etc. descriptions appearing in the embodiments of the present application are only for illustration and to distinguish the description objects, and there is no order. They do not represent special limitations on the number of devices in the embodiments of the present application, and cannot constitute a limitation of the present application. Any limitations of the embodiments.
  • connection appearing in the embodiments of this application refers to various connection methods such as direct connection or indirect connection to realize communication between devices, and the embodiments of this application do not limit this in any way.
  • the "network” and “system” appearing in the embodiments of this application express the same concept, and the communication system is the communication network.
  • the processor may be a central processing unit (CPU for short), and the processor may also be other general-purpose processors or digital signal processors (DSP for short) , application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • RAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium In, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions can be transmitted from a website, computer, server or data center through wired (such as infrared, wireless, microwave, etc.) means Transmission to another website, computer, server or data center.
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server or a data center that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed methods, devices and systems can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • each functional unit in various embodiments of the present invention can be integrated into one processing unit, or each unit can be physically included separately, or two or more units can be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above integrated units implemented in the form of software functional units can be stored in a computer-readable storage media.
  • the above-mentioned software functional unit is stored in a storage medium and includes a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute some steps of the method described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc., which can store program code. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种条件切换方法及装置、计算机可读存储介质,所述方法包括:接收配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;判断在所述第一时间窗内是否满足切换条件;当判断结果为满足切换条件时,自第二时间单元起经过第二时长后发起条件切换,其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。通过本公开方案能够以更轻的信令负荷避免UE集中触发条件切换。

Description

条件切换方法及装置、计算机可读存储介质
本申请要求2022年8月1日提交中国专利局、申请号为202210916443.X、发明名称为“条件切换方法及装置、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体地涉及一种条件切换方法及装置、计算机可读存储介质。
背景技术
现有卫星网络,如非陆地接入网络(non-terrestrial access network,简称NTN),采用的基于时间的条件切换策略是,给源小区内所有终端(也称用户设备,User Equipment,简称UE)配置相同的时间窗来判断是否执行条件切换。这会导致这些终端几乎同时发起条件切换,引起随机接入冲突,降低接入目标小区的成功率。
为避免UE集中触发条件切换,现有的一种解决方案是由源小区所属源基站通过专用信令分别为每个UE配置不同的条件切换时间窗。但这会严重增加基站侧的信令负荷,因为源基站需要为每个连接态的UE配置条件切换相关参数。
综上,现有基于时间的条件切换策略无法兼顾减轻信令负荷和有效避免UE集中触发条件切换。
发明内容
本发明解决的技术问题是如何兼顾减轻信令负荷和有效避免UE集中触发条件切换。
为解决上述技术问题,本发明实施例提供一种条件切换方法,包 括:接收配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;判断在所述第一时间窗内是否满足切换条件;当判断结果为满足切换条件时,自第二时间单元起经过第二时长后发起条件切换,其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。
可选的,所述第二时长是选取自所述预设最大退避区间的随机数包括:若第二时间窗超出所述第一时间窗,则所述第二时长是选取自所述第一时间窗和第二时间窗的重叠区间的随机数,其中,所述第二时间窗的起点为所述第二时间单元,所述第二时间窗的长度为所述预设最大退避区间。
可选的,所述预设最大退避区间的数值小于等于所述第一时间窗的长度。
可选的,所述配置信息通过广播方式接收得到。
可选的,所述配置信息通过系统信息块SIB承载。
可选的,所述配置信息通过连接态终端的专用信令承载。
可选的,所述配置信息包括所述预设最大退避区间的数值,或者,所述配置信息包括第一系数,所述预设最大退避区间根据所述第一系数和所述第一时间窗的长度计算得到。
可选的,所述方法还包括:在条件切换流程结束后上报条件切换报告,其中,所述条件切换报告包括第三时间单元和第一时间单元之间的时间间隔、第三时间单元与第二时间单元之间的时间间隔以及第二时间单元和第一时间单元之间的时间间隔中的至少一项,所述第三时间单元为发起条件切换的时间单元,所述第一时间单元为所述第一时间窗的起点。
可选的,所述在条件切换流程结束后上报条件切换报告的动作是周期性执行的,或者是在接收到上报请求后执行的。
可选的,所述条件切换报告中包括的参数由基站配置。
为解决上述技术问题,本发明实施例还提供一种条件切换装置,包括:接收模块,用于接收配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;判断模块,用于判断在所述第一时间窗内是否满足切换条件;条件切换模块,当判断结果为满足切换条件时,自第二时间单元起经过第二时长后发起条件切换,其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。
为解决上述技术问题,本发明实施例还提供一种条件切换方法,包括:发送配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;其中,条件切换的发起动作在自第二时间单元起经过第二时长时执行,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数,在所述第一时间窗内判断是否满足切换条件。
可选的,所述发送配置信息包括:广播所述配置信息。
可选的,所述配置信息通过系统信息块SIB承载。
可选的,所述配置信息通过连接态终端的专用信令承载。
为解决上述技术问题,本发明实施例还提供一种条件切换装置,包括:发送模块,用于发送配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;其中,条件切换的发起动作在自第二时间单元起经过第二时长时执行,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数,在所述第一时间窗内判断是否满足切换条件。
为解决上述技术问题,本发明实施例还提供一种条件切换方法,包括:接收条件切换报告,所述条件切换报告包括第三时间单元和第一时间单元之间的时间间隔、第三时间单元与第二时间单元之间的时间间隔以及第二时间单元和第一时间单元之间的时间间隔中的至少 一项,所述第三时间单元为发起条件切换的时间单元,所述第二时间单元为确定满足切换条件的时间单元,所述第一时间单元为第一时间窗的起点;其中,所述第三时间单元是自所述第二时间单元起经过第二时长的时间单元,所述第二时长是选取自预设最大退避区间的随机数,所述预设最大退避区间和所述第一时间窗通过配置信息配置。
可选的,所述方法还包括:发送上报请求,所述上报请求用于请求成功接入的终端上报所述条件切换报告。
可选的,所述方法还包括:根据所述条件切换报告调整所述配置信息中的参数配置。
为解决上述技术问题,本发明实施例还提供一种条件切换装置,包括:接收模块,用于接收条件切换报告,所述条件切换报告包括第三时间单元和第一时间单元之间的时间间隔、第三时间单元与第二时间单元之间的时间间隔以及第二时间单元和第一时间单元之间的时间间隔中的至少一项,所述第三时间单元为发起条件切换的时间单元,所述第二时间单元为确定满足切换条件的时间单元,所述第一时间单元为第一时间窗的起点;其中,所述第三时间单元是自所述第二时间单元起经过第二时长的时间单元,所述第二时长是选取自预设最大退避区间的随机数,所述预设最大退避区间和所述第一时间窗通过配置信息配置。
为解决上述技术问题,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述方法的步骤。
为解决上述技术问题,本发明实施例还提供一种条件切换装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
在终端侧,本发明实施例提供一种条件切换方法,包括:接收配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;判断在所述第一时间窗内是否满足切换条件;当判断结果为满足切换条件时,自第二时间单元起经过第二时长后发起条件切换,其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。
较之现有技术所采用的基于时间的条件切换策略,本公开方案所提供的基于时间的条件切换策略能够以更轻的信令负荷避免UE集中触发条件切换。具体而言,通过配置预设最大退避区间,使得终端在满足切换条件时推迟一个随机时间值后再真正发起条件切换。由此,通过使处于同一源小区内的所有终端都推迟一个随机时间值发起条件切换,能够有效保证多个终端在不同时机发起条件切换,避免随机接入冲突,提高了条件切换成功概率,降低了条件切换的接入时延。
进一步,通过广播的方式接收配置信息,使得源小区所属源基站能够以广播的方式配置条件切换。由此,基站侧的信令负荷得以减轻。相应的,终端侧也无需专门等待和接收源基站单独发送的配置信息,终端侧的能耗得以降低。
在源基站侧,本发明实施例还提供一种条件切换方法,包括:发送配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;其中,条件切换的发起动作在自第二时间单元起经过第二时长时执行,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数,在所述第一时间窗内判断是否满足切换条件。
较之现有基于时间的条件切换策略中源基站配置给终端的参数,本公开方案通过增加配置预设最大退避区间这一参数,使得所有终端都推迟一个随机时间值发起条件切换。由此,确保同一源小区内的多个终端在不同时机发起条件切换,避免随机接入冲突,提高了条件切 换成功概率,降低了条件切换的接入时延。
进一步,通过广播的方式发送配置信息,使得源基站能够以广播的方式配置条件切换。由此,基站侧的信令负荷得以减轻。
在目标基站侧,本发明实施例还提供一种条件切换方法,包括:接收条件切换报告,所述条件切换报告包括第三时间单元和第一时间单元之间的时间间隔、第三时间单元与第二时间单元之间的时间间隔以及第二时间单元和第一时间单元之间的时间间隔中的至少一项,所述第三时间单元为发起条件切换的时间单元,所述第二时间单元为确定满足切换条件的时间单元,所述第一时间单元为第一时间窗的起点;其中,所述第三时间单元是自所述第二时间单元起经过第二时长的时间单元,所述第二时长是选取自预设最大退避区间的随机数,所述预设最大退避区间和所述第一时间窗通过配置信息配置。
通过本公开方案,由于源小区内的终端是错开地发起条件切换,因而成功切换至目标基站下的目标小区的概率得以提升。由此,卫星网络中终端从源小区批量切换至目标小区的切换成功数量得以提升,有利于改善终端在网率。
进一步,通过汇总切换成功的终端上报的条件切换报告,目标基站能够优化配置信息里的参数配置,以使终端的接入行为更符合自身接入策略。
附图说明
图1是现有技术的一种切换流程示意图;
图2是现有技术的一种条件切换示意图;
图3是本发明第一实施例的一种条件切换方法的流程图;
图4是图1所示实施例中一种基于时间的条件切换的示意图;
图5是图1所示实施例中另一种基于时间的条件切换的示意图;
图6是本发明第二实施例的一种条件切换装置的结构示意图;
图7是本发明第三实施例的一种条件切换方法的流程图;
图8是本发明第四实施例的一种条件切换装置的结构示意图;
图9是本发明第五实施例的一种条件切换方法的流程图;
图10是本发明第六实施例的一种条件切换装置的结构示意图;
图11本发明实施例一个典型应用场景的信令交互图。
具体实施方式
如背景技术所言,现有基于时间的条件切换策略无法兼顾减轻信令负荷和有效避免UE集中触发条件切换。
具体而言,现有蜂窝通信系统的基站建在地面,一个小区能覆盖的区域半径约为几公里至100余公里。而实际上,地球表面各处的通信需求极不均衡,在人口密度大的区域通信需求也大,反之,在人口密度小的区域通信需求也小。对于沙漠、草原、戈壁、海洋等地区,通信需求很小但仍然零星存在,如果在这类地区也通过地面基站进行蜂窝网络覆盖,则需要建立大量基站,成本太高。所以在上述地区,运营商倾向采用卫星小区进行覆盖。卫星小区的覆盖半径可以达到几百公里乃至几千公里,这可以大大降低覆盖成本。终端经由卫星小区进行通信时,无线信号需要经过卫星传输,所以传输时延比地面小区大很多。
传统的无线蜂窝通信网络中,随着UE移动,需要通过切换流程将UE从一个小区变更到另一个小区。以图1所示流程为例,当UE测量发现源小区信号比较差,目标小区信号比较强时,UE会向源小区发出测量报告;源小区选择目标小区并向目标小区发送切换请求;目标小区如果同意UE切换,则在t1时刻向源小区发切换响应,该切换响应可以通过光纤传输;源小区再向UE发出切换命令,该切换命令也可以通过物理下行共享信道(Physical Downlink Shared Channel, 简称PDSCH)传输;最后,UE在t2时刻通过随机接入与目标小区建立连接。
当图1所示切换流程应用于NTN网络时,由于源小区所属源基站与UE之间需要经过卫星传输数据,传输时延较大,所以切换流程耗时比较长。因此,现有NTN网络中以条件切换为主。
具体而言,条件切换是指源基站预先为UE配置一些切换的条件,由UE判断是否满足切换条件。如果满足切换条件,则UE启动切换流程进入目标小区。由此,通过条件切换避免了源基站向UE发送切换命令的步骤,可以优化切换流程。
对于地面无线网络,条件切换的切换条件通常是无线信道的质量。但是对于卫星网络而言,小区内各处的无线信道质量变化不大,所以采用无线信道的质量作为条件切换的切换条件并不合适。另一方面,卫星的运行轨迹是可预知的,不考虑UE位置大幅变化的情况下,源基站可以预测下一个卫星覆盖某个UE的时间段。
因此,卫星网络引入了基于时间的条件切换,即源基站配置一个时间起点和一个时间长度,UE根据这两个参数确定条件切换的时机,如图2所示。图2中,源基站为UE配置条件切换时会配置两个参数:T1和持续时间(Duration)。UE从T1开始,在长为持续时间Duration的时间窗内,判断其它切换条件是否满足,其他切换条件可以例如是信号质量。如果满足,则执行条件切换。
为降低信令负荷,基站可能采用广播消息配置条件切换。如果采用这一方式,则源小区内所有UE都将遵从相同的时间窗来判断是否执行条件切换。对于固定(fixed)小区,由于这些UE测量得到的信号质量几乎相同,所以这些UE会同时启动条件切换。而这种大批量UE同时进行条件切换的情形无疑会导致随机接入冲突,降低了接入目标小区的成功率。
现有的一种解决方案是由源小区所属源基站通过专用信令分别 为每个UE配置不同的条件切换时间窗。但这会严重增加基站侧的信令负荷,因为源基站需要为每个连接态的UE配置条件切换相关参数。
为解决上述技术问题,本发明实施例提供一种条件切换方法,包括:接收配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;判断在所述第一时间窗内是否满足切换条件;当判断结果为满足切换条件时,自第二时间单元起经过第二时长后发起条件切换,其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。
本公开方案所提供的基于时间的条件切换策略能够以更轻的信令负荷避免UE集中触发条件切换。具体而言,通过配置预设最大退避区间,使得终端在满足切换条件时推迟一个随机时间值后再真正发起条件切换。由此,通过使处于同一源小区内的所有终端都推迟一个随机时间值发起条件切换,能够有效保证多个终端在不同时机发起条件切换,避免随机接入冲突,提高了条件切换成功概率,降低了条件切换的接入时延。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图3是本发明第一实施例的一种条件切换方法的流程图。
本实施方案可以应用于卫星网络中基于时间的条件切换(Condition Handover,简称CHO)场景,卫星网络可以例如是NTN网络,不排除未来其他适用于基于时间的条件切换的卫星网络。
在具体实施中,下述步骤S101~步骤S103所提供的条件切换方法可以由用户设备(也可称为终端/UE)中的具有条件切换功能的芯片执行,也可以由用户设备中的基带芯片执行。为便于表述,将执行本实施方案的UE当前驻留的小区记作源小区,源小区所属基站记作源基站。UE可以例如是连接态的UE。通过执行本实施方案,UE可以在满足切换条件并且合适的时机向目标小区发送随机接入。
具体地,参考图3,条件切换方法可以包括如下步骤:
步骤S101,接收配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;
步骤S102,判断在所述第一时间窗内是否满足切换条件;
当步骤S102的判断结果为肯定的,也即满足切换条件时,执行步骤S103,自第二时间单元起经过第二时长后发起条件切换,其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。
当步骤S102的判断结果为否定的,也即不满足切换条件时,可以重新自步骤S101开始执行,直至步骤S102的判断结果是肯定的或超出第一时间窗。
在一个具体实施中,配置信息可以包括第一时间单元(记作T1)和第一时长,根据这两个参数可以确定第一时间窗(记作w1)的具体窗口位置和时长,如图4所示。
具体地,第一时长为第一时间窗w1的长度。
进一步,第一时间单元T1为第一时间窗w1的起点,用于指示开始判断是否满足切换条件的起始时间单元。其中,起点是指起始时刻。
时间单元可以为终端设备和网络设备在时域上的通信粒度。例如,时间单元可以为时隙、迷你时隙、子帧、符号、帧等。同一时间单元是指相同的时间单元,例如,同在时隙0上的两个频域资源。
进一步,第一时长可以例如是持续时间(duration),用于指示进行条件切换判别的总时长。以第一时间单元T1为起点,第一时长为长度,可以得到如图4和图5中无填充区域所示的第一时间窗w1。若在第一时间窗w1到期时仍未满足切换条件,则UE不触发条件切换动作。
在一个变化例中,配置信息可以包括第一时间单元T1和第四时间单元(记作T4),其中,第四时间单元T4为第一时间窗w1的终点。其中,终点是指结束时刻。
通过第一时间单元T1和第四时间单元T4同样可以确定第一时间窗w1的具体窗口位置和时长,如图5所示。
在一个具体实施中,切换条件可以由网络侧预先配置,如由源基站通过和UE的交互配置给UE。例如,配置信息中的第一时间单元T1可以视为一种切换条件。又例如,源基站还可以配置其他的切换条件,如信道质量是否低于预设阈值。在步骤S102中,若没有配置其他的切换条件,则第一时间单元T1即为确定满足切换条件的时间单元(即下文所述第二时间单元T2)。若配置有其他的切换条件,则自第一时间单元T1起判断其他切换条件是否满足,并将其他切换条件均满足的时间单元确定为第二时间单元T2。
在一个变化例中,所述其他的切换条件可以包括:距离。例如,UE可以判断自己与源小区的参考点之间的距离是否大于门限值,和/或,自己与目标小区的参考点之间的距离是否小于门限值。
进一步,上述两个距离相关的门限值可以单独与第一时间窗w1配合使用,也可以合起来一起与第一时间窗w1配合使用,以判断UE是否满足切换条件。
在一个具体实施中,预设最大退避区间可以例如是Max-backoff参数,用于指示一个时间长度。例如,预设最大退避区间的具体取值可以小于等于第一时长(即第一时间窗w1的长度)。
在一个具体实施中,将步骤S102中确定满足切换条件的时间单元记作第二时间单元T2。以第二时间单元T2为起点,预设最大退避区间的数值为长度,可以得到如图4和图5中斜线填充区域所示的第二时间窗w2。
进一步,满足切换条件的UE在第二时间窗w2内的某一时间单 元发起条件切换。将UE实际发起条件切换的时间单元记作第三时间单元T3。
第三时间单元T3和第二时间单元T2之间的第二时长是取自[0,Max-backoff参数]的一个随机时间值。在步骤S103中,UE在自第二时间单元T2起推迟该随机时间值后的第三时间单元T3实际触发条件切换。
基于本实施方案,对于在同一源小区中的多个UE,即使接收同一配置信息且第二时间单元T2均相同,也能有效避免UE集中触发条件切换。具体而言,由于各UE从预设最大退避区间中选取得到的随机数(即第二时长)有很大概率是不同的,因而即使在相同的第二时间窗w2内,各UE发起条件切换的第三时间单元T3也有很大概率是相错开的。
在一个具体实施中,配置信息可以包括预设最大退避区间的具体数值。
在一个变化例中,配置信息可以包括第一系数,其中,0<第一系数<1。进一步,预设最大退避区间可以根据第一系数和第一时长计算得到,如第一系数乘以第一时长得到预设最大退避区间。
在另一个变化例中,配置信息可以包括预设最大退避区间的索引(index)。例如,网络可以预先配置多个数值的预设最大退避区间并预先指示给UE,每一预设最大退避区间可以通过索引唯一对应。相应的,源基站可以在配置信息中指示本次配置的预设最大退避区间的索引,UE根据索引查找自身存储的预配置信息得到预设最大退避区间。
在又一个变化例中,预设最大退避区间可以被划分成多个子区间,配置信息可以包括每一子区间的索引和起始时间单元,所述起始时间单元可以是相对于第二时间单元T2的相对时间。进一步,可以根据UE的身份标识(Identification,简称ID)确定UE被配置的子 区间。
例如,配置信息可以包括{20,1:0,2:10,3:15},表示预设最大退避区间的数值为20,包括三个子区间,索引为1的子区间的起始时间单元=5,索引为2的子区间的起始时间单元=10,索引为3的子区间的起始时间单元=15。假设预先配置UE ID mod x的值即为UE被配置的子区间的索引,其中,x为预设参数。假设执行本实施方案的UE基于前述公式的计算结果为2,表示被配置索引为2的子区间,则可以确定第二时间窗w2为[T2+10,T2+15)。假设执行本实施方案的UE基于前述公式的计算结果为1,表示被配置索引为1的子区间,则可以确定第二时间窗w2为[T2,T2+10)。假设执行本实施方案的UE基于前述公式的计算结果为3,表示被配置索引为3的子区间,则可以确定第二时间窗w2为[T2+15,T2+20]。
由此,可以将源小区内的多个UE分散到预设最大退避区间的不同子区间里进行随机数选取,这有利于进一步错开UE的条件切换触发时机。
由上,本公开方案所提供的基于时间的条件切换策略能够以更轻的信令负荷避免UE集中触发条件切换。具体而言,通过配置预设最大退避区间,使得终端在满足切换条件时推迟一个随机时间值后再真正发起条件切换。由此,通过使处于同一源小区内的所有终端都推迟一个随机时间值发起条件切换,能够有效保证多个终端在不同时机发起条件切换,避免随机接入冲突,提高了条件切换成功概率,降低了条件切换的接入时延。
在一个具体实施中,结合图3和图5,若第二时间窗w2超出第一时间窗w1,则第二时长可以是选取自第一时间窗w1和第二时间窗w2的重叠区间的随机数。也就是说,当出现本具体实施所述情形时,在步骤S103中,UE在第二时间单元T2至第四时间单元T4时间段内随机选择一个时刻发起条件切换。
第二时间窗w2超出第一时间窗w1可以例如是指,在时域上, 第二时间窗w2的结束时刻(记作第五时间单元T5)晚于第四时间单元T4。
在本具体实施中,第二时长可以是在确定满足切换条件后确定的。例如,UE可以在执行步骤S103时从预设最大退避区间中随机选取得到第二时长。若此时以当前时间单元(即第二时间单元T2)为起点的第二时间窗w2超出了第一时间窗w1,则UE可以在两个时间窗的重叠区域内随机选择一个时间单元作为第三时间单元T3。
由此,可以有效确保UE在第一时间窗w1内发起条件切换。
在一个具体实施中,UE可以在确定满足切换条件之前就确定第二时长的具体数值。例如,UE可以在执行步骤S101之后,或者执行步骤S102之前/同时,从预设最大退避区间中随机选取得到第二时长。
进一步,若确定满足切换条件时发现以当前时间单元(即第二时间单元T2)为起点的第二时间窗w2超出了第一时间窗w1,表明之前选定的第二时长不合适。此时,UE可以重新从预设最大退避区间中选择一个随机数,以确保重新确定的第二时间窗w2位于第一时间窗w1的覆盖范围内。
或者,UE可以缩小之前选定的第二时长,以使缩小后的第二时间窗w2落入第一时间窗w1。例如,可以将之前选定的第二时长乘以一个系数以实现缩小。
由此,可以有效确保UE在第一时间窗w1内发起条件切换。
在一个具体实施中,配置信息可以通过广播方式接收得到。例如,配置信息可以通过系统信息块(System Information Block,简称SIB)承载。
在本具体实施中,源小区所属源基站能够以广播的方式配置条件切换。由此,基站侧的信令负荷得以减轻。相应的,终端侧也无需专门等待和接收源基站单独发送的配置信息,终端侧的能耗得以降低。
或者,配置信息可以通过连接态终端的专用信令承载,如组播/广播业务(multicast/broadcast service,简称MBS)业务或者无线资源控制(Radio Resource Control,简称RRC)信令。
在一个具体实施中,在步骤S103之后,本实施所述条件切换方法还可以包括步骤:在条件切换流程结束后上报条件切换报告。
具体地,所述条件切换报告可以包括以下至少一项:
第三时间单元T3和第一时间单元T1之间的时间间隔;
第二时间单元T2和第三时间单元T3之间的时间间隔;
第二时间单元T2和第一时间单元T1之间的时间间隔。
例如,可以由基站预先配置条件切换报告中需要包含的参数,UE根据基站的配置生成相应的条件切换报告并上报。
进一步,UE可以周期性的执行上报动作。上报的周期可以由基站配置,也可以由核心网控制网元配置。
对于由基站配置上报周期的情形,UE可以按基站配置的周期的定期向该基站上报条件切换报告。
对于由核心网配置上报周期的情形,上报的对象可以是成功接入的目标基站或其他任意能够接收到UE的条件切换报告的基站。由此,无论UE通过哪一基站接入网络,都通过对应的基站向核心网网元上报条件切换情况。
或者,UE也可以在成功接入目标基站后,接收到目标基站发送的上报请求时再上报所述条件切换报告。
由此,UE主动上报本次条件切换的时间窗相关信息,有利于基站后续优化配置信息中的参数配置,以使终端的接入行为更符合其接入策略。
图6是本发明第二实施例的一种条件切换装置2的结构示意图。 本领域技术人员理解,本实施例所述条件切换装置2可以用于实施上述图3至图5所述实施例中所述的方法技术方案。
具体地,参考图6,条件切换装置2可以包括:接收模块21,用于接收配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;判断模块22,用于判断在所述第一时间窗内是否满足切换条件;条件切换模块23,当判断结果为满足切换条件时,自第二时间单元起经过第二时长后发起条件切换,其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。
关于所述条件切换装置2的工作原理、工作方式的更多内容,可以参照上述图3至图5中的相关描述,这里不再赘述。
在具体实施中,上述的条件切换装置可以对应于用户设备中具有条件切换功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,简称SOC)、基带芯片等;或者对应于用户设备中包括具有条件切换功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于用户设备。
图7是本发明第三实施例的一种条件切换方法的流程图。本实施方案可以应用于卫星网络中基于时间的条件切换场景,卫星网络可以例如是NTN网络,不排除未来其他适用于基于时间的条件切换的卫星网络。
在具体实施中,下述步骤S301所提供的条件切换方法可以由网络设备中的具有条件切换功能的芯片执行,也可以由网络设备中的基带芯片执行。执行本实施方案的网络设备可以例如是UE当前驻留的源小区所属基站,记作源基站。通过执行本实施方案,源基站能够以更轻信令负荷的形式给管理的UE配置切换条件,并且配置的切换条件能够极大地避免UE集中触发条件切换。这有利于增加UE基于条件切换接入目标小区的成功率。
具体地,参考图7,条件切换方法可以包括:步骤S301,发送配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间。
响应于接收到网络设备在步骤S301发送的配置信息,UE可以执行上述图3至图5所示的步骤S101至步骤S103,以根据配置信息所配置的参数进行条件切换。本领域技术人员理解,所述步骤S301可以视为与上述图3至图5所示实施例所述步骤S101至步骤S103相呼应的执行步骤,两者在具体的实现原理和逻辑上是相辅相成的。因而,本实施例中涉及名词的解释可以参考图3至图5所示实施例的相关描述,这里不再赘述。
例如,接收到该配置信息的UE在第一时间窗内判断是否满足切换条件。
例如,条件切换的发起动作由接收到该配置信息的UE在自第二时间单元起经过第二时长时执行。其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。
由上,在源基站侧,通过增加配置预设最大退避区间这一参数,使得所有终端都推迟一个随机时间值发起条件切换。由此,确保同一源小区内的多个终端在不同时机发起条件切换,避免随机接入冲突,提高了条件切换成功概率,降低了条件切换的接入时延。
在一个具体实施中,步骤S301可以包括步骤:广播配置信息。例如,可以通过SIB承载配置信息,以将配置信息广播给源小区内的所有UE。由此,基站侧(如源基站)的信令负荷得以减轻。或者,可以通过连接态终端的专用信令承载配置信息。
图8是本发明第四实施例的一种条件切换装置4的结构示意图。本领域技术人员理解,本实施例所述条件切换装置4可以用于实施上述图7所述实施例中所述的方法技术方案。
具体地,参考图8,条件切换装置4可以包括:发送模块41,用 于发送配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间。
其中,条件切换的发起动作在自第二时间单元起经过第二时长时执行,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数,在所述第一时间窗内判断是否满足切换条件。
关于所述条件切换装置4的工作原理、工作方式的更多内容,可以参照上述图7中的相关描述,这里不再赘述。
在具体实施中,上述的条件切换装置可以对应于网络设备中具有条件切换功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,简称SOC)、基带芯片等;或者对应于网络设备中包括具有条件切换功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于网络设备。所述网络设备可以例如是源基站。
图9是本发明第五实施例的一种条件切换方法的流程图。
本实施方案可以应用于卫星网络中基于时间的条件切换场景,卫星网络可以例如是NTN网络,不排除未来其他适用于基于时间的条件切换的卫星网络。
在具体实施中,下述步骤S501所提供的条件切换方法可以由网络设备中的具有条件切换功能的芯片执行,也可以由网络设备中的基带芯片执行。执行本实施方案的网络设备可以例如是UE执行基于时间的条件切换接入的目标小区所属基站,记作目标基站。
具体地,参考图9,条件切换方法可以包括:步骤S501,接收条件切换报告,所述条件切换报告包括第三时间单元和第一时间单元之间的时间间隔、第三时间单元与第二时间单元之间的时间间隔以及第二时间单元和第一时间单元之间的时间间隔中的至少一项,所述第三时间单元为发起条件切换的时间单元,所述第二时间单元为确定满足 切换条件的时间单元,所述第一时间单元为第一时间窗的起点。
本领域技术人员理解,所述步骤S501可以视为与上述图3至图5所示实施例中UE在步骤S103后执行的上报条件切换报告的步骤相呼应的执行步骤,两者在具体的实现原理和逻辑上是相辅相成的。因而,本实施例中涉及名词的解释可以参考图3至图5所示实施例的相关描述,这里不再赘述。
具体地,所述第三时间单元是自第二时间单元起经过第二时长的时间单元。
进一步,所述第二时长是选取自预设最大退避区间的随机数,所述预设最大退避区间和第一时间窗由源基站通过配置信息配置。
在一个具体实施中,在执行步骤S501之后,目标基站还可以执行步骤:根据所述条件切换报告调整所述配置信息中的参数配置。由此,通过汇总切换成功的终端上报的条件切换报告,目标基站能够优化配置信息里的参数配置,以使终端的接入行为更符合自身接入策略。
具体地,可以统计多个成功接入的UE上报的条件切换报告。若统计发现第三时间单元和第一时间单元之间的时间间隔普遍比较长,则可以确定第一时间单元T1配置的过早。此时,目标基站可以在自己下发的配置信息中适当延后第一时间单元T1。
反之,若统计汇总发现第三时间单元和第一时间单元之间的时间间隔普遍比较短,则目标基站在下发的配置信息中适当提前第一时间单元T1。
进一步,目标基站还可以根据统计结果优化配置信息中第一时长的具体数值配置。使得多个UE的切换接入相对集中,而不是分散在基站的整个通信时间窗内,避免影响基站其他通信需求,这里的基站可以是执行本实施方案的目标基站,也可以是UE后续会基于时间的条件切换动作接入的其他基站。
在一个具体实施中,在步骤S501之前,目标基站还可以执行步骤:发送上报请求,所述上报请求用于请求成功接入的终端上报所述条件切换报告。
具体地,上报请求可以包括需要UE上报的参数。例如,目标基站可以指示UE上报第二时间单元T2和第一时间单元T1之间的时间间隔,以及第三时间单元T3和第一时间单元T1之间的时间间隔。
在一个具体实施中,条件切换报告可以由成功接入目标基站的UE周期性上报,相应的,步骤S501中可以周期性接收UE上报的条件切换报告。
在一个具体实施中,目标基站可以和前述执行图7所示实施例所述方案的源基站交互,以向源基站更新调整后的配置信息。相应的,目标基站可以在自己的小区内广播接收自目标基站的调整后的配置信息。由此,可以使得后续从源基站通过基于时间的条件切换接入目标基站的UE的接入情况更好的满足目标基站的接入策略。
由此,在目标基站侧,由于源小区内的终端是错开地发起条件切换,因而成功切换至目标基站下的目标小区的概率得以提升。由此,卫星网络中终端从源小区批量切换至目标小区的切换成功数量得以提升,有利于改善终端在网率。
图10是本发明第六实施例的一种条件切换装置6的结构示意图。本领域技术人员理解,本实施例所述条件切换装置6可以用于实施上述图9所述实施例中所述的方法技术方案。
具体地,参考图10,条件切换装置6可以包括:接收模块61,用于接收条件切换报告,所述条件切换报告包括第三时间单元和第一时间单元之间的时间间隔、第三时间单元与第二时间单元之间的时间间隔以及第二时间单元和第一时间单元之间的时间间隔中的至少一项,所述第三时间单元为发起条件切换的时间单元,所述第二时间单元为确定满足切换条件的时间单元,所述第一时间单元为第一时间窗 的起点。
其中,所述第三时间单元是自第二时间单元起经过第二时长的时间单元,所述第二时长是选取自预设最大退避区间的随机数,所述预设最大退避区间和第一时间窗通过配置信息配置。
关于所述条件切换装置6的工作原理、工作方式的更多内容,可以参照上述图9中的相关描述,这里不再赘述。
在具体实施中,上述的条件切换装置可以对应于网络设备中具有条件切换功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,简称SOC)、基带芯片等;或者对应于网络设备中包括具有条件切换功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于网络设备。所述网络设备可以例如是目标基站。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可 以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
图11是本发明实施例一个典型应用场景的信令交互图。
在一个典型的应用场景中,参考图11,源基站可以执行操作s71,以广播配置信息,所述配置信息可以用于指示第一时间单元T1、第一时长和预设最大退避区间。例如,源基站可以通过广播为小区内所有连接态的UE配置条件切换的相关参数,即前述第一时间单元T1、第一时长和预设最大退避区间。
进一步,响应于接收到配置信息,UE可以执行操作s72,以从第一时间单元T1时刻开始判断是否满足配置的切换条件,如果满足则生成一个取值自[0,预设最大退避区间]的随机值作为第二时长,并自确定满足切换条件的时间(即第二时间单元T2)起推迟第二时长后(即在第三时间单元T3)触发条件切换。
进一步,在条件切换流程结束后,UE成功接入目标基站的目标小区后。此时获知UE成功接入的目标基站可以执行操作s73,以发送上报请求。例如,上报请求可以用于指示UE上报第三时间单元T3和第一时间单元T1之间的时间间隔。
进一步,UE可以执行操作s74,以向目标基站上报条件切换报告。例如,响应于上报请求中的配置,所述条件切换报告可以包括第三时间单元T3和第一时间单元T1之间的时间间隔。
响应于接收到多个UE上报的条件切换报告,目标基站可以执行操作s75,以根据条件切换报告调整配置信息中的相关参数。例如,目标基站可以统计条件切换报告中的时间间隔,并根据统计结果调整配置信息中的相关参数。
进一步,目标基站可以和源基站交互,以便源基站更新调整后的配置信息。
在一个变化例中,在执行操作s72时,如果第二时间单元T2加 上预设最大退避区间超过第一时间单元T1加上第一时长,也即第二时间窗w2超过第一时间窗w1,则UE可以在[T2,第一时间单元T1加上第一时长]所限定的时间段内随机选择一个时刻触发条件切换。其中,第一时间单元T1加上第一时长对应的时间单元即为第一时间窗w1的终点(第四时间单元T4)。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指示相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
本方明技术方案可适用于5G(5generation)通信系统,还可适用于4G、3G通信系统,还可适用于后续演进的各种通信系统,例如6G、7G等。本方明技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构,Vehicle-to-Everything(车辆到任何物体的通信)架构。
本申请实施例中所述的5G CN也可以称为新型核心网(new core)、或者5G NewCore、或者下一代核心网(next generation core,NGC)等。5G-CN独立于现有的核心网,例如演进型分组核心网(evolved packet core,EPC)而设置。
本申请实施例中的基站(base station,BS),也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS)和基站控制器(base station controller,BSC),3G网络中提供基站功能的设备包括节点B(NodeB)和无线网络控制器(radio network controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,WLAN)中,提供基站功能的设备为接入点(access point,AP),5G新无线(New Radio,NR)中的提供基站功能的设备包括继续演进的节点B(gNB),以及未来新的通信系统中提供基站功能的设备 等。
本申请实施例中的终端可以指各种形式的用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、终端设备(terminal equipment)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例定义接入网到终端的单向通信链路为下行链路,在下行链路上传输的数据为下行数据,下行数据的传输方向称为下行方向;而终端到接入网的单向通信链路为上行链路,在上行链路上传输的数据为上行数据,上行数据的传输方向称为上行方向。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
应理解,本申请实施例中,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质 中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个 计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (17)

  1. 一种条件切换方法,其特征在于,包括:
    接收配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;
    判断在所述第一时间窗内是否满足切换条件;
    当判断结果为满足切换条件时,自第二时间单元起经过第二时长后发起条件切换,其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。
  2. 根据权利要求1所述的条件切换方法,其特征在于,所述第二时长是选取自所述预设最大退避区间的随机数包括:若第二时间窗超出所述第一时间窗,则所述第二时长是选取自所述第一时间窗和第二时间窗的重叠区间的随机数,其中,所述第二时间窗的起点为所述第二时间单元,所述第二时间窗的长度为所述预设最大退避区间。
  3. 根据权利要求1或2所述的条件切换方法,其特征在于,所述预设最大退避区间的数值小于等于所述第一时间窗的长度。
  4. 根据权利要求1或2所述的条件切换方法,其特征在于,所述配置信息通过广播方式接收得到。
  5. 根据权利要求1或2所述的条件切换方法,其特征在于,所述配置信息包括所述预设最大退避区间的数值,或者,所述配置信息包括第一系数,所述预设最大退避区间根据所述第一系数和所述第一时间窗的长度计算得到。
  6. 根据权利要求1至5中任一项所述的条件切换方法,其特征在于,还包括:
    在条件切换流程结束后上报条件切换报告,其中,所述条件切换 报告包括第三时间单元和第一时间单元之间的时间间隔、第三时间单元与第二时间单元之间的时间间隔以及第二时间单元和第一时间单元之间的时间间隔中的至少一项,所述第三时间单元为发起条件切换的时间单元,所述第一时间单元为所述第一时间窗的起点。
  7. 根据权利要求6所述的条件切换方法,其特征在于,所述在条件切换流程结束后上报条件切换报告的动作是周期性执行的,或者是在接收到上报请求后执行的。
  8. 一种条件切换装置,其特征在于,包括:
    接收模块,用于接收配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;
    判断模块,用于判断在所述第一时间窗内是否满足切换条件;
    条件切换模块,当判断结果为满足切换条件时,自第二时间单元起经过第二时长后发起条件切换,其中,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数。
  9. 一种条件切换方法,其特征在于,包括:
    发送配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;
    其中,条件切换的发起动作在自第二时间单元起经过第二时长时执行,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数,在所述第一时间窗内判断是否满足切换条件。
  10. 根据权利要求9所述的条件切换方法,其特征在于,所述发送配置信息包括:
    广播所述配置信息。
  11. 一种条件切换装置,其特征在于,包括:
    发送模块,用于发送配置信息,所述配置信息用于配置第一时间窗和预设最大退避区间;
    其中,条件切换的发起动作在自第二时间单元起经过第二时长时执行,所述第二时间单元为确定满足切换条件的时间单元,所述第二时长是选取自所述预设最大退避区间的随机数,在所述第一时间窗内判断是否满足切换条件。
  12. 一种条件切换方法,其特征在于,包括:
    接收条件切换报告,所述条件切换报告包括第三时间单元和第一时间单元之间的时间间隔、第三时间单元与第二时间单元之间的时间间隔以及第二时间单元和第一时间单元之间的时间间隔中的至少一项,所述第三时间单元为发起条件切换的时间单元,所述第二时间单元为确定满足切换条件的时间单元,所述第一时间单元为第一时间窗的起点;
    其中,所述第三时间单元是自所述第二时间单元起经过第二时长的时间单元,所述第二时长是选取自预设最大退避区间的随机数,所述预设最大退避区间和所述第一时间窗通过配置信息配置。
  13. 根据权利要求12所述的条件切换方法,其特征在于,还包括:
    发送上报请求,所述上报请求用于请求成功接入的终端上报所述条件切换报告。
  14. 根据权利要求12或13所述的条件切换方法,其特征在于,还包括:
    根据所述条件切换报告调整所述配置信息中的参数配置。
  15. 一种条件切换装置,其特征在于,包括:
    接收模块,用于接收条件切换报告,所述条件切换报告包括第三 时间单元和第一时间单元之间的时间间隔、第三时间单元与第二时间单元之间的时间间隔以及第二时间单元和第一时间单元之间的时间间隔中的至少一项,所述第三时间单元为发起条件切换的时间单元,所述第二时间单元为确定满足切换条件的时间单元,所述第一时间单元为第一时间窗的起点;
    其中,所述第三时间单元是自所述第二时间单元起经过第二时长的时间单元,所述第二时长是选取自预设最大退避区间的随机数,所述预设最大退避区间和所述第一时间窗通过配置信息配置。
  16. 一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1至7中任一项或权利要求9或10或权利要求12至14中任一项所述方法的步骤。
  17. 一种条件切换装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至7中任一项或权利要求9或10或权利要求12至14中任一项所述方法的步骤。
PCT/CN2023/110489 2022-08-01 2023-08-01 条件切换方法及装置、计算机可读存储介质 WO2024027685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210916443.XA CN117545026A (zh) 2022-08-01 2022-08-01 条件切换方法及装置、计算机可读存储介质
CN202210916443.X 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024027685A1 true WO2024027685A1 (zh) 2024-02-08

Family

ID=89781266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110489 WO2024027685A1 (zh) 2022-08-01 2023-08-01 条件切换方法及装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117545026A (zh)
WO (1) WO2024027685A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112042227A (zh) * 2019-03-27 2020-12-04 联发科技(新加坡)私人有限公司 基于nr的leo-ntn中的基于广播和组的切换
CN112690019A (zh) * 2019-03-15 2021-04-20 Oppo广东移动通信有限公司 小区切换方法、装置、网络设备、终端设备及存储介质
US20220240139A1 (en) * 2021-01-27 2022-07-28 Samsung Electronics Co., Ltd. Electronic device performing handover and method for operating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112690019A (zh) * 2019-03-15 2021-04-20 Oppo广东移动通信有限公司 小区切换方法、装置、网络设备、终端设备及存储介质
CN112042227A (zh) * 2019-03-27 2020-12-04 联发科技(新加坡)私人有限公司 基于nr的leo-ntn中的基于广播和组的切换
US20220240139A1 (en) * 2021-01-27 2022-07-28 Samsung Electronics Co., Ltd. Electronic device performing handover and method for operating the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Successful Handovers Reports", 3GPP TSG-RAN3 MEETING #109-E R3-204935, 6 August 2020 (2020-08-06), XP051911304 *
MEDIATEK INC.: "Grouping and Automatic Reconfiguration for Handover Enhancement in LEO NTN", 3GPP TSG-RAN WG2 MEETING #106 TDOC R2-1905702, 2 May 2019 (2019-05-02), XP051710056 *

Also Published As

Publication number Publication date
CN117545026A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN109309969B (zh) 在rrc空闲模式下控制测量处理的方法及其装置
US11564255B2 (en) Method and apparatus for processing LBT monitoring failures and system
WO2020019187A1 (zh) 一种信道监听方法及装置、终端设备、网络设备
WO2020164018A1 (zh) 用于小区切换的方法及设备
WO2020156065A1 (zh) 小区重选的方法及装置、存储介质、用户终端
EP3920589B1 (en) Method and device for triggering cell reselection, storage medium, and user terminal
WO2013097683A1 (zh) 一种对测量事件的测量报告进行上报的方法
WO2020134726A1 (zh) 随机接入统计信息的上报方法及装置
WO2021007732A1 (zh) 无线通信方法及设备
WO2020107416A1 (zh) 随机接入过程选择方法、装置、芯片及计算机程序
US11979205B1 (en) Method for configuring and updating random access resources in multi-antenna MIMO environment
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021087929A1 (zh) 一种随机接入的方法和装置
WO2020087476A1 (zh) 传输系统信息的方法和设备
WO2024027685A1 (zh) 条件切换方法及装置、计算机可读存储介质
WO2020030008A1 (zh) 一种传输信号的方法和装置
WO2022022444A1 (zh) 由用户设备执行的方法以及用户设备
EP3843493B1 (en) Random access methods, terminal device, and network device
WO2021092776A1 (zh) 一种非连续接收处理方法、终端设备
WO2020061995A1 (zh) 一种信息传输方法及装置、终端、网络设备
WO2023227094A1 (zh) 小区重选方法及装置、存储介质、终端设备
WO2023131245A1 (zh) 信息传输方法、配置优化方法、装置、终端及网络设备
WO2019064240A1 (en) FAST CHARGE CONTROL THROUGH SYSTEM INFORMATION CHANGE NOTIFICATIONS BASED ON PAGING
WO2021147085A1 (zh) 一种切片网络中的控制方法、终端及网络设备
WO2024022193A1 (zh) 小数据传输方法、终端、网络设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849392

Country of ref document: EP

Kind code of ref document: A1