WO2022110139A1 - 一种天线子阵列及基站天线 - Google Patents

一种天线子阵列及基站天线 Download PDF

Info

Publication number
WO2022110139A1
WO2022110139A1 PCT/CN2020/132760 CN2020132760W WO2022110139A1 WO 2022110139 A1 WO2022110139 A1 WO 2022110139A1 CN 2020132760 W CN2020132760 W CN 2020132760W WO 2022110139 A1 WO2022110139 A1 WO 2022110139A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeder
layer
polarized
pcb
dielectric layer
Prior art date
Application number
PCT/CN2020/132760
Other languages
English (en)
French (fr)
Inventor
任超
道坚丁九
肖伟宏
谢国庆
宋健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/132760 priority Critical patent/WO2022110139A1/zh
Priority to EP20963027.6A priority patent/EP4239801A4/en
Priority to CN202080106448.5A priority patent/CN116368687A/zh
Publication of WO2022110139A1 publication Critical patent/WO2022110139A1/zh
Priority to US18/324,698 priority patent/US20230299486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • H01Q1/405Radome integrated radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present application relates to the field of antenna technology, and in particular, to an antenna sub-array and a base station antenna.
  • the traditional base station antenna realizes the real-time change of network coverage through the electrical connection between the radiating unit and the feeding network, so as to meet the continuous changes of the coverage scene and enhance the network performance.
  • the structure of the base station antenna is complex, which increases the installation complexity of each component.
  • the base station antenna includes a first dielectric substrate (1), a first upper metal layer (2), a second lower metal layer (3), and a metal reflector (4) , Dielectric Substrate Hybrid Balun (5) and Nylon Plastic Post (6).
  • the dielectric substrate is supported on the metal reflector (4) by at least four nylon plastic columns (6), the first dielectric substrate is fed by the dielectric substrate hybrid balun (5); the first upper metal layer (2) and the second The lower metal layer (3) is respectively printed on the upper and lower surfaces of the dielectric substrate (1); two crossed dipole antennas are respectively printed on the first upper metal layer (2) and the second lower metal layer (3)
  • the dielectric substrate hybrid balun (5) includes a balun upper metal layer, a balun middle metal layer and a balun lower metal layer, and a second dielectric plate is arranged between the balun upper metal layer and the balun middle metal layer, A second dielectric plate is arranged between the balun middle metal layer and the balun lower metal layer. Please refer to FIG.
  • the upper metal layer of the balun includes a first gradient line (9) and two first balun metal grounds (8)
  • the middle metal layer of the balun includes a balun feed line (10)
  • the balun The lower metal layer includes a second gradient line (12) and two second balun metal grounds (11).
  • the structure of the balun is complex, and the hybrid balun is implemented in the form of pins, which is complicated in structure and difficult to install, and the dipole antenna is supported on the metal reflector through a plurality of independent nylon plastic columns (6), which also makes the Installation difficulty increases. Therefore, developing a more simplified base station antenna is called an urgent problem to be solved.
  • an embodiment of the present application provides an antenna sub-array, including: a reflector, a plurality of radiation surfaces, and a ground plate of the multiple radiation surfaces; the ground plate is vertically disposed on the reflector, and the ground plate includes an integrated The bottom end structure and a plurality of branch structures; the bottom end structure is connected to the reflector, and the top of the branch structure is connected to the radiation surface; the side of the ground plate is provided with a feeder layer, and a dielectric layer is arranged between the ground plate and the feeder layer; the feeder layer is provided with a first polarized feeder line and a second polarized feeder line; the radiation surface includes a first electric dipole and a second electric dipole arranged in a cross; the first polarized feeder is connected to the first electric dipole, and the second polarized The feeder is used to connect the second electric dipole.
  • the grounding plate can function as two components at the same time, that is, the grounding plate not only has the function of the "ground” of the polarized feeder, but also the "ground” function of the balun of the radiation unit.
  • the ground plate includes an integrated bottom end structure and a plurality of branch structures, wherein the plurality of branch structures are used to connect the plurality of radiation surfaces and play a role of supporting the plurality of radiation surfaces.
  • the top of each branch structure is connected to the radiating surface, and the branch structure can realize both the "ground” function of the polarized feeder and the "ground” function of the balun.
  • a first polarized feeder and a second polarized feeder are arranged on the side of the ground plate, and the first polarized feeder and the second polarized feeder can not only realize the function of the polarized feeder of the radiation surface, but also realize the balun function of the feeder.
  • the antenna feed network and balun integration are realized through the ground plate, the first polarized feeder and the second polarized feeder in this example.
  • the base station antenna in this example has a simple structure and requires less The components realize the function of the base station antenna, which can not only realize the simple installation, but also reduce the production cost.
  • the feeder layer includes a first feeder layer and a second feeder layer
  • the dielectric layer includes a first dielectric layer and a second dielectric layer
  • one side of the ground plate is provided with a first feeder layer
  • the first feeder layer The layer is used to set the first polarized feeder
  • the first feeder layer is processed into the first polarized feeder by processing, that is, the first feeder layer is the first polarized feeder
  • the other side of the ground plate is provided with a second feeder
  • the second feeder layer is used to set the second polarized feeder.
  • the second feeder layer is processed into the second polarized feeder by means of processing, that is, the second feeder layer is the second polarized feeder.
  • the first polarized feeder and the second polarized feeder are located on two sides of the ground plate, respectively. And there is a dielectric layer between the three metal layers of the ground plate, the first feeder layer (ie, the first polarized feeder) and the second feeder layer (ie, the second polarized feeder).
  • the metal layer realizes the antenna sub-array structure integrating the feeding network and the balun, which is simple in structure and convenient in installation.
  • the ground plate, the first polarized feeder and the second polarized feeder are all sheet metal parts.
  • the integrated structure of the feeder network of the base station antenna and the balun is realized through three-layer sheet metal parts, with a simple structure and convenient installation. And from the perspective of production cost, the method of using the sheet metal part as the ground plate and the polarized feeder can reduce the production cost of the base station antenna.
  • the dielectric layer is an air dielectric layer; the dielectric layer between the grounding plate and the first feeding layer is the first air dielectric layer, and the dielectric layer between the grounding plate and the second feeding layer is The second air medium layer.
  • an air microstrip line is formed by three layers of sheet metal parts and an air dielectric layer.
  • the dielectric layer in the air microstrip line is air, so the dielectric loss can be greatly reduced.
  • the first feeder layer is the signal layer of the first PCB
  • the second feeder layer is the signal layer of the second PCB
  • the grounding plate includes the grounding layer of the first PCB and the grounding layer of the second PCB.
  • the ground layer of the first PCB and the ground layer of the second PCB jointly realize the function of "common ground", that is, the ground layers of the two PCBs can not only realize the "ground” function of the polarized feeder, but also realize the function of "common ground”.
  • the first polarized feeder can be deployed on the signal layer of the first PCB
  • the second polarized feeder can be deployed on the signal layer of the second PCB, that is, the first polarized feeder and the second polarized feeder are located on both sides of the "common ground”.
  • the first polarized feeder and the second polarized feeder can be used as the feeder of the radiating surface to feed the radiating surface, and the first polarized feeder and the second polarized feeder can also realize the function of the balun feeder.
  • the integrated structure of the feed network of the base station antenna and the balun is realized through the structure of two PCBs, with a simple structure and convenient installation.
  • the first dielectric layer is the dielectric layer of the first PCB
  • the second dielectric layer is the dielectric layer of the second PCB
  • the structures of the "common ground", the first polarized feeder, the second polarized feeder, and the dielectric layer are implemented through the PCB structure, thereby achieving the advantages of easy processing and light weight.
  • a feeder layer is provided on the same side of the ground plate, the ground plate is the ground layer of the PCB, the feeder layer is the signal layer of the PCB, and the dielectric layer is the dielectric layer of the PCB; the PCB is provided with a first via hole and the second via hole; set a window on the ground layer of the PCB and at the corresponding position of the first via hole and the second via hole; the distance between the first via hole and the second via hole is greater than or equal to the first pole
  • the width of the polarized feeder is determined; the second polarized feeder includes a jumper segment, and the jumper segment is located at the window opening position through the first via hole and the second via hole.
  • the ground layer of the PCB is used to implement the "common ground” function, which can not only implement the "ground” function of the polarized feeder, but also the "ground” function of the balun of the radiation unit.
  • the first polarized feeder and the second polarized feeder can not only realize the function of the feeder of the radiation surface, but also realize the function of the feeder of the balun.
  • the first polarized feeder and the second polarized feeder can be arranged on the same side of the ground plate by means of cross jumpers, so as to realize The integrated structure of the feeding network and the balun is adopted to realize the simple structure and convenient installation of the base station antenna.
  • the structures of the "common ground", the first polarized feeder and the second polarized feeder are realized through the PCB structure, so as to achieve the advantages of easy processing and light weight.
  • the radiation surface includes four annular structures; wherein, the first annular structure and the third annular structure are first electric dipoles; the second annular structure and the fourth annular structure are second electric dipoles Pole.
  • each annular structure is a radiating arm of the radiating surface.
  • the radiating arm of the radiating surface is realized by the annular structure.
  • the induced current on the radiating arm is symmetrical about the center of the oscillator, and there is no potential difference between the two feeds of the oscillator. , to achieve high isolation.
  • the radiating surface is a sheet metal part, or the radiating surface is a PCB structure.
  • the radiating surface is a sheet metal part, which can reduce the cost of the antenna sub-array, the structure is stable, and the service life is long; the radiating surface is a PCB structure, which has the advantages of convenient processing and light weight.
  • an embodiment of the present application provides a base station antenna, including a radome, and the radome includes a plurality of antenna sub-arrays as described in the first aspect.
  • FIGS. 1A and 1B are schematic diagrams of an example of a base station antenna in a conventional method
  • FIG. 2 is a schematic diagram of an example of a base station antenna feeder system in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of the internal components of the radome in the embodiment of the application.
  • FIG. 4 is a schematic three-dimensional structural diagram of an example of an antenna sub-array in an embodiment of the present application.
  • FIG. 5 is a schematic front view structure diagram of an example of a bottom end structure and a plurality of branch structures of a grounding plate in an embodiment of the present application;
  • FIG. 6A is a schematic side view structural diagram of an example of an antenna sub-array in an embodiment of the present application.
  • 6B is a schematic top-view structural diagram of an example of an antenna sub-array in an embodiment of the present application.
  • FIG. 7 is a schematic side view of a PCB in an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a side view of another example of an antenna sub-array in an embodiment of the present application.
  • FIG. 9A is a schematic front view structural diagram of another example of an antenna sub-array in an embodiment of the present application.
  • FIG. 9B is a schematic diagram of a rear view of another example of an antenna sub-array in an embodiment of the present application.
  • the base station antenna feeder system includes: a base station antenna 201 , a feeder system 202 , a pole 203 , an antenna adjustment bracket 204 and the like.
  • the base station antenna 201 is used for receiving and transmitting wireless signals, and the base station antenna 201 is a dual-polarized antenna.
  • the feeder system 202 is a wire system that transmits signals between the transmitting device and the base station antenna.
  • the pole 203 is used to fix the base station antenna 201 .
  • the antenna adjustment bracket 204 is used to adjust the angle of the base station antenna 201 .
  • the base station antenna includes a radome, and an antenna sub-array is arranged in the radome.
  • the antenna sub-array includes a reflector 301 and a plurality of radiating surfaces 302 disposed on the reflector 301 .
  • the radome may further include a phase shifter 303 , a combiner 304 (or filter) and a transmission or calibration network 305 .
  • the radome is used to protect the components in the radome from the external environment, and the radome has good electromagnetic wave penetration characteristics in electrical performance, and can withstand the external harsh environment in mechanical performance.
  • the phase shifter 303 can be used to control the change of the phase of the signal.
  • the phase shifter 303 can shift the phase of the input signal, change the relative phase between the signals, and ensure that the signal can be transmitted smoothly inside the base station antenna.
  • the combiner 304 is a radio frequency device used for combining signals of two or more different frequency bands, and the combiner is connected to the antenna connector.
  • the transmission or calibration network 305 is used to ensure that the phase and attenuation of the signal passing through each channel are consistent, so as to ensure that the beamforming formed by the baseband signal processing can be accurately distributed to the radiating surface 302 of the antenna.
  • the phase shifter 303, the combiner 304 and the transmission or calibration network 305 are not described in detail.
  • the antenna sub-array will be described below through embodiments.
  • the radome includes a reflector, a plurality of radiating surfaces, and a grounding plate of the plurality of radiating surfaces.
  • the ground plate is vertically arranged on the reflector, the ground plate includes an integrated bottom structure and a plurality of branch structures, the bottom structure is connected to the reflector, and the top of the branch structure is connected to the Radiant surface.
  • a feeder layer is provided on the side of the ground plate, and a dielectric layer is spaced between the ground plate and the feeder layer.
  • the feeder layer is provided with a first polarized feeder and a second polarized feeder.
  • Each radiating surface includes a first electric dipole and a second electric dipole arranged crosswise.
  • the first polarized feeder is connected to the first electric dipole, the first polarized feeder feeds the first electric dipole, the second polarized feeder is connected to the second electric dipole, and the second polarized feeder is connected to the second electric dipole.
  • the bipolar feeder feeds the first electric dipole.
  • the grounding plate may also be called “common grounding plate” or “common ground”.
  • the reason why the grounding plate can be called “common ground” is that the grounding plate can have the functions of two components at the same time, that is, the grounding plate
  • the floor not only has the function of the "ground” of the polarized feeder, but also the function of the "ground” of the balun of the radiation unit.
  • the grounding plate includes an integrated bottom end structure and a plurality of branch structures, wherein the plurality of branch structures are used to connect a plurality of radiation surfaces and play a role of supporting the plurality of radiation surfaces.
  • each branch structure is connected to the radiating surface, and the branch structure can realize both the "ground” function of the polarized feeder and the "ground” function of the balun.
  • a first polarized feeder and a second polarized feeder are arranged on the side of the ground plate, and the first polarized feeder and the second polarized feeder can not only realize the function of the polarized feeder of the radiation surface, but also realize the balun function of the feeder.
  • the antenna feed network and the balun are integrated through the grounding plate, the first polarized feeder and the second polarized feeder in the present application.
  • the antenna sub-array in the present application has a simple structure, and the antenna sub-array has a relatively simple structure. Fewer components realize the function of the base station antenna, which can not only realize simple installation, but also reduce the production cost.
  • Radiating unit It can also be called “antenna element”, “vibrator”, etc.
  • the radiating unit is the basic structural unit that constitutes the antenna array, and the radiating unit can effectively radiate or receive radio waves.
  • the radiating element includes a radiating surface and a balun.
  • Reflector It can also be called “bottom plate”, “antenna panel”, “metal reflector”, etc.
  • the reflector is used to improve the receiving sensitivity of the antenna signal, and the antenna signal is reflected and concentrated on the receiving point.
  • the reflector can not only enhance the receiving or transmitting capability of the antenna, but also block and shield the interference of other radio waves from the back (reverse direction) to the received signal.
  • Feeding network It is used to feed the signal to the radiation unit according to a certain amplitude and phase, or to send the received wireless signal to the signal processing unit of the base station according to a certain amplitude and phase.
  • the feed network usually consists of controlled impedance transmission lines.
  • Balun used to achieve balanced feeding of the radiating element, and can also play a role in supporting the radiating surface.
  • Sheet metal is a comprehensive cold working process for thin metal sheets (usually below 6mm), for example, including shearing, punching, cutting, folding, etc.
  • Sheet metal parts refer to metal parts processed by sheet metal, and the metal parts may be copper sheet metal parts, aluminum sheet metal parts, etc., and the specifics are not limited.
  • the grounding plate is "vertically” arranged on the reflector, and the grounding plate includes a main surface, a back surface and four sides. One of the side surfaces of the grounding plate is the bottom surface, and the side surface of the grounding plate is connected to the reflecting plate. The grounding plate is connected to the reflecting plate.
  • the board is vertical.
  • a feeder layer is provided on the side of the grounding plate.
  • a possible implementation is to provide a feeder layer on both sides of the grounding plate, that is, a first feeder layer is provided on one side of the grounding plate.
  • the other side of the floor is provided with a second feeder layer, the first feeder layer is used for setting the first polarized feeder, the second feeder layer is used for setting the second polarized feeder, and the ground plate, the first feeder
  • a feeder layer is provided on the same side of the grounding plate, that is, the feeder layer is provided with both a first polarized feeder and a second polarized feeder, through the two layers of metal layers of the grounding layer and the feeder layer layer to realize the base station antenna structure that integrates the feeder network and the balun.
  • the feeder layer is provided with both a first polarized feeder and a second polarized feeder, through the two layers of metal layers of the grounding layer and the feeder layer layer to realize the base station antenna structure that integrates the feeder network and the balun.
  • the grounding plate 402 is vertically arranged on the reflecting plate 401 .
  • the ground plate 402 includes an integrated bottom structure 4021 and a plurality of branch structures 4022.
  • the bottom structure 4021 can be connected to the reflector 401 through screws 409, the top of the branch structures 4022 is connected to the radiation surface 403, and the top of each branch structure 4022 is connected to one Radiation surface 403 .
  • Both sides of the ground plate 402 are provided with feeder layers, the feeder layers include a first feeder layer and a second feeder layer, and the dielectric layer includes a first dielectric layer and a second dielectric layer.
  • One side of the ground plate 402 is provided with a first feeder layer, and the first feeder layer is used for setting the first polarized feeder 404, for example, the first polarized feeder 404 is a +45° polarized feeder.
  • the other side of the ground plate 402 is provided with a second feeder layer, and the second feeder layer is used for setting a second polarized feeder, for example, the second polarized feeder is a -45° polarized feeder.
  • Each radiating surface 403 includes a first electric dipole 4031 (such as a +45° electric dipole) and a second electric dipole 4032 (such as a -45° electric dipole) arranged in a cross, the first polarized feeder 404 is connected to the first electric dipole 4031, and the second polarized feeder is used to connect the second electric dipole 4032.
  • a first electric dipole 4031 such as a +45° electric dipole
  • a second electric dipole 4032 such as a -45° electric dipole
  • the dielectric layer is an air dielectric layer
  • the dielectric layer between the grounding plate 402 and the first feeding layer is a first air dielectric layer 4061
  • the connecting The dielectric layer between the floor 402 and the second feeding layer is the second air dielectric layer 4062 . That is, one side of the ground plate 402 is the first polarized feeder 404 , and the other side of the ground plate 402 is the second polarized feeder 405 .
  • the ground plate 402 , the first polarized feeder 404 and the second polarized feeder 405 may all be sheet metal parts.
  • the first feeder layer is processed into the first polarized feeder by the sheet metal process, and the first feeder layer is the first polarized feeder.
  • the second feeder layer is processed by the sheet metal process. Processed into a second polarized feeder, the second feeder layer is the second polarized feeder.
  • the ground plate includes an integrated bottom end structure and a plurality of branch structures, and the integrated structure is easy to process.
  • Each branch structure is connected with the radiating surface, and the multiple radiating surfaces are connected by a plurality of branch structures, which not only play the role of supporting the radiating surface, but also play the role of the "ground” of the balun.
  • the ground plate also acts as the "ground” of the polarized feeder, and the ground plate can be understood as the "common ground” of the polarized feeder and the balun.
  • the first polarized feeder and the second polarized feeder can be used as the feeder of the radiating surface to feed the radiating surface, and the first polarized feeder and the second polarized feeder can also realize the function of the balun feeder, It plays the role of balanced feeding for multiple radiating units.
  • the integrated structure of the feeder network of the base station antenna and the balun is realized through three layers of metal layers (such as sheet metal parts), which is simple in structure and convenient in installation.
  • an air microstrip line is formed by three-layer sheet metal parts and an air dielectric layer. The dielectric layer in the air microstrip line is air, so the dielectric loss can be greatly reduced.
  • the realization method of sheet metal parts will be lower than the realization method of PCB, cable or super etched pattern (PEP), that is, the method of using sheet metal parts as grounding plate and feeder can reduce the antenna cost of base station. Cost of production.
  • the PCB may include at least a three-layer structure, and the three-layer structure may include a signal layer 701 , a dielectric layer 702 and a ground layer 703 .
  • the signal layer 701 may be the top layer of the PCB for deploying polarized feeders.
  • the dielectric layer 702 is the middle layer of the PCB, which is the base material layer (or also referred to as the insulating layer) of the PCB.
  • the ground layer 703 is used for grounding and is a metal layer.
  • the first feeder layer is the signal layer 804 of the first PCB
  • the second feeder layer is the signal layer 805 of the second PCB.
  • the ground plane (ie "common ground") includes the ground layer 8021 of the first PCB and the ground layer 8022 of the second PCB, and the ground layer 8021 of the first PCB and the ground layer 8022 of the second PCB are connected.
  • the first dielectric layer is the dielectric layer 8061 of the first PCB
  • the second dielectric layer is the dielectric layer 8062 of the second PCB.
  • the ground layer of the first PCB and the ground layer of the second PCB jointly realize the function of "common ground", that is, the ground layers of the two PCBs can not only realize the function of "ground” of the polarized feeder, but also Realize the "ground” function of the balun of the radiation unit.
  • the first polarized feeder can be deployed on the signal layer of the first PCB
  • the second polarized feeder can be deployed on the signal layer of the second PCB, that is, the first polarized feeder and the second polarized feeder are located on both sides of the "common ground”.
  • the first polarized feeder and the second polarized feeder can be used as the feeder of the radiating surface to feed the radiating surface, and the first polarized feeder and the second polarized feeder can also realize the function of the balun feeder.
  • the integrated structure of the feed network of the base station antenna and the balun is realized through the structure of two PCBs, with a simple structure and convenient installation.
  • the structures of the "common ground", the first polarized feeder and the second polarized feeder are realized through the PCB structure, so as to achieve the advantages of easy processing and light weight.
  • This embodiment of the present application provides another embodiment of an antenna sub-array.
  • the main difference between this embodiment and the above-mentioned first embodiment is that in the above-mentioned first embodiment, first polarized feeders and second Polarized feeder.
  • the first polarized feeder and the second polarized feeder are arranged on the same side of the ground plate.
  • the number of radiating surfaces 403 is 2 as an example for description.
  • the base station antenna includes a reflector 401, a plurality of radiating surfaces 403, and a ground plate 402 (also referred to as "common ground").
  • the grounding plate 402 is vertically disposed on the reflecting plate 401, and the grounding plate 402 includes an integrated bottom structure 4021 and a plurality of branch structures 4022 (two branch structures are taken as an example in this example), and the bottom structure 4021 can be connected by screws In the reflection plate 401 , the top of the branch structure 4022 is connected to the radiation surface 403 , and the top of each branch structure 4022 is connected to a radiation surface 403 .
  • a feeder layer is provided on the same side of the ground plate 402, and the first polarized feeder 404 and the second polarized feeder 405 are deployed on the feeder layer.
  • the "common ground” and the functions of the first polarized feeder 404 and the second polarized feeder 405 can be implemented by the structure of the PCB.
  • the ground plate 402 (ie the common ground) is the ground layer of the PCB
  • the feeder layer is the signal layer of the PCB
  • the dielectric layer is the dielectric layer of the PCB. Since in this example, the first polarized feeder 404 and the second polarized feeder 405 are both disposed on the signal layer of the PCB, in order to avoid the cross electrical connection between the first polarized feeder 404 and the second polarized feeder 405, a cross jumper is used.
  • the first polarized feeder line 404 and the second polarized feeder line 405 are set on the same side of the "common ground” in a way.
  • the first polarized feeder 404 and the second polarized feeder 405 have an intersection position 904, and on the other side of the dielectric layer (ie, the signal layer of the PCB), that is, at the corresponding intersection position 904
  • a window 903 is set at the position, and the window 903 is used to set the “jumper segment 4051” of the second polarized feeder 405, and the “jumper segment 4051” refers to the one where the second polarized feeder 405 is located at the “intersection position 904” feeder segment.
  • the first polarized feeder 404 and the second polarized feeder 405 are both used to connect the two radiating surfaces 403, thus, the first polarized feeder 404 and the second polarized feeder 405 are both " concave" structure.
  • the first polarized feeder 404 and the second polarized feeder 405 each include two vertical feeder segments and one horizontal feeder segment.
  • a first via hole 901 and a second via hole 902 are provided on the PCB (eg, a branch structure), and the distance between the first via hole 901 and the second via hole 902 is greater than or equal to the width of the first polarized feed line 404 .
  • the horizontal feeder segment of the first polarized feeder 404 is located at the intersection position 904 between the first via 901 and the second via 902 .
  • the second polarized feeder 405 passes through the first via 901 and exits from the second via 902 , that is, the “jumper segment 4051 ” of the second polarized feeder 405 passes through the first via 901
  • the second via hole 902 is located at the opening 903 of the ground layer of the PCB.
  • the ground layer of the PCB is used to implement the "common ground” function, which can not only implement the "ground” function of the polarized feeder, but also the "ground” function of the balun of the radiation unit.
  • the first polarized feeder and the second polarized feeder can not only realize the function of the feeder of the radiation surface, but also realize the function of the feeder of the balun.
  • the first polarized feeder and the second polarized feeder can be arranged on the same side of the ground plate by means of cross jumpers, thereby realizing the integrated structure of the feeder network and the balun, and realizing the structure of the base station antenna. Simple and easy to install.
  • the structures of the "common ground", the first polarized feeder and the second polarized feeder are realized through the PCB structure, so as to realize the advantages of easy processing and light weight.
  • the radiation surface may include four annular structures.
  • the first annular structure and the third annular structure are first electric dipoles (eg, +45° electric dipoles).
  • the second annular structure and the fourth annular structure are second electric dipoles (eg, -45° electric dipoles).
  • the four ring structures are connected by a cross-placed vibrator. When one of the dipoles is excited to work, the other orthogonally placed dipole acts as a parasitic unit to broaden the impedance bandwidth, that is, a new resonance frequency point is generated.
  • a ring structure is a radiation arm of the radiation surface.
  • the radiation arm of the radiation surface is realized by the ring structure.
  • the induced current on the radiation arm is symmetrical about the center of the oscillator, and there is no potential difference between the two feeds of the oscillator to achieve high isolation.
  • the shape of the radiation arm of the radiation surface is only an example, and the specific shape of the radiation arm is not limited in this application.
  • the first polarized feeder is further connected with a first polarized signal input point, and a signal is input to the first polarized feeder through the first polarized signal input point.
  • the second polarized feeder is also connected with a second polarized signal input point, and a signal is input to the second polarized feeder through the second polarized signal input point.
  • the radiating surface can also be a sheet metal part, and the radiating unit of the sheet metal part structure has a stable structure and a long service life.
  • the structure in which the radiation surface is a sheet metal part can reduce the cost of the antenna sub-array.
  • the radiation surface can also be a PCB structure, and the structure of the radiation surface is realized by the PCB structure, which has the advantages of easy processing and light weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线子阵列及基站天线,该天线子阵列包括反射板、多个辐射面及多个辐射面的接地板,该接地板竖直设置于反射板上,接地板包括一体化的底端结构及多个分支结构,底端结构连接反射板,分支结构的顶端连接辐射面,接地板的侧方设置有馈线层,接地板与馈线层之间间隔有介质层;馈线层设置有第一极化馈线和第二极化馈线;该接地板既具有极化馈线的"地"的功能,又可以兼具巴伦的"地"的功能。第一极化馈线和第二极化馈线既可以实现辐射面的极化馈线的功能,又可以实现巴伦的馈线的功能。通过本申请中的接地板、第一极化馈线和第二极化馈线来实现天线的馈电网络和巴伦一体化,天线子阵列结构简单,通过较少的部件实现基站天线的功能。

Description

一种天线子阵列及基站天线 技术领域
本申请涉及天线技术领域,尤其涉及一种天线子阵列及基站天线。
背景技术
随着无线通信技术的快速发展,对通信系统容量需求越来越大,多输入多输出(multi input multi output,MIMO)技术和波束赋形阵列天线应运而生。传统基站天线通过辐射单元,馈电网络之间的电连接,实现网络覆盖的实时可变,以满足覆盖场景的不断变化,增强网络性能。
但是当前技术中,基站天线的结构复杂,提高了各部件的安装复杂度。例如,请参阅图1A所示,一种实现方式中,基站天线包括第一介质基板(1)、第一上层金属层(2)、第二下层金属层(3)、金属反射板(4)、介质基板混合巴伦(5)和尼龙塑料柱(6)。该介质基板由至少四个尼龙塑料柱(6)支撑在金属反射板(4)上,第一介质基板由介质基板混合巴伦(5)馈电;第一上层金属层(2)和第二下层金属层(3)分别印刷在介质基板(1)的上下表面;在第一上层金属层(2)和第二下层金属层(3)上分别印制有两个呈交叉的偶极子天线;介质基板混合巴伦(5)包括巴伦上层金属层、巴伦中层金属层和巴伦下层金属层,在巴伦上层金属层和巴伦中层金属层之间设置有第二介质板,在巴伦中层金属层和巴伦下层金属层之间设置有第二介质板。请参阅图1B所示,该巴伦上层金属层包括第一渐变线(9)和两个第一巴伦金属地(8),巴伦中层金属层包括巴伦馈电线(10),巴伦下层金属层包括第二渐变线(12)和两个第二巴伦金属地(11)。
当前技术中,巴伦结构复杂,混合巴伦以插针方式实现,结构复杂,安装难度大,并且偶极子天线通过多个独立的尼龙塑料柱(6)支撑在金属反射板上,也使得安装难度增大。那么研发一种更加简洁化的基站天线称为亟待解决的问题。
发明内容
第一方面,本申请实施例提供了一种天线子阵列,包括:反射板、多个辐射面及多个辐射面的接地板;接地板竖直设置于反射板上,接地板包括一体化的底端结构及多个分支结构;底端结构连接反射板,分支结构的顶端连接辐射面;接地板的侧方设置有馈线层,接地板与馈线层之间设置有介质层;馈线层设置有第一极化馈线和第二极化馈线;辐射面包括交叉设置的第一电偶极子和第二电偶极子;第一极化馈线连接第一电偶极子,且第二极化馈线用于连接第二电偶极子。
本示例中,接地板可以同时兼具两个部件的功能,即该接地板既具有极化馈线的“地”的功能,又可以兼具辐射单元的巴伦的“地”的功能。可以理解的是,该接地板包括一体化的底端结构及多个分支结构,其中,多个分支结构用于连接多个辐射面,并起到支撑多个辐射面的作用。每个分支结构的顶端连接辐射面,该分支结构既可以实现极化馈线的“地”的功能,又可以实现巴伦的“地”的功能。并且,该接地板的侧方设置有第一极化馈线和第 二极化馈线,第一极化馈线和第二极化馈线既可以实现辐射面的极化馈线的功能,又可以实现巴伦的馈线的功能。通过本示例中的接地板、第一极化馈线和第二极化馈线来实现天线的馈电网络和巴伦一体化,相对于现有技术,本示例中的基站天线结构简单,通过较少的部件实现基站天线的功能,既可以实现简便安装,又可以减低生产成本。
在一个可选的实现方式中,馈线层包括第一馈线层和第二馈线层,介质层包括第一介质层和第二介质层;接地板的一侧设置有第一馈线层,第一馈线层用于设置第一极化馈线,通过加工方式,将第一馈线层加工为第一极化馈线,即第一馈线层为第一极化馈线,接地板的另一侧设置有第二馈线层,第二馈线层用于设置第二极化馈线通过加工方式,将第二馈线层加工为第二极化馈线,即第二馈线层为第二极化馈线。
本示例中,第一极化馈线和第二极化馈线分别位于接地板的两侧。且接地板、第一馈线层(即第一极化馈线)和第二馈线层(即第二极化馈线)这三个金属层间具有介质层,通过两个馈线层和接地层这三个金属层实现馈电网络和巴伦一体化的天线子阵列结构,结构简单,安装方便。
在一个可选的实现方式中,接地板、第一极化馈线和第二极化馈线均为钣金件。
本示例中,通过三层钣金件实现了基站天线的馈电网络和巴伦的一体化结构,结构简洁,安装方便。并且从生产成本的角度,将钣金件作为接地板和极化馈线的方法可以降低基站天线的生产成本。
在一个可选的实现方式中,介质层为空气介质层;接地板与第一馈电层之间的介质层为第一空气介质层,接地板与第二馈电层之间的介质层为第二空气介质层。
本示例中,通过三层钣金件及空气介质层形成空气微带线,空气微带线中的介质层为空气,因此可以极大降低介质损耗。
在一个可选的实现方式中,第一馈线层为第一PCB的信号层,第二馈线层为第二PCB的信号层;接地板包括第一PCB的接地层和第二PCB的接地层。
本示例中,该第一PCB的接地层和第二PCB的接地层共同实现“公共地”的功能,即两个PCB的接地层既可以实现极化馈线的“地”的功能,又可以实现辐射单元的巴伦的“地”的功能。可以在第一PCB的信号层部署第一极化馈线,在第二PCB的信号层部署第二极化馈线,即第一极化馈线和第二极化馈线分别位于“公共地”的两侧,第一极化馈线和第二极化馈线既可以作为辐射面的馈线,为辐射面进行馈电,且该第一极化馈线和第二极化馈线又可以实现巴伦馈线的功能,起到为多个辐射单元平衡馈电的作用。本示例中,通过两个PCB的结构实现了基站天线的馈电网络和巴伦的一体化结构,结构简洁,安装方便。
在一个可选的实现方式中,第一介质层为第一PCB的介质层,第二介质层为第二PCB的介质层。
本示例中,通过PCB结构来实现“公共地”、第一极化馈线、第二极化馈线及介质层的结构,从而实现易加工,重量轻等优点。
在一个可选的实现方式中,接地板的同一侧设置馈线层,接地板为PCB的接地层,馈线层为PCB的信号层,介质层为PCB的介质层;PCB上设置有第一过孔和第二过孔;在PCB的接地层,且在第一过孔和第二过孔的对应位置设置一开窗;第一过孔和第二过孔之 间的距离大于或者等于第一极化馈线的宽度;第二极化馈线包括跳线段,跳线段通过第一过孔和第二过孔位于开窗位置。
本示例中,PCB的接地层用于实现“公共地”的功能,既可以实现极化馈线的“地”的功能,又可以实现辐射单元的巴伦的“地”的功能。而第一极化馈线和第二极化馈线既可以实现辐射面的馈线的功能,又可以实现巴伦的馈线的功能。本示例中,为了避免第一极化馈线和第二极化馈线电连接,可以通过交叉跳线的方式实现将第一极化馈线和第二极化馈线设置于接地板的同一侧,从而实现了馈电网络和巴伦一体化的结构,实现基站天线结构简洁,安装方便。且本示例中,通过PCB结构来实现“公共地”、第一极化馈线和第二极化馈线的结构,从而实现易加工,重量轻等优点。
在一个可选的实现方式中,辐射面包括4个环形结构;其中,第一环形结构和第三环形结构为第一电偶极子;第二环形结构和第四环形结构为第二电偶极子。
本示例中,每一个环形结构为辐射面的一个辐射臂,通过环形结构来实现辐射面的辐射臂,辐射臂上的感应电流关于振子中心对称,在振子的两个馈电之间没有电位差,实现高隔离。
在一个可选的实现方式中,辐射面为钣金件,或者,辐射面为PCB结构。本示例中,辐射面为钣金件可以降低天线子阵列成本,结构稳固,使用寿命长;辐射面为PCB结构具有加工方便,重量轻等优点。
第二方面,本申请实施例提供了一种基站天线,包括天线罩,所述天线罩内包括多个如上述第一方面所述的天线子阵列。
附图说明
图1A和图1B为传统方法中基站天线的一个示例的示意图;
图2为本申请实施例中基站天馈系统的一个示例的示意图;
图3为本申请实施例中天线罩内部件的结构示意图;
图4为本申请实施例中天线子阵列的一个示例的立体结构示意图;
图5为本申请实施例中接地板的底端结构及多个分支结构的一个示例的主视结构示意图;
图6A为本申请实施例中天线子阵列的一个示例的侧视结构示意图;
图6B为本申请实施例中天线子阵列的一个示例的俯视结构示意图;
图7为本申请实施例中PCB的侧视示意图;
图8为本申请实施例中天线子阵列的另一个示例的侧视结构示意图;
图9A为本申请实施例中天线子阵列的另一个示例的主视结构示意图;
图9B为本申请实施例中天线子阵列的另一个示例的后视结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。本申请 的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。本申请中出现的术语“和/或”,可以是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中“多个”指大于或者等于2个。
本申请提供了一种天线子阵列,该天线子阵列应用于基站天馈系统。请参阅图2所示,该基站天馈系统包括:基站天线201、馈线系统202、抱杆203、天线调整支架204等。其中,基站天线201用于接收和发送无线信号,该基站天线201为双极化天线。馈线系统202为在发送设备和基站天线之间传输信号的导线系统。抱杆203用于固定基站天线201。天线调整支架204用于调整基站天线201的角度。
请参阅图3所示,基站天线包括天线罩,该天线罩内设置天线子阵列,该天线子阵列包括反射板301、及设置于反射板301上的多个辐射面302。可选地,该天线罩内还可以包括移相器303、合路器304(或滤波器)及传动或校准网络305。其中,天线罩用于保护天线罩内的部件受外部环境影响的结构件,且天线罩在电气性能上具有良好的电磁波穿透特性,在机械性能上能经受外部恶劣环境的作用。移相器303可用于控制信号相位的变化,通过移相器303可以对输入信号进行移相,改变信号间的相对相位,保证信号能够在基站天线内部顺利传输。合路器304用于将两种或多种不同频段制式的信号合路的射频器件,合路器连接天线接头。传动或校准网络305用于保证信号通过每个通路是产生的相位和衰减一致,从而保证基带信号处理所形成的波束赋形能准确的分配到天线的辐射面302上。本申请中,对于移相器303、合路器304及传动或校准网络305不详细介绍。以下通过实施例对天线子阵列进行说明。
本申请中,天线罩内包括反射板、多个辐射面及所述多个辐射面的接地板。该接地板竖直设置于所述反射板上,所述接地板包括一体化的底端结构及多个分支结构,所述底端结构连接所述反射板,所述分支结构的顶端连接所述辐射面。所述接地板的侧方设置有馈线层,所述接地板与所述馈线层之间间隔有介质层。所述馈线层设置有第一极化馈线和第二极化馈线。每个辐射面包括交叉设置的第一电偶极子和第二电偶极子。所述第一极化馈线连接所述第一电偶极子,第一极化馈线为第一电偶极子馈电,所述第二极化馈线连接所述第二电偶极子,第二极化馈线为第一电偶极子馈电。
本申请中,接地板也可以称为“公共接地板”或“公共地”,该接地板之所以可以称为“公共地”,该接地板可以同时兼具两个部件的功能,即该接地板既具有极化馈线的“地”的功能,又可以兼具辐射单元的巴伦的“地”的功能。可以理解的是,该接地板包括一体化的底端结构及多个分支结构,其中,多个分支结构用于连接多个辐射面,并起到支撑多个辐射面的作用。每个分支结构的顶端连接辐射面,该分支结构既可以实现极化馈线的“地”的功能, 又可以实现巴伦的“地”的功能。并且,该接地板的侧方设置有第一极化馈线和第二极化馈线,第一极化馈线和第二极化馈线既可以实现辐射面的极化馈线的功能,又可以实现巴伦的馈线的功能。通过本申请中的接地板、第一极化馈线和第二极化馈线来实现天线的馈电网络和巴伦一体化,相对于现有技术,本申请中的天线子阵列结构简单,通过较少的部件实现基站天线的功能,既可以实现简便安装,又可以减低生产成本。
为了更好的理解本申请,首先对本申请中涉及的词语进行说明。
辐射单元:也可以称为“天线振子”、“振子”等。辐射单元是构成天线阵列的基本结构单元,辐射单元能有效地辐射或接收无线电波。辐射单元包括辐射面和巴伦。
反射板:也可以称为“底板”,“天线面板”,“金属反射面”等。反射板用于提高天线信号的接收灵敏度,把天线信号反射聚集在接收点上。反射板不但可以增强天线的接收或发射能力,还可以起到阻挡、屏蔽来自后背(反方向)的其它电波对接收信号的干扰作用。
馈电网络:用于把信号按照一定的幅度、相位馈送到辐射单元,或者,将接收到的无线信号按照一定的幅度、相位发送到基站的信号处理单元。馈电网络通常由受控的阻抗传输线构成。
巴伦:用于实现对辐射单元的平衡馈电,且还可以起到支撑辐射面的作用。
钣金件:钣金是针对金属薄板(通常在6mm以下)一种综合冷加工工艺,例如,包括剪、冲、切、折等。钣金件指通过钣金方式加工的金属件,该金属件可以是铜钣金件,铝钣金件等,具体的并不限定。
接地板“竖直”设置于所述反射板,该接地板包括主面、背面及四个侧面,接地板以其中一个侧面为底面,接地板的侧面连接于反射板上,该接地板与反射板垂直。
本申请中,接地板的侧方设置有馈线层,一种可能的实现方式是,在接地板的两侧设置馈线层,即在接地板的一侧设置有第一馈线层,而可以在接地板的另一侧设置有第二馈线层,该第一馈线层用于设置所述第一极化馈线,第二馈线层用于设置所述第二极化馈线,且接地板、第一馈线层(即第一极化馈线)和第二馈线层(即第二极化馈线)这三个金属层间具有介质层,通过两个馈线层和接地层这三个金属层实现馈电网络和巴伦一体化的天线子阵列结构,此种实现方式详见下述实施例一。在另一种实现方式中,在接地板的同一侧设置馈线层,即该馈线层上既设置有第一极化馈线,也设置有第二极化馈线,通过接地层和馈线层两层金属层实现馈电网络和巴伦一体化的基站天线结构,此种实现方式详见下述实施例二。
实施例一、
本申请实施例提供了一种天线子阵列的一个实施例,请参阅图4和图5所示,基站天线包括反射板401、多个辐射面403及接地板402(也可以称为“公共地”,或称为“公共接地板”)。接地板402竖直设置于反射板401上。接地板402包括一体化的底端结构4021及多个分支结构4022,底端结构4021可以通过螺钉409连接反射板401,分支结构4022的顶端连接辐射面403,每个分支结构4022的顶端连接一个辐射面403。接地板402的两侧均设置有馈线层,馈线层包括第一馈线层和第二馈线层,介质层包括第一介质层和第二介 质层。接地板402的一侧设置有第一馈线层,第一馈线层用于设置第一极化馈线404,如,第一极化馈线404为+45°极化馈线。接地板402的另一侧设置有第二馈线层,第二馈线层用于设置第二极化馈线,如第二极化馈线为-45°极化馈线。每个辐射面403包括交叉设置的第一电偶极子4031(如+45°电偶极子)和第二电偶极子4032(如-45°电偶极子),第一极化馈线404连接第一电偶极子4031,且第二极化馈线用于连接第二电偶极子4032。
在第一个可能实现的方式中,请参阅图6A和图6B所示,介质层为空气介质层,接地板402与第一馈电层之间的介质层为第一空气介质层4061,接地板402与第二馈电层之间的介质层为第二空气介质层4062。即接地板402的一侧为第一极化馈线404,接地板402的另一侧为第二极化馈线405。接地板402、第一极化馈线404和第二极化馈线405均可以为钣金件。可以理解的是,本申请中,通过钣金工艺将第一馈线层加工为第一极化馈线,第一馈线层即为第一极化馈线,同理,通过钣金工艺将第二馈线层加工为第二极化馈线,第二馈线层即为第二极化馈线。
本示例中,首先,接地板包括一体化的底端结构及多个分支结构,一体化的结构加工简便。每个分支结构与辐射面连接,通过多个分支结构将多个辐射面连接起来,分支结构既起到支撑辐射面的作用,又可以起到巴伦的“地”的作用。而且接地板又起到极化馈线的“地”的作用,既接地板可以理解为极化馈线和巴伦的“公共地”。然后,第一极化馈线和第二极化馈线既可以作为辐射面的馈线,为辐射面进行馈电,且该第一极化馈线和第二极化馈线又可以实现巴伦馈线的功能,起到为多个辐射单元平衡馈电的作用。本示例中,通过三层金属层(如钣金件)实现了基站天线的馈电网络和巴伦的一体化结构,结构简洁,安装方便。最后,通过三层钣金件及空气介质层形成空气微带线,空气微带线中的介质层为空气,因此可以极大降低介质损耗。并且从生产成本的角度,钣金件的实现方式会低于PCB、电缆或超级蚀刻图形(plus etched pattern,PEP)的实现方式,即将钣金件作为接地板和馈线的方法可以降低基站天线的生产成本。
在第二个可能实现的方式中,通过两个印制电路板(printed circuit board,PCB)一体化设计实现馈电网络和巴伦一体化的结构。请参阅图7所示,首先对本申请中的PCB的结构进行说明,PCB可以至少包括三层结构,该三层结构可以包括信号层701,介质层702和接地层703。其中,信号层701可以为PCB的顶层,用于部署极化馈线。介质层702为PCB的中间层,为PCB的基材层(或者也称为绝缘层)。接地层703用于接地,为金属层。
请参阅图4和图8所示,第一馈线层为第一PCB的信号层804,第二馈线层为第二PCB的信号层805。接地板(即“公共地”)包括第一PCB的接地层8021和第二PCB的接地层8022,且该第一PCB的接地层8021和第二PCB的接地层8022连接。第一介质层为第一PCB的介质层8061,第二介质层为第二PCB的介质层8062。
可以理解的是,该第一PCB的接地层和第二PCB的接地层共同实现“公共地”的功能,即两个PCB的接地层既可以实现极化馈线的“地”的功能,又可以实现辐射单元的巴伦的“地”的功能。可以在第一PCB的信号层部署第一极化馈线,在第二PCB的信号层部署第二极化馈线,即第一极化馈线和第二极化馈线分别位于“公共地”的两侧,第一极化馈线和第 二极化馈线既可以作为辐射面的馈线,为辐射面进行馈电,且该第一极化馈线和第二极化馈线又可以实现巴伦馈线的功能,起到为多个辐射单元平衡馈电的作用。本示例中,通过两个PCB的结构实现了基站天线的馈电网络和巴伦的一体化结构,结构简洁,安装方便。且本示例中,通过PCB结构来实现“公共地”、第一极化馈线和第二极化馈线的结构,从而实现易加工,重量轻等优点。
实施例二、
本申请实施例提供了一种天线子阵列的另一个实施例,本实施例与上述实施例一的主要区别在于,上述实施例一中,接地板的两侧分别设置第一极化馈线第二极化馈线。而本实施例中,在接地板的同一侧设置第一极化馈线和第二极化馈线。请参阅图9A和9B所示,本示例中,辐射面403的数量以2个为例进行说明。基站天线包括反射板401、多个辐射面403及接地板402(也可以称为“公共地”)。接地板402竖直设置于反射板401上,接地板402包括一体化的底端结构4021及多个分支结构4022(本示例中以2个分支结构为例),底端结构4021可以通过螺钉连接反射板401,分支结构4022的顶端连接辐射面403,每个分支结构4022的顶端连接一个辐射面403。接地板402的同一侧设置有馈线层,在该馈线层上部署第一极化馈线404和第二极化馈线405。
本示例中,可以通过PCB的结构来实现“公共地”和第一极化馈线404和第二极化馈线405的功能。其中,接地板402(即公共地)为PCB的接地层,馈线层为PCB的信号层,介质层为PCB的介质层。由于本示例中,第一极化馈线404和第二极化馈线405均设置于该PCB的信号层,为了避免第一极化馈线404和第二极化馈线405交叉电连接,采用交叉跳线的方式实现第一极化馈线404和第二极化馈线405设置于“公共地”的同一侧。例如,在介质层的一面,第一极化馈线404和第二极化馈线405存在一个交汇位置904,而在介质层的另一侧(即PCB的信号层),即在交汇位置904的对应位置设开窗903,该开窗903用于设置第二极化馈线405的“跳线段4051”,该“跳线段4051”是指第二极化馈线405位于“交汇位置904”的一个馈线段。请再次参阅图9A所示,第一极化馈线404和第二极化馈线405均用于连接两个辐射面403,由此,第一极化馈线404和第二极化馈线405均为“凹”型结构。第一极化馈线404和第二极化馈线405均包括两条竖直的馈线段和一条水平馈线段。在PCB(如在一个分支结构)上设置有第一过孔901和第二过孔902,第一过孔901和第二过孔902之间的距离大于或者等于第一极化馈线404的宽度。第一极化馈线404的水平馈线段在交汇位置904处,位于第一过孔901和第二过孔902之间。请参阅图9B所示,第二极化馈线405穿过第一过孔901,从第二过孔902穿出,即第二极化馈线405的“跳线段4051”通过第一过孔901和第二过孔902位于PCB的接地层的开窗903处。
本示例中,PCB的接地层用于实现“公共地”的功能,既可以实现极化馈线的“地”的功能,又可以实现辐射单元的巴伦的“地”的功能。而第一极化馈线和第二极化馈线既可以实现辐射面的馈线的功能,又可以实现巴伦的馈线的功能。本示例中,可以采用交叉跳线的方式实现将第一极化馈线和第二极化馈线设置于接地板的同一侧,从而实现了馈电网络和巴伦一体化的结构,实现基站天线结构简洁,安装方便。且本示例中,通过PCB结构来实 现“公共地”、第一极化馈线和第二极化馈线的结构,从而实现易加工,重量轻等优点。
本申请实施例中,请再次参阅图4所示,该辐射面可以包括4个环形结构。其中,第一环形结构和第三环形结构为第一电偶极子(如,+45°电偶极子)。第二环形结构和第四环形结构为第二电偶极子(如,-45°电偶极子)。其中,四个环形结构通过一个交叉放置的振子连接,当激励其中一个偶极子工作时,另一个正交放置的偶极子作为寄生单元展宽了阻抗带宽,即产生新的谐振频点,每一个环形结构为辐射面的一个辐射臂,通过环形结构来实现辐射面的辐射臂,辐射臂上的感应电流关于振子中心对称,在振子的两个馈电之间没有电位差,实现高隔离。
可以理解的是,辐射面的辐射臂的形状仅是举例说明,本申请中并不限定辐射臂的具体形状。
本申请实施例中,第一极化馈线还连接有第一极化信号输入点,通过该第一极化信号输入点向第一极化馈线输入信号。第二极化馈线还连接有第二极化信号输入点,通过该第二极化信号输入点向第二极化馈线输入信号。
可选地,辐射面也可以为钣金件,钣金件结构的辐射单元结构稳固,使用寿命长。且辐射面为钣金件的结构可以降低天线子阵列成本。可选地,辐射面也可以为PCB结构,通过PCB结构来实现辐射面的结构,具有易加工,重量轻等优点。
以上,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种天线子阵列,其特征在于,包括:反射板、多个辐射面及所述多个辐射面的接地板;所述接地板竖直设置于所述反射板上,所述接地板包括一体化的底端结构及多个分支结构;所述底端结构连接所述反射板,所述分支结构的顶端连接所述辐射面;所述接地板的侧方设置有馈线层,所述接地板与所述馈线层之间设置有介质层;所述馈线层用于设置第一极化馈线和第二极化馈线;所述辐射面包括交叉设置的第一电偶极子和第二电偶极子;所述第一极化馈线连接所述第一电偶极子,且所述第二极化馈线用于连接所述第二电偶极子。
  2. 根据权利要求1所述的天线子阵列,其特征在于,所述馈线层包括第一馈线层和第二馈线层,所述介质层包括第一介质层和第二介质层;所述接地板的一侧设置有第一馈线层,所述第一馈线层用于设置所述第一极化馈线,所述接地板的另一侧设置有第二馈线层,所述第二馈线层用于设置所述第二极化馈线。
  3. 根据权利要求2所述的天线子阵列,其特征在于,所述接地板、所述第一极化馈线和所述第二极化馈线均为钣金件。
  4. 根据权利要求1-3中任一项所述的天线子阵列,其特征在于,所述介质层为空气介质层;所述接地板与所述第一馈电层之间的介质层为第一空气介质层,所述接地板与所述第二馈电层之间的介质层为第二空气介质层。
  5. 根据权利要求2所述的天线子阵列,其特征在于,所述第一馈线层为第一PCB的信号层,所述第二馈线层为第二PCB的信号层;所述接地板包括第一PCB的接地层和所述第二PCB的接地层。
  6. 根据权利要求5所述的天线子阵列,其特征在于,所述第一介质层为所述第一PCB的介质层,所述第二介质层为所述第二PCB的介质层。
  7. 根据权利要求1所述的天线子阵列,其特征在于,所述接地板的同一侧设置所述馈线层,所述接地板为PCB的接地层,所述馈线层为PCB的信号层,所述介质层为所述PCB的介质层;所述PCB上设置有第一过孔和第二过孔;在所述PCB的接地层,且在所述第一过孔和所述第二过孔的对应位置设置一开窗;所述第一过孔和所述第二过孔之间的距离大于或者等于第一极化馈线的宽度;所述第二极化馈线包括跳线段,所述跳线段通过所述第一过孔和所述第二过孔位于所述开窗位置。
  8. 根据权利要求1-7中任一项所述的天线子阵列,其特征在于,所述辐射面包括4个环形结构;其中,第一环形结构和第三环形结构为第一电偶极子;所述第二环形结构和第四环形结构为第二电偶极子。
  9. 根据权利要求1-7中任一项所述的天线子阵列,其特征在于,所述辐射面为钣金件,或者,所述辐射面为PCB结构。
  10. 一种基站天线,其特征在于,包括天线罩,所述天线罩内包括多个如权利要求1-9中任一项所述的天线子阵列。
PCT/CN2020/132760 2020-11-30 2020-11-30 一种天线子阵列及基站天线 WO2022110139A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/132760 WO2022110139A1 (zh) 2020-11-30 2020-11-30 一种天线子阵列及基站天线
EP20963027.6A EP4239801A4 (en) 2020-11-30 2020-11-30 ANTENNA SUBNETWORK AND BASE STATION ANTENNA
CN202080106448.5A CN116368687A (zh) 2020-11-30 2020-11-30 一种天线子阵列及基站天线
US18/324,698 US20230299486A1 (en) 2020-11-30 2023-05-26 Antenna subarray and base station antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132760 WO2022110139A1 (zh) 2020-11-30 2020-11-30 一种天线子阵列及基站天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/324,698 Continuation US20230299486A1 (en) 2020-11-30 2023-05-26 Antenna subarray and base station antenna

Publications (1)

Publication Number Publication Date
WO2022110139A1 true WO2022110139A1 (zh) 2022-06-02

Family

ID=81753875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132760 WO2022110139A1 (zh) 2020-11-30 2020-11-30 一种天线子阵列及基站天线

Country Status (4)

Country Link
US (1) US20230299486A1 (zh)
EP (1) EP4239801A4 (zh)
CN (1) CN116368687A (zh)
WO (1) WO2022110139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116435779A (zh) * 2023-06-08 2023-07-14 深圳大学 一种超宽带圆极化天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834345A (zh) * 2010-05-17 2010-09-15 京信通信系统(中国)有限公司 超宽频带天线及其单、双极化辐射单元
US20100309084A1 (en) * 2007-10-30 2010-12-09 Comba Telecom System (China) Ltd. Bi-Polarized Broadband Radiation Unit of Annular Type and Linear Array Antenna
CN102800965A (zh) * 2012-07-23 2012-11-28 电子科技大学 一种宽带宽波束双极化偶极子天线
US20160134023A1 (en) * 2013-06-09 2016-05-12 Comba Telecom Technology (Guangzhou) Ltd. Dual polarization array antenna and radiation units thereof
CN209526204U (zh) * 2019-04-22 2019-10-22 中兴通讯股份有限公司 一种天线振子、天线单元及射频单元

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397404B1 (en) * 2014-05-02 2016-07-19 First Rf Corporation Crossed-dipole antenna array structure
CN107819198B (zh) * 2017-09-19 2020-03-20 上海华为技术有限公司 一种基站天线的馈电网络,基站天线及基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100309084A1 (en) * 2007-10-30 2010-12-09 Comba Telecom System (China) Ltd. Bi-Polarized Broadband Radiation Unit of Annular Type and Linear Array Antenna
CN101834345A (zh) * 2010-05-17 2010-09-15 京信通信系统(中国)有限公司 超宽频带天线及其单、双极化辐射单元
CN102800965A (zh) * 2012-07-23 2012-11-28 电子科技大学 一种宽带宽波束双极化偶极子天线
US20160134023A1 (en) * 2013-06-09 2016-05-12 Comba Telecom Technology (Guangzhou) Ltd. Dual polarization array antenna and radiation units thereof
CN209526204U (zh) * 2019-04-22 2019-10-22 中兴通讯股份有限公司 一种天线振子、天线单元及射频单元

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4239801A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116435779A (zh) * 2023-06-08 2023-07-14 深圳大学 一种超宽带圆极化天线
CN116435779B (zh) * 2023-06-08 2023-08-08 深圳大学 一种超宽带圆极化天线

Also Published As

Publication number Publication date
CN116368687A (zh) 2023-06-30
EP4239801A4 (en) 2024-01-10
EP4239801A1 (en) 2023-09-06
US20230299486A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US6593891B2 (en) Antenna apparatus having cross-shaped slot
US20110043424A1 (en) Board-shaped wideband dual polarization antenna
KR102172187B1 (ko) 이동통신 서비스용 옴니 안테나
US6067054A (en) Method and arrangement relating to antennas
CN1174632A (zh) 多片天线
AU2008305785B2 (en) Antenna arrangement for a multi radiator base station antenna
KR101541374B1 (ko) 다중대역 다이폴 안테나 및 시스템
KR101988382B1 (ko) 안테나 장치 및 그를 구비하는 전자 기기
US11881630B2 (en) Beam steering antenna structure and electronic device comprising said structure
CN111864362A (zh) 天线模组及电子设备
US20230335902A1 (en) Multi-band antenna and communication device
US20230299486A1 (en) Antenna subarray and base station antenna
CN116937185B (zh) 智能双偏振线阵微波收发系统
JP3445431B2 (ja) 円偏波パッチアンテナ及び無線通信システム
CN217427070U (zh) 一种发射天线
JP3782278B2 (ja) 偏波共用アンテナのビーム幅制御方法
US9397394B2 (en) Antenna arrays with modified Yagi antenna units
JP2004104682A (ja) アンテナ装置
JPH09321536A (ja) アンテナユニット内デバイス
KR100991823B1 (ko) 교차편파 위상보상급전 패치 안테나
CN104009298A (zh) 双指向性多输入多输出天线单元及其阵列
CN115117626B (zh) 天线组件、传屏器及投屏系统
KR200334062Y1 (ko) 유전체 기판을 이용한 다이폴 안테나
WO2022228188A1 (zh) 天线阵列、天线模组和电子设备
WO2024120361A1 (zh) 天线阵列及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020963027

Country of ref document: EP

Effective date: 20230530

NENP Non-entry into the national phase

Ref country code: DE