WO2024027392A1 - 天线装置和通信设备 - Google Patents

天线装置和通信设备 Download PDF

Info

Publication number
WO2024027392A1
WO2024027392A1 PCT/CN2023/103442 CN2023103442W WO2024027392A1 WO 2024027392 A1 WO2024027392 A1 WO 2024027392A1 CN 2023103442 W CN2023103442 W CN 2023103442W WO 2024027392 A1 WO2024027392 A1 WO 2024027392A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shifter
phase
antenna
antenna device
antenna array
Prior art date
Application number
PCT/CN2023/103442
Other languages
English (en)
French (fr)
Inventor
白雪
肖伟宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027392A1 publication Critical patent/WO2024027392A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present application relates to the field of communication technology, and in particular to antenna devices and communication equipment in base station systems.
  • the phase shifter is the core component of the base station antenna.
  • the phase shifter can adjust the phase and amplitude, thereby adjusting the pattern direction of the base station antenna in space to meet the needs of flexible adjustment to cover different user areas. Therefore, the quality of the phase shifter design not only affects the gain, pattern and other indicators of the base station antenna, but also affects the size and cost.
  • existing base station antennas have insufficient beam scanning in the vertical or horizontal plane, which will lead to insufficient base station signal coverage.
  • Embodiments of the present application provide an antenna device and communication equipment. Embodiments of the present application can expand the vertical or horizontal beam scanning range of the base station antenna and improve signal coverage.
  • inventions of the present application provide an antenna device.
  • the antenna device may include an antenna array, a transmission mechanism, and a first phase shifter.
  • the antenna array may include a plurality of radiating units arranged in an array, and these radiating units may be used for radiating and receiving electromagnetic wave signals.
  • the first transmission mechanism can be connected to the first phase shifter, and the first transmission mechanism can control the movement of the first phase shifter.
  • the first phase shifter is disposed above the antenna array. When the electromagnetic waves radiated by the antenna array pass through the first phase shifter, the first phase shifter can control the phase of the electromagnetic waves radiated by the antenna array to deflect the beam of the antenna array.
  • the antenna array beam can be controlled and the base station antenna can be expanded.
  • Vertical or horizontal beam scanning range improves signal coverage.
  • the antenna device further includes a first radome. Both the first phase shifter and the antenna array can be disposed in the first radome; or the antenna array can be disposed in the first radome and the first phase shifter is disposed in the second radome of another antenna device.
  • the first phase shifter may include multiple phase shift blocks, and the multiple phase shift blocks may cover a part of the aperture area of the antenna array. This not only allows the antenna array beam to be controlled, but also has better economic effects and reduces costs.
  • the first phase shifter includes multiple phase shift blocks, and the multiple phase shift blocks can cover the entire aperture area of the antenna array. This can expand the vertical or horizontal beam scanning range of the base station antenna and improve signal coverage.
  • the antenna device further includes a first guide rail
  • the first phase shifter may include a plurality of first phase shift blocks located above the antenna array, and the plurality of first phase shift blocks may be located on the first
  • the first transmission mechanism can control a plurality of first phase-shifting blocks to slide on the first guide rail. Based on such a design, the first phase shifter can achieve different physical states through the control of the first transmission mechanism, thereby causing the beam of the antenna device to dynamically change.
  • the antenna device may further include a second guide rail
  • the first phase shifter may further include a plurality of second phase shift blocks located above the antenna array, and the plurality of second phase shift blocks may be located above the antenna array.
  • the first transmission mechanism can control a plurality of second phase-shifting blocks to slide on the second guide rail. Based on such a design, the first phase shifter can achieve different physical states through the control of the first transmission mechanism, thereby causing the beam of the antenna device to dynamically change.
  • the first phase shifter may include multiple phase shifting structures, and each phase shifting structure may include a first phase shifting block and a second phase shifting block located above the antenna array.
  • the transmission mechanism can control the distance between the first phase shift block and the second phase shift block. Based on such a design, the first phase shifter can achieve different physical states through the control of the first transmission mechanism, thereby causing the beam of the antenna device to dynamically change.
  • the antenna device may further include a second phase shifter, the second phase shifter is connected to the radiating unit, and the second phase shifter may adjust the feed phase of the radiating unit.
  • the antenna device may further include a second transmission mechanism, and the second transmission mechanism may control the movement of the second phase shifter. In this way, the feed phases of different antenna ports can be changed to achieve different radiation beam directions.
  • the antenna array may further include a reflecting plate, the antenna array may be disposed on the upper surface of the reflecting plate, and the second phase shifter may be disposed on the lower surface of the reflecting plate.
  • embodiments of the present application provide a communication device, which includes the antenna device as described above.
  • the antenna device and communication equipment provided by the embodiments of the present application can be provided with spatial phase shifter components above the radiation aperture of the antenna array. Such a design can expand the vertical or horizontal beam scanning range of the base station antenna and improve the signal coverage. .
  • Figure 1 is an application environment diagram of the antenna device according to the embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an antenna device according to an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of an antenna device according to an embodiment of the present application.
  • FIG. 4 is another schematic structural diagram of an antenna device according to an embodiment of the present application.
  • FIG. 5 is another schematic structural diagram of an antenna device according to an embodiment of the present application.
  • FIG. 6 is another schematic structural diagram of an antenna device according to an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of an antenna device according to an embodiment of the present application.
  • FIG. 8 is another schematic structural diagram of an antenna device according to an embodiment of the present application.
  • FIG. 9 is another schematic structural diagram of an antenna device according to an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of the first phase shifter according to the embodiment of the present application.
  • FIG. 11 is another structural schematic diagram of the first phase shifter according to the embodiment of the present application.
  • FIG. 12 is another structural schematic diagram of the first phase shifter according to the embodiment of the present application.
  • FIG. 13 is a schematic diagram of the state of the first phase shifter shown in FIG. 12 .
  • Figure 14 is a schematic structural diagram of the first phase shifter according to the embodiment of the present application.
  • FIG. 15 is a schematic diagram of the state of the first phase shifter shown in FIG. 14 .
  • FIG. 16 is a schematic diagram of another state of the first phase shifter shown in FIG. 14 .
  • FIG. 17 is another structural schematic diagram of the first phase shifter according to the embodiment of the present application.
  • FIG. 18 is another structural schematic diagram of the first phase shifter according to the embodiment of the present application.
  • Figure 19 is another structural schematic diagram of the first phase shifter according to the embodiment of the present application.
  • Figure 20 is another structural schematic diagram of the first phase shifter according to the embodiment of the present application.
  • Figure 21 is a schematic structural diagram of a phase shifting block according to an embodiment of the present application.
  • Figure 22 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Embodiments of the present application provide an antenna device. By arranging a spatial phase shifter component above the radiation aperture of the antenna array, this can solve the problem of insufficient base station signal coverage caused by insufficient beam scanning of the base station antenna on the vertical or horizontal plane. .
  • the antenna device provided by the embodiments of the present application can be applied to communication equipment such as base stations to enable the communication equipment to implement signal transceiver functions.
  • the following description will take the antenna device being used in the base station antenna feed system as an example.
  • Figure 1 shows a scene diagram in which the antenna device according to the embodiment of the present application is applied to the base station antenna feed system.
  • the base station antenna system may include an antenna device 100, an adjustment bracket 210, a pole 220, a joint seal 230 and a grounding device 240.
  • the antenna device 100 can be installed at the top position of the pole 220 , and the other end of the antenna device 100 can be installed at the top position of the pole 220 through the adjustment bracket 210 . It can be understood that the The adjustment bracket 210 can be used to adjust the downtilt angle of the antenna.
  • the antenna device 100 can be connected to a ground device 240 via the joint seal 230 .
  • the joint seal 230 may be insulating sealing tape or PVC insulating tape.
  • the grounding device 240 may be used for DC grounding.
  • FIG. 2 is a schematic structural diagram of an antenna device 100 according to an embodiment of the present application.
  • the antenna device 100 may include an air interface phase shifter 10 , a feed network phase shifter 20 , a filter 30 , a calibration network 40 and an antenna array 50 .
  • the air interface phase shifter 10 can be used as the first phase shifter in the embodiment of the present application
  • the feed network phase shifter 20 can be used as the second phase shifter in the embodiment of the present application.
  • the antenna array 50 may include a plurality of radiating units 51 arranged in an array.
  • the radiation unit 51 is used for radiating and receiving electromagnetic wave signals.
  • the plurality of radiation units 51 may be disposed on the reflective plate.
  • the antenna array 50 may receive or transmit radio frequency signals through a feed network.
  • the feed network phase shifter 20 is connected to the antenna array 50 .
  • the feed network phase shifter 20 may be used to adjust the feed phases of the plurality of radiating units 51 . It can be understood that the feed network phase shifter 20 can change the feed phases of different antenna ports, thereby achieving different radiation beam directions.
  • the air-port phase shifter 10 can be connected to a transmission mechanism 80 , and the transmission mechanism 80 can control the mechanical movement of the air-port phase shifter 10 .
  • the feed network phase shifter 20 can be connected to the calibration network 40 to obtain the required calibration signal, thereby achieving different radiation beam directions.
  • the feed network phase shifter 20 can also be connected to a transmission mechanism 80 , and different radiation beam directions can be achieved through the transmission mechanism 80 . It can be understood that in some optional implementations, the transmission mechanism can adjust the mechanical movement of the air-port phase shifter 10 through electronic control.
  • the filter 30 is connected between the phase shifter 20 and the antenna connector 60 . It can be appreciated that signals can be fed into the antenna device 100 from the antenna connector 60 . In another optional implementation, the feed network phase shifter 20 can also be connected to the antenna connector 60 through a combiner.
  • the air interface phase shifter 10 may be located above the antenna array 50 .
  • the phase of the electromagnetic waves radiated by the antenna array 50 can be redistributed by the air interface phase shifter 10 , thereby deflecting the antenna beam.
  • the antenna device 100 may further include a radome 70 .
  • the air interface phase shifter 10 , the feed network phase shifter 20 , the filter 30 , the calibration network 40 and the antenna array 50 may all be located on the antenna. inside the cover 70.
  • the air interface phase shifter 10 and the antenna array 50 may be located in the same radome 70 .
  • FIG. 3 is a schematic structural diagram of an antenna device 100 provided by another embodiment of the present application.
  • the feed network phase shifter 20 , the filter 30 , the calibration network 40 and the The antenna array 50 may be located in the radome 70
  • the air interface phase shifter 10 may be located in the radome 71 of another antenna device 200 .
  • the air interface phase shifter 10 may be located in the radome of another antenna device different from the antenna array 50 .
  • the air-port phase shifter 10 can be connected to the transmission mechanism 80 .
  • the transmission mechanism 80 can control the movement of the air port phase shifter 10 .
  • the feed network phase shifter 20 can be connected to the calibration network 40 to obtain required calibration signals, thereby achieving different radiation beam directions.
  • the feed network phase shifter 20 can also be connected to a transmission mechanism, and different radiation beam directions can be achieved through the transmission mechanism.
  • FIG. 4 is a schematic structural diagram of an antenna device 100 provided by another embodiment of the present application.
  • the antenna device 100 may include an air interface phase shifter 10 , a feed network phase shifter 20 , an antenna array 50 and a transmission mechanism 80 .
  • the antenna array 50 may include a plurality of radiation units 51 arranged in an array.
  • the transmission mechanism 80 can connect the feed network phase shifter 20 and the air interface phase shifter 10 .
  • the feed network phase shifter 20 may connect the plurality of radiating units 51 .
  • the plurality of radiation units 51 may be disposed on the reflective plate. It can be understood that the air interface phase shifter 10 , the feed network phase shifter 20 , the plurality of radiating units 51 and the transmission mechanism 80 can all be disposed in the radome 70 .
  • the transmission mechanism 80 can be used to control the mechanical movement of the air interface phase shifter 10 and the feed network phase shifter 20 .
  • the antenna device 100 can control the mechanical movement of the air interface phase shifter 10 through the transmission mechanism 80 to achieve different states, so that the beam of the antenna changes dynamically.
  • FIG. 5 is a schematic structural diagram of an antenna device 100 provided by another embodiment of the present application.
  • the transmission mechanism 80 may include a motor 92 .
  • the motor 92 may be one of the components of the transmission mechanism 80 .
  • the antenna device 100 can control the movement of the air interface phase shifter 10 and the feed network phase shifter 20 through the motor 92 . Specifically, the antenna device 100 can control the movement of the air interface phase shifter 10 through the motor 92 to achieve different states, so that the beam of the antenna changes dynamically.
  • electromagnetic wave signals may be fed into the plurality of radiation units 51 through the feed network phase shifter 20 .
  • the motor 92 can control the amplitude and phase of the electromagnetic wave signal fed to the radiation unit 51 .
  • the antenna array can radiate and propagate electromagnetic waves into the air in a specific direction.
  • the air interface phase shifter 10 may be located above the antenna array 50 .
  • the phases of the electromagnetic waves radiated by the radiating unit 51 can be redistributed by the air interface phase shifter 10, thereby achieving antenna beam deflection.
  • the beam scanning range of the base station antenna in the vertical plane or the horizontal plane is larger, and it can have more beam selections.
  • FIG. 6 is a schematic structural diagram of an antenna device 100 provided by another embodiment of the present application.
  • the antenna device 100 in this embodiment may not include the feed network phase shifter 20 .
  • the plurality of radiating units 51 can be connected to the radio frequency module 90 , and the radio frequency module 90 can be used to feed signals to the antenna array 50 .
  • the motor 92 can be connected to the air interface phase shifter 10 .
  • the air-port phase shifter 10 may be located above the plurality of radiation units 51 . It can be understood that the antenna device 100 in this embodiment can control the mechanical movement of the air interface phase shifter 10 through the motor 92 to achieve different states, thereby causing the antenna beam to dynamically change.
  • the antenna device can expand the vertical or horizontal beam scanning range of the base station antenna, improve the coverage of the signal, and improve the user experience.
  • FIG. 7 is a schematic structural diagram of an antenna device 100 provided by another embodiment of the present application.
  • the antenna device 100 in this embodiment may further include a transmission mechanism 81 .
  • the transmission mechanism 80 is connected to the air port phase shifter 10 .
  • the transmission mechanism 81 is connected to the feed network phase shifter 20 , and the feed network phase shifter 20 can be connected to the plurality of radiating units 51 .
  • the air-port phase shifter 10 is located above the plurality of radiation units 51 , and the transmission mechanism 80 can be used to control the mechanical movement of the air-port phase shifter 10 .
  • the transmission mechanism 81 can control the mechanical movement of the feed network phase shifter 20 .
  • FIG. 8 is a schematic structural diagram of an antenna device 100 provided by another embodiment of the present application.
  • the transmission mechanism 80 in this embodiment may include a motor 92
  • the transmission mechanism 81 may include a motor 91 .
  • the motor 92 may be one of the transmission components of the transmission mechanism 80 .
  • the transmission mechanism 80 may also include transmission components such as pull rods.
  • the motor 91 may be one of the transmission components of the transmission mechanism 81 .
  • the transmission mechanism 81 may also include transmission components such as pull rods.
  • the motor 92 is connected to the air interface phase shifter 10 .
  • the motor 91 is connected to the feed network phase shifter 20 , and the feed network phase shifter 20 can be connected to the plurality of radiating units 51 .
  • the motor 92 can control the mechanical movement of the air port phase shifter 10 .
  • the motor 91 can control the mechanical movement of the feed phase shifter 20 .
  • the antenna device 100 can control the movement of the air interface phase shifter 10 through the motor 92 to achieve different states, thereby causing the antenna beam to dynamically change.
  • the air interface phase shifter 10 , the motor 92 , the feed network phase shifter 20 , the motor 91 and the plurality of radiating units 51 are all located in the radome 70 .
  • the air interface phase shifter 10 in this embodiment can be controlled by an independent motor 92 .
  • the control motor of the air interface phase shifter 10 can be different from the control motor of the feed network phase shifter 20.
  • Such a design can make the product configuration more flexible and facilitate the removal and maintenance of the motor. .
  • FIG. 9 is a schematic structural diagram of an antenna device 100 provided by another embodiment of the present application.
  • the motor 92 and the air interface phase shifter 10 in this embodiment can be disposed in the radome 71 of another antenna device 200 .
  • the motor 91 , the feed network phase shifter 20 and the plurality of radiating units 51 are disposed in the radome 70 .
  • the air interface phase shifter 10 and the motor 91 may be located in the radome 71 of another antenna device 200 that is different from the feed network phase shifter 20 and the plurality of radiating units 51 .
  • the antenna device 200 may be located above the aperture surface of the antenna device 100 .
  • the air interface phase shifter 10 can be connected to a motor 92 , and the motor 92 can control the mechanical movement of the air interface phase shifter 10 .
  • the air-port phase shifter 10 may be disposed above the plurality of radiation units 51 .
  • the antenna device 100 further includes a motor interface 93 , which may be disposed outside the radome 70 , and the antenna device 200 further includes a motor interface 94 .
  • the motor interface 94 may be disposed outside the radome 71 .
  • the motor interface 93 can be connected with the motor interface 94 .
  • the antenna device 100 may further include a motor chip 95 and a motor chip 96 .
  • the motor chip 95 can be connected to the motor 91 , and the motor 91 can be connected to the feed phase shifter 20 to control the mechanical movement of the feed phase shifter 20 .
  • the motor chip 95 can output a driving signal to the motor 91 , thereby allowing the motor 91 to control the mechanical movement of the feed network phase shifter 20 .
  • the motor interface 94 is connected to the motor 92 , and the motor chip 96 can be connected to the motor interface 93 .
  • the motor interface 93 can be connected with the motor interface 94 .
  • the motor chip 96 can establish a communication connection with the motor 92 through the motor interface 93 and the motor interface 94 .
  • the motor chip 96 can output a driving signal to the motor 92 through the motor interface 93 and the motor interface 94 . This allows the motor 92 to control the mechanical movement of the air port phase shifter 10 .
  • the motor chip 95 , the motor chip 96 and the motor 91 can all be disposed in the radome 70 of the antenna device 100 .
  • the motor 92 may be arranged in the radome 71 of the antenna device 200 .
  • the antenna device 100 may further include a control unit 97 .
  • the control unit 97 may be a microcontroller unit (Microcontroller Unit, MCU).
  • MCU Microcontroller Unit
  • the control unit 97 can output control instructions to the motor chip 95 and the motor chip 96 to control the motor 91 and the motor 92 .
  • control unit 97 may be communicatively connected to the motor chip 95 and the motor chip 96 .
  • control unit 97 can output control instructions to the motor chip 95 through the communication bus, and the control unit 97 can also output control instructions to the motor chip 96 through the communication bus.
  • some embodiments of the present application can control the motor 92 in the antenna device 200 through the motor chip 96 in the antenna device 100, thereby controlling different states of the air interface phase shifter 10.
  • two antenna devices can share a control unit and control instructions of an MCU, which can save hardware resources and reduce costs.
  • FIG. 10 is a schematic structural diagram of an air interface phase shifter 10 according to an embodiment of the present application. It can be understood that in the embodiment of the present application, the air interface phase shifter 10 may include multiple phase shift blocks 11 .
  • the plurality of phase shifting blocks 11 may be disposed above the plurality of radiation units 51 . It can be understood that the plurality of phase shift blocks 11 may cover the plurality of radiation units 51 along a first direction, where the first direction may be the X direction as shown in FIG. 10 . That is, the plurality of phase shift blocks 11 can be periodically distributed in the longitudinal space where the antenna beam needs to be deflected.
  • FIG. 10 only shows three phase shifting blocks 11 as an example for explanation.
  • the number of the plurality of phase shifting blocks 11 may be equal to or greater than two.
  • the plurality of phase shifting blocks 11 may cover at least part of the aperture area of the antenna array 50 . In other words, the plurality of phase shifting blocks 11 do not entirely cover the aperture area of the antenna array 50 .
  • the air interface phase shifter 10 shown in the embodiment of FIG. 10 can not only dynamically change the beam of the antenna, but also reduce the cost and have better economic effects.
  • the plurality of phase shifting blocks 11 may also cover the entire aperture area of the antenna array 50 .
  • FIG. 11 is a schematic structural diagram of an air interface phase shifter 10 provided by another embodiment of the present application.
  • the difference from the air interface phase shifter 10 shown in the embodiment of FIG. 10 is that, as shown in FIG. 11 , in this embodiment, the multiple phase shifting blocks 11 of the air interface phase shifter 10 can cover the entire antenna array 50 diameter area.
  • the air interface phase shifter 10 shown in the embodiment of FIG. 10 is different from the air interface phase shifter 10 shown in the embodiment of FIG. 11 in the aperture area and size of the covered antenna array 50 .
  • the air interface phase shifter 10 shown in the embodiment of FIG. 11 covers the entire aperture area of the antenna array 50.
  • the air interface phase shifter 10 shown in the embodiment of FIG. 10 covers a part of the aperture area of the antenna array.
  • the air interface phase shifter 10 shown in the embodiment of FIG. 11 can achieve better beam control.
  • FIG. 12 is a schematic structural diagram of an air interface phase shifter 10 provided by another embodiment of the present application.
  • the air interface phase shifter 10 may include multiple phase shift blocks 11.
  • the multiple phase shift blocks 11 are disposed above the antenna array 50, and the multiple phase shift blocks 11 may be located at On the same horizontal plane, that is, the plurality of phase shifting blocks 11 have a single-layer structure.
  • FIG. 10 only takes three phase shift blocks 11 as an example for illustration.
  • the air interface phase shifter 10 may include three phase shift blocks 11a, 11b, and 11c.
  • the three phase shift blocks 11a, 11b, and 11c can all slide along a pair of slide rails. As shown in Figure 12, the phase shift blocks 11a, 11b, and 11c can slide along the guide rails 12 on both sides. Make a slide. The phase shifting blocks 11a, 11b, and 11c can slide in the vertical or horizontal direction of the antenna, thereby achieving more changes in the beam direction of the antenna.
  • the two guide rails 12 can be fixed on both sides of the housing of the antenna device, or a fixing frame can be provided, and the two guide rails are matched with the fixing frame. In this way, the phase shift block 11 can move stably on the two slide rails.
  • the feed network phase shifter 20 may include a plurality of phase shift blocks 21 arranged in parallel, and the antenna array 50 may include a reflection plate 52 and a plurality of radiating units 51 arranged in an array.
  • the feed phase shifter 20 is disposed on the lower surface of the reflection plate 52 , and the plurality of radiation units 51 may be disposed on the upper surface of the reflection plate 52 .
  • the reflective plate 52 may be a metal reflective plate made of metal material.
  • FIG. 12 shows six phase shifting blocks 21 and six columns of radiating units 51 as an example for explanation.
  • One of the phase shifting blocks 21 may correspond to a column of radiation units 51 . It can be understood that each of the phase shifting blocks 21 can correspondingly adjust the beam direction of a column of radiating units 51 .
  • phase shift block 21 in this embodiment is plate-shaped, that is, the phase shift block 21 may be a phase shift plate.
  • the motor 92 can control the phase shifting blocks 11a, 11b, 11c to slide along the guide rails 12 on both sides through the pull rods.
  • the phase shift block 11a can move from the position a1 (ie, the original position) to the position a2 (the moved position).
  • the phase shift block 11b can move from position b1 (ie, original position) to position b2 (moved position).
  • the phase shift block 11c can move from the position c1 (ie, the original position) to the position c2 (the moved position).
  • the plurality of phase shifting blocks 11 can slide in the vertical or horizontal direction of the antenna, thereby achieving changes in the beam pointing of the antenna, which can be adjusted to the position of the antenna for optimal radiation efficiency.
  • the air interface phase shifter 10 in the embodiment of the present application can be mechanically moved through electrical adjustment control, so that the electrical adjustment system of the existing antenna can be shared without additional cost.
  • FIG. 14 is a schematic structural diagram of an air interface phase shifter 10 provided by another embodiment of the present application.
  • the air interface phase shifter 10 may include multiple phase shift blocks 11 .
  • 11 may be disposed above the antenna array 50, and the plurality of phase shifting blocks 11 may be disposed on a plurality of different horizontal planes.
  • the plurality of phase shift blocks 11 can slide along multiple pairs of slide rails.
  • the plurality of phase shift blocks 11 can have a double-layer structure or a multi-layer structure.
  • FIG. 14 only takes six phase shift blocks 11 as an example for illustration.
  • the air interface phase shifter 10 may include six phase shift blocks 11a, 11b, 11c, 11d, 11e, and 11f.
  • phase shift blocks 11a, 11b, and 11c can be located on the same horizontal plane, that is, the phase shift blocks 11a, 11b, and 11c can be on the same layer, and the phase shift blocks 11d, 11e, and 11f can be located on the same horizontal plane, That is, the phase shift blocks 11d, 11e, and 11f can be on another layer.
  • phase shift blocks 11a, 11b, and 11c are upper layer phase shift blocks, and the phase shift blocks 11d, 11e, and 11f are lower layer phase shift blocks.
  • the phase shifting blocks 11a, 11b, 11c can move on the same first horizontal plane.
  • the phase shifting blocks 11d, 11e, 11f can move on the same second horizontal plane, and the first horizontal plane is located above the second horizontal plane.
  • the motor 92 can pass The phase shift blocks 11a, 11b, and 11c are controlled to slide along the guide rails 12 on both sides through the pull rods to control the relative position changes between the phase shift blocks 11a, 11b, and 11c.
  • the motor 92 can also control the phase shift blocks 11d, 11e, and 11f through pull rods to slide along the guide rails 13 on both sides to control the relative position changes between the phase shift blocks 11d, 11e, and 11f.
  • phase shift blocks 11a, 11b, 11c, 11d, 11e, and 11f can slide in the vertical or horizontal direction of the antenna to obtain more physical states, so that more states of antenna beam pointing can be achieved.
  • the embodiment shown in Fig. 14 has technical effects such as more degrees of freedom and richer beam expansion.
  • the transmission mechanism can control the phase-shifting blocks 11a, 11b, and 11c on the upper layer to slide, while the phase-shifting blocks 11d, 11e, and 11f on the lower layer will not slide.
  • the phase shift block 11a can move from position a1 (ie, the original position) to position a2 (the moved position).
  • the phase shift block 11b can move from position b1 (ie, original position) to position b2 (moved position).
  • the phase shift block 11c can move from the position c1 (ie, the original position) to the position c2 (the moved position).
  • the transmission mechanism can control the phase-shifting blocks 11a, 11b, and 11c on the upper layer not to slide, while the phase-shifting blocks 11d, 11e, and 11f on the lower layer slide.
  • the phase shift block 11d can move from position d1 (ie, the original position) to position d2 (the moved position).
  • the phase shift block 11e can move from the position e1 (ie, the original position) to the position e2 (the moved position).
  • the phase shift block 11f can move from the position f1 (ie, the original position) to the position f2 (the moved position).
  • the motor can control the phase position changes between the multiple phase shift blocks in the air interface phase shifter 10 through the pull rod to achieve beam control.
  • FIG. 17 is a schematic structural diagram of an air interface phase shifter 10 provided by another embodiment of the present application. It can be understood that in this embodiment, the air interface phase shifter 10 may include multiple phase shifting structures 14 .
  • the plurality of phase-shifting structures 14 may be disposed above the antenna array 50 .
  • the plurality of phase-shifting structures 14 may cover the plurality of radiation units 51 along a first direction, where the first direction may be the X direction as shown in FIG. 17 . That is, the plurality of phase-shifting structures 14 can be periodically distributed in the longitudinal space where the antenna beam needs to be deflected.
  • the plurality of phase-shifting structures 14 may cover at least part of the aperture area of the plurality of radiation units 51 . In other words, the plurality of phase-shifting structures 14 do not entirely cover the aperture area of the plurality of radiation units 51 . It can be understood that in some optional implementations, the phase-shifting structure of the air-port phase shifter 10 can also cover the entire aperture area of the plurality of radiation units 51 .
  • such a design can not only dynamically change the beam of the antenna, but also reduce the cost.
  • FIG. 18 is a schematic structural diagram of an air interface phase shifter 10 provided by another embodiment of the present application.
  • the difference from the air interface phase shifter 10 shown in the embodiment of FIG. 17 is that, as shown in FIG. 18 , in this embodiment, the phase shifting structure 14 of the air interface phase shifter 10 can cover all of the plurality of radiation units 51 diameter area.
  • the air interface phase shifter 10 shown in the embodiment of FIG. 17 is different from the air interface phase shifter 10 shown in the embodiment of FIG. 18 in the aperture area and size of the covered antenna array 50 .
  • the air interface phase shifter 10 shown in the embodiment of FIG. 18 covers the entire aperture area of the antenna array 50.
  • the air interface phase shifter 10 shown in the embodiment of FIG. 17 covers a part of the aperture area of the antenna array 50.
  • FIG. 19 is a schematic diagram of an air interface phase shifter 10 provided by another embodiment of the present application.
  • the air interface phase shifter 10 may include multiple phase shifting structures 14 .
  • FIG. 19 only shows three phase-shifting structures 14 as an example for explanation.
  • the air interface phase shifter 10 may include phase shifting structures 14a, 14b, and 14c.
  • the phase-shifting structures 14a, 14b, 14c may be disposed above the antenna array 50.
  • the phase-shifting structure 14a may include phase-shifting blocks 141a and 142a
  • the phase-shifting structure 14b may include phase-shifting blocks 141b and 142b
  • the phase-shifting structure 14c may include phase-shifting blocks 141c and 142ac.
  • phase shift blocks 141a and 142a are parallel to each other, and the phase shift blocks 141a and 142a may be located above the antenna array 50 .
  • the phase shifting blocks 141b and 142b are parallel to each other, and the phase shifting blocks 141b and 142b may be located above the antenna array 50 .
  • the phase shifting blocks 141c and 142c are parallel to each other, and the phase shifting blocks 141c and 142c may be located above the antenna array 50 .
  • the feed network phase shifter 20 may include a plurality of phase shift blocks 21 arranged in parallel, and the antenna array 50 may include a plurality of radiating units 51 arranged in an array.
  • the feed network phase shifter 20 is disposed on the lower surface of the reflection plate 52 , and the antenna array 50 is disposed on the upper surface of the reflection plate 52 .
  • the distance between the phase shift blocks 141a and 142a is a first distance
  • the distance between the phase shift blocks 141b and 142b is a second distance
  • the phase shift block 141c and 142c are The distance is the third distance.
  • the first distance is equal to the second distance and the third distance.
  • the distance between the phase shift block 141a and the phase shifter 142a is equal to the distance between the phase shift block 141b and the phase shifter 142b or the distance between the phase shift block 141c and the phase shifter 142c.
  • the transmission mechanism 80 can control the movement of multiple phase shifting mechanisms 14 in the air port phase shifter 10 .
  • the transmission mechanism 80 may be configured to control the spacing between the phase shifting block 141a and the phase shifting block 142a.
  • the transmission mechanism 80 may be configured to control the spacing between the phase shifting block 141b and the phase shifting block 142b.
  • the transmission mechanism 80 may be configured to control the spacing between the phase shifting block 141c and the phase shifting block 142c.
  • FIG. 20 is a schematic diagram of an air interface phase shifter 10 provided by another embodiment of the present application.
  • the cross section of the phase shift block 141a is rotated as an axis, so that the height between the phase shift block 141a and the phase shift block 142a changes linearly.
  • Rotating the cross section of the phase shift block 141b as an axis causes a linear change in the height between the phase shift block 141b and the phase shift block 142b.
  • Rotating the cross section of the phase shift block 141c as an axis causes a linear change in the height between the phase shift block 141c and the phase shift block 142c.
  • phase-shifting block mentioned in the above embodiments can be implemented by a metal periodic structure printed on a printed circuit board (PCB).
  • the phase-shifting block The block can also be a dielectric material. Understandable.
  • the dielectric material can be a material with a dielectric constant, a dielectric material with a specific structure, or a dielectric material with a non-uniform distribution of dielectric constant.
  • dielectric layer 1 and dielectric layer 2 can form a phase-shifting block
  • PCB layer 1 and PCB layer 2 form a phase-shifting block.
  • the phase shift block in the embodiment of the present application can be made of dielectric material, or a periodic metal structure design based on PCB technology to achieve the required phase penetration. Compared with the on-road feed network, this application has the advantages of low cost and light weight.
  • Figure 22 is a schematic structural diagram of a communication device 300 provided by an embodiment of the present application.
  • the communication device 300 may include a housing and the antenna device 100 described in the above embodiment, wherein the antenna device 100 may be disposed in the housing.
  • the communication device 300 may be a base station.
  • Embodiments of the present application can add an electrical adjustment function of digital phase shifting to an array without a road phase shifter (such as a MIMO antenna) to achieve more beam states.
  • the embodiments of the present application can also be used on an array that already has a phase-shifting feed network on the road (such as a passive antenna) to further expand the array scanning range and improve the signal coverage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开一种天线装置和通信设备,天线装置包括天线阵列、第一传动机构和第一移相器。天线阵列可以包括阵列排布的多个辐射单元,多个辐射单元可以用于电磁波信号的辐射和接收。第一传动机构连接于第一移相器,第一传动机构可以控制第一移相器的移动。第一移相器可以设置于天线阵列的上方,在天线阵列辐射出的电磁波经过第一移相器时,第一移相器可以控制天线阵列辐射的电磁波的相位,以使得天线阵列的波束偏转。采用本申请的实施例,可以扩大基站天线的垂直面或水平面的波束扫描范围,提升信号的覆盖。

Description

天线装置和通信设备
相关申请的交叉引用
本申请要求于2022年8月5日提交中国专利局、申请号为202210938915.1、申请名称为“天线装置和通信设备”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及在基站系统中的天线装置和通信设备。
背景技术
移相器是基站天线的核心组成部分,移相器能够调节相位和幅度,这样对基站天线在空间发射的方向图指向起调节作用,以满足灵活调节覆盖不同用户区域的需求。因此移相器设计的好坏不仅影响到基站天线的增益、方向图等指标,还影响到尺寸、成本。然而,现有的基站天线在垂直面上或水平面上的波束扫描不足,这将会导致基站信号覆盖不足的问题。
发明内容
本申请的实施例提供一种天线装置和通信设备。本申请的实施例可以扩大基站天线的垂直面或水平面的波束扫描范围,提升信号的覆盖。
第一方面,本申请的实施例提供一种天线装置,天线装置可以包括天线阵列、传动机构和第一移相器。其中,天线阵列可以包括阵列排布的多个辐射单元,这些辐射单元可以用于电磁波信号的辐射和接收。第一传动机构可以连接于第一移相器,第一传动机构可以控制第一移相器的移动。第一移相器设置于天线阵列的上方,在天线阵列辐射出的电磁波经过第一移相器时,第一移相器可以控制天线阵列辐射的电磁波的相位,以使得天线阵列的波束偏转。
采用本申请的实施例,通过在天线阵列的上方设置第一移相器,并且第一移相器在传动机构的控制下可以进行移动,这样可以对天线阵列波束进行调控,可以扩大基站天线的垂直面或水平面的波束扫描范围,提升信号的覆盖。
作为一种可选的实现方式中,天线装置还包括第一天线罩。第一移相器和天线阵列均可以设置于第一天线罩中;或者天线阵列可以设置于第一天线罩中,第一移相器设置于另一天线装置的第二天线罩中。
作为一种可选的实现方式中,第一移相器可以包括多个移相块,多个移相块可以覆盖天线阵列的口径面积的一部分。这样不仅可以对天线阵列波束进行调控,还具有较好的经济效果,降低成本。
作为一种可选的实现方式中,第一移相器包括多个移相块,多个移相块可以覆盖天线阵列的全部口径面积。这样可以扩大基站天线的垂直面或水平面的波束扫描范围,提升信号的覆盖。
作为一种可选的实现方式中,天线装置还包括第一导轨,第一移相器可以包括多个位于天线阵列上方的第一移相块,多个第一移相块均可以位于第一水平面,第一传动机构可以控制多个第一移相块在所述第一导轨上滑动。基于这样的设计,第一移相器可以通过第一传动机构的控制,实现不同物理状态,进而可以使得天线装置的波束动态变化。
作为一种可选的实现方式中,天线装置还可以包括第二导轨,第一移相器还可以包括多个位于天线阵列上方的第二移相块,多个第二移相块均可以位于第二水平面,第一传动机构可以控制多个第二移相块在第二导轨上滑动。基于这样的设计,第一移相器可以通过第一传动机构的控制,实现不同物理状态,进而可以使得天线装置的波束动态变化。
作为一种可选的实现方式中,第一移相器可以包括多个移相结构,每一个移相结构均可以包括位于天线阵列上方的第一移相块和第二移相块,第一传动机构可以控制第一移相块与第二移相块之间的间距。基于这样的设计,第一移相器可以通过第一传动机构的控制,实现不同物理状态,进而可以使得天线装置的波束动态变化。
作为一种可选的实现方式中,天线装置还可以包括第二移相器,第二移相器连接所述辐射单元,第二移相器可以调节辐射单元的馈电相位。天线装置还可以包括第二传动机构,第二传动机构可以控制第二移相器的移动。这样可以改变不同天线端口的馈电相位,实现不同辐射波束指向。
作为一种可选的实现方式中,天线阵列还可以包括反射板,天线阵列可以设置在所述反射板的上表面,第二移相器可以设置在反射板的下表面。
第二方面,本申请的实施例提供一种通信设备,所述通信设备包括如上述所描述的天线装置。
本申请实施例提供的天线装置和通信设备可以在天线阵列的辐射口径上方,设置空间移相器的部件,这样的设计可以扩大基站天线的垂直面或水平面的波束扫描范围,提升信号的覆盖范围。
附图说明
图1为本申请实施例的天线装置的应用环境图。
图2为本申请实施例的天线装置的结构示意图。
图3为本申请实施例的天线装置的另一结构示意图。
图4为本申请实施例的天线装置的另一结构示意图。
图5为本申请实施例的天线装置的另一结构示意图。
图6为本申请实施例的天线装置的另一结构示意图。
图7为本申请实施例的天线装置的另一结构示意图。
图8为本申请实施例的天线装置的另一结构示意图。
图9为本申请实施例的天线装置的另一结构示意图。
图10为本申请实施例的第一移相器的结构示意图。
图11为本申请实施例的第一移相器的另一结构示意图。
图12为本申请实施例的第一移相器的另一结构示意图。
图13为图12示出的第一移相器的状态示意图。
图14为本申请实施例的第一移相器的结构示意图。
图15为图14示出的第一移相器的状态示意图。
图16为图14示出的第一移相器的另一状态示意图。
图17为本申请实施例的第一移相器的另一结构示意图。
图18为本申请实施例的第一移相器的另一结构示意图。
图19为本申请实施例的第一移相器的另一结构示意图。
图20为本申请实施例的第一移相器的另一结构示意图。
图21是本申请实施例的移相块的结构示意图。
图22为本申请实施例的通信设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中设置的元件。当一个元件被认为是“设置在”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中设置的元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的实施例提供一种天线装置,通过在天线阵列的辐射口径上方,设置空间移相器的部件,这样可以解决基站天线在垂直面上或水平面上波束扫描不足导致基站信号覆盖不足的问题。
为了方便理解本申请实施例提供的天线装置,下面首先说明下其应用场景,本申请实施例提供的天线装置可以应用于基站等通信设备,用于使通信设备实现信号收发功能。
以下将以天线装置应用于基站天馈系统中为例进行说明。
请参阅图1,图1所示为本申请实施例的天线装置应用于基站天馈系统的场景图。
本实施例中,所述基站天馈系统可以包括天线装置100、调整支架210、抱杆220、接头密封件230和接地装置240。
所述天线装置100的一端可以安装在所述抱杆220的顶部位置,所述天线装置100的另一端可以通过所述调整支架210安装在所述抱杆220的顶部位置,可以理解,所述调整支架210可以用于调整天线的下倾角。所述天线装置100可以通过所述接头密封件230与接地装置240连接。所述接头密封件230可以是绝缘密封胶带或者PVC绝缘胶带。所述接地装置240可以用于直流接地。
请参阅图2,图2为本申请的一个实施例提供的天线装置100的结构示意图。
本实施例中,所述天线装置100可以包括空口移相器10、馈网移相器20、滤波器30、校准网络40和天线阵列50。可以理解,所述空口移相器10可以作为本申请实施例中的第一移相器,所述馈网移相器20可以作为本申请实施例中的第二移相器。
所述天线阵列50可以包括阵列排布的多个辐射单元51。所述辐射单元51用于电磁波信号的辐射和接收。所述多个辐射单元51可以设置于反射板上。所述天线阵列50可以通过馈电网络接收或者发射射频信号。
本实施例中,所述馈网移相器20与所述天线阵列50连接。所述馈网移相器20可以用于调节所述多个辐射单元51的馈电相位。可以理解,所述馈网移相器20可以改变不同天线端口的馈电相位,进而实现不同辐射波束指向。
所述空口移相器10可以连接于传动机构80,所述传动机构80可以控制所述空口移相器10的机械移动。
在一种可选的实现方式中,所述馈网移相器20可以连接所述校准网络40,以获取所需的校准信号,由此来实现不同辐射波束指向。在另一种可选的实现方式中,所述馈网移相器20还可以连接传动机构80,并可以通过传动机构80来实现不同辐射波束指向。可以理解,在一些可选的实现方式中,所述传动机构可以通过电控的方式来调整所述空口移相器10的机械移动。
本实施例中,所述滤波器30连接于所述移相器20与天线接头60之间。可以理解,信号可以从所述天线接头60馈入所述天线装置100。在另一种可选的实现方式中,所述馈网移相器20还可以通过合路器连接所述天线接头60。
可以理解,本实施例中,所述空口移相器10可以位于所述天线阵列50的上方。当所述天线阵列50辐射出来的电磁波经过所述空口移相器10时,所述天线阵列50辐射的电磁波相位可以被所述空口移相器10重新分布,进而使得天线波束偏转。
所述天线装置100还可以包括天线罩70。在一种可选的实现方案中,所述空口移相器10、所述馈网移相器20、所述滤波器30、所述校准网络40和所述天线阵列50均可以位于所述天线罩70内。换而言之,在图2所示出的实施例中,所述空口移相器10可以和所述天线阵列50位于同一个天线罩70中。
请参阅图3,图3为本申请的另一个实施例提供的天线装置100的结构示意图。
与图2实施例所示出的天线装置100的区别在于,如图3所示,本实施例中的所述馈网移相器20、所述滤波器30、所述校准网络40和所述天线阵列50均可以位于所述天线罩70,所述空口移相器10可以位于另一个天线装置200的天线罩71内。换而言之,图3所示出的实施例中,所述空口移相器10可以位于不同于所述天线阵列50的另外一个天线装置的天线罩内。
本实施例中,所述空口移相器10可以连接所述传动机构80。所述传动机构80可以控制所述空口移相器10的移动。
所述馈网移相器20可以连接所述校准网络40,以获取所需的校准信号,由此来实现不同辐射波束指向。在一些实施例中,所述馈网移相器20还可以连接传动机构,并可以通过传动机构来实现不同辐射波束指向。
请参阅图4,图4为本申请的另一个实施例提供的天线装置100的结构示意图。本实施例中,所述天线装置100可以包括空口移相器10、馈网移相器20、天线阵列50和传动机构80。其中,所述天线阵列50可以包括阵列排布的多个辐射单元51。
本实施例中,所述传动机构80可以连接所述馈网移相器20和所述空口移相器10。所述馈网移相器20可以连接所述多个辐射单元51。所述多个辐射单元51可以设置在反射板上。可以理解,所述空口移相器10、所述馈网移相器20、所述多个辐射单元51和所述传动机构80均可以设置在所述天线罩70中。
本实施例中,所述传动机构80可以用于控制所述空口移相器10和所述馈网移相器20的机械移动。
本实施例中,所述天线装置100可以通过所述传动机构80控制所述空口移相器10的机械移动,来实现不同的状态,使得天线的波束动态变化。
请参阅图5,图5为本申请的另一个实施例提供的天线装置100的结构示意图。
与图4实施例所示出的天线装置100的区别在于,本实施例中,如图5所示,所述传动机构80可以包括电机92。换而言之,所述电机92可以是所述传动机构80的部件之一。
所述天线装置100可以通过所述电机92控制所述空口移相器10和所述馈网移相器20的移动。具体地,所述天线装置100可以通过所述电机92来控制所述空口移相器10的移动,来实现不同的状态,使得天线的波束动态变化。
举例说明,电磁波信号可以通过所述馈网移相器20馈入所述多个辐射单元51中。所述电机92可以控制馈入到所述辐射单元51的电磁波信号的幅度和相位。这样可以实现天线阵列辐射向空气中辐射传播电磁波具有特定的方向。本实施例中,所述空口移相器10可以位于所述天线阵列50的上方。
因此,当所述辐射单元51辐射出来的电磁波经过所述空口移相器10之后,所述辐射单元51辐射出的电磁波的相位可以被所述空口移相器10重新分布,进而实现天线波束偏转。采用本申请实施例的天线装置,基站天线的垂直面或水平面的波束扫描范围更大,可以具有更多的波束选择。
请参阅图6,图6为本申请的另一个实施例提供的天线装置100的结构示意图。
与图5实施例示出的天线装置100的区别在于,如图6所示,本实施例中的所述天线装置100可以不包括所述馈网移相器20。
本实施例中,所述多个辐射单元51可以.通过连接到射频模块90,所述射频模块90可以用于为所述天线阵列50馈入信号。
所述电机92可以连接所述空口移相器10。所述空口移相器10可以位于所述多个辐射单元51的上方。可以理解,本实施例中的所述天线装置100可以通过所述电机92来控制所述空口移相器10的机械移动,来实现不同的状态,进而可以使得天线的波束动态变化。
基于上述图6示出的实施例,天线装置可以扩大基站天线的垂直面或水平面的波束扫描范围,提升信号的覆盖范围,提升使用体验。
请参阅图7,图7为本申请的另一个实施例提供的天线装置100的结构示意图。
与图4实施例示出的天线装置100的区别在于,如图7所示,本实施例中的所述天线装置100还可以包括传动机构81。
本实施例中,所述传动机构80连接所述空口移相器10。所述传动机构81连接所述馈网移相器20,所述馈网移相器20可以连接所述多个辐射单元51。
其中,所述空口移相器10位于所述多个辐射单元51的上方,所述传动机构80可以用于控制所述空口移相器10的机械移动。所述传动机构81可以控制所述馈网移相器20的机械移动。
请参阅图8,图8为本申请的另一个实施例提供的天线装置100的结构示意图。
与图7实施例示出的天线装置100的区别在于,如图8所示,本实施例中的所述传动机构80可以包括电机92,所述传动机构81可以包括91。换而言之,所述电机92可以是所述传动机构80的传动部件之一,在一些具体的实现方式中,所述传动机构80还可以包括拉杆等传动部件。所述电机91可以是所述传动机构81的传动部件之一,在一些具体的实现方式中,所述传动机构81还可以包括拉杆等传动部件。
如图8所示,本实施例中,所述电机92连接所述空口移相器10。所述电机91连接所述馈网移相器20,所述馈网移相器20可以连接所述多个辐射单元51。
可以理解,所述电机92可以控制所述空口移相器10的机械移动。所述电机91可以控制所述馈网移相器20的机械移动。基于这样的设计,所述天线装置100可以通过所述电机92控制所述空口移相器10的移动来实现不同的状态,进而可以使得天线的波束动态变化。
本实施例中,所述空口移相器10、所述电机92、所述馈网移相器20、所述电机91以及所述多个辐射单元51均位于所述天线罩70内。
本实施例中的所述空口移相器10可以通过独立的电机92进行控制。换而言之,所述空口移相器10的控制电机可以与所述馈网移相器20的控制电机不同,这样的设计可以使得产品的配置更加灵活,并且可以方便电机的拆换和维修。
请参阅图9,图9为本申请的另一个实施例提供的天线装置100的结构示意图。
与图8实施例示出的天线装置100的区别在于,如图9所示,本实施例中的所述电机92和所述空口移相器10可以设置在另一天线装置200的天线罩71内。所述电机91、所述馈网移相器20和所述多个辐射单元51设置在所述天线罩70内。换而言之,所述空口移相器10和所述电机91可以位于不同于所述馈网移相器20和所述多个辐射单元51的另外一个天线装置200的天线罩71中。
本实施例中,所述天线装置200可以位于所述天线装置100的口径面上方。所述空口移相器10可以连接电机92,所述电机92可以控制所述空口移相器10的机械移动。所述空口移相器10可以设置于所述多个辐射单元51的上方。
所述天线装置100还包括电机接口93,所述电机接口93可以设置在所述天线罩70的外侧,所述天线装置200还包括电机接口94。所述电机接口94可以设置在所述天线罩71的外侧。所述电机接口93可以与所述电机接口94连接。
作为一种可选的实现方式,所述天线装置100还可以进一步包括电机芯片95和电机芯片96。
所述电机芯片95可以连接于所述电机91,所述电机91可以连接于所述馈网移相器20,以控制所述馈网移相器20的机械移动。例如,所述电机芯片95可以输出驱动信号给所述电机91,进而可以使得所述电机91控制所述馈网移相器20的机械移动。
所述电机接口94连接所述电机92,所述电机芯片96可以连接所述电机接口93。所述电机接口93可以与所述电机接口94连接。基于这样的设计,所述电机芯片96可以通过所述电机接口93和所述电机接口94与所述电机92建立通信连接。例如,所述电机芯片96可以通过所述电机接口93和所述电机接口94输出驱动信号给所述电机92。这样可以使得所述电机92控制所述空口移相器10的机械移动。
可以理解,本实施例中,所述电机芯片95、所述电机芯片96和所述电机91均可以设置在所述天线装置100的天线罩70中。所述电机92可以设置在天线装置200的天线罩71中。
作为一种可选的实现方式,所述天线装置100还可以进一步包括控制单元97。其中,所述控制单元97可以是微控制单元(Microcontroller Unit,MCU)。所述控制单元97可以输出控制指令给所述电机芯片95和所述电机芯片96,来实现对所述电机91和所述电机92的控制。
在具体的实现过程中,所述控制单元97可以通信连接于所述电机芯片95和所述电机芯片96。例如,在一些实现方式中,所述控制单元97可以通过通信总线输出控制指令给所述电机芯片95,所述控制单元97还可以通过通信总线输出控制指令给所述电机芯片96。
基于图9实施例示出的天线装置,本申请的一些实施例可以通过天线装置100中的电机芯片96控制天线装置200中的电机92,进而来控制所述空口移相器10的不同状态。采用本申请的实施例,两个天线装置可以共用一个控制单元,并且可以共用一个MCU的控制指令,这样可以节省硬件资源,降低成本。
请参阅图10,图10为本申请的一个实施例提供的空口移相器10的结构示意图。可以理解,本申请的实施例中,所述空口移相器10可以包括多个移相块11。
如图10所示,所述多个移相块11可以设置于所述多个辐射单元51的上方位置。可以理解,所述多个移相块11可以沿第一方向上覆盖所述多个辐射单元51,其中,所述第一方向可以如图10所示的X方向。即所述多个移相块11可以在天线波束需要偏转的纵向空间周期分布。
图10仅示出3个移相块11为例进行说明。在一些实施例中,所述多个移相块11的数量可以等于或者大于两个。
本实施例中,如图10所示,所述多个移相块11可以覆盖所述天线阵列50的口径面积的至少一部分。换而言之,所述多个移相块11并没有全部覆盖所述天线阵列50的口径面积。
基于图10的实施例示出的空口移相器10,不仅可以使得天线的波束动态变化,还可以较低成本,具有更好的经济效果。
可以理解,在另一些可能的实现方式中,所述多个移相块11也可以覆盖所述天线阵列50的全部的口径面积。
请参阅图11,图11为本申请的另一个实施例提供的空口移相器10的结构示意图。
与图10的实施例示出的空口移相器10的区别在于,如图11所示,本实施例中,所述空口移相器10的多个移相块11可以覆盖所述天线阵列50全部的口径面积。换而言之,图10的实施例示出的空口移相器10与图11的实施例示出的空口移相器10的覆盖天线阵列50的口径面积和尺寸不同。图11实施例示出的空口移相器10覆盖了天线阵列50的全部口径面积。图10实施例示出的空口移相器10覆盖了天线阵列的口径面积的一部分。
相较于图10的实施例示出的空口移相器10而言,基于图11的实施例示出的空 口移相器10,可以实现效果更好的波束调控。
请参阅图12,图12为本申请的另一个实施例提供的空口移相器10的结构示意图。
本实施例中,所述空口移相器10可以包括多个移相块11,所述多个移相块11设置在所述天线阵列50的上方,且所述多个移相块11可以位于同一水平面上,即所述多个移相块11为单层结构。图10仅以三个移相块11为例进行说明,所述空口移相器10可以包括三个移相块11a、11b、11c。
可以理解,本实施例中,三个移相块11a、11b、11c均可以沿一对滑轨滑动,如图12所示,所述移相块11a、11b、11c可以沿两侧的导轨12进行滑动。所述移相块11a、11b、11c可以在天线的垂直或水平方向滑动,从而实现更多的天线的波束指向变化。
在一种可选的实现方式中,两个导轨12可以固定在天线装置的壳体的两侧,或者可以设置一个固定架,将两个导轨与固定架配合。这样可以实现移相块11在两个滑轨上稳定的移动。
所述馈网移相器20可以包括多个平行设置的移相块21,所述天线阵列50可以包括反射板52和多个阵列排布的辐射单元51。所述馈网移相器20设置在反射板52的下表面,所述多个辐射单元51可以设置在所述反射板52的上表面。所述反射板52可以为金属材料制成的金属反射板。
图12示出了6个移相块21和6列辐射单元51为例进行说明。其中一个移相块21可以对应一列辐射单元51。可以理解,每一个所述移相块21可以对应调节一列辐射单元51的波束指向。
可以理解,本实施例中的所述移相块21呈板状,即所述移相块21可以为移相板。
举例说明,如图13所示,在所述传动机构80的控制下,所述电机92可以通过拉杆控制所述移相块11a、11b、11c沿两侧的导轨12滑动。具体地,所述移相块11a可以从位置a1(即原始位置)移动到位置a2(移动后的位置)。所述移相块11b可以从位置b1(即原始位置)移动到位置b2(移动后的位置)。所述移相块11c可以从位置c1(即原始位置)移动到位置c2(移动后的位置)。
基于上述图12和图13示出的实施例,在传动机构的控制下,所述多个移相块11可以在天线的垂直或水平方向上滑动,从而实现天线的波束指向变化,这样可以调整到天线最佳的辐射效率的位置。
可以理解,本申请实施例的空口移相器10可以通过电调控制而进行机械移动,这样可以共享现有天线的电调系统,不会额外增加成本。
请参阅图14,图14为本申请的另一个实施例提供的空口移相器10的结构示意图。
与图12的实施例示出的空口移相器10区别在于,如图14所示,本实施例中,所述空口移相器10可以包括多个移相块11,所述多个移相块11可以设置在天线阵列50的上方,并且所述多个移相块11可以设置在多个不同的水平面上。例如,多个移相块11可以沿多对滑轨进行滑动,换而言之,所述多个移相块11可以为双层结构或者多层结构。
图14中仅以六个移相块11为例进行说明,所述空口移相器10可以包括六个移相块11a、11b、11c、11d、11e、11f。
其中,所述移相块11a、11b、11c可以位于同一个水平面,即所述移相块11a、11b、11c可以在同一层,所述移相块11d、11e、11f可以位于同一个水平面,即所述移相块11d、11e、11f可以在另一层。
如图14所示,所述移相块11a、11b、11c为上层的移相块,所述移相块11d、11e、11f为下层的移相块。所述移相块11a、11b、11c可以在相同的第一水平面上移动。所述移相块11d、11e、11f可以在相同的第二水平面上移动,并且第一水平面位于第二水平面之上。
可以理解,本实施例中,在所述传动机构80的控制下,例如所述电机92可以通 过拉杆来控制所述移相块11a、11b、11c沿两侧的导轨12进行滑动,以控制移相块11a、11b、11c之间的相对位置变化。所述电机92还可以通过拉杆来控制所述移相块11d、11e、11f均可以沿两侧的导轨13进行滑动,以控制移相块11d、11e、11f之间的相对位置变化。
所述移相块11a、11b、11c、11d、11e、11f可以在天线的垂直或水平方向滑动,获得更多的物理状态,这样可以实现更多的天线波束指向的状态。
相较于图12示出的实施例,图14示出的实施例具有:更多的自由度且波束的拓展更加丰富等技术效果。
如图15所示,在一种可能的场景下,传动机构可以控制处于上层的移相块11a、11b、11c进行滑动,而处于下层的移相块11d、11e、11f不会进行滑动。例如,所述移相块11a可以从位置a1(即原始位置)移动到位置a2(移动后的位置)。所述移相块11b可以从位置b1(即原始位置)移动到位置b2(移动后的位置)。所述移相块11c可以从位置c1(即原始位置)移动到位置c2(移动后的位置)。
如图16所示,在另一种可能的场景下,传动机构可以控制处于上层的移相块11a、11b、11c不进行滑动,而处于下层的移相块11d、11e、11f进行滑动。例如,所述移相块11d可以从位置d1(即原始位置)移动到位置d2(移动后的位置)。所述移相块11e可以从位置e1(即原始位置)移动到位置e2(移动后的位置)。所述移相块11f可以从位置f1(即原始位置)移动到位置f2(移动后的位置)。
基于上述图14-图16示出的实施例,在传动机构的控制下,电机可以通过拉杆控制所述空口移相器10中多个移相块之间的相位位置变化,实现波束调控。
请参阅图17,图17为本申请的另一个实施例提供的空口移相器10的结构示意图。可以理解,本实施例中,所述空口移相器10可以包括多个移相结构14。
如图17所示,所述多个移相结构14可以设置于所述天线阵列50的上方。所述多个移相结构14可以沿第一方向上覆盖所述多个辐射单元51,其中,所述第一方向可以如图17所示的X方向。即所述多个移相结构14可以在天线波束需要偏转的纵向空间周期分布。
本实施例中,如图17所示,所述多个移相结构14可以覆盖所述多个辐射单元51的口径面积的至少一部分。换而言之,所述多个移相结构14并没有全部覆盖所述多个辐射单元51的口径面积。可以理解,在一些可选的实现方式中,所述空口移相器10的移相结构也可以覆盖所述多个辐射单元51的全部口径面积。
基于图17的实施例示出的空口移相器10,这样的设计不仅可以使得天线的波束动态变化,还可以较低成本。
请参阅图18,图18为本申请的另一个实施例提供的空口移相器10的结构示意图。
与图17的实施例示出的空口移相器10的区别在于,如图18所示,本实施例中,所述空口移相器10的移相结构14可以覆盖所述多个辐射单元51全部的口径面积。换而言之,图17的实施例示出的空口移相器10与图18的实施例示出的空口移相器10的覆盖天线阵列50的口径面积和尺寸不同。图18实施例示出的空口移相器10覆盖了天线阵列50的全部口径面积。图17实施例示出的空口移相器10覆盖了天线阵列50的口径面积的一部分。
相较于图17的实施例示出的空口移相器10而言,基于图18的实施例示出的空口移相器10,可以实现效果更好的波束调控。
请参阅图19,图19为本申请的另一个实施例提供的空口移相器10的示意图。
本实施例中,所述空口移相器10可以包括多个移相结构14。图19仅示出3个移相结构14为例进行说明。例如,所述空口移相器10可以包括移相结构14a、14b、14c。所述移相结构14a、14b、14c可以设置在所述天线阵列50的上方。
所述移相结构14a可以包括移相块141a和142a,所述移相结构14b可以包括移相块141b和142b,所述移相结构14c可以包括移相块141c和142ac。
所述移相块141a和所述142a彼此相互平行,所述移相块141a和所述142a可以位于所述天线阵列50的上方。所述移相块141b和所述142b彼此相互平行,所述移相块141b和所述142b可以位于所述天线阵列50的上方。所述移相块141c和所述142c彼此相互平行,所述移相块141c和所述142c可以位于所述天线阵列50的上方。
所述馈网移相器20可以包括多个平行设置的移相块21,所述天线阵列50可以包括多个阵列排布的辐射单元51。所述馈网移相器20设置在反射板52的下表面,所述天线阵列50设置在所述反射板52的上表面。
在一种场景下,所述移相块141a和所述142a的间距为第一距离,所述移相块141b和所述142b的间距为第二距离,所述移相块141c和所述142c的间距为第三距离。可以理解,所述第一距离等于所述第二距离和所述第三距离。换而言之,移相块141a和移相器142a之间的距离等于移相块141b和移相器142b之间的距离或者移相块141c和移相器142c之间的距离。
可以理解,所述传动机构80可以控制所述空口移相器10中的多个移相机构14的移动。具体地,所述传动机构80可以被配置为控制所述移相块141a与移相块142a之间的间距。所述传动机构80可以被配置为控制所述移相块141b与移相块142b之间的间距。所述传动机构80可以被配置为控制所述移相块141c与移相块142c之间的间距。
请参阅图20,图20为本申请的另一个实施例提供的空口移相器10的示意图。
与图19的实施例示出的空口移相器10的区别在于,如图20所示,本实施例中,其中一层结构的以横截面为轴旋转,使得移相结构在天线的垂直方向具有高度变化,这样实现更多的天线垂直波束指向的变化。
举例说明,如图20所示,以移相块141a的横截面为轴旋转,使得移相块141a与移相块142a之间的高度产生线性变化。以移相块141b的横截面为轴旋转,使得移相块141b与移相块142b之间的高度产生线性变化。以移相块141c的横截面为轴旋转,使得移相块141c与移相块142c之间的高度产生线性变化。
需要说明的是,上述实施例中提及的所述移相块可以是印刷在印刷电路板(Printed Circuit Board,PCB)板材上的金属周期结构实现,在另一些可能的实现方式中,移相块还可以是介质材料。可以理解。介质材料可以是一种介电常数的材料,也可以特定结构的介质材料,还可以是介电常数非均匀分布的介质材料。例如,如图21所示,一种实现方式为:介质层1和介质层2可以形成移相块;另一种实现方式为:PCB层1和PCB层2形成移相块。换而言之,本申请实施例中移相块可以是介质材料,或者基于PCB工艺的周期金属结构设计,实现所需要的相位穿透。相较于路上馈电网络,本申请具有成本低、重量轻等优点。
请参阅图22,为本申请实施例提供的通信设备300的结构示意图。
可以理解,所述通信设备300可以包括壳体和上述实施例中描述的天线装置100,其中所述天线装置100可以设置于所述壳体中。
可以理解,在一些可能的应用场景中,所述通信设备300可以是基站。
本申请实施例可以在没有路上移相器的阵列上(例如MIMO天线),增加数字移相的电调功能,实现更多波束状态。本申请实施例还可以在已经存在路上移相馈网的阵列上(例如无源天线),可以进一步扩大阵列扫面范围,提升信号覆盖范围。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围之内。

Claims (11)

  1. 一种天线装置,其特征在于,包括天线阵列、第一传动机构和第一移相器;
    所述天线阵列包括阵列排布的多个辐射单元,所述多个辐射单元用于电磁波信号的辐射和接收;
    所述第一传动机构连接于所述第一移相器,所述第一传动机构被配置为控制所述第一移相器的移动;
    所述第一移相器设置于所述天线阵列的上方,所述第一移相器被配置为在所述天线阵列辐射出的电磁波经过所述第一移相器时,控制所述天线阵列辐射的电磁波的相位,以使得所述天线阵列的波束偏转。
  2. 根据权利要求1所述的天线装置,其特征在于,
    所述天线装置还包括第一天线罩;
    所述第一移相器和所述天线阵列均设置于第一天线罩中;或者所述天线阵列设置于所述第一天线罩中,所述第一移相器设置于另一天线装置的第二天线罩中。
  3. 根据权利要求1或2所述的天线装置,其特征在于,
    所述第一移相器包括多个移相块,所述多个移相块被配置为覆盖所述天线阵列的口径面积的一部分。
  4. 根据权利要求1或2所述的天线装置,其特征在于,
    所述第一移相器包括多个移相块,所述多个移相块被配置为覆盖所述天线阵列的全部口径面积。
  5. 根据权利要求1所述的天线装置,其特征在于,
    所述天线装置还包括第一导轨,所述第一移相器包括多个位于所述天线阵列上方的第一移相块,所述多个第一移相块均位于第一水平面,所述第一传动机构被配置为控制所述多个第一移相块在所述第一导轨上滑动。
  6. 根据权利要求5所述的天线装置,其特征在于,
    所述天线装置还包括第二导轨,所述第一移相器还包括多个位于所述天线阵列上方的第二移相块,所述多个第二移相块均位于第二水平面,所述第一传动机构被配置为控制所述多个第二移相块在所述第二导轨上滑动。
  7. 根据权利要求1所述的天线装置,其特征在于,
    所述第一移相器包括多个移相结构,每一个所述移相结构均包括位于所述天线阵列上方的第一移相块和第二移相块,所述第一传动机构被配置为控制所述第一移相块与第二移相块之间的间距。
  8. 根据权利要求1-7任意一项所述的天线装置,其特征在于,
    所述天线装置还包括第二移相器,所述第二移相器连接所述辐射单元,所述第二移相器被配置为调节所述辐射单元的馈电相位。
  9. 根据权利要求8所述的天线装置,其特征在于,
    所述天线装置还包括第二传动机构,所述第二传动机构被配置为控制所述第二移相器的移动。
  10. 根据权利要求8或9所述的天线装置,其特征在于,
    所述天线阵列还包括反射板,所述天线阵列设置在所述反射板的上表面,所述第二移相器设置在所述反射板的下表面。
  11. 一种通信设备,其特征在于,所述通信设备包括如权利要求1-10任意一项所述的天线装置。
PCT/CN2023/103442 2022-08-05 2023-06-28 天线装置和通信设备 WO2024027392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210938915.1 2022-08-05
CN202210938915.1A CN117559116A (zh) 2022-08-05 2022-08-05 天线装置和通信设备

Publications (1)

Publication Number Publication Date
WO2024027392A1 true WO2024027392A1 (zh) 2024-02-08

Family

ID=89822041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103442 WO2024027392A1 (zh) 2022-08-05 2023-06-28 天线装置和通信设备

Country Status (2)

Country Link
CN (1) CN117559116A (zh)
WO (1) WO2024027392A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190326663A1 (en) * 2018-04-24 2019-10-24 Commscope Technologies Llc Linkage mechanism for base station antenna
US20190379118A1 (en) * 2018-06-07 2019-12-12 King Abdulaziz University Beam scanning antenna and method of beam scanning
CN110600891A (zh) * 2019-09-03 2019-12-20 广东博纬通信科技有限公司 一种5g阵列天线
WO2021104299A1 (zh) * 2019-11-28 2021-06-03 华为技术有限公司 一种阵列天线以及设备
US20220006167A1 (en) * 2019-02-06 2022-01-06 Commscope Technologies Llc Base station antennas and phase shifter assemblies adapted for mitigating internal passive intermodulation
CN114498036A (zh) * 2020-11-13 2022-05-13 华为技术有限公司 一种天线组件及通信设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190326663A1 (en) * 2018-04-24 2019-10-24 Commscope Technologies Llc Linkage mechanism for base station antenna
US20190379118A1 (en) * 2018-06-07 2019-12-12 King Abdulaziz University Beam scanning antenna and method of beam scanning
US20220006167A1 (en) * 2019-02-06 2022-01-06 Commscope Technologies Llc Base station antennas and phase shifter assemblies adapted for mitigating internal passive intermodulation
CN110600891A (zh) * 2019-09-03 2019-12-20 广东博纬通信科技有限公司 一种5g阵列天线
WO2021104299A1 (zh) * 2019-11-28 2021-06-03 华为技术有限公司 一种阵列天线以及设备
CN114498036A (zh) * 2020-11-13 2022-05-13 华为技术有限公司 一种天线组件及通信设备

Also Published As

Publication number Publication date
CN117559116A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US7345632B2 (en) Multibeam planar antenna structure and method of fabrication
CN108463922B (zh) 具有漏波相控阵天线的无线通信装置
EP2068394B1 (en) Data processing device with beam steering and/or forming antennas
JP4844554B2 (ja) アンテナ装置
US11069979B2 (en) Vertically polarized omnidirectional antenna and dual-polarization omnidirectional antenna thereof
EP1212810A1 (en) Low-height, low-cost, high-gain antenna and system for mobile platforms
AU2008305785B2 (en) Antenna arrangement for a multi radiator base station antenna
US9559418B2 (en) Phase shifter having dielectric members inserted into a movable support frame
WO2021057374A1 (zh) 移动终端
US11349184B2 (en) Phase shifter including first and second boards having rails thereon and configured to be rotatable with respect to each other and an antenna formed therefrom
KR20140118388A (ko) 안테나 장치 및 그를 구비하는 전자 기기
CN109560391B (zh) Mimo天线阵列及其天线反射板
WO2024027392A1 (zh) 天线装置和通信设备
CN114050399A (zh) 基站天线
US10840604B2 (en) Antenna system
CN110970740A (zh) 天线系统
CN2583819Y (zh) 一种双探针扇形波束基站用天线
WO2023093254A1 (zh) 天线模组及移动终端
WO2022110139A1 (zh) 一种天线子阵列及基站天线
CN216133971U (zh) 一种超宽频双极化吸顶天线
WO2021036708A1 (zh) 天线模组及移动终端
Thalakotuna et al. Overcoming 5G millimeter wave black holes
CN216958491U (zh) 天线组件和基站天线
WO2016009470A1 (ja) アンテナ装置
CN1555593A (zh) 波导天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849102

Country of ref document: EP

Kind code of ref document: A1