WO2023197201A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023197201A1
WO2023197201A1 PCT/CN2022/086559 CN2022086559W WO2023197201A1 WO 2023197201 A1 WO2023197201 A1 WO 2023197201A1 CN 2022086559 W CN2022086559 W CN 2022086559W WO 2023197201 A1 WO2023197201 A1 WO 2023197201A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
unified
coreset
tci
indication information
Prior art date
Application number
PCT/CN2022/086559
Other languages
English (en)
French (fr)
Inventor
曹建飞
刘哲
方昀
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/086559 priority Critical patent/WO2023197201A1/zh
Publication of WO2023197201A1 publication Critical patent/WO2023197201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to wireless communication methods, terminal devices, and network devices.
  • the downlink transmission of the Multiple Transmission Reception Point (mTRP) in the New Radio (NR) system can only use the downlink transmission configuration indication (TCI) in version (Rel) 15/16. )state.
  • TCI downlink transmission configuration indication
  • the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) use independent beam indication mechanisms, that is, the PDCCH uses Media Access Control (MAC)
  • the Control Element (CE) activates one or two TCI states for the Control Resource Set (CORESET) in which it is located; while the PDSCH can dynamically indicate the downlink beam through the Downlink Control Information (DCI).
  • the TCI status indication mechanism involved in Rel.15/16 is only applicable to downlink channels and signals, and has many limitations when applied in NR systems, which affects and reduces system performance.
  • Embodiments of the present application provide a wireless communication method, terminal equipment and network equipment, which can improve system performance.
  • this application provides a wireless communication method, including:
  • the first indication information is used to indicate or update at least one unified transmission configuration indication TCI status.
  • this application provides a wireless communication method, including:
  • the first indication information is used to indicate or update at least one unified transmission configuration indication TCI status.
  • this application provides a terminal device for executing the method in the above first aspect or its respective implementations.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or its respective implementations.
  • the terminal device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the terminal device is a communication chip, the sending unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • this application provides a network device for performing the method in the above second aspect or its respective implementations.
  • the network device includes a functional module for executing the method in the above second aspect or its respective implementations.
  • the network device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the network device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the network device is a communication chip, the receiving unit can be an input circuit or interface of the communication chip, and the sending unit can be an output circuit or interface of the communication chip.
  • this application provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its respective implementations.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the terminal device also includes a transmitter (transmitter) and a receiver (receiver).
  • this application provides a network device, including a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect or its respective implementations.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the network device also includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip for implementing any one of the above-mentioned first to second aspects or the methods in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or implementations thereof. method.
  • the present application provides a computer-readable storage medium for storing a computer program, the computer program causing the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • the present application provides a computer program product, including computer program instructions, which cause a computer to execute any one of the above-mentioned first to second aspects or the methods in each implementation thereof.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • this application instructs or updates at least one unified TCI status to the terminal device by introducing the first indication information sent by the first TRP among multiple TRPs.
  • This application is equivalent to introducing the first indication information for the transmission mode of multiple TRPs.
  • a unified uplink beam management mechanism and/or a unified downlink beam management mechanism can reduce the beam indication frequency and resource consumption, thereby improving system performance.
  • Figure 1 is an example diagram of a 5G communication system according to an embodiment of the present application.
  • Figure 2 is an example of an application scenario according to the embodiment of the present application.
  • Figure 3 is a schematic flow chart of a wireless communication method provided by an embodiment of the present application.
  • Figure 4 is an example of the mDCI-mPDSCH transmission method provided by the embodiment of the present application.
  • Figure 5 is an example of a MAC CE suitable for the mDCI-mPDSCH transmission method provided by the embodiment of the present application.
  • Figure 6 is an example of the sDCI-mPDSCH transmission method provided by the embodiment of the present application.
  • Figure 7 is an example of a MAC CE suitable for the sDCI-mPDSCH transmission method provided by the embodiment of the present application.
  • Figure 8 is a schematic diagram of the timeline of TCI status provided by this application.
  • Figure 9 is a schematic diagram of the timeline of the unified TCI status provided by this application.
  • Figure 10 is an example of a terminal device switching from multiple unified TCI states to a single unified TCI state provided by an embodiment of the present application.
  • Figure 11 is an example of a terminal device switching from a single unified TCI state to multiple unified TCI states provided by an embodiment of the present application.
  • Figure 12 is an example of MAC CE suitable for the SFN transmission method provided by the embodiment of the present application.
  • Figures 13 to 15 are examples of MAC CE carrying second indication information provided by embodiments of the present application.
  • Figure 16 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Figure 17 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • Figure 18 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • Figure 1 is an example diagram of a 5G communication system 100 according to an embodiment of the present application.
  • the communication system 100 may include a terminal device 110, a transmission reception point (Transmission Reception Point, TRP) 121 and a TRP 122.
  • TRP 121 and TRP 122 can communicate with the terminal device 110 through the air interface respectively.
  • TRP 121 and TRP 122 can independently schedule a terminal device 110 for data transmission.
  • the terminal equipment 110 detects the PDCCH from TRP 121 and TRP 122 respectively in one time slot for scheduling multiple independent uplink data transmissions, and these independent uplink transmissions may happen to be scheduled in the same time slot.
  • TRP 121 and TRP 122 belong to the same cell, and the connection (backhaul) between TRP 121 and TRP 122 is ideal, that is, information can be exchanged quickly and dynamically.
  • TRP 121 and TRP 122 belong to the same cell, and the connection between TRP 121 and TRP 122 is non-ideal, that is, TRP 121 and TRP 122 cannot exchange information quickly and can only perform relatively slow data exchange.
  • TRP 121 and TRP 122 belong to different cells, and the connection between TRP 121 and TRP 122 is ideal.
  • TRP 121 and TRP 122 belong to different cells, and the connection between TRP 121 and TRP 122 is non-ideal.
  • the terminal device 110 can receive downlink information through multiple downlinks, where each downlink has Corresponding uplink information needs to be transmitted.
  • the uplink information contains at least one of the following signals: Acknowledgment/Non-Acknowledgement (ACK/NACK) corresponding to each downlink, Channel State Information (CSI) corresponding to each downlink. Waiting for reported information and uplink data. It can be seen that if the terminal device 110 also needs to send uplink information on the uplinks corresponding to multiple downlinks, the complexity and power consumption of the terminal device will be too high.
  • TRP 121 or TRP 122 can be used to instruct the terminal device 110 on the uplink signal transmission mode to reduce the complexity and high power consumption of the terminal device.
  • the embodiment of the present application only takes the 5G communication system 100 as an example for illustrative description, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to any communication system in which multiple network devices can independently schedule a terminal for data transmission.
  • the application scenario example shown in Figure 2 can be correspondingly obtained. This scenario includes a terminal device 130 and a network device 140, where the terminal device 130 and the network device 140 There are multiple beams in between.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • General Packet Radio Service GPRS
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the network device 130 may refer to any entity on the network side that is used to send or receive signals.
  • it can be a user equipment in Machine Type Communications (MTC), a Base Transceiver Station (BTS) in GSM or CDMA, a Base Station (NodeB) in WCDMA, or an Evolutionary Node B (eNB or eNodeB) in LTE. ), base station equipment in 5G networks, etc.
  • MTC Machine Type Communications
  • BTS Base Transceiver Station
  • NodeB Base Station
  • eNB or eNodeB Evolutionary Node B
  • the terminal device 110 may be any terminal device.
  • the terminal device 110 can communicate with one or more core networks (Core Network) via a radio access network (Radio Access Network, RAN), which can also be called an access terminal, user equipment (User Equipment, UE), Subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communications device, user agent or user device.
  • Core Network Radio Access Network
  • RAN radio access network
  • UE user equipment
  • Subscriber unit Subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communications device, user agent or user device.
  • it can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), or a phone with wireless communication capabilities Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and terminal devices in 5G networks.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Handheld devices computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and terminal devices in 5G networks.
  • the concept of TCI status is proposed in the Rel.15 version, which is used for downlink spatial domain QCL (beam) indication and the transmission of time domain and frequency domain QCL information.
  • the quasi-co-located (QCL) relationship can be simply described as the relationship of large-scale fading from a source reference signal to a target reference signal.
  • the UE After the UE obtains the QCL relationship between the two source and target reference signals from the network (NW), it can use the receiving beam that previously received the source reference signal when receiving the target reference signal.
  • the TCI status indication mechanism is only applicable to downlink channels and signals, and has many limitations when applied in NR systems. Based on this, in order to provide a more unified uplink and downlink beam management mechanism for the NR system, based on the design of the Rel.15/16 TCI state, 3GPP Rel.17 proposed the concept of a unified TCI state to reduce the beam indication frequency and reduce the Resource consumption, thereby improving system performance.
  • the unified TCI state may include a joint TCI state, a separate DL TCI state, and a separate UL TCI state.
  • the joint TCI state applies to uplink and downlink channels and signals;
  • the separated DL TCI state only applies to downlink channels and signals;
  • the separated UL TCI state only applies to uplink channels and signals.
  • the downlink channel (partial PDCCH, PDSCH) and signal (aperiodic CSI-RS) use the same downlink transmission indicator beam, that is, separate DL TCI state or joint TCI state can be used.
  • the uplink channel (PUCCH, PUSCH) and signal (SRS) use the same uplink transmit beam, that is, separate UL TCI state or joint TCI state can be used.
  • unified TCI status may be dynamically updated and indicated using MAC CE and/or DCI.
  • the unified TCI state may be applicable to carrier aggregation scenarios, and the beam indication on a single CC may be applicable to multiple different CCs.
  • the uplink beam indication and the uplink power control parameters may be given simultaneously through separate UL TCI states or joint TCI states.
  • the unified TCI state may be adapted to support beam management functions between cells.
  • CORESET on each CC can be roughly divided into the following four types:
  • CORESET A It is only associated with the UE-specific search space, so it can be considered as a UE-specific downlink control channel resource, and must follow the indicated unified TCI state.
  • CORESET B It is only associated with the public search space of the cell. Whether it can follow the unified TCI status indicated by NW depends on the RRC configuration of NW.
  • CORESET C It is associated with the UE-specific search space and the community's public search space. Whether it can follow the unified TCI status indicated by the NW depends on the RRC configuration of the NW.
  • CORESET 0 It must be associated with the public search space of the cell, and can also be associated with the UE-specific search space at the same time. Whether it can follow the unified TCI status indicated by the NW depends on the RRC configuration of the NW.
  • each TRP can be associated with a search space set (Search Space Set). Two search space sets are associated together through RRC parameters, and each search space set is associated with a control resource set (CORESET). Based on this, the network (NW) can activate a TCI state for each CORESET for downlink beam activation or indication.
  • Search Space Set Two search space sets are associated together through RRC parameters, and each search space set is associated with a control resource set (CORESET).
  • the network (NW) can activate a TCI state for each CORESET for downlink beam activation or indication.
  • mTRP PDSCH in Rel.16, two major scenarios were considered, one is to enhance the mobile ultra-broadband (Enhance Mobile Broadband, eMBB) scenario, and the other is for low-latency and high-reliability communication (Ultra- Reliable and Low Latency Communication (URLLC) enhancement.
  • eMBB Evolution Mobile Broadband
  • URLLC Ultra- Reliable and Low Latency Communication
  • the NW uses one DCI to schedule the transmission of two PDSCHs. This DCI comes from one of the two TRPs.
  • the NW can dynamically adjust which TRP to use.
  • the two PDSCHs are transmitted in different ways through two TRPs, such as SDM, FDM, TDM, etc. This method is suitable for ideal backhaul links between TRPs.
  • the scheduled DCI can contain 1 or 2 TCI states to indicate dynamic switching between sTRP and mTRP transmission.
  • each TCI state will be mapped To the specific resources transmitted by the TRP, such as code division multiplexing (CDM) group, demodulation reference signal (Demodulation Reference Signal, DMRS) port, number of transmission layers (layers), phase tracking Reference signal (Phase-tracking RS, PTRS) port, redundancy version (redundancy version, RV) version, etc. related to PDSCH scheduling.
  • CDM code division multiplexing
  • DMRS demodulation Reference Signal
  • layers layers
  • phase tracking Reference signal Phase tracking Reference signal
  • PTRS phase tracking Reference signal
  • redundancy version redundancy version
  • RV redundancy version
  • mDCI-mPDSCH Each TRP independently schedules the transmission of PDSCH by sending PDCCH.
  • the transmission of PDSCH can be completely overlapping, partially overlapping or completely non-overlapping in time and frequency resources. This method is suitable for TRPs that do not have ideal backhaul links.
  • the Single Frequency Network (SFN) transmission scheme of multiple TRPs of PDCCH/PDSCH is supported, that is, the two TRPs use the same time and frequency. Resources are used to send the PDCCH and the PDSCH it schedules. However, given that the two TRPs are located in different spatial locations, two different TCI states need to be used to indicate different downlink beam information.
  • the method of sTRP PDCCH to schedule SFN PDSCH transmission and the method of SFN PDCCH to schedule sTRP PDSCH transmission are also supported.
  • the downlink transmission of the Multiple Transmission Reception Point (mTRP) in the New Radio (NR) system can only use the downlink transmission configuration indication (Transmission configuration indication) in version (Rel) 15/16 ,TCI) status.
  • the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) use independent beam indication mechanisms, that is, the PDCCH uses Media Access Control (MAC)
  • the Control Element (CE) activates one or two TCI states for the Control Resource Set (CORESET) in which it is located; while the PDSCH can dynamically indicate the downlink beam through the Downlink Control Information (DCI).
  • the TCI status indication mechanism involved in Rel.15/16 is only applicable to downlink channels and signals, and has many limitations when applied in NR systems, which affects and reduces system performance.
  • this application provides a wireless communication method that introduces a unified TCI state into a multi-TRP transmission method to reduce the beam indication frequency and resource consumption, thereby improving system performance.
  • FIG 3 is a schematic flowchart of a wireless communication method 200 provided by an embodiment of the present application.
  • the wireless communication method 200 can be interactively executed by a terminal device and the first TRP.
  • the terminal device shown in Figure 3 may be the terminal device 110 shown in Figure 1 or the terminal device 130 shown in Figure 2, and the first TRP shown in Figure 3 may be the TRP 121 or TRP shown in Figure 1 122, which may also be the network device 140 shown in Figure 2.
  • the method 200 may include some or all of the following:
  • the terminal device receives the first indication information sent by the first TRP among the multiple TRPs;
  • the first indication information is used to indicate or update at least one unified TCI status.
  • the first indication information sent by the first TRP among multiple TRPs is introduced to indicate or update at least one unified TCI status to the terminal device.
  • This is equivalent to the introduction of unified TCI status for the transmission mode of multiple TRPs.
  • the uplink beam management mechanism and/or the unified downlink beam management mechanism can reduce the beam indication frequency and reduce resource consumption, thereby improving system performance.
  • the terminal device can select or determine the at least one unified TCI state among the activated unified TCI states based on the first indication information, and based on the selected or determined at least one unified TCI state, Unify TCI status to receive or send data.
  • the terminal device can select or determine the at least one unified TCI state among the activated unified TCI states based on the first indication information, and based on the selected or determined at least one unified TCI state,
  • the unified TCI state updates the currently used unified TCI state, and receives or sends data based on the updated unified TCI state (that is, the unified TCI state indicated by the first indication information).
  • Component Carrier CC
  • CC component carrier
  • AP-CSI-RS Aperiodic Channel State Information Reference Signal
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • the unified TCI state is directly applied to the mDCI-mPDSCH scenario, there must be at least multiple independent sets of uplink and downlink beams corresponding to multiple spatially separated TRPs.
  • NR supports up to 2 TRPs (from different spatial locations) to serve the UE, at least 2 unified TCI states are required (e.g. 2 joint TCI states or 2 separate downlink TCI states need to be indicated) for downlink Beam indication.
  • unifying the TCI status requires integrating the channels and signals of a specific TRP into one downlink beam, and integrating the channels and signals of another TRP into another downlink beam. Based on this, when the network indicates a unified TCI state, how to find the corresponding beam or the corresponding TRP (ie, the applicable scope of the unified TCI state) is a technical problem that needs to be further solved in this application.
  • the terminal device may determine the applicable scope of the at least one TCI state based on characteristics of the transmission modes of the multiple TRPs. For example, if the transmission method of the multiple TRPs is the multi-physical downlink shared channel (Multi-DCI multi-PDSCH, mDCI-mPDSCH) transmission method, then the terminal equipment can transmit data based on the mDCI-mPDSCH transmission method. Characteristics to determine the applicable scope of at least one TCI status. For example, if the transmission mode of the multiple TRPs is a single-DCI multi-PDSCH (sDCI-mPDSCH) transmission mode, the terminal device can transmit data based on the sDCI-mPDSCH transmission mode.
  • sDCI-mPDSCH single-DCI multi-PDSCH
  • the terminal device can determine the applicable scope of the at least one TCI state according to the characteristics of the SFN transmission mode.
  • the applicable scope of the at least one TCI state may include: the applicable scope of each of the at least one TCI state or a certain TCI state, the resources to which each of the at least one TCI state or a certain TCI state is applicable. Or TRP.
  • the terminal device can determine the control resource set (CORESET) corresponding to the at least one unified TCI state in the multiple TRPs based on the characteristics of the transmission modes of the multiple TRPs. . In other embodiments, after receiving the first indication information, the terminal device may determine the TRP corresponding to the at least one unified TCI state among the multiple TRPs based on the characteristics of the transmission modes of the multiple TRPs.
  • CORESET control resource set
  • the at least one unified TCI state includes at least one of the following: a joint TCI state, a separated uplink TCI state, or a separated downlink state. TCI status.
  • the at least one TCI state may include one or more combined TCI states.
  • the at least one TCI state may include a separate upstream TCI state.
  • the at least one TCI state may include a separate downstream TCI state.
  • the at least one TCI state may include a separate uplink TCI state and a separate downlink TCI state.
  • each TRP performs its own scheduling.
  • the PDCCH schedules the PDSCH from the same TRP or triggers the aperiodic CSI-RS from the same TRP.
  • Different TRPs do not require too much coordination.
  • the mDCI-mPDSCH transmission method is suitable for networks that do not have a perfect backhaul link between two TRPs.
  • the data exchange rate and time between the two TRPs are Yan doesn’t have many requirements.
  • Figure 4 is an example of the mDCI-mPDSCH transmission method provided by the embodiment of the present application.
  • CORESET(s) from the same TRP are grouped into a CORESET group and associated with a TRP.
  • a CORESET group may also be called a resource pool, a CORESET resource pool, or a CORESET resource pool.
  • the resource pool with index 0 is associated with TRP 1
  • the resource pool with index 1 is associated with TRP 2.
  • the method 200 may further include:
  • the terminal device determines the first CORESET resource pool to which the CORESET where the downlink control information (DCI) carrying the first indication information is located belongs, and determines the CORESET resource pool applicable to the at least one unified TCI state.
  • DCI downlink control information
  • the terminal device determines the CORESET where the DCI used to carry the first indication information is located, and sets the first CORESET to which the DCI used to carry the first indication information belongs.
  • the CORESET resource pool is determined to be the CORESET resource pool applicable to the at least one unified TCI state indicated by the first indication information.
  • this application uses the first indication information
  • the applicable scope of at least one unified TCI status indicated is limited to the CORESET resource pool to which the first CORESET belongs, enabling the same TRP to use the same beam for PDCCH, PDSCH, and aperiodic CSI-RS, while different TRPs use their own indications.
  • the beam is used for downlink transmission, which can ensure the data transmission performance.
  • the method 200 may further include:
  • the TRP corresponding to the CORESET resource pool to which the at least one unified TCI state is applicable among the multiple TRPs is determined to be the TRP to which the at least one unified TCI state is applicable.
  • the terminal device determines the first CORESET resource pool to which the first CORESET of the DCI carrying the first indication information belongs, and determines the first CORESET resource pool indicated by the first indication information. At least one CORESET resource pool applicable to the unified TCI state. Further, the terminal device can also determine the TRP corresponding to the at least one CORESET resource pool applicable to the unified TCI state as the TRP applicable to the at least one unified TCI state.
  • the TRP to which the at least one unified TCI state applies is the first TRP.
  • the terminal device determines the TRP corresponding to the first CORESET resource pool as the TRP applicable to the at least one unified TCI state.
  • the terminal device can still pass the first CORESET Determining the TRP applicable to the at least one unified TCI state in the resource pool in which it is located can reduce the extent of modifications to the standard protocol and improve the compatibility of the at least one unified TCI state.
  • the use effect of the at least one unified TCI state can be determined by clarifying the TRP to which the at least one unified TCI state applies.
  • the method 200 may further include:
  • the received DCI triggered aperiodic channel state information reference signal AP-CSI-RS.
  • the terminal device can limit the applicable scope of the unified TCI state through the value of CORESETPoolIndex configured in CORESET.
  • CORESETPoolIndex For DCI dynamic indication or updated unified TCI status from CORESET with CORESETPoolIndex of 0 (or 1), its applicable scope is limited to other channels of the TRP associated with CORESETPoolIndex of 0 (or 1), that is, its applicable PDCCH
  • the PDCCH that is throttled in the CORESET has the same CORESETPoolIndex, and its applicable PDSCH is throttled in the DCI scheduled PDSCH in the CORESET from the same CORESETPoolIndex, and its applicable aperiodic CSI-RS is from the same CORESETPoolIndex Aperiodic CSI-RS triggered by DCI in CORESET.
  • the first indication information may be carried in Radio Resource Control (Radio Resource Control, RRC) configuration parameters (ie, RRC signaling).
  • RRC Radio Resource Control
  • CORESET(s) from the same TRP have the same RRC configuration parameter.
  • the RRC configuration parameter can be the control resource set pool index (CORESETPoolIndex), and its value range is 0 or 1.
  • CORESETPoolIndex the control resource set pool index
  • its default value is 0.
  • RRC configuration parameters can be implemented in the following format:
  • the first TRP before sending the first indication information to the terminal device, can activate or update each CORESET resource pool through the Media Access Control (Media Access Control, MAC) control element (Control Element, CE). Unify TCI status.
  • Media Access Control Media Access Control, MAC
  • Control Element Control Element
  • the terminal device can select or determine the first indication information in the unified TCI status activated for the first CORESET resource pool. Indicates or updates the unified TCI status.
  • the unified TCI status included in at least one code point can be activated or updated through the MAC CE for the first CORESET resource pool.
  • the first code point in the at least one code point can be indicated or updated through the first indication information. Points include unified TCI status.
  • Figure 5 is an example of a MAC CE suitable for the mDCI-mPDSCH transmission method provided by the embodiment of the present application.
  • the MAC CE may include N+3 bytes (Oct), that is, Oct 1 to Oct N+3.
  • Oct 1 carries X, serving cell ID (Serving Cell ID) and downlink bandwidth part ID (Downlink Bandwidth Part ID, DL BWP ID)
  • Oct 2 carries the uplink bandwidth part ID (Uplink Bandwidth Part ID, DL BWP ID) and R
  • Oct 3 carries P 1 to P 8
  • each Oct in Oct 4 to Oct N+3 carries a TCI state ID and a D/U.
  • Serving cell identifier used to indicate the identifier of the serving cell to which MAC CE is applied. Its length can be 5 bits.
  • Downlink bandwidth part identifier used to indicate the DL BWP applied by MAC CE, and its length is 2 bits.
  • Uplink bandwidth part identifier used to indicate the UL BWP applied by MAC CE, and its length is 2 bits.
  • Pi used to indicate that the i-th code point includes multiple TCI states or a single TCI state.
  • Pi is set to 1, it indicates that the i-th code point includes the DL TCI state and the UL TCI state. If Pi is set to 0, it indicates that the i-th TCI code point only includes the DL TCI state or the UL TCI state.
  • D/U Used to indicate whether the TCI status ID in the Oct is used for the joint/downlink TCI status or the uplink TCI status.
  • the TCI status ID in the Oct is used for joint/downlink; if D/U is set to "0", the TCI status ID in the Oct is used for uplink.
  • TCI status identifier An identifier used to indicate the TCI status.
  • a 7-bit TCI status ID is used. If D/U is set to 0, the most significant bit of the TCI status ID is considered a reserved bit, while the remaining 6 bits indicate the TCI status ID.
  • the maximum number of activated TCI states is 16.
  • CORESETPoolIndex is set to 1
  • these activated TCI states apply to CORESET (with CORESETPoolIndex configured as 1), scheduled PDSCH and/or triggered AP-CSI-RS; if CORESETPoolIndex is set to 0 in that MAC CE or not present, then these activated TCI states apply to CORESET(s), scheduled PDSCH and/or triggered AP-CSI-RS with CORESETPoolIndex configured as 0 or not present.
  • R Reserved bit, which can be set to "0".
  • the transmission mode of the multiple TRPs is the transmission mode of sDCI-mPDSCH.
  • one DCI schedules two PDSCHs.
  • the NW can choose to send scheduled DCI from any TRP, and then send two PDSCHs from two TRPs to the UE.
  • the scheduling mechanism in the sDCI-mPDSCH transmission mode is highly flexible.
  • the NW can choose one of the two TRPs to send the PDCCH scheduling information. Even more, the network can adjust the transmission of the same CORESET from different TRPs in time by activating the Rel.15/16TCI status of CORESET.
  • Component Carrier CC
  • CC component carrier
  • AP-CSI-RS Aperiodic Channel State Information Reference Signal
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • the unified TCI state is directly applied to the sDCI-mPDSCH scenario, there must be at least multiple independent sets of uplink and downlink beams corresponding to multiple spatially separated TRPs. For example, if NR supports up to 2 TRPs (from different spatial locations) to serve the UE, at least 2 unified TCI states are required (e.g. 2 joint TCI states or 2 separate downlink TCI states need to be indicated) for downlink Beam indication. And, more importantly, unifying the TCI status requires integrating the channels and signals of a specific TRP into one downlink beam, and integrating the channels and signals of another TRP into another downlink beam. Based on this, when the network indicates multiple unified TCI states, how to find the unified TCI state suitable for sDCI is a technical problem that needs to be further solved in this application.
  • Figure 6 is an example of the sDCI-mPDSCH transmission method provided by the embodiment of the present application.
  • the PDCCH A sent by TRP 1 can be used to schedule PDSCH 1 and PDSCH 2. That is, after the UE receives the PDCCH A sent by TRP 1, it can receive PDSCH 1 from TRP 1 and receive PDSCH 2 from TRP 2.
  • CORESET in the sDCI-mPDSCH transmission method will not be configured with CORESETPoolIndex. Therefore, if the first indication information is used to indicate two unified TCI states, the CORESET beam (for example, the sDCI applicable beam for scheduling two PDSCHs) may be ambiguous, that is, the UE cannot determine the CORESET beam (for example, using The beam applicable to sDCI for scheduling two PDSCHs) is which unified TCI state among the two unified TCI states indicated by the first indication information.
  • the first indication information indicates multiple unified TCI How the UE determines the CORESET beam (for example, the sDCI applicable beam for scheduling two PDSCHs) when the UE is in two unified TCI states is a further technical issue that needs to be solved in this application.
  • the method 200 may further include:
  • the default unified TCI state among the multiple unified TCI states is determined as the unified TCI state applicable to a single downlink control information sDCI.
  • the default unified TCI state may be a first unified TCI state among the plurality of unified TCI states.
  • the default unified TCI state may be the last unified TCI state among the plurality of unified TCI states.
  • the default unified TCI state may be the first unified TCI state or the second unified TCI state among the two unified TCI states.
  • the terminal device can select the first unified TCI state among the MAC CE activated code points (including 2 unified TCI states) as the update beam of sDCI (that is, the applicable unified TCI state).
  • the terminal device can also use the second unified TCI state, which is not specifically limited in this application.
  • the first indication information may be used to indicate or update one or more unified TCI states included in a certain code point in the at least one code point.
  • the at least one code point may be a code point activated or updated by MAC CE.
  • the terminal device can obtain at least one activated code point or obtain at least one code point that updates an activated code point through the MAC CE, and indicate the code point of a certain code point in the at least one code point through the first indication information.
  • method to indicate or update the at least one unified TCI status may be information carried in a TCI field (field) in DCI.
  • Figure 7 is an example of a MAC CE suitable for the sDCI-mPDSCH transmission method provided by the embodiment of the present application.
  • the MAC CE may include M bytes (Oct), namely Oct 1 to Oct M.
  • Oct 1 carries R, serving cell ID (Serving Cell ID) and bandwidth part ID (Bandwidth Part ID, BWP ID)
  • Oct 2 carries the first code point C 0 and the first TCI state included in C 0 Identifier (that is, TCI state ID 0,1 )
  • Oct 3 carries the identifier of the second TCI state (that is, TCI state ID 0,2 ) included in R and C 0
  • Oct M-1 carries the Nth Code points C N and C N include the identifier of the first TCI state (i.e.
  • TCI state ID N,1 TCI state ID N,2 .
  • the byte containing the identifier of the second TCI state included in each code point is used as an optional byte.
  • Oct 3 and/or Oct M can be optional bytes.
  • the code point indicated by the first indication information is the first code point, that is, C 0
  • the first code point indicated as a TCI field in DCI contains two unified TCI states. For example, if the TCI field occupies 3 bits in the DCI, and the value of these 3 bits is 000, the unified TCI status indicated or updated by the first indication information (ie, the TCI field (field) in the DCI) is the first A code point consists of two unified TCI states.
  • the first indication information (that is, the TCI field (field) in DCI ) indicates or updates the unified TCI state as the two unified TCI states included in the Nth code point.
  • the method 200 may further include:
  • the at least one unified TCI state is multiple unified TCI states, determine at least one of the following as the CORESET applicable to the default unified TCI state in the multiple unified TCI states:
  • CORESET A always follows the indicated unified TCI state.
  • CORESET B, CORESET C, and CORESET/#0 are the NWs individually configured through RRC signaling whether to follow the indicated unified TCI state.
  • the terminal equipment can use the old (legacy) signaling method, that is, the physical downlink control channel (Physical Downlink Control Channel, PDCCH) Use an independent beam indication mechanism with the Physical Downlink Shared Channel (PDSCH), that is, the PDCCH uses the Media Access Control (Media Access Control, MAC) control element (Control Element, CE) to control the set of resources where it is located.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • MAC Media Access Control
  • CE Control Element, CE
  • Control Resource Set, CORESET activates one or two TCI states; while PDSCH can dynamically indicate the downlink beam through downlink control information (Downlink Control Information, DCI).
  • the following situations may be included:
  • Case 1 Schedule the CORESET where the DCI is located to follow the indicated unified TCI state.
  • Case 3 If a certain CORESET has the same unified TCI status as the CORESET where the scheduled DCI is located, then the certain CORESET will also follow the indicated unified TCI status.
  • Case 4 NW configures two CORESET groups (groups) in advance. Within a CORESET group (corresponding to a TRP), if the beam of one CORESET is updated, the beams of other CORESET(s) will also be updated together.
  • Figure 8 is a schematic diagram of the timeline of the Rel.15/16TCI status provided by this application.
  • the timeline of Rel.15/16TCI status often determines whether to use the indicated beam according to the interval between the scheduling DCI and the scheduled PDSCH.
  • the scheduling interval (the time interval between DCI and PDSCH) is larger than the UE
  • the network can use the indicated new beam to send PDSCH; otherwise, the NW can only use the default beam (such as the activated beam of CORESET where the DCI is scheduled). to send PDSCH.
  • Figure 9 is a schematic diagram of the timeline of the unified TCI status provided by this application.
  • the unified TCI status has its unique timeline, that is, the unified TCI contained in the DCI with PDSCH scheduling information needs to send a Hybrid Automatic Repeat Request Confirmation (Hybrid Automatic Repeat) at the user equipment (User Equipment, UE).
  • Hybrid Automatic Repeat Hybrid Automatic Repeat
  • the first time slot after the Beam Application Time (BAT) after the Request-ACK, HARQ-ACK) information will take effect.
  • BAT may include multiple symbols.
  • the first unified TCI state is associated with the first CDM group (group), associated with the DMRS port in the CDM group, and the associated DMRS corresponds to the PTRS , associated with some layers of TRP transmission (limited to spatial multiplexing transmission schemes) or associated with scheduling information such as the RV version used by TRP. Therefore, how the terminal equipment determines the unified TCI state applicable to the PDSCH scheduled by sDCI is a further technical problem that needs to be solved in this application.
  • the method 200 may further include:
  • the at least one unified TCI state is multiple unified TCI states, and the unified TCI state indicated or updated before receiving the first indication information is a single unified TCI state, then the previously indicated or updated unified TCI state of the first indication information is changed.
  • the unified TCI state is determined as the unified TCI state applicable to the physical downlink shared channel PDSCH scheduled by the single downlink control information sDCI carrying the first indication information.
  • the first unified TCI state is multiple unified TCI states, and the unified TCI state that has been indicated or updated before the terminal device receives the first indication information is a single unified TCI state, then the first unified TCI state is The unified TCI state previously indicated or updated by the indication information is determined to be the unified TCI state applicable to the physical downlink shared channel PDSCH scheduled by the single downlink control information sDCI carrying the first indication information.
  • the first indication information is The previously indicated or updated unified TCI state is determined to be the unified TCI state applicable to the physical downlink shared channel PDSCH scheduled by the single downlink control information sDCI carrying the first indication information.
  • Figure 10 is an example of a terminal device switching from multiple unified TCI states to a single unified TCI state provided by an embodiment of the present application.
  • the unified TCI status indicated by the NW can also be changed from 2 to 1.
  • sDCI indicates two unified TCI states and associated DMRS ports (ports), PTRS port, CDM group (group), RV version, layer and other parameters.
  • NW only indicates a unified TCI state, but this unified TCI state is not applicable before the terminal device receives the PDSCH, and other fields in the DCI carry such as and associated DMRS ports (ports) , PTRS port, CDM group (group), RV version, layer and other parameters can be used to indicate transmission from a TRP.
  • the new beam indication can be received from the terminal device to indicate the two unified sDCIs received before.
  • a default unified TCI state for use in the TCI state for example, use the first of the two unified TCI states (available in the time slot for receiving PDSCH) indicated by the sDCI received before the terminal equipment receives the new beam indication.
  • a unified TCI state is associated with the corresponding scheduling parameters.
  • the method 200 may further include:
  • the at least one unified TCI state is a single unified TCI state and the unified TCI states previously indicated or updated by the first indication information are multiple unified TCI states, then the multiple unified TCI states previously indicated by the first indication information are changed.
  • the default unified TCI state is determined as the unified TCI state applicable to the physical downlink shared channel PDSCH scheduled by the single downlink control information sDCI carrying the first indication information.
  • Figure 11 is an example of a terminal device switching from a single unified TCI state to multiple unified TCI states provided by an embodiment of the present application.
  • the unified TCI status indicated by the NW can also be changed from 1 to 2.
  • sDCI indicates a unified TCI status and associated DMRS ports (ports), PTRS port, CDM group (group), RV version, layer and other parameters.
  • Two unified TCI states and scheduling parameters from two TRPs are given in the new beam indication.
  • the two unified TCI states are not applicable before the terminal equipment receives the PDSCH. At this time, only the currently applicable ones can be used.
  • 1 unified TCI state corresponding to the scheduling parameters from the first TCI state indicated in the DCI, such as DMRS ports, PTRS ports, CDM group, RV version, layer and other parameters.
  • the transmission mode of the multiple TRPs is the SFN transmission mode.
  • the SFN transmission method includes any of the following: the transmission method of SFN PDCCH and SFN PDSCH, the transmission method of SFN PDCCH and sTRP PDSCH, and the transmission method of sTRP PDCCH and SFN PDSCH.
  • the two TRPs serving the UE use the same time-frequency resources and different space resources (ie, downlink beams) to send the same PDCCH and/or PDSCH.
  • the advantage of this is that it can improve the reliability of downlink reception, which is suitable for high-speed mobile scenarios.
  • the CORESET where the SFN PDCCH is located needs to activate 1 or 2 unified TCI states.
  • the 1 or 2 unified TCI states may be Rel.15/16TCI states. That is to say, for the downlink control channel, the one or two unified TCI states may indicate the unified TCI state corresponding to CORESET through RRC signaling (or RRC signaling + MAC signaling).
  • SFN PDSCH can be dynamically scheduled by DCI, where the TCI field contains 1 or 2 indicated Rel.15/16 TCI states. That is to say, for the downlink data channel, the set of available TCI states is indicated through RRC signaling, and some of the TCI states are activated through MAC layer signaling. Finally, the TCI state indication field in the DCI is used to select the TCI state from the activated TCI state. Indicates 1 or 2 TCI states for the PDSCH scheduled by the DCI.
  • the unified TCI state indicated by the first indication information may be applicable to the uplink PUCCH, PUSCH and SRS. That is to say, from the perspective of uplink beam management, if the UE supports the use of different antenna panels in the uplink and transmits different uplink beams at the same time, the uplink transmission of the UE can also be enhanced. For example, the UE performs uplink SFN transmission and uses the same time-frequency resources to transmit PUCCH/PUSCH/SRS to different TRPs in different spatial directions, thereby increasing the coverage of uplink channels and signals.
  • the method 200 may further include:
  • the CORESET on at least one component carrier is determined as the CORESET applicable to the at least one unified TCI state; wherein the at least one CC includes the CC where the CORESET of the downlink control information DCI carrying the first indication information is located, and the CORESET on at least one CC shares the unified TCI state.
  • the unified TCI status indicated or updated by the network device for CORESET through the first indication information only includes 1 or 2 unified TCI status. Since the unified TCI state is applicable to multiple CORESETs within a cell, which can include CORESET#0 (the cell-specific control channel used by the UE during initial access), and the NW configuration can follow the indicated unified TCI state (i.e.
  • the CORESET type of at least one unified TCI state indicated by the first indication information such as CORESET type A, CORESET B or CORESET C.
  • the unified TCI state indicated by the first indication information is suitable for configuring CORESETs that can share beams on one CC or on multiple CCs.
  • the multiple CCs may be CCs configured in a CC list to share the indicated beam.
  • the transmission mode of the SFN is the transmission mode of SFN PDCCH and sTRP PDSCH; the method 200 may also include:
  • the default unified TCI state among the multiple unified TCI states is determined as the unified TCI state applicable to the sTRP PDSCH.
  • the default unified TCI state in this application may also be called the default unified TCI state.
  • the first or second unified TCI state among the plurality of unified TCI states is the default unified TCI state.
  • the last unified TCI state among the multiple unified TCI states is the default unified TCI state.
  • the DCI of SFN PDCCH indicates two unified TCI states, or the MAC CE activates/updates two unified TCI states.
  • the CORESET where the SFN PDCCH is located is configured by the NW to follow the indicated unified TCI state, the CORESET will use the indicated unified TCI state after BAT, that is, the UE receives 2 beams of CORESET and 2 beams of PDSCH. are consistent and there is no need to distinguish which unified TCI state is the first or the second.
  • the control channel uses the SFN transmission method (that is, the NW uses 2 downlink beams to transmit CORESET), while the data channel uses the sTRP transmission method (the NW uses one downlink transmit beam).
  • this unified TCI state will update one of the two unified TCI states activated for CORESET, For example, this unified TCI state will update the first unified TCI state among the two unified TCI states activated for CORESET, that is, the first unified TCI state activated/updated by MAC CE is selected as the default to be updated under sTRP scheduling. Unify TCI status.
  • the second unified TCI state can also be used as the default unified TCI state to be updated under sTRP scheduling, and this application does not specifically limit this.
  • the PDCCH transmitted by sTRP provides two unified TCI states when scheduling PDSCH, indicating the update of one beam for each TRP.
  • This situation is similar to the transmission method of sDCI-mPDSCH.
  • the network device may activate the unified TCI state through the MAC CE, and further, may indicate at least one unified TCI state among the activated unified TCI states through the DCI carrying the first indication information.
  • activating or updating the unified TCI state through the MAC CE may only include 1 or 2 unified TCI states.
  • Figure 12 is an example of MAC CE suitable for the SFN transmission method provided by the embodiment of the present application.
  • the MAC CE may include 3 bytes (Oct), namely Oct 1 to Oct 3.
  • Oct 1 carries R and the serving cell ID (Serving Cell ID)
  • Oct 2 carries R and the identifier of the first unified TCI state (that is, TCI state ID 1 )
  • Oct 3 carries R and the second unified TCI state.
  • the identification that is, TCI status ID 2 ). That is to say, the unified TCI state can be activated for the serving cell without using the parameter CORESET ID.
  • the method 200 may further include:
  • the second indication information is used to activate or update the unified TCI state for each code point in at least one code point.
  • the first indication information is used to indicate or update a first code point in the at least one code point.
  • the resource pool of the unified TCI state configured by RRC and multiple code points can be activated by the MAC CE.
  • the DCI indication carrying the first indication information includes code points of up to 4 separate UL/DL TCI states.
  • the resource pool of the unified TCI status configured by RRC and multiple code points can be activated by MAC CE, and then the DCI indication carrying the first indication information includes up to 2 joint TCIs. The status code point.
  • the first indication information may be DCI format 1_1/1_2 (with or without downlink scheduling), which may be used to dynamically indicate one or more unified TCI states.
  • the transmission mode of the plurality of TRPs is the mDCI-mPDSCH transmission mode
  • the second indication information further includes the CORESET resource pool to which the CORESET to which the at least one code point is applicable belongs.
  • the second indication information is used to activate or update at least one of the following for each code point:
  • At least one combined TCI state and at least one separate upstream TCI state are At least one combined TCI state and at least one separate upstream TCI state;
  • At least one combined TCI state and at least one separate downstream TCI state are At least one combined TCI state and at least one separate downstream TCI state;
  • At least one separate upstream TCI state and at least one separate downstream TCI state are provided.
  • the second indication information is used to activate or update up to 4 separate TCI states for each code point, that is, for 2 TRPs , each TRP indicates a separate downstream TCI state and a separate upstream TCI state, that is, a total of 4 separate TCI states.
  • the second indication information is used to activate or update at most 2 joint TCI states for each code point, that is, for 2 TRPs, one joint TCI state for each TRP.
  • the second indication information indicates any of the following:
  • the i-th code point in the at least one code point includes both a separated downlink DL TCI state and a separated uplink UL TCI state;
  • the i-th code point includes or does not include the second joint TCI state
  • the i-th code point includes or does not include the second pair of separated TCI states
  • the i-th code point includes or does not include the X+1-th separated TCI state, where X is an integer greater than 0.
  • a TCI state can include the following configuration:
  • TCI status ID used to identify a TCI status
  • the TCI status may also include QCL information 2.
  • a QCL information also contains the following information:
  • QCL type configuration which can be one of QCL type A, QCL typeB, QCL typeC or QCL typeD;
  • QCL reference signal configuration includes the cell ID where the reference signal is located, the BWP ID and the identification of the reference signal; the identification of the reference signal can be the CSI-RS resource ID or SSB index.
  • the QCL type of at least one QCL information must be one of QCL typeA, QCL typeB, and QCL typeC, and the QCL type of the other QCL information must be QCL type D.
  • QCL type configuration is as follows:
  • 'QCL-TypeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • syntax elements of the TCI state can be implemented as:
  • syntax elements of TCI information can be implemented as:
  • syntax elements of the DL TCI state or the combined TCI state can be implemented as:
  • syntax elements of the UL TCI status can be implemented as:
  • the second indication information is used to activate or update 2 joint TCI states for each code point; correspondingly, the second indication information is used to indicate that the i-th code point in at least one code point includes or Excludes second combined TCI status.
  • Figure 13 is an example of a MAC CE carrying second indication information provided by an embodiment of the present application.
  • the MAC CE carrying the second indication information may include N+3 bytes (Oct), that is, Oct 1 to Oct N+3.
  • Oct 1 carries R, serving cell ID (Serving Cell ID) and downlink bandwidth part ID (Downlink Bandwidth Part ID, DL BWP ID).
  • Oct 2 carries R and uplink bandwidth part identifier (Uplink Bandwidth Part ID, DL BWP ID).
  • Oct 3 carries P 1 to P 8 .
  • Pi it indicates that there are multiple (2 under multi-TRP operation) joint TCI status activated or updated for the i-th code point of the TCI domain in DCI. If Pi is 0, it indicates that only 1 joint TCI state is activated or updated for the i-th code point of the TCI field in the DCI.
  • the UE can determine the length of the MAC CE carrying the second indication information and the total number of corresponding joint TCI states through all Pi .
  • Each Oct in Oct 4 ⁇ Oct N+3 carries a TCI state ID and a D/U.
  • the D/U in the MAC CE may not represent any information, that is, the UE may ignore it.
  • the second indication information is used to activate or update four separate TCI states for each code point; correspondingly, the second indication information is used to indicate that the i-th code point in at least one code point includes or does not include the second separated TCI state in the first pair of separated TCI states; further, the second indication information is also used to indicate that the i-th code point includes or does not include the second pair of separated TCI states.
  • Figure 14 is another example of a MAC CE carrying second indication information provided by an embodiment of the present application.
  • the MAC CE carrying the second indication information may include N+4 bytes (Oct), that is, Oct 1 to Oct N+4.
  • Oct 1 carries R, serving cell ID (Serving Cell ID) and downlink bandwidth part ID (Downlink Bandwidth Part ID, DL BWP ID).
  • Oct 2 carries R and uplink bandwidth part identification (Uplink Bandwidth Part ID, DL BWP ID).
  • Oct 3 carries P 1 to P 8 . If P i is 1, it indicates that the MAC CE has activated the first pair of separated TCI states for the i-th code point of the TCI domain in DCI, that is, the first separated TCI state and the second separated TCI state; if P If i is 0, it indicates that the MAC CE has activated a separate TCI state for the i-th code point of the TCI domain in the DCI, that is, the first separate TCI state.
  • TP i indicates whether the i-th code point of the TCI domain in DCI has a second pair of separated TCI states, that is, whether there is a third separated TCI state and a fourth separated TCI state.
  • TP i is a variable with a length of multiple bits (eg, 8 bits). When TP i is 0, it means that the i-th code point in the TCI domain in DCI does not have a second pair of separated TCI states; when TP i is 1, it means that the i-th code point in the TCI domain in DCI has a second pair of separated TCI states. TCI status.
  • Each Oct in Oct 5 ⁇ Oct N+4 carries a TCI state ID and a D/U.
  • only one separate TCI state may be activated or updated for the activation or update of the second pair of separate TCI states.
  • the second indication information is used to activate or update four separate TCI states for each code point; correspondingly, the second indication information is used to indicate that the i-th code point in at least one code point includes Or not including the X+1th separated TCI state.
  • Figure 15 is another example of a MAC CE carrying second indication information provided by an embodiment of the present application.
  • the MAC CE carrying the second indication information may include N+5 bytes (Oct), that is, Oct 1 to Oct N+5.
  • Oct 1 carries R, serving cell ID (Serving Cell ID) and downlink bandwidth part ID (Downlink Bandwidth Part ID, DL BWP ID).
  • Oct 2 carries R and uplink bandwidth part identifier (Uplink Bandwidth Part ID, DL BWP ID).
  • PX i indicates whether the MAC CE has activated/updated the X+1 separated TCI status. If PX i is 1, it means that the MAC CE activates or updates the X+1th separated TCI state of the i-th code point in the TCI domain in the DCI. If PX i is 0, it means that the MAC CE does not activate or update the X+1th separated TCI status of the i-th code point in the TCI domain in the DCI.
  • Each Oct in Oct 6 ⁇ Oct N+5 carries a TCI state ID and a D/U.
  • the network device determines the applicable CORESET resource pool, TRP, and applicable CORESET scheme of at least one TCI state mentioned above, and the network device determines the unified TCI state applicable to sDCI, and the network device determines the unified TCI state applicable to sDCI, and the network device that carries the first indication information.
  • the solution of unifying TCI status of PDSCH scheduled by sDCI please refer to the relevant content on the terminal equipment side. To avoid duplication, we will not go into details here.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the execution of the examples does not constitute any limitations.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the site to the user equipment of the cell.
  • the first direction, "uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • Figure 16 is a schematic block diagram of the terminal device 300 according to the embodiment of the present application.
  • the terminal device 300 may include:
  • the receiving unit 310 is configured to receive the first indication information sent by the first TRP among the multiple transmitting and receiving points TRP;
  • the first indication information is used to indicate or update at least one unified transmission configuration indication TCI status.
  • the at least one unified TCI state includes at least one of the following: joint TCI state , separated uplink TCI state or separated downlink TCI state.
  • the receiving unit 310 is also used to:
  • the first CORESET resource pool to which the CORESET of the downlink control information DCI carrying the first indication information belongs is determined as the CORESET resource pool applicable to the at least one unified TCI state.
  • the receiving unit 310 is also used to:
  • the TRP corresponding to the CORESET resource pool to which the at least one unified TCI state is applicable among the multiple TRPs is determined to be the TRP to which the at least one unified TCI state is applicable.
  • the receiving unit 310 is also used to:
  • the received DCI triggered aperiodic channel state information reference signal AP-CSI-RS.
  • the transmission method of the multiple TRPs is the transmission method of multiple physical downlink shared channels sDCI-mPDSCH of single downlink control information.
  • the receiving unit 310 is also used to:
  • the default unified TCI state among the multiple unified TCI states is determined as the unified TCI state applicable to a single downlink control information sDCI.
  • the receiving unit 310 is also used to:
  • the at least one unified TCI state is multiple unified TCI states, determine at least one of the following as the CORESET applicable to the default unified TCI state in the multiple unified TCI states:
  • the receiving unit 310 is also used to:
  • the at least one unified TCI state is multiple unified TCI states, and the unified TCI state indicated or updated before receiving the first indication information is a single unified TCI state, then the previously indicated or updated unified TCI state of the first indication information is changed.
  • the unified TCI state is determined as the unified TCI state applicable to the physical downlink shared channel PDSCH scheduled by the single downlink control information sDCI carrying the first indication information.
  • the receiving unit 310 is also used to:
  • the at least one unified TCI state is a single unified TCI state and the unified TCI states previously indicated or updated by the first indication information are multiple unified TCI states, then the multiple unified TCI states previously indicated by the first indication information are changed.
  • the default unified TCI state is determined as the unified TCI state applicable to the physical downlink shared channel PDSCH scheduled by the single downlink control information sDCI carrying the first indication information.
  • the transmission method of the multiple TRPs is the transmission method of the single frequency network SFN; the transmission method of the SFN includes any of the following: SFN physical downlink control channel PDCCH and SFN physical downlink shared channel PDSCH. Transmission method, transmission method of SFN PDCCH and single transmitting and receiving point sTRP PDSCH, transmission method of sDCI and SFN PDSCH.
  • the receiving unit 310 is also used to:
  • the control resource set CORESET on at least one component carrier CC is determined to be the CORESET applicable to the at least one unified TCI state; wherein the at least one CC includes the CC where the CORESET of the downlink control information DCI carrying the first indication information is located, The CORESET on at least one CC shares the unified TCI state.
  • the transmission mode of the SFN is the transmission mode of SFN PDCCH and single transmission and reception point sTRP PDSCH; the receiving unit 310 is also used to:
  • the default unified TCI state among the multiple unified TCI states is determined as the unified TCI state applicable to the sTRP PDSCH.
  • the receiving unit 310 is also used to:
  • the second indication information is used to activate or update the unified TCI state for each code point in at least one code point.
  • the first indication information is used to indicate or update a first code point in the at least one code point.
  • the transmission mode of the multiple TRPs is the transmission mode of multiple physical downlink shared channels mDCI-mPDSCH of multiple downlink control information
  • the second indication information also includes the CORESET to which the CORESET to which the at least one code point is applicable belongs. Resource pool.
  • the second indication information is used to activate or update at least one of the following for each code point:
  • At least one combined TCI state and at least one separate upstream TCI state are At least one combined TCI state and at least one separate upstream TCI state;
  • At least one combined TCI state and at least one separate downstream TCI state are At least one combined TCI state and at least one separate downstream TCI state;
  • At least one separate upstream TCI state and at least one separate downstream TCI state are provided.
  • the second indication information indicates any of the following:
  • the i-th code point in the at least one code point includes both a separated downlink DL TCI state and a separated uplink UL TCI state;
  • the i-th code point includes or does not include the second joint TCI state
  • the i-th code point includes or does not include the second pair of separated TCI states
  • the i-th code point includes or does not include the X+1-th separated TCI state, where X is an integer greater than 0.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 300 shown in FIG. 16 may correspond to the corresponding subject in performing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the terminal device 300 are respectively to implement the implementation of the present application.
  • the corresponding processes in each method provided in the example will not be repeated here for the sake of brevity.
  • Figure 17 is a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 may include:
  • the sending unit 410 is used to send the first indication information to the terminal device
  • the first indication information is used to indicate or update at least one unified transmission configuration indication TCI status.
  • the at least one unified TCI state includes at least one of the following: joint TCI state , separated uplink TCI state or separated downlink TCI state.
  • the sending unit 410 is also used to:
  • the first CORESET resource pool to which the CORESET of the downlink control information DCI carrying the first indication information belongs is determined as the CORESET resource pool applicable to the at least one unified TCI state.
  • the sending unit 410 is also used to:
  • the TRP corresponding to the CORESET resource pool to which the at least one unified TCI state is applicable among the multiple TRPs is determined to be the TRP to which the at least one unified TCI state is applicable.
  • the sending unit 410 is also used to:
  • the received DCI triggered aperiodic channel state information reference signal AP-CSI-RS.
  • the transmission method of the multiple TRPs is the transmission method of multiple physical downlink shared channels sDCI-mPDSCH of single downlink control information.
  • the sending unit 410 is also used to:
  • the default unified TCI state among the multiple unified TCI states is determined as the unified TCI state applicable to a single downlink control information sDCI.
  • the sending unit 410 is also used to:
  • the at least one unified TCI state is multiple unified TCI states, determine at least one of the following as the CORESET applicable to the default unified TCI state in the multiple unified TCI states:
  • the sending unit 410 is also used to:
  • the at least one unified TCI state is multiple unified TCI states, and the unified TCI state indicated or updated before sending the first indication information is a single unified TCI state, then the unified TCI state indicated or updated before the first indication information is sent.
  • the TCI state is determined as a unified TCI state applicable to the physical downlink shared channel PDSCH scheduled by the single downlink control information sDCI carrying the first indication information.
  • the sending unit 410 is also used to:
  • the at least one unified TCI state is a single unified TCI state and the unified TCI states previously indicated or updated by the first indication information are multiple unified TCI states, then the multiple unified TCI states previously indicated by the first indication information are changed.
  • the default unified TCI state is determined as the unified TCI state applicable to the physical downlink shared channel PDSCH scheduled by the single downlink control information sDCI carrying the first indication information.
  • the transmission method of the multiple TRPs is the transmission method of the single frequency network SFN; the transmission method of the SFN includes any of the following: SFN physical downlink control channel PDCCH and SFN physical downlink shared channel PDSCH. Transmission method, transmission method of SFN PDCCH and single transmitting and receiving point sTRP PDSCH, transmission method of sDCI and SFN PDSCH.
  • the sending unit 410 is also used to:
  • the control resource set CORESET on at least one component carrier CC is determined to be the CORESET applicable to the at least one unified TCI state; wherein the at least one CC includes the CC where the CORESET of the downlink control information DCI carrying the first indication information is located, The CORESET on at least one CC shares the unified TCI state.
  • the transmission mode of the SFN is the transmission mode of SFN PDCCH and single transmission and reception point sTRP PDSCH; the sending unit 410 is also used to:
  • the default unified TCI state among the multiple unified TCI states is determined as the unified TCI state applicable to the sTRP PDSCH.
  • the sending unit 410 is also used to:
  • the second indication information is used to activate or update the unified TCI state for each code point in at least one code point.
  • the first indication information is used to indicate or update a first code point in the at least one code point.
  • the transmission mode of the multiple TRPs is the transmission mode of multiple physical downlink shared channels mDCI-mPDSCH of multiple downlink control information
  • the second indication information also includes the CORESET to which the CORESET to which the at least one code point is applicable belongs. Resource pool.
  • the second indication information is used to activate or update at least one of the following for each code point:
  • At least one combined TCI state and at least one separate upstream TCI state are At least one combined TCI state and at least one separate upstream TCI state;
  • At least one combined TCI state and at least one separate downstream TCI state are At least one combined TCI state and at least one separate downstream TCI state;
  • At least one separate upstream TCI state and at least one separate downstream TCI state are provided.
  • the second indication information indicates any of the following:
  • the i-th code point in the at least one code point includes both a separated downlink DL TCI state and a separated uplink UL TCI state;
  • the i-th code point includes or does not include the second joint TCI state
  • the i-th code point includes or does not include the second pair of separated TCI states
  • the i-th code point includes or does not include the X+1-th separated TCI state, where X is an integer greater than 0.
  • the device embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the network device 400 shown in FIG. 17 may correspond to the corresponding subject (ie, the first TRP) in performing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the network device 400 In order to implement the corresponding processes in each method provided by the embodiments of this application, for the sake of simplicity, they will not be described again here.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps in the above method embodiment in combination with its hardware.
  • processing unit and communication unit mentioned above may be implemented by a processor and a transceiver respectively.
  • Figure 19 is a schematic structural diagram of the communication device 500 according to the embodiment of the present application.
  • the communication device 500 may include a processor 510.
  • the processor 510 can call and run the computer program from the memory to implement the method in the embodiment of the present application.
  • communication device 500 may also include memory 520.
  • the memory 520 can be used to store instruction information, and can also be used to store codes, instructions, etc. executed by the processor 510 .
  • the processor 510 can call and run the computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated into the processor 510.
  • communication device 500 may also include a transceiver 530.
  • the processor 510 can control the transceiver 530 to communicate with other devices. Specifically, it can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • bus system where in addition to the data bus, the bus system also includes a power bus, a control bus and a status signal bus.
  • the communication device 500 can be a terminal device in the embodiment of the present application, and the communication device 500 can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. That is to say, the communication device 500 in the embodiment of the present application
  • the communication device 500 may correspond to the terminal device 300 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application. For the sake of brevity, details will not be repeated here.
  • the communication device 500 may be the first TRP in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the first TRP in the various methods of the embodiment of the present application.
  • the communication device 500 in the embodiment of the present application may correspond to the network device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application.
  • the communication device 500 in the embodiment of the present application may correspond to the network device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application.
  • no further explanation will be given here. Repeat.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip that has signal processing capabilities and can implement or execute the various methods, steps and logical block diagrams disclosed in the embodiments of this application.
  • the chip can also be called system-on-a-chip, system-on-a-chip, system-on-a-chip or system-on-chip, etc.
  • the chip can be applied to various communication devices, so that the communication device equipped with the chip can execute the various methods, steps and logical block diagrams disclosed in the embodiments of the present application.
  • Figure 19 is a schematic structural diagram of a chip 600 according to an embodiment of the present application.
  • the chip 600 includes a processor 610.
  • the processor 610 can call and run the computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 600 may also include a memory 620 .
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 can be used to store instruction information, and can also be used to store codes, instructions, etc. executed by the processor 610 .
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated into the processor 610.
  • the chip 600 may also include an input interface 630 .
  • the processor 610 can control the input interface 630 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 600 may also include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip 600 can be applied to the first TRP in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first TRP in the various methods of the embodiment of the present application, and can also implement various methods of the embodiment of the present application.
  • the corresponding process implemented by the terminal device in the method will not be described again for the sake of simplicity.
  • bus system where in addition to the data bus, the bus system also includes a power bus, a control bus and a status signal bus.
  • the processors mentioned above may include but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor can be used to implement or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memories mentioned above include but are not limited to:
  • Non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to execute the wireless wireless device provided by the present application.
  • Communication methods can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be repeated here. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, in order to It’s concise and I won’t go into details here.
  • the embodiment of the present application also provides a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided by this application.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the embodiment of the present application also provides a communication system, which may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in Figure 1.
  • a communication system which may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in Figure 1.
  • system in this article can also be called “network management architecture” or “network system”.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method in the embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • the units/modules/components described above as separate/displayed components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备和网络设备,所述方法包括:接收多个发射接收点TRP中的第一TRP发送的第一指示信息;其中,所述第一指示信息用于指示或更新至少一个统一传输配置指示TCI状态。本申请通过引入多个TRP中的第一TRP发送的第一指示信息,向终端设备指示或更新至少一个统一TCI状态,相当于,针对多个TRP的传输方式,本申请引入了统一的上行波束管理机制和/或统一的下行波束管理机制,能够降低波束指示频率以及降低资源消耗,进而能够提升系统性能。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和网络设备。
背景技术
截止目前,新空口(New Radio,NR)系统中的多发射接收点(Multiple Transmission Reception Point,mTRP)的下行传输仅可以使用版本(Rel)15/16中下行传输配置指示(Transmission configuration indication,TCI)状态。具体地,物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)使用独立的波束指示机制,即PDCCH是使用媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)对其所在的控制资源集(Control Resource Set,CORESET)激活一个或两个TCI状态;而PDSCH则可以通过下行控制信息(Downlink Control Information,DCI)动态地指示下行波束。但是,Rel.15/16中涉及的TCI状态的指示机制仅适用于下行的信道和信号,且在NR系统中应用起来有诸多的限制,影响并降低了系统性能。
因此,针对mTRP的下行传输,本领域亟需一种无线通信方法,以提升系统性能。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,能够提升系统性能。
第一方面,本申请提供了一种无线通信方法,包括:
接收多个发射接收点TRP中的第一TRP发送的第一指示信息;
其中,该第一指示信息用于指示或更新至少一个统一传输配置指示TCI状态。
第二方面,本申请提供了一种无线通信方法,包括:
向终端设备发送第一指示信息;
其中,该第一指示信息用于指示或更新至少一个统一传输配置指示TCI状态。
第三方面,本申请提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第四方面,本申请提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该网络设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该网络设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该网络设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第五方面,本申请提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该终端设备还包括发射机(发射器)和接收机(接收器)。
第六方面,本申请提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该网络设备还包括发射机(发射器)和接收机(接收器)。
第七方面,本申请提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方 式中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,本申请通过引入多个TRP中的第一TRP发送的第一指示信息,向终端设备指示或更新至少一个统一TCI状态,相当于,针对多个TRP的传输方式,本申请引入了统一的上行波束管理机制和/或统一的下行波束管理机制,能够降低波束指示频率以及降低资源消耗,进而能够提升系统性能。
附图说明
图1是本申请实施例的5G通信系统的示例图。
图2是本申请实施例的应用场景的示例。
图3是本申请实施例提供的无线通信方法的示意性流程图。
图4是本申请实施例提供的mDCI-mPDSCH的传输方式的示例。
图5是本申请实施例提供的适用于mDCI-mPDSCH的传输方式的MAC CE的示例。
图6是本申请实施例提供的sDCI-mPDSCH的传输方式的示例。
图7是本申请实施例提供的适用于sDCI-mPDSCH的传输方式的MAC CE的示例。
图8是本申请提供的TCI状态的时间线的示意图。
图9是本申请提供的统一TCI状态的时间线的示意图。
图10是本申请实施例提供的终端设备从多个统一TCI状态切换至单个统一TCI状态的示例。
图11是本申请实施例提供的终端设备从单个统一TCI状态切换至多个统一TCI状态的示例。
图12是本申请实施例提供的适用于SFN的传输方式的MAC CE的示例。
图13至图15是本申请实施例提供的携带有第二指示信息的MAC CE的示例。
图16是本申请实施例提供的终端设备的示意性框图。
图17是本申请实施例提供的网络设备的示意性框图。
图18是本申请实施例提供的通信设备的示意性框图。
图19是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例的5G通信系统100的示例图。
如图1所示,通信系统100可以包括终端设备110、传输接收点(Transmission Reception Point,TRP)121和TRP 122。TRP 121和TRP 122可以分别通过空口与终端设备110通信。具体而言,TRP 121和TRP 122可以独立调度一个终端设备110进行数据传输。例如,终端设备110在一个时隙内分别检测来自TRP 121和TRP 122的PDCCH,用于调度多个独立的上行数据传输,且这些独立的上行传输可能正好被调度在同一个时隙里。
然而,在如图1所示的通信系统下,有可能存在多种通信场景。
例如,TRP 121和TRP 122属于同一个小区,且TRP 121和TRP 122之间的连接(backhaul)是理想的,即,可以快速动态地进行信息交互。又例如,TRP 121和TRP 122属于同一个小区,且TRP 121和TRP 122之间的连接是非理想的,即,TRP 121和TRP 122之间无法快速交互信息,只能进行相对较慢的数据交互。又例如,TRP 121和TRP 122属于不同的小区,且TRP 121和TRP 122之间的连接是理想的。又例如,TRP 121和TRP 122属于不同的小区,且TRP 121和TRP 122之间的连接是非理想的。
此外,由于可以从多个TRP给终端设备110发送不同的NR-PDCCH/NR-PDSCH,也就是说,终端设备110可通过多个下行链路接收下行信息,其中,每个下行链路均有对应的上行信息需要传输,上行信息至少包含以下一种信号:每个下行链路对应的确认/非确认(ACK/NACK)、每个下行链路对应的信道状态信息(Channel State Information,CSI)等上报信息、以及上行数据。可以看出,如果该终端设备110还需要在多个下行链路对应的上行链路上发送上行信息时,会导致终端设备的复杂度和功耗过 高。针对上述问题,可以通过TRP 121或TRP 122指示终端设备110上行信号的传输方式,降低终端设备的复杂度和功耗过高。
应理解,本申请实施例仅以5G通信系统100为例进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于任一种、多个网络设备能够独立调度一个终端进行数据传输的通信系统。例如,将图1中的TRP对应成波束(beam),则可以对应的得到如图2所示的应用场景示例,该场景包括终端设备130和网络设备140,其中,终端设备130和网络设备140之间存在多个波束。
例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
本申请结合网络设备和终端设备描述了各个实施例。
其中,网络设备130可以指网络侧的任一种用来发送或接收信号的实体。例如,可以是机器类通信(MTC)的用户设备、GSM或CDMA中的基站(Base Transceiver Station,BTS)、WCDMA中的基站(NodeB)、LTE中的演进型基站(Evolutional Node B,eNB或eNodeB)、5G网络中的基站设备等。
此外,终端设备110可以是任意终端设备。具体地,终端设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,也可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G网络中的终端设备等。
为了便于理解本申请的方案,下面对相关内容进行说明。
(1)、统一TCI状态。
在3GPP标准化进展中,Rel.15版本中提出了TCI状态的概念,用于下行的空间域QCL(波束)指示,以及时域频域的QCL信息的传递。具体来说,准共址(QCL)关系可以简单描述为从某一个源参考信号指向一个目标参考信号的大尺度衰落的关系。对于波束指示来说,当UE在从网络(NW)得到两个源和目标参考信号的QCL关系后,在对目标参考信号的接收时可以使用之前接收源参考信号的接收波束。
但是,TCI状态的指示机制仅适用于下行的信道和信号,且在NR系统中应用起来有诸多的限制。基于此,为了给NR系统提供一个更统一的上下行波束管理机制,在参照Rel.15/16TCI状态的设计基础上,3GPP Rel.17提出了统一TCI状态的概念,以降低波束指示频率以及降低资源消耗,进而提升系统性能。
示例性地,统一TCI状态可包括联合(joint)TCI状态、分离的DL TCI状态以及分离的UL TCI状态。其中,联合(joint)TCI状态适用于上下行的信道和信号;分离的DL TCI状态仅适用于下行的信道和信号;分离的UL TCI状态仅适用于上行的信道和信号。
示例性地,下行信道(部分PDCCH,PDSCH)和信号(非周期CSI-RS)使用相同的下行发射指示波束,即可使用分离的DL TCI状态或联合TCI状态。上行信道(PUCCH,PUSCH)和信号(SRS)使用相同的上行发射波束,即可使用分离的UL TCI状态或联合TCI状态。
示例性地,统一TCI状态可以使用MAC CE和/或DCI动态更新和指示。
示例性地,统一TCI状态可以适用于载波聚合的场景,单CC上的波束指示可以适用于多个不同的CC。
示例性地,上行的波束指示可以和上行的功率控制参数通过分离的UL TCI状态或联合TCI状态同时给出。
示例性地,统一TCI状态可以适支持小区间的波束管理功能。
示例性地,对于每个CC上的CORESET来说,大致可以分为一下四种类型:
CORESET A:其仅关联到UE专属的搜索空间上,因此可以认为是UE专属的下行控制信道资源,且一定要跟随被指示的统一TCI状态。
CORESET B:其仅关联到小区公共的搜索空间上,它是否可以跟随NW指示的统一TCI状态,需要看NW的RRC配置。
CORESET C:即关联到UE专属的搜索空间上,也关联到小区公共的搜索空间上,它是否可以跟 随NW指示的统一TCI状态,需要看NW的RRC配置。
CORESET 0:其一定关联到小区公共的搜索空间,也可以同时关联到UE专属的搜索空间,它是否可以跟随NW指示的统一TCI状态,需要看NW的RRC配置。
应理解,本申请涉及的跟随被指示的统一TCI状态可以理解为适用于被指示的统一TCI状态或具有类似含义的描述,本申请对此不作具体限定。
(2)、mTRP PDCCH的传输方案。
在Rel.17的PDCCH的增强中,引入了基于sDCI的多TRP的PDCCH重复传输的机制,目的是增加PDCCH的传输可靠性。具体来说,首先每一个TRP都可以关联一个搜索空间集合(Search Space Set)。两个搜索空间集合通过RRC参数关联到一起,其中每一个搜索空间集合又都关联到一个控制资源集(CORESET)。基于此,网络(NW)可以为每一个CORESET激活一个TCI状态来进行下行波束激活或指示。
(3)、mTRP PDSCH的传输方案。
在Rel.16的mTRP PDSCH的增强中,考虑了两种大的场景,一种是为了增强移动超宽带(Enhance Mobile Broadband,eMBB)的场景,一种是为了低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)的增强。从而制定了多种mTRP的传输方式。具体来说,大致可以按照不同的调度方式来分为两种。
sDCI-mPDSCH:NW使用一个DCI来调度2个PDSCH的传输,其中这个DCI来自于两个TRP中的一个,NW可以较为动态地调整使用哪个TRP。而2个PDSCH是通过两个TRP以不同的方式来传输,比如SDM,FDM,TDM的方式等。这种方式适合TRP之间有较为理想的回程(backhaul)链路。另外,在调度DCI中,可以包含1个或2个TCI状态,用来指示sTRP和mTRP传输之间的动态切换。具体来说,当DCI中的TCI域的码点指示一个TCI状态时,表示sTRP的传输;当该码点指示2个TCI状态时,表示mTRP的传输,且这个时候,每一个TCI状态都会映射到该TRP传输的特定资源上,比如码分多路复用(code division multiplexing,CDM)组(group),解调参考信号(Demodulation Reference Signal,DMRS)端口,传输层数(layers),相位跟踪参考信号(Phase-tracking RS,PTRS)端口,冗余版本(redundancy version,RV)版本等与PDSCH调度有关内容。
mDCI-mPDSCH:每一个TRP通过发送PDCCH来独立地调度PDSCH的传输,其PDSCH的传输可以在时频资源上完全重叠,部分重叠和完全不重叠。这种方式适合TRP之间不具有较为理想的回程(backhaul)链路。
(4)、SFN PDCCH/PDSCH的传输方案。
在Rel.17的高速移动场景中,为了下行传输的可靠性,支持了PDCCH/PDSCH的多个TRP的单频点网络(Single Frequency Network,SFN)传输方案,即两个TRP使用相同的时频资源来发送PDCCH以及它所调度的PDSCH,但鉴于两个TRP所在的空间位置不同,需要使用两个不同的TCI状态来指示不同的下行波束信息。当然为了NW部署的灵活性,也支持了sTRP PDCCH来调度SFN PDSCH传输的方式,以及SFN PDCCH来调度sTRP PDSCH传输的方式。
需要说明的是,新空口(New Radio,NR)系统中的多发射接收点(Multiple Transmission Reception Point,mTRP)的下行传输仅可以使用版本(Rel)15/16中下行传输配置指示(Transmission configuration indication,TCI)状态。具体地,物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)使用独立的波束指示机制,即PDCCH是使用媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)对其所在的控制资源集(Control Resource Set,CORESET)激活一个或两个TCI状态;而PDSCH则可以通过下行控制信息(Downlink Control Information,DCI)动态地指示下行波束。但是,Rel.15/16中涉及的TCI状态的指示机制仅适用于下行的信道和信号,并且在NR系统中应用起来有诸多的限制,影响并降低了系统的性能。
有鉴于此,本申请提供了一种无线通信方法,通过将统一TCI状态引入到多TRP传输方式,以降低波束指示频率以及降低资源消耗,进而提升系统性能提升。
图3是本申请实施例提供的无线通信方法200的示意性流程图,该无线通信方法200可以由终端设备和第一TRP交互执行。图3中所示的终端设备可以是如图1所示的终端设备110或图2所示的终端设备130,图3中所示的第一TRP可以是如图1所示的TRP 121或TRP 122,也可以是图2所示的网络设备140。
如图3所示,该方法200可包括以下部分或全部内容:
S210,终端设备接收多个TRP中的第一TRP发送的第一指示信息;
其中,该第一指示信息用于指示或更新至少一个统一TCI状态。
本实施例中,通过引入多个TRP中的第一TRP发送的第一指示信息,向终端设备指示或更新至少一个统一TCI状态,相当于,针对多个TRP的传输方式,本申请引入了统一的上行波束管理机制和/或统一的下行波束管理机制,能够降低波束指示频率以及降低资源消耗,进而能够提升系统性能。
示例性地,该终端设备收到该第一指示信息后,可以基于该第一指示信息在已激活的统一TCI状态中选择或确定该至少一个统一TCI状态,并基于选择或确定的该至少一个统一TCI状态来接收或发送数据。
示例性地,该终端设备收到该第一指示信息后,可以基于该第一指示信息在已激活的统一TCI状态中选择或确定该至少一个统一TCI状态,并基于选择或确定的该至少一个统一TCI状态更新当前使用的统一TCI状态,并基于更新后的统一TCI状态(即该第一指示信息指示的统一TCI状态)来接收或发送数据。
由于统一TCI状态在一个成员载波(Component Carrier,CC)内有强大的统合能力,即把下行PDCCH/PDSCH/非周期信道状态信息参考信号(Aperiodic Channel State Information Reference Signal,AP-CSI-RS),上行的物理上行控制信道(Physical Uplink Control Channel,PUCCH)/物理上行共享信道(Physical Uplink Shared Channel,PUSCH)/探测参考信号(Sounding Reference Signal,SRS)(除了用于波束管理的周期性/半持续的SRS)等都统合到相同的波束上。因此,如果直接将统一TCI状态套用到mDCI-mPDSCH的场景下,至少要有多套独立的上下行波束来对应到多个空间上分隔的TRP。例如,如果NR支持最多2个TRP(来自不同的空间位置)为UE服务,则需要至少2个统一TCI状态(例如需要指示2个联合TCI状态或2个分离的下行TCI状态)来进行下行的波束指示。并且,更重要的是,统一TCI状态需要将一个特定TRP的信道和信号统合到一个下行波束上,而将另外一个TRP的信道和信号整合到另外一个下行波束上。基于此,在网络指示了1个统一TCI状态的情况下,如何找到对应的波束或对应的TRP(即该1个统一TCI状态的适用范围)是本申请需要进一步解决的技术问题。
在一些实施例中,该终端设备收到该第一指示信息后,可以基于该多个TRP的传输方式的特性,确定该至少一个TCI状态的适用范围。例如,若该多个TRP的传输方式为多下行控制信息的多物理下行共享信道(Multi-DCI multi-PDSCH,mDCI-mPDSCH)的传输方式,则该终端设备可基于mDCI-mPDSCH的传输方式的特性,确定该至少一个TCI状态的适用范围。例如,若该多个TRP的传输方式为单下行控制信息的多物理下行共享信道(Single-DCI multi-PDSCH,sDCI-mPDSCH)的传输方式,则该终端设备可基于sDCI-mPDSCH的传输方式的特性,确定该至少一个TCI状态的适用范围。例如,若该多个TRP的传输方式为单频点网络(Single Frequency Network,SFN)的传输方式,则该终端设备可SFN的传输方式的特性,确定该至少一个TCI状态的适用范围。可选的,该至少一个TCI状态的适用范围可以包括:该至少一个TCI状态中的每一个或某个TCI状态的适用范围,该至少一个TCI状态中的每一个或某一个TCI状态适用的资源或TRP。
在一些实施例中,终端设备收到该第一指示信息后,可以基于该多个TRP的传输方式的特性,在该多个TRP中确定该至少一个统一TCI状态对应的控制资源集(CORESET)。在另一些实施例中,终端设备收到该第一指示信息后,可以基于该多个TRP的传输方式的特性,在该多个TRP中确定该至少一个统一TCI状态对应的TRP。
在一些实施例中,若该多个TRP的传输方式为mDCI-mPDSCH的传输方式,则该至少一个统一TCI状态包括以下中的至少一项:联合TCI状态、分离的上行TCI状态或分离的下行TCI状态。
示例性地,该至少一个TCI状态可包括一个或多个联合TCI状态。
示例性地,该至少一个TCI状态可包括一个分离的上行TCI状态。
示例性地,该至少一个TCI状态可包括一个分离的下行TCI状态。
示例性地,该至少一个TCI状态可包括一个分离的上行TCI状态和一个分离的下行TCI状态。
对于mDCI-mPDSCH的传输方式,每个TRP各自进行各自的调度,PDCCH调度来自于同一个TRP的PDSCH或触发来自与同一个TRP的非周期的CSI-RS。不同的TRP之间并不需要过多协调,mDCI-mPDSCH的传输方式适用于两个TRP之间不具有完美的回程(backhaul)链路的网络,对两个TRP之间的数据交互速率和时延没有太大要求。
图4是本申请实施例提供的mDCI-mPDSCH的传输方式的示例。
如图4所示,来自于同一个TRP的CORESET(s)被分到一个CORESET组内且与一个TRP进行关联。CORESET组也可以称为资源池、CORESET的资源池或CORESET资源池。例如,索引为0的资源池与TRP 1关联,索引为1的资源池与TRP 2关联。
在一些实施例中,该方法200还可包括:
终端设备将携带有该第一指示信息的下行控制信息(DCI)所在的CORESET所属的第一CORESET 资源池,确定为该至少一个统一TCI状态适用的CORESET资源池。
示例性地,终端设备在收到该第一指示信息后,确定用于携带该第一指示信息的DCI所在的CORESET,并将用于携带该第一指示信息的DCI所在的CORESET所属的第一CORESET资源池,确定为该第一指示信息指示的该至少一个统一TCI状态所适用的CORESET资源池。
本实施例中,考虑到对于mDCI-mPDSCH的传输方式的特性,即来自于同一个TRP的CORESET(s)被分到一个CORESET组内且与一个TRP进行关联,本申请将该第一指示信息指示的至少一个统一TCI状态的适用范围限缩为第一CORESET所属的CORESET资源池,能够使得同一个TRP对PDCCH,PDSCH,非周期CSI-RS内使用相同的波束,而不同的TRP使用各自指示的波束来进行下行的传输,能够保证数据传输性能。
在一些实施例中,该方法200还可包括:
将该多个TRP中与该至少一个统一TCI状态适用的CORESET资源池对应的TRP,确定为该至少一个统一TCI状态适用的TRP。
示例性地,终端设备在收到该第一指示信息后,确定用于携带该第一指示信息的DCI所在的第一CORESET所属的第一CORESET资源池,确定为该第一指示信息指示的该至少一个统一TCI状态所适用的CORESET资源池,进一步的,该终端设备还可以将该至少一个统一TCI状态适用的CORESET资源池对应的TRP,确定为该至少一个统一TCI状态适用的TRP。
示例性地,该至少一个统一TCI状态适用的TRP为该第一TRP。
示例性地,终端设备将第一CORESET资源池对应的TRP确定为该至少一个统一TCI状态适用的TRP。
需要说明的是,由于标准协议中通常不会将统一TCI状态和TRP进行关联,因此虽然与该第一CORESET所在的资源池关联的TRP为第一TRP,但是终端设备仍然可以通过该第一CORESET所在的资源池,确定适用于该至少一个统一TCI状态的TRP,能够降低对标准协议的修改幅度,并提升该至少一个统一TCI状态的兼容性。
本实施例中,当第一指示信息指示了至少一个统一TCI状态时,通过明确该至少一个统一TCI状态适用的TRP,能够该至少一个统一TCI状态的使用效果。
在一些实施例中,该方法200还可包括:
将所至少一个统一TCI状态,确定为以下中的至少一项适用的TCI状态:
该第一CORESET资源池中的CORESET上的物理下行控制信道PDCCH、该第一CORESET资源池中的CORESET上接收的下行控制信息DCI调度的物理下行共享信道PDSCH、该第一CORESET资源池中的CORESET上接收的DCI触发的非周期信道状态信息参考信号AP-CSI-RS。
示例性地,终端设备可以通过CORESET中配置的CORESETPoolIndex的值来限定统一TCI状态的适用范围。对于来自CORESETPoolIndex为0(或1)的CORESET中的DCI动态指示或更新的统一TCI状态,其适用范围被限缩在与CORESETPoolIndex为0(或1)关联的TRP的其他信道,即其适用的PDCCH被限缩在所在的CORESET具有相同的CORESETPoolIndex的PDCCH,其适用的PDSCH被限缩在来自相同的CORESETPoolIndex的CORESET中的DCI所调度的PDSCH,其适用的非周期的CSI-RS被来自相同的CORESETPoolIndex的CORESET中的DCI所触发的非周期的CSI-RS。而不应该适用于另外一个与CORESETPoolIndex为1(或0)的CORESET所关联的信道和信号。这里的“关联”指的是PDCCH对PDSCH的动态调度,也可以是PDCCH触发的非周期的CSI-RS。
在一些实施例中,该第一指示信息可以携带在无线资源控制(Radio Resource Control,RRC)配置参数(即RRC信令)中。
示例性地,来自于同一个TRP的CORESET(s)拥有相同的RRC配置参数,该RRC配置参数可以为控制资源集池索引(CORESETPoolIndex),其取值范围是0或1。可选的,若一个CORESET没有被配置CORESETPoolIndex,则其默认值是0。
示例性地,RRC配置参数的格式可实现为如下格式:
Figure PCTCN2022086559-appb-000001
Figure PCTCN2022086559-appb-000002
在一些实施例中,第一TRP在向终端设备发送第一指示信息之前,可以通过媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)激活或更新每一个CORESET资源池的统一TCI状态。
示例性地,第一TRP可以通过MAC CE针对CORESET资源池来激活或更新统一TCI状态,可以增加X=CORESETPoolIndex(1bit)来为某一个TRP激活一组专属的统一TCI状态。
示例性地,该第一指示信息指示或更新的统一TCI状态适用于第一CORESET资源池时,终端设备可以在针对该第一CORESET资源池激活的统一TCI状态中选择或确定该第一指示信息指示或更新的统一TCI状态。例如,可以通过MAC CE针对该第一CORESET资源池来激活或更新至少一个码点包括的统一TCI状态,进一步的,可以通过该第一指示信息指示或更新该至少一个码点中的第一码点包括的统一TCI状态。
图5是本申请实施例提供的适用于mDCI-mPDSCH的传输方式的MAC CE的示例。
如图5所示,MAC CE可包括N+3个字节(Oct),即Oct 1~Oct N+3。其中,Oct 1携带有X、服务小区标识(Serving Cell ID)以及下行带宽部分标识(Downlink Bandwidth Part ID,DL BWP ID),Oct 2携带有上行带宽部分标识(Uplink Bandwidth Part ID,DL BWP ID)和R,Oct 3携带有P 1~P 8,Oct 4~Oct N+3中的每一个Oct携带有1个TCI状态标识(TCI state ID)和1个D/U。
下面对各个字段的含义进行示例性说明。
服务小区标识:用于指示MAC CE所应用的服务小区的标识,其长度可以是5比特。
下行带宽部分标识:用于指示MAC CE应用的DL BWP,其长度为2比特。
上行带宽部分标识:用于指示MAC CE应用的UL BWP,其长度为2比特。
P i:用于指示第i个码点包括多个TCI状态或包括单个TCI状态。
可选的,如果P i被设置为1,则指示第i个码点包括DL TCI状态和UL TCI状态。如果P i被设置为0,则指示第i个TCI码点仅包括DL TCI状态或UL TCI状态。
D/U:用于指示所在Oct中的TCI状态ID是用于联合/下行链路的TCI状态还是上行链路的TCI状态。
可选的,如果D/U被设置为“1”,则所在Oct中的TCI状态ID用于联合/下行链路;如果D/U被设置为“0”,则所在Oct中的TCI状态ID用于上行链路。
TCI状态标识:用于指示TCI状态的标识。
可选的,如果D/U被设置为1,则使用7位长度的TCI状态ID。如果D/U被设置为0,则TCI状态ID的最高有效位被认为是保留位,而剩余的6位指示TCI状态ID。可选的,激活的TCI状态的最大数目是16。
X:用于指示CORESETPoolIndex。
即用于指示激活的TCI状态适用的CORESET。如果CORESETPoolIndex被设置为1,则这些激活的TCI状态应用于CORESET(具有配置为1的CORESETPoolIndex)、调度的PDSCH和/或触发的AP-CSI-RS;如果在该MAC CE中CORESETPoolIndex被设置为0或不存在,则这些激活的TCI状态应用于具有配置为0或不存在的CORESETPoolIndex的(一个或多个)CORESET、调度的PDSCH和/或触发的AP-CSI-RS。
R:保留位,其可设置为“0”。
在一些实施例中,该多个TRP的传输方式为sDCI-mPDSCH的传输方式。
对于sDCI-mPDSCH的传输方式,一个DCI调度两个PDSCH。NW可以选择从任意一个TRP来发送调度DCI,然后从两个TRP发送两个PDSCH给UE。sDCI-mPDSCH的传输方式中的调度机制具有很高的灵活性,NW可以选择从两个TRP中的人一个TRP来发送PDCCH的调度信息。甚至于,网络可以通过激活CORESET的Rel.15/16TCI状态来调整同一个CORESET在前后时间上从不同的TRP传输。
由于统一TCI状态在一个成员载波(Component Carrier,CC)内有强大的统合能力,即把下行PDCCH/PDSCH/非周期信道状态信息参考信号(Aperiodic Channel State Information Reference Signal,AP-CSI-RS),上行的物理上行控制信道(Physical Uplink Control Channel,PUCCH)/物理上行共享信道(Physical Uplink Shared Channel,PUSCH)/探测参考信号(Sounding Reference Signal,SRS)(除了用于波束管理的周期性/半持续的SRS)等都统合到相同的波束上。因此,如果直接将统一TCI状态套用到sDCI-mPDSCH的场景下,至少要有多套独立的上下行波束来对应多个空间上分隔的TRP。例如,如果NR支持最多2个TRP(来自不同的空间位置)为UE服务,则需要至少2个统一TCI状态(例如需要指示2个联合TCI状态或2个分离的下行TCI状态)来进行下行的波束指示。并且,更重要的是,统一TCI状态需要将一个特定TRP的信道和信号统合到一个下行波束上,而将另外一个TRP的信道和信号整合到另外一个下行波束上。基于此,在网络指示了多个统一TCI状态的情况下,如何找到适用于sDCI的统一TCI状态,是本申请需要进一步解决的技术问题。
图6是本申请实施例提供的sDCI-mPDSCH的传输方式的示例。
如图6所示,TRP 1发送的PDCCH A可用于调度PDSCH 1和PDSCH 2,即UE收到TRP 1发送的PDCCH A后,可从TRP 1接收PDSCH 1,并从TRP 2接收PDSCH 2。
基于灵活性的考虑,sDCI-mPDSCH的传输方式中的CORESET不会配置CORESETPoolIndex。因此,如果第一指示信息用于指示2个统一TCI状态,则CORESET的波束(例如用于调度两个PDSCH的sDCI适用的波束)可能会出现模糊,即UE并不能确定CORESET的波束(例如用于调度两个PDSCH的sDCI适用的波束)为第一指示信息指示的2个统一TCI状态中哪一个统一TCI状态,因此,对于sDCI-mPDSCH的传输方式,在第一指示信息指示多个统一TCI状态(例如2个统一TCI状态)时,UE如何确定CORESET的波束(例如用于调度两个PDSCH的sDCI适用的波束)是本申请进一步需要解决的技术问题。
在一些实施例中,该方法200还可包括:
若该至少一个统一TCI状态为多个统一TCI状态,则将该多个统一TCI状态中的缺省统一TCI状态,确定为适用于单个下行控制信息sDCI的统一TCI状态。
示例性地,该缺省统一TCI状态可以是该多个统一TCI状态中的第一个统一TCI状态。
示例性地,该缺省统一TCI状态可以是该多个统一TCI状态中的最后一个统一TCI状态。
示例性地,该多个统一TCI状态为2个统一TCI状态时,该缺省统一TCI状态可以是这2个统一TCI状态中的第一个统一TCI状态或第二个统一TCI状态。
示例性地,终端设备可以在MAC CE激活的码点(包含2个统一TCI状态)中选择第一个统一TCI状态作为sDCI的更新波束(即适用的统一TCI状态)。当然,终端设备也可以使用第二个统一TCI状态,本申请对此不作具体限定。
示例性地,该第一指示信息可用于指示或更新至少一个码点中的某一个码点包括的一个或多个统一TCI状态。可选的,该至少一个码点可以是MAC CE激活或更新的码点。换言之,终端设备可通过MAC CE获取激活的至少一个码点或获取对已激活码点进行更新的至少一个码点,并通过该第一指示信息指示该至少一个码点中的某一个码点的方式,来指示或更新该至少一个统一TCI状态。可选的,该第一指示信息可以是DCI中的TCI域(field)携带的信息。
图7是本申请实施例提供的适用于sDCI-mPDSCH的传输方式的MAC CE的示例。
如图7所示,MAC CE可包括M个字节(Oct),即Oct 1~Oct M。其中,Oct 1携带有R、服务小区标识(Serving Cell ID)以及带宽部分标识(Bandwidth Part ID,BWP ID),Oct 2携带第一个码点C 0和C 0包括的第一个TCI状态的标识(即TCI状态ID 0,1),Oct 3携带有R和C 0包括的第二个TCI 状态的标识(即TCI状态ID 0,2),以此类推,Oct M-1携带第N个码点C N和C N包括的第一个TCI状态的标识(即TCI状态ID N,1),Oct M携带有R和C 0包括的第二个TCI状态的标识(即TCI状态ID N, 2)。其中,每一个码点包括的第二个TCI状态的标识所在的字节作为可选字节,例如,Oct 3和/或Oct M可以是可选字节。
示例性地,如果该第一指示信息(即DCI中的TCI域(field))指示的码点为第一个码点,即C 0,则TCI状态ID 0,1和TCI状态ID 0,2作为DCI中的TCI域(field)指示的第一个码点包含两个统一TCI状态。例如,如果TCI域在DCI中占据3个bits,则这3个比特的取值为000时,该第一指示信息(即DCI中的TCI域(field))指示或更新的统一TCI状态为第一个码点包括的两个统一TCI状态。类似的,对于C N和其对应的TCI状态ID N,1和TCI状态ID N,2,这3个比特的取值为111时,该第一指示信息(即DCI中的TCI域(field))指示或更新的统一TCI状态为第N个码点包括的两个统一TCI状态。
在一些实施例中,该方法200还可包括:
若该至少一个统一TCI状态为多个统一TCI状态,则将以下中的至少一项,确定为该多个统一TCI状态中的缺省统一TCI状态适用的CORESET:
携带有该第一指示信息的单下行控制信息sDCI所在的第一CORESET;
与该第一CORESET所在的成员载波CC上的除该第一CORESET之外的其他CORESET;
与该第一CORESET具有相同的统一TCI状态的CORESET;
该第一CORESET所属的CORESET组内除该第一CORESET之外的其他CORESET。
示例性地,对于不同的CORESET类型,CORESET A总是跟随被指示的统一TCI状态,CORESET B、CORESET C、CORESET/#0是NW通过RRC信令单独配置是否跟随指示的统一TCI状态。
对于NW配置了不去跟随由该第一指示信息指示的该至少一个统一TCI状态的CORESET,终端设备可以使用旧(legacy)的信令方式,即物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)使用独立的波束指示机制,即PDCCH是使用媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)对其所在的控制资源集(Control Resource Set,CORESET)激活一个或两个TCI状态;而PDSCH则可以通过下行控制信息(Downlink Control Information,DCI)动态地指示下行波束。
对于可以去跟随指示的统一TCI状态(例如由该第一指示信息指示的至少一个统一TCI状态)的CORESET,可以包括以下几种情况:
情况1、调度DCI所在的CORESET去跟随指示的统一TCI状态。
情况2、在一个CC上,所有的CORESETs都去跟随指示的统一TCI状态。
情况3、如果某一个CORESET与调度DCI所在的CORESET具有相同的统一TCI状态,则该某一个CORESET也去跟随指示的统一TCI状态。
情况4、NW提前配置一个2个CORESET组(groups),在一个CORESET组内(对应着一个TRP)如果一个CORESET的波束更新,那么其他的CORESET(s)的波束也跟着一起更新。
图8是本申请提供的Rel.15/16TCI状态的时间线(timeline)的示意图。
如图8所示,Rel.15/16TCI状态的时间线往往时按照调度DCI与被调度的PDSCH的间隔来判断是否使用指示的波束,当调度间隔(DCI与PDSCH之间的时间间隔)大于UE上报的能力时,即调度间隔大于QCL时长(timeDurationForQCL)时,网络(NW)可以使用指示的新波束来发送PDSCH;否则,NW只能使用缺省波束(如调度DCI所在的CORESET的激活波束)来发送PDSCH。
图9是本申请提供的统一TCI状态的时间线的示意图。
如图9所示,统一TCI状态有其独特的时间线,即带有PDSCH调度信息的DCI中包含的统一TCI需要在用户设备(User Equipment,UE)发送混合自动重传请求确认(Hybrid Automatic Repeat Request-ACK,HARQ-ACK)信息之后的波束应用时间(Beam Application Time,BAT)之后的第一个时隙才会生效。其中,BAT可包括多个符号。
通过对比图8和图9可知,当NW通过sDCI中的TCI域指示了一个统一TCI状态时,该一个统一TCI状态的启用时间相较于旧(legacy)TCI状态(即Rel.15/16TCI状态)明显地后移了,也即是说,对于统一TCI状态,NW虽然指示了统一TCI状态,但是指示的统一TCI状态在终端设备接收PDSCH之前还是非适用的。此外,统一TCI状态是和sDCI调度的PDSCH的调度信息有关联关系的,比如,第一个统一TCI状态关联第一个CDM组(group),关联该CDM组中的DMRS端口,关联DMRS对应PTRS,关联TRP传输的一些层(仅限于空间复用的传输方案)或关联TRP使用的RV版本等调度信息。因此,终端设备如何确定sDCI调度的PDSCH所适用于的统一TCI状态是本申请进一步需要解决的技术问题。尤其是,终端设备从多个统一TCI状态切换至单个统一TCI状态时,或者终端设备从 单个统一TCI状态切换至多个统一TCI状态时,终端设备如何确定调度PDSCH适用的统一TCI状态是本申请进一步要解决的技术问题。
在一些实施例中,该方法200还可包括:
若该至少一个统一TCI状态为多个统一TCI状态、且收到该第一指示信息之前已指示或已更新的统一TCI状态为单个统一TCI状态,则将该第一指示信息之前指示或更新的统一TCI状态,确定为适用于由携带有该第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
示例性地,若该至少一个统一TCI状态为多个统一TCI状态、且该终端设备收到该第一指示信息之前已指示或已更新的统一TCI状态为单个统一TCI状态,则将该第一指示信息之前指示或更新的统一TCI状态,确定为适用于由携带有该第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。相应的,若该至少一个统一TCI状态为多个统一TCI状态、且该网络设备发送该第一指示信息之前已指示或已更新的统一TCI状态为单个统一TCI状态,则将该第一指示信息之前指示或更新的统一TCI状态,确定为适用于由携带有该第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
图10是本申请实施例提供的终端设备从多个统一TCI状态切换至单个统一TCI状态的示例。
如图10所示,NW的指示的统一TCI状态也可以从2个变为1个。
具体的,在新的DCI波束更新之前,sDCI指示了2个统一TCI状态以及关联的DMRS端口(ports),PTRS端口、CDM组(group)、RV版本、层等参数。在新的波束指示中,NW仅指示了一个统一TCI状态,但是这个统一TCI状态在终端设备接收PDSCH之前还是非适用的,而DCI中的其他域中携带的如以及关联的DMRS端口(ports),PTRS端口、CDM组(group)、RV版本、层等参数可以用于指示来自一个TRP的传输,此时,可以从终端设备收到新的波束指示之前收到的sDCI所指示的2个统一TCI状态中定义一个缺省统一TCI状态来使用,例如使用终端设备收到新的波束指示之前收到的sDCI所指示的2个统一TCI状态中(接收PDSCH的时隙中可用的)的第1个统一TCI状态来关联对应的调度参数。
在一些实施例中,该方法200还可包括:
若该至少一个统一TCI状态为单个统一TCI状态且该第一指示信息之前指示或更新的统一TCI状态为多个统一TCI状态,则将该第一指示信息之前指示的多个统一TCI状态中的缺省统一TCI状态,确定为适用于由携带有该第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
图11是本申请实施例提供的终端设备从单个统一TCI状态切换至多个统一TCI状态的示例。
如图11所示,NW的指示的统一TCI状态也可以从1个变为2个。
具体的,在新的DCI波束更新之前,sDCI指示了1个统一TCI状态以及关联的DMRS端口(ports),PTRS端口、CDM组(group)、RV版本、层等参数。在新的波束指示中给出了2个统一TCI状态以及来自两个TRP的调度参数,但该2个统一TCI状态在终端设备接收PDSCH之前还是非适用的,此时,可以仅使用当前适用的1个统一TCI状态,来对应来自DCI中指示的第一个TCI状态的调度参数,如DMRS端口(ports),PTRS端口、CDM组(group)、RV版本、层等参数。
在一些实施例中,该多个TRP的传输方式为SFN的传输方式。
示例性地,该SFN的传输方式包括以下中的任一项:SFN PDCCH和SFN PDSCH的传输方式,SFN PDCCH和sTRP PDSCH的传输方式、sTRP PDCCH和SFN PDSCH的传输方式。
对于SFN的传输方式,为UE服务的两个TRP使用相同的时频资源和不同的空间资源(即下行波束)来发送相同的PDCCH和/或PDSCH。这样做的好处是可以提高下行接收的可靠性,其适用于高速移动场景。
示例性地,SFN PDCCH所在的CORESET需要激活1个或2个统一TCI状态。
作为一种实现方式,该1个或2个统一TCI状态可以是Rel.15/16TCI状态。也即是说,对于下行控制信道,该1个或2个统一TCI状态可以是通过RRC信令(或RRC信令+MAC信令)的方式来指示对应CORESET的统一TCI状态。
示例性地,SFN PDSCH可以被DCI动态调度,其中的TCI域包含1个或2个指示的Rel.15/16TCI状态。也即是说,对于下行数据信道,可用的TCI状态集合通过RRC信令来指示,并通过MAC层信令来激活其中部分TCI状态,最后通过DCI中的TCI状态指示域从激活的TCI状态中指示1个或2个TCI状态,用于所述DCI调度的PDSCH。
示例性地,如果第一指示信息指示的统一TCI状态指向的是联合TCI状态或分离的UL TCI状态,则该第一指示信息指示的统一TCI状态可以适用于上行的PUCCH,PUSCH和SRS。也就是说,从上 行波束管理的角度讲,如果UE支持在上行使用不同的天线面板,同时发射不同的上行波束,那么UE的上行传输也可以得到增强。举例来说,UE进行上行的SFN传输,将PUCCH/PUSCH/SRS使用相同的时频资源在不同的空间方向上对不同的TRP来进行发射,从而增加上行信道和信号的覆盖。
在一些实施例中,该方法200还可包括:
将至少一个成员载波(CC)上的CORESET,确定为该至少一个统一TCI状态适用的CORESET;其中,该至少一个CC包括携带有该第一指示信息的下行控制信息DCI的CORESET所在的CC,该至少一个CC上的CORESET共享统一TCI状态。
示例性地,网络设备通过第一指示信息为CORESET指示或更新的统一TCI状态仅包含1个或2个统一TCI状态。由于统一TCI状态是适用于一个小区内的多个CORESETs,可以包括CORESET#0(UE在初始接入时使用的cell-specific的控制信道),以及NW配置可以跟随被指示的统一TCI状态(即该第一指示信息指示的至少一个统一TCI状态)的CORESET类型,例如CORESET类型A、CORESET B或CORESET C。
示例性地,该第一指示信息指示的统一TCI状态适用于在一个CC上或多个CC上配置可以共享波束的CORESETs。可选的,该多个CC可以是被配置在一个CC列表中来共享指示的波束的CC。
在一些实施例中,该SFN的传输方式为SFN PDCCH和sTRP PDSCH的传输方式;该方法200还可包括:
若该至少一个统一TCI状态为多个统一TCI状态,则将该多个统一TCI状态中的缺省统一TCI状态,确定为该sTRP PDSCH适用的统一TCI状态。
应当理解,本申请中的缺省统一TCI状态也可以称为默认统一TCI状态。
示例性地,该多个统一TCI状态中的第1个或第2个统一TCI状态为缺省统一TCI状态。
示例性地,该多个统一TCI状态中的最后1个统一TCI状态为缺省统一TCI状态。
示例性地,对于SFN PDCCH和SFN PDSCH的传输方式,SFN PDCCH的DCI指示2个统一TCI状态,或者是MAC CE激活/更新2个统一TCI状态。如果该SFN PDCCH所在的CORESET被NW配置为可以去跟随指示的统一TCI状态,则该CORESET在BAT之后会使用指示的统一TCI状态,也就是UE接收CORESET的2个波束和接收PDSCH的2个波束是一致的,并不需要区分哪个统一TCI状态是第一个或第二个。
示例性地,对于SFN PDCCH和sTRP PDSCH的传输方式,控制信道采用SFN的传输方式(即NW使用2个下行波束来发送CORESET),而数据信道采用sTRP的传输方式(NW使用一个下行发射波束)。如果DCI中的TCI域(field)指示了1个统一TCI状态(作用是调度来自sTRP的PDSCH),则这1个统一TCI状态会更新针对CORESET激活的2统一TCI状态中1个统一TCI状态,例如,这1个统一TCI状态会更新针对CORESET激活的2统一TCI状态中第1个统一TCI状态,即选择MAC CE激活/更新的第1个统一TCI状态作为sTRP调度下的待更新的缺省统一TCI状态。当然,在其他可替代实施例中,也可以使用第2个统一TCI状态作为sTRP调度下的待更新的缺省统一TCI状态,本申请对此不作具体限定。
示例性地,对于sTRP PDCCH和SFN PDSCH的传输方式,sTRP传输的PDCCH在调度PDSCH的时候,给出了2个统一TCI状态,分别为一个TRP指示一个波束的更新。这种情况与sDCI-mPDSCH的传输方式近似,其具体方案可参考针对sDCI-mPDSCH的传输方式的相关内容,此处不再赘述。
示例性地,网络设备可以通过MAC CE激活的统一TCI状态,进一步的,可以通过携带有第一指示信息的DCI指示已激活的统一TCI状态中的至少一个统一TCI状态。
示例性地,通过MAC CE激活或更新统一TCI状态可以仅包括1或2个统一TCI状态。
图12是本申请实施例提供的适用于SFN的传输方式的MAC CE的示例。
如图12所示,MAC CE可包括3个字节(Oct),即Oct 1~Oct 3。其中,Oct 1携带有R以及服务小区标识(Serving Cell ID),Oct 2携带R和第一个统一TCI状态的标识(即TCI状态ID 1),Oct 3携带有R和第二个统一TCI状态的标识(即TCI状态ID 2)。也即是说,统一TCI状态可以针对服务小区进行激活,而不再使用参数CORESET ID。
在一些实施例中,该方法200还可包括:
接收该第一TRP发送的第二指示信息;
其中,该第二指示信息用于针对至少一个码点中每一个码点激活或更新的统一TCI状态。
在一些实施例中,该第一指示信息用于指示或更新该至少一个码点中的第一码点。
示例性地,在使用携带有第一指示信息的DCI更新统一TCI状态的时,可以先由RRC配置的统一TCI状态的资源池以及由MAC CE激活多个码点(例如最多8个码点),再由携带有第一指示信息的DCI指示包括最多4个分离的UL/DL TCI状态的码点。类似的,可以先由RRC配置的统一TCI状态的 资源池以及由MAC CE激活多个码点(例如最多8个码点),再由携带有第一指示信息的DCI指示包括最多2个联合TCI状态的码点。
示例性地,该第一指示信息可以为DCI格式1_1/1_2(带有下行调度或不带有下行调度),其可以用于动态指示1个或多个统一TCI状态。
在一些实施例中,该多个TRP的传输方式为mDCI-mPDSCH的传输方式,该第二指示信息还包括该至少一个码点可适用的CORESET所属的CORESET资源池。
在一些实施例中,该第二指示信息用于针对该每一个码点激活或更新以下中的至少一项:
多个联合TCI状态;
至少一个联合TCI状态和至少一个分离的上行TCI状态;
至少一个联合TCI状态和至少一个分离的下行TCI状态;
至少一个分离的上行TCI状态和至少一个分离的下行TCI状态。
示例性地,该多个TRP为2个TRP时,在一种实现方式中,该第二指示信息用于针对该每一个码点激活或更新最多4个分离的TCI状态,即对于2个TRP,每一个TRP都指示一个分离的下行TCI状态和一个分离的上行TCI状态,即总共4个分离的TCI状态。在另一种实现方式中,该第二指示信息用于针对该每一个码点激活或更新最多2个联合TCI状态,即对于2个TRP,每一个TRP一个联合TCI状态。
在一些实施例中,该第二指示信息指示以下中的任一项:
该至少一个码点中的第i个码点是否同时包括分离的下行DL TCI状态和分离的上行UL TCI状态;
该第i个码点包括或不包括第二个联合TCI状态;
该第i个码点包括或不包括第二对分离的TCI状态;
该第i个码点包括或不包括第X+1个分离的TCI状态,X为大于0的整数。
需要明确指出的是,通常情况下,对于联合TCI状态和分离的DL/UL TCI状态,RRC在一个BWP/CC上只会配置其中一种,即不会同时配置联合TCI状态和分离的TCI状态。本申请中,为了更合理的为每一个TRP激活统一TCI状态,可以在一个BWP/CC上同时配置联合TCI状态和分离的TCI状态。
示例性地,一个TCI状态可以包含如下配置:
TCI状态ID,用于标识一个TCI状态;
QCL信息1。
可选的,所述TCI状态还可包括QCL信息2。
其中,一个QCL信息又包含如下信息:
QCL类型配置,可以是QCL type A,QCL typeB,QCL typeC或QCL typeD中的一个;
QCL参考信号配置,包括参考信号所在的小区ID,BWP ID以及参考信号的标识;参考信号的标识可以是CSI-RS资源ID或SSB索引。
其中,如果QCL信息1和QCL信息2都配置了,至少一个QCL信息的QCL类型必须为QCL typeA,QCL typeB,QCL typeC中的一个,另一个QCL信息的QCL类型必须为QCL type D。
其中,QCL类型配置的定义如下:
'QCL-TypeA':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均时延(average delay),延时扩展(delay spread)};
'QCL-TypeB':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread)};
'QCL-TypeC':{多普勒频移(Doppler shift),平均时延(average delay)};
'QCL-TypeD':{空间接收参数(Spatial Rx parameter)}。
示例性地,TCI状态的语法元素可实现为:
Figure PCTCN2022086559-appb-000003
示例性地,TCI信息的语法元素可实现为:
Figure PCTCN2022086559-appb-000004
Figure PCTCN2022086559-appb-000005
示例性地,DL TCI状态或联合TCI状态的语法元素可实现为:
Figure PCTCN2022086559-appb-000006
示例性地,UL TCI状态的语法元素可实现为:
Figure PCTCN2022086559-appb-000007
示例性地,该第二指示信息用于针对该每一个码点激活或更新2个联合TCI状态;相应的,该第二指示信息用于指示至少一个码点中的第i个码点包括或不包括第二个联合TCI状态。
图13是本申请实施例提供的携带有第二指示信息的MAC CE的示例。
如图13所示,对于2个联合TCI状态,按照MAC CE的格式,假设NW已经通过RRC信令配置了一个联合TCI状态的资源池。基于此,携带有第二指示信息的MAC CE可包括N+3个字节(Oct),即Oct 1~Oct N+3。其中,Oct 1携带有R、服务小区标识(Serving Cell ID)以及下行带宽部分标识(Downlink Bandwidth Part ID,DL BWP ID)。Oct 2携带R和上行带宽部分标识(Uplink Bandwidth Part ID,DL BWP ID)。Oct 3携带P 1~P 8,如果P i为1,则指示有多个(2个在multi-TRP操作下)联合TCI状态为DCI中的TCI域的第i个码点所激活或更新。如果P i为0,则指示只有1个联合TCI状态为DCI中的TCI域的第i个码点所激活或更新。UE可以通过全部的P i来判断携带有第二指示信息的MAC CE的长度,以及对应的联合TCI状态的总个数。Oct 4~Oct N+3中的每一个Oct携带有1个TCI状态标识(TCI state ID)和1个D/U。
需要说明的是,本实施例中,由于在CC/BWP上配置的是联合TCI状态,因此,MAC CE中D/U可以不代表任何信息,即UE可以对其进行忽略。
示例性地,该第二指示信息用于针对该每一个码点激活或更新4个分离的TCI状态;相应的,该第二指示信息用于指示至少一个码点中的第i个码点包括或不包括第一对分离的TCI状态中的第二个分离的TCI状态,进一步的,该第二指示信息还用于指示该第i个码点包括或不包括第二对分离的TCI状态。
图14是本申请实施例提供的携带有第二指示信息的MAC CE的另一示例。
如图14所示,对于4个分离的TCI状态的模式,按照MAC CE的格式,假设NW已经通过RRC信令配置了一个分离的TCI状态的资源池。基于此,携带有第二指示信息的MAC CE可包括N+4个字 节(Oct),即Oct 1~Oct N+4。其中,Oct 1携带有R、服务小区标识(Serving Cell ID)以及下行带宽部分标识(Downlink Bandwidth Part ID,DL BWP ID)。Oct 2携带R和上行带宽部分标识(Uplink Bandwidth Part ID,DL BWP ID)。
Oct 3携带P 1~P 8。如果P i为1,则指示MAC CE为DCI中TCI域的第i个码点激活了第一对分离的TCI状态,即第一个分离的TCI状态和第二个分离的TCI状态;如果P i为0,则指示MAC CE为DCI中TCI域的第i个码点激活了一个分离的TCI状态,即第一个分离的TCI状态。
Oct 4携带TP 1~TP 8。TP i表示DCI中TCI域的第i个码点是否还有第二对分离的TCI状态,即是否还有第三个分离的TCI状态和第四个分离的TCI状态。可选的,TP i为多个比特(例如8个比特)长度的变量。当TP i为0时,表示DCI中TCI域的第i个码点没有第二对分离的TCI状态;当TP i为1时,表示DCI中TCI域的第i个码点有第二对分离的TCI状态。
Oct 5~Oct N+4中的每一个Oct携带有1个TCI状态标识(TCI state ID)和1个D/U。
考虑到第二指示信息指示的统一TCI状态的灵活性,对于第二对分离的TCI状态的激活或更新可以只激活或更新一个分离的TCI状态。
示例性地,该第二指示信息用于针对该每一个码点激活或更新4个分离的TCI状态;相应的,该第二指示信息用于指示至少一个码点中的第i个码点包括或不包括第X+1个分离的TCI状态。
图15是本申请实施例提供的携带有第二指示信息的MAC CE的另一示例。
如图15所示,对于4个分离的TCI状态的模式,按照MAC CE的格式,假设NW已经通过RRC信令配置了一个分离的TCI状态的资源池。基于此,携带有第二指示信息的MAC CE可包括N+5个字节(Oct),即Oct 1~Oct N+5。其中,Oct 1携带有R、服务小区标识(Serving Cell ID)以及下行带宽部分标识(Downlink Bandwidth Part ID,DL BWP ID)。Oct 2携带R和上行带宽部分标识(Uplink Bandwidth Part ID,DL BWP ID)。Oct 3~Oct 5携带PX 1~PX 8,其中,X=1,2,3。PX i表示MAC CE有没有激活/更新第X+1个分离的TCI状态。如果PX i为1,表示MAC CE激活或更新DCI中TCI域中第i个码点的第X+1个分离的TCI状态。如果PX i为0,则表示MAC CE不激活或不更新DCI中TCI域中第i个码点的第X+1个分离的TCI状态。Oct 6~Oct N+5中的每一个Oct携带有1个TCI状态的标识(TCI state ID)和1个D/U。
应当理解,网络设备确定上文涉及的至少一个TCI状态的适用的CORESET资源池、TRP、适用的CORESET的方案以及网络设备确定适用于sDCI的统一TCI状态、适用于由携带有该第一指示信息的sDCI调度的PDSCH的统一TCI状态的方案,可参考终端设备侧的相关内容,为避免重复,此处不再赘述。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文中结合图5至图15,详细描述了本申请的方法实施例,下文结合图16至图19,详细描述本申请的装置实施例。
图16是本申请实施例的终端设备300的示意性框图。
如图16所示,该终端设备300可包括:
接收单元310,用于接收多个发射接收点TRP中的第一TRP发送的第一指示信息;
其中,该第一指示信息用于指示或更新至少一个统一传输配置指示TCI状态。
在一些实施例中,若该多个TRP的传输方式为多下行控制信息的多物理下行共享信道mDCI-mPDSCH的传输方式,则该至少一个统一TCI状态包括以下中的至少一项:联合TCI状态、分离的上行TCI状态或分离的下行TCI状态。
在一些实施例中,该接收单元310还用于:
将携带有该第一指示信息的下行控制信息DCI所在的CORESET所属的第一CORESET资源池,确定为该至少一个统一TCI状态适用的CORESET资源池。
在一些实施例中,该接收单元310还用于:
将该多个TRP中与该至少一个统一TCI状态适用的CORESET资源池对应的TRP,确定为该至少一个统一TCI状态适用的TRP。
在一些实施例中,该接收单元310还用于:
将所至少一个统一TCI状态,确定为以下中的至少一项适用的TCI状态:
该第一CORESET资源池中的CORESET上的物理下行控制信道PDCCH、该第一CORESET资源池中的CORESET上接收的下行控制信息DCI调度的物理下行共享信道PDSCH、该第一CORESET资源池中的CORESET上接收的DCI触发的非周期信道状态信息参考信号AP-CSI-RS。
在一些实施例中,该多个TRP的传输方式为单下行控制信息的多物理下行共享信道sDCI-mPDSCH的传输方式。
在一些实施例中,该接收单元310还用于:
若该至少一个统一TCI状态为多个统一TCI状态,则将该多个统一TCI状态中的缺省统一TCI状态,确定为适用于单个下行控制信息sDCI的统一TCI状态。
在一些实施例中,该接收单元310还用于:
若该至少一个统一TCI状态为多个统一TCI状态,则将以下中的至少一项,确定为该多个统一TCI状态中的缺省统一TCI状态适用的CORESET:
携带有该第一指示信息的单下行控制信息sDCI所在的第一CORESET;
与该第一CORESET所在的成员载波CC上的除该第一CORESET之外的其他CORESET;
与该第一CORESET具有相同的统一TCI状态的CORESET;
该第一CORESET所属的CORESET组内除该第一CORESET之外的其他CORESET。
在一些实施例中,该接收单元310还用于:
若该至少一个统一TCI状态为多个统一TCI状态、且收到该第一指示信息之前已指示或已更新的统一TCI状态为单个统一TCI状态,则将该第一指示信息之前指示或更新的统一TCI状态,确定为适用于由携带有该第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
在一些实施例中,该接收单元310还用于:
若该至少一个统一TCI状态为单个统一TCI状态且该第一指示信息之前指示或更新的统一TCI状态为多个统一TCI状态,则将该第一指示信息之前指示的多个统一TCI状态中的缺省统一TCI状态,确定为适用于由携带有该第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
在一些实施例中,该多个TRP的传输方式为单频点网络SFN的传输方式;该SFN的传输方式包括以下中的任一项:SFN物理下行控制信道PDCCH和SFN物理下行共享信道PDSCH的传输方式、SFN PDCCH和单发射接收点sTRP PDSCH的传输方式、sDCI和SFN PDSCH的传输方式。
在一些实施例中,该接收单元310还用于:
将至少一个成员载波CC上的控制资源集CORESET,确定为该至少一个统一TCI状态适用的CORESET;其中,该至少一个CC包括携带有该第一指示信息的下行控制信息DCI的CORESET所在的CC,该至少一个CC上的CORESET共享统一TCI状态。
在一些实施例中,该SFN的传输方式为SFN PDCCH和单发射接收点sTRP PDSCH的传输方式;该接收单元310还用于:
若该至少一个统一TCI状态为多个统一TCI状态,则将该多个统一TCI状态中的缺省统一TCI状态,确定为该sTRP PDSCH适用的统一TCI状态。
在一些实施例中,该接收单元310还用于:
接收该第一TRP发送的第二指示信息;
其中,该第二指示信息用于针对至少一个码点中每一个码点激活或更新的统一TCI状态。
在一些实施例中,该第一指示信息用于指示或更新该至少一个码点中的第一码点。
在一些实施例中,该多个TRP的传输方式为多下行控制信息的多物理下行共享信道mDCI-mPDSCH的传输方式,该第二指示信息还包括该至少一个码点可适用的CORESET所属的CORESET资源池。
在一些实施例中,该第二指示信息用于针对该每一个码点激活或更新以下中的至少一项:
多个联合TCI状态;
至少一个联合TCI状态和至少一个分离的上行TCI状态;
至少一个联合TCI状态和至少一个分离的下行TCI状态;
至少一个分离的上行TCI状态和至少一个分离的下行TCI状态。
在一些实施例中,该第二指示信息指示以下中的任一项:
该至少一个码点中的第i个码点是否同时包括分离的下行DL TCI状态和分离的上行UL TCI状态;
该第i个码点包括或不包括第二个联合TCI状态;
该第i个码点包括或不包括第二对分离的TCI状态;
该第i个码点包括或不包括第X+1个分离的TCI状态,X为大于0的整数。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图16所示的终端设备300可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备300中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的各个方法中的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例的网络设备400的示意性框图。
如图17所示,该网络设备400可包括:
发送单元410,用于向终端设备发送第一指示信息;
其中,该第一指示信息用于指示或更新至少一个统一传输配置指示TCI状态。
在一些实施例中,若该多个TRP的传输方式为多下行控制信息的多物理下行共享信道mDCI-mPDSCH的传输方式,则该至少一个统一TCI状态包括以下中的至少一项:联合TCI状态、分离的上行TCI状态或分离的下行TCI状态。
在一些实施例中,该发送单元410还用于:
将携带有该第一指示信息的下行控制信息DCI所在的CORESET所属的第一CORESET资源池,确定为该至少一个统一TCI状态适用的CORESET资源池。
在一些实施例中,该发送单元410还用于:
将该多个TRP中与该至少一个统一TCI状态适用的CORESET资源池对应的TRP,确定为该至少一个统一TCI状态适用的TRP。
在一些实施例中,该发送单元410还用于:
将所至少一个统一TCI状态,确定为以下中的至少一项适用的TCI状态:
该第一CORESET资源池中的CORESET上的物理下行控制信道PDCCH、该第一CORESET资源池中的CORESET上接收的下行控制信息DCI调度的物理下行共享信道PDSCH、该第一CORESET资源池中的CORESET上接收的DCI触发的非周期信道状态信息参考信号AP-CSI-RS。
在一些实施例中,该多个TRP的传输方式为单下行控制信息的多物理下行共享信道sDCI-mPDSCH的传输方式。
在一些实施例中,该发送单元410还用于:
若该至少一个统一TCI状态为多个统一TCI状态,则将该多个统一TCI状态中的缺省统一TCI状态,确定为适用于单个下行控制信息sDCI的统一TCI状态。
在一些实施例中,该发送单元410还用于:
若该至少一个统一TCI状态为多个统一TCI状态,则将以下中的至少一项,确定为该多个统一TCI状态中的缺省统一TCI状态适用的CORESET:
携带有该第一指示信息的单下行控制信息sDCI所在的第一CORESET;
与该第一CORESET所在的成员载波CC上的除该第一CORESET之外的其他CORESET;
与该第一CORESET具有相同的统一TCI状态的CORESET;
该第一CORESET所属的CORESET组内除该第一CORESET之外的其他CORESET。
在一些实施例中,该发送单元410还用于:
若该至少一个统一TCI状态为多个统一TCI状态、且发送该第一指示信息之前已指示或已更新的统一TCI状态为单个统一TCI状态,则将该第一指示信息之前指示或更新的统一TCI状态,确定为适用于由携带有该第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
在一些实施例中,该发送单元410还用于:
若该至少一个统一TCI状态为单个统一TCI状态且该第一指示信息之前指示或更新的统一TCI状态为多个统一TCI状态,则将该第一指示信息之前指示的多个统一TCI状态中的缺省统一TCI状态,确定为适用于由携带有该第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
在一些实施例中,该多个TRP的传输方式为单频点网络SFN的传输方式;该SFN的传输方式包括以下中的任一项:SFN物理下行控制信道PDCCH和SFN物理下行共享信道PDSCH的传输方式、SFN PDCCH和单发射接收点sTRP PDSCH的传输方式、sDCI和SFN PDSCH的传输方式。
在一些实施例中,该发送单元410还用于:
将至少一个成员载波CC上的控制资源集CORESET,确定为该至少一个统一TCI状态适用的CORESET;其中,该至少一个CC包括携带有该第一指示信息的下行控制信息DCI的CORESET所在的CC,该至少一个CC上的CORESET共享统一TCI状态。
在一些实施例中,该SFN的传输方式为SFN PDCCH和单发射接收点sTRP PDSCH的传输方式;该发送单元410还用于:
若该至少一个统一TCI状态为多个统一TCI状态,则将该多个统一TCI状态中的缺省统一TCI状态,确定为该sTRP PDSCH适用的统一TCI状态。
在一些实施例中,该发送单元410还用于:
向该终端设备发送第二指示信息;
其中,该第二指示信息用于针对至少一个码点中每一个码点激活或更新的统一TCI状态。
在一些实施例中,该第一指示信息用于指示或更新该至少一个码点中的第一码点。
在一些实施例中,该多个TRP的传输方式为多下行控制信息的多物理下行共享信道mDCI-mPDSCH的传输方式,该第二指示信息还包括该至少一个码点可适用的CORESET所属的CORESET资源池。
在一些实施例中,该第二指示信息用于针对该每一个码点激活或更新以下中的至少一项:
多个联合TCI状态;
至少一个联合TCI状态和至少一个分离的上行TCI状态;
至少一个联合TCI状态和至少一个分离的下行TCI状态;
至少一个分离的上行TCI状态和至少一个分离的下行TCI状态。
在一些实施例中,该第二指示信息指示以下中的任一项:
该至少一个码点中的第i个码点是否同时包括分离的下行DL TCI状态和分离的上行UL TCI状态;
该第i个码点包括或不包括第二个联合TCI状态;
该第i个码点包括或不包括第二对分离的TCI状态;
该第i个码点包括或不包括第X+1个分离的TCI状态,X为大于0的整数。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图17所示的网络设备400可以对应于执行本申请实施例的方法200中的相应主体(即第一TRP),并且网络设备400中的各个单元的前述和其它操作和/或功能分别为了实现本申请实施例提供的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图19是本申请实施例的通信设备500示意性结构图。
如图19所示,该通信设备500可包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图19所示,通信设备500还可以包括存储器520。
其中,该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
如图19所示,通信设备500还可以包括收发器530。
其中,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备500可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备500可对应于本申请实施例中的终端设备300,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备500可为本申请实施例的第一TRP,并且该通信设备500可以实现本申请实施例的各个方法中由第一TRP实现的相应流程。也就是说,本申请实施例的通信设备500可对应于本申请实施例中的网络设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。该芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图19是根据本申请实施例的芯片600的示意性结构图。
如图19所示,该芯片600包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图19所示,该芯片600还可以包括存储器620。
其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
如图19所示,该芯片600还可以包括输入接口630。
其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图19所示,该芯片600还可以包括输出接口640。
其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,该芯片600可应用于本申请实施例中的第一TRP,并且该芯片可以实现本申请实施例的各个方法中由第一TRP实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
该处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执 行时,能够使该便携式电子设备执行本申请提供的无线通信方法。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,该通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“该”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (46)

  1. 一种无线通信方法,其特征在于,所述方法适用于终端设备;所述方法包括:
    接收多个发射接收点TRP中的第一TRP发送的第一指示信息;
    其中,所述第一指示信息用于指示或更新至少一个统一传输配置指示TCI状态。
  2. 根据权利要求1所述的方法,其特征在于,若所述多个TRP的传输方式为多下行控制信息的多物理下行共享信道mDCI-mPDSCH的传输方式,则所述至少一个统一TCI状态包括以下中的至少一项:联合TCI状态、分离的上行TCI状态或分离的下行TCI状态。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    将携带有所述第一指示信息的下行控制信息DCI所在的CORESET所属的第一CORESET资源池,确定为所述至少一个统一TCI状态适用的CORESET资源池。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    将所述多个TRP中与所述至少一个统一TCI状态适用的CORESET资源池对应的TRP,确定为所述至少一个统一TCI状态适用的TRP。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    将所至少一个统一TCI状态,确定为以下中的至少一项适用的TCI状态:
    所述第一CORESET资源池中的CORESET上的物理下行控制信道PDCCH、所述第一CORESET资源池中的CORESET上接收的下行控制信息DCI调度的物理下行共享信道PDSCH、所述第一CORESET资源池中的CORESET上接收的DCI触发的非周期信道状态信息参考信号AP-CSI-RS。
  6. 根据权利要求1所述的方法,其特征在于,所述多个TRP的传输方式为单下行控制信息的多物理下行共享信道sDCI-mPDSCH的传输方式。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述至少一个统一TCI状态为多个统一TCI状态,则将所述多个统一TCI状态中的缺省统一TCI状态,确定为适用于单个下行控制信息sDCI的统一TCI状态。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述至少一个统一TCI状态为多个统一TCI状态,则将以下中的至少一项,确定为所述多个统一TCI状态中的缺省统一TCI状态适用的CORESET:
    携带有所述第一指示信息的单下行控制信息sDCI所在的第一CORESET;
    与所述第一CORESET所在的成员载波CC上的除所述第一CORESET之外的其他CORESET;
    与所述第一CORESET具有相同的统一TCI状态的CORESET;
    所述第一CORESET所属的CORESET组内除所述第一CORESET之外的其他CORESET。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述至少一个统一TCI状态为多个统一TCI状态、且收到所述第一指示信息之前已指示或已更新的统一TCI状态为单个统一TCI状态,则将所述第一指示信息之前指示或更新的统一TCI状态,确定为适用于由携带有所述第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
  10. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述至少一个统一TCI状态为单个统一TCI状态且所述第一指示信息之前指示或更新的统一TCI状态为多个统一TCI状态,则将所述第一指示信息之前指示的多个统一TCI状态中的缺省统一TCI状态,确定为适用于由携带有所述第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
  11. 根据权利要求1所述的方法,其特征在于,所述多个TRP的传输方式为单频点网络SFN的传输方式;所述SFN的传输方式包括以下中的任一项:SFN物理下行控制信道PDCCH和SFN物理下行共享信道PDSCH的传输方式、SFN PDCCH和单发射接收点sTRP PDSCH的传输方式、sDCI和SFN PDSCH的传输方式。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    将至少一个成员载波CC上的控制资源集CORESET,确定为所述至少一个统一TCI状态适用的CORESET;其中,所述至少一个CC包括携带有所述第一指示信息的下行控制信息DCI的CORESET所在的CC,所述至少一个CC上的CORESET共享统一TCI状态。
  13. 根据权利要求11所述的方法,其特征在于,所述SFN的传输方式为SFN PDCCH和单发射接收点sTRP PDSCH的传输方式;
    所述方法还包括:
    若所述至少一个统一TCI状态为多个统一TCI状态,则将所述多个统一TCI状态中的缺省统一TCI状态,确定为所述sTRP PDSCH适用的统一TCI状态。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第一TRP发送的第二指示信息;
    其中,所述第二指示信息用于针对至少一个码点中每一个码点激活或更新的统一TCI状态。
  15. 根据权利要求14所述的方法,其特征在于,所述第一指示信息用于指示或更新所述至少一个码点中的第一码点。
  16. 根据权利要求14所述的方法,其特征在于,所述多个TRP的传输方式为多下行控制信息的多物理下行共享信道mDCI-mPDSCH的传输方式,所述第二指示信息还包括所述至少一个码点可适用的CORESET所属的CORESET资源池。
  17. 根据权利要求14所述的方法,其特征在于,所述第二指示信息用于针对所述每一个码点激活或更新以下中的至少一项:
    多个联合TCI状态;
    至少一个联合TCI状态和至少一个分离的上行TCI状态;
    至少一个联合TCI状态和至少一个分离的下行TCI状态;
    至少一个分离的上行TCI状态和至少一个分离的下行TCI状态。
  18. 根据权利要求14所述的方法,其特征在于,所述第二指示信息指示以下中的任一项:
    所述至少一个码点中的第i个码点是否同时包括分离的下行DL TCI状态和分离的上行UL TCI状态;
    所述第i个码点包括或不包括第二个联合TCI状态;
    所述第i个码点包括或不包括第二对分离的TCI状态;
    所述第i个码点包括或不包括第X+1个分离的TCI状态,X为大于0的整数。
  19. 一种无线通信方法,其特征在于,所述方法适用于多个发射接收点TRP中的第一TRP,所述方法包括:
    向终端设备发送第一指示信息;
    其中,所述第一指示信息用于指示或更新至少一个统一传输配置指示TCI状态。
  20. 根据权利要求19所述的方法,其特征在于,若所述多个TRP的传输方式为多下行控制信息的多物理下行共享信道mDCI-mPDSCH的传输方式,则所述至少一个统一TCI状态包括以下中的至少一项:联合TCI状态、分离的上行TCI状态或分离的下行TCI状态。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    将携带有所述第一指示信息的下行控制信息DCI所在的CORESET所属的第一CORESET资源池,确定为所述至少一个统一TCI状态适用的CORESET资源池。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    将所述多个TRP中与所述至少一个统一TCI状态适用的CORESET资源池对应的TRP,确定为所述至少一个统一TCI状态适用的TRP。
  23. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    将所至少一个统一TCI状态,确定为以下中的至少一项适用的TCI状态:
    所述第一CORESET资源池中的CORESET上的物理下行控制信道PDCCH、所述第一CORESET资源池中的CORESET上接收的下行控制信息DCI调度的物理下行共享信道PDSCH、所述第一CORESET资源池中的CORESET上接收的DCI触发的非周期信道状态信息参考信号AP-CSI-RS。
  24. 根据权利要求19所述的方法,其特征在于,所述多个TRP的传输方式为单下行控制信息的多物理下行共享信道sDCI-mPDSCH的传输方式。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    若所述至少一个统一TCI状态为多个统一TCI状态,则将所述多个统一TCI状态中的缺省统一TCI状态,确定为适用于单个下行控制信息sDCI的统一TCI状态。
  26. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    若所述至少一个统一TCI状态为多个统一TCI状态,则将以下中的至少一项,确定为所述多个统一TCI状态中的缺省统一TCI状态适用的CORESET:
    携带有所述第一指示信息的单下行控制信息sDCI所在的第一CORESET;
    与所述第一CORESET所在的成员载波CC上的除所述第一CORESET之外的其他CORESET;
    与所述第一CORESET具有相同的统一TCI状态的CORESET;
    所述第一CORESET所属的CORESET组内除所述第一CORESET之外的其他CORESET。
  27. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    若所述至少一个统一TCI状态为多个统一TCI状态、且发送所述第一指示信息之前已指示或已更新的统一TCI状态为单个统一TCI状态,则将所述第一指示信息之前指示或更新的统一TCI状态,确定为适用于由携带有所述第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
  28. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    若所述至少一个统一TCI状态为单个统一TCI状态且所述第一指示信息之前指示或更新的统一TCI状态为多个统一TCI状态,则将所述第一指示信息之前指示的多个统一TCI状态中的缺省统一TCI状态,确定为适用于由携带有所述第一指示信息的单个下行控制信息sDCI调度的物理下行共享信道PDSCH的统一TCI状态。
  29. 根据权利要求19所述的方法,其特征在于,所述多个TRP的传输方式为单频点网络SFN的传输方式;所述SFN的传输方式包括以下中的任一项:SFN物理下行控制信道PDCCH和SFN物理下行共享信道PDSCH的传输方式、SFN PDCCH和单发射接收点sTRP PDSCH的传输方式、sDCI和SFN PDSCH的传输方式。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    将至少一个成员载波CC上的控制资源集CORESET,确定为所述至少一个统一TCI状态适用的CORESET;其中,所述至少一个CC包括携带有所述第一指示信息的下行控制信息DCI的CORESET所在的CC,所述至少一个CC上的CORESET共享统一TCI状态。
  31. 根据权利要求29所述的方法,其特征在于,所述SFN的传输方式为SFN PDCCH和单发射接收点sTRP PDSCH的传输方式;
    所述方法还包括:
    若所述至少一个统一TCI状态为多个统一TCI状态,则将所述多个统一TCI状态中的缺省统一TCI状态,确定为所述sTRP PDSCH适用的统一TCI状态。
  32. 根据权利要求19至31中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息;
    其中,所述第二指示信息用于针对至少一个码点中每一个码点激活或更新的统一TCI状态。
  33. 根据权利要求32所述的方法,其特征在于,所述第一指示信息用于指示或更新所述至少一个码点中的第一码点。
  34. 根据权利要求32所述的方法,其特征在于,所述多个TRP的传输方式为多下行控制信息的多物理下行共享信道mDCI-mPDSCH的传输方式,所述第二指示信息还包括所述至少一个码点可适用的CORESET所属的CORESET资源池。
  35. 根据权利要求32所述的方法,其特征在于,所述第二指示信息用于针对所述每一个码点激活或更新以下中的至少一项:
    多个联合TCI状态;
    至少一个联合TCI状态和至少一个分离的上行TCI状态;
    至少一个联合TCI状态和至少一个分离的下行TCI状态;
    至少一个分离的上行TCI状态和至少一个分离的下行TCI状态。
  36. 根据权利要求32所述的方法,其特征在于,所述第二指示信息指示以下中的任一项:
    所述至少一个码点中的第i个码点是否同时包括分离的下行DL TCI状态和分离的上行UL TCI状态;
    所述第i个码点包括或不包括第二个联合TCI状态;
    所述第i个码点包括或不包括第二对分离的TCI状态;
    所述第i个码点包括或不包括第X+1个分离的TCI状态,X为大于0的整数。
  37. 一种终端设备,其特征在于,包括:
    接收单元,用于接收多个发射接收点TRP中的第一TRP发送的第一指示信息;
    其中,所述第一指示信息用于指示或更新至少一个统一传输配置指示TCI状态。
  38. 根据权利要求37所述的终端设备,其特征在于,所述接收单元还用于执行如权利要求2至18中任一项所述的方法。
  39. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送第一指示信息;
    其中,所述第一指示信息用于指示或更新至少一个统一传输配置指示TCI状态。
  40. 根据权利要求39所述的网络设备,其特征在于,所述发送单元还用于执行如权利要求19至36 中任一项所述的方法。
  41. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使得所述终端设备执行权利要求1至18中任一项所述的方法。
  42. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使得所述网络设备执行权利要求19至36中任一项所述的方法。
  43. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至18中任一项所述的方法或如权利要求19至36中任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法或如权利要求19至36中任一项所述的方法。
  45. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至18中任一项所述的方法或如权利要求19至36中任一项所述的方法。
  46. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法或如权利要求19至36中任一项所述的方法。
PCT/CN2022/086559 2022-04-13 2022-04-13 无线通信方法、终端设备和网络设备 WO2023197201A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086559 WO2023197201A1 (zh) 2022-04-13 2022-04-13 无线通信方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086559 WO2023197201A1 (zh) 2022-04-13 2022-04-13 无线通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023197201A1 true WO2023197201A1 (zh) 2023-10-19

Family

ID=88328735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086559 WO2023197201A1 (zh) 2022-04-13 2022-04-13 无线通信方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023197201A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201741A (zh) * 2017-10-13 2020-05-26 高通股份有限公司 动态传输配置指示状态更新
WO2021143847A1 (en) * 2020-01-15 2021-07-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, terminal device and network device for physical uplink shared channel transmission
CN113316253A (zh) * 2020-02-27 2021-08-27 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
US20210274503A1 (en) * 2020-02-27 2021-09-02 Samsung Electronics Co., Ltd. Beam indication channel in a multi-beam system
CN113597779A (zh) * 2021-06-18 2021-11-02 北京小米移动软件有限公司 信息指示方法、装置、用户设备、基站及存储介质
CN113767697A (zh) * 2021-08-05 2021-12-07 北京小米移动软件有限公司 一种传输配置指示tci状态配置的方法及其装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201741A (zh) * 2017-10-13 2020-05-26 高通股份有限公司 动态传输配置指示状态更新
WO2021143847A1 (en) * 2020-01-15 2021-07-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, terminal device and network device for physical uplink shared channel transmission
CN113316253A (zh) * 2020-02-27 2021-08-27 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
US20210274503A1 (en) * 2020-02-27 2021-09-02 Samsung Electronics Co., Ltd. Beam indication channel in a multi-beam system
CN113597779A (zh) * 2021-06-18 2021-11-02 北京小米移动软件有限公司 信息指示方法、装置、用户设备、基站及存储介质
CN113767697A (zh) * 2021-08-05 2021-12-07 北京小米移动软件有限公司 一种传输配置指示tci状态配置的方法及其装置

Similar Documents

Publication Publication Date Title
WO2018196550A1 (zh) 传输反馈信息的方法和装置
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2019213845A1 (zh) 无线通信方法、通信设备、芯片和系统
TWI718240B (zh) 用於傳輸業務的方法、移動台和網絡設備
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
TWI829760B (zh) 用於側行鏈路的通信方法和設備
TW202015450A (zh) 通訊方法、終端設備和網路設備
WO2018081989A1 (zh) 传输上行控制信息的方法、终端设备和网络设备
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
US11770833B2 (en) Communication method, terminal device, and network device
WO2017167292A1 (zh) 数据传输的方法以及基站
CN110730513B (zh) 一种通信方法及装置
US20210385799A1 (en) Resource indicating method, apparatus, access network device, terminal and system
WO2020073623A1 (zh) 一种资源配置方法及装置、通信设备
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
WO2018202168A1 (zh) 信息传输方法及装置
WO2018201919A1 (zh) 一种数据传输的方法和装置
WO2022027518A1 (zh) 上行数据的发送方法、装置和系统
WO2020233370A1 (zh) 一种通信方法及设备
WO2021155604A1 (zh) 信息处理方法及设备
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
WO2021026844A1 (zh) 数据传输方法、终端设备、网络设备及存储介质
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936855

Country of ref document: EP

Kind code of ref document: A1