WO2024027470A1 - 基于疏血透气膜材料的血液净化方法及器件、装置、设备 - Google Patents

基于疏血透气膜材料的血液净化方法及器件、装置、设备 Download PDF

Info

Publication number
WO2024027470A1
WO2024027470A1 PCT/CN2023/106717 CN2023106717W WO2024027470A1 WO 2024027470 A1 WO2024027470 A1 WO 2024027470A1 CN 2023106717 W CN2023106717 W CN 2023106717W WO 2024027470 A1 WO2024027470 A1 WO 2024027470A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
membrane
blood purification
purification device
liquid
Prior art date
Application number
PCT/CN2023/106717
Other languages
English (en)
French (fr)
Inventor
王德辉
罗静
邓旭
Original Assignee
电子科技大学
电子科技大学(深圳)高等研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学, 电子科技大学(深圳)高等研究院 filed Critical 电子科技大学
Publication of WO2024027470A1 publication Critical patent/WO2024027470A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration

Definitions

  • the present invention relates to a blood purification method and devices, devices, and equipment based on a blood-repellent breathable membrane material.
  • the blood purification method, devices, devices, and equipment are based on a blood-repellent breathable membrane material.
  • a blood-repellent breathable membrane material By controlling the temperature inside and outside the membrane, It uses the evaporation/condensation principle to complete the removal of excess metabolic molecules in the blood without the need for dialysis fluid, and can be widely used in the treatment of various blood diseases.
  • Kidney diseases such as chronic kidney disease and end-stage renal disease, are associated with high morbidity and mortality. Due to impaired kidney function, these patients retain excess water and various metabolic molecules in the body that cannot be excreted.
  • the most commonly used clinical treatment method for patients with renal failure before kidney transplantation is hemodialysis.
  • the patient's blood and dialysate are introduced into the dialyzer with a hollow fiber membrane at the same time. With the help of the solute gradient and osmosis on both sides of the porous membrane, Gradient, remove excess water and metabolic molecules from the body through ultrafiltration, diffusion, convection, etc.
  • hemodialysis technology can effectively remove excess metabolic molecules from the blood, unlike natural kidneys that can continuously purify the blood, the hemodialysis equipment currently used clinically is bulky and unportable, and patients have to go to the hospital for dialysis 3-4 times a week. , this intermittent dialysis method will not only increase the risk of various cardiovascular diseases, but also bring a lot of inconvenience to patients' daily life.
  • the current solution strategy is to additionally introduce nanoporous adsorbents, add a dialysate regeneration system, and connect it in series with the hemodialyzer.
  • activated carbon fibers immobilized with ion-selective urease can selectively intercept toxins.
  • this technology has a reasonable structure, simple process and is easy to carry, its adsorption efficiency per unit volume of adsorbent is low, the adsorption column needs to be replaced frequently, and it is difficult to control whether the regenerated dialysate meets the reuse standards. Therefore, developing new blood purification methods that can remove excess water and metabolic substances from the patient's body without using dialysate is an urgent problem that needs to be solved in the field of portable blood purification.
  • the goal of the present invention is to develop a new generation of blood purification methods, construct a new portable blood purification device, and break through the current limitations of using a large amount of dialysate for hemodialysis, which is not conducive to portability and wearability.
  • the blood-permeable membrane material can remove excess metabolic molecules from the blood without using dialysate, providing technical support for the subsequent optimization of clinical blood purification methods and the development of new portable blood purifiers.
  • a blood purification device including a multi-layer superimposed shell, a liquid-guiding frame, a blood-repellent breathable membrane, and a liquid circulation frame;
  • the liquid-guiding frame includes a liquid-guiding frame body and a condensed liquid outlet, and the liquid circulation frame It includes a liquid inlet, a liquid circulation frame body, and a liquid outlet.
  • the liquid inlet and the liquid outlet are respectively located at both ends of the liquid circulation frame body.
  • the structure of the blood purification device provided by the present invention is: a liquid conduction frame, a blood-repellent breathable membrane, and a liquid circulation frame are stacked in sequence and packaged in a casing.
  • the structure of the blood purification device provided by the present invention is a seven-layer sandwich structure, consisting of an outer shell, a liquid-conducting frame, a blood-repellent breathable membrane, a liquid circulation frame, a blood-repellent breathable membrane, a liquid-conducting frame, and an outer shell.
  • the blood-repellent breathable membrane has a porous network, and the pore size of the porous network is not greater than 3 mm.
  • the blood-repellent breathable membrane is an inorganic mesh membrane, a metal mesh membrane or a polymer membrane.
  • the surface of the hemophobic breathable membrane is modified with hydrophobic molecules.
  • the present invention also provides a portable blood purification device, which includes the blood purification device of the present invention, as well as a pump, a heat preservation device, a refrigeration device, and a circulation pipeline;
  • the blood purification device, pump, and insulation device are connected through circulation pipelines to form a closed loop;
  • the refrigeration device is arranged outside the blood purification device.
  • the temperature of the heat preservation device is maintained at 37°C ⁇ 3°C, and the refrigeration device maintains the outer temperature of the blood-repellent breathable membrane lower than that maintained by the heat preservation device. temperature.
  • the present invention also provides a portable blood purification device, which includes the blood purification device of the present invention, as well as a pump, a refrigeration device, and a pipeline;
  • the blood purification device and the pump are connected through pipelines to form a fluid channel, and interfaces are provided at both ends of the fluid channel;
  • the refrigeration device is arranged outside the blood purification device.
  • the present invention also provides a blood purification method based on a hemophobic breathable membrane material. Based on the evaporation/condensation principle, a temperature difference is set on both sides of the membrane. The temperature inside the membrane is higher than the temperature outside the membrane. The breathability of the membrane is used to allow blood to flow through the membrane.
  • the blood breathable membrane is used, the water in the liquid carries small molecular substances in the form of vapor through the pores on the membrane to the outside of the membrane, and is condensed and exported outside the membrane.
  • the small molecule substances include at least one of water, uric acid, urea, creatinine, guanidines, amines, and phenolic substances.
  • the present invention provides a blood purification method based on a hemophobic breathable membrane material and a constructed blood purification device, portable blood purification device, equipment and the like.
  • a blood purification method based on a hemophobic breathable membrane material and a constructed blood purification device, portable blood purification device, equipment and the like.
  • dialysate When flowing through the blood-repellent breathable membrane, the temperature difference between the inside and outside of the membrane is controlled. Excess water molecules and metabolic molecules in the blood in the membrane evaporate in the form of vapor to condense outside the membrane, thereby achieving the removal of excess metabolic molecules in the blood.
  • the device, device and equipment of the present invention have simple preparation process and strong implementability.
  • hemophobic breathable membrane materials and regulating the temperature difference between the inside and outside of the membrane excess water and metabolic molecules in the blood can be removed.
  • Blood purification devices built based on this method are expected to be portable and wearable.
  • FIG. 1 Schematic diagram of the blood purification method according to the present invention
  • Figure 2 Schematic diagram of an exemplary blood purification device constructed according to the method of the present invention.
  • FIG 3 Schematic diagram of an exemplary blood purification device frame constructed according to the method of the present invention, including a liquid guiding frame (left) and a liquid circulation frame (right)
  • Figure 4 Schematic diagram of a portable blood purification device constructed according to the present invention.
  • Figure 5 Scanning electron microscope picture of the blood-repellent breathable membrane material
  • FIG. 6 3D printed liquid guide frame (left) and liquid circulation frame (right)
  • the present invention provides a blood purification method based on a hemophobic breathable membrane.
  • the method relies on the evaporation/condensation principle, setting a temperature difference on both sides of the membrane, and utilizing the breathability of the membrane.
  • blood flows through the breathable hemophobic membrane, wherein The water carries metabolic molecules in the form of vapor through the pores on the membrane to the outside of the membrane, and is condensed and exported outside the membrane (as shown in Figure 1).
  • a blood purification device based on the hemophobic breathable membrane is provided, and a portable blood purification device and equipment are constructed based on the device.
  • the metabolic molecules that can be purified are mainly evaporable small molecular substances with a molecular weight Mn ⁇ 500D; their types include but are not limited to water, uric acid (nuclear Protein and nucleic acid catabolite), urea (protein breakdown product), creatinine (phosphate metabolite in muscle), guanidines (metabolites of certain amino acids and creatine), amines (including aliphatic amines, aromatic amines and Polyamines), phenols (intestinal bacterial metabolites) substances, etc.
  • the blood purification device of the present invention includes a multi-layered superimposed shell, a liquid-guiding frame, a blood-repellent breathable membrane, and a liquid circulation frame.
  • the basic structure of an exemplary blood purification device is: a liquid conduction frame - a blood-repellent breathable membrane - a liquid circulation frame are stacked in sequence and packaged in a shell.
  • the outer casing, the liquid-conducting frame, the blood-repellent breathable membrane, and the liquid circulation frame can be in the form of plates, which are stacked to form a flat-plate blood purification device; or the outer casing, the liquid-conducting frame, the blood-repellent breathable membrane, and the liquid circulation frame can be in the form of a cylinder. Shape, stacked to form a cylindrical blood purification device. You can also choose other multi-layer overlay styles according to actual needs.
  • the structure of a preferred blood purification device is shown in Figure 2: the liquid-conducting frame-the blood-repellent breathable membrane-the liquid circulation frame-the blood-repellent breathable membrane-the liquid-conducting frame are stacked in sequence and packaged in a shell.
  • the structure of the preferred blood purification device is a symmetrical 7-layer sandwich structure, which is in sequence: outer shell - outer liquid conduction frame - blood-repellent breathable membrane - inner liquid circulation frame - blood-repellent breathable membrane - outer liquid conduction frame - shell.
  • This preferred structure is provided with blood-repellent breathable membranes on both sides of the liquid circulation frame, which can increase the contact area between the liquid to be treated and the blood-repellent breathable membrane.
  • the liquid circulation frame includes a liquid inlet, a liquid circulation frame body, and a liquid outlet.
  • the liquid inlet and liquid outlet are respectively located at both ends of the liquid circulation frame body, serving as interfaces for further communication with the pipeline.
  • the liquid to be purified including but not limited to, for example, blood
  • the liquid to be purified enters the liquid circulation frame from the liquid inlet and flows through the blood-repellent breathable membranes provided on one or both sides of the liquid circulation frame, part of the water in the liquid to be purified carries the Small molecules (such as metabolic small molecules) pass through the pores in the membrane to the outside of the membrane in the form of vapor.
  • the liquid guide frame includes a liquid guide frame body and a condensed liquid outlet. After the vapor passing through the blood-repellent breathable membrane encounters cold and condenses, it flows out from the condensed liquid outlet.
  • the multi-layered liquid-conducting frame, blood-repellent breathable membrane, and liquid circulation frame are encapsulated in the casing.
  • the material of the casing is not particularly limited. A transparent material, such as glass, is preferred to facilitate observation of the operating status of the monitoring device.
  • Types of blood-repellent breathable membranes include but are not limited to: inorganic mesh (stainless steel mesh, copper mesh, silicon-based mesh, titanium-based mesh, activated carbon mesh, porous glass membrane), metal mesh, polymer membrane (cellulose and Its derivative membrane, cuprammonium cellulose membrane, cellulose acetate membrane, nitrocellulose membrane, polymethylmethacrylate membrane, polyethersulfone membrane, polyamide membrane, polysulfone membrane, polyacrylonitrile membrane, polytetrafluoroethylene film, polycarbonate film, copper imitation film, cupro ammonia film, blood imitation film, diacetate and triacetate films, polymethylmethacrylate, polylactic acid film, collagen film or chitin film), etc.
  • inorganic mesh stainless steel mesh, copper mesh, silicon-based mesh, titanium-based mesh, activated carbon mesh, porous glass membrane
  • metal mesh metal mesh
  • polymer membrane cellulose and Its derivative membrane, cuprammonium cellulose membrane, cellulose acetate membrane, nitrocellulose
  • the pore size of the porous network of the blood-repellent breathable membrane is 0 ⁇ 3 mm, for example, no larger than 3 mm.
  • the blood-repellent breathable membrane is preferably a hydrophobic membrane with surface-modified hydrophobic molecules, which can maintain the blood-repellent performance more permanently.
  • Hemophobic means that blood does not infiltrate on the membrane surface, and the contact angle of blood droplets is greater than 90 degrees and less than 180 degrees.
  • the surface of the hemophobic breathable membrane has micro-nano roughness, including but not limited to micro-nanoparticles, nanofibers, nanorods, nanotubes, nanospheres, and nanoflowers.
  • Preparation methods for blood-repellent breathable membranes include electrospinning, electrospraying, chemical vapor deposition, electrochemical deposition, layer-by-layer deposition, phase separation, imprinting, sol-gel, hydrothermal, template, and photolithography. wait.
  • the present invention further provides a portable blood purification device, which includes the blood purification device of the present invention, a pump, a heat preservation device, a refrigeration device, and a circulation pipeline.
  • a portable blood purification device which includes the blood purification device of the present invention, a pump, a heat preservation device, a refrigeration device, and a circulation pipeline.
  • the liquid inlet and liquid outlet of the liquid circulation frame are used as interfaces for connecting the blood purification device and the circulation pipeline.
  • Blood purification devices, pumps, and insulation devices are connected through circulation pipelines to form a closed loop.
  • the refrigeration device is arranged outside the blood purification device.
  • the specific form of the pump is not particularly limited and can be various portable pumps suitable for dialysis, such as micropumps and peristaltic pumps. According to actual needs, one or more pumps can be installed.
  • the pump pumps the liquid to be purified into the liquid circulation frame of the blood purification device.
  • the liquid to be purified flows through the blood-repellent breathable membrane, part of the water carries small molecules in the form of vapor and passes through the pores on the membrane to reach the membrane. outside.
  • the refrigeration device maintains a lower temperature outside the membrane, thereby condensing the vapor reaching the outside of the membrane and flowing out from the condensed liquid outlet.
  • the purified liquid flows through the hemophobic breathable membrane, it flows out from the liquid outlet of the liquid circulation frame and enters the heat preservation device. After heat preservation, it continues to circulate in the pipeline.
  • the heat preservation device is set to maintain the temperature at 37°C ⁇ 3°C, that is, the temperature of the liquid to be treated that circulates into the hemophobic breathable membrane of the blood purification device is controlled to 37°C ⁇ 3°C. ° C, preferably 37 ° C; the refrigeration device maintains the membrane outer temperature of the hemophobic breathable membrane lower than the temperature maintained by the heat preservation device, for example lower than 37 ° C, preferably lower than 20 ° C.
  • the present invention also provides a portable blood purification equipment, including the blood purification device of the present invention, a pump, a refrigeration device, and a pipeline.
  • the refrigeration device is arranged outside the blood purification device.
  • the liquid inlet and liquid outlet of the liquid circulation frame are used as interfaces for connecting the blood purification device and the pipeline.
  • the blood purification device and the pump are connected through pipelines to form a fluid channel; interfaces are provided at both ends of the fluid channel to establish connections with blood vessels of organisms (such as experimental animals, patients in need, etc.).
  • the biological fluid such as blood
  • the biological fluid is pumped into the liquid circulation frame of the blood purification device and flows through the blood-repellent breathable membrane.
  • Part of the water carries small molecules in the form of vapor and passes through the pores on the membrane to the outside of the membrane.
  • the refrigeration device maintains a temperature outside the membrane that is lower than the body temperature of the living body, thereby condensing the vapor reaching the outside of the membrane and flowing out from the condensed liquid outlet. After the body fluid flows through the hemophobic breathable membrane, it flows out from the liquid outlet of the liquid circulation frame and returns to the living body to continue circulation.
  • Urea solutions with concentrations of 0.5, 1, 5, 10, 25, and 50 mg/mL can be removed by this method. And compared with the traditional fixed-point blood purification method in hospitals, this method does not require the use of dialysate and can be portable and wearable.
  • the only materials required are blood purification devices based on hemophobic breathable membrane materials, peristaltic pumps, insulation devices, and condensation devices. Devices and circulatory systems. This reflects the advantages of the portable blood purification device, device, equipment and method based on the hemophobic breathable membrane material in the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

基于疏血透气膜(3)的血液净化方法及器件、装置、设备,利用疏血透气膜(3)的透气性,控制疏血透气膜(3)内外的温度差,在血液流经疏血透气膜(3)时,血液中的水携带着代谢分子以蒸气的形式透过疏血透气膜(3)上的孔到达疏血透气膜(3)外,并在疏血透气膜(3)外冷凝导出,可在不需要使用透析液的情况下,实现血液中过量水分以及代谢物质的清除。

Description

基于疏血透气膜材料的血液净化方法及器件、装置、设备 技术领域
本发明涉及一种基于疏血透气膜材料的血液净化方法及器件、装置、设备,具体而言,该血液净化方法及器件、装置、设备是基于疏血透气膜材料,通过控制膜内外的温度差,利用蒸发/冷凝原理,在不需要透析液的情况下,完成对血液中过量代谢分子的清除,可广泛用于多种血液疾病的治疗领域。
背景技术
肾脏疾病,如慢性肾病和终末期肾病,具有较高的发病率和致死率。这类患者由于肾脏功能受损,体内潴留着过量的水分及各种代谢分子无法排出体外。对肾功能衰竭的病人在进行肾脏移植前临床上最常采用的治疗手段是血液透析,将患者血液与透析液同时引入具有中空纤维膜的透析器中,借助多孔膜两侧的溶质梯度、渗透梯度,通过超滤、弥散、对流等方式清除体内过量的水分及代谢分子。尽管血液透析技术可以有效清除血液中多余的代谢分子,但与天然肾脏可以连续净化血液不同,目前临床上使用的血液透析设备笨重无法携带,患者不得不每周去医院进行3-4次的透析,这种间歇性的透析方式不但会增加多种心血管疾病的发病风险,还会给患者的日常生活带来诸多不便。
为了解决上述问题,科研人员相继开发出了各种各样的便携可穿戴式透析器以及连续肾脏替代系统。现有技术通常在微流控芯片中集成多孔膜对生物分子进行清除。虽然芯片微型化,有利于便携可穿戴。但是,上述微型化的微流控血液净化芯片的设计仍然依赖于传统的血液透析原理,在血液净化时需要使用大量透析液,以维持透析膜两侧足够的浓度梯度,大量的透析液使用需求阻碍了便携可穿戴血液净化器在临床的推广。目前的解决策略是通过额外引入纳米多孔吸附剂,附加透析液再生系统,并与血液透析器串联。现有技术中,离子选择脲酶固定的活性碳纤维,能够选择性地截留毒素。虽然该技术结构合理,流程简单且携带方便,但是其单位体积的吸附剂吸附效率低,需要频繁更换吸附柱,又难以控制再生后的透析液是否达到再利用的标准。因此开发新型的血液净化方法,能够在不使用透析液的情况下,实现患者体内过多的水分及代谢物质的清除,是目前便携式血液净化领域亟待解决的问题。
发明内容
有鉴于现有技术的上述缺陷,本发明的目标在于发展新一代血液净化方法,构建新型的便携式血液净化装置,突破目前血液透析需要使用大量透析液,不利于便携可穿戴的限制,通过利用疏血透气膜材料,实现在不使用透析液的情况下对血液中过量的代谢分子进行清除,为后续的临床血液净化方法的优化以及新型便携式血液净化器的开发提供技术支持。
为实现上述目的,本发明采用以下技术方案:
一种血液净化器件,包括呈多层叠加式构建的外壳、导液框架、疏血透气膜、液体循环框架;所述导液框架包括导液框本体和冷凝液体导出口,所述液体循环框架包括液体入口、液体循环框本体、液体出口,所述液体入口、所述液体出口分别位于所述液体循环框本体的两端。
进一步地,本发明提供的血液净化器件的结构为:导液框架、疏血透气膜、液体循环框架依次叠加,并封装在外壳内。
进一步地,本发明提供的血液净化器件的结构为七层夹心式结构,依次为外壳、导液框架、疏血透气膜、液体循环框架、疏血透气膜、导液框架、外壳。
进一步地,在本发明提供的血液净化器件中,所述疏血透气膜具有多孔网络,所述多孔网络的孔径不大于3 mm。
进一步地,在本发明提供的血液净化器件中,所述疏血透气膜为无机网膜、金属网膜或高分子膜。
进一步地,在本发明提供的血液净化器件中,所述疏血透气膜的表面由疏水分子修饰。
本发明还提供一种便携式血液净化装置,其包括本发明的血液净化器件,以及泵、保温装置、制冷装置、循环管路;
其中,所述血液净化器件、泵、保温装置通过循环管路连接,构成闭环回路;
所述制冷装置设置在所述血液净化器件的外侧。
进一步地,本发明的便携式血液净化装置工作时,所述保温装置的温度保持在37℃±3℃,所述制冷装置维持所述疏血透气膜的膜外温度低于所述保温装置保持的温度。
本发明还提供一种便携式血液净化设备,其包括本发明的血液净化器件,以及泵、制冷装置、管路;
其中,所述血液净化器件和所述泵通过管路连接,构成流体通道,所述流体通道的两端设有接口;
所述制冷装置设置在所述血液净化器件的外侧。
本发明亦提供一种基于疏血透气膜材料的血液净化方法,基于蒸发/冷凝原理,在膜两侧设置温度差,膜内温度高于膜外温度,利用膜的透气性,血液流经疏血透气膜时,液体中的水分携带着小分子物质以蒸气的形式透过膜上的孔到达膜外,并在膜外冷凝导出。
进一步地,在本发明的基于疏血透气膜材料的血液净化方法中,所述小分子物质包括水、尿酸、尿素、肌酐、胍类、胺类、酚类物质中的至少一种。
本发明提供的基于疏血透气膜材料的血液净化方法以及所构建的血液净化器件、便携式血液净化装置、设备和,在进行血液净化时,无需使用透析液,仅靠蒸发/冷凝的原理,血液流经疏血透气膜时,控制膜内外的温度差,膜内的血液中过量的水分子以及代谢分子以蒸气的形式蒸发至膜外冷凝,从而实现对血液中过量代谢分子的清除。本发明的器件、装置和设备制备工艺简单,方法可实施性强。利用疏血透气膜材料,调控膜内外的温度差等,即可实现对血液中过量水分以及代谢分子的清除,基于该方法构筑的血液净化器件有望实现便携可穿戴。
附图说明
图1:根据本发明的血液净化方法示意图
图2:根据本发明所述的方法构建的一种示例性的血液净化器件示意图
图3:根据本发明所述的方法构建的一种示例性的血液净化器件框架示意图,导液框架(左)及液体循环框架(右)
图4:根据本发明所构建的便携式血液净化装置示意图 
图5:疏血透气膜材料的扫描电镜图片
图6:3D打印的导液框架(左)及液体循环框架(右)
图7:尿素清除效率
图2中:1为外壳;2为导液框架;3为疏血透气膜;4为液体循环框架;5为液体入口;6为液体出口,7为冷凝液体导出口。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
本发明提供一种基于疏血透气膜的血液净化方法,所述方法依赖于蒸发/冷凝原理,在膜两侧设置温度差,利用膜的透气性,血液流经透气性疏血膜时,其中的水分携带着代谢分子以蒸气的形式透过膜上的孔到达膜外,并在膜外冷凝导出(图1所示)。
结合本发明所述的基于疏血透气膜的血液净化方法,提供了一种基于疏血透气膜的血液净化器件,并基于该器件构建了便携式的血液净化装置及设备。所述的基于疏血透气膜的血液净化方法及器件、装置、设备,其可以净化的代谢分子主要为可蒸发的小分子物质,分子量Mn<500D;其种类包括但不限于水、尿酸(核蛋白与核酸分解代谢产物)、尿素(蛋白质分解产物)、肌酐(肌肉内磷酸代谢产物)、胍类(某些氨基酸及肌酸的代谢产物)、胺类(包括脂肪族胺、芳香族胺和多胺)、酚类(肠道细菌代谢产物)物质等。
血液净化器件
本发明的血液净化器件包括呈多层叠加式构建的外壳、导液框架、疏血透气膜、液体循环框架。
一种示例性的血液净化器件的基本结构为:导液框架-疏血透气膜-液体循环框架依次叠加,并封装在外壳中。
外壳、导液框架、疏血透气膜、液体循环框架的具体形式没有限制,只要这些部件可构建出多层结构即可。例如,外壳、导液框架、疏血透气膜、液体循环框架可以为板状,层叠后构成平板式的血液净化器件;或者,外壳、导液框架、疏血透气膜、液体循环框架可以为筒状,套叠后构成筒式的血液净化器件。亦可根据实际需要选择其它的多层叠加样式。
一种优选的血液净化器件的结构如图2所示:导液框架-疏血透气膜-液体循环框架-疏血透气膜-导液框架依次层叠,并封装在外壳中。换言之,该优选的血液净化器件结构是对称的7层夹心式结构,依次为外壳-外侧的导液框架-疏血透气膜-内侧的液体循环框架-疏血透气膜-外侧的导液框架-外壳。此优选的结构在液体循环框架两侧均设有疏血透气膜,可增大待处理液体与疏血透气膜的接触面积。
如图3右图所示,所述液体循环框架包括液体入口、液体循环框本体、液体出口。液体入口、液体出口分别位于液体循环框本体的两端,作为进一步与管路连通的接口。待净化的液体(包括但不限于,例如,血液)从液体入口进入液体循环框,流经设于液体循环框一侧或两侧的疏血透气膜时,待净化液体中的部分水携带着小分子(如代谢小分子)以蒸气的形式透过膜上的孔到达膜外。
如图3左图所示,导液框架包括导液框本体和冷凝液体导出口,透过疏血透气膜的蒸气遇冷冷凝后,从冷凝液体导出口流出。
多层叠加的导液框架、疏血透气膜、液体循环框架封装在外壳中,外壳的材质没有特别限定,优选透明材质,例如玻璃,便于观察监控器件的运行状况。疏血透气膜种类包括但不限于:无机网膜(不锈钢网、铜网、硅基网膜、钛基网膜、活性炭网膜、多孔玻璃膜),金属网膜,高分子膜(纤维素及其衍生膜、铜氨纤维素膜、醋酸纤维素膜、硝化纤维素膜、聚甲基丙烯酸甲酯膜、聚醚砜膜、聚酰胺膜、聚砜膜、聚丙烯腈膜、聚四氟乙烯膜、聚碳酸酯膜、铜仿膜、铜氨膜、血仿膜、双醋酸及三醋酸膜、聚甲基丙烯酸甲酯,聚乳酸膜、胶原膜或甲壳素膜)等。
疏血透气膜多孔网络的孔径为0 ~ 3 mm,例如不大于3mm。
疏血透气膜优选为表面修饰疏水分子的疏水膜,可更持久地维持疏血性能。
疏血指血液在膜表面不发生浸润,血液液滴接触角大于90度,小于180度。
优选疏血透气膜的表面具有微纳米粗糙度,包括但不限于微纳米颗粒、纳米纤维、纳米棒、纳米管、纳米球、纳米花。
疏血透气膜的制备方法包括电纺丝、电喷涂、化学气相沉积、电化学沉积、逐层沉积、相分离、压印法、溶胶-凝胶法、水热法、模板法、光刻法等。
血液净化装置
本发明进一步提供一种便携式血液净化装置,该血液净化装置包括本发明的血液净化器件、泵、保温装置、制冷装置、循环管路。如图4所示,以液体循环框架的液体入口、液体出口作为血液净化器件与循环管路连接的接口。血液净化器件、泵、保温装置通过循环管路连接,构成闭环回路。制冷装置设置在血液净化器件的外侧。
泵的具体形式没有特别限制,可以是适于透析用的各种便携式的泵,例如微泵、蠕动泵。根据实际需要,泵可设置一个或多个。
血液净化装置工作时,泵将待净化液体泵入血液净化器件的液体循环框架,待净化液体流经疏血透气膜时,部分水携带着小分子以蒸气的形式透过膜上的孔到达膜外。制冷装置维持较低的膜外温度,由此使得到达膜外的蒸气冷凝,从冷凝液体导出口流出。待净化液体流过疏血透气膜后,从液体循环框架的液体出口流出,进入保温装置,保温之后继续在管路中循环。
本发明的便携式血液净化装置在使用时,优选保温装置设定为温度保持在37℃±3℃,即,将循环流入血液净化器件的疏血透气膜的待处理液体温度控制为37℃±3℃,优选37℃;制冷装置维持疏血透气膜的膜外温度低于所述保温装置保持的温度,例如低于37℃,优选为20℃以下。
血液净化设备
本发明还提供一种便携式血液净化设备,包括本发明的血液净化器件、泵、制冷装置、管路。
制冷装置设置在血液净化器件的外侧。以液体循环框架的液体入口、液体出口作为血液净化器件与管路连接的接口。血液净化器件和泵通过管路连接,构成流体通道;流体通道的两端设有接口,用于与生物体(例如实验动物、有需要的患者等)的血管建立连接。工作时,生物体的体液(例如血液)被泵入血液净化器件的液体循环框架,流经疏血透气膜,部分水携带着小分子以蒸气的形式透过膜上的孔到达膜外。制冷装置维持低于生物体体温的膜外温度,由此使得到达膜外的蒸气冷凝,从冷凝液体导出口流出。体液流过疏血透气膜后,从液体循环框架的液体出口流出,回到生物体内继续循环。
实施例
不同浓度的尿素原溶液中尿素的清除效果评估:
尿素溶液的配制:
分别称取尿素50 mg、100 mg、500 mg、1 g、2.5 g、5 g ,溶解在100 mL PBS缓冲溶液中,配成浓度为0.5、1、5、10、25、50 mg/mL的尿素溶液,放置在37℃水浴锅中保温。
基于疏血透气膜材料的便携式血液净化器件的制备:
选用300目的不锈钢网膜材料,利用化学气相沉积方法在其表面制备粗糙的微纳米结构,然后通过表面修饰低表面能分子,制备透气性疏血网膜材料,结果如图5所示。利用3D打印设计器件外框(图6),用防水的硅橡胶将透气性疏水网膜和器件外框架封装在一起,制备血液净化器件。
对尿素的清除效果评估:
将上述步骤1中保温的尿素溶液通过蠕动泵泵入上述步骤2的血液净化器件中,在流过疏血膜后,液体重新泵回保温瓶中,参与循环(图4)。在血液流经疏血膜材料时,利用膜的透气性,给血液净化器件外侧加之冷凝装置,控制膜内外的温度差,血液中的水携带着代谢分子以蒸气的形式透过膜上的孔到达膜外,并在膜外冷凝导出,由此可实现对过量水及尿素的清除。结果如图7所示,浓度为0.5,1,5,10,25,50 mg/mL的尿素溶液均可以用该种方法清除。并且相比于传统的医院定点式的血液净化方法,该种方法无需使用透析液,可以实现便携可穿戴,所需材料只有基于疏血透气膜材料的血液净化器件、蠕动泵、保温装置、冷凝装置、循环系统。由此体现出本发明中的基于疏血透气膜材料的便携式血液净化器件、装置、设备及方法的优越性。

Claims (11)

  1. 一种血液净化器件,其特征在于,包括呈多层叠加式构建的外壳、导液框架、疏血透气膜、液体循环框架;
    所述导液框架包括导液框本体和冷凝液体导出口,
    所述液体循环框架包括液体入口、液体循环框本体、液体出口,所述液体入口、所述液体出口分别位于所述液体循环框本体的两端。
  2.  根据权利要求1所述的血液净化器件,其中,所述血液净化器件的结构为:导液框架、疏血透气膜、液体循环框架依次叠加,并封装在外壳内。
  3.  根据权利要求1所述的血液净化器件,其中,所述血液净化器件的结构为七层夹心式结构,依次为外壳、导液框架、疏血透气膜、液体循环框架、疏血透气膜、导液框架、外壳。
  4.  根据权利要求1所述的血液净化器件,其中,所述疏血透气膜具有多孔网络,所述多孔网络的孔径不大于3 mm。
  5.  根据权利要求1所述的血液净化器件,其中,所述疏血透气膜为无机网膜、金属网膜或高分子膜。
  6.  根据权利要求1所述的血液净化器件,其中,所述疏血透气膜的表面由疏水分子修饰。
  7.  一种便携式血液净化装置,其包括:
    根据权利要求1-6任一项所述的血液净化器件、泵、保温装置、制冷装置、循环管路;
    其中,所述血液净化器件、泵、保温装置通过循环管路连接,构成闭环回路;
    所述制冷装置设置在所述血液净化器件的外侧。
  8.  根据权利要求7所述的便携式血液净化装置,其中,所述便携式血液净化装置工作时,所述保温装置的温度保持在37℃±3℃,所述制冷装置维持所述疏血透气膜的膜外温度低于所述保温装置保持的温度。
  9.  一种便携式血液净化设备,其包括:
    根据权利要求1-6任一项所述的血液净化器件、泵、制冷装置、管路;
    其中,所述血液净化器件和所述泵通过管路连接,构成流体通道,所述流体通道的两端设有接口;
    所述制冷装置设置在所述血液净化器件的外侧。
  10.  一种基于疏血透气膜材料的血液净化方法,其特征在于,所述净化方法基于蒸发/冷凝原理,在膜两侧设置温度差,膜内温度高于膜外温度,利用膜的透气性,血液流经疏血透气膜时,液体中的水分携带着小分子物质以蒸气的形式透过膜上的孔到达膜外,并在膜外冷凝导出。
  11.  根据权利要求10所述的基于疏血透气膜材料的血液净化方法,其中,所述小分子物质包括水、尿酸、尿素、肌酐、胍类、胺类、酚类物质中的至少一种。
PCT/CN2023/106717 2022-08-04 2023-07-11 基于疏血透气膜材料的血液净化方法及器件、装置、设备 WO2024027470A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210934680.9A CN115300692A (zh) 2022-08-04 2022-08-04 基于超疏血透气膜材料的血液净化方法、器件及装置
CN202210934680.9 2022-08-04

Publications (1)

Publication Number Publication Date
WO2024027470A1 true WO2024027470A1 (zh) 2024-02-08

Family

ID=83859019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106717 WO2024027470A1 (zh) 2022-08-04 2023-07-11 基于疏血透气膜材料的血液净化方法及器件、装置、设备

Country Status (2)

Country Link
CN (1) CN115300692A (zh)
WO (1) WO2024027470A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115300692A (zh) * 2022-08-04 2022-11-08 电子科技大学 基于超疏血透气膜材料的血液净化方法、器件及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039865B1 (ja) * 1999-03-04 2000-05-08 ホスパル株式会社 人工腎臓とそれに使用する穿刺ガイド
US20100206784A1 (en) * 2009-02-18 2010-08-19 Fresenius Medical Care Holdings, Inc. Extracorporeal Fluid Circuit and Related Components
US20200055001A1 (en) * 2018-08-17 2020-02-20 Yoram Palti Extracting/Introducing Molecules from/to Blood or Other Liquids
WO2022204194A1 (en) * 2021-03-23 2022-09-29 University Of Washington Portable hemodialysis systems
CN115300692A (zh) * 2022-08-04 2022-11-08 电子科技大学 基于超疏血透气膜材料的血液净化方法、器件及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039865B1 (ja) * 1999-03-04 2000-05-08 ホスパル株式会社 人工腎臓とそれに使用する穿刺ガイド
US20100206784A1 (en) * 2009-02-18 2010-08-19 Fresenius Medical Care Holdings, Inc. Extracorporeal Fluid Circuit and Related Components
US20200055001A1 (en) * 2018-08-17 2020-02-20 Yoram Palti Extracting/Introducing Molecules from/to Blood or Other Liquids
WO2022204194A1 (en) * 2021-03-23 2022-09-29 University Of Washington Portable hemodialysis systems
CN115300692A (zh) * 2022-08-04 2022-11-08 电子科技大学 基于超疏血透气膜材料的血液净化方法、器件及装置

Also Published As

Publication number Publication date
CN115300692A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US11596901B2 (en) Biomimetically designed modular microfluidic-based capillaries and lymphatic units for kidney and liver dialysis systems, organ bio-reactors and bio-artificial organ support systems
CN105120913B (zh) 用于模块化受控相容流路的钠和缓冲液源盒
Su et al. Evaluation of polyethersulfone highflux hemodialysis membrane in vitro and in vivo
WO2024027470A1 (zh) 基于疏血透气膜材料的血液净化方法及器件、装置、设备
CN105916532A (zh) 用于纯化血液和其它流体的氧化还原控制的电吸着和分解装置
KR101126771B1 (ko) 단백질 결합 물질 제거 장치
KR20060113720A (ko) 휴대용 인체 투석용 투석액 재생 시스템
CA2741572A1 (en) Portable peritoneal dialysis system
KR20180075550A (ko) 멤브레인 카테터
Tijink et al. Mixed matrix membranes: a new asset for blood purification therapies
CN108430529A (zh) 用于体外血液处理的系统和方法
CN111315424A (zh) 使用包含组合的中空纤维过滤器模块和聚合物吸着剂的体外回路从血液去除毒素的方法
CN201123923Y (zh) 一种可治疗多器官功能障碍综合症的混合型人工肝系统
US5679231A (en) Gel bed dialyzer
US9950103B2 (en) Combination kidney and liver dialysis system and method
CN109646743A (zh) 一种血液透析废水回用的方法
CN109794172A (zh) 一种用于血液净化的抗菌中空纤维膜的制备方法
JP2023500797A (ja) 水性環境における半透膜を介したガス交換を改善する装置
JP3353466B2 (ja) 血液透析装置の透析液管理装置
Capuano et al. Membrane distillation of human plasma ultrafiltrate and its theoretical applications to haemodialysis techniques
CN218356829U (zh) 一种血液透析用体外循环连接管
JP3353467B2 (ja) 血液透析装置の透析液管理装置
CN213284806U (zh) 一种血液净化组合装置
CN201171818Y (zh) 蛋白循环吸附滤过系统
CN210409110U (zh) 一种具有多层过滤效果的血液净化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849179

Country of ref document: EP

Kind code of ref document: A1