WO2024026834A1 - 无线通信方法、终端设备以及网络设备 - Google Patents

无线通信方法、终端设备以及网络设备 Download PDF

Info

Publication number
WO2024026834A1
WO2024026834A1 PCT/CN2022/110561 CN2022110561W WO2024026834A1 WO 2024026834 A1 WO2024026834 A1 WO 2024026834A1 CN 2022110561 W CN2022110561 W CN 2022110561W WO 2024026834 A1 WO2024026834 A1 WO 2024026834A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheme
transmission
uplink information
sdm
hybrid
Prior art date
Application number
PCT/CN2022/110561
Other languages
English (en)
French (fr)
Inventor
刘哲
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/110561 priority Critical patent/WO2024026834A1/zh
Publication of WO2024026834A1 publication Critical patent/WO2024026834A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • Embodiments of the present application relate to the field of communications, and more specifically, to wireless communication methods, terminal devices, and network devices.
  • network equipment can configure the transmission scheme used by the terminal equipment in multiple schemes to the terminal equipment.
  • the terminal equipment adopts the transmission scheme configured by the network equipment and can send physical uplink shared channels to the network equipment based on multiple antenna panels (panels). (Physical Uplink Shared Channel, PUSCH) to improve the reliability of data transmission and reduce transmission delay.
  • PUSCH Physical Uplink Shared Channel
  • Embodiments of the present application provide a wireless communication method, terminal equipment and network equipment, which can improve system performance.
  • this application provides a wireless communication method, including:
  • the first information sent by the network device is sent to or received from the network device.
  • this application provides a wireless communication method, including:
  • the first information sent by the terminal device is sent to or received from the terminal device.
  • this application provides a wireless communication method, including:
  • the first hybrid scheme including a plurality of transmission schemes
  • the second information sent by the network device is sent to or received from the network device.
  • this application provides a wireless communication method, including:
  • the first hybrid scheme including a plurality of transmission schemes
  • second information sent by the terminal device is received or sent to the terminal device.
  • the present application provides a terminal device for executing the method in the first aspect, the third aspect or their respective implementations.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect, third aspect or respective implementations thereof.
  • the terminal device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the terminal device is a communication chip, the sending unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • this application provides a network device for executing the method in the above second aspect, fourth aspect or respective implementations thereof.
  • the network device includes a functional module for executing the method in the above-mentioned second aspect, fourth aspect or respective implementations thereof.
  • the network device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the network device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the network device is a communication chip, the receiving unit can be an input circuit or interface of the communication chip, and the sending unit can be an output circuit or interface of the communication chip.
  • this application provides a terminal device, including a processor, a transceiver and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory to execute the methods in the above-mentioned first aspect, third aspect or respective implementations thereof.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the transceiver includes a transmitter (transmitter) and a receiver (receiver).
  • this application provides a network device, including a processor, a transceiver, and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory to execute the methods in the above-mentioned second aspect, fourth aspect or respective implementations thereof.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the transceiver includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip for implementing any one of the above first to fourth aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes any one of the above-mentioned first to fourth aspects or their respective implementations. method in.
  • the present application provides a computer-readable storage medium for storing a computer program, the computer program causing the computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation thereof .
  • the present application provides a computer program product, including computer program instructions, which cause a computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation thereof.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to fourth aspects or the method in each implementation thereof.
  • receiving the first signaling, and determining the second transmission scheme of the first information according to the first transmission scheme configured by the first signaling and the number of at least one spatial parameter associated with the first information can Avoiding direct configuration of the second transmission scheme to the terminal device only through semi-static signaling or only dynamic signaling will help improve the reliability of data transmission, reduce data transmission delay, and ensure the balance of diversity gain, thereby improving system performance.
  • the terminal device can be supported to send or receive all the information to the network device according to multiple transmission schemes.
  • the second information sent by the network device can improve the reliability of data transmission, reduce data transmission delay and ensure the balance of diversity gain, thereby improving system performance.
  • Figure 1 is an example of a 5G communication system provided by an embodiment of this application.
  • Figure 2 is another example of the 5G communication system provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of uplink transmission by multiple TRPs provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the SDM solution provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the FDM solution provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the SFN solution provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of the TDM solution provided by the embodiment of the present application.
  • Figure 8 is a schematic flowchart of a wireless communication method on the terminal device side provided by an embodiment of the present application.
  • Figure 9 is another schematic flow chart of the wireless communication method on the terminal device side provided by the embodiment of the present application.
  • Figures 10 and 11 are examples of the mapping method for TCI states of the first hybrid solution provided by the embodiment of the present application.
  • Figures 12 to 15 are examples of the RV mapping method of the first hybrid solution provided by the embodiment of the present application.
  • Figure 16 is a schematic flowchart of a wireless communication method on the network device side provided by an embodiment of the present application.
  • Figure 17 is a schematic flowchart of a wireless communication method on the network device side provided by an embodiment of the present application.
  • Figure 18 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • Figure 20 is another schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Figure 21 is another schematic block diagram of a network device provided by an embodiment of the present application.
  • Figure 22 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 23 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • Figure 1 is an example diagram of a 5G communication system 100 according to an embodiment of the present application.
  • the communication system 100 may include a terminal device 110, a transmission and reception point (Transmission Reception Point, TRP) 121 and a TRP 122.
  • TRP 121 and TRP 122 can communicate with the terminal device 110 through the air interface respectively.
  • TRP 121 and TRP 122 can independently schedule a terminal device 110 for data transmission.
  • the terminal equipment 110 detects the PDCCH from TRP 121 and TRP 122 respectively in one time slot for scheduling multiple independent uplink data transmissions, and these independent uplink transmissions may happen to be scheduled in the same time slot.
  • TRP 121 and TRP 122 belong to the same cell, and the connection (backhaul) between TRP 121 and TRP 122 is ideal, that is, information can be exchanged quickly and dynamically.
  • TRP 121 and TRP 122 belong to the same cell, and the connection between TRP 121 and TRP 122 is non-ideal, that is, TRP 121 and TRP 122 cannot exchange information quickly and can only perform relatively slow data exchange.
  • TRP 121 and TRP 122 belong to different cells, and the connection between TRP 121 and TRP 122 is ideal.
  • TRP 121 and TRP 122 belong to different cells, and the connection between TRP 121 and TRP 122 is non-ideal.
  • the terminal device 110 can receive downlink information through multiple downlinks, where each downlink has Corresponding uplink information needs to be transmitted.
  • the uplink information contains at least one of the following signals: Acknowledgment/Non-Acknowledgement (ACK/NACK) corresponding to each downlink, Channel State Information (CSI) corresponding to each downlink. Waiting for reported information and uplink data. It can be seen that if the terminal device 110 also needs to send uplink information on uplinks corresponding to multiple downlinks, the complexity and power consumption of the terminal device will be too high.
  • TRP 121 or TRP 122 can be used to instruct the terminal device 110 on the uplink signal transmission mode to reduce the complexity and high power consumption of the terminal device.
  • the embodiment of the present application only takes the 5G communication system 100 as an example for illustrative description, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to any communication system in which multiple network devices can independently schedule a terminal for data transmission.
  • the application scenario example shown in Figure 2 can be correspondingly obtained. This scenario includes a terminal device 130 and a network device 140, where the terminal device 130 and the network device 140 There are multiple beams in between.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • General Packet Radio Service GPRS
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the network device 130 may refer to any entity on the network side that is used to send or receive signals.
  • it can be a user equipment in Machine Type Communications (MTC), a Base Transceiver Station (BTS) in GSM or CDMA, a Base Station (NodeB) in WCDMA, or an Evolutionary Node B (eNB or eNodeB) in LTE. ), base station equipment in 5G networks, etc.
  • MTC Machine Type Communications
  • BTS Base Transceiver Station
  • NodeB Base Station
  • eNB or eNodeB Evolutionary Node B
  • the terminal device 110 may be any terminal device.
  • the terminal device 110 can communicate with one or more core networks (Core Network) via a radio access network (Radio Access Network, RAN), which can also be called an access terminal, user equipment (User Equipment, UE), Subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communications device, user agent or user device.
  • Core Network Radio Access Network
  • RAN radio access network
  • UE user equipment
  • Subscriber unit Subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communications device, user agent or user device.
  • it can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), or a phone with wireless communication capabilities Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and terminal devices in 5G networks.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Handheld devices computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and terminal devices in 5G networks.
  • the concept of TCI status is proposed in the Rel.15 version, which is used for downlink spatial domain QCL (beam) indication and the transmission of time domain and frequency domain QCL information.
  • the quasi-co-located (QCL) relationship can be simply described as the relationship of large-scale fading from a source reference signal to a target reference signal.
  • the UE After the UE obtains the QCL relationship between the two source and target reference signals from the network (NW), it can use the receiving beam that previously received the source reference signal when receiving the target reference signal.
  • the TCI status indication mechanism is only applicable to downlink channels and signals, and has many limitations when applied in NR systems. Based on this, in order to provide a more unified uplink and downlink beam management mechanism for the NR system, based on the design of the Rel.15/16 TCI state, 3GPP Rel.17 proposed the concept of a unified TCI state to reduce the beam indication frequency and reduce the Resource consumption, thereby improving system performance.
  • the unified TCI state may include a joint TCI state, a separate DL TCI state, and a separate UL TCI state.
  • the joint TCI state applies to uplink and downlink channels and signals;
  • the separated DL TCI state only applies to downlink channels and signals;
  • the separated UL TCI state only applies to uplink channels and signals.
  • the downlink channel (partial PDCCH, PDSCH) and signal (aperiodic CSI-RS) use the same downlink transmission indicator beam, that is, separate DL TCI state or joint TCI state can be used.
  • the uplink channel (PUCCH, PUSCH) and signal (SRS) use the same uplink transmit beam, that is, separate UL TCI state or joint TCI state can be used.
  • unified TCI status may be dynamically updated and indicated using MAC CE and/or DCI.
  • the backhaul connection between TRPs can be ideal or non-ideal.
  • TRPs can quickly and dynamically exchange information, so the delay is small.
  • TRPs under a non-ideal backhaul connection Information can only be exchanged quasi-statically, so the delay is large. Due to the different spatial positions of different TRPs, the large-scale characteristics of the channel corresponding to each TRP have obvious differences. Therefore, when multiple TRPs are jointly transmitted, the QCL information corresponding to each TRP needs to be indicated separately.
  • the configuration and indication of TCI status include RRC configuration, MAC-CE activation and DCI indication.
  • RRC configures up to M TCI states for the terminal through PDSCH-Config, where the value of M is determined by the UE capability, and the maximum value of M can be 128.
  • MAC-CE activates up to 8 TCI status groups for mapping to the 3-bit TCI information field in DCI. Each TCI state group activated by MAC-CE can contain 1 or 2 TCI states. If the high-level parameter configuration DCI contains the TCI indication field, DCI format 1_1 can indicate a TCI status group from the TCI status group activated by the MAC. If the high-level parameter configuration DCI does not include the TCI indication field or the data is scheduled through DCI format 1_0, the DCI will not include the TCI status indication field.
  • a TCI state can contain the following configuration:
  • TCI status ID used to identify a TCI status
  • the TCI status may also include QCL information 2.
  • a QCL information includes the following information:
  • QCL type configuration which can be one of QCL type A, QCL typeB, QCL typeC or QCL typeD;
  • the QCL reference signal configuration including the cell ID where the reference signal is located, the Band Width Part (BWP) ID and the identification of the reference signal; the identification of the reference signal can be the Channel State Information Reference Signal (CSI-RS) ) resource ID or synchronization signal block (Synchronization Signal Block, SSB) index.
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal Block
  • the QCL type of at least one QCL information must be one of QCL typeA, QCL typeB, and QCL typeC, and the QCL type of the other QCL information must be QCL type D.
  • QCL type configuration is as follows:
  • 'QCL-TypeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • the channel propagation characteristics from multiple transmission points to users are relatively independent.
  • the use of repeated transmission of multiple TRPs in the air domain, time domain, and frequency domain can improve the reliability of data transmission and reduce transmission delays.
  • PDSCH transmissions of multiple TRPs can be scheduled through a single DCI, and multiple PDSCH transmissions can be frequency division multiplexing (FDM), spatial division multiplexing (Spatial Division Multiplexing, SDM) ), Time Division Multiplexing (TDM) and other methods.
  • FDM frequency division multiplexing
  • SDM spatial division multiplexing
  • TDM Time Division Multiplexing
  • PDSCH transmissions of multiple TRPs can be scheduled through multiple DCIs, and multiple PDSCH transmissions can be frequency division multiplexing (FDM) or spatial division multiplexing (Spatial Division Multiplexing) , SDM), time division multiplexing (Time Division Multiplexing, TDM) and other methods.
  • FDM frequency division multiplexing
  • SDM spatial division multiplexing
  • TDM Time Division Multiplexing
  • the PDSCH transmission scheme for multiple TRPs may specifically include the following two types:
  • the NW uses one DCI to schedule the transmission of two PDSCHs. This DCI comes from one of the two TRPs.
  • the NW can dynamically adjust which TRP to use.
  • the two PDSCHs are transmitted in different ways through two TRPs, such as SDM, FDM, TDM, etc. This method is suitable for ideal backhaul links between TRPs.
  • the scheduled DCI can contain 1 or 2 TCI states to indicate dynamic switching between sTRP and mTRP transmission.
  • each TCI state will be mapped To the specific resources transmitted by the TRP, such as code division multiplexing (CDM) group, demodulation reference signal (Demodulation Reference Signal, DMRS) port, number of transmission layers (layers), phase tracking Reference signal (Phase-tracking RS, PTRS) port, redundancy version (redundancy version, RV) version, etc. related to PDSCH scheduling.
  • CDM code division multiplexing
  • DMRS demodulation Reference Signal
  • layers layers
  • phase tracking Reference signal Phase tracking Reference signal
  • PTRS phase tracking Reference signal
  • redundancy version redundancy version
  • RV redundancy version
  • mDCI-mPDSCH Each TRP independently schedules the transmission of PDSCH by sending PDCCH.
  • the transmission of PDSCH can be completely overlapping, partially overlapping or completely non-overlapping in time and frequency resources. This method is suitable for scenarios where there is no ideal backhaul link between TRPs.
  • DCI indicates 2 TCI states, and the transmission scheme is configured through RRC signaling to be any one: FDM scheme A, FDM scheme B, TDM scheme A;
  • DCI indicates 2 TCI states, and the number of repetitions is configured through RRC signaling repetitionNumber, which is TDM solution B;
  • the network device can indicate 1 TCI state through DCI to dynamically switch to the non-repeating transmission scheme of R15; or, DCI indicates 2 TCI states, and DCI indicates 2 DMRS ports through the antenna ports field.
  • the CDM group it is the SDM solution;
  • the UE does not expect to be configured with the RRC parameter repetitionScheme.
  • the base station configures the RRC parameter repetitionNumber for PDSCH or the base station configures the repetitionScheme for PDSCH as 'fdmSchemeA' or 'fdmSchemeB' or 'tdmSchemeA', the UE does not expect to be configured with pdsch-AggregationFactor.
  • multiple TRPs can use different control channels to independently schedule multiple PDSCH transmissions of a terminal, or the same control channel can be used to schedule the transmission of different TRPs.
  • the same control channel can be used to schedule the transmission of different TRPs.
  • PDSCHs from two TRPs scheduled by a single DCI can be distinguished by TCI state, that is, the TCI information field in DCI can be mapped to two TCI states, so the network device can adopt two TCI states, through different The transmission scheme sends PDSCH to the terminal equipment.
  • PUSCH Physical Uplink Shared Channel
  • the PUSCH transmitted to two TRPs can be transmitted in a time division multiplexing (Time Division Multiplexing, TDM) manner.
  • the terminal equipment aligns the PUSCH transmitted on different TRPs with the corresponding TRP to perform simulated beamforming, that is, it can distinguish different PUSCHs through the spatial domain and provide uplink spectrum efficiency.
  • the network device may also schedule the terminal device to transmit PUSCH to two TRPs through a single DCI or multiple DCIs.
  • the multiple DCIs can be carried through different CORESETs.
  • multiple CORESET groups are configured on the network side, and each TRP is scheduled using the CORESET in its own CORESET group. That is, different TRPs can be distinguished by the CORESET group.
  • the network device can configure a CORESET group index for each CORESET, and different indexes correspond to different TRPs.
  • the TDM solution includes repetition type A (repetition type A) and repetition type B (repetition type B).
  • Repeat type A can also be called TAM scheme A
  • repetition type B can also be called TAM scheme B.
  • the configuration method is: configure either of the two schemes through RRC.
  • FIG. 3 is a schematic diagram of uplink transmission by multiple TRPs provided by an embodiment of the present application.
  • the terminal device if it is configured with multiple antenna panels and supports simultaneous transmission of uplink information to multiple TRPs on multiple antenna panels, it can simultaneously transmit uplink information on multiple antenna panels to multiple TRPs. Multiple uplink information to improve uplink spectrum efficiency; where the uplink transmission of multiple antenna panels can be scheduled through a single DCI or through multiple DCIs.
  • the terminal device can send PUSCH to TRP 1 on antenna panel 1 and at the same time send PUSCH to TRP 1 on antenna panel 2 to improve the spectrum efficiency of PUSCH; wherein, the PUSCH of antenna panel 1 and antenna panel 1 can be through Single DCI scheduling, such as DCI sent by TRP 1; antenna panel 1 and PUSCH of antenna panel 1 can also be scheduled through multiple DCI; such as DCI sent by TRP 1 and DCI sent by TRP 2.
  • the PUSCH associated with the first SRS resource set adopts the first set of RV patterns
  • the PUSCH associated with another SRS resource set adopts another set of RV patterns.
  • PUSCH 1 and PUSCH 2 are sent through SDM, and their transmission scheme may be called an SDM scheme.
  • the time-frequency resources corresponding to PUSCH 1 and PUSCH 2 are the same.
  • SDM solution A Different transport layer sets of the target uplink information are associated with different spatial parameters. For example, part of the transport layer of the target uplink information is associated with the first spatial parameter. This part of the transport layer is recorded as the first uplink information, and another part of the target uplink information is associated with the first spatial parameter. A part of the transmission layer is associated with the second spatial parameter, and the other part of the transmission layer is recorded as the second uplink information.
  • different transmission layer sets of a PUSCH can be sent to different TRPs through different antenna panels of the terminal equipment, for example, Different transmission layer sets sent to different TRPs through different antenna panels can be considered as different PUSCHs, or different PUSCH transmission opportunities.
  • part of the transmission layer of PUSCH sent through antenna panel 1 is associated with the first TCI state, marked as PUSCH 1
  • another part of the transmission layer of PUSCH sent through antenna panel 2 is associated with the second TCI state, marked as PUSCH 2.
  • PUSCH 1 and PUSCH 2 are different transport layers of the same transport block (TB).
  • PUSCH 1 is the layer 0 transport layer of the same TB
  • PUSCH 2 is the layer 1 transport layer of the same TB.
  • PUSCH 1 and PUSCH 2 can also be other transmission layers or other number of transmission layers of the same TB, and this application does not specifically limit this.
  • SDM solution B Repeated transmission of target uplink information (which can be different redundancy versions (Redundancy Version, RV)) is associated with different spatial parameters. That is, multiple uplink messages are repeated transmissions of target uplink messages associated with different spatial parameters.
  • target uplink information which can be different redundancy versions (Redundancy Version, RV)
  • the repeated transmission of a PUSCH is sent to different TRPs through different antenna panels of the terminal equipment.
  • the PUSCH sent through the antenna panel 1 of the terminal equipment is recorded as PUSCH 1
  • the PUSCH sent through the antenna panel 2 of the UE is recorded as PUSCH 2.
  • PUSCH 1 and PUSCH 2 are repeated transmissions of the same TB.
  • PUSCH 1 is RV 0 of the same TB
  • PUSCH 2 is RV 1 of the same TB.
  • PUSCH 1 and PUSCH 2 can also be other RVs of the same TB, and this application does not specifically limit this.
  • PUSCH 1 and PUSCH 2 are sent through FDM, and their transmission scheme may be called an FDM scheme.
  • the time domain resources of PUSCH 1 and PUSCH 2 are the same, and the frequency domain resources of PUSCH 1 and PUSCH 2 do not overlap.
  • FDM scheme A Different parts of the target uplink information are associated with different spatial parameters, that is, multiple uplink information are different parts of the target uplink information associated with different spatial parameters.
  • TB corresponds to a single PUSCH transmission opportunity, and each TCI state is related to non-overlapping frequency domain resource allocation.
  • PUSCH 1 and PUSCH 2 respectively correspond to the same PUSCH sending opportunity.
  • PUSCH 1 and PUSCH 2 are respectively associated with non-overlapping frequency domain resources. For example, as shown in Figure 5, the PUSCH transmission opportunity of PUSCH 1 is associated with frequency domain resource 0, and the PUSCH transmission opportunity of PUSCH 2 is associated with frequency domain resource 1, and frequency domain resource 0 and frequency domain resource 1 do not overlap.
  • FDM scheme B Repeated transmission of target uplink information (can be different RVs or the same RV) is associated with different spatial parameters. That is, multiple uplink messages are repeated transmissions of target uplink messages associated with different spatial parameters.
  • the same TB corresponds to two PUSCH transmission opportunities, and each TCI state is associated with a PUSCH transmission opportunity.
  • the two PUSCH transmission opportunities have non-overlapping frequency domain resources.
  • the repeated transmission of a PUSCH is sent to different TRPs through different antenna panels of the terminal equipment.
  • the PUSCH sent through the antenna panel 1 of the terminal equipment is recorded as PUSCH 1
  • the PUSCH sent through the antenna panel 2 of the UE is recorded as PUSCH 2.
  • PUSCH 1 and PUSCH 2 respectively correspond to 2 PUSCH sending opportunities.
  • the two PUSCH transmission opportunities of PUSCH 1 and PUSCH 2 are respectively associated with non-overlapping frequency domain resources. For example, as shown in Figure 5, the PUSCH transmission opportunity of PUSCH 1 is associated with frequency domain resource 0, and the PUSCH transmission opportunity of PUSCH 2 is associated with frequency domain resource 1, and frequency domain resource 0 and frequency domain resource 1 do not overlap.
  • PUSCH 1 and/or PUSCH 2 are transmitted through a single frequency network (Single Frequency Network, SFN), and its transmission scheme may be called an SFN scheme.
  • SFN Single Frequency Network
  • PUSCH 1 and PUSCH 2 have the same time domain resources, the same frequency domain resources, and the same DMRS ports.
  • repeated transmission of target uplink information is associated with different spatial parameters. That is, multiple uplink messages are repeated transmissions of target uplink messages associated with different spatial parameters.
  • the target uplink information as PUSCH as an example
  • the repeated transmission of a PUSCH is sent to different TRPs through different antenna panels of the terminal equipment.
  • the PUSCH sent through the antenna panel 1 of the terminal equipment is recorded as PUSCH 1.
  • the PUSCH sent through the antenna panel 2 of the terminal equipment is recorded as PUSCH 2.
  • PUSCH 1 and PUSCH 2 are sent in TDM mode, and their transmission scheme may be called a TDM scheme.
  • the frequency domain resources of PUSCH 1 and PUSCH 2 are the same, and the time domain resources of PUSCH 1 and PUSCH 2 do not overlap.
  • Repeat type A (slot-based PUSCH): Two sets of PUSCH (same or different RVs) are sent at the same symbol position in K consecutive time slots, and each set of PUSCH is associated with a TCI state.
  • the same TB corresponds to two PUSCH transmission opportunities, and each TCI state is associated with one PUSCH transmission opportunity.
  • the two PUSCH transmission opportunities have non-overlapping timings in the same symbol positions of K consecutive time slots. domain resources.
  • a repeated transmission of PUSCH is sent to different TRPs through different antenna panels of the terminal equipment.
  • a PUSCH transmitted through antenna panel 1 of the terminal equipment is recorded as PUSCH 1
  • the PUSCH sent through the antenna panel 2 of the UE is recorded as PUSCH 2.
  • PUSCH 1 and PUSCH 2 respectively correspond to 2 PUSCH sending opportunities.
  • the two PUSCH transmission opportunities of PUSCH 1 and PUSCH 2 are respectively associated with non-overlapping time domain resources.
  • the PUSCH transmission opportunity of PUSCH 1 is associated with time domain resource 0
  • the PUSCH transmission opportunity of PUSCH 2 is associated with time domain resource 1
  • time domain resource 0 and time domain resource 1 are K consecutive time slots.
  • Repeat type B (mini-slot-based PUSCH): Two sets of PUSCH (same or different RVs) are sent at K nominal sending opportunities, and each set of PUSCH is associated with a TCI state.
  • repetition type A the same TB corresponds to two PUSCH transmission opportunities, and each TCI state is associated with one PUSCH transmission opportunity.
  • the two PUSCH transmission opportunities have non-overlapping time domain resources in K nominal transmission opportunities.
  • a repeated transmission of PUSCH is sent to different TRPs through different antenna panels of the terminal equipment.
  • a PUSCH transmitted through antenna panel 1 of the terminal equipment is recorded as PUSCH 1
  • the PUSCH sent through the antenna panel 2 of the UE is recorded as PUSCH 2.
  • PUSCH 1 and PUSCH 2 respectively correspond to 2 PUSCH sending opportunities.
  • the two PUSCH transmission opportunities of PUSCH 1 and PUSCH 2 are respectively associated with non-overlapping time domain resources.
  • the PUSCH transmission opportunity of PUSCH 1 is associated with time domain resource 0
  • the PUSCH transmission opportunity of PUSCH 2 is associated with time domain resource 1
  • time domain resource 0 and time domain resource 1 are K times of nominal transmission opportunities. Overlapping time domain resources.
  • the terminal device can associate PUSCH 1 sent through antenna panel 1 with the first TCI state, and PUSCH 2 sent through antenna panel 2 with the second TCI state; among them, PUSCH 1 and PUSCH 2 are both one PUSCH Repeated transmissions, for example, can be the same RV or different RVs of this PUSCH; the time domain resources where PUSCH 1 and PUSCH 1 are located are K nominal transmission opportunities.
  • the SDM solution can only be indicated through the antenna port (antenna port) field in the downlink control information (Downlink Control Information, DCI) 2 Demodulation Reference Signal (DMRS) Code Division Multiplexing (CDM) groups (groups), and associate these two DMRS CDM groups with different TCI states to realize network equipment using SDM
  • DCI Downlink Control Information
  • DMRS Demodulation Reference Signal
  • CDM Code Division Multiplexing
  • embodiments of the present application provide a wireless communication method, terminal equipment and network equipment, which can improve system performance.
  • FIG 8 is a schematic flowchart of a wireless communication method 210 provided by an embodiment of the present application.
  • the wireless communication method 210 can be executed by a terminal device.
  • the method 210 may include:
  • S213 Send or receive the first information sent by the network device to the network device according to the second transmission scheme.
  • receiving the first signaling, and determining the second transmission scheme of the first information according to the first transmission scheme configured by the first signaling and the number of at least one spatial parameter associated with the first information can Avoiding direct configuration of the second transmission scheme to the terminal device only through semi-static signaling or only dynamic signaling will help improve the reliability of data transmission, reduce data transmission delay, and ensure the balance of diversity gain, thereby improving system performance.
  • the first signaling is used to semi-statically configure the first transmission scheme.
  • the first signaling may be semi-static signaling, which includes but is not limited to Radio Resource Control (RRC) signaling and Media Access Control (MAC) control.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • CE Control Element
  • the first information may be uplink information or downlink information.
  • the uplink information can also be equivalently replaced by the uplink channel, and the downlink information can be equivalently replaced by the downlink channel.
  • the uplink channel may include a physical random access channel (Physical Random Access Channel, PRACH), a physical uplink control channel (Physical Uplink Control channel, PUCCH), a physical uplink shared channel (Physical Uplink Shared channel, PUSCH), etc.
  • the uplink reference signal may include uplink demodulation reference signal (Demodulation Reference Signal, DMRS), sounding reference signal (Sounding Reference Signal, SRS), phase tracking reference signal (PT-RS), etc.
  • uplink DMRS can be used for uplink channel demodulation
  • SRS can be used for uplink channel measurement, uplink time-frequency synchronization or phase tracking
  • PT-RS can also be used for uplink channel measurement, uplink time-frequency synchronization or phase tracking.
  • the embodiments of this application may include uplink physical channels or uplink reference signals with the same names as the above but different functions, or may include uplink physical channels or uplink reference signals with different names but the same functions as the above. This application does not refer to this. Not limited.
  • the spatial parameters include at least one of the following:
  • Transmission configuration indication (TCI) status information is a logical entity used by the terminal device for transmission, and the transmitting beams and/or receiving beams of the antennas on different antenna panels can be adjusted independently.
  • the antenna panel information may include an antenna panel identification (ID) or index.
  • ID antenna panel identification
  • index index
  • TRP information may include a TRP ID or index.
  • the CORESET group information may include the ID or index of the CORESET group.
  • TCI state information may include unified TCI state (unified TCI state) or uplink TCI state (UL TCI state), or joint TCI state (joint TCI state).
  • unified TCI state unified TCI state
  • UL TCI state uplink TCI state
  • joint TCI state joint TCI state
  • the reference signal set information may be Synchronization Signal Block (SSB) resource set information or Channel State Information Reference Signal (Channel State Information Reference Signal, CSI-RS) resource set information or SRS resource set information.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • the reference signal set information may include an index of the reference signal set, such as an index of an SSB set, an index of a CSI-RS resource, or an index of an SRS resource.
  • the reference signal information may include SSB resource information, CSI-RS resource information or SRS resource information.
  • the reference signal information may be an index of SRS resources, SSB resources or CSI-RS resources.
  • beam information may include beam ID or index.
  • the beam may also be called a spatial domain transmission filter (Spatial domain transmission filter or Spatial domain filter for transmission), or a spatial domain reception filter (Spatial domain reception filter or Spatial domain filter for reception) or Spatial Rx parameter.
  • a spatial domain transmission filter Spatial domain transmission filter or Spatial domain filter for transmission
  • a spatial domain reception filter Spatial domain reception filter or Spatial domain filter for reception
  • capability set information may include one or more parameters.
  • the capability set information may be a capability set supported by the terminal device or reference signal information associated with a capability set supported by the terminal device.
  • the capability set information includes at least one of the following but is not limited to:
  • HARQ Hybrid Automatic Repeat Request
  • PDSCH Physical Downlink Shared Channel
  • first TCI state and the second TCI state involved in this application are only examples of the at least one spatial parameter and should not be understood as a limitation of this application.
  • first TCI The state and the second TCI state can also be replaced by other spatial parameters.
  • first TCI state and the second TCI state can also be replaced by the first CORESET group and the second CORESET group respectively.
  • the first signaling is used to indicate the first transmission scheme among candidate transmission schemes.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme , repetition type A, repetition type B; or, the candidate transmission scheme includes at least one of the following schemes: FDM scheme, SDM scheme, time division multiplexing TDM scheme, and SFN scheme.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme, repetitive
  • the first signaling is RRC signaling
  • the structure of the first signaling may be: repetitionScheme-r18 ENUMERATED ⁇ fdmSchemeA, fdmSchemeB, repetitionTypeA, repetitionTypeB, sdmSchemeA, sdmSchemeB, sfnScheme ⁇ .
  • the candidate transmission scheme further includes at least one of the following: a hybrid scheme of an FDM scheme and a TDM scheme, a hybrid scheme of an SDM scheme and a TDM scheme, a hybrid scheme of an SFN scheme and a TDM scheme; or, The candidate transmission scheme also includes at least one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, FDM scheme B Mixed scheme with repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B scheme, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • the candidate transmission scheme may also be a combination of other transmission schemes, which is not specifically limited in the embodiments of the present application.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme, repetitive Type A, repetition type B, FDM scheme, SDM scheme, time division multiplexing TDM scheme, SFN scheme.
  • the candidate transmission scheme includes at least one of the following: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme, repetition type A.
  • Repetition type B hybrid scheme of FDM scheme A and repetition type A, hybrid scheme of FDM scheme A and repetition type B.
  • the candidate transmission scheme includes at least one of the following: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme, repetition type A.
  • Repetition type B mixed scheme of FDM scheme B and repetition type A, mixed scheme of FDM scheme B and repetition type B, mixed scheme of SDM scheme A and repetition type A, mixed scheme of SDM scheme A and repetition type B, A hybrid scheme of SDM scheme B and repetition type A, a hybrid scheme of SDM scheme B and repetition type B, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • the candidate transmission scheme includes at least one of the following: FDM scheme, SDM scheme, time division multiplexing TDM scheme, SFN scheme, hybrid scheme of FDM scheme A and repetition type A, FDM scheme A and repetition type B hybrid solution.
  • the candidate transmission scheme includes at least one of the following: FDM scheme, SDM scheme, time division multiplexing TDM scheme, SFN scheme, hybrid scheme of FDM scheme B and repetition type A, FDM scheme B and repetition type B Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B, SFN scheme and a hybrid scheme of repetition type A, a SFN scheme and a hybrid scheme of repetition type B.
  • different sub-signalings in the first signaling are used to configure different transmission schemes.
  • different sub-signalings in the first signaling are used to configure different transmission schemes in the candidate transmission schemes.
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • FDM scheme SDM scheme, time division multiplexing TDM scheme, SFN scheme.
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • FDM scheme SDM scheme, time division multiplexing TDM scheme, SFN scheme, hybrid scheme of FDM scheme A and repetition type A, hybrid scheme of FDM scheme A and repetition type B.
  • the following transmission scheme can be configured through different sub-signaling:
  • FDM scheme SDM scheme, time division multiplexing TDM scheme, SFN scheme, hybrid scheme of FDM scheme B and repetition type A, hybrid scheme of FDM scheme B and repetition type B, hybrid scheme of SDM scheme A and repetition type A, SDM scheme Mixed scheme of A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B, Mixed scheme of SFN scheme and repetition type A, Mixed scheme of SFN scheme and repetition type B .
  • the sub-signaling in the first signaling is also RRC signaling, which means that different transmission schemes can be configured through different RRC signaling.
  • the first signaling may also be other signaling, which is not specifically limited in this application.
  • the first signaling includes sub-signaling for configuring one of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the first signaling includes sub-signaling used to configure one of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the five transmission schemes of FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme correspond to five different sub-signalings, and the first signaling includes among these five sub-signalings.
  • One sub-signaling; or, the three transmission schemes of FDM scheme, SDM scheme, and SFN scheme correspond to three different sub-signalings, and the first signaling includes one of the three sub-signalings.
  • the first signaling is not used to simultaneously configure at least two of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme; or, the first signaling Signaling is not used to simultaneously configure at least two of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the terminal device does not expect or do not want the first signaling to be used to configure at least two of the following transmission schemes at the same time: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the first signaling is not used to simultaneously configure at least two of the following transmission schemes: FDM scheme, SDM scheme, and SFN scheme.
  • the first signaling is not used to simultaneously configure the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme, FDM scheme, SDM scheme, SFN plan.
  • the S212 may include:
  • the second transmission scheme is determined according to the first transmission scheme.
  • the S212 may include:
  • the first transmission scheme is the FDM scheme
  • the first transmission scheme is the SDM scheme
  • the first transmission scheme is a TDM scheme
  • the first transmission scheme is FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme, repetition type A or repetition type B, then the first transmission scheme is determined as the second transmission plan;
  • the second signaling is used to indicate FDM scheme A or FDM scheme B
  • the third signaling is used to indicate SDM scheme A or SDM scheme B
  • the fourth signaling is used to indicate repetition type A or repetition. Type B.
  • the second signaling includes but is not limited to: RRC signaling or MAC CE or DCI.
  • the second signaling may be RRC signaling, and its signaling structure may be implemented as:
  • the second signaling may be RV indication information sent by the network device.
  • RV indication information sent by the network device.
  • FDM scheme A only a single RV is applied, and for FDM scheme B, different RVs are applied.
  • FDM scheme A can be determined as the second transmission scheme. If the first transmission scheme is an FDM scheme and the RVs indicated by the RV indication information are multiple RVs, then FDM scheme B may be determined as the second transmission scheme.
  • the third signaling includes but is not limited to: RRC signaling or MAC CE or DCI.
  • the third signaling may be RRC signaling, and its signaling structure may be implemented as:
  • the third signaling may be RV indication information sent by the network device.
  • RV indication information sent by the network device.
  • SDM solution A only a single RV is applied, and for SDM solution B, different RVs are applied.
  • SDM scheme A can be determined as the second transmission scheme. If the first transmission scheme is an SDM scheme and the RVs indicated by the RV indication information are multiple RVs, then SDM scheme B may be determined as the second transmission scheme.
  • the fourth signaling includes but is not limited to: RRC signaling or MAC CE or DCI.
  • the fourth signaling may be RRC signaling, and its signaling structure may be implemented as:
  • TDMscheme-r18 ENUMERATED ⁇ tdmSchemeA,tdmSchemeB ⁇ .
  • the first preset value is 2.
  • the number of the at least one spatial parameter being 2 includes but is not limited to any of the following situations:
  • the number of TCI states is 2;
  • the number of SRS resource sets is 2;
  • the number of SRS resource sets is 2, and each SRS resource set is associated with a TCI state.
  • the at least one spatial parameter may be indicated by DCI or MAC CE.
  • the number of TCI states is 2, including: the number of joint TCI states or UL TCI states indicated in the DCI is 2.
  • the number of joint TCI states or UL TCI states indicated by the Transmission Configuration Indication field in DCI formats 1_1 or 1_2, 0_1 or 0_2 is 2.
  • the number of TCI states is 2, including: the number of joint TCI states or UL TCI states activated by MAC CE is 2.
  • the number of SRS resource sets is 2, including: the status of the SRS resource set indicator (SRS resource set indicator) field is '10' or '11'.
  • the SRS resource set indicator (SRS resource set indicator) field can be a field in DCI format 0_1 (DCI format 0_1) or 0_2.
  • the first preset value may be any integer greater than 1, which is not specifically limited in the embodiments of the present application.
  • the second transmission scheme is to use the second preset value spatial parameters to transmit on at least one time domain transmission opportunity. the first information.
  • the second transmission scheme is to transmit in multiple time domains using the second preset value spatial parameters.
  • Opportunity to repeatedly send the first information or, if the first transmission scheme is the FDM scheme, SFN scheme, SDM scheme, FDM scheme A, FDM scheme B, SDM scheme A or SDM scheme B, then the second transmission scheme is The first information is sent in a time domain sending opportunity using the second preset value spatial parameters.
  • the second preset spatial parameter is a predefined spatial parameter or a default spatial parameter.
  • the second preset space parameter is the space parameter with the smallest index, or the same space parameter as the PUSCH scheduled by the RAR UL grant, or the space parameter that is quasi-co-located with the SSB in the initial access stage.
  • the time domain resource of the first information is RRC (for example, the network device configures the time domain resource for the first information).
  • RRC radio resource control
  • DCI for example, the TDRA field
  • the frequency domain resource of the first information is RRC (for example, the network device configures the RRC of the frequency domain resource for the first information) and/or DCI (for example, the FDRA field) Indicated frequency domain resources.
  • the second preset value is 1.
  • the number of the at least one spatial parameter being 1 includes but is not limited to any of the following situations:
  • the number of TCI states is 1;
  • the number of SRS resource sets is 1;
  • the number of SRS resource sets is 1 and is associated with one TCI state.
  • the at least one spatial parameter may be indicated by DCI or MAC CE.
  • the number of TCI states is 1, including: the number of joint TCI states or UL TCI states indicated in the DCI is 1.
  • the number of joint TCI states or UL TCI states indicated by the Transmission Configuration Indication field in DCI formats 1_1 or 1_2, 0_1 or 0_2 is 1.
  • the number of TCI states is 1, including: the number of joint TCI states or UL TCI states activated by MAC CE is 1.
  • the number of SRS resource sets is 1, including: the status of the SRS resource set indicator (SRS resource set indicator) field is 00' or '01'.
  • the SRS resource set indicator (SRS resource set indicator) field may be a field in DCI format 0_1 or 0_2.
  • the second preset value may be any integer that is not equal to the first preset value, which is not specifically limited in this embodiment of the present application.
  • the terminal device can determine whether to send or receive the first information, that is, the at least one spatial parameter based on the indicated transmission scheme based on multiple TRPs.
  • the terminal device can use the second preset value spatial parameters to repeatedly send the first information in multiple time domain transmission opportunities or use the second preset value spatial parameters to send the first information in multiple time domain transmission opportunities.
  • Sending the first information in a time domain transmission opportunity can avoid directly configuring the second transmission scheme to the terminal device only through semi-static signaling or only through dynamic signaling, which is beneficial to improving the reliability of data transmission, reducing data transmission delay and ensuring Diversity gain balance, thereby improving system performance.
  • FIG 9 is a schematic flowchart of a wireless communication method 310 provided by an embodiment of the present application.
  • the wireless communication method 310 can be executed by a terminal device.
  • the method 310 may include:
  • S312 Send or receive the second information sent by the network device to the network device according to the first hybrid solution.
  • the terminal device can be supported to send or receive the network device according to multiple transmission schemes.
  • the second information sent by the device can improve the reliability of data transmission, reduce data transmission delay and ensure the balance of diversity gain, thereby improving system performance.
  • the first hybrid scheme including multiple transmission schemes may be understood to mean that the first hybrid scheme is a combination of multiple transmission schemes, or may be understood to mean that the first hybrid scheme has characteristics of multiple transmission schemes.
  • the second information may be uplink information or downlink information.
  • the uplink information can also be equivalently replaced by the uplink channel, and the downlink information can be equivalently replaced by the downlink channel.
  • the uplink channel may include a physical random access channel (Physical Random Access Channel, PRACH), a physical uplink control channel (Physical Uplink Control channel, PUCCH), a physical uplink shared channel (Physical Uplink Shared channel, PUSCH), etc.
  • the uplink reference signal may include uplink demodulation reference signal (Demodulation Reference Signal, DMRS), sounding reference signal (Sounding Reference Signal, SRS), phase tracking reference signal (PT-RS), etc.
  • uplink DMRS can be used for uplink channel demodulation
  • SRS can be used for uplink channel measurement, uplink time-frequency synchronization or phase tracking
  • PT-RS can also be used for uplink channel measurement, uplink time-frequency synchronization or phase tracking.
  • the embodiments of this application may include uplink physical channels or uplink reference signals with the same names as the above but different functions, or may include uplink physical channels or uplink reference signals with different names but the same functions as the above. This application does not refer to this. Not limited.
  • the first hybrid scheme is any one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, FDM scheme B and repetition type A Mixed scheme of FDM scheme B and repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, SDM scheme A hybrid scheme of B and repetition type B, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • the first hybrid scheme may be a scheme in which at least one of the FDM scheme, the SDM scheme, and the SFN scheme is mixed with the TDM scheme.
  • the first hybrid scheme may be a combination of frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme, repetition type A, repetition type A solution that combines at least one of B with the TDM solution.
  • the S311 may include:
  • the transmission scheme of the fifth signaling configuration is determined as the first hybrid scheme, or the first hybrid scheme is determined according to the transmission scheme of the fifth signaling configuration.
  • the fifth signaling may be semi-static signaling, which includes but is not limited to Radio Resource Control (RRC) signaling and Media Access Control (MAC). )Control Element (CE) signaling.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • CE Control Element
  • the S311 may include:
  • the transmission scheme of the fifth signaling configuration is a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, or a hybrid scheme of FDM scheme B and repetition.
  • the transmission scheme of the fifth signaling configuration is determined as the first hybrid scheme;
  • the transmission scheme of the fifth signaling configuration is the FDM scheme, or the transmission scheme of the fifth signaling configuration is a hybrid scheme of the FDM scheme and the TDM scheme, then the transmission scheme indicated by the second signaling and the fourth signaling scheme are Let the mixed scheme of the indicated transmission scheme be determined as the first mixed scheme; or,
  • the transmission scheme of the fifth signaling configuration is the SDM scheme, or the transmission scheme of the fifth signaling configuration is a hybrid scheme of the SDM scheme and the TDM scheme, then the transmission scheme indicated by the third signaling and the third signaling scheme are combined.
  • a hybrid scheme of the transmission schemes indicated by the four signalings is determined as the first hybrid scheme; or,
  • the transmission scheme of the fifth signaling configuration is FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B or SFN scheme
  • the transmission scheme of the fifth signaling configuration and the fourth signaling indicated The mixed scheme of the transmission scheme is determined as the first mixed scheme; or,
  • the second signaling is used to indicate FDM scheme A or FDM scheme B
  • the third signaling is used to indicate SDM scheme A or SDM scheme B
  • the fourth signaling is used to indicate repetition type A or repetition. Type B.
  • the second signaling includes but is not limited to: RRC signaling or MAC CE or DCI.
  • the second signaling may be RRC signaling, and its signaling structure may be implemented as:
  • the second signaling may be RV indication information sent by the network device.
  • RV indication information sent by the network device.
  • FDM scheme A only a single RV is applied, and for FDM scheme B, different RVs are applied.
  • FDM scheme A can be determined as the transmission scheme indicated by the second signaling
  • the FDM scheme B may be determined as the transmission scheme indicated by the second signaling.
  • the third signaling includes but is not limited to: RRC signaling or MAC CE or DCI.
  • the third signaling may be RRC signaling, and its signaling structure may be implemented as:
  • the third signaling may be RV indication information sent by the network device.
  • RV indication information sent by the network device.
  • SDM solution A only a single RV is applied, and for SDM solution B, different RVs are applied.
  • SDM scheme A can be determined as the transmission scheme indicated by the third signaling. If the The first transmission scheme is the SDM scheme and the RVs indicated by the RV indication information are multiple RVs, then SDM scheme B may be determined as the transmission scheme indicated by the third signaling.
  • the fourth signaling includes but is not limited to: RRC signaling or MAC CE or DCI.
  • the fourth signaling may be RRC signaling, and its signaling structure may be implemented as:
  • TDMscheme-r18 ENUMERATED ⁇ tdmSchemeA,tdmSchemeB ⁇ .
  • the fifth signaling is used to configure a transmission scheme among the candidate transmission schemes.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme , repetition type A, repetition type B; or, the candidate transmission scheme includes at least one of the following schemes: FDM scheme, SDM scheme, time division multiplexing TDM scheme, and SFN scheme.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme, repetitive
  • the first signaling is RRC signaling
  • the structure of the first signaling may be: repetitionScheme-r18 ENUMERATED ⁇ fdmSchemeA, fdmSchemeB, repetitionTypeA, repetitionTypeB, sdmSchemeA, sdmSchemeB, sfnScheme ⁇ .
  • the candidate transmission scheme includes at least one of the following schemes: a hybrid scheme of an FDM scheme and a TDM scheme, a hybrid scheme of an SDM scheme and a TDM scheme, a hybrid scheme of an SFN scheme and a TDM scheme; or, The candidate transmission scheme includes at least one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, FDM scheme B and Mixed scheme of repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B , a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • the candidate transmission scheme may also be a combination of other transmission schemes, which is not specifically limited in the embodiments of the present application.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme, repetitive Type A, repetition type B, FDM scheme, SDM scheme, time division multiplexing TDM scheme, SFN scheme.
  • the candidate transmission scheme includes at least one of the following schemes: a hybrid scheme of FDM scheme and TDM scheme, a hybrid scheme of SDM scheme and TDM scheme, a hybrid scheme of SFN scheme and TDM scheme, FDM scheme A and repeat Mixed scheme of type A, mixed scheme of FDM scheme A and repetition type B, mixed scheme of FDM scheme B and repetition type A, mixed scheme of FDM scheme B and repetition type B, mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B, Mixed scheme of SFN scheme and repetition type A, SFN scheme and repetition type B Mixed solution.
  • a hybrid scheme of FDM scheme and TDM scheme a hybrid scheme of SDM scheme and TDM scheme
  • a hybrid scheme of SFN scheme and TDM scheme a hybrid scheme of SFN scheme and TDM scheme
  • FDM scheme A and repeat Mixed scheme of type A mixed scheme of FDM scheme A and repetition type B
  • the candidate transmission scheme includes at least one of the following: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme, repetition type A.
  • Repetition type B hybrid scheme of FDM scheme A and repetition type A, hybrid scheme of FDM scheme A and repetition type B.
  • the candidate transmission scheme includes at least one of the following: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme, repetition type A.
  • Repetition type B mixed scheme of FDM scheme B and repetition type A, mixed scheme of FDM scheme B and repetition type B, mixed scheme of SDM scheme A and repetition type A, mixed scheme of SDM scheme A and repetition type B, A hybrid scheme of SDM scheme B and repetition type A, a hybrid scheme of SDM scheme B and repetition type B, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • the candidate transmission scheme includes at least one of the following: FDM scheme, SDM scheme, time division multiplexing TDM scheme, SFN scheme, hybrid scheme of FDM scheme A and repetition type A, FDM scheme A and repetition type B hybrid solution.
  • the candidate transmission scheme includes at least one of the following: FDM scheme, SDM scheme, time division multiplexing TDM scheme, SFN scheme, hybrid scheme of FDM scheme B and repetition type A, FDM scheme B and repetition type B Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B, SFN scheme and a hybrid scheme of repetition type A, a SFN scheme and a hybrid scheme of repetition type B.
  • different sub-signalings in the fifth signaling are used to configure different transmission schemes.
  • different sub-signalings in the first signaling are used to configure different transmission schemes in the candidate transmission schemes.
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • FDM scheme SDM scheme, time division multiplexing TDM scheme, SFN scheme.
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • a hybrid scheme of FDM scheme and TDM scheme a hybrid scheme of SDM scheme and TDM scheme, a hybrid scheme of SFN scheme and TDM scheme.
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • the following transmission scheme can be configured through different sub-signaling:
  • FDM scheme SDM scheme, time division multiplexing TDM scheme, SFN scheme, hybrid scheme of FDM scheme A and repetition type A, hybrid scheme of FDM scheme A and repetition type B.
  • the following transmission scheme can be configured through different sub-signaling:
  • FDM scheme SDM scheme, time division multiplexing TDM scheme, SFN scheme, hybrid scheme of FDM scheme B and repetition type A, hybrid scheme of FDM scheme B and repetition type B, hybrid scheme of SDM scheme A and repetition type A, SDM scheme Mixed scheme of A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B, Mixed scheme of SFN scheme and repetition type A, Mixed scheme of SFN scheme and repetition type B .
  • the sub-signaling in the first signaling is also RRC signaling, which means that different transmission schemes can be configured through different RRC signaling.
  • the first signaling may also be other signaling, which is not specifically limited in this application.
  • the fifth signaling includes sub-signaling for configuring one of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the fifth signaling includes sub-signaling used to configure one of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the five transmission schemes of FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme correspond to five different sub-signalings, and the fifth signaling includes among these five sub-signalings.
  • One sub-signaling; or, the three transmission schemes of the FDM scheme, the SDM scheme, and the SFN scheme correspond to three different sub-signalings, and the fifth signaling includes one of the three sub-signalings.
  • the fifth signaling is not used to simultaneously configure at least two of the following schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme; or, the fifth signaling The command is not used to configure two of the following solutions at the same time: FDM solution, SDM solution, and SFN solution.
  • the terminal device does not expect or do not want the fifth signaling to be used to configure at least two of the following transmission schemes at the same time: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the fifth signaling is not used to configure at least two of the following transmission schemes at the same time: FDM scheme, SDM scheme, SFN scheme.
  • the fifth signaling is not used to simultaneously configure at least two of the following schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme, FDM scheme, SDM solution, SFN solution.
  • the S312 may include:
  • the second information sent by the network device is sent to or received from the network device according to the first hybrid scheme.
  • the spatial parameters include at least one of the following:
  • Transmission configuration indication (TCI) status information is a logical entity used by the terminal device for transmission, and the transmitting beams and/or receiving beams of the antennas on different antenna panels can be adjusted independently.
  • the antenna panel information may include an antenna panel identification (ID) or index.
  • ID antenna panel identification
  • index index
  • TRP information may include a TRP ID or index.
  • the CORESET group information may include the ID or index of the CORESET group.
  • TCI state information may include unified TCI state (unified TCI state) or uplink TCI state (UL TCI state), or joint TCI state (joint TCI state).
  • unified TCI state unified TCI state
  • UL TCI state uplink TCI state
  • joint TCI state joint TCI state
  • the reference signal set information may be Synchronization Signal Block (SSB) resource set information or Channel State Information Reference Signal (Channel State Information Reference Signal, CSI-RS) resource set information or SRS resource set information.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • the reference signal set information may include an index of the reference signal set, such as an index of an SSB set, an index of a CSI-RS resource, or an index of an SRS resource.
  • the reference signal information may include SSB resource information, CSI-RS resource information or SRS resource information.
  • the reference signal information may be an index of SRS resources, SSB resources or CSI-RS resources.
  • beam information may include beam ID or index.
  • the beam may also be called a spatial domain transmission filter (Spatial domain transmission filter or Spatial domain filter for transmission), or a spatial domain reception filter (Spatial domain reception filter or Spatial domain filter for reception) or Spatial Rx parameter.
  • a spatial domain transmission filter Spatial domain transmission filter or Spatial domain filter for transmission
  • a spatial domain reception filter Spatial domain reception filter or Spatial domain filter for reception
  • capability set information may include one or more parameters.
  • the capability set information may be a capability set supported by the terminal device or reference signal information associated with a capability set supported by the terminal device.
  • the capability set information includes at least one of the following but is not limited to:
  • HARQ Hybrid Automatic Repeat Request
  • PDSCH Physical Downlink Shared Channel
  • first TCI state and the second TCI state involved in this application are only examples of the at least one spatial parameter and should not be understood as a limitation of this application.
  • first TCI The state and the second TCI state can also be replaced by other spatial parameters.
  • first TCI state and the second TCI state can also be replaced by the first CORESET group and the second CORESET group respectively.
  • the first preset value is 2.
  • the number of the at least one spatial parameter being 2 includes but is not limited to any of the following situations:
  • the number of TCI states is 2;
  • the number of SRS resource sets is 2;
  • the number of SRS resource sets is 2, and each SRS resource set is associated with a TCI state.
  • the at least one spatial parameter may be indicated by DCI or MAC CE.
  • the number of TCI states is 2, including: the number of joint TCI states or UL TCI states indicated in the DCI is 2.
  • the number of joint TCI states or UL TCI states indicated by the Transmission Configuration Indication field in DCI formats 1_1 or 1_2, 0_1 or 0_2 is 2.
  • the number of TCI states is 2, including: the number of joint TCI states or UL TCI states activated by MAC CE is 2.
  • the number of SRS resource sets is 2, including: the status of the SRS resource set indicator (SRS resource set indicator) field is '10' or '11'.
  • the SRS resource set indicator (SRS resource set indicator) field may be a field in DCI format 0_1 or 0_2.
  • the first preset value may be any integer greater than 1, which is not specifically limited in the embodiments of the present application.
  • the method 310 may further include:
  • the second preset value spatial parameters are used to repeatedly send or repeatedly receive the network device to the network device on multiple time domain transmission opportunities.
  • the second information sent by the device is a predefined spatial parameter or a default spatial parameter.
  • the second preset space parameter is the space parameter with the smallest index, or the same space parameter as the PUSCH scheduled by the RAR UL grant, or the space parameter that is quasi-co-located with the SSB in the initial access stage.
  • the time domain resources of the second information are RRC (for example, the RRC in which the network device configures time domain resources for the second information) and/or MAC CE (for example, the MAC CE in which the network device configures time domain resources for the second information) and/or DCI (for example, Multiple time domain resources indicated by the time domain resource allocation (TDRA) field),
  • the frequency domain resource of the second information is RRC (for example, the network device configures the RRC of the time domain resource for the second information) and/or (
  • the network device configures frequency domain resources indicated by MAC CE) and/or DCI (such as frequency domain resource allocation (FDRA) field) of frequency domain resources for the second information.
  • the second preset value is 1.
  • the number of the at least one spatial parameter being 1 includes but is not limited to any of the following situations:
  • the number of TCI states is 1;
  • the number of SRS resource sets is 1;
  • the number of SRS resource sets is 1 and is associated with one TCI state.
  • the at least one spatial parameter may be indicated by DCI or MAC CE.
  • the number of TCI states is 1, including: the number of joint TCI states or UL TCI states indicated in the DCI is 1.
  • the number of joint TCI states or UL TCI states indicated by the Transmission Configuration Indication field in DCI formats 1_1 or 1_2, 0_1 or 0_2 is 1.
  • the number of TCI states is 1, including: the number of joint TCI states or UL TCI states activated by MAC CE is 1.
  • the number of SRS resource sets is 1, including: the status of the SRS resource set indicator (SRS resource set indicator) field is 00' or '01'.
  • the SRS resource set indicator (SRS resource set indicator) field may be a field in DCI format 0_1 or 0_2.
  • the second preset value may be any integer that is not equal to the first preset value, which is not specifically limited in this embodiment of the present application.
  • the second information includes a first set of uplink information and a second set of uplink information
  • the mapping method of the first hybrid scheme to TCI status is:
  • the second information can be divided into two sets of uplink information in the dimension of frequency domain, air domain or DMRS port. Therefore, the terminal device can send each set of uplink information to the network device in the time domain in a TDM manner.
  • the time domain transmission opportunity may be a transmission opportunity indicated by DCI.
  • the first set of uplink information is associated with a first TCI state
  • the second set of uplink information is associated with a second TCI state.
  • the first uplink information associated with the first TCI state is the first uplink information in the first group of uplink information; the first uplink information associated with the second TCI state is the first uplink information in the second group of uplink information.
  • the first uplink message is the first uplink message.
  • Figure 10 is an example of a mapping method for TCI status of the first hybrid solution provided by the embodiment of the present application.
  • the first set of uplink information and the second set of uplink information have sending opportunities in the same time domain.
  • the two sets of uplink information sent in FDM or SDM or SFN mode are associated with different TCI states and have sending opportunities in different time domains.
  • the same set of uplink information sent in TDM mode is associated with the same TCI status. That is, the first group of uplink information includes four pieces of uplink information associated with TCI state 1, and the second group of uplink information includes four pieces of uplink information associated with TCI state 2.
  • the first uplink information associated with the first TCI state is the first uplink information in the first group of uplink information; the first uplink information associated with the second TCI state is the first uplink information in the second group of uplink information.
  • the first uplink message is the first uplink message.
  • the number of the at least one piece of uplink information is 1 or other numerical values.
  • the amount of the at least one uplink information is determined according to the amount of at least one spatial parameter associated with the first information.
  • the quantity of the at least one uplink information is the quantity of at least one spatial parameter associated with the first information minus 1.
  • FIG. 11 is an example of the mapping method of the TCI status of the first hybrid solution provided by the embodiment of the present application.
  • the two sets of uplink information sent in the same time domain and sent in FDM or SDM or SFN mode are both associated with the first TCI state and the second TCI state.
  • different sets of uplink information sent in TDM mode are associated with different TCI states. That is, the first group of uplink information includes four pieces of uplink information associated with TCI State 1, TCI State 2, TCI State 1, and TCI State 2 in sequence, and the second group of uplink information includes four pieces of uplink information associated with TCI State 2, TCI State 1 in order. , 4 uplink information associated with TCI status 2 and TCI status 1.
  • the mapping manner of the first hybrid scheme to other spatial parameters is similar to the mapping manner of the first hybrid scheme to the TCI state.
  • the mapping method of the SRS resource set as an example, in the mapping method of the TCI state for the first hybrid solution, the first TCI state and the second TCI state can be replaced with the first SRS resource set and the second SRS respectively. Resource set, to avoid duplication, will not be described here.
  • mapping method of the first hybrid solution to the redundant version RV is:
  • the uplink information sent at different time domain transmission opportunities uses a preset number of RVs in a cyclical manner
  • Uplink information associated with different TCI states sent in the same time domain transmission opportunity uses the same RV.
  • the uplink information sent on different time domain transmission opportunities adopts different RVs, and in the same time domain
  • the uplink information associated with different TCI states sent by the transmitter uses the same RV.
  • the uplink information sent on different time domain transmission opportunities adopts a preset number of RVs.
  • the uplink information associated with different TCI states sent by the domain sending opportunity uses the same RV.
  • using a preset number of RVs in a cycle means using RVs sequentially in a cycle order.
  • the time domain transmission opportunities of the second information include 6 time domain transmission opportunities and the preset number is 4 (their RVs are RV 0, RV 1, RV 2, and RV 3 respectively), and the cycle order is RV respectively.
  • RV 1, RV 2, RV 3 if the ID of the RV used in the first time domain sending opportunity among the six time domain sending opportunities is 1, then the RV used in the N time domain sending opportunities
  • the logos are RV 1, RV 2, RV 3, RV 0, RV 1, RV 2. That is, after adopting RV 3, start again from RV 0.
  • the time domain transmission opportunities of the second information include 6 time domain transmission opportunities (that is, the second information is repeatedly transmitted in the time domain 6 times) and the preset number is 4 (its RVs are RV 0 and RV 1 respectively. , RV 2, RV 3), the cycle order is RV 0, RV 2, RV 3, RV1 respectively; if the RV identifier used on the first time domain transmission opportunity among the 6 time domain transmission opportunities is 0 , then the IDs of RVs used in the N time domain transmission opportunities are RV 0, RV 2, RV 3, RV1, RV 0, and RV 2 in order. That is, after adopting RV1, start again from RV 0.
  • the second information includes a first set of uplink information and a second set of uplink information; the mapping method of the first hybrid scheme to the redundant version RV is:
  • the first group of uplink information and the second group of uplink information use the same RV pattern.
  • the RV pattern is the RV corresponding to the second information sent at the nth sending opportunity.
  • the RV pattern is an RV sequence composed of a preset number of RVs in a specific order, for example, the preset number is 4.
  • the first group of uplink information and the second group of uplink information adopt the same RV pattern, which can be understood as the second group of the first group of uplink information and the second group of uplink information that are sent at the same time domain transmission opportunity.
  • the information corresponds to the same RV.
  • the first RV used by the first uplink information in the first group of uplink information and the second RV used by the first uplink information in the second group of uplink information are both is the RV indicated by the downlink control information DCI; the first RV and the second RV are the same.
  • the first uplink information in the first group of uplink information is the earliest uplink information sent in the time domain among the first group of uplink information.
  • the first uplink information in the second group of uplink information is the earliest uplink information sent in the time domain among the second group of uplink information.
  • the first RV and the second RV are both RVs indicated by the DCI.
  • the first group of uplink information and the second group of uplink information are not transmitted in a single codeword, then the first RV and the second RV are RVs indicated by the DCI.
  • the first group of uplink information and the second group of uplink information are transmitted using multiple codewords, then the first RV and the second RV are both RVs indicated by the DCI.
  • the first group of uplink information and the second group of uplink information adopt a modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • the first group of uplink information and the second set of uplink information using multiple MCSs.
  • the identifier of the RV used by the n-th uplink information in the first group of uplink information, and the identifier of the RV used by the n-th uplink information in the second group of uplink information are determined according to the The first RV and n used for the first uplink information in the first group of uplink information are determined.
  • the identification of the RV used by the n-th uplink information in the first group of uplink information and the identification of the RV used by the n-th uplink information in the second group of uplink information are both the same as i and (n mod 4) corresponding RV, where i is the identifier of the first RV.
  • the RV ID indicated in the DCI i.e., the identification of the first RV
  • the identification of the RV used in the first uplink information is RV 0
  • the ID of the first RV is RV 0.
  • the RV identifiers used in the two uplink messages are 0 and the RV corresponding to (2 mod 4), that is, RV 3.
  • the RV identifiers used in the third uplink message are 0 and the RV corresponding to (3 mod 4), that is, RV 1.
  • the identity of the RV used in the fourth uplink information is 0 and the RV corresponding to (4 mod 4), that is, RV 0, and so on, until it is determined that each uplink information in the first group of uplink information and the second group of uplink information is used RV logo.
  • Figure 12 is an example of the RV mapping method of the first hybrid solution provided by the embodiment of the present application.
  • the RV mapping method of the first hybrid solution may use the same RV pattern for the first set of uplink information and the second set of uplink information.
  • the 4 uplink information associated with TCI state 1 i.e., the first group of uplink information
  • the 4 uplink information associated with TCI state 2 use the same RV 0 in sequence.
  • Figure 13 is another example of the RV mapping method of the first hybrid solution provided by the embodiment of the present application.
  • the RV mapping method of the first hybrid solution may use the same RV pattern for the first set of uplink information and the second set of uplink information.
  • the 4 uplink information associated with TCI state 1 i.e., the first group of uplink information
  • the 4 uplink information associated with TCI state 2 use the same RV 0 in sequence.
  • FIG. 14 and FIG. 15 are only examples of the present application and should not be understood as limitations of the present application.
  • the mapping method to RV of the first hybrid scheme provided in Figure 14 or Figure 15 can also be applied to hybrid schemes other than FDM scheme A and repetition type A or FDM scheme A and repetition type B.
  • hybrid scheme a hybrid scheme of SDM scheme A and repetition type A, a hybrid scheme of SDM scheme A and repetition type B, a hybrid scheme of SFN scheme and repetition type A, and a scheme other than a hybrid scheme of SFN scheme and repetition type B .
  • mapping method of the first hybrid solution to the redundant version RV is:
  • the uplink information sent at different time domain transmission opportunities uses a preset number of RVs in a cyclical manner
  • Uplink information associated with different TCI states sent in the same time domain transmission opportunity adopts different RVs.
  • the uplink information sent on different time domain transmission opportunities adopts different RVs, and in the same time domain
  • the uplink information associated with different TCI states sent by the transmitting opportunity adopts different RVs.
  • the uplink information sent on different time domain transmission opportunities adopts a preset number of RVs.
  • the uplink information associated with different TCI states sent by the domain sending opportunity adopts different RVs.
  • different time domain sending opportunities can be understood as different sending opportunities for time domain resources; the same time domain sending opportunities can be understood as same sending opportunities for time domain resources.
  • the cycle uses a preset number of RVs to map the RVs sequentially in a cycle order.
  • the time domain transmission opportunities of the second information include 6 time domain transmission opportunities and the preset number is 4 (their RVs are RV 0, RV 1, RV 2, and RV 3 respectively), and the cycle order is RV respectively.
  • RV 1, RV 2, RV 3 if the ID of the RV used in the first time domain sending opportunity among the six time domain sending opportunities is 1, then the RV used in the N time domain sending opportunities
  • the logos are RV 1, RV 2, RV 3, RV 0, RV 1, RV 2. That is, after adopting RV 3, start again from RV 0.
  • the time domain transmission opportunities of the second information include 6 time domain transmission opportunities (that is, the second information is repeatedly transmitted in the time domain 6 times) and the preset number is 4 (its RVs are RV 0 and RV 1 respectively. , RV 2, RV 3), the cycle order is RV 0, RV 2, RV 3, RV1 respectively; if the RV identifier used on the first time domain transmission opportunity among the 6 time domain transmission opportunities is 0 , then the IDs of RVs used in the N time domain transmission opportunities are RV 0, RV 2, RV 3, RV1, RV 0, and RV 2 in order. That is, after adopting RV1, start again from RV 0.
  • the second information includes a first set of uplink information and a second set of uplink information; the mapping method of the first hybrid scheme to the redundant version RV is:
  • the first group of uplink information and the second group of uplink information adopt different RV patterns.
  • the RV pattern is the RV corresponding to the second information sent at the nth sending opportunity.
  • the RV pattern is an RV sequence composed of a preset number of RVs in a specific order, for example, the preset number is 4.
  • the first group of uplink information and the second group of uplink information adopt different RV patterns, which can be understood as the second group of the first group of uplink information and the second group of uplink information sent at the same time domain transmission opportunity.
  • the information corresponds to different RVs.
  • the first set of uplink information adopts a first set of RV patterns
  • the second set of uplink information adopts a second set of RV patterns
  • the second set of RV patterns exist relative to the first set of RV patterns. RV offset.
  • the first RV in the second group of RV patterns has an RV offset relative to the first RV in the first group of RV patterns.
  • the first RV used by the first uplink information in the first group of uplink information is the RV indicated by the downlink control information DCI
  • the first uplink information used by the second group of uplink information is used by the RV.
  • the second RV adopted is the RV after the offset of the first RV.
  • the first uplink information in the first group of uplink information is the earliest uplink information sent in the time domain among the first group of uplink information.
  • the first uplink information in the second group of uplink information is the earliest uplink information sent in the time domain among the second group of uplink information.
  • the identity of the second RV is the sum of the first RV and RVoffset, where RVoffset is the offset of the identity of the second RV backward relative to the identity of the first RV, or RVoffset is the offset amount by which the identity of the first RV is shifted forward relative to the identity of the second RV.
  • the identification of the RV used in the n-th uplink information of the first group of uplink information is determined based on the identification of the first RV and n
  • the n-th uplink information in the second group of uplink information is determined based on the identification of the first RV and n.
  • the identity of the RV used is determined based on the identity of the first RV, the offset of the second RV relative to the first RV, and n.
  • the ID of the RV used in the n-th uplink information of the first group of uplink information is the ID corresponding to i and (n mod 4), where i is the ID of the first RV.
  • the identifier of the RV used in the n-th uplink information of the first group of uplink information can be determined according to Table 1. To avoid duplication, details will not be described here.
  • the calculation method of the identification of the RV used by the n-th uplink information in the second group of uplink information is the calculation method corresponding to i and (n mod 4), where i is the first RV logo.
  • the identifier of the RV used in the first uplink information in the second group of uplink information is in accordance with 0 and (1
  • the calculation method corresponding to mod 4) is calculated, that is, the RV calculated according to (2+RVoffset) mod 4.
  • the RV identifier used in the second uplink information is calculated according to the calculation method corresponding to 0 and (2 mod 4), that is, according to ( The RV calculated by 3+RVoffset)mod 4.
  • the RV identifier used in the third uplink information is calculated according to the calculation method corresponding to 0 and (3 mod 4), that is, the RV calculated according to (1+RVoffset)mod 4,
  • the ID of the RV used in the fourth uplink information is calculated according to the calculation method corresponding to 0 and (4 mod 4), that is, the RV calculated according to (0+RVoffset) mod 4, and so on, until the second set of uplink information is determined
  • the identifier of the RV used in each uplink message is calculated according to the calculation method corresponding to 0 and (3 mod 4), that is, the RV calculated according to (1+RVoffset)mod 4,
  • the ID of the RV used in the fourth uplink information is calculated according to the calculation method corresponding to 0 and (4 mod 4), that is, the RV calculated according to (0+RVoffset) mod 4, and so on, until the second set of uplink information is determined
  • the identifier of the RV used in each uplink message is calculated according to the calculation method corresponding to 0 and (3 mod 4), that is,
  • the second RV is the RV after the offset of the first RV.
  • the first RV used by the first uplink information in the first group of uplink information, and the second RV used by the first uplink information in the second group of uplink information are both The RV indicated by the downlink control information DCI; the first RV and the second RV are different.
  • the first uplink information in the first group of uplink information is the earliest uplink information sent in the time domain among the first group of uplink information.
  • the first uplink information in the second group of uplink information is the earliest uplink information sent in the time domain among the second group of uplink information.
  • the identifier of the RV used by the n-th uplink information in the first group of uplink information is determined based on the first RV and n; the identifier used by the n-th uplink information in the second group of uplink information is The identity of the RV is determined based on the second RV and n.
  • the first RV and the second RV are both RVs indicated by the DCI.
  • the first group of uplink information and the second group of uplink information are not transmitted in a single codeword, then the first RV and the second RV are RVs indicated by the DCI.
  • the first group of uplink information and the second group of uplink information are transmitted using multiple codewords, then the first RV and the second RV are both RVs indicated by the DCI.
  • the first group of uplink information and the second group of uplink information adopt a modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • the first group of uplink information and the second set of uplink information using multiple MCSs.
  • Figure 14 is an example of the RV mapping method of the first hybrid solution provided by the embodiment of the present application.
  • the RV mapping method of the first hybrid solution may use different RV patterns for the first set of uplink information and the second set of uplink information. That is, the first uplink information among the four uplink information associated with TCI state 1 (ie, the first group of uplink information) adopts the first RV, and the four uplink information associated with TCI state 2 (the second group of uplink information) The first uplink message in the message) adopts the second RV. Wherein, the first RV is different from the second RV.
  • Figure 15 is another example of the RV mapping method of the first hybrid solution provided by the embodiment of the present application.
  • the first hybrid scheme has an RV
  • the mapping method may use different RV patterns for the first group of uplink information and the second group of uplink information. That is, the first uplink information among the four uplink information associated with TCI state 1 (ie, the first group of uplink information) adopts the first RV, and the four uplink information associated with TCI state 2 (the second group of uplink information) The first uplink message in the message) adopts the second RV. Wherein, the first RV is different from the second RV.
  • FIG. 14 and FIG. 15 are only examples of the present application and should not be understood as limitations of the present application.
  • the RV mapping method of the first hybrid scheme provided in Figure 14 or Figure 15 can also be applied to the hybrid scheme of FDM scheme B and repetition type A or B, SDM scheme B and repetition type Plans other than Type A or B hybrid plans.
  • the wireless communication method 310 provided according to the embodiment of the present application is described in detail from the perspective of a terminal device with reference to Figures 10 to 16. Next, the wireless communication method 310 provided according to the embodiment of the present application will be described from the perspective of a network device with reference to Figure 17. Method 320.
  • wireless communication methods 210 and 310 provided according to the embodiments of the present application are described in detail from the perspective of terminal equipment with reference to Figures 8 to 15. Next, the implementation of the implementation of the present application will be described from the perspective of network equipment with reference to Figures 16 and 17. Examples provide wireless communication methods 220 and 320.
  • Figure 16 is a schematic flowchart of the wireless communication method 220 provided by the embodiment of the present application.
  • the method 220 may be performed by a network device as shown in FIG. 1 .
  • the method 220 may include:
  • S223 Send or receive the first information sent by the terminal device to the terminal device according to the second transmission scheme.
  • the first signaling is used to indicate the first transmission scheme among candidate transmission schemes.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme , repetition type A, repetition type B; or, the candidate transmission scheme includes at least one of the following schemes: FDM scheme, SDM scheme, time division multiplexing TDM scheme, and SFN scheme.
  • the candidate transmission scheme further includes at least one of the following: a hybrid scheme of an FDM scheme and a TDM scheme, a hybrid scheme of an SDM scheme and a TDM scheme, a hybrid scheme of an SFN scheme and a TDM scheme; or, The candidate transmission scheme also includes at least one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, FDM scheme B Mixed scheme with repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B scheme, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • different sub-signalings in the first signaling are used to configure different transmission schemes.
  • the first signaling includes sub-signaling for configuring one of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the first signaling includes sub-signaling used to configure one of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the first signaling is not used to simultaneously configure at least two of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme; or, the first signaling Signaling is not used to simultaneously configure at least two of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the S222 may include:
  • the second transmission scheme is determined according to the first transmission scheme.
  • the S222 may include:
  • the first transmission scheme is the FDM scheme
  • the first transmission scheme is the SDM scheme
  • the first transmission scheme is a TDM scheme
  • the first transmission scheme is FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme, repetition type A or repetition type B, then the first transmission scheme is determined as the second transmission plan;
  • the second signaling is used to indicate FDM scheme A or FDM scheme B
  • the third signaling is used to indicate SDM scheme A or SDM scheme B
  • the fourth signaling is used to indicate repetition type A or repetition. Type B.
  • the first preset value is 2.
  • the second transmission scheme is to use the second preset value spatial parameters to transmit on at least one time domain transmission opportunity. the first information.
  • the second transmission scheme is to transmit in multiple time domains using the second preset value spatial parameters. Opportunity to send the first message repeatedly.
  • the second transmission scheme adopts the The second preset value of the spatial parameter is used to send the first information in a time domain sending opportunity.
  • the second preset value is 1.
  • Figure 17 is a schematic flowchart of the wireless communication method 320 provided by the embodiment of the present application.
  • the method 320 may be performed by a network device as shown in FIG. 1 .
  • the method 320 may include:
  • the first hybrid scheme is any one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, FDM scheme B and repetition type A Mixed scheme of FDM scheme B and repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, SDM scheme A hybrid scheme of B and repetition type B, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • the S321 may include:
  • the transmission scheme of the fifth signaling configuration is the first hybrid scheme, or the transmission scheme of the fifth signaling configuration is used to determine the first hybrid scheme.
  • the transmission scheme of the fifth signaling configuration is a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, or a hybrid scheme of FDM scheme B and repetition type A , Mixed scheme of FDM scheme B and repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, SDM scheme B and repetition A hybrid scheme of type B, an SFN scheme and a hybrid scheme of repeating type A, or a hybrid scheme of SFN scheme and repeating type B, then the first hybrid scheme is the transmission scheme of the fifth signaling configuration;
  • the transmission scheme of the fifth signaling configuration is the FDM scheme, or the transmission scheme of the fifth signaling configuration is a hybrid scheme of the FDM scheme and the TDM scheme, then the first hybrid scheme is the second signaling indication.
  • the transmission scheme of the fifth signaling configuration is the SDM scheme, or the transmission scheme of the fifth signaling configuration is a hybrid scheme of the SDM scheme and the TDM scheme, then the first hybrid scheme is the third signaling indication A hybrid scheme of the transmission scheme and the transmission scheme indicated by the fourth signaling; or,
  • the transmission scheme of the fifth signaling configuration is FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B or SFN scheme
  • the first hybrid scheme is the transmission scheme of the fifth signaling configuration. and a hybrid scheme of the transmission scheme indicated by the fourth signaling; or,
  • the second signaling is used to indicate FDM scheme A or FDM scheme B
  • the third signaling is used to indicate SDM scheme A or SDM scheme B
  • the fourth signaling is used to indicate repetition type A or repetition. Type B.
  • the fifth signaling is used to configure a transmission scheme among the candidate transmission schemes.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme , repetition type A, repetition type B; or, the candidate transmission scheme includes at least one of the following schemes: FDM scheme, SDM scheme, time division multiplexing TDM scheme, and SFN scheme.
  • the candidate transmission scheme includes at least one of the following schemes: a hybrid scheme of an FDM scheme and a TDM scheme, a hybrid scheme of an SDM scheme and a TDM scheme, a hybrid scheme of an SFN scheme and a TDM scheme; or, The candidate transmission scheme includes at least one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, FDM scheme B and Mixed scheme of repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B , a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • different sub-signalings in the fifth signaling are used to configure different transmission schemes.
  • the fifth signaling includes sub-signaling for configuring one of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the fifth signaling includes sub-signaling used to configure one of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the fifth signaling is not used to simultaneously configure at least two of the following schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme; or, the fifth signaling The command is not used to configure two of the following solutions at the same time: FDM solution, SDM solution, and SFN solution.
  • the S322 may include:
  • the second information sent by the terminal device is received or sent to the terminal device according to the first hybrid scheme.
  • the first preset value is 2.
  • the method 320 may further include:
  • the second preset value spatial parameters are used to receive the data repeatedly sent by the terminal device or to the terminal on multiple time domain transmission opportunities.
  • the device repeatedly sends the second information.
  • the second information includes a first set of uplink information and a second set of uplink information
  • the mapping method of the first hybrid scheme to TCI status is:
  • mapping method of the first hybrid solution to the redundant version RV is:
  • the uplink information sent at different time domain transmission opportunities uses a preset number of RVs in a cyclical manner
  • Uplink information associated with different TCI states sent in the same time domain transmission opportunity uses the same RV.
  • the second information includes a first set of uplink information and a second set of uplink information; the mapping method of the first hybrid scheme to the redundant version RV is:
  • the first group of uplink information and the second group of uplink information use the same RV pattern.
  • the first RV used by the first uplink information in the first group of uplink information and the second RV used by the first uplink information in the second group of uplink information are both is the RV indicated by the downlink control information DCI; the first RV and the second RV are the same.
  • the identifier of the RV used by the n-th uplink information in the first group of uplink information, and the identifier of the RV used by the n-th uplink information in the second group of uplink information are determined according to the The first RV and n used for the first uplink information in the first group of uplink information are determined.
  • mapping method of the first hybrid solution to the redundant version RV is:
  • the uplink information sent at different time domain transmission opportunities uses a preset number of RVs in a cyclical manner
  • Uplink information associated with different TCI states sent in the same time domain transmission opportunity adopts different RVs.
  • the second information includes a first set of uplink information and a second set of uplink information; the mapping method of the first hybrid scheme to the redundant version RV is:
  • the first group of uplink information and the second group of uplink information adopt different RV patterns.
  • the first set of uplink information adopts a first set of RV patterns
  • the second set of uplink information adopts a second set of RV patterns
  • the second set of RV patterns exist relative to the first set of RV patterns. RV offset.
  • the first RV used by the first uplink information in the first group of uplink information is the RV indicated by the downlink control information DCI
  • the first uplink information used by the second group of uplink information is used by the RV.
  • the second RV adopted is the RV after the offset of the first RV.
  • the identification of the RV used in the n-th uplink information of the first group of uplink information is determined based on the identification of the first RV and n
  • the n-th uplink information in the second group of uplink information is determined based on the identification of the first RV and n.
  • the identity of the RV used is determined based on the identity of the first RV, the offset of the second RV relative to the first RV, and n.
  • the second RV is the RV after the offset of the first RV.
  • the first RV used by the first uplink information in the first group of uplink information, and the second RV used by the first uplink information in the second group of uplink information are both The RV indicated by the downlink control information DCI; the first RV and the second RV are different.
  • the identifier of the RV used by the n-th uplink information in the first group of uplink information is determined based on the first RV and n; the identifier used by the n-th uplink information in the second group of uplink information is The identity of the RV is determined based on the second RV and n.
  • the first RV and the second RV are both RVs indicated by the DCI.
  • the first set of uplink information is associated with a first TCI state
  • the second set of uplink information is associated with a second TCI state.
  • the steps in the wireless communication method 320 may refer to the corresponding steps in the wireless communication method 310, and for the sake of brevity, they will not be described again.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the implementation of the examples does not constitute any limitations.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the site to the user equipment of the cell.
  • the first direction, "uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • Figure 18 is a schematic block diagram of the terminal device 410 according to the embodiment of the present application.
  • the terminal device 410 may include:
  • Communication unit 411 configured to receive first signaling sent by the network device, where the first signaling is used to configure the first transmission scheme
  • Determining unit 412 configured to determine a second transmission scheme for the first information according to the first transmission scheme and the number of at least one spatial parameter associated with the first information
  • the communication unit 411 is also configured to: send or receive the first information sent by the network device to the network device according to the second transmission scheme.
  • the first signaling is used to indicate the first transmission scheme among candidate transmission schemes.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme , repetition type A, repetition type B; or, the candidate transmission scheme includes at least one of the following schemes: FDM scheme, SDM scheme, time division multiplexing TDM scheme, and SFN scheme.
  • the candidate transmission scheme further includes at least one of the following: a hybrid scheme of an FDM scheme and a TDM scheme, a hybrid scheme of an SDM scheme and a TDM scheme, a hybrid scheme of an SFN scheme and a TDM scheme; or, The candidate transmission scheme also includes at least one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, FDM scheme B Mixed scheme with repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B scheme, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • different sub-signalings in the first signaling are used to configure different transmission schemes.
  • the first signaling includes sub-signaling for configuring one of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the first signaling includes sub-signaling used to configure one of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the first signaling is not used to simultaneously configure at least two of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme; or, the first signaling Signaling is not used to simultaneously configure at least two of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the determining unit 412 is specifically used to:
  • the second transmission scheme is determined according to the first transmission scheme.
  • the determining unit 412 is specifically used to:
  • the first transmission scheme is the FDM scheme
  • the first transmission scheme is the SDM scheme
  • the first transmission scheme is a TDM scheme
  • the first transmission scheme is FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme, repetition type A or repetition type B, then the first transmission scheme is determined as the second transmission plan;
  • the second signaling is used to indicate FDM scheme A or FDM scheme B
  • the third signaling is used to indicate SDM scheme A or SDM scheme B
  • the fourth signaling is used to indicate repetition type A or repetition. Type B.
  • the first preset value is 2.
  • the second transmission scheme is to use the second preset value spatial parameters to transmit on at least one time domain transmission opportunity. the first information.
  • the second transmission scheme is to transmit in multiple time domains using the second preset value spatial parameters.
  • Opportunity to repeatedly send the first information or, if the first transmission scheme is the FDM scheme, SFN scheme, SDM scheme, FDM scheme A, FDM scheme B, SDM scheme A or SDM scheme B, then the second transmission scheme is The first information is sent in a time domain sending opportunity using the second preset value spatial parameters.
  • the second preset value is 1.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 410 shown in FIG. 18 may correspond to the corresponding subject in performing the method 210 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the terminal device 410 are respectively to implement the implementation of the present application.
  • the corresponding process in method 210 provided in the example is not repeated here for the sake of brevity.
  • Figure 19 is a schematic block diagram of the network device 420 according to the embodiment of the present application.
  • the network device 420 may include:
  • Communication unit 421, configured to send first signaling to the terminal device, where the first signaling is used to configure the first transmission scheme
  • Determining unit 422 configured to determine the second transmission scheme of the first information according to the first transmission scheme and the number of at least one spatial parameter associated with the first information
  • the communication unit 421 is also configured to: send or receive the first information sent by the terminal device to the terminal device according to the second transmission scheme.
  • the first signaling is used to indicate the first transmission scheme among candidate transmission schemes.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme , repetition type A, repetition type B; or, the candidate transmission scheme includes at least one of the following schemes: FDM scheme, SDM scheme, time division multiplexing TDM scheme, and SFN scheme.
  • the candidate transmission scheme further includes at least one of the following: a hybrid scheme of an FDM scheme and a TDM scheme, a hybrid scheme of an SDM scheme and a TDM scheme, a hybrid scheme of an SFN scheme and a TDM scheme; or, The candidate transmission scheme also includes at least one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, FDM scheme B Mixed scheme with repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B scheme, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • different sub-signalings in the first signaling are used to configure different transmission schemes.
  • the first signaling includes sub-signaling for configuring one of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the first signaling includes sub-signaling used to configure one of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the first signaling is not used to simultaneously configure at least two of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme; or, the first signaling Signaling is not used to simultaneously configure at least two of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the determining unit 422 is specifically used to:
  • the second transmission scheme is determined according to the first transmission scheme.
  • the determining unit 422 is specifically used to:
  • the first transmission scheme is the FDM scheme
  • the first transmission scheme is the SDM scheme
  • the first transmission scheme is a TDM scheme
  • the first transmission scheme is FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme, repetition type A or repetition type B, then the first transmission scheme is determined as the second transmission plan;
  • the second signaling is used to indicate FDM scheme A or FDM scheme B
  • the third signaling is used to indicate SDM scheme A or SDM scheme B
  • the fourth signaling is used to indicate repetition type A or repetition. Type B.
  • the first preset value is 2.
  • the second transmission scheme is to use the second preset value spatial parameters to transmit on at least one time domain transmission opportunity. the first information.
  • the second transmission scheme is to transmit in multiple time domains using the second preset value spatial parameters.
  • Opportunity to repeatedly send the first information or, if the first transmission scheme is the FDM scheme, SFN scheme, SDM scheme, FDM scheme A, FDM scheme B, SDM scheme A or SDM scheme B, then the second transmission scheme is The first information is sent in a time domain sending opportunity using the second preset value spatial parameters.
  • the second preset value is 1.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the network device 420 shown in Figure 19 may correspond to the corresponding subject in performing the method 220 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the network device 420 are respectively to implement the implementation of the present application.
  • the corresponding process in method 220 provided in the example is not repeated here for the sake of brevity.
  • Figure 20 is a schematic block diagram of the terminal device 510 according to the embodiment of the present application.
  • the terminal device 510 may include:
  • Determining unit 511 used to determine a first hybrid scheme, where the first hybrid scheme includes multiple transmission schemes
  • the communication unit 512 is configured to send or receive the second information sent by the network device to the network device according to the first hybrid scheme.
  • the first hybrid scheme is any one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, FDM scheme B and repetition type A Mixed scheme of FDM scheme B and repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, SDM scheme A hybrid scheme of B and repetition type B, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • the determining unit 511 is specifically used to:
  • the transmission scheme of the fifth signaling configuration is determined as the first hybrid scheme, or the first hybrid scheme is determined according to the transmission scheme of the fifth signaling configuration.
  • the determining unit 511 is specifically used to:
  • the transmission scheme of the fifth signaling configuration is a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, or a hybrid scheme of FDM scheme B and repetition.
  • the transmission scheme of the fifth signaling configuration is determined as the first hybrid scheme;
  • the transmission scheme of the fifth signaling configuration is the FDM scheme, or the transmission scheme of the fifth signaling configuration is a hybrid scheme of the FDM scheme and the TDM scheme, then the transmission scheme indicated by the second signaling and the fourth signaling scheme are Let the mixed scheme of the indicated transmission scheme be determined as the first mixed scheme; or,
  • the transmission scheme of the fifth signaling configuration is the SDM scheme, or the transmission scheme of the fifth signaling configuration is a hybrid scheme of the SDM scheme and the TDM scheme, then the transmission scheme indicated by the third signaling and the third signaling scheme are combined.
  • a hybrid scheme of the transmission schemes indicated by the four signalings is determined as the first hybrid scheme; or,
  • the transmission scheme of the fifth signaling configuration is FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B or SFN scheme
  • the transmission scheme of the fifth signaling configuration and the fourth signaling indicated The mixed scheme of the transmission scheme is determined as the first mixed scheme; or,
  • the second signaling is used to indicate FDM scheme A or FDM scheme B
  • the third signaling is used to indicate SDM scheme A or SDM scheme B
  • the fourth signaling is used to indicate repetition type A or repetition. Type B.
  • the fifth signaling is used to configure a transmission scheme among the candidate transmission schemes.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme , repetition type A, repetition type B; or, the candidate transmission scheme includes at least one of the following schemes: FDM scheme, SDM scheme, time division multiplexing TDM scheme, and SFN scheme.
  • the candidate transmission scheme includes at least one of the following schemes: a hybrid scheme of an FDM scheme and a TDM scheme, a hybrid scheme of an SDM scheme and a TDM scheme, a hybrid scheme of an SFN scheme and a TDM scheme; or, The candidate transmission scheme includes at least one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, FDM scheme B and Mixed scheme of repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B , a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • different sub-signalings in the fifth signaling are used to configure different transmission schemes.
  • the fifth signaling includes sub-signaling for configuring one of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the fifth signaling includes sub-signaling used to configure one of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the fifth signaling is not used to simultaneously configure at least two of the following schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme; or, the fifth signaling The command is not used to configure two of the following solutions at the same time: FDM solution, SDM solution, and SFN solution.
  • the communication unit 512 is specifically used to:
  • the second information sent by the network device is sent to or received from the network device according to the first hybrid scheme.
  • the first preset value is 2.
  • the communication unit 512 may also be used to:
  • the second preset value spatial parameters are used to repeatedly send or repeatedly receive the network device to the network device on multiple time domain transmission opportunities.
  • the second information sent by the device is a second preset value
  • the second information includes a first set of uplink information and a second set of uplink information
  • the mapping method of the first hybrid scheme to TCI status is:
  • mapping method of the first hybrid solution to the redundant version RV is:
  • the uplink information sent at different time domain transmission opportunities uses a preset number of RVs in a cyclical manner
  • Uplink information associated with different TCI states sent in the same time domain transmission opportunity uses the same RV.
  • the second information includes a first set of uplink information and a second set of uplink information; the mapping method of the first hybrid scheme to the redundant version RV is:
  • the first group of uplink information and the second group of uplink information use the same RV pattern.
  • the first RV used by the first uplink information in the first group of uplink information and the second RV used by the first uplink information in the second group of uplink information are both is the RV indicated by the downlink control information DCI; the first RV and the second RV are the same.
  • the identifier of the RV used by the n-th uplink information in the first group of uplink information, and the identifier of the RV used by the n-th uplink information in the second group of uplink information are determined according to the The first RV and n used for the first uplink information in the first group of uplink information are determined.
  • mapping method of the first hybrid solution to the redundant version RV is:
  • the uplink information sent at different time domain transmission opportunities uses a preset number of RVs in a cyclical manner
  • Uplink information associated with different TCI states sent in the same time domain transmission opportunity adopts different RVs.
  • the second information includes a first set of uplink information and a second set of uplink information; the mapping method of the first hybrid scheme to the redundant version RV is:
  • the first group of uplink information and the second group of uplink information adopt different RV patterns.
  • the first set of uplink information adopts a first set of RV patterns
  • the second set of uplink information adopts a second set of RV patterns
  • the second set of RV patterns exist relative to the first set of RV patterns. RV offset.
  • the first RV used by the first uplink information in the first group of uplink information is the RV indicated by the downlink control information DCI
  • the first uplink information used by the second group of uplink information is used by the RV.
  • the second RV adopted is the RV after the offset of the first RV.
  • the identification of the RV used in the n-th uplink information of the first group of uplink information is determined based on the identification of the first RV and n
  • the n-th uplink information in the second group of uplink information is determined based on the identification of the first RV and n.
  • the identity of the RV used is determined based on the identity of the first RV, the offset of the second RV relative to the first RV, and n.
  • the second RV is the RV after the offset of the first RV.
  • the first RV used by the first uplink information in the first group of uplink information, and the second RV used by the first uplink information in the second group of uplink information are both The RV indicated by the downlink control information DCI; the first RV and the second RV are different.
  • the identifier of the RV used by the n-th uplink information in the first group of uplink information is determined based on the first RV and n; the identifier used by the n-th uplink information in the second group of uplink information is The identity of the RV is determined based on the second RV and n.
  • the first RV and the second RV are both RVs indicated by the DCI.
  • the first set of uplink information is associated with a first TCI state
  • the second set of uplink information is associated with a second TCI state.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 510 shown in FIG. 20 may correspond to the corresponding subject in performing the method 310 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the terminal device 510 are respectively to implement the implementation of the present application.
  • the corresponding process in method 310 provided in the example is not repeated here for the sake of brevity.
  • Figure 21 is a schematic block diagram of the network device 520 according to the embodiment of the present application.
  • the network device 520 may include:
  • Determining unit 521 used to determine a first hybrid scheme, where the first hybrid scheme includes multiple transmission schemes
  • the communication unit 522 is configured to receive second information sent by the terminal device or send second information to the terminal device according to the first hybrid scheme.
  • the first hybrid scheme is any one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, FDM scheme B and repetition type A Mixed scheme of FDM scheme B and repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, SDM scheme A hybrid scheme of B and repetition type B, a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • the communication unit 522 may also be used to:
  • the transmission scheme of the fifth signaling configuration is the first hybrid scheme, or the transmission scheme of the fifth signaling configuration is used to determine the first hybrid scheme.
  • the transmission scheme of the fifth signaling configuration is a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A , Mixed scheme of FDM scheme B and repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, SDM scheme B and repetition A hybrid scheme of type B, an SFN scheme and a hybrid scheme of repeating type A, or a hybrid scheme of SFN scheme and repeating type B, then the first hybrid scheme is the transmission scheme of the fifth signaling configuration;
  • the transmission scheme of the fifth signaling configuration is the FDM scheme, or the transmission scheme of the fifth signaling configuration is a hybrid scheme of the FDM scheme and the TDM scheme, then the first hybrid scheme is the second signaling indication.
  • the transmission scheme of the fifth signaling configuration is the SDM scheme, or the transmission scheme of the fifth signaling configuration is a hybrid scheme of the SDM scheme and the TDM scheme, then the first hybrid scheme is the third signaling indication A hybrid scheme of the transmission scheme and the transmission scheme indicated by the fourth signaling; or,
  • the transmission scheme of the fifth signaling configuration is FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B or SFN scheme
  • the first hybrid scheme is the transmission scheme of the fifth signaling configuration. and a hybrid scheme of the transmission scheme indicated by the fourth signaling; or,
  • the second signaling is used to indicate FDM scheme A or FDM scheme B
  • the third signaling is used to indicate SDM scheme A or SDM scheme B
  • the fourth signaling is used to indicate repetition type A or repetition. Type B.
  • the fifth signaling is used to configure a transmission scheme among the candidate transmission schemes.
  • the candidate transmission scheme includes at least one of the following schemes: frequency division multiplexing FDM scheme A, FDM scheme B, space division multiplexing SDM scheme A, SDM scheme B, single frequency point network SFN scheme , repetition type A, repetition type B; or, the candidate transmission scheme includes at least one of the following schemes: FDM scheme, SDM scheme, time division multiplexing TDM scheme, and SFN scheme.
  • the candidate transmission scheme includes at least one of the following schemes: a hybrid scheme of an FDM scheme and a TDM scheme, a hybrid scheme of an SDM scheme and a TDM scheme, a hybrid scheme of an SFN scheme and a TDM scheme; or, The candidate transmission scheme includes at least one of the following schemes: a hybrid scheme of FDM scheme A and repetition type A, a hybrid scheme of FDM scheme A and repetition type B, a hybrid scheme of FDM scheme B and repetition type A, FDM scheme B and Mixed scheme of repetition type B, Mixed scheme of SDM scheme A and repetition type A, Mixed scheme of SDM scheme A and repetition type B, Mixed scheme of SDM scheme B and repetition type A, Mixed scheme of SDM scheme B and repetition type B , a hybrid scheme of SFN scheme and repetition type A, a hybrid scheme of SFN scheme and repetition type B.
  • different sub-signalings in the fifth signaling are used to configure different transmission schemes.
  • the fifth signaling includes sub-signaling for configuring one of the following transmission schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, SFN scheme; or , the fifth signaling includes sub-signaling used to configure one of the following transmission schemes: FDM scheme, SDM scheme, SFN scheme.
  • the fifth signaling is not used to simultaneously configure at least two of the following schemes: FDM scheme A, FDM scheme B, SDM scheme A, SDM scheme B, and SFN scheme; or, the fifth signaling The command is not used to configure two of the following solutions at the same time: FDM solution, SDM solution, and SFN solution.
  • the communication unit 522 is specifically used to:
  • the second information sent by the terminal device is received or sent to the terminal device according to the first hybrid scheme.
  • the first preset value is 2.
  • the communication unit 522 is also used to:
  • the second preset value spatial parameters are used to receive the data repeatedly sent by the terminal device or to the terminal on multiple time domain transmission opportunities.
  • the device repeatedly sends the second information.
  • the second information includes a first set of uplink information and a second set of uplink information
  • the mapping method of the first hybrid scheme to TCI status is:
  • mapping method of the first hybrid solution to the redundant version RV is:
  • the uplink information sent at different time domain transmission opportunities uses a preset number of RVs in a cyclical manner
  • Uplink information associated with different TCI states sent in the same time domain transmission opportunity uses the same RV.
  • the second information includes a first set of uplink information and a second set of uplink information; the mapping method of the first hybrid scheme to the redundant version RV is:
  • the first group of uplink information and the second group of uplink information use the same RV pattern.
  • the first RV used by the first uplink information in the first group of uplink information and the second RV used by the first uplink information in the second group of uplink information are both is the RV indicated by the downlink control information DCI; the first RV and the second RV are the same.
  • the identifier of the RV used by the n-th uplink information in the first group of uplink information, and the identifier of the RV used by the n-th uplink information in the second group of uplink information are determined according to the The first RV and n used for the first uplink information in the first group of uplink information are determined.
  • mapping method of the first hybrid solution to the redundant version RV is:
  • the uplink information sent at different time domain transmission opportunities uses a preset number of RVs in a cyclical manner
  • Uplink information associated with different TCI states sent in the same time domain transmission opportunity adopts different RVs.
  • the second information includes a first set of uplink information and a second set of uplink information; the mapping method of the first hybrid scheme to the redundant version RV is:
  • the first group of uplink information and the second group of uplink information adopt different RV patterns.
  • the first set of uplink information adopts a first set of RV patterns
  • the second set of uplink information adopts a second set of RV patterns
  • the second set of RV patterns exist relative to the first set of RV patterns. RV offset.
  • the first RV used by the first uplink information in the first group of uplink information is the RV indicated by the downlink control information DCI
  • the first uplink information used by the second group of uplink information is used by the RV.
  • the second RV adopted is the RV after the offset of the first RV.
  • the identification of the RV used in the n-th uplink information of the first group of uplink information is determined based on the identification of the first RV and n
  • the n-th uplink information in the second group of uplink information is determined based on the identification of the first RV and n.
  • the identity of the RV used is determined based on the identity of the first RV, the offset of the second RV relative to the first RV, and n.
  • the second RV is the RV after the offset of the first RV.
  • the first RV used by the first uplink information in the first group of uplink information, and the second RV used by the first uplink information in the second group of uplink information are both The RV indicated by the downlink control information DCI; the first RV and the second RV are different.
  • the identifier of the RV used by the n-th uplink information in the first group of uplink information is determined based on the first RV and n; the identifier used by the n-th uplink information in the second group of uplink information is The identity of the RV is determined based on the second RV and n.
  • the first RV and the second RV are both RVs indicated by the DCI.
  • the first set of uplink information is associated with a first TCI state
  • the second set of uplink information is associated with a second TCI state.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the network device 520 shown in Figure 21 may correspond to the corresponding subject in performing the method 320 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the network device 520 are respectively to implement the implementation of the present application.
  • the corresponding process in method 320 provided in the example is not repeated here for the sake of brevity.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps in the above method embodiment in combination with its hardware.
  • processing unit and communication unit mentioned above may be implemented by a processor and a transceiver respectively.
  • Figure 22 is a schematic structural diagram of the communication device 600 according to the embodiment of the present application.
  • the communication device 600 may include a processor 610.
  • the processor 610 can call and run the computer program from the memory to implement the method in the embodiment of the present application.
  • communication device 600 may also include memory 620.
  • the memory 620 can be used to store instruction information, and can also be used to store codes, instructions, etc. executed by the processor 610 .
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated into the processor 610.
  • communication device 600 may also include a transceiver 630.
  • the processor 610 can control the transceiver 630 to communicate with other devices. Specifically, it can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • bus system where in addition to the data bus, the bus system also includes a power bus, a control bus and a status signal bus.
  • the communication device 600 can be a terminal device in the embodiment of the present application, and the communication device 600 can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. That is to say, the communication device 600 in the embodiment of the present application
  • the communication device 600 may correspond to the terminal device 410 or the terminal device 510 in the embodiment of the present application, and may correspond to the corresponding subject in performing the method 210 or 310 according to the embodiment of the present application. For the sake of brevity, details will not be described here.
  • the communication device 600 may be a network device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the communication device 600 in the embodiment of the present application may correspond to the network device 420 or the network device 520 in the embodiment of the present application, and may correspond to the corresponding subject in performing the method 220 or 320 according to the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip that has signal processing capabilities and can implement or execute the various methods, steps and logical block diagrams disclosed in the embodiments of this application.
  • the chip may also be called system-on-a-chip, system-on-a-chip, system-on-a-chip or system-on-chip, etc.
  • the chip can be applied to various communication devices, so that the communication device equipped with the chip can execute the various methods, steps and logical block diagrams disclosed in the embodiments of the present application.
  • Figure 23 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710 .
  • the processor 710 can call and run the computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may also include a memory 720 .
  • the processor 710 can call and run the computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 can be used to store instruction information, and can also be used to store codes, instructions, etc. executed by the processor 710 .
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip 700 can be applied to the network equipment in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network equipment in the various methods of the embodiment of the present application, and can also implement the various methods of the embodiment of the present application.
  • the corresponding process implemented by the terminal device will not be repeated here for the sake of simplicity.
  • bus system where in addition to the data bus, the bus system also includes a power bus, a control bus and a status signal bus.
  • the processors mentioned above may include but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute each method, step, and logical block diagram disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memories mentioned above include but are not limited to:
  • Non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to execute the wireless wireless device provided by the present application.
  • Communication methods can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be repeated here. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, in order to It’s concise and I won’t go into details here.
  • the embodiment of the present application also provides a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided by this application.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the embodiment of the present application also provides a communication system.
  • the communication system may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1 .
  • FIG. 1 For the sake of brevity, details will not be described again here.
  • system in this article can also be called “network management architecture” or “network system”.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in the embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • the units/modules/components described above as separate/displayed components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备以及网络设备,包括:接收网络设备发送的第一信令,所述第一信令用于配置第一传输方案;根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;根据所述第二传输方案,向所述网络设备发送或接收所述网络设备发送的所述第一信息。本申请通过接收第一信令,并根据第一信令配置的第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案,能够避免仅通过半静态信令或仅通过动态信令向终端设备直接配置第二传输方案,有利于提升数据传输的可靠性、降低数据传输时延以及保证分集增益的平衡,进而提升系统性能。

Description

无线通信方法、终端设备以及网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备以及网络设备。
背景技术
在相关技术中,网络设备可以向终端设备配置多种方案中终端设备使用的传输方案,终端设备采用网络设备配置的传输方案,可以基于多个天线面板(panel)向网络设备发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH),以提高数据传输的可靠性,并降低传输的时延。但是,这种传输方案的配置机制在NR系统中应用起来有诸多的限制,影响并降低了系统性能。
因此,针对多个TRP的传输场景,本领域亟需一种无线通信方法,以提升系统性能。
发明内容
本申请实施例提供了一种无线通信方法、终端设备以及网络设备,能够提升系统性能。
第一方面,本申请提供了一种无线通信方法,包括:
接收网络设备发送的第一信令,所述第一信令用于配置第一传输方案;
根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;
根据所述第二传输方案,向所述网络设备发送或接收所述网络设备发送的所述第一信息。
第二方面,本申请提供了一种无线通信方法,包括:
向终端设备发送第一信令,所述第一信令用于配置第一传输方案;
根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;
根据所述第二传输方案,向所述终端设备发送或接收所述终端设备发送的所述第一信息。
第三方面,本申请提供了一种无线通信方法,包括:
确定第一混合方案,所述第一混合方案包括多个传输方案;
根据所述第一混合方案,向网络设备发送或接收所述网络设备发送的第二信息。
第四方面,本申请提供了一种无线通信方法,包括:
确定第一混合方案,所述第一混合方案包括多个传输方案;
根据所述第一混合方案,接收终端设备发送的或向所述终端设备发送第二信息。
第五方面,本申请提供了一种终端设备,用于执行上述第一方面、第三方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面、第三方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第六方面,本申请提供了一种网络设备,用于执行上述第二方面、第四方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面、第四方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该网络设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该网络设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该网络设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第七方面,本申请提供了一种终端设备,包括处理器、收发器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面、第三方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该收发器包括发射机(发射器)和接收机(接收器)。
第八方面,本申请提供了一种网络设备,包括处理器、收发器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面、第四方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该收发器包括发射机(发射器)和接收机(接收器)。
第九方面,本申请提供了一种芯片,用于实现上述第一方面至第四方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十一方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第十二方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,接收第一信令,并根据第一信令配置的第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案,能够避免仅通过半静态信令或仅通过动态信令向终端设备直接配置第二传输方案,有利于提升数据传输的可靠性、降低数据传输时延以及保证分集增益的平衡,进而提升系统性能。
此外,通过确定第一混合方案,并根据所述第一混合方案,向网络设备发送或接收所述网络设备发送的第二信息,能够支持终端设备按照多种传输方案向网络设备发送或接收所述网络设备发送的第二信息,能够提升数据传输的可靠性、降低数据传输时延以及保证分集增益的平衡,进而能够提升系统性能。
附图说明
图1是本申请实施例提供的5G通信系统的示例。
图2是本申请实施例提供的5G通信系统的另一示例。
图3是本申请实施例提供的多个TRP进行上行传输的示意图。
图4是本申请实施例提供的SDM方案的示意图。
图5是本申请实施例提供的FDM方案的示意图。
图6是本申请实施例提供的SFN方案的示意图。
图7是本申请实施例提供的TDM方案的示意图。
图8是本申请实施例提供的终端设备侧的无线通信方法的示意性流程图。
图9是本申请实施例提供的终端设备侧的无线通信方法的另一示意性流程图。
图10和图11是本申请实施例提供的第一混合方案的对TCI状态的映射方式的示例。
图12至图15是本申请实施例提供的第一混合方案的对RV的映射方式的示例。
图16是本申请实施例提供的网络设备侧的无线通信方法的示意性流程图。
图17是本申请实施例提供的网络设备侧的无线通信方法的示意性流程图。
图18是本申请实施例提供的终端设备的示意性框图。
图19是本申请实施例提供的网络设备的示意性框图。
图20是本申请实施例提供的终端设备的另一示意性框图。
图21是本申请实施例提供的网络设备的另一示意性框图。
图22是本申请实施例提供的通信设备的示意性框图。
图23是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例的5G通信系统100的示例图。
如图1所示,通信系统100可以包括终端设备110、发送接收点(Transmission Reception Point,TRP)121和TRP 122。TRP 121和TRP 122可以分别通过空口与终端设备110通信。具体而言,TRP 121和TRP 122可以独立调度一个终端设备110进行数据传输。例如,终端设备110在一个时隙内分别检测来自TRP 121和TRP 122的PDCCH,用于调度多个独立的上行数据传输,且这些独立的上行传输可能正好被调度在同一个时隙里。
然而,在如图1所示的通信系统下,有可能存在多种通信场景。
例如,TRP 121和TRP 122属于同一个小区,且TRP 121和TRP 122之间的连接(backhaul)是理想的,即,可以快速动态地进行信息交互。又例如,TRP 121和TRP 122属于同一个小区,且TRP 121和TRP 122之间的连接是非理想的,即,TRP 121和TRP 122之间无法快速交互信息,只能进行相对较慢的数据交互。又例如,TRP 121和TRP 122属于不同的小区,且TRP 121和TRP 122之间的连接是理想的。又例如,TRP 121和TRP 122属于不同的小区,且TRP 121和TRP 122之间的连接是非理想的。
此外,由于可以从多个TRP给终端设备110发送不同的NR-PDCCH/NR-PDSCH,也就是说,终端设备110可通过多个下行链路接收下行信息,其中,每个下行链路均有对应的上行信息需要传输,上行信息至少包含以下一种信号:每个下行链路对应的确认/非确认(ACK/NACK)、每个下行链路对应的信道状态信息(Channel State Information,CSI)等上报信息、以及上行数据。可以看出,如果该终端设备110还需要在多个下行链路对应的上行链路上发送上行信息时,会导致终端设备的复杂度和功耗过高。针对上述问题,可以通过TRP 121或TRP 122指示终端设备110上行信号的传输方式,降低终端设备的复杂度和功耗过高。
应理解,本申请实施例仅以5G通信系统100为例进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于任一种、多个网络设备能够独立调度一个终端进行数据传输的通信系统。例如,将图1中的TRP对应成波束(beam),则可以对应的得到如图2所示的应用场景示例,该场景包括终端设备130和网络设备140,其中,终端设备130和网络设备140之间存在多个波束。
例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
本申请结合网络设备和终端设备描述了各个实施例。
其中,网络设备130可以指网络侧的任一种用来发送或接收信号的实体。例如,可以是机器类通信(MTC)的用户设备、GSM或CDMA中的基站(Base Transceiver Station,BTS)、WCDMA中的基站(NodeB)、LTE中的演进型基站(Evolutional Node B,eNB或eNodeB)、5G网络中的基站设备等。
此外,终端设备110可以是任意终端设备。具体地,终端设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,也可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G网络中的终端设备等。
为了便于理解本申请的方案,下面对相关内容进行说明。
1、统一TCI状态。
在3GPP标准化进展中,Rel.15版本中提出了TCI状态的概念,用于下行的空间域QCL(波束)指示,以及时域频域的QCL信息的传递。具体来说,准共址(QCL)关系可以简单描述为从某一个源参考信号指向一个目标参考信号的大尺度衰落的关系。对于波束指示来说,当UE在从网络(NW)得到两个源和目标参考信号的QCL关系后,在对目标参考信号的接收时可以使用之前接收源参考信号的接收波束。
但是,TCI状态的指示机制仅适用于下行的信道和信号,且在NR系统中应用起来有诸多的限制。基于此,为了给NR系统提供一个更统一的上下行波束管理机制,在参照Rel.15/16TCI状态的设计基础上,3GPP Rel.17提出了统一TCI状态的概念,以降低波束指示频率以及降低资源消耗,进而提升系统性能。
示例性地,统一TCI状态可包括联合(joint)TCI状态、分离的DL TCI状态以及分离的UL TCI状态。其中,联合(joint)TCI状态适用于上下行的信道和信号;分离的DL TCI状态仅适用于下行的信道和信号;分离的UL TCI状态仅适用于上行的信道和信号。
示例性地,下行信道(部分PDCCH,PDSCH)和信号(非周期CSI-RS)使用相同的下行发射指示波束,即可使用分离的DL TCI状态或联合TCI状态。上行信道(PUCCH,PUSCH)和信号(SRS)使用相同的上行发射波束,即可使用分离的UL TCI状态或联合TCI状态。
示例性地,统一TCI状态可以使用MAC CE和/或DCI动态更新和指示。
在NR系统中引入了基于多个TRP的下行和上行的非相干传输。其中,TRP之间的回程(backhaul)连接可以是理想的或者非理想的,理想的回程连接下TRP之间可以快速动态的进行信息交互,因此时延较小,由于非理想的回程连接下TRP之间只能准静态的进行信息交互,因此时延较大。由于不同TRP在空间位置上的不同,各TRP对应的信道大尺度特性具有明显的差异。因此,在多个TRP联合传输时,需要分别指示各个TRP对应的QCL信息。
TCI状态的配置和指示包括RRC配置,MAC-CE激活以及DCI指示。RRC通过PDSCH-Config为终端配置最多M个TCI状态,其中M的值由UE能力确定,M的最大值可以是128。MAC-CE激活最多8个TCI状态组用以映射到DCI中的3比特TCI信息域。其中MAC-CE激活的每个TCI状态组可以包含1个或2个TCI状态。如果高层参数配置DCI中包含TCI指示域时,DCI format 1_1可以从MAC激活的TCI状态组中指示一个TCI状态组。如果高层参数配置DCI中不包含TCI指示域或者数据是通过DCI format 1_0来调度时,DCI中将不包含TCI状态指示域。
一个TCI状态可以包含如下配置:
TCI状态ID,用于标识一个TCI状态;
QCL信息1。
可选的,所述TCI状态还可包括QCL信息2。
其中,一个QCL信息又包含如下信息:
QCL类型配置,可以是QCL type A,QCL typeB,QCL typeC或QCL typeD中的一个;
QCL参考信号配置,包括参考信号所在的小区ID,带宽部分(Band Width Part,BWP)ID以及参考信号的标识;参考信号的标识可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源ID或同步信号块(Synchronization Signal Block,SSB)索引。
其中,如果配置了QCL信息1和QCL信息2,至少一个QCL信息的QCL类型必须为QCL typeA,QCL typeB,QCL typeC中的一个,另一个QCL信息的QCL类型必须为QCL type D。
其中,QCL类型配置的定义如下:
'QCL-TypeA':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均时延(average delay),延时扩展(delay spread)};
'QCL-TypeB':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread)};
'QCL-TypeC':{多普勒频移(Doppler shift),平均时延(average delay)};
'QCL-TypeD':{空间接收参数(Spatial Rx parameter)}。
2、多个TRP的PDSCH传输方案。
多个传输点到用户间的信道传播特性相对独立,利用多个TRP在空域、时域、频域的重复传输,可以提高数据传输的可靠性,并降低传输的时延。对于理想回程(backhaul)连接场景,通过单个DCI可以调度多个TRP的PDSCH传输,并且多个PDSCH传输可以是频分复用(frequency division multiplexing,FDM),空分复用(Spatial Division Multiplexing,SDM),时分复用(Time Division Multiplexing,TDM)等方式。对于非理想回程(backhaul)连接场景,通过多个DCI可以调度多个TRP的PDSCH传输,并且多个PDSCH传输可以是频分复用(frequency division multiplexing,FDM),空分复用(Spatial Division Multiplexing,SDM),时分复用(Time Division Multiplexing,TDM)等方式。
换言之,多个TRP的PDSCH传输方案可具体包括以下两种:
sDCI-mPDSCH:NW使用一个DCI来调度2个PDSCH的传输,其中这个DCI来自于两个TRP中的一个,NW可以较为动态地调整使用哪个TRP。而2个PDSCH是通过两个TRP以不同的方式来传输,比如SDM,FDM,TDM的方式等。这种方式适合TRP之间有较为理想的回程(backhaul)链路。另外,在调度DCI中,可以包含1个或2个TCI状态,用来指示sTRP和mTRP传输之间的动态切换。具体来说,当DCI中的TCI域的码点指示一个TCI状态时,表示sTRP的传输;当该码点指示2个TCI状态时,表示mTRP的传输,且这个时候,每一个TCI状态都会映射到该TRP传输的特定资源上,比如码分多路复用(code division multiplexing,CDM)组(group),解调参考信号(Demodulation Reference Signal,DMRS)端口,传输层数(layers),相位跟踪参考信号(Phase-tracking RS,PTRS)端口,冗余版本(redundancy version,RV)版本等与PDSCH调度有关内容。
mDCI-mPDSCH:每一个TRP通过发送PDCCH来独立地调度PDSCH的传输,其PDSCH的传输可以在时频资源上完全重叠,部分重叠和完全不重叠。这种方式适合TRP之间不具有较为理想的回程(backhaul)链路的场景。
此外,不同传输方案的切换方法如下:
a、DCI指示2个TCI状态,且通过RRC信令配置传输方案为任一项:FDM方案A,FDM方案B, TDM方案A;
b、DCI指示2个TCI状态,通过RRC信令repetitionNumber配置重复次数,则为TDM方案B;
c、对于传输方案的动态切换,网络设备可以通过DCI指示1个TCI状态动态切换到R15的非重复传输方案;或者,DCI指示2个TCI状态,且DCI通过antenna ports字段指示DMRS端口在2个CDM组,则为SDM方案;
d、如果基站为PDSCH配置了RRC参数repetitionNumber,则UE不期望被配置RRC参数repetitionScheme。
e、如果基站为PDSCH配置了RRC参数repetitionNumber或者基站为PDSCH配置repetitionScheme为‘fdmSchemeA’或‘fdmSchemeB’或‘tdmSchemeA’,UE不期望被配置pdsch-AggregationFactor。
f、从d和e的限制可以理解为:FDM方案和TDM方案只能单独配置。
在下行非相干传输中,多个TRP可以采用不同的控制信道独立调度一个终端的多个PDSCH传输,也可以采用同一个控制信道调度不同TRP的传输。例如,在理想回程连接的情况下,可以采用同一个控制信道调度不同TRP的传输。具体地,单个DCI调度的来自2个TRP的PDSCH可以通过TCI状态(TCI state)区分,即DCI中TCI信息域可以映射到2个TCI状态,由此网络设备可以采用2个TCI状态,通过不同的传输方案向终端设备发送PDSCH。
3、基于多个TRP的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输方案。
向两个TRP传输的PUSCH可以以时分复用(Time Division Multiplexing,TDM)的方式传输。终端设备向不同TRP上传输的PUSCH对准相应的TRP进行模拟波束赋形,即可以通过空间域区分不同的PUSCH,提供上行的频谱效率。具体地,网络设备也可以通过单个DCI或多个DCI调度终端设备向两个TRP传输PUSCH。例如,该多个DCI可以通过不同的CORESET来承载。具体的,网络侧配置多个CORESET组,每个TRP采用各自的CORESET组中的CORESET进行调度,即可以通过CORESET组来区分不同的TRP。例如,网络设备可以为每个CORESET配置一个CORESET组索引,不同的索引对应不同的TRP。
其中,TDM方案包括重复类型A(repetition type A)和重复类型B(repetition type B)。重复类型A也可称为TAM方案A,和重复类型B也可称为TAM方案B,其配置方法为:通过RRC配置两种方案的任意一种。
图3是本申请实施例提供的多个TRP进行上行传输的示意图。
如图3所示,如果终端设备配置有多个天线面板(panel),且支持在多个天线面板上向多个TRP同时传输上行信息,则可以同时传输在多个天线面板向多个TRP发送多个上行信息,以提高上行的频谱效率;其中,多个天线面板的上行传输可以是通过单DCI调度的,也可以是通过多个DCI调度的。例如,终端设备可以在天线面板1上向TRP 1发送PUSCH的同时,在天线面板2上向TRP 1发送PUSCH,以提高PUSCH的频谱效率;其中,天线面板1和天线面板1的PUSCH可以是通过单DCI调度,例如TRP 1发送的DCI;天线面板1和天线面板1的PUSCH也可通过多个DCI调度;例如TRP 1发送的DCI和TRP 2发送的DCI。
4、不同传输方案下冗余版本的映射方法。
对于多个TRP的PDSCH传输方案,FDM方案B以FDM方式传输的2个PDSCH,分别采用同一组RV图样下n=0和n=1对应的RV。对于多个TRP的PUSCH传输方案中的重复类型A和重复类型B,与第一个SRS资源集(resource set)关联的PUSCH采用第一组RV图样,与另外一个SRS资源集关联的PUSCH采用另一组RV图样。
5、各个传输方案的系统框架。
在一些实施例中,PUSCH 1和PUSCH 2是通过SDM方式发送的,其传输方案可称为SDM方案。
在一些实施例中,在SDM传输方案中,PUSCH 1和PUSCH 2对应的时频资源相同。
SDM方案A:目标上行信息的不同传输层集合与不同的空间参数关联,例如目标上行信息的部分传输层与第一空间参数关联,此部分传输层记为第一上行信息,目标上行信息的另一部分传输层与第二空间参数关联,该另一部分传输层记为第二上行信息。
具体的,在SDM方案A中,以目标上行信息为PUSCH,空间参数为TCI状态为例,一个PUSCH的不同传输层集合可以通过终端设备的不同天线面板(panel)发送给不同的TRP,例如,通过不同的天线面板发送给不同TRP的不同传输层集合可以认为是不同的PUSCH,或不同的PUSCH发送机会。例如通过天线面板1发送的PUSCH的部分传输层与第一TCI状态关联,记为PUSCH 1,通过天线面板2发送的PUSCH的另一部分传输层与第二TCI状态关联,记为PUSCH 2。可以理解为,PUSCH 1,PUSCH 2为同一个传输块(TB)的不同传输层。例如,如图4所示,PUSCH 1为同一个TB的层0传输层,PUSCH 2为同一个TB的层1传输层。当然,在其他可替代实施例中,PUSCH 1和PUSCH 2也 可以是同一个TB的其他传输层或其他数量个传输层,本申请对此不作具体限定。
SDM方案B:目标上行信息的重复传输(可以是不同的冗余版本(Redundancy Version,RV))与不同的空间参数关联。即多个上行信息是目标上行信息的与不同空间参数关联的重复传输。
具体的,在SDM方案B中,以目标上行信息为PUSCH为例,一个PUSCH的重复传输通过终端设备的不同天线面板发送给不同的TRP,例如,通过终端设备的天线面板1发送的PUSCH记为PUSCH 1,通过UE的天线面板2发送的PUSCH记为PUSCH 2。可以理解为,PUSCH 1,PUSCH 2为同一个TB的重复传输。例如,如图4所示,PUSCH 1为同一个TB的RV 0,PUSCH 2为同一个TB的RV 1。当然,在其他可替代实施例中,PUSCH 1和PUSCH 2也可以是同一个TB的其他RV,本申请对此不作具体限定。
在一些实施例中,PUSCH 1和PUSCH 2是通过FDM方式发送的,其传输方案可称为FDM方案。
在一些实施例中,在FDM传输方案中,PUSCH 1和PUSCH 2的时域资源相同,PUSCH 1和PUSCH 2的频域资源是不重叠的。
FDM方案A:目标上行信息的不同部分与不同的空间参数关联,即多个上行信息是目标上行信息的与不同空间参数关联的不同部分。
在FDM方案A中,TB对应单个PUSCH传输时机,每个TCI状态与非重叠频域资源分配相关。
具体的,在FDM方案A中,以目标上行信息为PUSCH为例,一个PUSCH的不同部分(例如不同的信息比特)通过终端设备的不同天线面板发送给不同的TRP,例如,通过终端设备的天线面板1发送的PUSCH的部分记为PUSCH 1,通过终端设备的天线面板2发送的PUSCH的部分记为PUSCH 2。PUSCH 1,PUSCH 2分别对应同一个PUSCH发送机会。PUSCH 1,PUSCH 2分别关联不重叠的频域资源。例如,如图5所示,PUSCH 1的PUSCH发送机会关联频域资源0,PUSCH 2的PUSCH发送机会关联频域资源1,且频域资源0和频域资源1不重叠。
FDM方案B:目标上行信息的重复传输(可以是不同的RV或相同的RV)与不同的空间参数关联。即多个上行信息是目标上行信息的与不同空间参数关联的重复传输。
在FDM方案B中,同一TB对应两个PUSCH传输时机,每个TCI状态与一个PUSCH传输时机相关联,该两个PUSCH传输时机具有非重叠频域资源。
具体的,在FDM方案B中,以目标上行信息为PUSCH为例,一个PUSCH的重复传输通过终端设备的不同天线面板发送给不同的TRP,例如,通过终端设备的天线面板1发送的PUSCH记为PUSCH 1,通过UE的天线面板2发送的PUSCH记为PUSCH 2。PUSCH 1,PUSCH 2分别对应2个PUSCH发送机会。PUSCH 1,PUSCH 2的2个PUSCH发送机会分别关联不重叠的频域资源。例如,如图5所示,PUSCH 1的PUSCH发送机会关联频域资源0,PUSCH 2的PUSCH发送机会关联频域资源1,且频域资源0和频域资源1不重叠。
在一些实施例中,PUSCH 1和/或PUSCH 2是通过单频网络(Single Frequency Network,SFN)方式发送的,其传输方案可称为SFN方案。
在一些实施例中,在该SFN传输方案中,PUSCH 1和PUSCH 2的时域资源相同,频域资源相同,并且DMRS端口也相同。
示例性地,在SFN传输方案中,目标上行信息的重复传输与不同的空间参数关联。即多个上行信息是目标上行信息的与不同空间参数关联的重复传输。以目标上行信息为PUSCH为例,一个PUSCH的重复传输通过终端设备的不同天线面板发送给不同的TRP,例如,如图6所示,通过终端设备的天线面板1发送的PUSCH记为PUSCH 1,通过终端设备的天线面板2发送的PUSCH记为PUSCH 2。
在一些实施例中,PUSCH 1和PUSCH 2是通过TDM方式发送的,其传输方案可称为TDM方案。
在一些实施例中,在TDM传输方案中,PUSCH 1和PUSCH 2的频域资源相同,PUSCH 1和PUSCH 2的时域资源是不重叠的。
重复类型A(基于slot的PUSCH):在K个连续的时隙的相同符号位置发送两组PUSCH(相同或不同的RV),每组PUSCH关联一个TCI状态。
在重复类型A中,同一TB对应两个PUSCH传输时机,每个TCI状态与一个PUSCH传输时机相关联,该两个PUSCH传输时机具有在K个连续的时隙的相同符号位置中非重叠的时域资源。
具体的,在重复类型A中,以目标上行信息为PUSCH为例,一个PUSCH的重复传输通过终端设备的不同天线面板发送给不同的TRP,例如,通过终端设备的天线面板1发送的PUSCH记为PUSCH 1,通过UE的天线面板2发送的PUSCH记为PUSCH 2。PUSCH 1,PUSCH 2分别对应2个PUSCH发送机会。PUSCH 1,PUSCH 2的2个PUSCH发送机会分别关联不重叠的时域资源。例如,如图6所示,PUSCH 1的PUSCH发送机会关联时域资源0,PUSCH 2的PUSCH发送机会关联时域资源1,且时域资源0和时域资源1为K个连续的时隙的相同符号位置中非重叠的时域资源。
重复类型B(基于mini-slot的PUSCH):在K次名义(nominal)发送机会发送两组PUSCH(相同或不同的RV),每组PUSCH关联一个TCI状态。
在重复类型A中,同一TB对应两个PUSCH传输时机,每个TCI状态与一个PUSCH传输时机相关联,该两个PUSCH传输时机具有在K次名义发送机会中非重叠的时域资源。
具体的,在重复类型B中,以目标上行信息为PUSCH为例,一个PUSCH的重复传输通过终端设备的不同天线面板发送给不同的TRP,例如,通过终端设备的天线面板1发送的PUSCH记为PUSCH 1,通过UE的天线面板2发送的PUSCH记为PUSCH 2。PUSCH 1,PUSCH 2分别对应2个PUSCH发送机会。PUSCH 1,PUSCH 2的2个PUSCH发送机会分别关联不重叠的时域资源。例如,如图6所示,PUSCH 1的PUSCH发送机会关联时域资源0,PUSCH 2的PUSCH发送机会关联时域资源1,且时域资源0和时域资源1为K次名义发送机会中非重叠的时域资源。
结合图7来说,终端设备可以通过天线面板1发送的PUSCH 1与第一TCI状态关联,通过天线面板2发送的PUSCH 2与第二TCI状态关联;其中,PUSCH 1和PUSCH 2均为一个PUSCH的重复传输,例如可以是这一个PUSCH的相同RV或不同RV;PUSCH 1和PUSCH 1所在的时域资源为K次名义(nominal)发送机会。
由于FDM方案和TDM方案仅支持通过无线资源控制(Radio Resource Control,RRC)信令配置,而SDM方案只能通过下行控制信息(Downlink Control Information,DCI)中的天线端口(antenna port)字段指示2个解调参考信号(Demodulation Reference Signal,DMRS)码分复用(Code Division Multiplexing,CDM)组(groups),并将这两个DMRS CDM组与不同的TCI状态进行关联,以实现网络设备以SDM的方式发送PDSCH,因此,这种传输方案的配置机制在NR系统中应用起来有诸多的限制,影响并降低了系统性能。
有鉴于此,本申请实施例提供了一种无线通信方法、终端设备以及网络设备,能够提升系统性能。
图8是本申请实施例提供的无线通信方法210的示意性流程图,所述无线通信方法210可以由终端设备执行。例如图1所示的终端设备。
如图8所示,所述方法210可包括:
S211,接收网络设备发送的第一信令,所述第一信令用于配置第一传输方案;
S212,根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;
S213,根据所述第二传输方案,向所述网络设备发送或接收所述网络设备发送的所述第一信息。
基于以上技术方案,接收第一信令,并根据第一信令配置的第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案,能够避免仅通过半静态信令或仅通过动态信令向终端设备直接配置第二传输方案,有利于提升数据传输的可靠性、降低数据传输时延以及保证分集增益的平衡,进而提升系统性能。
示例性地,所述第一信令用于半静态配置所述第一传输方案。例如,所述第一信令可以是半静态信令,所述半静态信令包括但不限于无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)信令。
示例性地,所述第一信息可以是上行信息,也可以是下行信息。上行信息也可以等同替换为上行信道,下行信息可以等同替换为下行信道。
示例性地,所述上行信道可以包括物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control channel,PUCCH)、物理上行共享信道(Physical Uplink Shared channel,PUSCH)等。上行参考信号可以包括上行解调参考信号(Demodulation Reference Signal,DMRS)、探测参考信号(Sounding Reference Signal,SRS)、相位跟踪参考信号(PT-RS)等。其中,上行DMRS可用于上行信道的解调,SRS可用于上行信道的测量、上行时频同步或相位跟踪,PT-RS也可用于上行信道的测量、上行时频同步或相位跟踪。
应理解,本申请实施例中可以包括和上述名称相同、功能不同的上行物理信道或上行参考信号,也可以包括和上述名称不同、功能相同的上行物理信道或上行参考信号,本申请对此并不限定。
示例性地,所述空间参数包括以下中的至少一种:
传输配置指示(Transmission configuration indication,TCI)状态信息,天线面板(panel)信息,TRP信息,控制资源集(Control Resource Set,CORESET)组信息,参考信号集合信息,能力集合信息,波束信息等。其中,天线面板为终端设备用于发送的逻辑实体,处于不同天线面板上的天线的发送波束和/或接收波束可以独立调整。
在一些实施例中,天线面板信息可以包括天线面板标识(Identity,ID)或索引。
在一些实施例中,TRP信息可以包括TRP ID或索引。
在一些实施例中,CORESET组信息可以包括CORESET组的ID或索引。
在一些实施例中,TCI状态(state)信息可以包括统一的TCI状态(unified TCI state)或上行TCI状态(UL TCI state),或联合TCI state(joint TCI state)。
在一些实施例中,参考信号集合信息可以为同步信号块(Synchronization Signal Block,SSB)资源集合信息或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源集合信息或者SRS资源集合信息。
例如,参考信号集合信息可以包括参考信号集合的索引,例如SSB集合的索引,CSI-RS资源的索引,或SRS资源的索引。
在一些实施例中,参考信号信息可以包括SSB资源信息,CSI-RS资源信息或SRS资源信息。例如,参考信号信息可以为SRS资源、SSB资源或CSI-RS资源的索引。
在一些实施例中,波束信息可以包括波束ID或索引。
在本申请实施例中,波束也可以称为空间域传输滤波器(Spatial domain transmission filter或者Spatial domain filter for transmission),或者,空间域接收滤波器(Spatial domain reception filter或者Spatial domain filter for reception)或者空间接收参数(Spatial Rx parameter)。
在一些实施例中,能力集合信息可以包括一个或多个参数。例如,能力集合信息可以为终端设备支持的能力集合或终端设备支持的能力集合关联的参考信号信息。
在一些实施例中,该能力集合信息包括以下但不限于以下中的至少之一:
最大SRS端口数,最大上行传输层数,码本子集类型,上行满功率发送模式,SRS天线切换能力,SRS载波切换能力,同时发送的SRS资源个数、上行数据传输的最大调制方式、下行数据传输的最大调制方式、终端设备支持的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程数目、终端设备支持的信道带宽、所述终端设备支持的发送天线数目、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)处理能力、PUSCH处理能力、终端设备的功率节省能力、终端设备的覆盖增强能力、终端设备数据传输速率提升能力、终端设备的短时延处理能力、终端设备的小数据传输能力、终端设备非活动数据传输能力、终端设备传输可靠性能力、终端设备的高可靠低时延通信(Ultra-Reliable and Low Latency Communication,URLLC)数据传输能力。
应当理解,本申请中涉及的第一TCI状态和第二TCI状态仅仅为所述至少一个空间参数的示例,不应理解为对本申请的限制,例如,在其他可替代实施例中,第一TCI状态和第二TCI状态也可以替换为其他空间参数,例如第一TCI状态和第二TCI状态也可以分别替换为第一CORESET组和第二CORESET组。
在一些实施例中,所述第一信令用于在候选传输方案中指示所述第一传输方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
示例性地,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B时,若所述第一信令为RRC信令,则所述第一信令的结构可以为:repetitionScheme-r18 ENUMERATED{fdmSchemeA,fdmSchemeB,repetitionTypeA,repetitionTypeB,sdmSchemeA,sdmSchemeB,sfnScheme}。
在一些实施例中,所述候选传输方案还包括以下中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案还包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
当然,在其他可替代实施例中,所述候选传输方案也可以是其他传输方案的组合,本申请实施例对此不作具体限定。
示例性地,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案、SDM方案、时分复用TDM方案、SFN方案。
示例性地,所述候选传输方案包括以下中的至少一种:频分复用FDM方案A、FDM方案B、空分 复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案。
示例性地,所述候选传输方案包括以下中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,所述候选传输方案包括以下中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案。
示例性地,所述候选传输方案包括以下中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述第一信令中不同的子信令用于配置不同的传输方案。
示例性地,所述第一信令中的不同子信令用于配置所述候选传输方案中不同的传输方案。
示例性地,可以通过不同的子信令配置以下传输方案:
频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B。
示例性地,可以通过不同的子信令配置以下传输方案:
FDM方案、SDM方案、时分复用TDM方案、SFN方案。
示例性地,可以通过不同的子信令配置以下传输方案:
频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案、SDM方案、时分复用TDM方案、SFN方案。
示例性地,可以通过不同的子信令配置以下传输方案:
频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案。
示例性地,可以通过不同的子信令配置以下传输方案:
频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,可以通过不同的子信令配置以下传输方案:
FDM方案、SDM方案、时分复用TDM方案、SFN方案、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案。
示例性地,可以通过不同的子信令配置以下传输方案:
FDM方案、SDM方案、时分复用TDM方案、SFN方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,所述第一信令为RRC信令时,所述第一信令中的子信令也是RRC信令,相当于,可以通过不同的RRC信令配置不同的传输方案。当然,所述第一信令也可以为其他信令,本申请对此不作具体限定。
在一些实施例中,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
示例性地,FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案这5种传输方案对应5个不同的子信令,所述第一信令包括这5个子信令中的一个子信令;或者,FDM方案、SDM方案、SFN方案这3种传输方案对应3个不同的子信令,所述第一信令包括这3个子信令中的一个子信令。
在一些实施例中,所述第一信令不用于同时配置以下传输方案中的至少两种:FDM方案A、FDM 方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令不用于同时配置以下传输方案中的至少两种:FDM方案、SDM方案、SFN方案。
示例性地,终端设备不期望或不希望所述第一信令用于同时配置以下传输方案中的至少两种:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令不用于同时配置以下传输方案中的至少两种:FDM方案、SDM方案、SFN方案。
当然,在其他可替代实施例中,所述第一信令不用于同时配置以下传输方案:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案、FDM方案、SDM方案、SFN方案。
在一些实施例中,所述S212可包括:
若所述至少一个空间参数的数量为第一预设值,则根据所述第一传输方案确定所述第二传输方案。
在一些实施例中,所述S212可包括:
若所述第一传输方案为FDM方案,则将第二信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为SDM方案,则将第三信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为TDM方案,则将第四信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案、重复类型A或重复类型B,则将所述第一传输方案确定为所述第二传输方案;
其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
示例性地,所述第二信令包括但不限于:RRC信令或MAC CE或DCI。
示例性地,所述第二信令可以为RRC信令,其信令结构可以实现为:
FDMScheme-r18 ENUMERATED{fdmSchemeA,fdmSchemeB}。
示例性地,所述第二信令可以为网络设备发送的RV指示信息,对于FDM方案A只应用单一RV,对于FDM方案B应用不同的RV。
也即是说,若所述第一传输方案为FDM方案且所述RV指示信息指示的RV为单一RV,则可以将FDM方案A确定为所述第二传输方案,若所述第一传输方案为FDM方案且所述RV指示信息指示的RV为多个RV,则可以将FDM方案B确定为所述第二传输方案。
示例性地,所述第三信令包括但不限于:RRC信令或MAC CE或DCI。
示例性地,所述第三信令可以为RRC信令,其信令结构可以实现为:
SDMscheme-r18 ENUMERATED{sdmSchemeA,sdmSchemeB}。
示例性地,所述第三信令可以为网络设备发送的RV指示信息,对于SDM方案A只应用单一RV,对于SDM方案B应用不同的RV。
也即是说,若所述第一传输方案为SDM方案且所述RV指示信息指示的RV为单一RV,则可以将SDM方案A确定为所述第二传输方案,若所述第一传输方案为SDM方案且所述RV指示信息指示的RV为多个RV,则可以将SDM方案B确定为所述第二传输方案。
示例性地,所述第四信令包括但不限于:RRC信令或MAC CE或DCI。
示例性地,所述第四信令可以为RRC信令,其信令结构可以实现为:
TDMscheme-r18 ENUMERATED{tdmSchemeA,tdmSchemeB}。
在一些实施例中,所述第一预设值为2。
示例性地,所述至少一个空间参数的数量为2包括但不限于以下情况中的任一种情况:
TCI状态的数量为2;
SRS资源集的数量为2;
SRS资源集的数量为2,每个SRS资源集与一个TCI状态关联。
示例性地,所述至少一个空间参数可通过DCI或MAC CE指示。
示例性地,TCI状态的数量为2,包括:DCI中指示的联合(joint)TCI状态或UL TCI状态的数量为2。例如,DCI格式1_1或1_2,0_1或0_2中的传输配置指示(Transmission Configuration Indication)字段指示的联合(joint)TCI状态或UL TCI状态的数量为2。
示例性地,TCI状态的数量为2,包括:MAC CE激活的联合(joint)TCI状态或UL TCI状态的数量为2。
示例性地,SRS资源集的数量为2,包括:SRS资源集指示(SRS resource set indicator)字段的状态为‘10’或‘11’。其中,SRS资源集指示(SRS resource set indicator)字段可以是DCI格式0_1(DCI format 0_1)或0_2中的字段。
当然,在其他可替代实施例中,所述第一预设值可以是大于1的任意整数,本申请实施例对此不作具体限定。
在一些实施例中,若所述至少一个空间参数的数量为第二预设值,则所述第二传输方案为采用所述第二预设值个空间参数在至少一个时域发送机会上发送所述第一信息。
在一些实施例中,若所述第一传输方案为TDM方案、重复类型A或重复类型B,则所述第二传输方案为采用所述第二预设值个空间参数在多个时域发送机会重复发送第一信息;或者,若所述第一传输方案为FDM方案、SFN方案、SDM方案、FDM方案A、FDM方案B、SDM方案A或SDM方案B,则所述第二传输方案为采用所述第二预设值个空间参数在一个时域发送机会发送第一信息。例如,第二预设值个空间参数为预定义的空间参数,或者为默认(default)的空间参数。例如第二预设值个空间参数为索引最小的空间参数,或者为与RAR UL grant调度的PUSCH相同的空间参数,或者与初始接入阶段的SSB准共址的空间参数。例如,采用所述第二预设值个空间参数在一个时域发送机会发送第一信息,可以理解为,第一信息的时域资源为RRC(例如网络设备为第一信息配置时域资源的RRC)和/或DCI(例如TDRA字段)指示的时域资源,第一信息的频域资源为RRC(例如网络设备为第一信息配置频域资源的RRC)和/或DCI(例如FDRA字段)指示的频域资源。
在一些实施例中,所述第二预设值为1。
示例性地,所述至少一个空间参数的数量为1包括但不限于以下情况中的任一种情况:
TCI状态的数量为1;
SRS资源集的数量为1;
SRS资源集的数量为1,且与一个TCI状态关联。
示例性地,所述至少一个空间参数可通过DCI或MAC CE指示。
示例性地,TCI状态的数量为1,包括:DCI中指示的联合(joint)TCI状态或UL TCI状态的数量为1。例如,DCI格式1_1或1_2,0_1或0_2中的传输配置指示(Transmission Configuration Indication)字段指示的联合(joint)TCI状态或UL TCI状态的数量为1。
示例性地,TCI状态的数量为1,包括:MAC CE激活的联合(joint)TCI状态或UL TCI状态的数量为1。
示例性地,SRS资源集的数量为1,包括:SRS资源集指示(SRS resource set indicator)字段的状态为,00’或‘01’。其中,SRS资源集指示(SRS resource set indicator)字段可以是DCI格式0_1或0_2中的字段。
当然,在其他可替代实施例中,所述第二预设值可以是不等于所述第一预设值的任意整数,本申请实施例对此不作具体限定。
本申请实施例中,通过考虑所述至少一个空间参数的数量,能够使得终端设备确定是否基于指示的基于多个TRP的传输方案发送或接收所述第一信息,即所述至少一个空间参数的数量为所述第二预设值时,终端设备可以采用所述第二预设值个空间参数在多个时域发送机会重复发送第一信息或采用所述第二预设值个空间参数在一个时域发送机会发送第一信息,能够避免仅通过半静态信令或仅通过动态信令向终端设备直接配置第二传输方案,有利于提升数据传输的可靠性、降低数据传输时延以及保证分集增益的平衡,进而提升系统性能。
图9是本申请实施例提供的无线通信方法310的示意性流程图,所述无线通信方法310可以由终端设备执行。例如图1所示的终端设备。
如图9所示,所述方法310可包括:
S311,确定第一混合方案,所述第一混合方案包括多个传输方案;
S312,根据所述第一混合方案,向网络设备发送或接收所述网络设备发送的第二信息。
通过确定第一混合方案,并根据所述第一混合方案,向网络设备发送或接收所述网络设备发送的第二信息,能够支持终端设备按照多种传输方案向网络设备发送或接收所述网络设备发送的第二信息,能够提升数据传输的可靠性、降低数据传输时延以及保证分集增益的平衡,进而能够提升系统性能。
在一些实施例中,第一混合方案包括多个传输方案可以理解为第一混合方案是多种传输方案的结合,或者可以理解为第一混合方案具有多种传输方案的特征。
示例性地,所述第二信息可以是上行信息,也可以是下行信息。上行信息也可以等同替换为上行信道,下行信息可以等同替换为下行信道。
示例性地,所述上行信道可以包括物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control channel,PUCCH)、物理上行共享信道(Physical Uplink Shared channel,PUSCH)等。上行参考信号可以包括上行解调参考信号(Demodulation Reference Signal,DMRS)、探测参考信号(Sounding Reference Signal,SRS)、相位跟踪参考信号(PT-RS)等。其中,上行DMRS可用于上行信道的解调,SRS可用于上行信道的测量、上行时频同步或相位跟踪,PT-RS也可用于上行 信道的测量、上行时频同步或相位跟踪。
应理解,本申请实施例中可以包括和上述名称相同、功能不同的上行物理信道或上行参考信号,也可以包括和上述名称不同、功能相同的上行物理信道或上行参考信号,本申请对此并不限定。
在一些实施例中,所述第一混合方案为以下方案中的任意一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,所述第一混合方案可以是将FDM方案,SDM方案,SFN方案中的至少一项与TDM方案混合后的方案。
示例性地,所述第一混合方案可以是将频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B中的至少一项与TDM方案混合后的方案。
在一些实施例中,所述S311可包括:
接收所述网络设备发送的第五信令;
将所述第五信令配置的传输方案确定为所述第一混合方案,或根据所述第五信令配置的传输方案确定所述第一混合方案。
示例性地,所述第五信令可以是半静态信令,所述半静态信令包括但不限于无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)信令。
在一些实施例中,所述S311可包括:
若所述第五信令配置的传输方案为FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案,则将所述第五信令配置的传输方案,确定为所述第一混合方案;
若所述第五信令配置的传输方案为FDM方案,或所述第五信令配置的传输方案为FDM方案和TDM方案的混合方案,则将第二信令指示的传输方案和第四信令指示的传输方案的混合方案,确定为所述第一混合方案;或者,
若所述第五信令配置的传输方案为SDM方案,或所述第五信令配置的传输方案为SDM方案和TDM方案的混合方案,则将第三信令指示的传输方案和所述第四信令指示的传输方案的混合方案,确定为所述第一混合方案;或者,
若所述第五信令配置的传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B或SFN方案,则将所述第五信令配置的传输方案和第四信令指示的传输方案的混合方案,确定为所述第一混合方案;或者,
其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
示例性地,所述第二信令包括但不限于:RRC信令或MAC CE或DCI。
示例性地,所述第二信令可以为RRC信令,其信令结构可以实现为:
FDMScheme-r18 ENUMERATED{fdmSchemeA,fdmSchemeB}。
示例性地,所述第二信令可以为网络设备发送的RV指示信息,对于FDM方案A只应用单一RV,对于FDM方案B应用不同的RV。
也即是说,若所述第一传输方案为FDM方案且所述RV指示信息指示的RV为单一RV,则可以将FDM方案A确定为所述第二信令指示的传输方案,若所述第一传输方案为FDM方案且所述RV指示信息指示的RV为多个RV,则可以将FDM方案B确定为所述第二信令指示的传输方案。
示例性地,所述第三信令包括但不限于:RRC信令或MAC CE或DCI。
示例性地,所述第三信令可以为RRC信令,其信令结构可以实现为:
SDMscheme-r18 ENUMERATED{sdmSchemeA,sdmSchemeB}。
示例性地,所述第三信令可以为网络设备发送的RV指示信息,对于SDM方案A只应用单一RV,对于SDM方案B应用不同的RV。
也即是说,若所述第一传输方案为SDM方案且所述RV指示信息指示的RV为单一RV,则可以将SDM方案A确定为所述第三信令指示的传输方案,若所述第一传输方案为SDM方案且所述RV指 示信息指示的RV为多个RV,则可以将SDM方案B确定为所述第三信令指示的传输方案。
示例性地,所述第四信令包括但不限于:RRC信令或MAC CE或DCI。
示例性地,所述第四信令可以为RRC信令,其信令结构可以实现为:
TDMscheme-r18 ENUMERATED{tdmSchemeA,tdmSchemeB}。
在一些实施例中,所述第五信令用于配置候选传输方案中的传输方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
示例性地,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B时,若所述第一信令为RRC信令,则所述第一信令的结构可以为:repetitionScheme-r18 ENUMERATED{fdmSchemeA,fdmSchemeB,repetitionTypeA,repetitionTypeB,sdmSchemeA,sdmSchemeB,sfnScheme}。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
当然,在其他可替代实施例中,所述候选传输方案也可以是其他传输方案的组合,本申请实施例对此不作具体限定。
示例性地,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案、SDM方案、时分复用TDM方案、SFN方案。
示例性地,所述候选传输方案包括以下方案中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,所述候选传输方案包括以下中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案。
示例性地,所述候选传输方案包括以下中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,所述候选传输方案包括以下中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案。
示例性地,所述候选传输方案包括以下中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述第五信令中不同的子信令用于配置不同的传输方案。
示例性地,所述第一信令中的不同子信令用于配置所述候选传输方案中不同的传输方案。
示例性地,可以通过不同的子信令配置以下传输方案:
频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B。
示例性地,可以通过不同的子信令配置以下传输方案:
FDM方案、SDM方案、时分复用TDM方案、SFN方案。
示例性地,可以通过不同的子信令配置以下传输方案:
频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案、SDM方案、时分复用TDM方案、SFN方案。
示例性地,可以通过不同的子信令配置以下传输方案:
FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案。
示例性地,可以通过不同的子信令配置以下传输方案:
FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,可以通过不同的子信令配置以下传输方案:
FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,可以通过不同的子信令配置以下传输方案:
频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案。
示例性地,可以通过不同的子信令配置以下传输方案:
频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,可以通过不同的子信令配置以下传输方案:
FDM方案、SDM方案、时分复用TDM方案、SFN方案、FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案。
示例性地,可以通过不同的子信令配置以下传输方案:
FDM方案、SDM方案、时分复用TDM方案、SFN方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
示例性地,所述第一信令为RRC信令时,所述第一信令中的子信令也是RRC信令,相当于,可以通过不同的RRC信令配置不同的传输方案。当然,所述第一信令也可以为其他信令,本申请对此不作具体限定。
在一些实施例中,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
示例性地,FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案这5种传输方案对应5个不同的子信令,所述第五信令包括这5个子信令中的一个子信令;或者,FDM方案、SDM方案、SFN方案这3种传输方案对应3个不同的子信令,所述第五信令包括这3个子信令中的一个子信令。
在一些实施例中,所述第五信令不用于同时配置以下方案中的至少两种:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令不用于同时配置以下方案中的两种:FDM方案、SDM方案、SFN方案。
示例性地,终端设备不期望或不希望所述第五信令用于同时配置以下传输方案中的至少两种:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令不用于同时配置以下传输方案中的至少两种:FDM方案、SDM方案、SFN方案。
当然,在其他可替代实施例中,所述第五信令不用于同时配置以下方案中的至少两种:FDM方案 A、FDM方案B、SDM方案A、SDM方案B、SFN方案、FDM方案、SDM方案、SFN方案。
在一些实施例中,所述S312可包括:
若所述第二信息关联的至少一个空间参数的数量为第一预设值,则根据所述第一混合方案向所述网络设备发送或接收所述网络设备发送的所述第二信息。
示例性地,所述空间参数包括以下中的至少一种:
传输配置指示(Transmission configuration indication,TCI)状态信息,天线面板(panel)信息,TRP信息,控制资源集(Control Resource Set,CORESET)组信息,参考信号集合信息,能力集合信息,波束信息等。其中,天线面板为终端设备用于发送的逻辑实体,处于不同天线面板上的天线的发送波束和/或接收波束可以独立调整。
在一些实施例中,天线面板信息可以包括天线面板标识(Identity,ID)或索引。
在一些实施例中,TRP信息可以包括TRP ID或索引。
在一些实施例中,CORESET组信息可以包括CORESET组的ID或索引。
在一些实施例中,TCI状态(state)信息可以包括统一的TCI状态(unified TCI state)或上行TCI状态(UL TCI state),或联合TCI state(joint TCI state)。
在一些实施例中,参考信号集合信息可以为同步信号块(Synchronization Signal Block,SSB)资源集合信息或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源集合信息或者SRS资源集合信息。
例如,参考信号集合信息可以包括参考信号集合的索引,例如SSB集合的索引,CSI-RS资源的索引,或SRS资源的索引。
在一些实施例中,参考信号信息可以包括SSB资源信息,CSI-RS资源信息或SRS资源信息。例如,参考信号信息可以为SRS资源、SSB资源或CSI-RS资源的索引。
在一些实施例中,波束信息可以包括波束ID或索引。
在本申请实施例中,波束也可以称为空间域传输滤波器(Spatial domain transmission filter或者Spatial domain filter for transmission),或者,空间域接收滤波器(Spatial domain reception filter或者Spatial domain filter for reception)或者空间接收参数(Spatial Rx parameter)。
在一些实施例中,能力集合信息可以包括一个或多个参数。例如,能力集合信息可以为终端设备支持的能力集合或终端设备支持的能力集合关联的参考信号信息。
在一些实施例中,该能力集合信息包括以下但不限于以下中的至少之一:
最大SRS端口数,最大上行传输层数,码本子集类型,上行满功率发送模式,SRS天线切换能力,SRS载波切换能力,同时发送的SRS资源个数、上行数据传输的最大调制方式、下行数据传输的最大调制方式、终端设备支持的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程数目、终端设备支持的信道带宽、所述终端设备支持的发送天线数目、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)处理能力、PUSCH处理能力、终端设备的功率节省能力、终端设备的覆盖增强能力、终端设备数据传输速率提升能力、终端设备的短时延处理能力、终端设备的小数据传输能力、终端设备非活动数据传输能力、终端设备传输可靠性能力、终端设备的高可靠低时延通信(Ultra-Reliable and Low Latency Communication,URLLC)数据传输能力。
应当理解,本申请中涉及的第一TCI状态和第二TCI状态仅仅为所述至少一个空间参数的示例,不应理解为对本申请的限制,例如,在其他可替代实施例中,第一TCI状态和第二TCI状态也可以替换为其他空间参数,例如第一TCI状态和第二TCI状态也可以分别替换为第一CORESET组和第二CORESET组。
在一些实施例中,所述第一预设值为2。
示例性地,所述至少一个空间参数的数量为2包括但不限于以下情况中的任一种情况:
TCI状态的数量为2;
SRS资源集的数量为2;
SRS资源集的数量为2,每个SRS资源集与一个TCI状态关联。
示例性地,所述至少一个空间参数可通过DCI或MAC CE指示。
示例性地,TCI状态的数量为2,包括:DCI中指示的联合(joint)TCI状态或UL TCI状态的数量为2。例如,DCI格式1_1或1_2,0_1或0_2中的传输配置指示(Transmission Configuration Indication)字段指示的联合(joint)TCI状态或UL TCI状态的数量为2。
示例性地,TCI状态的数量为2,包括:MAC CE激活的联合(joint)TCI状态或UL TCI状态的数量为2。
示例性地,SRS资源集的数量为2,包括:SRS资源集指示(SRS resource set indicator)字段的状 态为‘10’或‘11’。其中,SRS资源集指示(SRS resource set indicator)字段可以是DCI格式0_1或0_2中的字段。
当然,在其他可替代实施例中,所述第一预设值可以是大于1的任意整数,本申请实施例对此不作具体限定。
在一些实施例中,所述方法310还可包括:
若所述至少一个空间参数的数量为第二预设值,则采用所述第二预设值个空间参数在多个时域发送机会上,向所述网络设备重复发送或重复接收所述网络设备发送的所述第二信息。例如,第二预设值个空间参数为预定义的空间参数,或者为默认(default)的空间参数。例如第二预设值个空间参数为索引最小的空间参数,或者为与RAR UL grant调度的PUSCH相同的空间参数,或者与初始接入阶段的SSB准共址的空间参数。例如,采用所述第二预设值个空间参数在多个时域发送机会向所述网络设备重复发送第二信息,或者接收所述网络设备发送的所述第二信息,可以理解为,第二信息的时域资源为RRC(例如网络设备为第二信息配置时域资源的RRC)和/或MAC CE(例如网络设备为第二信息配置时域资源的MAC CE)和/或DCI(例如时域资源分配(time domain resource allocation,TDRA)字段)指示的多个时域资源,第二信息的频域资源为RRC(例如网络设备为第二信息配置时域资源的RRC)和/或(例如网络设备为第二信息配置频域资源的MAC CE)和/或DCI(例如频域资源分配(frequency domain resource allocation,FDRA)字段)指示的频域资源。
在一些实施例中,所述第二预设值为1。
示例性地,所述至少一个空间参数的数量为1包括但不限于以下情况中的任一种情况:
TCI状态的数量为1;
SRS资源集的数量为1;
SRS资源集的数量为1,且与一个TCI状态关联。
示例性地,所述至少一个空间参数可通过DCI或MAC CE指示。
示例性地,TCI状态的数量为1,包括:DCI中指示的联合(joint)TCI状态或UL TCI状态的数量为1。例如,DCI格式1_1或1_2,0_1或0_2中的传输配置指示(Transmission Configuration Indication)字段指示的联合(joint)TCI状态或UL TCI状态的数量为1。
示例性地,TCI状态的数量为1,包括:MAC CE激活的联合(joint)TCI状态或UL TCI状态的数量为1。
示例性地,SRS资源集的数量为1,包括:SRS资源集指示(SRS resource set indicator)字段的状态为,00’或‘01’。其中,SRS资源集指示(SRS resource set indicator)字段可以是DCI格式0_1或0_2中的字段。
当然,在其他可替代实施例中,所述第二预设值可以是不等于所述第一预设值的任意整数,本申请实施例对此不作具体限定。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息,所述第一混合方案对TCI状态的映射方式为:
在相同的时域发送机会,以FDM或SDM或SFN方式发送所述第一组上行信息和所述第二组上行信息;
在不同的时域发送机会,以TDM方式发送的同一组上行信息。
换言之,可以在频域、空域或DMRS端口的维度将所述第二信息划分为两组上行信息,由此,终端设备可以按照TDM的方式在时域上向网络设备发送每一组上行信息。
示例性地,所述时域发送机会可以是通过DCI指示的发送机会。
在一些实施例中,所述第一组上行信息与第一TCI状态关联,所述第二组上行信息与第二TCI状态关联。
示例性地,与第一TCI状态关联的第一个上行信息为第一组上行信息中的第一个上行信息;与第二TCI状态关联的第一个上行信息为第二组上行信息中的第一个上行信息。
图10是本申请实施例提供的第一混合方案的对TCI状态的映射方式的示例。
如图10所示,第一组上行信息和第二组上行信息中在相同时域发送机会,以FDM或SDM或SFN方式发送的2组上行信息与不同TCI状态关联,在不同时域发送机会,以TDM方式发送的同一组上行信息与相同的TCI状态关联。即所述第一组上行信息包括与TCI状态1关联的4个上行信息,所述第二组上行信息包括与TCI状态2关联的4个上行信息。
在一些实施例中,所述第一组上行信息中与第一TCI状态关联的相邻的两个上行信息之间,间隔所述第一组上行信息中与第二TCI状态关联的至少一个上行信息;所述第二组上行信息中与所述第一TCI状态关联的相邻的两个上行信息之间,间隔所述第二组上行信息中与所述第二TCI状态关联的至少 一个上行信息。
示例性地,与第一TCI状态关联的第一个上行信息为第一组上行信息中的第一个上行信息;与第二TCI状态关联的第一个上行信息为第二组上行信息中的第一个上行信息。
示例性地,所述至少一个上行信息的数量为1其他数值。
示例性地,所述至少一个上行信息的数量根据所述第一信息关联的至少一个空间参数的数量确定。例如,所述至少一个上行信息的数量为所述第一信息关联的至少一个空间参数的数量减1
图11是本申请实施例提供的第一混合方案的对TCI状态的映射方式的示例。
如图11所示,第一组上行信息和第二组上行信息中在相同时域发送机会,以FDM或SDM或SFN方式发送的2组上行信息均与第一TCI状态和第二TCI状态关联,在相同的时域发送机会,以TDM方式发送的不同组上行信息与不同的TCI状态关联。即所述第一组上行信息包括依次与TCI状态1、TCI状态2、TCI状态1、TCI状态2关联的4个上行信息,所述第二组上行信息包括依次与TCI状态2、TCI状态1、TCI状态2、TCI状态1关联的4个上行信息。
应当理解,在本申请的其他可替代实施例中,所述第一混合方案对其他空间参数的映射方式与所述第一混合方案对TCI状态的映射方式类似,以所述第一混合方案对SRS资源集的映射方式为例,可以针对所述第一混合方案对TCI状态的映射方式中,可以将第一TCI状态和第二TCI状态也可以分别替换为第一SRS资源集和第二SRS资源集,为避免重复,此处不再赘述。
在一些实施例中,所述第一混合方案对冗余版本RV的映射方式为:
在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用相同的RV。
示例性地,若所述第二信息的时域发送机会的数量小于或等于所述预设数量个RV,则在不同的时域发送机会上发送的上行信息采用不同的RV,在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用相同的RV。
示例性地,若所述第二信息的时域发送机会的数量大于所述预设数量个RV,则在不同的时域发送机会上发送的上行信息采用采用预设数量个RV,在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用相同的RV。
示例性地,循环采用预设数量个RV指按照循环顺序依次采用RV。例如,假设所述第二信息的时域发送机会包括6个时域发送机会且预设数量为4(其RV分别为RV 0、RV 1、RV 2、RV 3),其循环顺序分别为RV 0、RV 1、RV 2、RV 3;如果所述6个时域发送机会中的第1个时域发送机会上采用的RV的标识为1,则所述N个时域发送机会采用的RV的标识依次为RV 1、RV 2、RV 3、RV 0、RV 1、RV 2。即在采用RV 3后重新从RV 0开始。例如,假设所述第二信息的时域发送机会包括6个时域发送机会(即,第二信息在时域重复传输6次)且预设数量为4(其RV分别为RV 0、RV 1、RV 2、RV 3),其循环顺序分别为RV 0、RV 2、RV 3、RV1;如果所述6个时域发送机会中的第1个时域发送机会上采用的RV的标识为0,则所述N个时域发送机会采用的RV的标识依次为RV 0、RV 2、RV 3、RV1、RV 0、RV 2。即在采用RV1后重新从RV 0开始。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
所述第一组上行信息和所述第二组上行信息采用相同的RV图样。
在一些实施例中,RV图样为在第n个发送机会发送的第二信息对应的RV。
在一些实施例中,RV图样为预设数量个RV按照特定顺序组成的RV序列,例如,预设数量为4。
在一些实施例中,第一组上行信息和所述第二组上行信息采用相同的RV图样,可以理解为第一组上行信息和第二组上行信息中在相同时域发送机会发送的第二信息对应的RV相同。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV,均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV相同。
示例性地,所述第一组上行信息中的第一个上行信息为所述第一组上行信息中在时域最早发送的上行信息。
示例性地,所述第二组上行信息中的第一个上行信息为所述第二组上行信息中在时域最早发送的上行信息。
示例性地,若所述第一组上行信息和所述第二组上行信息属于不同码字,则所述第一RV和所述第二RV均为所述DCI指示的RV。
示例性地,若所述第一组上行信息和所述第二组上行信息采用不为单码字传输,则所述第一RV和所述第二RV均为所述DCI指示的RV。或者说,若所述第一组上行信息和所述第二组上行信息采用多 码字传输,则所述第一RV和所述第二RV均为所述DCI指示的RV。对于单码字传输,所述第一组上行信息和所述第二组上行信息采用一个调制与编码策略(Modulation and Coding Scheme,MCS),对于多单码字传输,所述第一组上行信息和所述第二组上行信息采用多个MCS。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识,以及所述第二组上行信息中的第n个上行信息所采用的RV的标识,均根据所述第一组上行信息中的第一个上行信息所采用的第一RV和n确定。
示例性地,所述第一组上行信息第n个上行信息所采用的RV的标识,以及所述第二组上行信息中的第n个上行信息所采用的RV的标识,均为与i和(n mod 4)对应的RV,其中,i为所述第一RV的标识。
下面结合表1对第n个上行信息采用的RV的标识进行说明。
表1
Figure PCTCN2022110561-appb-000001
如表1所示,假设RV的预设数量为4,DCI中指示的RV ID(即所述第一RV的标识)为0,则第一个上行信息采用的RV的标识为RV 0,第二个上行信息采用的RV的标识为0和(2 mod 4)对应的RV,即RV 3,第三个上行信息采用的RV的标识为0和(3 mod 4)对应的RV,即RV 1,第四个上行信息采用的RV的标识为0和(4 mod 4)对应的RV,即RV 0,依次类推,直至确定出第一组上行信息和第二组上行信息中每一个上行信息采用的RV的标识。
图12是本申请实施例提供的第一混合方案的对RV的映射方式的示例。
如图12所示,以图10所示的所述第一混合方案对TCI状态的映射方式为例,对于FDM方案A与重复类型A的混合方案或FDM方案A与重复类型B的混合方案;所述第一混合方案的对RV的映射方式可以为所述第一组上行信息和所述第二组上行信息采用相同的RV图样。例如,与TCI状态1关联的4个上行信息(即所述第一组上行信息),和与TCI状态2关联的4个上行信息(所述第二组上行信息),依次采用相同的RV 0、RV 1、RV 2、RV 3。
图13是本申请实施例提供的第一混合方案的对RV的映射方式另一的示例。
如图13所示,对于SDM方案A与重复类型A的混合方案,SDM方案A与重复类型B的混合方案,SFN方案与重复类型A的混合方案,或SFN方案与重复类型B的混合方案;所述第一混合方案的对RV的映射方式可以为所述第一组上行信息和所述第二组上行信息采用相同的RV图样。例如,与TCI状态1关联的4个上行信息(即所述第一组上行信息),和与TCI状态2关联的4个上行信息(所述第二组上行信息),依次采用相同的RV 0、RV 1、RV 2、RV 3。
应当理解,图14和图15仅为本申请的示例,不应理解为对本申请的限制。
例如,在其他可替代实施例中,图14或图15提供的第一混合方案的对RV的映射方式还可以应用于除FDM方案A与重复类型A的混合方案或FDM方案A与重复类型B的混合方案,SDM方案A与重复类型A的混合方案,SDM方案A与重复类型B的混合方案,SFN方案与重复类型A的混合方案,以及SFN方案与重复类型B的混合方案之外的方案。
在一些实施例中,所述第一混合方案对冗余版本RV的映射方式为:
在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用不同的RV。
示例性地,若所述第二信息的时域发送机会的数量小于或等于所述预设数量个RV,则在不同的时域发送机会上发送的上行信息采用不同的RV,在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用不同的RV。
示例性地,若所述第二信息的时域发送机会的数量大于所述预设数量个RV,则在不同的时域发送机会上发送的上行信息采用采用预设数量个RV,在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用不同的RV。
在一些实施例中,不同的时域发送机会可以理解为时域资源不同的发送机会;相同时域发送机会可以理解为时域资源相同的发送机会
示例性地,循环采用预设数量个RV指按照循环顺序依次映射RV。例如,假设所述第二信息的时域发送机会包括6个时域发送机会且预设数量为4(其RV分别为RV 0、RV 1、RV 2、RV 3),其循 环顺序分别为RV 0、RV 1、RV 2、RV 3;如果所述6个时域发送机会中的第1个时域发送机会上采用的RV的标识为1,则所述N个时域发送机会采用的RV的标识依次为RV 1、RV 2、RV 3、RV 0、RV 1、RV 2。即在采用RV 3后重新从RV 0开始。例如,假设所述第二信息的时域发送机会包括6个时域发送机会(即,第二信息在时域重复传输6次)且预设数量为4(其RV分别为RV 0、RV 1、RV 2、RV 3),其循环顺序分别为RV 0、RV 2、RV 3、RV1;如果所述6个时域发送机会中的第1个时域发送机会上采用的RV的标识为0,则所述N个时域发送机会采用的RV的标识依次为RV 0、RV 2、RV 3、RV1、RV 0、RV 2。即在采用RV1后重新从RV 0开始。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
所述第一组上行信息和所述第二组上行信息采用不同的RV图样。
在一些实施例中,RV图样为在第n个发送机会发送的第二信息对应的RV。
在一些实施例中,RV图样为预设数量个RV按照特定顺序组成的RV序列,例如,预设数量为4。
在一些实施例中,第一组上行信息和所述第二组上行信息采用不同的RV图样,可以理解为第一组上行信息和第二组上行信息中在相同时域发送机会发送的第二信息对应的RV不同。
在一些实施例中,所述第一组上行信息采用第一组RV图样,所述第二组上行信息采用第二组RV图样,所述第二组RV图样相对所述第一组RV图样存在RV偏移。
示例性地,所述第二组RV图样中的第一个RV相对所述第一组RV图样中的第一个RV存在RV偏移。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV为下行控制信息DCI指示的RV,所述第二组上行信息中的第一个上行信息所采用的第二RV为所述第一RV偏移后的RV。
示例性地,所述第一组上行信息中的第一个上行信息为所述第一组上行信息中在时域最早发送的上行信息。
示例性地,所述第二组上行信息中的第一个上行信息为所述第二组上行信息中在时域最早发送的上行信息。
示例性地,所述第二RV的标识为所述第一RV与RVoffset的和,其中RVoffset为所述第二RV的标识相对所述第一RV的标识向后偏移的偏移量,或RVoffset为所述第一RV的标识相对所述第二RV的标识向前偏移的偏移量。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV的标识和n确定,所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第一RV的标识、所述第二RV相对所述第一RV的偏移量以及n确定。
示例性地,所述第一组上行信息第n个上行信息所采用的RV的标识为与i和(n mod 4)对应的标识,其中,i为所述第一RV的标识。例如,可以按照表1的方式确定所述第一组上行信息第n个上行信息所采用的RV的标识,为避免重复,此处不再赘述。
示例性地,所述第二组上行信息中的第n个上行信息所采用的RV的标识的计算方式,为与i和(n mod 4)对应的计算方式,其中,i为所述第一RV的标识。
下面结合表2对所述第二组上行信息中的第n个上行信息所采用的RV的标识进行说明。
表2
Figure PCTCN2022110561-appb-000002
如表2所示,假设RV的预设数量为4,所述第一RV的标识为0,则所述第二组上行信息中的第一个上行信息采用的RV的标识按照0和(1 mod 4)对应的计算方式计算,即按照(2+RVoffset)mod 4计算得到的RV,第二个上行信息采用的RV的标识按照0和(2 mod 4)对应的计算方式计算,即按照(3+RVoffset)mod 4计算得到的RV,第三个上行信息采用的RV的标识为按照0和(3 mod 4)对应的计算方式计算,即按照(1+RVoffset)mod 4计算得到的RV,第四个上行信息采用的RV的标识为按照0和(4 mod 4)对应的计算方式计算,即按照(0+RVoffset)mod 4计算得到的RV,依次类推,直至确定出第二组上行信息中每一个上行信息采用的RV的标识。
在一些实施例中,若所述第一组上行信息和所述第二组上行信息属于同一个码字,则所述第二RV 为所述第一RV偏移后的RV。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV不相同。
示例性地,所述第一组上行信息中的第一个上行信息为所述第一组上行信息中在时域最早发送的上行信息。
示例性地,所述第二组上行信息中的第一个上行信息为所述第二组上行信息中在时域最早发送的上行信息。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV和n确定;所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第二RV和n确定。
示例性地,若所述第一组上行信息和所述第二组上行信息属于不同码字,则所述第一RV和所述第二RV均为所述DCI指示的RV。
示例性地,若所述第一组上行信息和所述第二组上行信息采用不为单码字传输,则所述第一RV和所述第二RV均为所述DCI指示的RV。或者说,若所述第一组上行信息和所述第二组上行信息采用多码字传输,则所述第一RV和所述第二RV均为所述DCI指示的RV。对于单码字传输,所述第一组上行信息和所述第二组上行信息采用一个调制与编码策略(Modulation and Coding Scheme,MCS),对于多单码字传输,所述第一组上行信息和所述第二组上行信息采用多个MCS。
图14是本申请实施例提供的第一混合方案的对RV的映射方式的示例。
如图14所示,以图10所示的所述第一混合方案对TCI状态的映射方式为例,对于FDM方案B与重复类型A的混合方案,或FDM方案B与重复类型B的混合方案;所述第一混合方案的对RV的映射方式可以为所述第一组上行信息和所述第二组上行信息采用不同的RV图样。即与TCI状态1关联的4个上行信息(即所述第一组上行信息)中的第一个上行信息采用第一RV,与TCI状态2关联的4个上行信息(所述第二组上行信息)中的第一个上行信息采用第二RV。其中,所述第一RV不同于所述第二RV。
图15是本申请实施例提供的第一混合方案的对RV的映射方式另一的示例。
如图15所示,对于对于SDM方案B与重复类型A的混合方案,SDM方案B与重复类型B的混合方案或SFN方案与重复类型A的混合方案;所述第一混合方案的对RV的映射方式可以为所述第一组上行信息和所述第二组上行信息采用不同的RV图样。即与TCI状态1关联的4个上行信息(即所述第一组上行信息)中的第一个上行信息采用第一RV,与TCI状态2关联的4个上行信息(所述第二组上行信息)中的第一个上行信息采用第二RV。其中,所述第一RV不同于所述第二RV。
应当理解,图14和图15仅为本申请的示例,不应理解为对本申请的限制。
例如,在其他可替代实施例中,图14或图15提供的第一混合方案的对RV的映射方式还可以应用于除FDM方案B与重复类型A或B的混合方案,SDM方案B与重复类型A或B的混合方案之外的方案。
上文中结合图10至图16,从终端设备的角度详细描述了根据本申请实施例提供的无线通信方法310,下面将结合图17,从网络设备的角度描述根据本申请实施例提供的无线通信方法320。
上文中结合图8至图15,从终端设备的角度详细描述了根据本申请实施例提供的无线通信方法210和310,下面将结合图16和图17,从网络设备的角度描述根据本申请实施例提供的无线通信方法220和320。
图16是本申请实施例提供的无线通信方法220的示意性流程图。所述方法220可以由如图1所示的网络设备执行。
如图16所示,所述方法220可包括:
S221,向终端设备发送第一信令,所述第一信令用于配置第一传输方案;
S222,根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;
S223,根据所述第二传输方案,向所述终端设备发送或接收所述终端设备发送的所述第一信息。
在一些实施例中,所述第一信令用于在候选传输方案中指示所述第一传输方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
在一些实施例中,所述候选传输方案还包括以下中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案还包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述第一信令中不同的子信令用于配置不同的传输方案。
在一些实施例中,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述第一信令不用于同时配置以下传输方案中的至少两种:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令不用于同时配置以下传输方案中的至少两种:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述S222可包括:
若所述至少一个空间参数的数量为第一预设值,则根据所述第一传输方案确定所述第二传输方案。
在一些实施例中,所述S222可包括:
若所述第一传输方案为FDM方案,则将第二信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为SDM方案,则将第三信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为TDM方案,则将第四信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案、重复类型A或重复类型B,则将所述第一传输方案确定为所述第二传输方案;
其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
在一些实施例中,所述第一预设值为2。
在一些实施例中,若所述至少一个空间参数的数量为第二预设值,则所述第二传输方案为采用所述第二预设值个空间参数在至少一个时域发送机会上发送所述第一信息。
在一些实施例中,若所述第一传输方案为TDM方案、重复类型A或重复类型B,则所述第二传输方案为采用所述第二预设值个空间参数在多个时域发送机会重复发送第一信息。
在一些实施例中,若所述第一传输方案为FDM方案、SFN方案、SDM方案、FDM方案A、FDM方案B、SDM方案A或SDM方案B,则所述第二传输方案为采用所述第二预设值个空间参数在一个时域发送机会发送第一信息。
在一些实施例中,所述第二预设值为1。
应理解,无线通信方法220中的步骤可以参考无线通信方法210中的相应步骤以及其涉及的相关内容,为了简洁,在此不再赘述。
图17是本申请实施例提供的无线通信方法320的示意性流程图。所述方法320可以由如图1所示的网络设备执行。
如图17所示,所述方法320可包括:
S321,确定第一混合方案,所述第一混合方案包括多个传输方案;
S322,根据所述第一混合方案,接收终端设备发送的或向所述终端设备发送第二信息。
在一些实施例中,所述第一混合方案为以下方案中的任意一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述S321可包括:
向所述终端设备发送第五信令;
其中,所述第五信令配置的传输方案为所述第一混合方案,或所述第五信令配置的传输方案用于确定所述第一混合方案。
在一些实施例中,若所述第五信令配置的传输方案为FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方 案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案,则所述第一混合方案为所述第五信令配置的传输方案;
若所述第五信令配置的传输方案为FDM方案,或所述第五信令配置的传输方案为FDM方案和TDM方案的混合方案,则则所述第一混合方案为第二信令指示的传输方案和第四信令指示的传输方案的混合方案;或者,
若所述第五信令配置的传输方案为SDM方案,或所述第五信令配置的传输方案为SDM方案和TDM方案的混合方案,则则所述第一混合方案为第三信令指示的传输方案和所述第四信令指示的传输方案的混合方案;或者,
若所述第五信令配置的传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B或SFN方案,则则所述第一混合方案为所述第五信令配置的传输方案和第四信令指示的传输方案的混合方案;或者,
其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
在一些实施例中,所述第五信令用于配置候选传输方案中的传输方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述第五信令中不同的子信令用于配置不同的传输方案。
在一些实施例中,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述第五信令不用于同时配置以下方案中的至少两种:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令不用于同时配置以下方案中的两种:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述S322可包括:
若所述第二信息关联的至少一个空间参数的数量为第一预设值,则根据所述第一混合方案接收所述终端设备发送的或向所述终端设备发送所述第二信息。
在一些实施例中,所述第一预设值为2。
在一些实施例中,所述方法320还可包括:
若所述至少一个空间参数的数量为第二预设值,则采用所述第二预设值个空间参数在多个时域发送机会上,接收所述终端设备重复发送的或向所述终端设备重复发送所述第二信息。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息,所述第一混合方案对TCI状态的映射方式为:
在相同的时域发送机会,以FDM或SDM或SFN方式发送所述第一组上行信息和所述第二组上行信息;
在不同的时域发送机会,以TDM方式发送的同一组上行信息。
在一些实施例中,所述第一混合方案对冗余版本RV的映射方式为:
在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用相同的RV。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
所述第一组上行信息和所述第二组上行信息采用相同的RV图样。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV,均为下行控制信息DCI指示的RV;所述第一RV和所 述第二RV相同。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识,以及所述第二组上行信息中的第n个上行信息所采用的RV的标识,均根据所述第一组上行信息中的第一个上行信息所采用的第一RV和n确定。
在一些实施例中,所述第一混合方案对冗余版本RV的映射方式为:
在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用不同的RV。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
所述第一组上行信息和所述第二组上行信息采用不同的RV图样。
在一些实施例中,所述第一组上行信息采用第一组RV图样,所述第二组上行信息采用第二组RV图样,所述第二组RV图样相对所述第一组RV图样存在RV偏移。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV为下行控制信息DCI指示的RV,所述第二组上行信息中的第一个上行信息所采用的第二RV为所述第一RV偏移后的RV。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV的标识和n确定,所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第一RV的标识、所述第二RV相对所述第一RV的偏移量以及n确定。
在一些实施例中,若所述第一组上行信息和所述第二组上行信息属于同一个码字,则所述第二RV为所述第一RV偏移后的RV。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV不相同。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV和n确定;所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第二RV和n确定。
在一些实施例中,若所述第一组上行信息和所述第二组上行信息属于不同码字,则所述第一RV和所述第二RV均为所述DCI指示的RV。
在一些实施例中,所述第一组上行信息与第一TCI状态关联,所述第二组上行信息与第二TCI状态关联。
在一些实施例中,所述第一组上行信息中与第一TCI状态关联的相邻的两个上行信息之间,间隔所述第一组上行信息中与第二TCI状态关联的至少一个上行信息;所述第二组上行信息中与所述第一TCI状态关联的相邻的两个上行信息之间,间隔所述第二组上行信息中与所述第二TCI状态关联的至少一个上行信息。
应理解,无线通信方法320中的步骤可以参考无线通信方法310中的相应步骤,为了简洁,在此不再赘述。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文结合图1至图17,详细描述了本申请的方法实施例,下文结合图18至图23,详细描述本申请的装置实施例。
图18是本申请实施例的终端设备410的示意性框图。
如图18所示,所述终端设备410可包括:
通信单元411,用于接收网络设备发送的第一信令,所述第一信令用于配置第一传输方案;
确定单元412,用于根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;
所述通信单元411还用于:根据所述第二传输方案,向所述网络设备发送或接收所述网络设备发送的所述第一信息。
在一些实施例中,所述第一信令用于在候选传输方案中指示所述第一传输方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
在一些实施例中,所述候选传输方案还包括以下中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案还包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述第一信令中不同的子信令用于配置不同的传输方案。
在一些实施例中,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述第一信令不用于同时配置以下传输方案中的至少两种:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令不用于同时配置以下传输方案中的至少两种:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述确定单元412具体用于:
若所述至少一个空间参数的数量为第一预设值,则根据所述第一传输方案确定所述第二传输方案。
在一些实施例中,所述确定单元412具体用于:
若所述第一传输方案为FDM方案,则将第二信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为SDM方案,则将第三信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为TDM方案,则将第四信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案、重复类型A或重复类型B,则将所述第一传输方案确定为所述第二传输方案;
其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
在一些实施例中,所述第一预设值为2。
在一些实施例中,若所述至少一个空间参数的数量为第二预设值,则所述第二传输方案为采用所述第二预设值个空间参数在至少一个时域发送机会上发送所述第一信息。
在一些实施例中,若所述第一传输方案为TDM方案、重复类型A或重复类型B,则所述第二传输方案为采用所述第二预设值个空间参数在多个时域发送机会重复发送第一信息;或者,若所述第一传输方案为FDM方案、SFN方案、SDM方案、FDM方案A、FDM方案B、SDM方案A或SDM方案B,则所述第二传输方案为采用所述第二预设值个空间参数在一个时域发送机会发送第一信息。
在一些实施例中,所述第二预设值为1。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图18所示的终端设备410可以对应于执行本申请实施例的方法210中的相应主体,并且终端设备410中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的方法210中的相应流程,为了简洁,在此不再赘述。
图19是本申请实施例的网络设备420的示意性框图。
如图19所示,所述网络设备420可包括:
通信单元421,用于向终端设备发送第一信令,所述第一信令用于配置第一传输方案;
确定单元422,用于根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所 述第一信息的第二传输方案;
所述通信单元421还用于:根据所述第二传输方案,向所述终端设备发送或接收所述终端设备发送的所述第一信息。
在一些实施例中,所述第一信令用于在候选传输方案中指示所述第一传输方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
在一些实施例中,所述候选传输方案还包括以下中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案还包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述第一信令中不同的子信令用于配置不同的传输方案。
在一些实施例中,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述第一信令不用于同时配置以下传输方案中的至少两种:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令不用于同时配置以下传输方案中的至少两种:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述确定单元422具体用于:
若所述至少一个空间参数的数量为第一预设值,则根据所述第一传输方案确定所述第二传输方案。
在一些实施例中,所述确定单元422具体用于:
若所述第一传输方案为FDM方案,则将第二信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为SDM方案,则将第三信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为TDM方案,则将第四信令指示的传输方案确定为所述第二传输方案;或者,
若所述第一传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案、重复类型A或重复类型B,则将所述第一传输方案确定为所述第二传输方案;
其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
在一些实施例中,所述第一预设值为2。
在一些实施例中,若所述至少一个空间参数的数量为第二预设值,则所述第二传输方案为采用所述第二预设值个空间参数在至少一个时域发送机会上发送所述第一信息。
在一些实施例中,若所述第一传输方案为TDM方案、重复类型A或重复类型B,则所述第二传输方案为采用所述第二预设值个空间参数在多个时域发送机会重复发送第一信息;或者,若所述第一传输方案为FDM方案、SFN方案、SDM方案、FDM方案A、FDM方案B、SDM方案A或SDM方案B,则所述第二传输方案为采用所述第二预设值个空间参数在一个时域发送机会发送第一信息。
在一些实施例中,所述第二预设值为1。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图19所示的网络设备420可以对应于执行本申请实施例的方法220中的相应主体,并且网络设备420中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的方法220中的相应流程,为了简洁,在此不再赘述。
图20是本申请实施例的终端设备510的示意性框图。
如图20所示,所述终端设备510可包括:
确定单元511,用于确定第一混合方案,所述第一混合方案包括多个传输方案;
通信单元512,用于根据所述第一混合方案,向网络设备发送或接收所述网络设备发送的第二信息。
在一些实施例中,所述第一混合方案为以下方案中的任意一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重 复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述确定单元511具体用于:
接收所述网络设备发送的第五信令;
将所述第五信令配置的传输方案确定为所述第一混合方案,或根据所述第五信令配置的传输方案确定所述第一混合方案。
在一些实施例中,所述确定单元511具体用于:
若所述第五信令配置的传输方案为FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案,则将所述第五信令配置的传输方案,确定为所述第一混合方案;
若所述第五信令配置的传输方案为FDM方案,或所述第五信令配置的传输方案为FDM方案和TDM方案的混合方案,则将第二信令指示的传输方案和第四信令指示的传输方案的混合方案,确定为所述第一混合方案;或者,
若所述第五信令配置的传输方案为SDM方案,或所述第五信令配置的传输方案为SDM方案和TDM方案的混合方案,则将第三信令指示的传输方案和所述第四信令指示的传输方案的混合方案,确定为所述第一混合方案;或者,
若所述第五信令配置的传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B或SFN方案,则将所述第五信令配置的传输方案和第四信令指示的传输方案的混合方案,确定为所述第一混合方案;或者,
其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
在一些实施例中,所述第五信令用于配置候选传输方案中的传输方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述第五信令中不同的子信令用于配置不同的传输方案。
在一些实施例中,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述第五信令不用于同时配置以下方案中的至少两种:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令不用于同时配置以下方案中的两种:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述通信单元512具体用于:
若所述第二信息关联的至少一个空间参数的数量为第一预设值,则根据所述第一混合方案向所述网络设备发送或接收所述网络设备发送的所述第二信息。
在一些实施例中,所述第一预设值为2。
在一些实施例中,所述通信单元512还可用于:
若所述至少一个空间参数的数量为第二预设值,则采用所述第二预设值个空间参数在多个时域发送机会上,向所述网络设备重复发送或重复接收所述网络设备发送的所述第二信息。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息,所述第一混合方案对TCI状态的映射方式为:
在相同的时域发送机会,以FDM或SDM或SFN方式发送所述第一组上行信息和所述第二组上行信息;
在不同的时域发送机会,以TDM方式发送的同一组上行信息。
在一些实施例中,所述第一混合方案对冗余版本RV的映射方式为:
在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用相同的RV。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
所述第一组上行信息和所述第二组上行信息采用相同的RV图样。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV,均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV相同。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识,以及所述第二组上行信息中的第n个上行信息所采用的RV的标识,均根据所述第一组上行信息中的第一个上行信息所采用的第一RV和n确定。
在一些实施例中,所述第一混合方案对冗余版本RV的映射方式为:
在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用不同的RV。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
所述第一组上行信息和所述第二组上行信息采用不同的RV图样。
在一些实施例中,所述第一组上行信息采用第一组RV图样,所述第二组上行信息采用第二组RV图样,所述第二组RV图样相对所述第一组RV图样存在RV偏移。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV为下行控制信息DCI指示的RV,所述第二组上行信息中的第一个上行信息所采用的第二RV为所述第一RV偏移后的RV。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV的标识和n确定,所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第一RV的标识、所述第二RV相对所述第一RV的偏移量以及n确定。
在一些实施例中,若所述第一组上行信息和所述第二组上行信息属于同一个码字,则所述第二RV为所述第一RV偏移后的RV。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV不相同。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV和n确定;所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第二RV和n确定。
在一些实施例中,若所述第一组上行信息和所述第二组上行信息属于不同码字,则所述第一RV和所述第二RV均为所述DCI指示的RV。
在一些实施例中,所述第一组上行信息与第一TCI状态关联,所述第二组上行信息与第二TCI状态关联。
在一些实施例中,所述第一组上行信息中与第一TCI状态关联的相邻的两个上行信息之间,间隔所述第一组上行信息中与第二TCI状态关联的至少一个上行信息;所述第二组上行信息中与所述第一TCI状态关联的相邻的两个上行信息之间,间隔所述第二组上行信息中与所述第二TCI状态关联的至少一个上行信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图20所示的终端设备510可以对应于执行本申请实施例的方法310中的相应主体,并且终端设备510中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的方法310中的相应流程,为了简洁,在此不再赘述。
图21是本申请实施例的网络设备520的示意性框图。
如图21所示,所述网络设备520可包括:
确定单元521,用于确定第一混合方案,所述第一混合方案包括多个传输方案;
通信单元522,用于根据所述第一混合方案,接收终端设备发送的或向所述终端设备发送第二信息。
在一些实施例中,所述第一混合方案为以下方案中的任意一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合 方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述通信单元522还可用于:
向所述终端设备发送第五信令;
其中,所述第五信令配置的传输方案为所述第一混合方案,或所述第五信令配置的传输方案用于确定所述第一混合方案。
在一些实施例中,若所述第五信令配置的传输方案为FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案,则所述第一混合方案为所述第五信令配置的传输方案;
若所述第五信令配置的传输方案为FDM方案,或所述第五信令配置的传输方案为FDM方案和TDM方案的混合方案,则则所述第一混合方案为第二信令指示的传输方案和第四信令指示的传输方案的混合方案;或者,
若所述第五信令配置的传输方案为SDM方案,或所述第五信令配置的传输方案为SDM方案和TDM方案的混合方案,则则所述第一混合方案为第三信令指示的传输方案和所述第四信令指示的传输方案的混合方案;或者,
若所述第五信令配置的传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B或SFN方案,则则所述第一混合方案为所述第五信令配置的传输方案和第四信令指示的传输方案的混合方案;或者,
其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
在一些实施例中,所述第五信令用于配置候选传输方案中的传输方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
在一些实施例中,所述候选传输方案包括以下方案中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
在一些实施例中,所述第五信令中不同的子信令用于配置不同的传输方案。
在一些实施例中,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述第五信令不用于同时配置以下方案中的至少两种:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令不用于同时配置以下方案中的两种:FDM方案、SDM方案、SFN方案。
在一些实施例中,所述通信单元522具体用于:
若所述第二信息关联的至少一个空间参数的数量为第一预设值,则根据所述第一混合方案接收所述终端设备发送的或向所述终端设备发送所述第二信息。
在一些实施例中,所述第一预设值为2。
在一些实施例中,所述通信单元522还用于:
若所述至少一个空间参数的数量为第二预设值,则采用所述第二预设值个空间参数在多个时域发送机会上,接收所述终端设备重复发送的或向所述终端设备重复发送所述第二信息。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息,所述第一混合方案对TCI状态的映射方式为:
在相同的时域发送机会,以FDM或SDM或SFN方式发送所述第一组上行信息和所述第二组上行信息;
在不同的时域发送机会,以TDM方式发送的同一组上行信息。
在一些实施例中,所述第一混合方案对冗余版本RV的映射方式为:
在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用相同的RV。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
所述第一组上行信息和所述第二组上行信息采用相同的RV图样。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV,均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV相同。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识,以及所述第二组上行信息中的第n个上行信息所采用的RV的标识,均根据所述第一组上行信息中的第一个上行信息所采用的第一RV和n确定。
在一些实施例中,所述第一混合方案对冗余版本RV的映射方式为:
在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用不同的RV。
在一些实施例中,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
所述第一组上行信息和所述第二组上行信息采用不同的RV图样。
在一些实施例中,所述第一组上行信息采用第一组RV图样,所述第二组上行信息采用第二组RV图样,所述第二组RV图样相对所述第一组RV图样存在RV偏移。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV为下行控制信息DCI指示的RV,所述第二组上行信息中的第一个上行信息所采用的第二RV为所述第一RV偏移后的RV。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV的标识和n确定,所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第一RV的标识、所述第二RV相对所述第一RV的偏移量以及n确定。
在一些实施例中,若所述第一组上行信息和所述第二组上行信息属于同一个码字,则所述第二RV为所述第一RV偏移后的RV。
在一些实施例中,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV不相同。
在一些实施例中,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV和n确定;所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第二RV和n确定。
在一些实施例中,若所述第一组上行信息和所述第二组上行信息属于不同码字,则所述第一RV和所述第二RV均为所述DCI指示的RV。
在一些实施例中,所述第一组上行信息与第一TCI状态关联,所述第二组上行信息与第二TCI状态关联。
在一些实施例中,所述第一组上行信息中与第一TCI状态关联的相邻的两个上行信息之间,间隔所述第一组上行信息中与第二TCI状态关联的至少一个上行信息;所述第二组上行信息中与所述第一TCI状态关联的相邻的两个上行信息之间,间隔所述第二组上行信息中与所述第二TCI状态关联的至少一个上行信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图21所示的网络设备520可以对应于执行本申请实施例的方法320中的相应主体,并且网络设备520中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的方法320中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图22是本申请实施例的通信设备600示意性结构图。
如图22所示,所述通信设备600可包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图22所示,通信设备600还可以包括存储器620。
其中,该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
如图22所示,通信设备600还可以包括收发器630。
其中,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备600可对应于本申请实施例中的终端设备410或终端设备510,并可以对应于执行根据本申请实施例的方法210或310中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备600可对应于本申请实施例中的网络设备420或网络舍尔必520,并可以对应于执行根据本申请实施例的方法220或320中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图23是根据本申请实施例的芯片700的示意性结构图。
如图23所示,所述芯片700包括处理器710。
其中,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图23所示,所述芯片700还可以包括存储器720。
其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
如图23所示,所述芯片700还可以包括输入接口730。
其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图23所示,所述芯片700还可以包括输出接口740。
其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片700可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦 写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行本申请提供的无线通信方法。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。 又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (90)

  1. 一种无线通信方法,其特征在于,包括:
    接收网络设备发送的第一信令,所述第一信令用于配置第一传输方案;
    根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;
    根据所述第二传输方案,向所述网络设备发送或接收所述网络设备发送的所述第一信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信令用于在候选传输方案中指示所述第一传输方案。
  3. 根据权利要求2所述的方法,其特征在于,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
  4. 根据权利要求3所述的方法,其特征在于,所述候选传输方案还包括以下中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案还包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
  5. 根据权利要求1所述的方法,其特征在于,所述第一信令中不同的子信令用于配置不同的传输方案。
  6. 根据权利要求5所述的方法,其特征在于,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案,包括:
    若所述至少一个空间参数的数量为第一预设值,则根据所述第一传输方案确定所述第二传输方案。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一传输方案确定所述第二传输方案,包括:
    若所述第一传输方案为FDM方案,则将第二信令指示的传输方案确定为所述第二传输方案;或者,
    若所述第一传输方案为SDM方案,则将第三信令指示的传输方案确定为所述第二传输方案;或者,
    若所述第一传输方案为TDM方案,则将第四信令指示的传输方案确定为所述第二传输方案;或者,
    若所述第一传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案、重复类型A或重复类型B,则将所述第一传输方案确定为所述第二传输方案;
    其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一预设值为2。
  10. 根据权利要求1至6中任一项所述的方法,其特征在于,若所述至少一个空间参数的数量为第二预设值,则所述第二传输方案为采用所述第二预设值个空间参数在至少一个时域发送机会上发送所述第一信息。
  11. 根据权利要求10所述的方法,其特征在于,若所述第一传输方案为TDM方案、重复类型A或重复类型B,则所述第二传输方案为采用所述第二预设值个空间参数在多个时域发送机会重复发送第一信息;或者,
    若所述第一传输方案为FDM方案、SFN方案、SDM方案、FDM方案A、FDM方案B、SDM方案A或SDM方案B,则所述第二传输方案为采用所述第二预设值个空间参数在一个时域发送机会发送第一信息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二预设值为1。
  13. 一种无线通信方法,其特征在于,包括:
    向终端设备发送第一信令,所述第一信令用于配置第一传输方案;
    根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;
    根据所述第二传输方案,向所述终端设备发送或接收所述终端设备发送的所述第一信息。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信令用于在候选传输方案中指示所述第一传输方案。
  15. 根据权利要求14所述的方法,其特征在于,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
  16. 根据权利要求15所述的方法,其特征在于,所述候选传输方案还包括以下中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案还包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
  17. 根据权利要求13所述的方法,其特征在于,所述第一信令中不同的子信令用于配置不同的传输方案。
  18. 根据权利要求17所述的方法,其特征在于,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第一信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案,包括:
    若所述至少一个空间参数的数量为第一预设值,则根据所述第一传输方案确定所述第二传输方案。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述第一传输方案确定所述第二传输方案,包括:
    若所述第一传输方案为FDM方案,则将第二信令指示的传输方案确定为所述第二传输方案;或者,
    若所述第一传输方案为SDM方案,则将第三信令指示的传输方案确定为所述第二传输方案;或者,
    若所述第一传输方案为TDM方案,则将第四信令指示的传输方案确定为所述第二传输方案;或者,
    若所述第一传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案、重复类型A或重复类型B,则将所述第一传输方案确定为所述第二传输方案;
    其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一预设值为2。
  22. 根据权利要求13至18中任一项所述的方法,其特征在于,若所述至少一个空间参数的数量为第二预设值,则所述第二传输方案为采用所述第二预设值个空间参数在至少一个时域发送机会上发送所述第一信息。
  23. 根据权利要求22所述的方法,其特征在于,若所述第一传输方案为TDM方案、重复类型A或重复类型B,则所述第二传输方案为采用所述第二预设值个空间参数在多个时域发送机会重复发送第一信息;或者,
    若所述第一传输方案为FDM方案、SFN方案、SDM方案、FDM方案A、FDM方案B、SDM方案A或SDM方案B,则所述第二传输方案为采用所述第二预设值个空间参数在一个时域发送机会发送第一信息。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第二预设值为1。
  25. 一种无线通信方法,其特征在于,包括:
    确定第一混合方案,所述第一混合方案包括多个传输方案;
    根据所述第一混合方案,向网络设备发送或接收所述网络设备发送的第二信息。
  26. 根据权利要求25所述的方法,其特征在于,所述第一混合方案为以下方案中的任意一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
  27. 根据权利要求25或26所述的方法,其特征在于,所述确定第一混合方案,包括:
    接收所述网络设备发送的第五信令;
    将所述第五信令配置的传输方案确定为所述第一混合方案,或根据所述第五信令配置的传输方案确定所述第一混合方案。
  28. 根据权利要求27所述的方法,其特征在于,所述将所述第五信令配置的传输方案确定为所述第一混合方案,或根据所述第五信令配置的传输方案确定所述第一混合方案,包括:
    若所述第五信令配置的传输方案为FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案,则将所述第五信令配置的传输方案,确定为所述第一混合方案;
    若所述第五信令配置的传输方案为FDM方案,或所述第五信令配置的传输方案为FDM方案和TDM方案的混合方案,则将第二信令指示的传输方案和第四信令指示的传输方案的混合方案,确定为所述第一混合方案;或者,
    若所述第五信令配置的传输方案为SDM方案,或所述第五信令配置的传输方案为SDM方案和TDM方案的混合方案,则将第三信令指示的传输方案和所述第四信令指示的传输方案的混合方案,确定为所述第一混合方案;或者,
    若所述第五信令配置的传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B或SFN方案,则将所述第五信令配置的传输方案和第四信令指示的传输方案的混合方案,确定为所述第一混合方案;或者,
    其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
  29. 根据权利要求27或28所述的方法,其特征在于,所述第五信令用于配置候选传输方案中的传输方案。
  30. 根据权利要求29所述的方法,其特征在于,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
  31. 根据权利要求29或30所述的方法,其特征在于,所述候选传输方案包括以下方案中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
  32. 根据权利要求27或28所述的方法,其特征在于,所述第五信令中不同的子信令用于配置不同的传输方案。
  33. 根据权利要求32所述的方法,其特征在于,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
  34. 根据权利要求25至33中任一项所述的方法,其特征在于,所述根据所述第一混合方案,向网络设备发送或接收所述网络设备发送的第二信息,包括:
    若所述第二信息关联的至少一个空间参数的数量为第一预设值,则根据所述第一混合方案向所述网络设备发送或接收所述网络设备发送的所述第二信息。
  35. 根据权利要求34所述的方法,其特征在于,所述第一预设值为2。
  36. 根据权利要求34或35所述的方法,其特征在于,所述方法还包括:
    若所述至少一个空间参数的数量为第二预设值,则采用所述第二预设值个空间参数在多个时域发送机会上,向所述网络设备重复发送或重复接收所述网络设备发送的所述第二信息。
  37. 根据权利要求25至36中任一项所述的方法,其特征在于,所述第二信息包括第一组上行信息和第二组上行信息,所述第一混合方案对TCI状态的映射方式为:
    在相同的时域发送机会,以FDM或SDM或SFN方式发送所述第一组上行信息和所述第二组上行信息;
    在不同的时域发送机会,以TDM方式发送的同一组上行信息。
  38. 根据权利要求25至37中任一项所述的方法,其特征在于,所述第一混合方案对冗余版本RV的映射方式为:
    在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
    在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用相同的RV。
  39. 根据权利要求25至37中任一项所述的方法所述的方法,其特征在于,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
    所述第一组上行信息和所述第二组上行信息采用相同的RV图样。
  40. 根据权利要求39所述的方法,其特征在于,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV,均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV相同。
  41. 根据权利要求39或40所述的方法,其特征在于,所述第一组上行信息第n个上行信息所采用的RV的标识,以及所述第二组上行信息中的第n个上行信息所采用的RV的标识,均根据所述第一组上行信息中的第一个上行信息所采用的第一RV和n确定。
  42. 根据权利要求25至37中任一项所述的方法,其特征在于,所述第一混合方案对冗余版本RV的映射方式为:
    在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
    在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用不同的RV。
  43. 根据权利要求25至37中任一项所述的方法,其特征在于,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
    所述第一组上行信息和所述第二组上行信息采用不同的RV图样。
  44. 根据权利要求43所述的方法,其特征在于,所述第一组上行信息采用第一组RV图样,所述第二组上行信息采用第二组RV图样,所述第二组RV图样相对所述第一组RV图样存在RV偏移。
  45. 根据权利要求43或44所述的方法,其特征在于,所述第一组上行信息中的第一个上行信息所采用的第一RV为下行控制信息DCI指示的RV,所述第二组上行信息中的第一个上行信息所采用的第二RV为所述第一RV偏移后的RV。
  46. 根据权利要求45所述的方法,其特征在于,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV的标识和n确定,所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第一RV的标识、所述第二RV相对所述第一RV的偏移量以及n确定。
  47. 根据权利要求45或46所述的方法,其特征在于,若所述第一组上行信息和所述第二组上行信息属于同一个码字,则所述第二RV为所述第一RV偏移后的RV。
  48. 根据权利要求43或44所述的方法,其特征在于,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV不相同。
  49. 根据权利要求48所述的方法,其特征在于,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV和n确定;所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第二RV和n确定。
  50. 根据权利要求40、48或49所述的方法,其特征在于,若所述第一组上行信息和所述第二组上行信息属于不同码字,则所述第一RV和所述第二RV均为所述DCI指示的RV。
  51. 根据权利要求37、39至41以及43至50中任一项所述的方法,其特征在于,所述第一组上行信息与第一TCI状态关联,所述第二组上行信息与第二TCI状态关联。
  52. 根据权利要求37、39至41以及43至50中任一项所述的方法,其特征在于,所述第一组上行信息中与第一TCI状态关联的相邻的两个上行信息之间,间隔所述第一组上行信息中与第二TCI状态关联的至少一个上行信息;所述第二组上行信息中与所述第一TCI状态关联的相邻的两个上行信息之间,间隔所述第二组上行信息中与所述第二TCI状态关联的至少一个上行信息。
  53. 一种无线通信方法,其特征在于,包括:
    确定第一混合方案,所述第一混合方案包括多个传输方案;
    根据所述第一混合方案,接收终端设备发送的或向所述终端设备发送第二信息。
  54. 根据权利要求53所述的方法,其特征在于,所述第一混合方案为以下方案中的任意一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
  55. 根据权利要求53或54所述的方法,其特征在于,所述确定第一混合方案,包括:
    向所述终端设备发送第五信令;
    其中,所述第五信令配置的传输方案为所述第一混合方案,或所述第五信令配置的传输方案用于确定所述第一混合方案。
  56. 根据权利要求55所述的方法,其特征在于,若所述第五信令配置的传输方案为FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案,则所述第一混合方案为所述第五信令配置的传输方案;
    若所述第五信令配置的传输方案为FDM方案,或所述第五信令配置的传输方案为FDM方案和TDM方案的混合方案,则则所述第一混合方案为第二信令指示的传输方案和第四信令指示的传输方案的混合方案;或者,
    若所述第五信令配置的传输方案为SDM方案,或所述第五信令配置的传输方案为SDM方案和TDM方案的混合方案,则则所述第一混合方案为第三信令指示的传输方案和所述第四信令指示的传输方案的混合方案;或者,
    若所述第五信令配置的传输方案为FDM方案A、FDM方案B、SDM方案A、SDM方案B或SFN方案,则则所述第一混合方案为所述第五信令配置的传输方案和第四信令指示的传输方案的混合方案;或者,
    其中,所述第二信令用于指示FDM方案A或FDM方案B,所述第三信令用于指示SDM方案A或SDM方案B,所述第四信令用于指示重复类型A或重复类型B。
  57. 根据权利要求55或56所述的方法,其特征在于,所述第五信令用于配置候选传输方案中的传输方案。
  58. 根据权利要求57所述的方法,其特征在于,所述候选传输方案包括以下方案中的至少一种:频分复用FDM方案A、FDM方案B、空分复用SDM方案A、SDM方案B、单频点网络SFN方案、重复类型A、重复类型B;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案、SDM方案、时分复用TDM方案、SFN方案。
  59. 根据权利要求57或58所述的方法,其特征在于,所述候选传输方案包括以下方案中的至少一种:FDM方案和TDM方案的混合方案、SDM方案和TDM方案的混合方案、SFN方案和TDM方案的混合方案;或者,所述候选传输方案包括以下方案中的至少一种:FDM方案A和重复类型A的混合方案、FDM方案A和重复类型B的混合方案、FDM方案B和重复类型A的混合方案、FDM方案B和重复类型B的混合方案、SDM方案A和重复类型A的混合方案、SDM方案A和重复类型B的混合方案、SDM方案B和重复类型A的混合方案、SDM方案B和重复类型B的混合方案、SFN方案和重复类型A的混合方案、SFN方案和重复类型B的混合方案。
  60. 根据权利要求55或56所述的方法,其特征在于,所述第五信令中不同的子信令用于配置不同的传输方案。
  61. 根据权利要求60所述的方法,其特征在于,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案A、FDM方案B、SDM方案A、SDM方案B、SFN方案;或者,所述第五信令包括用于配置以下传输方案中的一种传输方案的子信令:FDM方案、SDM方案、SFN方案。
  62. 根据权利要求53至61中任一项所述的方法,其特征在于,所述根据所述第一混合方案,接收终端设备发送的或向所述终端设备发送第二信息,包括:
    若所述第二信息关联的至少一个空间参数的数量为第一预设值,则根据所述第一混合方案接收所述终端设备发送的或向所述终端设备发送所述第二信息。
  63. 根据权利要求62所述的方法,其特征在于,所述第一预设值为2。
  64. 根据权利要求62或63所述的方法,其特征在于,所述方法还包括:
    若所述至少一个空间参数的数量为第二预设值,则采用所述第二预设值个空间参数在多个时域发送机会上,接收所述终端设备重复发送的或向所述终端设备重复发送所述第二信息。
  65. 根据权利要求53至64中任一项所述的方法,其特征在于,所述第二信息包括第一组上行信息和第二组上行信息,所述第一混合方案对TCI状态的映射方式为:
    在相同的时域发送机会,以FDM或SDM或SFN方式发送所述第一组上行信息和所述第二组上行信息;
    在不同的时域发送机会,以TDM方式发送的同一组上行信息。
  66. 根据权利要求53至65中任一项所述的方法,其特征在于,所述第一混合方案对冗余版本RV的映射方式为:
    在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
    在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用相同的RV。
  67. 根据权利要求53至65中任一项所述的方法所述的方法,其特征在于,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
    所述第一组上行信息和所述第二组上行信息采用相同的RV图样。
  68. 根据权利要求67所述的方法,其特征在于,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV,均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV相同。
  69. 根据权利要求67或68所述的方法,其特征在于,所述第一组上行信息第n个上行信息所采用的RV的标识,以及所述第二组上行信息中的第n个上行信息所采用的RV的标识,均根据所述第一组上行信息中的第一个上行信息所采用的第一RV和n确定。
  70. 根据权利要求53至65中任一项所述的方法,其特征在于,所述第一混合方案对冗余版本RV的映射方式为:
    在不同的时域发送机会上发送的上行信息循环采用预设数量个RV;
    在相同时域发送机会发送的与不同的TCI状态关联的上行信息采用不同的RV。
  71. 根据权利要求53至65中任一项所述的方法,其特征在于,所述第二信息包括第一组上行信息和第二组上行信息;所述第一混合方案对冗余版本RV的映射方式为:
    所述第一组上行信息和所述第二组上行信息采用不同的RV图样。
  72. 根据权利要求71所述的方法,其特征在于,所述第一组上行信息采用第一组RV图样,所述第二组上行信息采用第二组RV图样,所述第二组RV图样相对所述第一组RV图样存在RV偏移。
  73. 根据权利要求71或72所述的方法,其特征在于,所述第一组上行信息中的第一个上行信息所采用的第一RV为下行控制信息DCI指示的RV,所述第二组上行信息中的第一个上行信息所采用的第二RV为所述第一RV偏移后的RV。
  74. 根据权利要求73所述的方法,其特征在于,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV的标识和n确定,所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第一RV的标识、所述第二RV相对所述第一RV的偏移量以及n确定。
  75. 根据权利要求73或74所述的方法,其特征在于,若所述第一组上行信息和所述第二组上行信息属于同一个码字,则所述第二RV为所述第一RV偏移后的RV。
  76. 根据权利要求71或72所述的方法,其特征在于,所述第一组上行信息中的第一个上行信息所采用的第一RV,以及所述第二组上行信息中的第一个上行信息所采用的第二RV均为下行控制信息DCI指示的RV;所述第一RV和所述第二RV不相同。
  77. 根据权利要求76所述的方法,其特征在于,所述第一组上行信息第n个上行信息所采用的RV的标识根据所述第一RV和n确定;所述第二组上行信息中的第n个上行信息所采用的RV的标识根据所述第二RV和n确定。
  78. 根据权利要求68、76或77所述的方法,其特征在于,若所述第一组上行信息和所述第二组上行信息属于不同码字,则所述第一RV和所述第二RV均为所述DCI指示的RV。
  79. 根据权利要求65、67至69以及71至78中任一项所述的方法,其特征在于,所述第一组上行信息与第一TCI状态关联,所述第二组上行信息与第二TCI状态关联。
  80. 根据权利要求65、67至69以及71至78中任一项所述的方法,其特征在于,所述第一组上行信息中与第一TCI状态关联的相邻的两个上行信息之间,间隔所述第一组上行信息中与第二TCI状态关联的至少一个上行信息;所述第二组上行信息中与所述第一TCI状态关联的相邻的两个上行信息之间,间隔所述第二组上行信息中与所述第二TCI状态关联的至少一个上行信息。
  81. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备发送的第一信令,所述第一信令用于配置第一传输方案;
    确定单元,用于根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;
    所述通信单元还用于:根据所述第二传输方案,向所述网络设备发送或接收所述网络设备发送的所述第一信息。
  82. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送第一信令,所述第一信令用于配置第一传输方案;
    确定单元,用于根据所述第一传输方案和与第一信息关联的至少一个空间参数的数量,确定所述第一信息的第二传输方案;
    所述通信单元还用于:根据所述第二传输方案,向所述终端设备发送或接收所述终端设备发送的所述第一信息。
  83. 一种终端设备,其特征在于,包括:
    确定单元,用于确定第一混合方案,所述第一混合方案包括多个传输方案;
    通信单元,用于根据所述第一混合方案,向网络设备发送或接收所述网络设备发送的第二信息。
  84. 一种网络设备,其特征在于,包括:
    确定单元,用于确定第一混合方案,所述第一混合方案包括多个传输方案;
    通信单元,用于根据所述第一混合方案,接收终端设备发送的或向所述终端设备发送第二信息。
  85. 一种终端设备,其特征在于,包括:
    处理器、收发器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使得所述处理器和所述收发器执行如权利要求1至12中任一项所述的方法或如权利要求25至52中任一项所述的方法。
  86. 一种网络设备,其特征在于,包括:
    处理器、收发器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使得所述处理器和所述收发器执行如权利要求13至24中任一项所述的方法或如权利要求53至80中任一项所述的方法。
  87. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至12中任一项所述的方法、如权利要求13至24中任一项所述的方法、如权利要求25至52中任一项所述的方法或如权利要求53至80中任一项所述的方法。
  88. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至12中任一项所述的方法、如权利要求13至24中任一项所述的方法、如权利要求25至52中任一项所述的方法或如权利要求53至80中任一项所述的方法。
  89. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至12中任一项所述的方法、如权利要求13至24中任一项所述的方法、如权利要求25至52中任一项所述的方法或如权利要求53至80中任一项所述的方法。
  90. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至12中任一项所述的方法、如权利要求13至24中任一项所述的方法、如权利要求25至52中任一项所述的方法或如权利要求53至80中任一项所述的方法。
PCT/CN2022/110561 2022-08-05 2022-08-05 无线通信方法、终端设备以及网络设备 WO2024026834A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110561 WO2024026834A1 (zh) 2022-08-05 2022-08-05 无线通信方法、终端设备以及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110561 WO2024026834A1 (zh) 2022-08-05 2022-08-05 无线通信方法、终端设备以及网络设备

Publications (1)

Publication Number Publication Date
WO2024026834A1 true WO2024026834A1 (zh) 2024-02-08

Family

ID=89848234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110561 WO2024026834A1 (zh) 2022-08-05 2022-08-05 无线通信方法、终端设备以及网络设备

Country Status (1)

Country Link
WO (1) WO2024026834A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200177339A1 (en) * 2017-07-25 2020-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Control signaling for a radio access network
CN112771968A (zh) * 2019-02-22 2021-05-07 Oppo广东移动通信有限公司 传输上行反馈信息的方法、终端设备和网络设备
CN112868201A (zh) * 2021-01-13 2021-05-28 北京小米移动软件有限公司 下行控制信息的传输方法、装置及通信设备
CN112970294A (zh) * 2019-04-08 2021-06-15 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
US20210242990A1 (en) * 2018-06-05 2021-08-05 Telefonaktiebolaget Lm Ericsson (Publ) Demodulation Reference Signaling in LTE/NR Coexistence
US20220045805A1 (en) * 2020-08-07 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Harq feedback

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200177339A1 (en) * 2017-07-25 2020-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Control signaling for a radio access network
US20210242990A1 (en) * 2018-06-05 2021-08-05 Telefonaktiebolaget Lm Ericsson (Publ) Demodulation Reference Signaling in LTE/NR Coexistence
CN112771968A (zh) * 2019-02-22 2021-05-07 Oppo广东移动通信有限公司 传输上行反馈信息的方法、终端设备和网络设备
CN112970294A (zh) * 2019-04-08 2021-06-15 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
US20220045805A1 (en) * 2020-08-07 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Harq feedback
CN112868201A (zh) * 2021-01-13 2021-05-28 北京小米移动软件有限公司 下行控制信息的传输方法、装置及通信设备

Similar Documents

Publication Publication Date Title
WO2018196550A1 (zh) 传输反馈信息的方法和装置
WO2018054381A1 (zh) 传输反馈信息的方法和装置
EP2745593B1 (en) Scheduling communications
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
CN110932820B (zh) 发送和接收上行控制信息的方法以及通信装置
WO2020052666A1 (zh) 一种通信方法及装置
WO2021155608A1 (zh) 信息传输方法及相关装置
WO2020199856A1 (zh) 信息传输的方法和通信装置
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
CN109474999B (zh) 发送上行控制信道的方法和装置
CN113678558B (zh) 信息传输方法及相关装置
CN113490278B (zh) 下行信号传输的方法和设备
WO2022082386A1 (zh) 一种无线通信的方法与装置
WO2021142802A1 (zh) 一种上行控制信息的传输方法及装置
US11863493B2 (en) Method for transmitting feedback information, terminal device, and network device
WO2020238991A1 (zh) 一种状态信息发送、接收方法及装置
WO2022237611A1 (zh) 一种信息确认方法、装置及通信设备
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2019192500A1 (zh) 通信方法和通信装置
CN114846755A (zh) 一种数据的反馈方法及装置
WO2024026834A1 (zh) 无线通信方法、终端设备以及网络设备
CN110752905A (zh) 通信方法及装置
CN110622552A (zh) 用于通信的装置和方法
WO2023178482A1 (zh) 信息传输方法、终端设备和网络设备
WO2023197201A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953641

Country of ref document: EP

Kind code of ref document: A1