WO2024027192A1 - 多支路电池系统的控制系统和方法 - Google Patents

多支路电池系统的控制系统和方法 Download PDF

Info

Publication number
WO2024027192A1
WO2024027192A1 PCT/CN2023/087371 CN2023087371W WO2024027192A1 WO 2024027192 A1 WO2024027192 A1 WO 2024027192A1 CN 2023087371 W CN2023087371 W CN 2023087371W WO 2024027192 A1 WO2024027192 A1 WO 2024027192A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
battery
bams
unit
master controller
Prior art date
Application number
PCT/CN2023/087371
Other languages
English (en)
French (fr)
Inventor
曹曦
刘明义
王宁
林伟杰
宋太纪
郭敬禹
韦宇
曹传钊
雷浩东
陈志强
陆泽宇
张鹏
刘海林
宋吉硕
裴杰
孙周婷
Original Assignee
中国华能集团清洁能源技术研究院有限公司
中国华能集团香港有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 中国华能集团香港有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024027192A1 publication Critical patent/WO2024027192A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present disclosure relates to the field of energy storage technology, and in particular, to a control system and method for a multi-branch battery system.
  • energy storage systems account for an increasing share in various fields such as microgrid energy storage, wind and photovoltaic field power smoothing, and grid regulation. They are an important part of systems such as smart grids, renewable energy systems, and energy Internet. important components and key technologies. At present, it is involved in many aspects such as peak shaving and frequency modulation of energy storage power stations, or the use of cascade batteries, emergency power supply situations, and some peak-shaving and valley-filling applications.
  • battery clusters are generally connected in parallel and directly connected to the process control system (PCS).
  • PCS process control system
  • This method requires high battery consistency. After running for a period of time, when the battery is inconsistent or the module fails, it will cause Inconsistencies between battery clusters cause the PCS system to operate at reduced power according to the low-power battery cluster, affecting the output power of the energy storage system.
  • more and more energy storage systems adopt the multi-branch integration method of AC confluence to achieve decoupling and detailed management between battery clusters to avoid direct parallel connection. The impact of battery inconsistency.
  • the first embodiment of the present disclosure provides a control system for a multi-branch battery system.
  • the system includes:
  • Each battery cluster controller BCMS is connected to the corresponding battery cluster.
  • Each battery cluster controller BCMS is connected to the corresponding battery cluster.
  • the battery cluster is also connected to the corresponding energy storage converter to form an energy storage unit, wherein,
  • the energy management system EMS controller is used to monitor the data of the energy storage subsystem in real time, and send a first message to the corresponding battery master controller unit BAMS according to the maximum charge and discharge capacity of each energy storage subsystem. Balanced distribution of scheduling instructions;
  • each battery master controller unit BAMS is connected to the energy management system EMS controller, and the second end of each battery master controller unit BAMS is connected to the corresponding plurality of energy storage converters.
  • the first end of the device is connected to the battery master controller unit BAMS, which is used to monitor the data of each corresponding energy storage unit in real time and upload the monitored data to the energy management system EMS controller;
  • the battery master controller unit BAMS is also used to perform redundant control on the failed energy storage unit when any number of the corresponding energy storage units fails, and performs redundant control on the failed energy storage unit according to the detected energy storage units.
  • the maximum charge and discharge capacity of the unit is adjusted for power balance to achieve balanced control of the remaining charge SOC between battery clusters;
  • each energy storage converter is connected to the corresponding battery cluster controller BCMS, and each battery cluster controller BCMS is connected to the third end of the corresponding battery master controller unit BAMS. .
  • all energy storage units corresponding to one battery master controller unit BAMS constitute one energy storage subsystem.
  • the energy management system EMS controller is also configured to: receive a second balanced distribution scheduling instruction sent by an external monitoring system, and send the second balanced distribution scheduling instruction to the corresponding battery master controller.
  • Unit BAMS Unit BAMS.
  • the battery master controller unit BAMS is further configured to perform the power balancing adjustment according to the received first balancing distribution scheduling instruction and/or the second balancing distribution scheduling instruction.
  • the system further includes: multiple energy storage converter controllers EMU, the first end of each energy storage converter controller EMU is connected to the corresponding battery master controller unit BAMS. The second end is connected, and the second end of each energy storage converter controller EMU is connected to the first end of the corresponding plurality of energy storage converters; the battery master controller unit BAMS is also used
  • the energy storage converter controller EMU performs modular independent control on each corresponding energy storage converter.
  • the battery master controller unit BAMS is specifically used to: when each battery cluster in the energy storage subsystem is in normal operation and the remaining charge SOC of each branch is balanced, the following formula is used: Calculate the power of each of the energy storage units:
  • p (i) is the power of the i-th energy storage unit
  • p z is the total power of the z-th energy storage subsystem
  • n is the number of energy storage units included in the z-th energy storage subsystem
  • i and z are positive integer
  • the power of each energy storage unit is calculated by the following formula:
  • k is the number of faulty battery clusters, i, z and k are positive integers;
  • the power of each energy storage unit is calculated according to the following formula:
  • w i is the weight of the i-th energy storage unit.
  • the battery master controller unit BAMS is specifically used to calculate the weight of the energy storage unit through the following formula:
  • w i is the weight of the i-th energy storage unit
  • n is the number of energy storage units
  • SOC i is the remaining charge SOC value of the i-th energy storage unit
  • i is the median of the remaining charge SOC value of each energy storage unit in the energy storage system
  • i and n are positive integers.
  • each energy storage subsystem support expansion
  • each energy storage subsystem includes an equal or unequal number of energy storage units
  • each energy storage subsystem Multiple types of battery clusters are supported to form a hybrid energy storage system.
  • the battery master controller unit BAMS is also used to: monitor the data of corresponding different types of battery clusters and independently control each corresponding battery cluster.
  • the second embodiment of the present invention proposes a control method for a multi-branch battery system, which is applied to the control system of the above-mentioned multi-branch battery system, including:
  • the energy management system EMS controller performs real-time monitoring of the data of the energy storage subsystem, and sends the first balanced distribution scheduling instruction to the corresponding battery master controller unit BAMS according to the maximum charge and discharge capacity of each energy storage subsystem;
  • the battery master controller unit BAMS When any number of energy storage units fails, the battery master controller unit BAMS performs redundant control on the failed energy storage units, and performs power balancing based on the detected maximum charge and discharge capabilities of each energy storage unit. Adjustment to achieve balanced control of the remaining charge SOC between battery clusters.
  • a third embodiment of the present invention provides an electronic device, including a control system for a multi-branch battery system as described in the above embodiment.
  • Figure 1 is a schematic structural diagram of a control system for a multi-branch battery system proposed by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a control system for a multi-branch battery system in some embodiments proposed by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the principle of energy storage unit weight calculation proposed by an embodiment of the present disclosure
  • Figure 4 is a flow chart of a control method for a multi-branch battery system proposed by an embodiment of the present disclosure
  • Figure 5 is a flow chart of a control method for a multi-branch battery system in some embodiments proposed by the embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a control system for a multi-branch battery system proposed by an embodiment of the present disclosure.
  • the system includes: an Energy Management System (EMS) controller 10, a plurality of A battery master controller unit (BAMS) 20 , a plurality of energy storage converters 30 and a plurality of battery cluster controllers (BCMS) 40 .
  • EMS Energy Management System
  • BAMS battery master controller unit
  • BCMS battery cluster controllers
  • each battery cluster controller BCMS40 is connected to the corresponding battery cluster, that is, a battery cluster controller is set for each battery cluster in the energy storage system as the slave control of the battery cluster. Since the battery cluster controller is fixedly corresponding to one battery Cluster, BCMS may be used to refer to battery cluster in the remainder of this disclosure.
  • the energy storage converter corresponding to the battery cluster is an energy storage converter in the same branch as the current battery cluster. As can be seen from Figure 1, the energy storage converter and battery cluster of the present disclosure have a multi-branch topology.
  • Each battery cluster is also connected to the corresponding energy storage converter 30 to form an energy storage unit 60 (as shown in Figure 2), which serves as a branch of the control system of the present disclosure.
  • x, n and m are labels used to distinguish the battery master controller unit, energy storage converter and battery cluster controller in different energy storage subsystems.
  • the energy management system EMS controller 10 (hereinafter referred to as EMS controller 10) is used to monitor the data of the energy storage subsystem in real time, and provide corresponding information to the corresponding energy storage system according to the maximum charge and discharge capacity of each energy storage subsystem.
  • the battery master controller unit BAMS20 (hereinafter referred to as BAMS controller 20) sends a first balanced distribution scheduling instruction.
  • the energy storage subsystem is a subsystem in the AC side parallel energy storage system, and each energy storage subsystem is connected in parallel to form the energy storage system targeted by the control system of the multi-branch battery system of the present disclosure.
  • all energy storage units corresponding to a battery master controller unit BAMS 20 can form an energy storage subsystem, that is, all energy storage units connected to the current BAMS controller 20 can be used as the energy storage units connected to the current BAMS controller. 20 corresponding energy storage subsystem.
  • the EMS controller 10 communicates with each BAMS controller 20 in real time, and performs real-time monitoring of each energy storage subsystem based on the received data.
  • the battery clusters in one or more energy storage subsystems
  • a balancing distribution scheduling instruction is sent to the corresponding battery master controller unit BAMS20 according to the maximum charge and discharge capacity of the energy storage subsystem.
  • the corresponding battery master controller unit BAMS20 is the one that needs to perform power balance adjustment when a fault occurs. BAMS controller corresponding to the energy storage subsystem.
  • the EMS controller 10 is also configured to receive the second balanced distribution scheduling instruction sent by the external monitoring system, and send the second balanced distribution scheduling instruction to the corresponding battery master controller unit BAMS20.
  • an external monitoring system is also preset to monitor the status of the multi-branch battery system in real time. When one or several battery clusters fail, the balanced distribution scheduling instructions are calculated through logical functions such as data statistics of the external monitoring system. And sent to the EMS controller 10, and then the EMS controller 10 sends it to the corresponding BAMS controller 20.
  • each battery master controller unit BAMS20 is connected to the energy management system EMS controller 10 , and the second end of each battery master controller unit BAMS20 is connected to the first ends of the corresponding plurality of energy storage converters 30 , the battery master controller unit BAMS20 is used to monitor the data of each corresponding energy storage unit in real time, and upload the monitored data to the energy management system EMS controller 10.
  • the energy storage subsystem corresponding to each BAMS controller 20 may include multiple energy storage units
  • the corresponding multiple energy storage converters 30 connected to the second end of the BAMS controller 20 are All energy storage converters 30 in the energy storage subsystem corresponding to the current BAMS controller 20.
  • the BAMS controller 20 is used to monitor the data of each energy storage unit in real time and upload it to the EMS controller 10, so that the EMS controller 10 summarizes the data of each energy storage unit in each energy storage subsystem to realize the monitoring of each energy storage subsystem.
  • System data is monitored in real time.
  • the data of each energy storage unit can be operating parameters such as the output power of the energy storage unit.
  • the operating status of each energy storage unit can be judged based on the size of the monitored data value. For example, when the output power of an energy storage unit is detected to be At zero time, it is determined that the battery cluster in the energy storage unit is faulty.
  • the battery master controller unit BAMS20 is also used to perform redundant control on the failed energy storage unit when any number of energy storage units in all corresponding energy storage units fails, and performs redundant control on the failed energy storage unit based on the detected maximum available energy storage unit.
  • the charge and discharge capabilities are adjusted by power balance to achieve balanced control of the remaining charge SOC between battery clusters.
  • all the corresponding energy storage units refer to each energy storage unit included in the energy storage subsystem corresponding to the current BAMS controller 20 . Any number means that the number of failed energy storage units may be one or more.
  • the BAMS controller 20 can perform single-branch modular control on equipment such as energy storage battery clusters and energy storage converters to ensure the power response speed of the system.
  • Single branch modular control means that the BAMS controller 20 has the ability to coordinate and control.
  • the BAMS controller 20 can independently execute a redundant control strategy for the failed branch and eliminate the fault in a timely manner. battery cluster to ensure the normal operation of other battery clusters, thereby improving the stability of system power support.
  • the energy of the remaining normally operating battery clusters is balanced, specifically based on the detected energy storage According to the maximum charge and discharge capacity of the unit, power balance adjustment is performed to achieve balanced control of the remaining charge SOC between battery clusters to ensure stable power output of the system.
  • the battery master controller unit BAMS20 is also configured to perform power balancing adjustment according to the received first balancing distribution scheduling instruction and/or the second balancing distribution scheduling instruction.
  • the control system of the multi-branch battery system of the present disclosure can be used when any number of energy storage units fails.
  • the BAMS controller 20 can be controlled to perform redundancy control and power balance adjustment in at least three ways, including: the EMS controller 10 performs power balance adjustment based on the monitored data of the energy storage subsystem, and sends the balance to the BAMS controller 20 Distribution scheduling instructions; EMS controller 10 receives the balanced distribution scheduling instructions sent by the external monitoring system and issues them to BAMS controller 20; BAMS controller 20 determines the fault of the energy storage unit based on the monitored data of each energy storage unit, and responds to the fault.
  • the energy storage units are redundantly controlled, and power balance adjustment is performed based on the detected maximum charge and discharge capabilities of each energy storage unit. It can be understood that when a battery cluster fails, the EMS controller 10 and the external monitoring system may simultaneously detect the failure of the battery cluster and issue a power equalization allocation scheduling instruction.
  • the BAMS controller 20 may simultaneously receive the first equalization allocation scheduling instruction and The second balanced allocation scheduling instruction, or the first balanced allocation scheduling instruction or the second balanced allocation scheduling is received separately. Furthermore, the BAMS controller 20 receives the first balanced allocation scheduling instruction and/or the second balanced allocation scheduling instruction, Power balance adjustment can be performed in multiple scenarios such as self-detection of the need for power balance allocation and scheduling.
  • control system of the multi-branch battery system of the present disclosure can perform power balance adjustment in a variety of ways, and can be applied to different working scenarios to more fully ensure the stability of the output power of the energy storage system when several battery clusters fail. sex.
  • the present disclosure also proposes a specific multi-branch battery system control system.
  • Figure 2 shows a specific control system proposed by the embodiment of the present disclosure.
  • the structural diagram of the control system of the multi-branch battery system is shown in Figure 2. Based on the control system shown in Figure 1, this system also includes: multiple energy storage converter controllers EMU50.
  • an energy storage converter controller EMU50 is provided in each energy storage subsystem, and the first end of each energy storage converter controller EMU50 is connected to the second end of the corresponding battery master controller unit BAMS20.
  • the second end of each energy storage converter controller EMU50 is connected to the first end of the corresponding multiple energy storage converters 30 , that is, the first end of the energy storage converter controller EMU50 is connected to the energy storage device where it is located.
  • the second end of the BAMS controller 20 in the subsystem is connected, and the second end is connected to the first end of each energy storage converter 30 in the energy storage subsystem where it is located.
  • the energy storage converter controller EMU30 can perform modular independent control of multiple energy storage converter modules AC ⁇ DC1 to AC ⁇ DCn connected to it to ensure the system power response speed, and then the BAMS controller After 20 is connected to the energy storage converter controller EMU50, the control instructions for the corresponding energy storage converter module 30 can be sent to the energy storage converter controller EMU30, and the corresponding energy storage converter module 30 can be controlled through the energy storage converter controller EMU50.
  • Each energy storage converter 30 (that is, in this energy storage subsystem) performs modular independent control.
  • the BAMS controller 20 when the BAMS controller 20 performs power balancing adjustment, it can evenly allocate power according to the health and maximum charge and discharge capabilities of each battery cluster BCMS1 to BCMSn, thereby realizing power balancing adjustment of a multi-branch battery system. SOC control between battery clusters.
  • the power equalization adjustment by the BAMS controller 20 can be divided into two aspects: equalizing power and equalizing power. That is, the equalizing power strategy of the present disclosure can first equalize 60% of the total power, Then 40% of the total power is balanced to ensure that the balanced power of each energy storage unit will not exceed the maximum power of the energy storage unit itself, thereby improving the practicality and reliability of power balancing adjustment implementation.
  • the BAMS controller 20 performs different operations according to the operating status of each battery cluster in the energy storage subsystem and whether the remaining charge SOC among the branches is balanced.
  • the battery master controller unit BAMS specifically used for:
  • p (i) is the power of the i-th energy storage unit
  • p z is the total power of the z-th energy storage subsystem
  • n is the number of energy storage units included in the z-th energy storage subsystem
  • i and z are Positive integer
  • p z can be any energy storage subsystem in the energy storage system
  • z is less than or equal to the number of energy storage subsystems included in the AC side parallel energy storage system
  • i is less than or equal to the energy storage system The number of energy storage units included in the subsystem.
  • the power of each energy storage unit is calculated by the following formula:
  • p (i) is the power of the i-th energy storage unit
  • p z is the total power of the z-th energy storage subsystem
  • n is the number of energy storage units included in the z-th energy storage subsystem
  • k is the faulty battery.
  • the number of clusters, i, z and k are positive integers.
  • the remaining branches refer to other branches in the energy storage subsystem except the branch where the faulty battery cluster is located. i is less than or equal to the energy storage system. The number of battery clusters included in the subsystem.
  • the power of each energy storage unit is calculated through the following formula:
  • p (i) is the power of the i-th energy storage unit
  • p z is the total power of the z-th energy storage subsystem
  • n is the number of energy storage units included in the z-th energy storage subsystem
  • k is the faulty battery.
  • w i is the weight of the i-th energy storage unit.
  • the BAMS controller 20 specifically calculates the weight of each energy storage unit through the following formula:
  • w i is the weight of the i-th energy storage unit
  • n is the number of energy storage units included in the z-th energy storage subsystem
  • SOC i is the remaining charge SOC value of the z-th energy storage unit
  • i, z and n are positive integers.
  • This disclosure first obtains the remaining charge SOC value of each energy storage unit in the energy storage subsystem, and then sorts the SOC values to determine the maximum, minimum, and lower quarter SOC values of each energy storage unit.
  • the remaining charge SOC value of the energy storage unit to be calculated is compared with each value determined above to determine the interval in which the current energy storage unit is located, and then the weight of the current energy storage unit is calculated according to the calculation method shown in the above formula.
  • w i in the figure is the weight of the i-th energy storage unit in the above formula.
  • the control system of the multi-branch battery system in the embodiment of the present disclosure monitors the data of the corresponding battery clusters BCMS1 to BCMSn in real time through the BAMS controller 20 and performs statistics.
  • the BAMS controller 20 can promptly remove the faulty battery cluster according to the system redundancy control strategy of the above embodiment to ensure the normal operation of other battery clusters.
  • the BAMS controller 20 performs balanced energy distribution to the remaining battery clusters according to the power balancing adjustment method in this embodiment to ensure stable system power output and improve system power support stability.
  • the execution power of the subsystem is determined to be 0.
  • the energy storage units of each energy storage subsystem support expansion, each energy storage subsystem includes an equal or unequal number of energy storage units, and each energy storage subsystem supports multiple types.
  • battery clusters to form a hybrid energy storage system system.
  • the battery master controller unit BAMS20 is also used to monitor data of corresponding different types of battery clusters and to independently control each corresponding battery cluster. That is, the energy storage units of each energy storage subsystem support expansion, and the number of energy storage units is not necessarily equal.
  • the battery types also support multiple types to form a hybrid energy storage system, and any BAMS controller 20 can realize the control of the location. In the energy storage analysis, the data of different types of BCMS are monitored, and the different types of battery clusters BCMS1 to BCMSn are independently controlled.
  • the control system of the multi-branch battery system can realize the power balance adjustment of the multi-branch battery system and realize the balanced control of the remaining charge SOC between each battery cluster.
  • the multi-branch battery When a system failure occurs, redundant control of the system can be achieved, and the faulty battery cluster can be removed in time to ensure the normal operation of other battery clusters. After the cluster is cut, the remaining battery clusters will perform balanced energy distribution to ensure the stability of the system output power. As a result, the system realizes power balance adjustment and redundancy control of multi-branch battery systems, improving the stability of system power support.
  • control system of the multi-branch battery system of the present disclosure in order to more clearly explain the working process of the control system of the multi-branch battery system of the present disclosure, the description will be described below in conjunction with its application in the control method of the multi-branch battery system. It should be noted that the multi-branch battery system The control method of the multi-branch battery system is implemented based on the control system of the above-mentioned multi-branch battery system.
  • control method of the multi-branch battery system includes steps S401 to S403.
  • Step S401 monitor the data of the energy storage subsystem in real time through the energy management system EMS controller, and send the first balanced allocation scheduling instruction to the corresponding battery master controller unit BAMS according to the maximum charge and discharge capacity of each energy storage subsystem.
  • Step S402 Monitor the data of each energy storage unit in real time through the battery master controller unit BAMS, and upload the monitored data to the energy management system EMS controller.
  • the battery master controller unit BAMS uploads the monitored data of the energy storage unit to the corresponding energy management system EMS controller to which it is connected.
  • Step S403 When any number of energy storage units fails, the battery master controller unit BAMS performs redundant control on the failed energy storage units, and performs power balancing adjustments based on the detected maximum charge and discharge capabilities of each energy storage unit. , to achieve balanced control of the remaining charge SOC between battery clusters.
  • the method includes steps S501 to S505.
  • Step S501 Count the number of faulty battery clusters.
  • the number of faults k of all battery clusters BCMS1 to BCMSn in the current energy storage subsystem is counted, where k is greater than or equal to 0.
  • Step S502 Perform system redundancy control in case of branch circuit failure.
  • Step S503 Determine whether the remaining normal energy storage units are balanced. If yes, execute step S504. If not, execute step S505.
  • Step S504 Control the normal energy storage units to share power equally, where the power after equalization of each normal energy storage unit is less than or equal to the maximum power of a single energy storage unit.
  • Step S505 control the balanced power of the normal energy storage unit, where the balanced power of each normal energy storage unit is less than Equal to the maximum power of a single energy storage unit.
  • control system embodiment of the multi-branch battery system is also applicable to the method of this embodiment.
  • the implementation principles are similar and will not be described again here.
  • the control method of the multi-branch battery system can realize the power balance adjustment of the multi-branch battery system and realize the balanced control of the remaining charge SOC between each battery cluster.
  • the multi-branch battery When a system failure occurs, redundant control of the system can be achieved, and the faulty battery cluster can be removed in time to ensure the normal operation of other battery clusters. After the cluster is cut, the remaining battery clusters will perform balanced energy distribution to ensure the stability of the system output power. As a result, the system realizes power balance adjustment and redundancy control of multi-branch battery systems, improving the stability of system power support.
  • FIG. 6 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 1000 may include the control system 2000 of the multi-branch battery system as described in the above embodiment.
  • the electronic device 1000 in the embodiment of the present disclosure may use the control system 2000 of the multi-branch battery system. Adjust the output power of the AC side parallel energy storage system to achieve power balance adjustment and redundancy control of the AC confluence battery system.

Abstract

本公开公开了一种多支路电池系统的控制系统和方法,该系统包括:能量管理系统控制器,用于对储能分系统的数据进行实时监测,向相应的电池总控制器单元发送调度指令;多个电池总控制器单元,每个总控制器单元的第一端与能量管理系统控制器连接,第二端与对应的多个储能变流器的第一端连接,用于监测对应的储能单元的数据并上传至能量管理系统控制器,对故障的储能单元进行冗余控制,并根据检测的各储能单元的最大可充放电能力进行功率均衡调节;每个储能变流器的第二端与对应的电池簇控制器连接,每个电池簇控制器与对应的电池总控制器单元的第三端连接。

Description

多支路电池系统的控制系统和方法
相关申请的交叉引用
本申请基于申请号为202210940362.3、申请日为2022年8月5日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及储能技术领域,尤其涉及一种多支路电池系统的控制系统和方法。
背景技术
随着新能源技术的发展,储能系统在微网储能、风光电场电能平滑和电网调节等各个领域中的配置占比越来越大,是智能电网、可再生能源系统和能源互联网等系统中的重要组成部分和关键技术。目前涉及应用在储能电站的调峰、调频,或者梯次电池的利用,应急供电的场合及一些削峰填谷的应用等多方面。
相关技术中,一般采用电池簇并联直接接入过程控制系统(PCS)的方式,该方式对电池一致性要求较高,在运行一段时间后,当电池出现不一致性或模组故障时,会导致电池簇间出现不一致,导致PCS系统按照低功率的电池簇降功率运行,影响了储能系统的输出功率。为满足电力系统不同层次的功率需求,充分发挥储能设备的性能优势,越来越多的储能系统采用交流汇流的多支路集成方式实现电池簇间解耦和细化管理,避免直接并联带来的电池不一致性的影响。
然而,多支路电池系统电池类型较多,由于电池的衰减特性不同可能导致各支路容量不一致,影响了储能系统输出功率的稳定性,即相关技术中的多支路电池系统存在因电池类型多、一致性差、状态评估难和安全风险高等因素导致的储能系统输出功率不稳定的问题。
发明内容
本公开第一方面实施例提出了一种多支路电池系统的控制系统,该系统包括:
能量管理系统EMS控制器、多个电池总控制器单元BAMS、多个储能变流器和多个电池簇控制器BCMS,每个所述电池簇控制器BCMS与对应的电池簇相连,每个电池簇还与对应的所述储能变流器相连组成一个储能单元,其中,
所述能量管理系统EMS控制器,用于对储能分系统的数据进行实时监测,根据各个所述储能分系统的最大可充放电能力向相应的所述电池总控制器单元BAMS发送第一均衡分配调度指令;
每个所述电池总控制器单元BAMS的第一端与所述能量管理系统EMS控制器连接,每个所述电池总控制器单元BAMS的第二端与对应的多个所述储能变流器的第一端连接,所述电池总控制器单元BAMS,用于实时监测对应的每个所述储能单元的数据,并将监测到的数据上传至所述能量管理系统EMS控制器;
所述电池总控制器单元BAMS,还用于在对应的全部储能单元中任意数量的储能单元故障时,对故障的储能单元进行冗余控制,并根据检测到的各个所述储能单元的最大可充放电能力进行功率均衡调节,以实现电池簇簇间剩余电荷SOC的均衡控制;
每个所述储能变流器的第二端与对应的所述电池簇控制器BCMS连接,每个所述电池簇控制器BCMS与对应的所述电池总控制器单元BAMS的第三端连接。
在一些实施例中,一个所述电池总控制器单元BAMS对应的全部储能单元构成一个所述储能分系统。
在一些实施例中,能量管理系统EMS控制器,还用于:接收外部监控系统发送的第二均衡分配调度指令,并将所述第二均衡分配调度指令发送给相应的所述电池总控制器单元BAMS。
在一些实施例中,电池总控制器单元BAMS,还用于:根据接收到的所述第一均衡分配调度指令和/或所述第二均衡分配调度指令进行所述功率均衡调节。
在一些实施例中,该系统还包括:多个储能变流器控制器EMU,每个所述储能变流器控制器EMU的第一端与对应的所述电池总控制器单元BAMS的第二端连接,每个所述储能变流器控制器EMU的第二端与对应的多个所述储能变流器的第一端连接;所述电池总控制器单元BAMS,还用于通过所述储能变流器控制器EMU对对应的每个所述储能变流器进行模块化独立控制。
在一些实施例中,电池总控制器单元BAMS具体用于:当所处的储能分系统内每个所述电池簇均处于正常运行状态并且每个支路的剩余电荷SOC均衡时,通过以下公式计算每个所述储能单元的功率:
其中,p(i)为第i个储能单元的功率,pz为第z个储能分系统的总功率,n为第z个储能分系统包括的储能单元数,i和z为正整数;
当所处的储能分系统内任意数量个所述电池簇发生故障并且剩余的各个支路的剩余电荷SOC均衡时,通过以下公式计算每个所述储能单元的功率:
其中,k为故障电池簇的数量,i、z和k为正整数;
当所处的储能分系统内各个所述电池簇间的剩余电荷SOC不均衡时,通过以下公式计算每个所述储能单元的功率:
其中,
其中,wi为第i个储能单元的权重。
在一些实施例中,电池总控制器单元BAMS具体用于:通过以下公式计算储能单元的权重:
其中,wi为第i个储能单元的权重,n为储能单元数,SOCi为第个储能单元的剩余电荷SOC值,为储能系统中各个储能单元的剩余电荷SOC值的下四分位数,为储能系统中各个储能单元的剩余电荷SOC值的中位数,,为储能系统中各个储能单元的剩余电荷SOC值的上四分位数,i和n为正整数。
在一些实施例中,每个所述储能分系统的储能单元支持扩展,每个所述储能分系统包括的储能单元的数量相等或不等,并且每个所述储能分系统支持多种类型的电池簇以组成混合储能系统,所述电池总控制器单元BAMS还用于:监测对应的不同种类的电池簇的数据,并对对应的每个电池簇进行独立控制。
本发明第二方面实施例提出了一种多支路电池系统的控制方法,应用于上述的多支路电池系统的控制系统,包括:
通过能量管理系统EMS控制器对储能分系统的数据进行实时监测,根据各个所述储能分系统的最大可充放电能力向相应的电池总控制器单元BAMS发送第一均衡分配调度指令;
通过所述电池总控制器单元BAMS实时监测每个储能单元的数据,并将监测到的数据上传至相应的能量管理系统EMS控制器;
在任意数量的储能单元故障时,通过所述电池总控制器单元BAMS对故障的储能单元进行冗余控制,并根据检测到的各个所述储能单元的最大可充放电能力进行功率均衡调节,以实现电池簇簇间剩余电荷SOC的均衡控制。
本发明第三方面实施例提出了一种电子设备,包括如上述实施例所述的多支路电池系统的控制系统。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提出的一种多支路电池系统的控制系统的结构示意图;
图2为本公开实施例提出的一种在一些实施例中多支路电池系统的控制系统的结构示意图;
图3为本公开实施例提出的一种储能单元权重计算的原理示意图;
图4为本公开实施例提出的一种多支路电池系统的控制方法的流程图;
图5为本公开实施例提出的一种在一些实施例中多支路电池系统的控制方法的流程图;
图6为本公开实施例提出的一种电子设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的多支路电池系统的控制系统。
图1为本公开实施例提出的一种多支路电池系统的控制系统的结构示意图,如图1所示,该系统包括:能量管理系统(Energy Management System,简称EMS)控制器10、多个电池总控制器单元(BAMS)20、多个储能变流器30和多个电池簇控制器(BCMS)40。
其中,每个电池簇控制器BCMS40与对应的电池簇相连,即为储能系统中的每个电池簇对应设置一个电池簇控制器作为电池簇的从控,由于电池簇控制器固定对应一个电池簇,在本公开的下文中可以用BCMS表示电池簇。电池簇对应的储能变流器是与当前电池簇处于同一支路的储能变流器,由图1可知,本公开的储能变流器和电池簇为多支路的拓扑结构,每个电池簇还与对应的储能变流器30相连组成一个储能单元60(如图2所示),作为本公开的控制系统的一条支路。图中x、n和m是用于区别不同储能分系统中的电池总控制器单元、储能变流器和电池簇控制器的标号。
在一些实施例中,能量管理系统EMS控制器10(下文用EMS控制器10表示),用于对储能分系统的数据进行实时监测,根据各个储能分系统的最大可充放电能力向相应的电池总控制器单元BAMS20(下文用BAMS控制器20表示)发送第一均衡分配调度指令。
其中,储能分系统是交流侧并联储能系统中的一个子系统,各个储能分系统并联构成本公开的多支路电池系统的控制系统针对的储能系统。在本公开一个实施例中,可以将一个电池总控制器单元BAMS20对应的全部储能单元构成一个储能分系统,即将与当前BAMS控制器20相连的全部储能单元,作为与当前BAMS控制器20对应的储能分系统。
在本公开实施例中,EMS控制器10与各个BAMS控制器20进行实时通讯,并根据接收到的数据对各个储能分系统进行实时监测,在一个或多个储能分系统中的电池簇发生故障时,根据该储能分系统的最大可充放电能力向相应的电池总控制器单元BAMS20发送均衡分配调度指令,相应的电池总控制器单元BAMS20即是发生了故障需要进行功率均衡调节的储能分系统对应的BAMS控制器。
在本公开一个实施例中,EMS控制器10,还用于接收外部监控系统发送的第二均衡分配调度指令,并将第二均衡分配调度指令发送给相应的电池总控制器单元BAMS20。在本实施例中,还预先设置一个外部监控系统实时监测多支路电池系统的状态,在一簇或几簇电池簇故障时,通过外部监控系统的数据统计等逻辑功能计算出均衡分配调度指令并发送给EMS控制器10,然后EMS控制器10再下发给相应的BAMS控制器20。
每个电池总控制器单元BAMS20的第一端与能量管理系统EMS控制器10连接,每个电池总控制器单元BAMS20的第二端与对应的多个储能变流器30的第一端连接,电池总控制器单元BAMS20,用于实时监测对应的每个储能单元的数据,并将监测到的数据上传至能量管理系统EMS控制器10。
在一些实施例中,由于每个BAMS控制器20对应的储能分系统可能包括多个储能单元,与BAMS控制器20的第二端连接的对应的多个储能变流器30即是当前BAMS控制器20对应的储能分系统中的全部储能变流器30。BAMS控制器20用于对各个储能单元的数据进行实时监测,并上传至EMS控制器10,使EMS控制器10汇总各储能分系统中各个储能单元的数据,实现对各储能分系统的数据进行实时监测。各个储能单元的数据可以是储能单元的输出功率等运行参数,根据监测到的数据值的大小可判断各个储能单元的运行状态,比如,当检测到某个储能单元的输出功率为零时,判断出该储能单元中的电池簇故障。
电池总控制器单元BAMS20,还用于在对应的全部储能单元中任意数量的储能单元故障时,对故障的储能单元进行冗余控制,并根据检测到的各个储能单元的最大可充放电能力进行功率均衡调节,以实现电池簇簇间剩余电荷SOC的均衡控制。
其中,对应的全部储能单元是指当前BAMS控制器20对应的储能分系统中包括的各个储能单元。任意数量是指发生故障的储能单元的数量可能为一个或多个。
在一些实施例中,BAMS控制器20可以对储能电池簇及储能变流器等设备进行单支路模块化控制,以保障系统的功率响应速度。单支路模块化控制是指BAMS控制器20具备协调控制能力,某一簇或几簇储能单元故障时,BAMS控制器20可以单独对故障的支路的执行冗余控制策略,及时切除故障的电池簇,保证其他电池簇正常运行,从而提高系统功率支撑的稳定性,并且,执行冗余控制策略后,对其余正常运行的电池簇进行能量均衡分配,具体是根据检测到的各储能单元的最大可充放电能力,进行功率均衡调节,实现电池簇簇间剩余电荷SOC的均衡控制,保证系统功率稳定输出。
在本公开一个实施例中,电池总控制器单元BAMS20,还用于根据接收到的第一均衡分配调度指令和/或第二均衡分配调度指令进行功率均衡调节。
综合上述描述可知,本公开的多支路电池系统的控制系统,在任意数量的储能单元故障 时,可以通过至少三种方式控制BAMS控制器20执行冗余控制和功率均衡调节,包括:EMS控制器10根据监测的储能分系统的数据判断进行功率均衡调节,向BAMS控制器20发送均衡分配调度指令;EMS控制器10接收外部监控系统发送的均衡分配调度指令并下发给BAMS控制器20;BAMS控制器20根据监测的每个储能单元的数据判断储能单元故障时,对故障的储能单元进行冗余控制,并根据检测到的各个储能单元的最大可充放电能力进行功率均衡调节。可以理解,当电池簇发生故障时,EMS控制器10和外部监控系统可能同时检测出电池簇发生故障并下发功率均衡分配调度指令,BAMS控制器20可能同时接收到第一均衡分配调度指令和第二均衡分配调度指令,或者单独接收到第一均衡分配调度指令或第二均衡分配调度,进而,BAMS控制器20在接收到的第一均衡分配调度指令和/或第二均衡分配调度指令,以及自行检测出需要进行功率均衡分配调度等多个场景下均可以进行功率均衡调节。
由此,本公开的多支路电池系统的控制系统可通过多种方式进行功率均衡调节,可适用于不同的工作场景,更加充分的保证在若干个电池簇故障时储能系统输出功率的稳定性。
为了便于BAMS控制器20对储能变流器30进行单支路控制,本公开还提出了一种具体的多支路电池系统的控制系统,图2为本公开实施例提出的一种具体的多支路电池系统的控制系统的结构示意图,如图2所示,该系统在图1所示的控制系统的基础上,还包括:多个储能变流器控制器EMU50。
其中,在每个储能分系统内设置一个储能变流器控制器EMU50,每个储能变流器控制器EMU50的第一端与对应的电池总控制器单元BAMS20的第二端连接,每个储能变流器控制器EMU50的第二端与对应的多个储能变流器30的第一端连接,即储能变流器控制器EMU50的第一端与其所处的储能分系统内的BAMS控制器20的第二端连接,第二端与其所处的储能分系统内的每个储能变流器30的第一端连接。
在本实施例中,储能变流器控制器EMU30可以对与其相连的多个储能变流器模块AC\DC1至AC\DCn进行模块化独立控制,保障系统功率响应速度,进而BAMS控制器20与储能变流器控制器EMU50相连后,可以向储能变流器控制器EMU30发送对相应的储能变流器模块30的控制指令,通过储能变流器控制器EMU50对对应的(即本储能分系统中的)每个储能变流器30进行模块化独立控制。
在本公开一个实施例中,BAMS控制器20进行功率均衡调节时,可以根据各电池簇BCMS1至BCMSn的健康程度及最大可充放电能力均衡分配功率,实现电池多支路系统的功率均衡调节及电池簇间的SOC控制。
作为其中一种可能的实现方式,BAMS控制器20进行功率均衡调节可以分为均分功率和均衡功率两个方面,即本公开的均衡功率策略可以为先将总功率的60%进行均分,然后将总功率的40%进行均衡,以保证各储能单元均衡后的功率不会超过储能单元本身的最大功率,提高功率均衡调节实施的实用性和可靠性。
在本实施例中,BAMS控制器20根据所处的储能分系统中每个电池簇的运行状态以及各个支路间的剩余电荷SOC是否均衡,执行不同的操作。具体实施时,电池总控制器单元 BAMS,具体用于:
当该BAMS控制器20所处的储能分系统内每个电池簇均处于正常运行状态并且每个支路的剩余电荷SOC均衡时,通过以下公式计算每个储能单元的功率:
其中,p(i)为第i个储能单元的功率,pz为第z个储能分系统的总功率,n为第z个储能分系统包括的储能单元数,i和z为正整数,可以理解,pz可以是储能系统中的任一个储能分系统,z小于或等于交流侧并联储能系统内包含的储能分系统的个数,i小于或等于该储能分系统内包含的储能单元的个数。
当该BAMS控制器20所处的储能分系统内任意数量个电池簇发生故障并且剩余的各个支路的剩余电荷SOC均衡时,通过以下公式计算每个储能单元的功率:
其中,p(i)为第i个储能单元的功率,pz为第z个储能分系统的总功率,n为第z个储能分系统包括的储能单元数,k为故障电池簇的数量,i、z和k为正整数,剩余的各个支路指的是,该储能分系统内除故障的电池簇所在支路之外的其他支路,i小于或等于该储能分系统内包含的电池簇的个数。
当该BAMS控制器20所处的储能分系统内各个电池簇间的剩余电荷SOC不均衡时,通过以下公式计算每个储能单元的功率:
其中,
其中,p(i)为第i个储能单元的功率,pz为第z个储能分系统的总功率,n为第z个储能分系统包括的储能单元数,k为故障电池簇的数量,wi为第i个储能单元的权重。由该公式可知,本公开先将该储能分系统内60%的储能总功率均分,再进行40%的储能总功率均衡控制,目的是防止储能单元SOC差距过大时导致SOC较低的储能单元所分配功率超过其自身最大功率,而造成该储能系统总功率达不到预定功率。
进一步的,在上述第三种场景下,BAMS控制器20在计算储能单元的权重时,具体是通过以下公式计算各个储能单元的权重:
其中,wi为第i个储能单元的权重,n为第z个储能分系统包括的储能单元数,SOCi为第个储能单元的剩余电荷SOC值,为储能系统中各个储能单元的剩余电荷SOC值的下四分位数,为储能系统中各个储能单元的剩余电荷SOC值的中位数,为储能系统中各个储能单元的剩余电荷SOC值的上四分位数,i、z和n为正整数。
为了便于理解本公开实施例计算储能单元的权重的方式,可参见图3所示的权重计算的原理示意图。本公开先获取该储能分系统内的每个储能单元的剩余电荷SOC值,然后对各个SOC值的大小进行排序,确定各个储能单元的SOC值的最大值、最小值、下四分位数、中位数和上四分位数,其中,四分位数(Quartile)也称四分位点,是指把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。进而,将待计算的储能单元的剩余电荷SOC值与上述确定的各个数值进行比较,确定当前储能单元所处的区间,进而根据上述公式中所示的计算方式计算当前储能单元的权重,图中的wi即为上述公式中的第i个储能单元的权重。
由此,本公开实施例的多支路电池系统的控制系统,通过BAMS控制器20实时监测所对应的电池簇BCMS1至BCMSn的数据并进行统计,当电池簇BCMS1至BCMSn中某一簇或几簇电池故障时,BAMS控制器20可以根据上述实施例的系统冗余控制策略,及时切除故障电池簇,保证其他电池簇正常运行。进一步的,该BAMS控制器20执行冗余控制策略后,按照本实施例中的功率均衡调节方式,对其余电池簇进行能量均衡分配,保证系统功率稳定输出,提高系统功率支撑稳定性。
进一步的,在本公开一个实施例中,当电池簇BCMS1至BCMSn中某一簇或几簇电池故障,导致系统最大充放电能力不满足系统额定输出功率时,确定该分系统执行功率为0。
在本公开一个实施例中,每个储能分系统的储能单元支持扩展,每个储能分系统包括的储能单元的数量相等或不等,并且每个储能分系统支持多种类型的电池簇以组成混合储能系 统。电池总控制器单元BAMS20还用于:监测对应的不同种类的电池簇的数据,并对对应的每个电池簇进行独立控制。即各储能分系统的储能单元支持扩展,且储能单元个数不一定相等,电池种类也支持多种,以组成混合储能系统,且任一BAMS控制器20可以实现对所处的储能分析中内不同种类的BCMS的数据进行监测、对各个不同类型的电池簇BCMS1至BCMSn独立进行控制。
综上所述,本公开实施例的多支路电池系统的控制系统,可以实现对电池多支路系统的功率均衡调节,实现各个电池簇间的剩余电荷SOC的均衡控制,当多支路电池系统发生故障时,可以实现系统的冗余控制,及时切除故障电池簇,保证其他电池簇正常运行,且在切簇后其余电池簇进行能量均衡分配,保证系统输出功率的稳定性。由此,该系统实现了多支路电池系统的功率均衡调节及冗余控制,提高了系统功率支撑的稳定性。
基于上述实施例,为了更加清楚的说明本公开的多支路电池系统的控制系统的工作过程,下面结合其应用在多支路电池系统的控制方法中进行描述,需要说明的是,该多支路电池系统的控制方法方法基于上述多支路电池系统的控制系统实现。
如图4所示,该多支路电池系统的控制方法包括步骤S401至步骤S403。
步骤S401,通过能量管理系统EMS控制器对储能分系统的数据进行实时监测,根据各个储能分系统的最大可充放电能力向相应的电池总控制器单元BAMS发送第一均衡分配调度指令。
步骤S402,通过电池总控制器单元BAMS实时监测每个储能单元的数据,并将监测到的数据上传至能量管理系统EMS控制器。
在一些实施例中,电池总控制器单元BAMS将监测到储能单元的数据上传至其所连接的相应的能量管理系统EMS控制器。
步骤S403,在任意数量的储能单元故障时,通过电池总控制器单元BAMS对故障的储能单元进行冗余控制,并根据检测到的各个储能单元的最大可充放电能力进行功率均衡调节,以实现电池簇簇间剩余电荷SOC的均衡控制。
基于上述多支路电池系统的控制方法,为了更加清楚的说明本公开的多支路电池系统进行功率均衡调节的具体实现过程,下面以一个具体的多支路电池系统的控制方法进行描述,如图5所示,该方法包括步骤S501至步骤S505。
步骤S501,统计故障的电池簇数量。
在本步骤中,统计当前储能分系统内全部电池簇BCMS1至BCMSn的故障数量k,其中,k大于或等于0。
步骤S502,进行支路故障系统冗余控制。
步骤S503,判断剩余的正常储能单元是否均衡,若是,则执行步骤S504,若否,则执行步骤S505。
步骤S504,控制正常储能单元均分功率,其中,每个正常储能单元均分后的功率小于等于单个储能单元最大功率。
步骤S505,控制正常储能单元均衡功率,其中,每个正常储能单元均衡后的功率小于 等于单个储能单元最大功率。
需要说明的是,上述对多支路电池系统的控制系统实施例的说明,也适用与本实施例的方法,实现原理类似,此处不再赘述。
综上所述,本公开实施例的多支路电池系统的控制方法,可以实现对电池多支路系统的功率均衡调节,实现各个电池簇间的剩余电荷SOC的均衡控制,当多支路电池系统发生故障时,可以实现系统的冗余控制,及时切除故障电池簇,保证其他电池簇正常运行,且在切簇后其余电池簇进行能量均衡分配,保证系统输出功率的稳定性。由此,该系统实现了多支路电池系统的功率均衡调节及冗余控制,提高了系统功率支撑的稳定性。
为了实现上述实施例,本发明实施例还提出一种电子设备。图6为本公开实施例提出的一种电子设备的结构示意图。
如图6所示,该电子设备1000可包括如上述实施例所述的多支路电池系统的控制系统2000,本公开实施例的电子设备1000,可以通过上述多支路电池系统的控制系统2000调节交流侧并联储能系统的输出功率,实现交流汇流电池系统功率均衡调节及冗余控制。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种多支路电池系统的控制系统,包括:能量管理系统EMS控制器、多个电池总控制器单元BAMS、多个储能变流器和多个电池簇控制器BCMS,每个所述电池簇控制器BCMS与对应的电池簇相连,每个电池簇还与对应的所述储能变流器相连组成一个储能单元,其中,
    所述能量管理系统EMS控制器,用于对储能分系统的数据进行实时监测,根据各个所述储能分系统的最大可充放电能力向相应的所述电池总控制器单元BAMS发送第一均衡分配调度指令;
    每个所述电池总控制器单元BAMS的第一端与所述能量管理系统EMS控制器连接,每个所述电池总控制器单元BAMS的第二端与对应的多个所述储能变流器的第一端连接,所述电池总控制器单元BAMS,用于实时监测对应的每个所述储能单元的数据,并将监测到的数据上传至所述能量管理系统EMS控制器;
    所述电池总控制器单元BAMS,还用于在对应的全部储能单元中任意数量的储能单元故障时,对故障的储能单元进行冗余控制,并根据检测到的各个所述储能单元的最大可充放电能力进行功率均衡调节,以实现电池簇簇间剩余电荷SOC的均衡控制;
    每个所述储能变流器的第二端与对应的所述电池簇控制器BCMS连接,每个所述电池簇控制器BCMS与对应的所述电池总控制器单元BAMS的第三端连接。
  2. 根据权利要求1所述的控制系统,其中,一个所述电池总控制器单元BAMS对应的全部储能单元构成一个所述储能分系统。
  3. 根据权利要求1所述的控制系统,其中,所述能量管理系统EMS控制器,还用于:
    接收外部监控系统发送的第二均衡分配调度指令,并将所述第二均衡分配调度指令发送给相应的所述电池总控制器单元BAMS。
  4. 根据权利要求3所述的控制系统,其中,所述电池总控制器单元BAMS,还用于:根据接收到的所述第一均衡分配调度指令和/或所述第二均衡分配调度指令进行所述功率均衡调节。
  5. 根据权利要求1所述的控制系统,其中,还包括:
    多个储能变流器控制器EMU,每个所述储能变流器控制器EMU的第一端与对应的所述电池总控制器单元BAMS的第二端连接,每个所述储能变流器控制器EMU的第二端与对应的多个所述储能变流器的第一端连接;
    所述电池总控制器单元BAMS,还用于通过所述储能变流器控制器EMU对对应的每个所述储能变流器进行模块化独立控制。
  6. 根据权利要求1所述的控制系统,其中,所述电池总控制器单元BAMS,具体用于:
    当所处的储能分系统内每个所述电池簇均处于正常运行状态并且每个支路的剩余电荷SOC均衡时,通过以下公式计算每个所述储能单元的功率:
    其中,p(i)为第i个储能单元的功率,pz为第z个储能分系统的总功率,n为第z个储能分系统包括的储能单元数,i和z为正整数;
    当所处的储能分系统内任意数量个所述电池簇发生故障并且剩余的各个支路的剩余电荷SOC均衡时,通过以下公式计算每个所述储能单元的功率:
    其中,p(i)为第i个储能单元的功率,pz为第z个储能分系统的总功率,n为第z个储能分系统包括的储能单元数,k为故障电池簇的数量,i、z和k为正整数;
    当所处的储能分系统内各个所述电池簇间的剩余电荷SOC不均衡时,通过以下公式计算每个所述储能单元的功率:
    其中,
    其中,p(i)为第i个储能单元的功率,pz为第z个储能分系统的总功率,n为第z个储能分系统包括的储能单元数,k为故障电池簇的数量,wi为第i个储能单元的权重。
  7. 根据权利要求6所述的控制系统,其中,所述电池总控制器单元BAMS,具体用于:
    通过以下公式计算储能单元的权重:
    其中,wi为第i个储能单元的权重,n为第z个储能分系统包括的储能单元数, SOCi为第个储能单元的剩余电荷SOC值,为储能系统中各个储能单元的剩余电荷SOC值的下四分位数,为储能系统中各个储能单元的剩余电荷SOC值的中位数,为储能系统中各个储能单元的剩余电荷SOC值的上四分位数,i、z和n为正整数。
  8. 根据权利要求1所述的控制系统,其中,每个所述储能分系统的储能单元支持扩展,每个所述储能分系统包括的储能单元的数量相等或不等,并且每个所述储能分系统支持多种类型的电池簇以组成混合储能系统,所述电池总控制器单元BAMS还用于:监测对应的不同种类的电池簇的数据,并对对应的每个电池簇进行独立控制。
  9. 一种多支路电池系统的控制方法,包括:
    通过能量管理系统EMS控制器对储能分系统的数据进行实时监测,根据各个所述储能分系统的最大可充放电能力向相应的电池总控制器单元BAMS发送第一均衡分配调度指令;
    通过所述电池总控制器单元BAMS实时监测每个储能单元的数据,并将监测到的数据上传至相应的能量管理系统EMS控制器;
    在任意数量的储能单元故障时,通过所述电池总控制器单元BAMS对故障的储能单元进行冗余控制,并根据检测到的各个所述储能单元的最大可充放电能力进行功率均衡调节,以实现电池簇簇间剩余电荷SOC的均衡控制。
  10. 一种电子设备,其中,包括如权利要求1-8中任一项所述的多支路电池系统的控制系统。
PCT/CN2023/087371 2022-08-05 2023-04-10 多支路电池系统的控制系统和方法 WO2024027192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210940362.3 2022-08-05
CN202210940362.3A CN115065085B (zh) 2022-08-05 2022-08-05 多支路电池系统的控制系统和方法

Publications (1)

Publication Number Publication Date
WO2024027192A1 true WO2024027192A1 (zh) 2024-02-08

Family

ID=83207469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087371 WO2024027192A1 (zh) 2022-08-05 2023-04-10 多支路电池系统的控制系统和方法

Country Status (2)

Country Link
CN (1) CN115065085B (zh)
WO (1) WO2024027192A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065085B (zh) * 2022-08-05 2022-11-04 中国华能集团清洁能源技术研究院有限公司 多支路电池系统的控制系统和方法
CN115864479B (zh) * 2023-02-23 2023-08-29 中国华能集团清洁能源技术研究院有限公司 一种储能单元系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100100252A1 (en) * 2008-10-21 2010-04-22 Avaya Inc. Centralized Energy Management in Distributed Systems
CN103227494A (zh) * 2013-05-17 2013-07-31 北京华电天仁电力控制技术有限公司 一种储能电池管理系统
CN108270230A (zh) * 2018-01-24 2018-07-10 深圳市科陆电子科技股份有限公司 一种分布式储能系统
CN111585333A (zh) * 2020-06-15 2020-08-25 阳光电源股份有限公司 一种能量控制方法和储能系统
CN112152285A (zh) * 2020-09-10 2020-12-29 力神动力电池系统有限公司 一种具有双供电保障机制的储能电池管理系统
CN114498824A (zh) * 2022-01-12 2022-05-13 国能信控互联技术有限公司 一种可持续储能电池充放电功率均衡分配方法及系统
CN115065085A (zh) * 2022-08-05 2022-09-16 中国华能集团清洁能源技术研究院有限公司 多支路电池系统的控制系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877370A (zh) * 2016-12-19 2017-06-20 蔚来汽车有限公司 储能集群控制系统及储能系统
CN110676525A (zh) * 2019-10-09 2020-01-10 国网冀北综合能源服务有限公司 用于储能电站的电池能量控制系统的电池能量控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100100252A1 (en) * 2008-10-21 2010-04-22 Avaya Inc. Centralized Energy Management in Distributed Systems
CN103227494A (zh) * 2013-05-17 2013-07-31 北京华电天仁电力控制技术有限公司 一种储能电池管理系统
CN108270230A (zh) * 2018-01-24 2018-07-10 深圳市科陆电子科技股份有限公司 一种分布式储能系统
CN111585333A (zh) * 2020-06-15 2020-08-25 阳光电源股份有限公司 一种能量控制方法和储能系统
CN112152285A (zh) * 2020-09-10 2020-12-29 力神动力电池系统有限公司 一种具有双供电保障机制的储能电池管理系统
CN114498824A (zh) * 2022-01-12 2022-05-13 国能信控互联技术有限公司 一种可持续储能电池充放电功率均衡分配方法及系统
CN115065085A (zh) * 2022-08-05 2022-09-16 中国华能集团清洁能源技术研究院有限公司 多支路电池系统的控制系统和方法

Also Published As

Publication number Publication date
CN115065085B (zh) 2022-11-04
CN115065085A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2024027192A1 (zh) 多支路电池系统的控制系统和方法
WO2023036344A1 (zh) 风储系统一次调频协调控制方法、系统、设备及存储介质
AU2021202731B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
KR101925076B1 (ko) 블록체인 기반으로 운영되는 ess 타워 운영 시스템 및 이를 이용한 초융합 전력망 자율운영방법
KR20220009850A (ko) 에너지 스토리지 배터리 구획을 위한 온도 제어 방법 및 에너지 스토리지 시스템을 위한 방전 제어 방법 및 에너지 스토리지 애플리케이션 시스템
CN110488199B (zh) 一种大容量电池储能电站电池系统告警响应方法
WO2014044007A1 (zh) 风电场动态电压自动控制系统
US11949273B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
JP6693545B2 (ja) 電力管理システム、蓄電池搭載機器、emsコントローラ及び電力管理サーバ
EP4303601A1 (en) Energy storage system control method and energy storage system
WO2024083027A1 (zh) 能量块并联通讯方法及装置
CN116345521B (zh) 一种储能电池阵列集群监控方法、系统及存储介质
CN113690978A (zh) 电池管理系统
KR20180047137A (ko) 에너지 저장 시스템 및 이를 포함하는 주파수 제어 시스템
CN112186822A (zh) 一种基于低压隔离电池单元的储能系统
KR20180062795A (ko) 마이크로 그리드 운영 시스템
CN116683485A (zh) 集群储能系统的调度方法、装置、电子设备及存储介质
CN115912423A (zh) 储能系统及储能系统的功率分配方法
CN112510775B (zh) 一种并联电池系统的控制方法、装置及电子设备
KR101734151B1 (ko) 송전선 과부하 해소를 위한 전력 계통 관리 방법
KR101734149B1 (ko) 에너지 저장 장치를 이용한 송전선 과부하 관리 방법
CN111541275A (zh) 基于分布式储能系统多参数动态调整柔性充放电控制系统
CN115276058B (zh) 一种综合储能系统的多机冗余高效控制方法
JP2020025379A (ja) 周波数制御システム
CN112086971B (zh) 一种电网紧急控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848904

Country of ref document: EP

Kind code of ref document: A1