WO2024027371A1 - 确定回程转发链路波束的方法、设备、装置及存储介质 - Google Patents

确定回程转发链路波束的方法、设备、装置及存储介质 Download PDF

Info

Publication number
WO2024027371A1
WO2024027371A1 PCT/CN2023/102550 CN2023102550W WO2024027371A1 WO 2024027371 A1 WO2024027371 A1 WO 2024027371A1 CN 2023102550 W CN2023102550 W CN 2023102550W WO 2024027371 A1 WO2024027371 A1 WO 2024027371A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
forwarding link
backhaul
backhaul forwarding
link
Prior art date
Application number
PCT/CN2023/102550
Other languages
English (en)
French (fr)
Inventor
李晓皎
王俊伟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024027371A1 publication Critical patent/WO2024027371A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a method, equipment, device and storage medium for determining a backhaul forwarding link beam.
  • a repeater is a wireless signal relay product that can effectively supplement the coverage capabilities of base stations in network deployment.
  • NCR Network Control Repeater
  • NCR Network Control Repeater
  • NCR Network Control Repeater
  • embodiments of the present disclosure provide a method, equipment, device and storage medium for determining a backhaul forwarding link beam.
  • embodiments of the present disclosure provide a method for determining a backhaul forwarding link beam, which is applied to network control relays, including:
  • first beam information where the first beam information includes beam information of the control link or unified beam indication information
  • second beam information which is the beam information of the default configured backhaul forwarding link, or the beam information of the backhaul forwarding link indicated by the network device, or the beam of the backhaul forwarding link determined according to predefined rules. information;
  • the beam of the backhaul forwarding link is determined.
  • determining the beam of the backhaul forwarding link based on the first beam information includes:
  • the beam of the backhaul forwarding link is determined based on the most recently received first beam information.
  • determining the beam of the backhaul forwarding link based on the most recently received first beam information includes:
  • the determination method of the first moment includes:
  • the first control signaling is control signaling indicating the most recently received first beam information.
  • determining the beam of the backhaul forwarding link based on the most recently received first beam information includes:
  • the first timer is started at the first time.
  • the method also includes:
  • determining the beam of the backhaul forwarding link based on the first beam information includes any of the following:
  • the uplink beam and the downlink beam are independent of each other, determine the uplink beam of the backhaul forwarding link based on the first uplink beam information; and/or determine the downlink beam of the backhaul forwarding link based on the first downlink beam information; or ,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined based on the first uplink and downlink joint beam information.
  • the method also includes:
  • first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams;
  • Receive second parameter information sent by the network device where the second parameter information is used to indicate whether the network control relay performs joint management of uplink beams and downlink beams.
  • the method also includes:
  • the first indication information being used to indicate the index of the duration of the first timer within the timer duration set;
  • the timer duration set is determined based on the enumerated duration value or symbol value; or, the timer duration set is determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • the method also includes:
  • the first beam information includes one or more of the following:
  • the time domain resource position using the first beam information is the time domain resource position using the first beam information.
  • embodiments of the present disclosure also provide a method for determining a backhaul forwarding link beam, which is applied to network equipment, including:
  • the first beam information includes beam information corresponding to the control link between network control relays, or unified beam indication information corresponding to the network control relay;
  • the second beam information is the beam information of the backhaul forwarding link configured by default, or the beam information of the backhaul forwarding link indicated by the network device to the network control relay, Or the beam information of the backhaul forwarding link determined according to predefined rules;
  • the beam of the backhaul forwarding link is determined.
  • determining the beam of the backhaul forwarding link with the network control relay according to the first beam information includes:
  • the beam of the backhaul forwarding link is determined based on the most recently transmitted first beam information.
  • determining the beam of the backhaul forwarding link based on the most recently transmitted first beam information includes:
  • the determination method of the first moment includes:
  • the first control signaling is a control signal indicating the most recently transmitted first beam information. control signaling.
  • determining the beam of the backhaul forwarding link based on the most recently transmitted first beam information includes:
  • the first timer is started at the first time.
  • the method also includes:
  • Data transmission and/or data reception is not performed on the backhaul forwarding link.
  • determining the beam of the backhaul forwarding link with the network control relay based on the first beam information includes any of the following:
  • the uplink beam of the backhaul forwarding link is determined based on the first uplink beam information; and/or the uplink beam of the backhaul forwarding link is determined based on the first downlink beam information.
  • downlink beam or,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined according to the first uplink and downlink joint beam information.
  • the method also includes:
  • Receive first parameter information sent by the network control relay where the first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams; and/or,
  • the method also includes:
  • the timer duration set is determined based on the enumerated duration value or symbol value; or, the timer duration set is determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • the method also includes:
  • the first beam information includes one or more of the following:
  • the time domain resource position using the first beam information is the time domain resource position using the first beam information.
  • embodiments of the present disclosure also provide a network control relay, including a memory, a transceiver, and a processor;
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • first beam information where the first beam information includes beam information of the control link or unified beam indication information
  • second beam information which is the beam information of the default configured backhaul forwarding link, or the beam information of the backhaul forwarding link indicated by the network device, or the beam of the backhaul forwarding link determined according to predefined rules. information;
  • the beam of the backhaul forwarding link is determined.
  • determining the beam of the backhaul forwarding link based on the first beam information includes:
  • the beam of the backhaul forwarding link is determined based on the most recently received first beam information.
  • the backhaul forwarding link is determined based on the most recently received first beam information.
  • beams including:
  • the determination method of the first moment includes:
  • the first control signaling is control signaling indicating the most recently received first beam information.
  • determining the beam of the backhaul forwarding link based on the most recently received first beam information includes:
  • the first timer is started at the first time.
  • the operations also include:
  • determining the beam of the backhaul forwarding link based on the first beam information includes any of the following:
  • the uplink beam and the downlink beam are independent of each other, determine the uplink beam of the backhaul forwarding link based on the first uplink beam information; and/or determine the downlink beam of the backhaul forwarding link based on the first downlink beam information; or ,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined based on the first uplink and downlink joint beam information.
  • the operations also include:
  • first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams;
  • Receive second parameter information sent by the network device where the second parameter information is used to indicate whether the network control relay performs joint management of uplink beams and downlink beams.
  • the operations also include:
  • the first indication information being used to indicate the index of the duration of the first timer within the timer duration set;
  • the timer duration set is determined based on the enumerated duration value or symbol value; or, the timer duration set is determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • the operations also include:
  • the first beam information includes one or more of the following:
  • the time domain resource position using the first beam information is the time domain resource position using the first beam information.
  • embodiments of the present disclosure also provide a network device, including a memory, a transceiver, and a processor;
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the first beam information includes beam information corresponding to the control link between network control relays, or unified beam indication information corresponding to the network control relay;
  • the second beam information is the beam information of the backhaul forwarding link configured by default, or the beam information of the backhaul forwarding link indicated by the network device to the network control relay, Or the beam information of the backhaul forwarding link determined according to predefined rules;
  • the beam of the backhaul forwarding link is determined.
  • determining the beam of the backhaul forwarding link with the network control relay according to the first beam information includes:
  • the beam of the backhaul forwarding link is determined based on the most recently transmitted first beam information.
  • determining the beam of the backhaul forwarding link based on the most recently transmitted first beam information includes:
  • the determination method of the first moment includes:
  • the first control signaling is control signaling indicating the most recently transmitted first beam information.
  • determining the beam of the backhaul forwarding link based on the most recently transmitted first beam information includes:
  • the first timer is started at the first time.
  • the operations also include:
  • Data transmission and/or data reception is not performed on the backhaul forwarding link.
  • determining the beam of the backhaul forwarding link with the network control relay based on the first beam information includes any of the following:
  • the uplink beam of the backhaul forwarding link is determined based on the first uplink beam information; and/or the uplink beam of the backhaul forwarding link is determined based on the first downlink beam information.
  • downlink beam or,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined according to the first uplink and downlink joint beam information.
  • the operations also include:
  • Receive first parameter information sent by the network control relay where the first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams; and/or,
  • the operations also include:
  • Receive the first indication information sent by the network control relay the first indication information being used to indicate the index of the duration of the first timer within the timer duration set; and/or,
  • the timer duration set is determined based on the enumerated duration value or symbol value; or, the timer duration set is determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • the operations also include:
  • the first beam information includes one or more of the following:
  • the time domain resource position using the first beam information is the time domain resource position using the first beam information.
  • embodiments of the present disclosure also provide a device for determining a backhaul forwarding link beam, which is applied to network control relay, including:
  • An acquisition unit configured to acquire first beam information, where the first beam information includes beam information of the control link or unified beam indication information;
  • a first determining unit configured to determine the beam of the backhaul forwarding link according to the first beam information
  • An acquisition unit configured to acquire second beam information, where the second beam information is the beam information of the default configured backhaul forwarding link, or the beam information of the backhaul forwarding link indicated by the network device, or the backhaul determined according to predefined rules. Beam information of the forwarding link;
  • the first determining unit is configured to determine the beam of the backhaul forwarding link according to the second beam information.
  • embodiments of the present disclosure also provide an apparatus for determining a backhaul forwarding link beam, which is applied to network equipment, including:
  • a second determination unit configured to determine first beam information, where the first beam information includes beam information corresponding to the control link between network control relays, or unified beam indication information corresponding to the network control relay;
  • a third determination unit configured to determine the beam of the backhaul forwarding link with the network control relay according to the first beam information
  • a second determining unit configured to determine second beam information, where the second beam information is the default configured beam information of the backhaul forwarding link or the backhaul indicated by the network device to the network control relay. Beam information of the forwarding link, or beam information of the backhaul forwarding link determined according to predefined rules;
  • the third determining unit is configured to determine the beam of the backhaul forwarding link according to the second beam information.
  • embodiments of the present disclosure further provide a computer-readable storage medium that stores a computer program, and the computer program is used to cause the computer to perform the determination return process described in the first aspect.
  • an embodiment of the present disclosure further provides a communication device.
  • a computer program is stored in the communication device. The computer program is used to cause the communication device to perform the determination of the backhaul forwarding link beam as described in the first aspect. method, or perform the method of determining the backhaul forwarding link beam as described in the second aspect above.
  • embodiments of the present disclosure further provide a processor-readable storage medium that stores a computer program, and the computer program is used to cause the processor to execute the first aspect as described above.
  • embodiments of the present disclosure also provide a chip product.
  • a computer program is stored in the chip product.
  • the computer program is used to cause the chip product to perform the determination of the backhaul forwarding link beam as described in the first aspect. method, or perform the method of determining the backhaul forwarding link beam as described in the second aspect above.
  • NCR can use the beam information of the C-link or the unified beam indication information to determine the beam of the FLB, without the need to perform separate processing on the FLB.
  • Beam management simplifies the beam management process and saves system overhead for measurement and signal processing.
  • Figure 1 is a schematic diagram of the NCR link structure provided by related technologies
  • Figure 2 is one of the flow diagrams of a method for determining a backhaul forwarding link beam provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of a method for determining the effective time of FLB beam information provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart 2 of a method for determining a backhaul forwarding link beam provided by an embodiment of the present disclosure
  • Figure 5 is one of the implementation schematic diagrams of a method for determining FLB beams provided by an embodiment of the present disclosure
  • Figure 6 is a second schematic diagram of a method for determining FLB beams provided by an embodiment of the present disclosure
  • Figure 7 is a third schematic diagram of the implementation of a method for determining FLB beams provided by an embodiment of the present disclosure
  • Figure 8 is a fourth schematic diagram of a method for determining FLB beams provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a network control relay provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • Figure 11 is one of the structural schematic diagrams of a device for determining a backhaul forwarding link beam provided by an embodiment of the present disclosure
  • Figure 12 is a second structural schematic diagram of a device for determining a backhaul forwarding link beam provided by an embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone. these three situations.
  • the character "/” generally indicates that the related objects are in an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar to it.
  • Repeater is a wireless signal relay product that can be used as one of the necessary means to achieve the goal of "small capacity, large coverage”.
  • the advantages of using repeaters for network deployment are that, first, network coverage can be ensured without increasing the number of base stations, and second, the cost is much lower than that of micro-cell systems with the same effect.
  • Repeaters are an optimal solution to extend the coverage capabilities of communication networks. Compared with base stations, it has the advantages of simple structure, less investment and convenient installation. It can be widely used in blind areas and weak areas that are difficult to cover, such as shopping malls, hotels, airports, docks, stations, stadiums, entertainment halls, subways, tunnels, etc. It can be used in various places such as highways and islands to improve communication quality and solve problems such as dropped calls.
  • the new repeater NCR adds a control plane protocol stack to the original repeater.
  • the base station can control some functions of the repeater by sending network control information.
  • a base station is required.
  • the beam information in this disclosure refers to the beam information of transmitting and receiving beams between the repeater and the base station.
  • FIG. 1 is a schematic diagram of the NCR link structure provided by related technologies. As shown in Figure 1, the figure shows the link relationship between the base station, NCR and terminal. There are two links between the base station and NCR. One is the control link (C-link) and the other is the backhaul forwarding link (FLB). Both C-link and FLB have uplink and downlink links. In the actual resource allocation process, C-link and FLB can use frequency division multiplexing. (Frequency Diversion Multiplexing, FDM) (simultaneously) or Time Division Multiplexing (Time Diversion Multiplexing, TDM), the uplink and downlink processing methods can be the same or different.
  • FDM Frequency Diversion Multiplexing
  • TDM Time Division Multiplexing
  • FLB and C-link perform beam management separately, since NCR does not perform baseband processing on FLB signals, beam management will be more difficult and more time and resources will be required for measuring and processing signals. Since the signal transmission paths of FLB and C-link are basically the same, this disclosure proposes a FLB beam determination scheme.
  • FLB can use the same beam information as C-link. In this way, beam management can only be performed on C-link.
  • FLB uses C -Link beam direction, FLB does not perform separate beam management, thus simplifying the NCR beam management process and reducing system overhead.
  • C-link and FLB do not transmit on the same symbols, which requires determining the rules for FLB to use C-link beams, thereby determining FLB beam direction.
  • C-link can It may or may not exist on all symbols.
  • the beam direction of C-link is used directly.
  • C-link does not exist on the symbol where FLB is located, It is also necessary to determine the rules for FLB to use C-link beams.
  • Figure 2 is one of the flow diagrams of a method for determining a backhaul forwarding link beam provided by an embodiment of the present disclosure. The method is applied to network control relay. As shown in Figure 2, the method includes the following steps:
  • Step 200 Obtain first beam information.
  • the first beam information includes beam information of the control link or unified beam indication information.
  • Step 201 Determine the beam of the backhaul forwarding link according to the first beam information.
  • the method includes:
  • the second beam information is the beam information of the default configured backhaul forwarding link, or the beam information of the backhaul forwarding link indicated by the network device, or the beam information of the backhaul forwarding link determined according to predefined rules;
  • the beam of the backhaul forwarding link is determined.
  • the Network Control Relay may not perform beam management separately on the backhaul forwarding link (FLB), but use the beam information or unified beam indication information of the control link (C-link), to determine the beam for the backhaul forwarding link.
  • the unified beam indication information can also be called the unified transmission configuration indicator (Transmission Configuration Indicator, TCI) status.
  • TCI Transmission Configuration Indicator
  • the unified beam indication information or unified TCI state may be UnifiedTCIstate.
  • NCR when NCR does not configure unified beam indication information, NCR can use the beam information of C-link as the beam information of FLB to determine the beam of FLB.
  • the NCR when the NCR configures unified beam indication information, the NCR can use the unified beam indication information as the beam information of the FLB to determine the beam of the FLB.
  • the first beam information may include one or more of a beam index, a measurement reference signal resource index, and a time domain resource location using the first beam information.
  • the network device can specify C-link beam information or unified beam indication information through high-layer parameter configuration or through Side Control Information (SCI).
  • the configuration method can be beam identifier (ID) or measurement of the corresponding beam.
  • Reference Signal Resource Index The NCR may determine the beam corresponding to the beam ID or the beam corresponding to the measurement reference signal resource index as the beam of the FLB.
  • the first beam information may also include the time domain resource location using the first beam information, so that the NCR can determine at which time domain resource location the corresponding first beam information is used.
  • NCR may use the second beam information as the beam information of the FLB.
  • the second beam information may be the beam information of the FLB in the default configuration (Default configuration) or indicated by the network device or determined according to predefined rules.
  • the network device can configure the second beam through high-layer parameter configuration or specify the second beam information through SCI, and the configuration method can be the beam ID or the measurement reference signal resource index of the corresponding beam.
  • the second beam information may also include the time domain resource location using the second beam information, so that the NCR can determine at which time domain resource location the corresponding second beam information is used.
  • NCR can use the beam information of C-link or the unified beam indication information to determine the beam of the FLB, without the need for separate beam management of the FLB, thus simplifying the beam managed processes and save system overhead for measurement and signal processing.
  • determining the beam of the backhaul forwarding link based on the first beam information includes:
  • the beam of the backhaul forwarding link is determined based on the most recently received first beam information.
  • NCR may use the most recently received C-link beam information to determine the FLB beam. For example, NCR can use the most recently received beam information of C-link as the beam information of FLB to determine the beam of FLB.
  • the NCR may use the most recently received unified beam indication information to determine the beam of the FLB. For example, the NCR can use the most recently received unified beam indication information as the beam information of the FLB to determine the beam of the FLB.
  • determine the beam of the backhaul forwarding link based on the most recently received first beam information including:
  • the backhaul forwarding is determined based on the most recently received first beam information. link beam;
  • the determination methods of the first moment include:
  • the first control signaling is control signaling indicating the most recently received first beam information.
  • the most recently received C-link beam information or unified beam indication information is used as the FLB beam information.
  • the effective time of the FLB beam information can be expressed as the first time.
  • Figure 3 is a schematic diagram of a method for determining the effective time of the FLB beam information provided by an embodiment of the present disclosure. As shown in Figure 3, the figure shows 3 of the first time.
  • a possible determination method is that it is assumed that the time slot index of the first control signaling sent by the network device is n, and the C-link transmission (sending or receiving) time slot index indicated by the first control signaling is m.
  • timeDurationForQCL quadsi-colocation duration
  • timeDurationForQCL can be pre-specified by the network device.
  • the elements in the set represent the number of OFDM symbols.
  • NCR determines the number of OFDM symbols according to its own The index value of the element in the capability reporting collection.
  • slot_time is the length of a slot.
  • Method 2 The starting symbol of the C-link transmission slot indicated by the first control signaling is used as the first moment, and the slot index of the first moment is m.
  • Method 3 Using the starting symbol of the next time slot of the C-link transmission time slot indicated by the first control signaling as the first time, then the time slot index of the first time is m+1.
  • determine the beam of the backhaul forwarding link based on the most recently received first beam information including:
  • the first timer starts at the first moment.
  • the NCR may use the most recently received C-link beam information or unified beam indication information as the FLB beam information starting from the above-mentioned first moment.
  • NCR can determine the time period in which to use the most recently received C-link beam information or unified beam indication information as the FLB beam information based on the duration of the first timer.
  • the timer may refer to a Quasi Co-Location (QCL) timer QCLtimer.
  • the starting point of the timer is the effective time of the FLB beam information, which is the first moment mentioned above.
  • the three determination methods shown in Figure 3 can be used to determine the starting point of the timer.
  • NCR can set the first timer to zero and start timing when it reaches the above-mentioned first moment. Before the first timer exceeds the timing duration, if NCR sends or receives FLB data, the most recently received C- The beam information of the link or the unified beam indication information is used as the beam information of the FLB.
  • the method also includes:
  • the first indication information being used to indicate the index of the duration of the first timer within the timer duration set;
  • NCR can determine the duration of the first timer on its own (for example, based on NCR's own capabilities), and send first indication information to the network device, indicating that the duration of the first timer is within the timer duration set. index within.
  • the network device can configure the duration of the first timer through high-level parameters, Send second indication information to the NCR to indicate the index of the first timer duration within the timer duration set.
  • the network device can directly use the duration value reported by each NCR, or it can adjust the duration value reported by the NCR and then configure it to each NCR through high-level parameters.
  • the timer duration set can be determined based on the enumerated duration value or symbol value; or, the timer duration set can be determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • a timer duration set can be pre-configured.
  • the method also includes:
  • NCR when NCR is unable to use the first beam information, for example, the first beam information is not received, or the time to use the corresponding first beam information to determine the FLB beam has not yet arrived (it can also be understood as the FLB beam information has not yet arrived) effective time), or the first beam information is not instructed to be used, or the first timer times out, or other reasons cause NCR to be unable to use the first beam information, NCR can have the following different processing methods.
  • the system presets the default beam direction, such as broadcast beam direction or omnidirectional as the default wave direction.
  • Beam direction if the first beam information cannot be used, NCR can use this default beam direction as the beam direction of the FLB.
  • NCR can use preset beam sets and polling rules to use different beam directions as the FLB beam directions at different times.
  • the network device can be configured through high-level parameters or specify the beam information of the FLB through SCI.
  • the configuration method can be the beam ID or the measurement reference signal resource index of the corresponding beam.
  • the beam information of the configured FLB may also include the time domain resource location where the beam information is used, so that the NCR can determine at which time domain resource location the beam information is used.
  • FLB when the C-link has not been established or is temporarily interrupted, FLB also stops running and does not perform data sending and/or data receiving operations.
  • determine the beam of the backhaul forwarding link based on the first beam information including any of the following:
  • the uplink beam and the downlink beam are independent of each other, determine the uplink beam of the backhaul forwarding link based on the first uplink beam information; and/or determine the downlink beam of the backhaul forwarding link based on the first downlink beam information; or ,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined based on the first uplink and downlink joint beam information.
  • uplink beams and downlink beams may be managed independently of each other, or uplink beams and downlink beams may be jointly managed.
  • the uplink beam information and the downlink beam information are not related to each other.
  • the FLB uplink transmission uses the first uplink beam information to determine the FLB beam
  • the FLB downlink transmission uses the first downlink beam information.
  • the first uplink beam information refers to the first beam information corresponding to the uplink direction
  • the first downlink beam information refers to the first beam information corresponding to the downlink direction.
  • the first uplink beam information may be separate UL, used for Indicates independent upstream TCI status.
  • the first downlink beam information may be separate DL, used to indicate independent downlink TCI status.
  • the first uplink beam information and the first downlink beam information may be one piece of information, for example, separateULDL, used to indicate independent uplink and downlink TCI states.
  • the uplink beam and downlink beam of FLB are determined using the first uplink and downlink joint beam information, and the first uplink and downlink joint beam information includes both uplink and downlink beam information.
  • the network equipment or NCR can pre-set the related information of the uplink beam and the downlink beam.
  • Each uplink beam has a corresponding downlink beam, and the two correspond one to one.
  • the first uplink and downlink joint beam information refers to the first beam information including the uplink and downlink joint information.
  • the first joint uplink and downlink beam information may be jointULDL, which is used to indicate the joint uplink and downlink TCI status.
  • the method also includes:
  • first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams;
  • Receive second parameter information sent by the network device where the second parameter information is used to indicate whether the network control relay performs joint management of uplink beams and downlink beams.
  • NCR can report information to the network device whether it supports joint management of uplink beams and downlink beams, or the network device can instruct NCR whether to perform joint management of uplink beams and downlink beams through parameter configuration.
  • NCR can report whether it supports joint processing of uplink and downlink beams through Radio Resource Control (RRC) parameters (such as BeamType (beam type) or TCI-StateType (transmission configuration indication state type)). If so, configure it to 1 , if not, it is configured as 0.
  • RRC Radio Resource Control
  • the network device can configure whether to jointly process uplink and downlink beams through RRC parameters (such as BeamType or TCI-StateType). If so, set it to 1, if not, set it to 0.
  • RRC parameters such as BeamType or TCI-StateType
  • the method also includes:
  • the third parameter information is used to indicate that the network is under control. Whether to use unified beam indication information for the backhaul forwarding link.
  • the network device can indicate whether the NCR uses unified beam indication information to determine the beam of the FLB through configuration parameters.
  • the network device can send the RRC parameter followUnifiedTCIstate_FLB to the NCR.
  • followUnifiedTCIstate_FLB is configured as enable
  • the unified beam indication information can be used to determine the FLB beam.
  • the unified beam indication information is not used to determine the FLB beam.
  • FLB can use the default or the beam direction confirmed by the polling rule or indicated by the network device.
  • FIG 4 is a schematic flowchart 2 of a method for determining a backhaul forwarding link beam provided by an embodiment of the present disclosure.
  • the method is applied to network equipment (such as a base station). As shown in Figure 4, the method includes the following steps:
  • Step 400 Determine first beam information.
  • the first beam information includes beam information corresponding to the control link between network control relays, or unified beam indication information corresponding to the network control relay.
  • Step 401 Determine the beam of the backhaul forwarding link with the network control relay according to the first beam information.
  • the method includes:
  • the second beam information is the beam information of the default configured backhaul forwarding link, or the beam information of the backhaul forwarding link indicated by the network device to the network control relay, or the backhaul forwarding chain determined according to predefined rules. Beam information of the road;
  • the beam of the backhaul forwarding link is determined.
  • the Network Control Relay may not perform beam management separately on the backhaul forwarding link (FLB), but use the beam information or unified beam indication information of the control link (C-link), to determine the beam for the backhaul forwarding link.
  • the network device determines the beam of the FLB between a certain NCR, it can also use the beam information corresponding to the C-link between the NCR or the unified beam indication information corresponding to the NCR.
  • Unified beam indication information may also be called unified TCI status.
  • the unified beam indication signal Information or UnifiedTCIstate can be UnifiedTCIstate.
  • the network device can use the beam information of the C-link with the NCR as the beam information of the FLB to determine the beam of the FLB.
  • the network device can use the unified beam indication information corresponding to the NCR as the beam information of the FLB to determine the beam of the FLB.
  • the first beam information may include one or more of a beam index, a measurement reference signal resource index, and a time domain resource location using the first beam information.
  • the network device can be configured through high-layer parameters or specify C-link beam information or unified beam indication information through SCI.
  • the configuration method can be the beam ID or the measurement reference signal resource index of the corresponding beam.
  • the first beam information may also include a time domain resource position using the first beam information, so that it can be determined at which time domain resource position the corresponding first beam information is used.
  • the network device may use the second beam information as the beam information of the FLB.
  • the second beam information may be the beam information of the FLB in the default configuration (Default configuration) or indicated by the network device or determined according to predefined rules. .
  • the network device can configure the second beam through high-layer parameter configuration or specify the second beam information through SCI, and the configuration method can be the beam ID or the measurement reference signal resource index of the corresponding beam.
  • the second beam information may also include the time domain resource location using the second beam information, so that the NCR can determine at which time domain resource location the corresponding second beam information is used.
  • the method for determining the beam of the backhaul forwarding link uses the beam information of C-link or the unified beam indication information to determine the beam of the FLB through both NCR and network equipment, so that the NCR does not need to perform separate beam management for the FLB. , thus simplifying the beam management process and saving system overhead for measurement and signal processing.
  • determine the beam of the backhaul forwarding link with the network control relay according to the first beam information including:
  • the beam of the backhaul forwarding link is determined based on the most recently transmitted first beam information.
  • the network device may use the most recently received C-link beam information to determine the FLB beam. For example, the network device can use the most recently received C-link beam information as FLB beam information, thereby determining the FLB beam.
  • the network device may use the most recently received unified beam indication information to determine the beam of the FLB. For example, the network device can use the most recently received unified beam indication information as the beam information of the FLB to determine the beam of the FLB.
  • determine the beam of the backhaul forwarding link based on the most recently sent first beam information including:
  • the determination methods of the first moment include:
  • the first control signaling is control signaling indicating the most recently transmitted first beam information.
  • the most recently received C-link beam information or unified beam indication information is used as the FLB beam information.
  • the effective time of the FLB beam information can be expressed as the first time, as shown in Figure 3.
  • the figure shows three possible ways to determine the first time. It is assumed that the network device sends the time slot index of the first control signaling. is n, and the C-link transmission (sending or receiving) slot index indicated by the first control signaling is m.
  • timeDurationForQCL quad co-location duration
  • timeDurationForQCL can be pre-specified by the network device.
  • the elements in the set represent the number of OFDM symbols.
  • NCR reports the index value of the elements in the set according to its own capabilities.
  • slot_time is the length of a slot.
  • Method 2 The starting symbol of the C-link transmission slot indicated by the first control signaling is used as the first moment, and the slot index of the first moment is m.
  • Method 3 Using the starting symbol of the next time slot of the C-link transmission time slot indicated by the first control signaling as the first time, then the time slot index of the first time is m+1.
  • determine the beam of the backhaul forwarding link based on the most recently sent first beam information including:
  • the first timer starts at the first moment.
  • the network device may use the most recently received C-link beam information or unified beam indication information as the FLB beam information starting from the first moment.
  • the network device can determine according to the duration of the first timer in which time period to use the most recently received C-link beam information or unified beam indication information as the FLB beam information.
  • the timer may refer to the QCL timer QCLtimer.
  • the starting point of the timer is the effective time of the FLB beam information, which is the first moment mentioned above.
  • the three determination methods shown in Figure 3 can be used to determine the starting point of the timer.
  • the network device can set the first timer to zero and start timing when the above-mentioned first time is reached. Before the first timer exceeds the timing duration, if the network device sends or receives FLB data, the most recently received data will be used.
  • the beam information of C-link or the unified beam indication information is used as the beam information of FLB.
  • the method also includes:
  • the first indication information is used to indicate the first certain The index of the timer's duration within the timer duration collection; and/or,
  • NCR can determine the duration of the first timer on its own (for example, based on NCR's own capabilities), and send first indication information to the network device, indicating that the duration of the first timer is within the timer duration set. index within.
  • the network device can configure the duration of the first timer through high-level parameters, and send second indication information to the NCR to indicate the index of the duration of the first timer within the timer duration set.
  • the network device can directly use the duration value reported by each NCR, or it can adjust the duration value reported by the NCR and then configure it to each NCR through high-level parameters.
  • the timer duration set is determined based on the enumerated duration value or symbol value; or, the timer duration set is determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • a timer duration set can be pre-configured.
  • the method also includes:
  • the network device may have the following different conditions: processing method.
  • the system presets a default beam direction, such as broadcast beam direction or omnidirectional as the default beam direction. If the first beam information cannot be used, the network device can use the default beam direction as the FLB beam direction.
  • network equipment can use preset beam sets and polling rules to use different beam directions as the FLB beam directions at different times.
  • the network device can be configured through high-level parameters or specify the beam information of the FLB through SCI.
  • the configuration method can be the beam ID or the measurement reference signal resource index of the corresponding beam.
  • the beam information of the configured FLB may also include the time domain resource location where the beam information is used, so that it can be determined at which time domain resource location the beam information is used.
  • FLB when the C-link has not been established or is temporarily interrupted, FLB also stops running and does not perform data sending and/or data receiving operations.
  • determine the beam of the backhaul forwarding link with the network control relay based on the first beam information including any of the following:
  • the uplink beam and the downlink beam are independent of each other, determine the uplink beam of the backhaul forwarding link based on the first uplink beam information; and/or determine the downlink beam of the backhaul forwarding link based on the first downlink beam information; or ,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined based on the first uplink and downlink joint beam information.
  • uplink beams and downlink beams may be managed independently of each other, or uplink beams and downlink beams may be jointly managed.
  • the uplink beam information and the downlink beam information are not related to each other.
  • the FLB uplink transmission uses the first uplink beam information to determine the FLB beam
  • the FLB downlink transmission uses the first downlink beam information.
  • the first uplink beam information refers to the first beam information corresponding to the uplink direction
  • the first downlink beam information refers to the first beam information corresponding to the downlink direction.
  • the first uplink beam information may be separate UL, used to indicate independent uplink TCI status.
  • the first downlink beam information may be separate DL, used to indicate independent downlink TCI status.
  • the first uplink beam information and the first downlink beam information may be one piece of information, for example, separateULDL, used to indicate independent uplink and downlink TCI states.
  • the uplink beam and downlink beam of FLB are determined using the first uplink and downlink joint beam information, and the first uplink and downlink joint beam information includes both uplink and downlink beam information.
  • the network equipment or NCR can pre-set the related information of the uplink beam and the downlink beam.
  • Each uplink beam has a corresponding downlink beam, and the two correspond one to one.
  • the first uplink and downlink joint beam information refers to the first beam information including the uplink and downlink joint information.
  • the first joint uplink and downlink beam information may be jointULDL, which is used to indicate the joint uplink and downlink TCI status.
  • the method also includes:
  • Receive first parameter information sent by the network control relay where the first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams; and/or,
  • the NCR can report information on whether it supports joint management of uplink beams and downlink beams to the network device, or the network device can indicate it through parameter configuration. Whether NCR performs joint management of uplink beams and downlink beams.
  • NCR can report whether it supports joint processing of uplink and downlink beams through RRC parameters (such as BeamType or TCI-StateType). If so, it is configured as 1, if not, it is configured as 0.
  • RRC parameters such as BeamType or TCI-StateType
  • the network device can configure whether to jointly process uplink and downlink beams through RRC parameters (such as BeamType or TCI-StateType). If so, set it to 1, if not, set it to 0.
  • RRC parameters such as BeamType or TCI-StateType
  • the method also includes:
  • the network device can indicate whether the NCR uses unified beam indication information to determine the beam of the FLB through configuration parameters.
  • the network device can send the RRC parameter followUnifiedTCIstate_FLB to the NCR.
  • followUnifiedTCIstate_FLB is configured as enable
  • the unified beam indication information can be used to determine the FLB beam.
  • the unified beam indication information is not used to determine the FLB beam.
  • FLB can use the default or the beam direction confirmed by the polling rule or indicated by the network device.
  • Embodiment 1 Uplink and downlink beam indication respectively + method flow without timer.
  • FIG. 5 is one of the implementation schematic diagrams of a method for determining FLB beams provided by an embodiment of the present disclosure. As shown in Figure 5, the figure shows methods for determining FLB beams in two different modes: FDM and TDM.
  • the FLB beam information in the figure is valid.
  • the time is the starting time of the C-link transmission time slot.
  • Embodiment 5 For other methods of determining the effective time of the FLB beam information, please refer to Embodiment 5.
  • the default beam or the beam determined by the polling rule or the beam indicated by the base station or not transmitted and received
  • different patterns represent different Beam direction.
  • Step 1 If FLB works when there is no reference beam information, the system pre-sets the default (or polling rule confirmed or indicated by the base station) beam direction. Before C-link establishes a connection, FLB uses the default (or polling The uplink (downlink) beam direction confirmed by the rules or indicated by the base station is used as the transmit (receive) beam direction.
  • FLB will not send or receive before C-link establishes a connection.
  • Step 2 After C-link establishes a connection, NCR performs beam measurement and management on C-link.
  • the beam management process can adopt existing technologies. For example, the base station uses different beams to send measurement signals to NCR through C-link. NCR receives After measuring the signal, the measurement quantity (such as received power, etc.) is calculated, and after comparison, C-link reports the measurement quantity or optimal beam information. Uplink and downlink beams are managed separately.
  • Step 3 After receiving the measurement volume or optimal beam information reported by C-link, the base station delivers C-link beam information A-UL (uplink)/A-DL (downlink) through DCI.
  • Step 4 If the NCR does not detect the beam information A-UL/A-DL, it will still determine the FLB beam direction according to step 1 or not send and receive; if the NCR receives and detects the beam information A-UL/A-DL, then , when the corresponding FLB beam information takes effect, NCR uses the beam information A-UL/A-DL as the uplink/downlink beam of FLB.
  • Embodiment 2 Uplink and downlink beam joint indication + method flow without timer.
  • FIG. 6 is a second schematic diagram of a method for determining FLB beams provided by an embodiment of the present disclosure.
  • the figure shows methods for determining FLB beams in two different modes: FDM and TDM.
  • the FLB beam information in the figure is valid.
  • the time is the starting time of the transmission time slot of C-link.
  • Embodiment 5 For other methods of determining the effective time of FLB beam information, please refer to Embodiment 5.
  • the default beam or the beam confirmed by the polling rule or the beam indicated by the base station or not transmitted and received
  • Different patterns represent different beam directions, and the same pattern is represented by different borders (solid lines and dotted lines). is a set of corresponding beam directions.
  • Step 1 The base station or NCR pre-sets the related information of the uplink and downlink beams.
  • Each uplink transmit beam has a corresponding downlink receive beam, and the two correspond one to one.
  • Step 2 If FLB works when there is no reference beam information, the system pre-sets the default beam direction (or confirmed by polling rules or indicated by the base station). Before C-link establishes a connection, FLB uses the default beam direction. The associated information of the uplink and downlink beams recognized (or confirmed by polling rules or indicated by the base station) is used as the transmitting and receiving beam directions.
  • FLB will not send or receive before C-link establishes a connection.
  • Step 3 After C-link establishes a connection, NCR performs beam measurement and management on C-link.
  • the beam management process can adopt existing technologies. For example, the base station uses different beams to send measurement signals to NCR through C-link. NCR receives After measuring the signal, the measurement quantity (such as received power, etc.) is calculated, and after comparison, C-link reports the measurement quantity or optimal beam information. Uplink and downlink beams are jointly managed for beam management.
  • Step 4 After receiving the measurement volume or optimal beam information reported by C-link, the base station delivers C-link's joint uplink and downlink beam information A through DCI.
  • Step 5 If NCR does not detect beam information A, it will still determine the FLB beam direction according to step 1 or not send or receive; if NCR receives and detects uplink and downlink joint beam information A, the corresponding FLB beam information will take effect when it arrives. time, NCR uses beam information A as the uplink and downlink beams of FLB.
  • Embodiment 3 Uplink and downlink beam indication respectively + method flow with timer.
  • Figure 7 is the third implementation schematic diagram of the method for determining the FLB beam provided by the embodiment of the present disclosure. As shown in Figure 7, the figure shows the determination method of the FLB beam in two different modes: FDM and TDM. The starting point of the timer in the figure is The starting time of the C-link transmission time slot. For other methods of determining the effective time of the FLB beam information, please refer to Embodiment 5. When there is no reference beam information, the default beam (or the beam confirmed by the polling rule or the beam indicated by the base station or not transmitted and received) is used, where different patterns represent different beam directions.
  • Step 1 If FLB works when there is no reference beam information, the system pre-sets the default (or polling rule confirmed or indicated by the base station) beam direction. Before C-link establishes a connection, FLB uses the default (or polling The uplink (downlink) beam direction confirmed by the rules or indicated by the base station is used as the transmit (receive) beam direction.
  • FLB will not send or receive before C-link establishes a connection.
  • Step 2 The base station indicates the duration of the timer QCLtimer.
  • the base station indicates the duration of the timer QCLtimer.
  • Step 3 The base station determines the default or designated FLB beam information B-UL (uplink)/B-DL (downlink).
  • Step 4 After C-link establishes a connection, NCR performs beam measurement and management on C-link.
  • the beam management process can adopt existing technologies. For example, the base station uses different beams to send measurement signals to NCR through C-link. NCR receives After measuring the signal, the measurement quantity (such as received power, etc.) is calculated, and after comparison, C-link reports the measurement quantity or optimal beam information. Uplink and downlink beams are managed separately.
  • Step 5 After receiving the measurement volume or optimal beam information reported by C-link, the base station delivers C-link beam information A-UL/A-DL through DCI.
  • Step 6 If the NCR does not detect the beam information A-UL/A-DL, it will still determine the FLB beam direction according to step 1 or not send and receive; if the NCR receives and detects the beam information A-UL/A-DL, then , when reaching the starting point of QCLtimer, QCLtimer is set to zero and starts timing, and NCR uses beam information A-UL/A-DL as the uplink/downlink beam of FLB. When the QCLtimer reaches the set duration, NCR uses the beam information B-UL/B-DL as the uplink/downlink beam of FLB.
  • Embodiment 4 Uplink and downlink beam joint indication + method flow with timer.
  • Figure 8 is a fourth schematic diagram of a method for determining FLB beams provided by an embodiment of the present disclosure. As shown in Figure 8, the figure shows methods for determining FLB beams in two different modes: FDM and TDM, as shown in Figure 8.
  • the starting point of the timer is the starting time of the transmission time slot of the C-link.
  • the default beam or the beam confirmed by the polling rule or the beam indicated by the base station or not transmitted and received
  • Different patterns represent different beam directions, and the same pattern is represented by different borders (solid lines and dotted lines). is a set of corresponding beam directions.
  • Step 1 The base station or NCR pre-sets the related information of the uplink and downlink beams.
  • Each uplink transmit beam has a corresponding downlink receive beam, and the two correspond one to one.
  • Step 2 If FLB works when there is no reference beam information, the system pre-sets the default (or polling rule confirmed or indicated by the base station) beam direction. Before C-link establishes a connection, FLB uses the default (or polling The associated information of the uplink and downlink beams confirmed by the rules or indicated by the base station is used as the transmit and receive beam directions.
  • FLB will not send or receive before C-link establishes a connection.
  • Step 3 The base station determines the duration of the timer QCLtimer. For specific methods, see Embodiments 6 and 7.
  • Step 4 The base station determines the default or designated FLB beam information B.
  • Step 5 After C-link establishes a connection, NCR performs beam measurement and management on C-link.
  • the beam management process can use existing technologies. For example, the base station uses different beams to send measurement signals to NCR through C-link. NCR receives After measuring the signal, the measurement quantity (such as received power, etc.) is calculated, and after comparison, C-link reports the measurement quantity or optimal beam information. Uplink and downlink beams are jointly managed for beam management.
  • Step 6 After receiving the measurement volume or optimal beam information reported by C-link, the base station delivers C-link beam information A through DCI.
  • Step 7 If NCR does not detect beam information A, it will still determine the FLB beam direction according to step 1 or not send or receive; if NCR receives and detects beam information A, when it reaches the starting point of QCLtimer, QCLtimer is set to zero and starts Timing, NCR uses beam information A as the uplink and downlink beams of FLB. When the QCLtimer reaches the set duration, NCR uses beam information B as the uplink and downlink beams of FLB.
  • Embodiment 5 Calculation method flow of FLB beam information effective time (or timer starting point).
  • the FLB beam information effective time (or timer starting point) of different methods are respectively for:
  • timeDurationForQCL quadsi co-location duration
  • slot_time is the length of a time slot.
  • timeDurationForQCL is a set pre-specified by the base station.
  • the elements in the set represent the number of OFDM symbols.
  • the UE reports the index value of the elements in the set according to its own capabilities.
  • Embodiment 6 Method flow of high-level parameters indicating timer duration.
  • Step 1 The base station pre-configures the available duration set of QCLtimer and configures it through the RRC layer parameter LengthOfQCLtimer.
  • Step 2 The base station instructs the QCLtimer to index the available duration set to the NCR through RRC or SCI.
  • Step 3 NCR determines the duration of QCLtimer after receiving the index value.
  • Embodiment 7 Method flow of determining timer length by NCR reporting method.
  • Step 1 The base station pre-configures the available duration set of QCLtimer and configures it through the RRC layer parameter LengthOfQCLtimer.
  • Step 2 NCR uses RRC or SCI to indicate the index within the available duration set of QCLtimer according to its own capabilities.
  • Step 3 After receiving the index value, the base station adjusts the duration of the QCLtimer.
  • the adjusted QCLtimer then indicates the index within the QCLtimer available duration set to the NCR through RRC or SCI.
  • Step 4 NCR determines the duration of QCLtimer after receiving the index value.
  • Embodiment 8 Method for confirming uplink and downlink beam indication modes.
  • uplink and downlink beam indication methods are respectively indicated by the uplink and downlink beams or jointly indicated by the uplink and downlink beams can be system default, can also be configured through parameters, and can also be reported as an NCR capability:
  • the base station configures whether to jointly process uplink and downlink beams through RRC parameters (such as BeamType or TCI-StateType). If so, configure it to 1, if not, configure it to 0.
  • RRC parameters such as BeamType or TCI-StateType
  • NCR capability reporting method NCR reports whether it supports joint processing of uplink and downlink beams through RRC parameters (such as BeamType or TCI-StateType). If so, it is configured as 1, if not, it is configured as 0.
  • RRC parameters such as BeamType or TCI-StateType
  • Embodiment 9 Method flow for NCR to configure unified beam indication information UnifiedTCIstate.
  • Step 1 If FLB cannot work when UnifiedTCIstate is used, the system pre-sets the default (or polling rule confirmed or indicated by the base station) beam direction. Before C-link establishes a connection, FLB uses the default (or polling rule) Confirmed or indicated by the base station) beam direction as the beam direction.
  • FLB will not send or receive before C-link establishes a connection.
  • Step 2 After C-link establishes a connection, NCR performs beam measurement and management on C-link.
  • the beam management process can adopt existing technologies. For example, the base station uses different beams to send measurement signals to NCR through C-link. NCR receives After measuring the signal, the measurement quantity (such as received power, etc.) is calculated, and after comparison, C-link reports the measurement quantity or optimal beam information.
  • Step 3 After receiving the measurement volume or optimal beam information reported by C-link, the base station issues unified beam indication information UnifiedTCIstate through DCI.
  • Step 4. receives the RRC parameter followUnifiedTCIstate_FLB.
  • FLB uses UnifiedTCIstate information when UnifiedTCIstate information is received and the FLB beam information effective time is reached. Otherwise, proceed as in step 1.
  • Figure 9 is a schematic structural diagram of a network control relay provided by an embodiment of the present disclosure.
  • the network control relay includes a memory 920, a transceiver 910 and a processor 900; the processor 900 and the memory 920 can also be Physically separated.
  • the memory 920 is used to store computer programs; the transceiver 910 is used to send and receive data under the control of the processor 900.
  • the transceiver 910 is used to receive and transmit data under the control of the processor 900.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 900 and various circuits of the memory represented by memory 920 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all well known in the art and therefore will not be described further in this disclosure.
  • the bus interface provides the interface.
  • the transceiver 910 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 can store data used by the processor 900 when performing operations.
  • the processor 900 can be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device (CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor 900 is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory 920, for example: obtaining the first beam information, and the first beam information includes the control link. Beam information or unified beam indication information; determine the beam of the backhaul forwarding link according to the first beam information;
  • the second beam information which is the beam information of the default configured backhaul forwarding link, or the beam information of the backhaul forwarding link indicated by the network device, or the beam of the backhaul forwarding link determined according to predefined rules.
  • Information determine the beam of the backhaul forwarding link based on the second beam information.
  • determining the beam of the backhaul forwarding link based on the first beam information includes:
  • the beam of the backhaul forwarding link is determined based on the most recently received first beam information.
  • determine the beam of the backhaul forwarding link based on the most recently received first beam information including:
  • the determination methods of the first moment include:
  • the first control signaling is control signaling indicating the most recently received first beam information.
  • determine the beam of the backhaul forwarding link based on the most recently received first beam information including:
  • the first timer starts at the first moment.
  • the method also includes:
  • determine the beam of the backhaul forwarding link based on the first beam information including any of the following:
  • the uplink beam and the downlink beam are independent of each other, determine the uplink beam of the backhaul forwarding link based on the first uplink beam information; and/or determine the backhaul forwarding link based on the first downlink beam information the downlink beam of the link; or,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined based on the first uplink and downlink joint beam information.
  • the method also includes:
  • first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams;
  • Receive second parameter information sent by the network device where the second parameter information is used to indicate whether the network control relay performs joint management of uplink beams and downlink beams.
  • the method also includes:
  • the first indication information being used to indicate the index of the duration of the first timer within the timer duration set;
  • the timer duration set is determined based on the enumerated duration value or symbol value; or, the timer duration set is determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • the method also includes:
  • the first beam information includes one or more of the following:
  • Time domain resource location using first beam information is mapped to first beam information.
  • Figure 10 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • the network device includes a memory 1020, a transceiver 1010 and a processor 1000; the processor 1000 and the memory 1020 can also be physically arranged separately. .
  • the memory 1020 is used to store computer programs; the transceiver 1010 is used to send and receive data under the control of the processor 1000.
  • the transceiver 1010 is used to receive and transmit data under the control of the processor 1000.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1000 and various circuits of the memory represented by memory 1020 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all well known in the art and therefore will not be described further in this disclosure.
  • the bus interface provides the interface.
  • the transceiver 1010 may be a plurality of components, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 when performing operations.
  • the processor 1000 can be a CPU, ASIC, FPGA or CPLD, and the processor can also adopt a multi-core architecture.
  • the processor 1000 is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory 1020, for example: determining the first beam information, and the first beam information is included in the network control. Beam information corresponding to the control link between relays, or unified beam indication information corresponding to the network control relay; determine the beam of the backhaul forwarding link with the network control relay based on the first beam information;
  • the second beam information is the beam information of the backhaul forwarding link configured by default, or the beam information of the backhaul forwarding link indicated by the network device to the network control relay, or the backhaul determined according to predefined rules. Beam information of the forwarding link; determine the beam of the backhaul forwarding link based on the second beam information.
  • determine the beam of the backhaul forwarding link with the network control relay according to the first beam information including:
  • the beam of the backhaul forwarding link is determined based on the most recently transmitted first beam information.
  • determine the beam of the backhaul forwarding link based on the most recently sent first beam information including:
  • the determination methods of the first moment include:
  • the first control signaling is control signaling indicating the most recently transmitted first beam information.
  • determine the beam of the backhaul forwarding link based on the most recently sent first beam information including:
  • the first timer starts at the first moment.
  • the method also includes:
  • determine the beam of the backhaul forwarding link with the network control relay based on the first beam information including any of the following:
  • the uplink beam and the downlink beam are independent of each other, determine the uplink beam of the backhaul forwarding link based on the first uplink beam information; and/or determine the downlink beam of the backhaul forwarding link based on the first downlink beam information; or ,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined based on the first uplink and downlink joint beam information.
  • the method also includes:
  • Receive first parameter information sent by the network control relay where the first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams; and/or,
  • the method also includes:
  • the first indication information is used to indicate the index of the first timer duration within the timer duration set; and/or,
  • the timer duration set is determined based on the enumerated duration value or symbol value; or, the timer duration set is determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • the method also includes:
  • the first beam information includes one or more of the following:
  • Time domain resource location using first beam information is mapped to first beam information.
  • Figure 11 is one of the structural schematic diagrams of a device for determining a backhaul forwarding link beam provided by an embodiment of the present disclosure.
  • the device is applied to network control relay.
  • the device includes:
  • the acquisition unit 1100 is used to acquire the first beam information, where the first beam information includes the beam information of the control link or the unified beam indication information;
  • the first determining unit 1110 is configured to determine the beam of the backhaul forwarding link according to the first beam information
  • the acquisition unit 1100 is configured to acquire the second beam information.
  • the second beam information is the beam information of the default configured backhaul forwarding link, or the beam information of the backhaul forwarding link indicated by the network device, or the backhaul forwarding determined according to predefined rules.
  • the first determining unit 1110 is configured to determine the beam of the backhaul forwarding link according to the second beam information.
  • determining the beam of the backhaul forwarding link based on the first beam information includes:
  • the beam of the backhaul forwarding link is determined based on the most recently received first beam information.
  • determine the beam of the backhaul forwarding link based on the most recently received first beam information including:
  • the determination methods of the first moment include:
  • the first control signaling is control signaling indicating the most recently received first beam information.
  • determine the beam of the backhaul forwarding link based on the most recently received first beam information including:
  • the first timer starts at the first moment.
  • the first determining unit 1110 is also used to:
  • determine the beam of the backhaul forwarding link based on the first beam information including any of the following:
  • the uplink beam and the downlink beam are independent of each other, determine the uplink beam of the backhaul forwarding link based on the first uplink beam information; and/or determine the downlink beam of the backhaul forwarding link based on the first downlink beam information; or ,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined based on the first uplink and downlink joint beam information.
  • the device also includes a first transmission unit, used for:
  • first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams;
  • Receive second parameter information sent by the network device where the second parameter information is used to indicate whether the network control relay performs joint management of uplink beams and downlink beams.
  • the device also includes a second transmission unit for:
  • the first indication information being used to indicate the index of the duration of the first timer within the timer duration set;
  • the timer duration set is determined based on the enumerated duration value or symbol value; or, the timer duration set is determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • the device also includes a third transmission unit for:
  • the first beam information includes one or more of the following:
  • Time domain resource location using first beam information is mapped to first beam information.
  • Figure 12 is a second structural schematic diagram of a device for determining a backhaul forwarding link beam provided by an embodiment of the present disclosure.
  • the device is applied to network equipment.
  • the device includes:
  • the second determining unit 1200 is used to determine the first beam information, where the first beam information includes beam information corresponding to the control link between network control relays, or unified beam indication information corresponding to the network control relay;
  • the third determining unit 1210 is configured to determine the beam of the backhaul forwarding link with the network control relay according to the first beam information
  • the second determining unit 1200 is used to determine the second beam information.
  • the second beam information is the beam information of the default configured backhaul forwarding link, or the beam information of the backhaul forwarding link indicated by the network device to the network control relay, or according to Beam information of the backhaul forwarding link determined by predefined rules;
  • the third determining unit 1210 is configured to determine the beam of the backhaul forwarding link according to the second beam information.
  • determine the beam of the backhaul forwarding link with the network control relay according to the first beam information including:
  • the beam of the backhaul forwarding link is determined based on the most recently transmitted first beam information.
  • determine the beam of the backhaul forwarding link based on the most recently sent first beam information including:
  • the determination methods of the first moment include:
  • the first control signaling is control signaling indicating the most recently transmitted first beam information.
  • determine the beam of the backhaul forwarding link based on the most recently transmitted first beam information include:
  • the first timer starts at the first moment.
  • the third determining unit 1210 is also used to:
  • determine the beam of the backhaul forwarding link with the network control relay based on the first beam information including any of the following:
  • the uplink beam and the downlink beam are independent of each other, determine the uplink beam of the backhaul forwarding link based on the first uplink beam information; and/or determine the downlink beam of the backhaul forwarding link based on the first downlink beam information; or ,
  • the uplink beam and downlink beam of the backhaul forwarding link are determined based on the first uplink and downlink joint beam information.
  • the device also includes a fourth transmission unit, used for:
  • Receive first parameter information sent by the network control relay where the first parameter information is used to indicate whether the network control relay supports joint management of uplink beams and downlink beams; and/or,
  • the device also includes a fifth transmission unit for:
  • the first indication information is used to indicate the index of the first timer duration within the timer duration set; and/or,
  • the second indication information is used to indicate the first timer The index of the duration within the timer duration collection.
  • the timer duration set is determined based on the enumerated duration value or symbol value; or, the timer duration set is determined based on one or more of the configured minimum duration, maximum duration, and granularity.
  • the device also includes a sixth transmission unit, used for:
  • the first beam information includes one or more of the following:
  • Time domain resource location using first beam information is mapped to first beam information.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program is used to cause the computer to execute the determination of the backhaul forwarding link provided by the above embodiments. beam method.
  • the computer-readable storage medium may be any available media or data storage device that can be accessed by a computer, including but not limited to magnetic storage (such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memories (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memories such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS Universal mobile telecommunication system
  • WiMAX microwave access
  • 5G New Radio, NR 5G New Radio
  • EPS Evolved Packet System
  • 5GS 5G system
  • EPS Evolved Packet System
  • 5GS 5G system
  • the network device involved in the embodiment of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • a base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or it can be named by another name.
  • Network equipment can be used to exchange received air frames and Internet Protocol (IP) packets with each other as a link between the wireless terminal equipment and the rest of the access network.
  • routers, where the remainder of the access network may include an Internet Protocol (IP) communications network.
  • IP Internet Protocol
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA). ), or it can be a network device (NodeB) in a Wide-band Code Division Multiple Access (WCDMA), or an evolutionary network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , home base station (femto), pico base station (pico), etc., are not limited in the embodiments of the present disclosure.
  • network devices may include centralized unit (CU) nodes and distributed unit (DU) nodes, and the centralized units and distributed units may also be arranged geographically separately.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, magnetic disk storage, optical storage, and the like) embodying computer-usable program code therein.
  • a computer-usable storage media including, but not limited to, magnetic disk storage, optical storage, and the like
  • processor-executable instructions may also be stored in a processor-readable memory that causes a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the processor-readable storage
  • the instructions in the processor produce an article of manufacture including instruction means that implement the functions specified in the process or processes of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby causing the computer or other programmable device to
  • the instructions that are executed provide steps for implementing the functions specified in a process or processes of the flowchart diagrams and/or a block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种确定回程转发链路波束的方法、设备、装置及存储介质,其中应用于网络控制中继,该方法包括:获取第一波束信息,所述第一波束信息包括控制链路的波束信息或统一波束指示信息;根据所述第一波束信息,确定回程转发链路的波束;或者,获取第二波束信息,所述第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;根据所述第二波束信息,确定回程转发链路的波束。

Description

确定回程转发链路波束的方法、设备、装置及存储介质
相关申请的交叉引用
本申请要求于2022年08月01日提交的申请号为202210918689.0,发明名称为“确定回程转发链路波束的方法、设备、装置及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种确定回程转发链路波束的方法、设备、装置及存储介质。
背景技术
直放站是一种无线信号中继产品,是在网络部署中能够对基站覆盖能力进行有效补充的方案。网络控制中继(Network Control Repeater,NCR)相对传统直放站,其主要区别是基站能够对服务于它的NCR进行网络控制。基站和NCR之间存在两条链路,一条为控制链路(Control link,C-link),一条为回程转发链路(Forwarding link for backhaul,FLB)。
由于NCR对于FLB的信号不进行基带处理,所以对FLB进行波束管理会增加NCR波束管理的难度,且需要更多的时间和资源用于测量和处理信号,增加了系统开销。因此,如何提供一种更加可行的FLB波束确定方案,是目前业界亟需解决的技术问题。
发明内容
针对现有技术存在的问题,本公开实施例提供一种确定回程转发链路波束的方法、设备、装置及存储介质。
第一方面,本公开实施例提供一种确定回程转发链路波束的方法,应用于网络控制中继,包括:
获取第一波束信息,所述第一波束信息包括控制链路的波束信息或统一波束指示信息;
根据所述第一波束信息,确定回程转发链路的波束;
或者,
获取第二波束信息,所述第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
根据所述第二波束信息,确定回程转发链路的波束。
可选地,所述根据所述第一波束信息,确定回程转发链路的波束,包括:
根据最近一次接收到的第一波束信息,确定回程转发链路的波束。
可选地,所述根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
从第一时刻开始,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
其中,所述第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
其中,所述第一控制信令为指示所述最近一次接收到的第一波束信息的控制信令。
可选地,所述根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
在第一定时器未超时的情况下,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
所述第一定时器在所述第一时刻开启。
可选地,所述方法还包括:
在无法使用所述第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定回程转发链路的波束;
根据预设的波束集合和轮询规则,确定回程转发链路的波束;
根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
不在回程转发链路进行数据发送和/或数据接收。
可选地,所述根据所述第一波束信息,确定回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
可选地,所述方法还包括:
向所述网络设备发送第一参数信息,所述第一参数信息用于指示所述网络控制中继是否支持上行波束和下行波束联合管理;和/或,
接收所述网络设备发送的第二参数信息,所述第二参数信息用于指示所述网络控制中继是否进行上行波束和下行波束联合管理。
可选地,所述方法还包括:
向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引;和/或,
接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
可选地,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
可选地,所述方法还包括:
接收所述网络设备发送的第三参数信息,所述第三参数信息用于指示所述网络控制中继对回程转发链路是否使用统一波束指示信息。
可选地,所述第一波束信息包括以下一项或多项:
波束索引;
测量参考信号资源索引;
使用所述第一波束信息的时域资源位置。
第二方面,本公开实施例还提供一种确定回程转发链路波束的方法,应用于网络设备,包括:
确定第一波束信息,所述第一波束信息包括与网络控制中继之间的控制链路对应的波束信息,或者网络控制中继对应的统一波束指示信息;
根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束;
或者,
确定第二波束信息,所述第二波束信息为默认配置的所述回程转发链路的波束信息、或者所述网络设备指示给所述网络控制中继的所述回程转发链路的波束信息、或者根据预定义规则确定的所述回程转发链路的波束信息;
根据所述第二波束信息,确定所述回程转发链路的波束。
可选地,所述根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束,包括:
根据最近一次发送的第一波束信息,确定所述回程转发链路的波束。
可选地,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
从第一时刻开始,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
其中,所述第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
其中,所述第一控制信令为指示所述最近一次发送的第一波束信息的控 制信令。
可选地,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
在第一定时器未超时的情况下,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
所述第一定时器在所述第一时刻开启。
可选地,所述方法还包括:
在确定所述网络控制中继无法使用所述第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定所述回程转发链路的波束;
根据预设的波束集合和轮询规则,确定所述回程转发链路的波束;
根据所述网络设备指示的所述回程转发链路的波束信息,确定所述回程转发链路的波束;
不在所述回程转发链路进行数据发送和/或数据接收。
可选地,所述根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定所述回程转发链路的上行波束;和/或,根据第一下行波束信息,确定所述回程转发链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定所述回程转发链路的上行波束和下行波束。
可选地,所述方法还包括:
接收所述网络控制中继发送的第一参数信息,所述第一参数信息用于指示所述网络控制中继是否支持上行波束和下行波束联合管理;和/或,
向所述网络控制中继发送第二参数信息,所述第二参数信息用于指示所述网络控制中继是否进行上行波束和下行波束联合管理。
可选地,所述方法还包括:
接收所述网络控制中继发送的第一指示信息,所述第一指示信息用于指 示所述第一定时器的时长在定时器时长集合内的索引;和/或,
向所述网络控制中继发送第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
可选地,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
可选地,所述方法还包括:
向所述网络控制中继发送第三参数信息,所述第三参数信息用于指示所述网络控制中继对所述回程转发链路是否使用统一波束指示信息。
可选地,所述第一波束信息包括以下一项或多项:
波束索引;
测量参考信号资源索引;
使用所述第一波束信息的时域资源位置。
第三方面,本公开实施例还提供一种网络控制中继,包括存储器,收发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
获取第一波束信息,所述第一波束信息包括控制链路的波束信息或统一波束指示信息;
根据所述第一波束信息,确定回程转发链路的波束;
或者,
获取第二波束信息,所述第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
根据所述第二波束信息,确定回程转发链路的波束。
可选地,所述根据所述第一波束信息,确定回程转发链路的波束,包括:
根据最近一次接收到的第一波束信息,确定回程转发链路的波束。
可选地,所述根据最近一次接收到的第一波束信息,确定回程转发链路 的波束,包括:
从第一时刻开始,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
其中,所述第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
其中,所述第一控制信令为指示所述最近一次接收到的第一波束信息的控制信令。
可选地,所述根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
在第一定时器未超时的情况下,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
所述第一定时器在所述第一时刻开启。
可选地,所述操作还包括:
在无法使用所述第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定回程转发链路的波束;
根据预设的波束集合和轮询规则,确定回程转发链路的波束;
根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
不在回程转发链路进行数据发送和/或数据接收。
可选地,所述根据所述第一波束信息,确定回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
可选地,所述操作还包括:
向所述网络设备发送第一参数信息,所述第一参数信息用于指示所述网络控制中继是否支持上行波束和下行波束联合管理;和/或,
接收所述网络设备发送的第二参数信息,所述第二参数信息用于指示所述网络控制中继是否进行上行波束和下行波束联合管理。
可选地,所述操作还包括:
向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引;和/或,
接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
可选地,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
可选地,所述操作还包括:
接收所述网络设备发送的第三参数信息,所述第三参数信息用于指示所述网络控制中继对回程转发链路是否使用统一波束指示信息。
可选地,所述第一波束信息包括以下一项或多项:
波束索引;
测量参考信号资源索引;
使用所述第一波束信息的时域资源位置。
第四方面,本公开实施例还提供一种网络设备,包括存储器,收发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定第一波束信息,所述第一波束信息包括与网络控制中继之间的控制链路对应的波束信息,或者网络控制中继对应的统一波束指示信息;
根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束;
或者,
确定第二波束信息,所述第二波束信息为默认配置的所述回程转发链路的波束信息、或者所述网络设备指示给所述网络控制中继的所述回程转发链路的波束信息、或者根据预定义规则确定的所述回程转发链路的波束信息;
根据所述第二波束信息,确定所述回程转发链路的波束。
可选地,所述根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束,包括:
根据最近一次发送的第一波束信息,确定所述回程转发链路的波束。
可选地,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
从第一时刻开始,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
其中,所述第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
其中,所述第一控制信令为指示所述最近一次发送的第一波束信息的控制信令。
可选地,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
在第一定时器未超时的情况下,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
所述第一定时器在所述第一时刻开启。
可选地,所述操作还包括:
在确定所述网络控制中继无法使用所述第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定所述回程转发链路的波束;
根据预设的波束集合和轮询规则,确定所述回程转发链路的波束;
根据所述网络设备指示的所述回程转发链路的波束信息,确定所述回程转发链路的波束;
不在所述回程转发链路进行数据发送和/或数据接收。
可选地,所述根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定所述回程转发链路的上行波束;和/或,根据第一下行波束信息,确定所述回程转发链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定所述回程转发链路的上行波束和下行波束。
可选地,所述操作还包括:
接收所述网络控制中继发送的第一参数信息,所述第一参数信息用于指示所述网络控制中继是否支持上行波束和下行波束联合管理;和/或,
向所述网络控制中继发送第二参数信息,所述第二参数信息用于指示所述网络控制中继是否进行上行波束和下行波束联合管理。
可选地,所述操作还包括:
接收所述网络控制中继发送的第一指示信息,所述第一指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引;和/或,
向所述网络控制中继发送第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
可选地,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
可选地,所述操作还包括:
向所述网络控制中继发送第三参数信息,所述第三参数信息用于指示所述网络控制中继对所述回程转发链路是否使用统一波束指示信息。
可选地,所述第一波束信息包括以下一项或多项:
波束索引;
测量参考信号资源索引;
使用所述第一波束信息的时域资源位置。
第五方面,本公开实施例还提供一种确定回程转发链路波束的装置,应用于网络控制中继,包括:
获取单元,用于获取第一波束信息,所述第一波束信息包括控制链路的波束信息或统一波束指示信息;
第一确定单元,用于根据所述第一波束信息,确定回程转发链路的波束;
或者,
获取单元,用于获取第二波束信息,所述第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
第一确定单元,用于根据所述第二波束信息,确定回程转发链路的波束。
第六方面,本公开实施例还提供一种确定回程转发链路波束的装置,应用于网络设备,包括:
第二确定单元,用于确定第一波束信息,所述第一波束信息包括与网络控制中继之间的控制链路对应的波束信息,或者网络控制中继对应的统一波束指示信息;
第三确定单元,用于根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束;
或者,
第二确定单元,用于确定第二波束信息,所述第二波束信息为默认配置的所述回程转发链路的波束信息、或者所述网络设备指示给所述网络控制中继的所述回程转发链路的波束信息、或者根据预定义规则确定的所述回程转发链路的波束信息;
第三确定单元,用于根据所述第二波束信息,确定所述回程转发链路的波束。
第七方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行如上所述第一方面所述的确定回程转发链路波束的方法,或执行如上所述第二方面所述的确定回程转发链路波束的方法。
第八方面,本公开实施例还提供一种通信设备,所述通信设备中存储有计算机程序,所述计算机程序用于使通信设备执行如上所述第一方面所述的确定回程转发链路波束的方法,或执行如上所述第二方面所述的确定回程转发链路波束的方法。
第九方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行如上所述第一方面所述的确定回程转发链路波束的方法,或执行如上所述第二方面所述的确定回程转发链路波束的方法。
第十方面,本公开实施例还提供一种芯片产品,所述芯片产品中存储有计算机程序,所述计算机程序用于使芯片产品执行如上所述第一方面所述的确定回程转发链路波束的方法,或执行如上所述第二方面所述的确定回程转发链路波束的方法。
本公开实施例提供的确定回程转发链路波束的方法、设备、装置及存储介质,NCR可以使用C-link的波束信息或统一波束指示信息来确定FLB的波束,而不需要对FLB进行单独的波束管理,从而可以简化波束管理的流程,并节省了用于测量和信号处理的系统开销。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术提供的NCR链路结构示意图;
图2为本公开实施例提供的确定回程转发链路波束的方法的流程示意图之一;
图3为本公开实施例提供的FLB波束信息生效时刻的确定方式示意图;
图4为本公开实施例提供的确定回程转发链路波束的方法的流程示意图之二;
图5为本公开实施例提供的确定FLB波束的方法实施示意图之一;
图6为本公开实施例提供的确定FLB波束的方法实施示意图之二;
图7为本公开实施例提供的确定FLB波束的方法实施示意图之三;
图8为本公开实施例提供的确定FLB波束的方法实施示意图之四;
图9为本公开实施例提供的网络控制中继的结构示意图;
图10为本公开实施例提供的网络设备的结构示意图;
图11为本公开实施例提供的确定回程转发链路波束的装置的结构示意图之一;
图12为本公开实施例提供的确定回程转发链路波束的装置的结构示意图之二。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为了便于更加清晰地理解本公开各实施例的技术方案,首先对本公开各 实施例相关的一些技术内容进行介绍。
直放站是一种无线信号中继产品,可以作为实现“小容量、大覆盖”目标的必要手段之一。使用直放站进行网络部署的好处在于,一是可以在不增加基站数量的前提下保证网络覆盖,二是其造价远远低于有同样效果的微蜂窝系统。直放站是解决通信网络延伸覆盖能力的一种优选方案。它与基站相比有结构简单、投资较少和安装方便等优点,可广泛用于难于覆盖的盲区和弱区,如商场、宾馆、机场、码头、车站、体育馆、娱乐厅、地铁、隧道、高速公路、海岛等各种场所,提高通信质量,解决掉话等问题。
新型的直放站NCR,是在原有直放站的基础上增加控制面协议栈,基站可以通过发送网络控制信息来控制直放站的一些功能,当直放站服务于某个基站时,需要基站能够为直放站配置波束信息。本公开中的波束信息是指:直放站和基站之间发送和接收波束的波束信息。
图1为相关技术提供的NCR链路结构示意图,如图1所示,图中示出了基站、NCR和终端三者之间的链路关系,其中基站和NCR之间存在两条链路,一条为控制链路(C-link),一条为回程转发链路(FLB),C-link和FLB都存在上下行链路,在实际资源分配过程中C-link和FLB可以采用频分复用(Frequency Diversion Multiplexing,FDM)(同时(simultaneously))或者时分复用(Time Diversion Multiplexing,TDM)的方式,上下行处理方式可以相同也可以不同。
如果FLB和C-link各自进行波束管理,由于NCR对于FLB的信号不进行基带处理,进行波束管理的难度比较大,且需要更多的时间和资源用于测量和处理信号。由于FLB和C-link的信号传输路径基本一致,本公开提出一种FLB波束的确定方案,FLB可以使用和C-link相同的波束信息,如此可以只对C-link进行波束管理,FLB使用C-link的波束方向,FLB不进行单独的波束管理,从而简化了NCR波束管理的流程,降低了系统开销。
此外,由于C-link和FLB的发送和接收时刻可能不同,比如当采用TDM方式时,C-link和FLB不在相同的符号上传输,这就需要确定FLB使用C-link波束的规则,从而确定FLB的波束方向。即使采用FDM的方式,C-link可 能也不会在所有的符号上都存在,当FLB所在符号上有C-link同时存在时,直接使用此时C-link的波束方向,但当FLB所在符号上没有C-link同时存在时,也需要确定FLB使用C-link波束的规则。
图2为本公开实施例提供的确定回程转发链路波束的方法的流程示意图之一,该方法应用于网络控制中继,如图2所示,该方法包括如下步骤:
步骤200、获取第一波束信息,第一波束信息包括控制链路的波束信息或统一波束指示信息。
步骤201、根据第一波束信息,确定回程转发链路的波束。
在一些实施例中,该方法包括:
获取第二波束信息,第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
根据第二波束信息,确定回程转发链路的波束。
具体地,本公开实施例中,网络控制中继(NCR)可以不对回程转发链路(FLB)单独进行波束管理,而是使用控制链路(C-link)的波束信息或统一波束指示信息,来确定回程转发链路的波束。
统一波束指示信息也可称为统一传输配置指示(Transmission Configuration Indicator,TCI)状态。可选地,该统一波束指示信息或统一TCI状态可以为UnifiedTCIstate。
比如,在NCR不配置统一波束指示信息的情况下,NCR可以使用C-link的波束信息作为FLB的波束信息,来确定FLB的波束。
比如,在NCR配置统一波束指示信息的情况下,NCR可以使用统一波束指示信息作为FLB的波束信息,来确定FLB的波束。
可选地,第一波束信息可以包括波束索引、测量参考信号资源索引、使用该第一波束信息的时域资源位置中的一项或多项。
例如,网络设备可以通过高层参数配置或者通过边控制信息(Side Control Information,SCI)指定C-link的波束信息或统一波束指示信息,配置方式可以是波束标识(Identifier,ID)或对应波束的测量参考信号资源索 引,NCR可以将该波束ID对应的波束或者该测量参考信号资源索引对应的波束,确定为FLB的波束。可选地,第一波束信息还可以包括使用该第一波束信息的时域资源位置,从而NCR可以确定在哪个时域资源位置上使用相应的第一波束信息。
在一些实施例中,NCR可以使用第二波束信息作为FLB的波束信息,该第二波束信息可以是默认配置(Default configuration)的或者网络设备指示的或者根据预定义规则确定的FLB的波束信息。
例如,网络设备可以通过高层参数配置或者通过SCI指定第二波束信息,配置方式可以是波束ID或对应波束的测量参考信号资源索引。可选地,第二波束信息还可以包括使用该第二波束信息的时域资源位置,从而NCR可以确定在哪个时域资源位置上使用相应的第二波束信息。
本公开实施例提供的确定回程转发链路波束的方法,NCR可以使用C-link的波束信息或统一波束指示信息来确定FLB的波束,而不需要对FLB进行单独的波束管理,从而可以简化波束管理的流程,并节省了用于测量和信号处理的系统开销。
可选地,根据第一波束信息,确定回程转发链路的波束,包括:
根据最近一次接收到的第一波束信息,确定回程转发链路的波束。
具体地,一种实施方式中,在使用C-link的波束信息来确定FLB的波束的情况下,NCR可以使用最近一次接收到的C-link的波束信息,来确定FLB的波束。比如,NCR可以使用最近一次接收到的C-link的波束信息作为FLB的波束信息,从而确定FLB的波束。
一种实施方式中,在使用统一波束指示信息来确定FLB的波束的情况下,NCR可以使用最近一次接收到的统一波束指示信息,来确定FLB的波束。比如,NCR可以使用最近一次接收到的统一波束指示信息作为FLB的波束信息,从而确定FLB的波束。
可选地,根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
从第一时刻开始,根据最近一次接收到的第一波束信息,确定回程转发 链路的波束;
其中,第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为第一时刻;
其中,第一控制信令为指示最近一次接收到的第一波束信息的控制信令。
具体地,使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息,需要确定该FLB的波束信息的生效时刻,也就是从哪一时刻开始,可以使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息。
FLB的波束信息的生效时刻可以以第一时刻来表示,图3为本公开实施例提供的FLB波束信息生效时刻的确定方式示意图,如图3所示,图中示出了第一时刻的3种可能的确定方式,假定网络设备发送第一控制信令的时隙索引是n,第一控制信令指示的C-link的传输(发送或接收)时隙索引是m。
方式1:以第一控制信令生效后的第一个时隙起始符号作为第一时刻,则第一时刻的时隙索引为也可以表示为其中timeDurationForQCL(准共址时长)是网络设备发送的第一控制信令生效所需时间,和用户能力有关,timeDurationForQCL可以由网络设备预先指定集合,集合中的元素代表OFDM符号个数,NCR根据自身能力上报集合中元素索引值。slot_time是一个时隙的时长。
方式2:以第一控制信令指示的C-link传输时隙的起始符号作为第一时刻,则第一时刻的时隙索引为m。
方式3:以第一控制信令指示的C-link传输时隙的下一时隙的起始符号作为第一时刻,则第一时刻的时隙索引为m+1。
对于TDM的方式,由于FLB不会和C-link在同一时隙发送,所以方式 2和方式3的实际FLB波束信息生效时刻一致。
可选地,根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
在第一定时器未超时的情况下,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
第一定时器在第一时刻开启。
具体地,对于不设置定时器的情况,NCR可以从上述第一时刻开始,使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息。
对于设置定时器的情况,NCR可以根据第一定时器的时长来确定在哪个时间段使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息。其中,该定时器可以是指准共址(Quasi Co-Location,QCL)的定时器QCLtimer。
对于设置定时器的情况,定时器的起点即为FLB波束信息的生效时刻,也就是上述第一时刻,可以用图3所示的3种确定方式来确定定时器的起点。
比如,NCR可以在到达上述第一时刻时,将第一定时器置零并开始计时,在第一定时器超过定时时长前,如果NCR发送或者接收FLB数据,则使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息。
可选地,该方法还包括:
向网络设备发送第一指示信息,第一指示信息用于指示第一定时器的时长在定时器时长集合内的索引;和/或,
接收网络设备发送的第二指示信息,第二指示信息用于指示第一定时器的时长在定时器时长集合内的索引。
具体地,一种实施方式中,NCR可以自行确定(比如根据NCR自身能力确定)第一定时器的时长,并向网络设备发送第一指示信息,指示第一定时器的时长在定时器时长集合内的索引。
一种实施方式中,网络设备可以通过高层参数配置第一定时器的时长, 向NCR发送第二指示信息,指示第一定时器的时长在定时器时长集合内的索引。
当采用NCR上报的方式时,网络设备可直接使用各NCR上报的时长值,也可以根据NCR上报的时长值进行调整后再通过高层参数配置给各NCR。
可选地,定时器时长集合可以根据枚举的时长值或符号个数值确定;或者,定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
例如,可以预先配置定时器时长集合,该定时器时长集合中各个具体的元素可以通过枚举的方式确定,如按照实际时长或符号个数来配置,比如{5ms,10ms,20ms,40ms,80ms}或{7,14,28}等;也可以通过配置时长最小值、时长最大值、颗粒度中的一项或多项的方式来确定,比如时长最小值=5ms,时长最大值=40ms,系统默认颗粒度为5ms,由此可以确定该定时器时长集合实际为{5ms,10ms,15ms,20ms,25ms,30ms,35ms,40ms}。
可选地,该方法还包括:
在无法使用第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定回程转发链路的波束;
根据预设的波束集合和轮询规则,确定回程转发链路的波束;
根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
不在回程转发链路进行数据发送和/或数据接收。
具体地,NCR在无法使用第一波束信息的情况下,比如未接收到第一波束信息,或者未到使用相应的第一波束信息来确定FLB波束的时刻(也可以理解为未到FLB波束信息的生效时刻),或者第一波束信息未被指示使用,或者第一定时器超时,或者其他原因导致NCR无法使用第一波束信息的情况下,NCR可以有以下多种不同的处理方式。
(1)根据默认配置(Default configuration)的波束信息,确定FLB的波束。
比如,系统预先设定默认波束方向,如广播波束方向或全向作为默认波 束方向,在无法使用第一波束信息的情况下,NCR可以使用该默认波束方向作为FLB的波束方向。
(2)根据预设的波束集合和轮询规则,确定FLB的波束。
比如,NCR可以使用预先设定的波束集合和轮询规则,在不同时刻用不同的波束方向作为FLB的波束方向。
(3)根据网络设备指示的FLB的波束信息,确定FLB的波束。
比如,网络设备可以通过高层参数配置或者通过SCI指定FLB的波束信息,配置方式可以是波束ID或对应波束的测量参考信号资源索引。可选地,配置的FLB的波束信息还可以包括使用该波束信息的时域资源位置,从而NCR可以确定在哪个时域资源位置上使用该波束信息。
(4)不在FLB进行数据发送和/或数据接收。
比如,当C-link尚未建立或者临时中断时,FLB也停止运行,不进行数据发送和/或数据接收操作。
可选地,根据第一波束信息,确定回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
具体地,本公开实施例中,既可以采用上行波束和下行波束相互独立管理的方式,也可以采用上行波束和下行波束联合管理的方式。
例如,在上行波束和下行波束相互独立的情况下,上行波束信息和下行波束信息互不相关,FLB上行发送使用第一上行波束信息来确定FLB的波束,FLB下行发送使用第一下行波束信息来确定FLB的波束,其中第一上行波束信息指的是对应上行方向的第一波束信息,第一下行波束信息指的是对应下行方向的第一波束信息。
在一种可能的实现方式中,第一上行波束信息可以为separate UL,用于 指示独立的上行TCI状态。
在一种可能的实现方式中,第一下行波束信息可以为separate DL,用于指示独立的下行TCI状态。
在一种可能的实现方式中,第一上行波束信息和第一下行波束信息可以为一条信息,例如,separateULDL,用于指示独立的上下行TCI状态。
例如,在上行波束和下行波束联合管理的情况下,FLB的上行波束和下行波束使用第一上下行联合波束信息来确定,第一上下行联合波束信息中既包含上行波束信息也包含下行波束信息,网络设备或者NCR可预先设定上行波束和下行波束的关联信息,每个上行波束都有对应的下行波束,两者一一对应。其中第一上下行联合波束信息指的是包含上行波束和下行波束联合信息的第一波束信息。
在一种可能的实现方式中,第一上下行联合波束信息可以为jointULDL,用于指示联合的上下行TCI状态。
可选地,该方法还包括:
向网络设备发送第一参数信息,第一参数信息用于指示网络控制中继是否支持上行波束和下行波束联合管理;和/或,
接收网络设备发送的第二参数信息,第二参数信息用于指示网络控制中继是否进行上行波束和下行波束联合管理。
具体地,本公开实施例中,NCR可以将自身是否支持上行波束和下行波束联合管理的信息上报给网络设备,也可以是网络设备通过参数配置指示NCR是否进行上行波束和下行波束联合管理。
比如,NCR可以通过无线资源控制(Radio Resource Control,RRC)参数(如BeamType(波束类型)或者TCI-StateType(传输配置指示状态类型))上报是否支持上下行波束联合处理,如果是则配置为1,如果不是则配置为0。
比如,网络设备可以通过RRC参数(如BeamType或者TCI-StateType)配置是否上下行波束联合处理,如果是则配置为1,如果不是则配置为0。
可选地,该方法还包括:
接收网络设备发送的第三参数信息,第三参数信息用于指示网络控制中 继对回程转发链路是否使用统一波束指示信息。
具体地,网络设备可以通过配置参数指示NCR是否使用统一波束指示信息来确定FLB的波束。
比如,网络设备可以向NCR发送RRC参数followUnifiedTCIstate_FLB。当followUnifiedTCIstate_FLB配置为enable(使能)时,当接收到统一波束指示信息且到达FLB波束信息生效时间后,便可以使用统一波束指示信息来确定FLB的波束。
当followUnifiedTCIstate_FLB配置为unable(去使能)时,则不使用统一波束指示信息来确定FLB的波束。比如,此时FLB可以使用默认的或轮询规则确认的或网络设备指示的波束方向。
图4为本公开实施例提供的确定回程转发链路波束的方法的流程示意图之二,该方法应用于网络设备(例如基站),如图4所示,该方法包括如下步骤:
步骤400、确定第一波束信息,第一波束信息包括与网络控制中继之间的控制链路对应的波束信息,或者网络控制中继对应的统一波束指示信息。
步骤401、根据第一波束信息,确定与网络控制中继之间的回程转发链路的波束。
在一些实施例中,该方法包括:
确定第二波束信息,第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示给网络控制中继的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
根据第二波束信息,确定回程转发链路的波束。
具体地,本公开实施例中,网络控制中继(NCR)可以不对回程转发链路(FLB)单独进行波束管理,而是使用控制链路(C-link)的波束信息或统一波束指示信息,来确定回程转发链路的波束。相应地,网络设备在确定与某个NCR之间FLB的波束时,也可以使用与该NCR之间的C-link对应的波束信息或该NCR对应的统一波束指示信息。
统一波束指示信息也可称为统一TCI状态。可选地,该统一波束指示信 息或统一TCI状态可以为UnifiedTCIstate。
比如,在NCR不配置统一波束指示信息的情况下,网络设备可以使用与该NCR之间C-link的波束信息作为FLB的波束信息,来确定FLB的波束。
比如,在NCR配置统一波束指示信息的情况下,网络设备可以使用该NCR对应的统一波束指示信息作为FLB的波束信息,来确定FLB的波束。
可选地,第一波束信息可以包括波束索引、测量参考信号资源索引、使用该第一波束信息的时域资源位置中的一项或多项。
例如,网络设备可以通过高层参数配置或者通过SCI指定C-link的波束信息或统一波束指示信息,配置方式可以是波束ID或对应波束的测量参考信号资源索引。可选地,第一波束信息还可以包括使用该第一波束信息的时域资源位置,从而可以确定在哪个时域资源位置上使用相应的第一波束信息。
在一些实施例中,网络设备可以使用第二波束信息作为FLB的波束信息,该第二波束信息可以是默认配置(Default configuration)的或者网络设备指示的或者根据预定义规则确定的FLB的波束信息。
例如,网络设备可以通过高层参数配置或者通过SCI指定第二波束信息,配置方式可以是波束ID或对应波束的测量参考信号资源索引。可选地,第二波束信息还可以包括使用该第二波束信息的时域资源位置,从而NCR可以确定在哪个时域资源位置上使用相应的第二波束信息。
本公开实施例提供的确定回程转发链路波束的方法,通过NCR和网络设备都使用C-link的波束信息或统一波束指示信息来确定FLB的波束,使得NCR不需要对FLB进行单独的波束管理,从而可以简化波束管理的流程,并节省了用于测量和信号处理的系统开销。
可选地,根据第一波束信息,确定与网络控制中继之间的回程转发链路的波束,包括:
根据最近一次发送的第一波束信息,确定回程转发链路的波束。
具体地,一种实施方式中,在使用C-link的波束信息来确定FLB的波束的情况下,网络设备可以使用最近一次接收的C-link的波束信息,来确定FLB的波束。比如,网络设备可以使用最近一次接收到的C-link的波束信息作为 FLB的波束信息,从而确定FLB的波束。
一种实施方式中,在使用统一波束指示信息来确定FLB的波束的情况下,网络设备可以使用最近一次接收的统一波束指示信息,来确定FLB的波束。比如,网络设备可以使用最近一次接收到的统一波束指示信息作为FLB的波束信息,从而确定FLB的波束。
可选地,根据最近一次发送的第一波束信息,确定回程转发链路的波束,包括:
从第一时刻开始,根据最近一次发送的第一波束信息,确定回程转发链路的波束;
其中,第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为第一时刻;
其中,第一控制信令为指示最近一次发送的第一波束信息的控制信令。
具体地,使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息,需要确定该FLB的波束信息的生效时刻,也就是从哪一时刻开始,可以使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息。
FLB的波束信息的生效时刻可以以第一时刻来表示,如图3所示,图中示出了第一时刻的3种可能的确定方式,假定网络设备发送第一控制信令的时隙索引是n,第一控制信令指示的C-link的传输(发送或接收)时隙索引是m。
方式1:以第一控制信令生效后的第一个时隙起始符号作为第一时刻,则第一时刻的时隙索引为也可以表示为其中timeDurationForQCL(准共址时长)是网络设备发 送的第一控制信令生效所需时间,和用户能力有关,timeDurationForQCL可以由网络设备预先指定集合,集合中的元素代表OFDM符号个数,NCR根据自身能力上报集合中元素索引值。slot_time是一个时隙的时长。
方式2:以第一控制信令指示的C-link传输时隙的起始符号作为第一时刻,则第一时刻的时隙索引为m。
方式3:以第一控制信令指示的C-link传输时隙的下一时隙的起始符号作为第一时刻,则第一时刻的时隙索引为m+1。
对于TDM的方式,由于FLB不会和C-link在同一时隙发送,所以方式2和方式3的实际FLB波束信息生效时刻一致。
可选地,根据最近一次发送的第一波束信息,确定回程转发链路的波束,包括:
在第一定时器未超时的情况下,根据最近一次发送的第一波束信息,确定回程转发链路的波束;
第一定时器在第一时刻开启。
具体地,对于不设置定时器的情况,网络设备可以从上述第一时刻开始,使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息。
对于设置定时器的情况,网络设备可以根据第一定时器的时长来确定在哪个时间段使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息。其中,该定时器可以是指QCL的定时器QCLtimer。
对于设置定时器的情况,定时器的起点即为FLB波束信息的生效时刻,也就是上述第一时刻,可以用图3所示的3种确定方式来确定定时器的起点。
比如,网络设备可以在到达上述第一时刻时,将第一定时器置零并开始计时,在第一定时器超过定时时长前,如果网络设备发送或者接收FLB数据,则使用最近一次接收到的C-link的波束信息或者统一波束指示信息作为FLB的波束信息。
可选地,该方法还包括:
接收网络控制中继发送的第一指示信息,第一指示信息用于指示第一定 时器的时长在定时器时长集合内的索引;和/或,
向网络控制中继发送第二指示信息,第二指示信息用于指示第一定时器的时长在定时器时长集合内的索引。
具体地,一种实施方式中,NCR可以自行确定(比如根据NCR自身能力确定)第一定时器的时长,并向网络设备发送第一指示信息,指示第一定时器的时长在定时器时长集合内的索引。
一种实施方式中,网络设备可以通过高层参数配置第一定时器的时长,向NCR发送第二指示信息,指示第一定时器的时长在定时器时长集合内的索引。
当采用NCR上报的方式时,网络设备可直接使用各NCR上报的时长值,也可以根据NCR上报的时长值进行调整后再通过高层参数配置给各NCR。
可选地,定时器时长集合根据枚举的时长值或符号个数值确定;或者,定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
例如,可以预先配置定时器时长集合,该定时器时长集合中各个具体的元素可以通过枚举的方式确定,如按照实际时长或符号个数来配置,比如{5ms,10ms,20ms,40ms,80ms}或{7,14,28}等;也可以通过配置时长最小值、时长最大值、颗粒度中的一项或多项的方式来确定,比如时长最小值=5ms,时长最大值=40ms,系统默认颗粒度为5ms,由此可以确定该定时器时长集合实际为{5ms,10ms,15ms,20ms,25ms,30ms,35ms,40ms}。
可选地,该方法还包括:
在确定网络控制中继无法使用第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定回程转发链路的波束;
根据预设的波束集合和轮询规则,确定回程转发链路的波束;
根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
不在回程转发链路进行数据发送和/或数据接收。
具体地,网络设备在确定NCR无法使用第一波束信息的情况下,比如NCR未接收到第一波束信息,或者未到使用相应的第一波束信息来确定FLB波束的时刻(也可以理解为未到FLB波束信息的生效时刻),或者第一波束信息未被指示使用,或者第一定时器超时,或者其他原因导致NCR无法使用第一波束信息的情况下,网络设备可以有以下多种不同的处理方式。
(1)根据默认配置(Default configuration)的波束信息,确定FLB的波束。
比如,系统预先设定默认波束方向,如广播波束方向或全向作为默认波束方向,在无法使用第一波束信息的情况下,网络设备可以使用该默认波束方向作为FLB的波束方向。
(2)根据预设的波束集合和轮询规则,确定FLB的波束。
比如,网络设备可以使用预先设定的波束集合和轮询规则,在不同时刻用不同的波束方向作为FLB的波束方向。
(3)根据网络设备指示的FLB的波束信息,确定FLB的波束。
比如,网络设备可以通过高层参数配置或者通过SCI指定FLB的波束信息,配置方式可以是波束ID或对应波束的测量参考信号资源索引。可选地,配置的FLB的波束信息还可以包括使用该波束信息的时域资源位置,从而可以确定在哪个时域资源位置上使用该波束信息。
(4)不在FLB进行数据发送和/或数据接收。
比如,当C-link尚未建立或者临时中断时,FLB也停止运行,不进行数据发送和/或数据接收操作。
可选地,根据第一波束信息,确定与网络控制中继之间的回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
具体地,本公开实施例中,既可以采用上行波束和下行波束相互独立管理的方式,也可以采用上行波束和下行波束联合管理的方式。
例如,在上行波束和下行波束相互独立的情况下,上行波束信息和下行波束信息互不相关,FLB上行发送使用第一上行波束信息来确定FLB的波束,FLB下行发送使用第一下行波束信息来确定FLB的波束,其中第一上行波束信息指的是对应上行方向的第一波束信息,第一下行波束信息指的是对应下行方向的第一波束信息。
在一种可能的实现方式中,第一上行波束信息可以为separate UL,用于指示独立的上行TCI状态。
在一种可能的实现方式中,第一下行波束信息可以为separate DL,用于指示独立的下行TCI状态。
在一种可能的实现方式中,第一上行波束信息和第一下行波束信息可以为一条信息,例如,separateULDL,用于指示独立的上下行TCI状态。
例如,在上行波束和下行波束联合管理的情况下,FLB的上行波束和下行波束使用第一上下行联合波束信息来确定,第一上下行联合波束信息中既包含上行波束信息也包含下行波束信息,网络设备或者NCR可预先设定上行波束和下行波束的关联信息,每个上行波束都有对应的下行波束,两者一一对应。其中第一上下行联合波束信息指的是包含上行波束和下行波束联合信息的第一波束信息。
在一种可能的实现方式中,第一上下行联合波束信息可以为jointULDL,用于指示联合的上下行TCI状态。
可选地,该方法还包括:
接收网络控制中继发送的第一参数信息,第一参数信息用于指示网络控制中继是否支持上行波束和下行波束联合管理;和/或,
向网络控制中继发送第二参数信息,第二参数信息用于指示网络控制中继是否进行上行波束和下行波束联合管理。
具体地,本公开实施例中,NCR可以将自身是否支持上行波束和下行波束联合管理的信息上报给网络设备,也可以是网络设备通过参数配置指示 NCR是否进行上行波束和下行波束联合管理。
比如,NCR可以通过RRC参数(如BeamType或者TCI-StateType)上报是否支持上下行波束联合处理,如果是则配置为1,如果不是则配置为0。
比如,网络设备可以通过RRC参数(如BeamType或者TCI-StateType)配置是否上下行波束联合处理,如果是则配置为1,如果不是则配置为0。
可选地,该方法还包括:
向网络控制中继发送第三参数信息,第三参数信息用于指示网络控制中继对回程转发链路是否使用统一波束指示信息。
具体地,网络设备可以通过配置参数指示NCR是否使用统一波束指示信息来确定FLB的波束。
比如,网络设备可以向NCR发送RRC参数followUnifiedTCIstate_FLB。当followUnifiedTCIstate_FLB配置为enable(使能)时,当接收到统一波束指示信息且到达FLB波束信息生效时间后,便可以使用统一波束指示信息来确定FLB的波束。
当followUnifiedTCIstate_FLB配置为unable(去使能)时,则不使用统一波束指示信息来确定FLB的波束。比如,此时FLB可以使用默认的或轮询规则确认的或网络设备指示的波束方向。
本公开各实施例提供的方法是基于同一申请构思的,因此各方法的实施可以相互参见,重复之处不再赘述。
以下通过具体应用场景的实施例对本公开各上述实施例提供的方法进行举例说明。
实施例1:上下行波束分别指示+无定时器的方法流程。
图5为本公开实施例提供的确定FLB波束的方法实施示意图之一,如图5所示,图中示出了FDM和TDM两种不同方式下FLB波束的确定方法,图中FLB波束信息生效时刻为C-link的传输时隙的起始时刻,其他确定FLB波束信息生效时刻的方法可参见实施例5。没有参考波束信息(即C-link的波束信息,后文不再赘述)时使用默认波束(或轮询规则确定的波束或基站指示的波束或不发送接收),其中不同图案表示的是不同的波束方向。
步骤1、如果没有参考波束信息时FLB工作,则系统预先设定默认的(或轮询规则确认的或基站指示的)波束方向,在C-link建立连接前,FLB使用默认的(或轮询规则确认的或基站指示的)上行(下行)波束方向作为发送(接收)波束方向。
如果没有参考波束信息时FLB不工作,则在C-link建立连接前,FLB不发送接收。
步骤2、在C-link建立连接后,NCR对C-link进行波束测量和管理,波束管理流程可以采用现有技术,比如基站用不同的波束通过C-link为NCR发送测量信号,NCR在接收测量信号之后计算测量量(如接收功率等),通过比较后C-link上报测量量或最优的波束信息。上下行波束分别进行波束管理。
步骤3、基站接收到C-link上报的测量量或最优的波束信息后,通过DCI下发C-link的波束信息A-UL(上行)/A-DL(下行)。
步骤4、如果NCR未检测到波束信息A-UL/A-DL,则仍按照步骤1的方式确定FLB波束方向或不发送接收;如果NCR接收并检测出波束信息A-UL/A-DL之后,当到达对应的FLB波束信息生效时刻时,NCR使用波束信息A-UL/A-DL作为FLB的上/下行波束。
实施例2:上下行波束联合指示+无定时器的方法流程。
图6为本公开实施例提供的确定FLB波束的方法实施示意图之二,如图6所示,图中示出了FDM和TDM两种不同方式下FLB波束的确定方法,图中FLB波束信息生效时刻为C-link的传输时隙的起始时刻,其他确定FLB波束信息生效时刻的方法参见实施例5。没有参考波束信息时使用默认波束(或轮询规则确认的波束或基站指示的波束或不发送接收),其中不同图案表示的是不同的波束方向,相同图案不同边框(实线和虚线)表示的是一组对应的波束方向。
步骤1、基站或者NCR预先设定上下行波束的关联信息。每个上行发送波束都有对应的下行接收波束,两者一一对应。
步骤2、如果没有参考波束信息时FLB工作,则系统预先设定默认的(或轮询规则确认的或基站指示的)波束方向,在C-link建立连接前,FLB使用默 认的(或轮询规则确认的或基站指示的)上下行波束的关联信息作为发送和接收波束方向。
如果没有参考波束信息时FLB不工作,则在C-link建立连接前,FLB不发送接收。
步骤3、在C-link建立连接后,NCR对C-link进行波束测量和管理,波束管理流程可以采用现有技术,比如基站用不同的波束通过C-link为NCR发送测量信号,NCR在接收测量信号之后计算测量量(如接收功率等),通过比较后C-link上报测量量或最优的波束信息。上下行波束联合进行波束管理。
步骤4、基站接收到C-link上报的测量量或最优的波束信息后,通过DCI下发C-link的上下行联合波束信息A。
步骤5、如果NCR未检测到波束信息A,则仍按照步骤1的方式确定FLB波束方向或不发送接收;如果NCR接收并检测出上下行联合波束信息A之后,当到达对应的FLB波束信息生效时刻时,NCR使用波束信息A作为FLB的上下行波束。
实施例3:上下行波束分别指示+有定时器的方法流程。
图7为本公开实施例提供的确定FLB波束的方法实施示意图之三,如图7所示,图中示出了FDM和TDM两种不同方式下FLB波束的确定方法,图中定时器起点为C-link的传输时隙的起始时刻,其他确定FLB波束信息生效时刻的方法参见实施例5。没有参考波束信息时使用默认波束(或轮询规则确认的波束或基站指示的波束或不发送接收),其中不同图案表示的是不同的波束方向。
步骤1、如果没有参考波束信息时FLB工作,则系统预先设定默认的(或轮询规则确认的或基站指示的)波束方向,在C-link建立连接前,FLB使用默认的(或轮询规则确认的或基站指示的)上行(下行)波束方向作为发送(接收)波束方向。
如果没有参考波束信息时FLB不工作,则在C-link建立连接前,FLB不发送接收。
步骤2、基站指示定时器QCLtimer的时长,具体方法可参见实施例6和 7。
步骤3、基站确定默认或指定的FLB波束信息B-UL(上行)/B-DL(下行)。
步骤4、在C-link建立连接后,NCR对C-link进行波束测量和管理,波束管理流程可以采用现有技术,比如基站用不同的波束通过C-link为NCR发送测量信号,NCR在接收测量信号之后计算测量量(如接收功率等),通过比较后C-link上报测量量或最优的波束信息。上下行波束分别进行波束管理。
步骤5、基站接收到C-link上报的测量量或最优的波束信息后,通过DCI下发C-link的波束信息A-UL/A-DL。
步骤6、如果NCR未检测到波束信息A-UL/A-DL,则仍按照步骤1的方式确定FLB波束方向或不发送接收;如果NCR接收并检测出波束信息A-UL/A-DL之后,当到达QCLtimer起点时,QCLtimer置零并开始计时,NCR使用波束信息A-UL/A-DL作为FLB的上/下行波束。当QCLtimer到达设定时长时,NCR使用波束信息B-UL/B-DL作为FLB的上/下行波束。
实施例4:上下行波束联合指示+有定时器的方法流程。
图8为本公开实施例提供的确定FLB波束的方法实施示意图之四,如图8所示,图中示出了FDM和TDM两种不同方式下FLB波束的确定方法,如图8所示,其中定时器起点为C-link的传输时隙的起始时刻,其他确定FLB波束信息生效时刻的方法可参见实施例5。没有参考波束信息时使用默认波束(或轮询规则确认的波束或基站指示的波束或不发送接收),其中不同图案表示的是不同的波束方向,相同图案不同边框(实线和虚线)表示的是一组对应的波束方向。
步骤1、基站或者NCR预先设定上下行波束的关联信息。每个上行发送波束都有对应的下行接收波束,两者一一对应。
步骤2、如果没有参考波束信息时FLB工作,则系统预先设定默认的(或轮询规则确认的或基站指示的)波束方向,在C-link建立连接前,FLB使用默认的(或轮询规则确认的或基站指示的)上下行波束的关联信息作为发送和接收波束方向。
如果没有参考波束信息时FLB不工作,则在C-link建立连接前,FLB不发送接收。
步骤3、基站确定定时器QCLtimer的时长,具体方法参见实施例6和7。
步骤4、基站确定默认或指定的FLB波束信息B。
步骤5、在C-link建立连接后,NCR对C-link进行波束测量和管理,波束管理流程可以采用现有技术,比如基站用不同的波束通过C-link为NCR发送测量信号,NCR在接收测量信号之后计算测量量(如接收功率等),通过比较后C-link上报测量量或最优的波束信息。上下行波束联合进行波束管理。
步骤6、基站接收到C-link上报的测量量或最优的波束信息后,通过DCI下发C-link的波束信息A。
步骤7、如果NCR未检测到波束信息A,则仍按照步骤1的方式确定FLB波束方向或不发送接收;如果NCR接收并检测出波束信息A之后,当到达QCLtimer起点时,QCLtimer置零并开始计时,NCR使用波束信息A作为FLB的上下行波束。当QCLtimer到达设定时长时,NCR使用波束信息B作为FLB的上下行波束。
实施例5:FLB波束信息生效时刻(或定时器起点)的计算方法流程。
如图3所示,假定基站发送DCI(SCI)的时隙索引是n,C-link发送(接收)的时隙索引是m,则不同方法的FLB波束信息生效时刻(或定时器起点)分别为:
(1)以控制信令的生效时刻后的第一个时隙起始符号作为所确定的FLB波束的生效时刻(或定时器起点),则FLB波束的生效时刻(或定时器起点)的时隙索引为也可以表示为其中timeDurationForQCL(准共址时长)是基站发送的PDCCH生效所需时间,和用户能力有关,slot_time是一个时隙的时长。
timeDurationForQCL由基站预先指定集合,集合中的元素代表OFDM符号个数,UE根据自身能力上报集合中元素索引值。
(2)以C-link的传输时隙的起始时刻作为所确定的FLB波束的生效时刻(或定时器起点),则FLB波束的生效时刻(或定时器起点)的时隙索引 为m。
(3)以C-link的传输时隙的下一时隙的起始时刻作为所确定的FLB波束的生效时刻(或定时器起点),则FLB波束的生效时刻(或定时器起点)的时隙索引为m+1。
实施例6:高层参数指示定时器时长的方法流程。
步骤1、基站预先配置QCLtimer的可用时长集合,通过RRC层的参数LengthOfQCLtimer配置。该集合可以通过枚举的方式确定,可以按照实际时长或符号个数来配置比如{5ms,10ms,20ms,40ms,80ms}或{7,14,28};也可以通过配置最小值、最大值和颗粒度的方式来确定,比如MinLengthOfQCLtimer=5ms,MaxLengthOfQCLtimer=80ms,系统默认颗粒度为5ms。
步骤2、基站通过RRC或者SCI指示QCLtimer可用时长集合内索引给NCR。
步骤3、NCR接收到该索引值之后确定QCLtimer的时长。
实施例7:NCR上报的方法确定定时器时长的方法流程。
步骤1、基站预先配置QCLtimer的可用时长集合,通过RRC层的参数LengthOfQCLtimer配置。该集合可以通过枚举的方式确定,可以按照实际时长或符号个数来配置比如{5ms,10ms,20ms,40ms,80ms}或{7,14,28};也可以通过配置最小值、最大值和颗粒度的方式来确定,比如MinLengthOfQCLtimer=5ms,MaxLengthOfQCLtimer=80ms,系统默认颗粒度为5ms。
步骤2、NCR根据自身能力,通过RRC或者SCI指示QCLtimer可用时长集合内索引。
步骤3、基站接收到该索引值之后对QCLtimer的时长进行调整,调整之后的QCLtimer再通过RRC或者SCI指示QCLtimer可用时长集合内索引给NCR。
步骤4、NCR接收到该索引值之后确定QCLtimer的时长。
实施例8:确认上下行波束指示方式的方法。
上下行波束的指示方法是上下行波束分别指示还是上下行波束联合指示可以系统默认,也可以通过参数配置,还可以作为NCR的能力进行上报:
(1)通过参数配置的方式:基站通过RRC参数(如BeamType或者TCI-StateType)配置是否上下行波束联合处理,如果是则配置为1,如果不是则配置为0。
(2)NCR的能力上报的方式:NCR通过RRC参数(如BeamType或者TCI-StateType)上报是否支持上下行波束联合处理,如果是则配置为1,如果不是则配置为0。
实施例9:NCR配置统一波束指示信息UnifiedTCIstate的方法流程。
步骤1、如果无法使用UnifiedTCIstate时FLB工作,则系统预先设定默认的(或轮询规则确认的或基站指示的)波束方向,在C-link建立连接前,FLB使用默认的(或轮询规则确认的或基站指示的)波束方向作为波束方向。
如果无法使用UnifiedTCIstate时FLB不工作,则在C-link建立连接前,FLB不发送接收。
步骤2、在C-link建立连接后,NCR对C-link进行波束测量和管理,波束管理流程可以采用现有技术,比如基站用不同的波束通过C-link为NCR发送测量信号,NCR在接收测量信号之后计算测量量(如接收功率等),通过比较后C-link上报测量量或最优的波束信息。
步骤3、基站接收到C-link上报的测量量或最优的波束信息后,通过DCI下发统一波束指示信息UnifiedTCIstate。
步骤4、NCR接收RRC参数followUnifiedTCIstate_FLB。
当followUnifiedTCIstate_FLB配置为enable(使能)时,当接收到UnifiedTCIstate信息且到达FLB波束信息生效时间后FLB使用UnifiedTCIstate信息,否则按照步骤1的方式处理。
当followUnifiedTCIstate_FLB配置为unable(去使能)时,按照步骤1的方式处理。
当NCR未检测到UnifiedTCIstate信息时,按照步骤1的方式处理。
本公开各实施例提供的方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
图9为本公开实施例提供的网络控制中继的结构示意图,如图9所示,该网络控制中继包括存储器920,收发机910和处理器900;其中,处理器900与存储器920也可以物理上分开布置。
存储器920,用于存储计算机程序;收发机910,用于在处理器900的控制下收发数据。
具体地,收发机910用于在处理器900的控制下接收和发送数据。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本公开不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。
处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
处理器900可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器900通过调用存储器920存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法,例如:获取第一波束信息,第一波束信息包括控制链路的波束信息或统一波束指示信息;根据第一波束信息,确定回程转发链路的波束;
或者,获取第二波束信息,第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;根据第二波束信息,确定回程转发链路的波束。
可选地,根据第一波束信息,确定回程转发链路的波束,包括:
根据最近一次接收到的第一波束信息,确定回程转发链路的波束。
可选地,根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
从第一时刻开始,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
其中,第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为第一时刻;
其中,第一控制信令为指示最近一次接收到的第一波束信息的控制信令。
可选地,根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
在第一定时器未超时的情况下,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
第一定时器在第一时刻开启。
可选地,该方法还包括:
在无法使用第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定回程转发链路的波束;
根据预设的波束集合和轮询规则,确定回程转发链路的波束;
根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
不在回程转发链路进行数据发送和/或数据接收。
可选地,根据第一波束信息,确定回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发 链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
可选地,该方法还包括:
向网络设备发送第一参数信息,第一参数信息用于指示网络控制中继是否支持上行波束和下行波束联合管理;和/或,
接收网络设备发送的第二参数信息,第二参数信息用于指示网络控制中继是否进行上行波束和下行波束联合管理。
可选地,该方法还包括:
向网络设备发送第一指示信息,第一指示信息用于指示第一定时器的时长在定时器时长集合内的索引;和/或,
接收网络设备发送的第二指示信息,第二指示信息用于指示第一定时器的时长在定时器时长集合内的索引。
可选地,定时器时长集合根据枚举的时长值或符号个数值确定;或者,定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
可选地,该方法还包括:
接收网络设备发送的第三参数信息,第三参数信息用于指示网络控制中继对回程转发链路是否使用统一波束指示信息。
可选地,第一波束信息包括以下一项或多项:
波束索引;
测量参考信号资源索引;
使用第一波束信息的时域资源位置。
图10为本公开实施例提供的网络设备的结构示意图,如图10所示,该网络设备包括存储器1020,收发机1010和处理器1000;其中,处理器1000与存储器1020也可以物理上分开布置。
存储器1020,用于存储计算机程序;收发机1010,用于在处理器1000的控制下收发数据。
具体地,收发机1010用于在处理器1000的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本公开不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。
处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
处理器1000可以是CPU、ASIC、FPGA或CPLD,处理器也可以采用多核架构。
处理器1000通过调用存储器1020存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法,例如:确定第一波束信息,第一波束信息包括与网络控制中继之间的控制链路对应的波束信息,或者网络控制中继对应的统一波束指示信息;根据第一波束信息,确定与网络控制中继之间的回程转发链路的波束;
或者,确定第二波束信息,第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示给网络控制中继的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;根据第二波束信息,确定回程转发链路的波束。
可选地,根据第一波束信息,确定与网络控制中继之间的回程转发链路的波束,包括:
根据最近一次发送的第一波束信息,确定回程转发链路的波束。
可选地,根据最近一次发送的第一波束信息,确定回程转发链路的波束,包括:
从第一时刻开始,根据最近一次发送的第一波束信息,确定回程转发链路的波束;
其中,第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为第一时刻;
其中,第一控制信令为指示最近一次发送的第一波束信息的控制信令。
可选地,根据最近一次发送的第一波束信息,确定回程转发链路的波束,包括:
在第一定时器未超时的情况下,根据最近一次发送的第一波束信息,确定回程转发链路的波束;
第一定时器在第一时刻开启。
可选地,该方法还包括:
在确定网络控制中继无法使用第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定回程转发链路的波束;
根据预设的波束集合和轮询规则,确定回程转发链路的波束;
根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
不在回程转发链路进行数据发送和/或数据接收。
可选地,根据第一波束信息,确定与网络控制中继之间的回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
可选地,该方法还包括:
接收网络控制中继发送的第一参数信息,第一参数信息用于指示网络控制中继是否支持上行波束和下行波束联合管理;和/或,
向网络控制中继发送第二参数信息,第二参数信息用于指示网络控制中继是否进行上行波束和下行波束联合管理。
可选地,该方法还包括:
接收网络控制中继发送的第一指示信息,第一指示信息用于指示第一定时器的时长在定时器时长集合内的索引;和/或,
向网络控制中继发送第二指示信息,第二指示信息用于指示第一定时器的时长在定时器时长集合内的索引。
可选地,定时器时长集合根据枚举的时长值或符号个数值确定;或者,定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
可选地,该方法还包括:
向网络控制中继发送第三参数信息,第三参数信息用于指示网络控制中继对回程转发链路是否使用统一波束指示信息。
可选地,第一波束信息包括以下一项或多项:
波束索引;
测量参考信号资源索引;
使用第一波束信息的时域资源位置。
在此需要说明的是,本公开实施例提供的上述网络控制中继和网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图11为本公开实施例提供的确定回程转发链路波束的装置的结构示意图之一,该装置应用于网络控制中继,如图11所示,该装置包括:
获取单元1100,用于获取第一波束信息,第一波束信息包括控制链路的波束信息或统一波束指示信息;
第一确定单元1110,用于根据第一波束信息,确定回程转发链路的波束;
或者,
获取单元1100,用于获取第二波束信息,第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
第一确定单元1110,用于根据第二波束信息,确定回程转发链路的波束。
可选地,根据第一波束信息,确定回程转发链路的波束,包括:
根据最近一次接收到的第一波束信息,确定回程转发链路的波束。
可选地,根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
从第一时刻开始,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
其中,第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为第一时刻;
其中,第一控制信令为指示最近一次接收到的第一波束信息的控制信令。
可选地,根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
在第一定时器未超时的情况下,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
第一定时器在第一时刻开启。
可选地,第一确定单元1110,还用于:
在无法使用第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定回程转发链路的波束;
根据预设的波束集合和轮询规则,确定回程转发链路的波束;
根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波 束;
不在回程转发链路进行数据发送和/或数据接收。
可选地,根据第一波束信息,确定回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
可选地,该装置还包括第一传输单元,用于:
向网络设备发送第一参数信息,第一参数信息用于指示网络控制中继是否支持上行波束和下行波束联合管理;和/或,
接收网络设备发送的第二参数信息,第二参数信息用于指示网络控制中继是否进行上行波束和下行波束联合管理。
可选地,该装置还包括第二传输单元,用于:
向网络设备发送第一指示信息,第一指示信息用于指示第一定时器的时长在定时器时长集合内的索引;和/或,
接收网络设备发送的第二指示信息,第二指示信息用于指示第一定时器的时长在定时器时长集合内的索引。
可选地,定时器时长集合根据枚举的时长值或符号个数值确定;或者,定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
可选地,该装置还包括第三传输单元,用于:
接收网络设备发送的第三参数信息,第三参数信息用于指示网络控制中继对回程转发链路是否使用统一波束指示信息。
可选地,第一波束信息包括以下一项或多项:
波束索引;
测量参考信号资源索引;
使用第一波束信息的时域资源位置。
图12为本公开实施例提供的确定回程转发链路波束的装置的结构示意图之二,该装置应用于网络设备,如图12所示,该装置包括:
第二确定单元1200,用于确定第一波束信息,第一波束信息包括与网络控制中继之间的控制链路对应的波束信息,或者网络控制中继对应的统一波束指示信息;
第三确定单元1210,用于根据第一波束信息,确定与网络控制中继之间的回程转发链路的波束;
或者,
第二确定单元1200,用于确定第二波束信息,第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示给网络控制中继的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
第三确定单元1210,用于根据第二波束信息,确定回程转发链路的波束。
可选地,根据第一波束信息,确定与网络控制中继之间的回程转发链路的波束,包括:
根据最近一次发送的第一波束信息,确定回程转发链路的波束。
可选地,根据最近一次发送的第一波束信息,确定回程转发链路的波束,包括:
从第一时刻开始,根据最近一次发送的第一波束信息,确定回程转发链路的波束;
其中,第一时刻的确定方式包括:
以第一控制信令生效后的第一个时隙起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的起始符号作为第一时刻;或者,
以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为第一时刻;
其中,第一控制信令为指示最近一次发送的第一波束信息的控制信令。
可选地,根据最近一次发送的第一波束信息,确定回程转发链路的波束, 包括:
在第一定时器未超时的情况下,根据最近一次发送的第一波束信息,确定回程转发链路的波束;
第一定时器在第一时刻开启。
可选地,第三确定单元1210,还用于:
在确定网络控制中继无法使用第一波束信息的情况下,执行以下任一项方法:
根据默认配置的波束信息,确定回程转发链路的波束;
根据预设的波束集合和轮询规则,确定回程转发链路的波束;
根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
不在回程转发链路进行数据发送和/或数据接收。
可选地,根据第一波束信息,确定与网络控制中继之间的回程转发链路的波束,包括以下任一项:
在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
可选地,该装置还包括第四传输单元,用于:
接收网络控制中继发送的第一参数信息,第一参数信息用于指示网络控制中继是否支持上行波束和下行波束联合管理;和/或,
向网络控制中继发送第二参数信息,第二参数信息用于指示网络控制中继是否进行上行波束和下行波束联合管理。
可选地,该装置还包括第五传输单元,用于:
接收网络控制中继发送的第一指示信息,第一指示信息用于指示第一定时器的时长在定时器时长集合内的索引;和/或,
向网络控制中继发送第二指示信息,第二指示信息用于指示第一定时器 的时长在定时器时长集合内的索引。
可选地,定时器时长集合根据枚举的时长值或符号个数值确定;或者,定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
可选地,该装置还包括第六传输单元,用于:
向网络控制中继发送第三参数信息,第三参数信息用于指示网络控制中继对回程转发链路是否使用统一波束指示信息。
可选地,第一波束信息包括以下一项或多项:
波束索引;
测量参考信号资源索引;
使用第一波束信息的时域资源位置。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
另一方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行上述各实施例提供的确定回程转发链路波束的方法。
在此需要说明的是,本公开实施例提供的计算机可读存储介质,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
所述计算机可读存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之 间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储 器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (67)

  1. 一种确定回程转发链路波束的方法,应用于网络控制中继,包括:
    获取第一波束信息,所述第一波束信息包括控制链路的波束信息或统一波束指示信息;
    根据所述第一波束信息,确定回程转发链路的波束;
    或者,
    获取第二波束信息,所述第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
    根据所述第二波束信息,确定回程转发链路的波束。
  2. 根据权利要求1所述的确定回程转发链路波束的方法,其中,所述根据所述第一波束信息,确定回程转发链路的波束,包括:
    根据最近一次接收到的第一波束信息,确定回程转发链路的波束。
  3. 根据权利要求2所述的确定回程转发链路波束的方法,其中,所述根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
    从第一时刻开始,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
    其中,所述第一时刻的确定方式包括:
    以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
    其中,所述第一控制信令为指示所述最近一次接收到的第一波束信息的控制信令。
  4. 根据权利要求3所述的确定回程转发链路波束的方法,其中,所述根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
    在第一定时器未超时的情况下,根据最近一次接收的第一波束信息,确 定回程转发链路的波束;
    所述第一定时器在所述第一时刻开启。
  5. 根据权利要求1至4任一项所述的确定回程转发链路波束的方法,其中,所述方法还包括:
    在无法使用所述第一波束信息的情况下,执行以下任一项方法:
    根据默认配置的波束信息,确定回程转发链路的波束;
    根据预设的波束集合和轮询规则,确定回程转发链路的波束;
    根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
    不在回程转发链路进行数据发送和/或数据接收。
  6. 根据权利要求1至4任一项所述的确定回程转发链路波束的方法,其中,所述根据所述第一波束信息,确定回程转发链路的波束,包括以下任一项:
    在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
    在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
  7. 根据权利要求6所述的确定回程转发链路波束的方法,其中,所述方法还包括:
    向所述网络设备发送第一参数信息,所述第一参数信息用于指示所述网络控制中继是否支持上行波束和下行波束联合管理;和/或,
    接收所述网络设备发送的第二参数信息,所述第二参数信息用于指示所述网络控制中继是否进行上行波束和下行波束联合管理。
  8. 根据权利要求4所述的确定回程转发链路波束的方法,其中,所述方法还包括:
    向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引;和/或,
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
  9. 根据权利要求8所述的确定回程转发链路波束的方法,其中,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
  10. 根据权利要求1至4任一项所述的确定回程转发链路波束的方法,其中,所述方法还包括:
    接收所述网络设备发送的第三参数信息,所述第三参数信息用于指示所述网络控制中继对回程转发链路是否使用统一波束指示信息。
  11. 根据权利要求1至4任一项所述的确定回程转发链路波束的方法,其中,所述第一波束信息包括以下一项或多项:
    波束索引;
    测量参考信号资源索引;
    使用所述第一波束信息的时域资源位置。
  12. 一种确定回程转发链路波束的方法,应用于网络设备,包括:
    确定第一波束信息,所述第一波束信息包括与网络控制中继之间的控制链路对应的波束信息,或者网络控制中继对应的统一波束指示信息;
    根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束;
    或者,
    确定第二波束信息,所述第二波束信息为默认配置的所述回程转发链路的波束信息、或者所述网络设备指示给所述网络控制中继的所述回程转发链路的波束信息、或者根据预定义规则确定的所述回程转发链路的波束信息;
    根据所述第二波束信息,确定所述回程转发链路的波束。
  13. 根据权利要求12所述的确定回程转发链路波束的方法,其中,所述根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束,包括:
    根据最近一次发送的第一波束信息,确定所述回程转发链路的波束。
  14. 根据权利要求13所述的确定回程转发链路波束的方法,其中,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
    从第一时刻开始,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
    其中,所述第一时刻的确定方式包括:
    以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
    其中,所述第一控制信令为指示所述最近一次发送的第一波束信息的控制信令。
  15. 根据权利要求14所述的确定回程转发链路波束的方法,其中,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
    在第一定时器未超时的情况下,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
    所述第一定时器在所述第一时刻开启。
  16. 根据权利要求12至15任一项所述的确定回程转发链路波束的方法,其中,所述方法还包括:
    在确定所述网络控制中继无法使用所述第一波束信息的情况下,执行以下任一项方法:
    根据默认配置的波束信息,确定所述回程转发链路的波束;
    根据预设的波束集合和轮询规则,确定所述回程转发链路的波束;
    根据所述网络设备指示的所述回程转发链路的波束信息,确定所述回程转发链路的波束;
    不在所述回程转发链路进行数据发送和/或数据接收。
  17. 根据权利要求12至15任一项所述的确定回程转发链路波束的方法,其中,所述根据所述第一波束信息,确定与所述网络控制中继之间的回程转 发链路的波束,包括以下任一项:
    在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定所述回程转发链路的上行波束;和/或,根据第一下行波束信息,确定所述回程转发链路的下行波束;或者,
    在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定所述回程转发链路的上行波束和下行波束。
  18. 根据权利要求17所述的确定回程转发链路波束的方法,其中,所述方法还包括:
    接收所述网络控制中继发送的第一参数信息,所述第一参数信息用于指示所述网络控制中继是否支持上行波束和下行波束联合管理;和/或,
    向所述网络控制中继发送第二参数信息,所述第二参数信息用于指示所述网络控制中继是否进行上行波束和下行波束联合管理。
  19. 根据权利要求15所述的确定回程转发链路波束的方法,其中,所述方法还包括:
    接收所述网络控制中继发送的第一指示信息,所述第一指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引;和/或,
    向所述网络控制中继发送第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
  20. 根据权利要求19所述的确定回程转发链路波束的方法,其中,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
  21. 根据权利要求12至15任一项所述的确定回程转发链路波束的方法,其中,所述方法还包括:
    向所述网络控制中继发送第三参数信息,所述第三参数信息用于指示所述网络控制中继对所述回程转发链路是否使用统一波束指示信息。
  22. 根据权利要求12至15任一项所述的确定回程转发链路波束的方法,其中,所述第一波束信息包括以下一项或多项:
    波束索引;
    测量参考信号资源索引;
    使用所述第一波束信息的时域资源位置。
  23. 一种网络控制中继,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    获取第一波束信息,所述第一波束信息包括控制链路的波束信息或统一波束指示信息;
    根据所述第一波束信息,确定回程转发链路的波束;
    或者,
    获取第二波束信息,所述第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
    根据所述第二波束信息,确定回程转发链路的波束。
  24. 根据权利要求23所述的网络控制中继,其中,所述根据所述第一波束信息,确定回程转发链路的波束,包括:
    根据最近一次接收到的第一波束信息,确定回程转发链路的波束。
  25. 根据权利要求24所述的网络控制中继,其中,所述根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
    从第一时刻开始,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
    其中,所述第一时刻的确定方式包括:
    以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
    其中,所述第一控制信令为指示所述最近一次接收到的第一波束信息的控制信令。
  26. 根据权利要求25所述的网络控制中继,其中,所述根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
    在第一定时器未超时的情况下,根据最近一次接收的第一波束信息,确定回程转发链路的波束;
    所述第一定时器在所述第一时刻开启。
  27. 根据权利要求23至26任一项所述的网络控制中继,其中,所述操作还包括:
    在无法使用所述第一波束信息的情况下,执行以下任一项方法:
    根据默认配置的波束信息,确定回程转发链路的波束;
    根据预设的波束集合和轮询规则,确定回程转发链路的波束;
    根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
    不在回程转发链路进行数据发送和/或数据接收。
  28. 根据权利要求23至26任一项所述的网络控制中继,其中,所述根据所述第一波束信息,确定回程转发链路的波束,包括以下任一项:
    在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
    在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
  29. 根据权利要求28所述的网络控制中继,其中,所述操作还包括:
    向所述网络设备发送第一参数信息,所述第一参数信息用于指示所述网络控制中继是否支持上行波束和下行波束联合管理;和/或,
    接收所述网络设备发送的第二参数信息,所述第二参数信息用于指示所述网络控制中继是否进行上行波束和下行波束联合管理。
  30. 根据权利要求26所述的网络控制中继,其中,所述操作还包括:
    向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引;和/或,
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
  31. 根据权利要求30所述的网络控制中继,其中,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
  32. 根据权利要求23至26任一项所述的网络控制中继,其中,所述操作还包括:
    接收所述网络设备发送的第三参数信息,所述第三参数信息用于指示所述网络控制中继对回程转发链路是否使用统一波束指示信息。
  33. 根据权利要求23至26任一项所述的网络控制中继,其中,所述第一波束信息包括以下一项或多项:
    波束索引;
    测量参考信号资源索引;
    使用所述第一波束信息的时域资源位置。
  34. 一种网络设备,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定第一波束信息,所述第一波束信息包括与网络控制中继之间的控制链路对应的波束信息,或者网络控制中继对应的统一波束指示信息;
    根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束;
    或者,
    确定第二波束信息,所述第二波束信息为默认配置的所述回程转发链路的波束信息、或者所述网络设备指示给所述网络控制中继的所述回程转发链路的波束信息、或者根据预定义规则确定的所述回程转发链路的波束信息;
    根据所述第二波束信息,确定所述回程转发链路的波束。
  35. 根据权利要求34所述的网络设备,其中,所述根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束,包括:
    根据最近一次发送的第一波束信息,确定所述回程转发链路的波束。
  36. 根据权利要求35所述的网络设备,其中,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
    从第一时刻开始,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
    其中,所述第一时刻的确定方式包括:
    以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
    其中,所述第一控制信令为指示所述最近一次发送的第一波束信息的控制信令。
  37. 根据权利要求36所述的网络设备,其中,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
    在第一定时器未超时的情况下,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
    所述第一定时器在所述第一时刻开启。
  38. 根据权利要求34至37任一项所述的网络设备,其中,所述操作还包括:
    在确定所述网络控制中继无法使用所述第一波束信息的情况下,执行以下任一项方法:
    根据默认配置的波束信息,确定所述回程转发链路的波束;
    根据预设的波束集合和轮询规则,确定所述回程转发链路的波束;
    根据所述网络设备指示的所述回程转发链路的波束信息,确定所述回程转发链路的波束;
    不在所述回程转发链路进行数据发送和/或数据接收。
  39. 根据权利要求34至37任一项所述的网络设备,其中,所述根据所 述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束,包括以下任一项:
    在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定所述回程转发链路的上行波束;和/或,根据第一下行波束信息,确定所述回程转发链路的下行波束;或者,
    在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定所述回程转发链路的上行波束和下行波束。
  40. 根据权利要求39所述的网络设备,其中,所述操作还包括:
    接收所述网络控制中继发送的第一参数信息,所述第一参数信息用于指示所述网络控制中继是否支持上行波束和下行波束联合管理;和/或,
    向所述网络控制中继发送第二参数信息,所述第二参数信息用于指示所述网络控制中继是否进行上行波束和下行波束联合管理。
  41. 根据权利要求37所述的网络设备,其中,所述操作还包括:
    接收所述网络控制中继发送的第一指示信息,所述第一指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引;和/或,
    向所述网络控制中继发送第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
  42. 根据权利要求41所述的网络设备,其中,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
  43. 根据权利要求34至37任一项所述的网络设备,其中,所述操作还包括:
    向所述网络控制中继发送第三参数信息,所述第三参数信息用于指示所述网络控制中继对所述回程转发链路是否使用统一波束指示信息。
  44. 根据权利要求34至37任一项所述的网络设备,其中,所述第一波束信息包括以下一项或多项:
    波束索引;
    测量参考信号资源索引;
    使用所述第一波束信息的时域资源位置。
  45. 一种确定回程转发链路波束的装置,包括:
    获取单元,用于获取第一波束信息,所述第一波束信息包括控制链路的波束信息或统一波束指示信息;
    第一确定单元,用于根据所述第一波束信息,确定回程转发链路的波束;
    或者,
    获取单元,用于获取第二波束信息,所述第二波束信息为默认配置的回程转发链路的波束信息、或者网络设备指示的回程转发链路的波束信息、或者根据预定义规则确定的回程转发链路的波束信息;
    第一确定单元,用于根据所述第二波束信息,确定回程转发链路的波束。
  46. 根据权利要求45所述的确定回程转发链路波束的装置,其中,所述根据所述第一波束信息,确定回程转发链路的波束,包括:
    根据最近一次接收到的第一波束信息,确定回程转发链路的波束。
  47. 根据权利要求46所述的确定回程转发链路波束的装置,其中,所述根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
    从第一时刻开始,根据最近一次接收到的第一波束信息,确定回程转发链路的波束;
    其中,所述第一时刻的确定方式包括:
    以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
    其中,所述第一控制信令为指示所述最近一次接收到的第一波束信息的控制信令。
  48. 根据权利要求47所述的确定回程转发链路波束的装置,其中,所述根据最近一次接收到的第一波束信息,确定回程转发链路的波束,包括:
    在第一定时器未超时的情况下,根据最近一次接收的第一波束信息,确 定回程转发链路的波束;
    所述第一定时器在所述第一时刻开启。
  49. 根据权利要求45至48任一项所述的确定回程转发链路波束的装置,其中,所述第一确定单元还用于:
    在无法使用所述第一波束信息的情况下,执行以下任一项方法:
    根据默认配置的波束信息,确定回程转发链路的波束;
    根据预设的波束集合和轮询规则,确定回程转发链路的波束;
    根据网络设备指示的回程转发链路的波束信息,确定回程转发链路的波束;
    不在回程转发链路进行数据发送和/或数据接收。
  50. 根据权利要求45至48任一项所述的确定回程转发链路波束的装置,其中,所述根据所述第一波束信息,确定回程转发链路的波束,包括以下任一项:
    在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定回程转发链路的上行波束;和/或,根据第一下行波束信息,确定回程转发链路的下行波束;或者,
    在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定回程转发链路的上行波束和下行波束。
  51. 根据权利要求50所述的确定回程转发链路波束的装置,其中,所述装置还包括第一传输单元,用于:
    向所述网络设备发送第一参数信息,所述第一参数信息用于指示网络控制中继是否支持上行波束和下行波束联合管理;和/或,
    接收所述网络设备发送的第二参数信息,所述第二参数信息用于指示网络控制中继是否进行上行波束和下行波束联合管理。
  52. 根据权利要求48所述的确定回程转发链路波束的装置,其中,所述装置还包括第二传输单元,用于:
    向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引;和/或,
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
  53. 根据权利要求52所述的确定回程转发链路波束的装置,其中,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
  54. 根据权利要求45至48任一项所述的确定回程转发链路波束的装置,其中,所述装置还包括第三传输单元,用于:
    接收所述网络设备发送的第三参数信息,所述第三参数信息用于指示网络控制中继对回程转发链路是否使用统一波束指示信息。
  55. 根据权利要求45至48任一项所述的确定回程转发链路波束的装置,其中,所述第一波束信息包括以下一项或多项:
    波束索引;
    测量参考信号资源索引;
    使用所述第一波束信息的时域资源位置。
  56. 一种确定回程转发链路波束的装置,包括:
    第二确定单元,用于确定第一波束信息,所述第一波束信息包括与网络控制中继之间的控制链路对应的波束信息,或者网络控制中继对应的统一波束指示信息;
    第三确定单元,用于根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束;
    或者,
    第二确定单元,用于确定第二波束信息,所述第二波束信息为默认配置的所述回程转发链路的波束信息、或者网络设备指示给所述网络控制中继的所述回程转发链路的波束信息、或者根据预定义规则确定的所述回程转发链路的波束信息;
    第三确定单元,用于根据所述第二波束信息,确定所述回程转发链路的波束。
  57. 根据权利要求56所述的确定回程转发链路波束的装置,其中,所述 根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束,包括:
    根据最近一次发送的第一波束信息,确定所述回程转发链路的波束。
  58. 根据权利要求57所述的确定回程转发链路波束的装置,其中,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
    从第一时刻开始,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
    其中,所述第一时刻的确定方式包括:
    以第一控制信令生效后的第一个时隙起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的起始符号作为所述第一时刻;或者,
    以第一控制信令指示的控制链路传输时隙的下一时隙的起始符号作为所述第一时刻;
    其中,所述第一控制信令为指示所述最近一次发送的第一波束信息的控制信令。
  59. 根据权利要求58所述的确定回程转发链路波束的装置,其中,所述根据最近一次发送的第一波束信息,确定所述回程转发链路的波束,包括:
    在第一定时器未超时的情况下,根据最近一次发送的第一波束信息,确定所述回程转发链路的波束;
    所述第一定时器在所述第一时刻开启。
  60. 根据权利要求56至59任一项所述的确定回程转发链路波束的装置,其中,所述第三确定单元还用于:
    在确定所述网络控制中继无法使用所述第一波束信息的情况下,执行以下任一项方法:
    根据默认配置的波束信息,确定所述回程转发链路的波束;
    根据预设的波束集合和轮询规则,确定所述回程转发链路的波束;
    根据所述网络设备指示的所述回程转发链路的波束信息,确定所述回程转发链路的波束;
    不在所述回程转发链路进行数据发送和/或数据接收。
  61. 根据权利要求56至59任一项所述的确定回程转发链路波束的装置,其中,所述根据所述第一波束信息,确定与所述网络控制中继之间的回程转发链路的波束,包括以下任一项:
    在上行波束和下行波束相互独立的情况下,根据第一上行波束信息,确定所述回程转发链路的上行波束;和/或,根据第一下行波束信息,确定所述回程转发链路的下行波束;或者,
    在上行波束和下行波束联合管理的情况下,根据第一上下行联合波束信息,确定所述回程转发链路的上行波束和下行波束。
  62. 根据权利要求61所述的确定回程转发链路波束的装置,其中,所述装置还包括第四传输单元,用于:
    接收所述网络控制中继发送的第一参数信息,所述第一参数信息用于指示所述网络控制中继是否支持上行波束和下行波束联合管理;和/或,
    向所述网络控制中继发送第二参数信息,所述第二参数信息用于指示所述网络控制中继是否进行上行波束和下行波束联合管理。
  63. 根据权利要求59所述的确定回程转发链路波束的装置,其中,所述装置还包括第五传输单元,用于:
    接收所述网络控制中继发送的第一指示信息,所述第一指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引;和/或,
    向所述网络控制中继发送第二指示信息,所述第二指示信息用于指示所述第一定时器的时长在定时器时长集合内的索引。
  64. 根据权利要求63所述的确定回程转发链路波束的装置,其中,所述定时器时长集合根据枚举的时长值或符号个数值确定;或者,所述定时器时长集合根据配置的时长最小值、时长最大值、颗粒度中的一项或多项确定。
  65. 根据权利要求56至59任一项所述的确定回程转发链路波束的装置,其中,所述装置还包括第六传输单元,用于:
    向所述网络控制中继发送第三参数信息,所述第三参数信息用于指示所述网络控制中继对所述回程转发链路是否使用统一波束指示信息。
  66. 根据权利要求56至59任一项所述的确定回程转发链路波束的装置,其中,所述第一波束信息包括以下一项或多项:
    波束索引;
    测量参考信号资源索引;
    使用所述第一波束信息的时域资源位置。
  67. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行权利要求1至11任一项所述的方法,或执行权利要求12至22任一项所述的方法。
PCT/CN2023/102550 2022-08-01 2023-06-27 确定回程转发链路波束的方法、设备、装置及存储介质 WO2024027371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210918689.0 2022-08-01
CN202210918689.0A CN117560736A (zh) 2022-08-01 2022-08-01 确定回程转发链路波束的方法、设备、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024027371A1 true WO2024027371A1 (zh) 2024-02-08

Family

ID=89817174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102550 WO2024027371A1 (zh) 2022-08-01 2023-06-27 确定回程转发链路波束的方法、设备、装置及存储介质

Country Status (2)

Country Link
CN (1) CN117560736A (zh)
WO (1) WO2024027371A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210014848A1 (en) * 2019-10-04 2021-01-14 Alexei Davydov Ue configured for joint activation of tci states and spatial relation info on multiple component carriers
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置
CN114467265A (zh) * 2019-10-04 2022-05-10 高通股份有限公司 默认pdsch波束选择
CN114600380A (zh) * 2019-10-29 2022-06-07 高通股份有限公司 用于使用中继链路来进行波束训练的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210014848A1 (en) * 2019-10-04 2021-01-14 Alexei Davydov Ue configured for joint activation of tci states and spatial relation info on multiple component carriers
CN114467265A (zh) * 2019-10-04 2022-05-10 高通股份有限公司 默认pdsch波束选择
CN114600380A (zh) * 2019-10-29 2022-06-07 高通股份有限公司 用于使用中继链路来进行波束训练的系统和方法
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (FUJITSU): "Summary#2 on L1/L2 signaling for side control information", 3GPP TSG RAN WG1 MEETING #109-E R1- 2205456, 17 May 2022 (2022-05-17), XP052192085 *
MODERATOR (FUJITSU): "Summary#3 on L1/L2 signaling for side control information", 3GPP TSG RAN WG1 MEETING #109-E R1-2205519, 20 May 2022 (2022-05-20), XP052192145 *

Also Published As

Publication number Publication date
CN117560736A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US11057814B2 (en) Seamless mobility for 5G and LTE systems and devices
CN111357357B (zh) 无线电终端、无线电接入网络节点及其方法
KR102601712B1 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 장치
EP3854140B1 (en) Communication connection control using conditional handover
WO2020001575A1 (zh) Iab节点的切换方法、iab节点和宿主基站
EP3222079B1 (en) Apparatus configured to report aperiodic channel state information for dual connectivity
KR102237240B1 (ko) 이동 통신 시스템에서 복수 연결을 지원하기 위한 제어 방법 및 복수 연결 지원 장치
JP6339223B2 (ja) 複数のイベントに基づく測定レポーティングを使用するハンドオーバーのためのユーザ装置及び方法
CN111602442A (zh) 无线电终端及其方法
EP2950572B1 (en) Method, apparatuses and system for realizing security detection in heterogeneous network
WO2021104039A1 (zh) 一种测量配置方法及装置
JP2024502369A (ja) Ue能力情報処理方法、装置、機器、及び記憶媒体
WO2017036306A1 (zh) 上下行干扰协调的处理方法及装置
CN105873115B (zh) 接入技术网络间的网络资源调整方法及终端
WO2021104038A1 (zh) 一种测量配置方法及装置
WO2022033667A1 (en) Adapting integrated access and backhaul node cell coverage
WO2024027371A1 (zh) 确定回程转发链路波束的方法、设备、装置及存储介质
CN107306381B (zh) Lwa网络中配置wlan移动集的方法
WO2021169378A1 (zh) 一种测量配置方法及设备
JP2023547842A (ja) Mro臨界シーンの判定方法、装置及び機器
WO2023202391A1 (zh) 组播业务传输方法、设备、装置及存储介质
US20230362761A1 (en) Efficient support for user equipment with redundant protocol data unit session
WO2024083056A1 (zh) 一种被用于无线通信的方法和设备
KR20180058339A (ko) 무선 광대역 네트워크와 무선 로컬 영역 네트워크가 병합된 통신 시스템에서 측정을 수행하기 위한 방법 및 장치
CN117560034A (zh) 确定直放站链路发送模式的方法、设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849081

Country of ref document: EP

Kind code of ref document: A1