WO2017167292A1 - 数据传输的方法以及基站 - Google Patents

数据传输的方法以及基站 Download PDF

Info

Publication number
WO2017167292A1
WO2017167292A1 PCT/CN2017/079079 CN2017079079W WO2017167292A1 WO 2017167292 A1 WO2017167292 A1 WO 2017167292A1 CN 2017079079 W CN2017079079 W CN 2017079079W WO 2017167292 A1 WO2017167292 A1 WO 2017167292A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
time unit
uplink
unit structure
dci
Prior art date
Application number
PCT/CN2017/079079
Other languages
English (en)
French (fr)
Inventor
秦熠
栗忠峰
李华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017167292A1 publication Critical patent/WO2017167292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method of data transmission and a base station.
  • HBF hybrid beam forming
  • the phase adjustment of the phase shifter requires adjustment time, and the adjustment time cannot be ignored in the existing communication system. Since the analog beam switching is dynamically determined, the reserved switching time may cause a fixed switching time. A certain amount of resources is wasted.
  • Time-Division Duplexing In the Time-Division Duplexing (TDD) system, there is a downlink-to-uplink handover procedure. Since the distance from each user to the base station is different, the time required for information transmission between each user and the base station is also different, in order to prevent the distance. The uplink transmission and the downlink transmission of the user far away from the base station interfere with each other, and a certain guard interval (GP) needs to be reserved between the uplink transmission and the downlink transmission.
  • GP guard interval
  • the base station needs to scan all the analog beams to obtain information about the optimal analog beam (group) of each user. Since the analog beam scanning can reuse the existing reference signal (Reference Signal, RS) in some cases, Therefore, fixed beam scanning may cause a certain waste of resources.
  • Reference Signal Reference Signal
  • the embodiment of the invention provides a data transmission and transmission method, which can dynamically determine the time unit structure, thereby ensuring resource utilization and avoiding resource waste.
  • a method of data transmission comprising:
  • the base station determines a first time unit structure, the first time unit structure including any one of the following:
  • the first down part The first down part
  • first downlink portion a first downlink portion, a first GP portion, and a second downlink portion
  • first downlink portion a first downlink portion, a first GP, a second downlink portion, and a third GP
  • the first downlink portion, the second GP portion, and the uplink portion are identical to each other.
  • a first downlink portion a second GP, an uplink portion, and a third GP
  • a first downlink portion a second downlink portion, a second GP, and an uplink portion
  • first downlink portion a first GP
  • second downlink portion a second GP
  • uplink portion a first downlink portion, a first GP, a second downlink portion, a second GP, and an uplink portion
  • first downlink portion a first GP, a second downlink portion, a second GP, an uplink portion, and a third GP;
  • the sending the first downlink part includes: sending the first downlink part and the second downlink part;
  • the method further includes: the base station receiving the uplink part according to a first time unit structure;
  • the first downlink part is a first downlink control channel and/or a physical layer shared channel PDSCH and/or a third reference signal RS;
  • the second downlink part is a first reference signal RS and/or a second a downlink control channel;
  • the uplink part is a physical uplink control channel PUCCH and/or a second RS and/or a physical uplink shared channel PUSCH;
  • the first downlink control channel is a first physical downlink control channel PDCCH or a first enhanced type a physical downlink control channel ePDCCH;
  • the second downlink control channel includes a second PDCCH or a second ePDCCH or a physical hybrid automatic request retransmission indication channel PHICH;
  • the first time unit is one of the following: a minislot, a minislot set, a time slot, a time slot set, a subframe, a subframe set, and a frame.
  • the base station when performing transmission, may dynamically determine the first time unit structure to be used. Further, the base station may send according to the first time unit structure, and accordingly, the UE may receive according to the first time unit structure. Thereby ensuring the utilization of resources and avoiding waste of resources.
  • the method before the sending the first downlink part, the method further includes: the base station sending indication information, where the indication information is used to indicate that the first time unit structure is to be used.
  • the indication information is carried in a system information block SIB, or a master information block (MIB), or a radio resource control RRC signaling, or a downlink control information DCI, or a media access control control element MAC CE .
  • SIB system information block
  • MIB master information block
  • RRC radio resource control
  • the base station can notify the UE of the determined first time unit structure by using the indication information, and can enable the UE to receive according to the first time unit structure.
  • the DCI is further used to indicate a sending method of the first RS.
  • the DCI is further used to indicate a sending method of the second downlink control channel.
  • the sending method includes at least one of the following: a used transmit or receive beam, a used resource mapping manner, and occupied subcarriers.
  • the first RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as a channel state information reference signal (CSI- RS) and / or synchronization signal.
  • CSI- RS channel state information reference signal
  • the third RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as CSI-RS and/or synchronization signal.
  • the second RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an uplink sounding reference signal (SRS) and/or Or a leader sequence.
  • SRS uplink sounding reference signal
  • a method of data transmission including:
  • the base station determines a first time unit structure, the first time unit structure including any one of the following:
  • the first up part is the first up part
  • a second uplink portion a first GP, a first uplink portion, and a third GP
  • a downlink portion a downlink portion, a second GP, a second uplink portion, and a first uplink portion
  • a downlink portion a second GP, a second uplink portion, a first GP, and a first uplink portion
  • a downlink portion a second GP, a second uplink portion, a first GP, a first uplink portion, and a third GP;
  • the receiving the first uplink portion includes: receiving the first uplink portion and the second uplink portion;
  • the method further includes: the base station transmitting the downlink part according to a first time unit structure;
  • the first uplink part is a physical uplink shared channel PUSCH and/or a third reference signal RS
  • the second uplink part is a physical uplink control channel PUCCH and/or a first reference signal RS
  • the downlink part is a second downlink control channel.
  • the second downlink control channel includes a second physical downlink control channel PDCCH or a second enhanced physical downlink control channel ePDCCH or a physical hybrid automatic request retransmission indication channel PHICH;
  • the first time unit is one of the following: a minislot, a minislot set, a time slot, a time slot set, a subframe, a subframe set, and a frame.
  • the first RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS and/or a preamble sequence.
  • the third RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS and/or a preamble sequence.
  • the second RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as CSI-RS and/or synchronization signal.
  • the base station may dynamically determine the first time unit structure to be used when performing the transmission, and further, the UE may perform the receiving according to the first time unit structure according to the first time unit structure. . Thereby ensuring the utilization of resources and avoiding waste of resources.
  • a method for data transmission includes: acquiring, by a UE, a first time unit structure determined by a base station, and receiving according to the time unit structure, or receiving and transmitting according to the time unit structure.
  • the first time unit structure is as described in the first aspect above.
  • a fourth aspect provides a method for data transmission, the method comprising: acquiring, by a UE, a first time unit structure determined by a base station, and transmitting according to the time unit structure, or receiving and transmitting according to the time unit structure.
  • the first time unit structure is as described in the second aspect above.
  • a base station in a fifth aspect, includes: a determining unit, a sending unit, and a receiving unit, configured to perform the processes performed by the base station in the method for downlink transmission in the foregoing first aspect and various implementation manners. .
  • a base station in a sixth aspect, includes: a determining unit, a sending unit, and a receiving unit, configured to perform the processes performed by the base station in the method for uplink transmission in the foregoing second aspect and various implementation manners. .
  • a base station comprising a processor, a transmitter, a receiver, and a memory.
  • the base station can be used to perform the various processes performed by the base station in the method for downlink transmission in the foregoing first aspect and various implementations.
  • a base station comprising a processor, a transmitter, a receiver, and a memory.
  • the base station can be used to perform the various processes performed by the base station in the method for uplink transmission in the foregoing second aspect and various implementations.
  • a ninth aspect provides a UE, including an obtaining unit, a receiving unit, and a sending unit, for performing the processes performed by the UE in the method for downlink transmission in the foregoing third aspect and various implementation manners.
  • a tenth aspect provides a UE, including an obtaining unit, a receiving unit, and a sending unit, for performing the processes performed by the UE in the method for uplink transmission in the foregoing fourth aspect and various implementation manners.
  • a computer chip comprising: an input interface, an output interface, at least one processor, and a memory, wherein the processor is configured to execute code in the memory, when the code is executed,
  • the processor may implement the various processes performed by the base station in the method for downlink transmission in the first aspect and various implementations described above.
  • a computer chip includes: an input interface, an output interface, at least one processor, and a memory, wherein the processor is configured to execute code in the memory, when the code is executed,
  • the processor may implement the various processes performed by the base station in the method for uplink transmission in the second aspect and various implementations described above.
  • a thirteenth aspect a computer chip, comprising: an input interface, an output interface, at least one processor, and a memory, wherein the processor is configured to execute code in the memory, when the code is executed,
  • the processor may implement the various processes performed by the UE in the method for uplink transmission in the foregoing third or fourth aspect and various implementations.
  • a computer readable storage medium storing a program causing a base station to perform the first aspect described above, and any of the various implementations thereof for The method of downlink transmission.
  • a computer readable storage medium storing a program causing a base station to perform the second aspect described above, and any of the various implementations thereof for The method of uplink transmission.
  • a computer readable storage medium storing a program causing a UE to perform the third or fourth aspect described above, and any of the various implementations thereof A method for uplink transmission.
  • a communication system comprising the base station described above, and the aforementioned UE.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a special subframe that carries uplink and downlink handovers in LTE;
  • FIG. 3 is a schematic flowchart of a method for downlink transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the structure of a time unit according to an embodiment of the present invention.
  • FIG. 5 is another schematic diagram of a time unit structure of an embodiment of the present invention.
  • FIG. 6 is another schematic diagram of a time unit structure according to an embodiment of the present invention.
  • FIG. 7 is another schematic diagram of a time unit structure of an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is another schematic diagram of a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a method for uplink transmission according to an embodiment of the present invention.
  • FIG. 12 is another schematic diagram of a time unit structure according to an embodiment of the present invention.
  • Figure 13 (a) - (g) is another schematic diagram of the time unit structure of the embodiment of the present invention.
  • FIG. 14 is another schematic diagram of a time unit structure of an embodiment of the present invention.
  • 15 is another schematic diagram of a time unit structure of an embodiment of the present invention.
  • 16 is another schematic diagram of a structural block diagram of a base station according to an embodiment of the present invention.
  • 17 is another schematic diagram of a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 18 is another schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • UE 20 is capable of communicating with base station 10.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the UE 20 and the base station 10.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (Evolutional Node).
  • B, eNB or eNodeB), or a base station device in a future 5G network, etc. is not limited in this embodiment of the present invention.
  • the UE may communicate with one or more core networks through a Radio Access Network (RAN), and the UE may be referred to as an access terminal, a terminal device, or Subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the UE may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), or a wireless communication function.
  • FIG. 2 A schematic diagram of a special subframe in which a GP is included between a Downlink Pilot Time Slot (DwPTS) and an Uplink Pilot Time Slot (UpPTS).
  • DwPTS Downlink Pilot Time Slot
  • UpPTS Uplink Pilot Time Slot
  • the configuration of the special subframe in the LTE in the existing LTE can be as shown in the following Table 1, including the configuration of the downlink common cyclic prefix (CP) and the downlink extended CP.
  • the subframe in LTE is a subframe or a TTI. In this way, different configurations can be used for different scenarios, such as different uplink and downlink requirements, different cell radii, and the like.
  • the configuration in the existing LTE system is configured through a high layer, and the configuration change is gradual.
  • the analog beam of the system in HBF transmission may change every transmission time interval (TTI), that is, the HBF transmission is fast changing.
  • TTI transmission time interval
  • the existing LTE configuration method cannot support the subframe change speed of the HBF system. That is, the existing LTE configuration mode only supports the time domain length configuration of each channel/signal/GP in the subframe, and cannot support the TTI level configuration of the channel/signal itself.
  • FIG. 3 is a schematic flowchart of a method for downlink transmission, where the method includes:
  • the base station 10 determines a first time unit structure.
  • the first time unit structure includes any one of the following:
  • the first downlink part is a first downlink control channel and/or a physical layer shared channel (PDSCH) and/or a third reference signal RS;
  • the second downlink part is a first reference. a reference signal (RS) and/or a second downlink control channel;
  • the uplink part is a Physical Uplink Control Channel (PUCCH) and/or a second RS and/or a physical uplink shared channel PUSCH;
  • the first downlink control channel is a first physical downlink control channel (PDCCH) or a first enhanced physical downlink control channel (ePDCCH);
  • the second downlink control channel includes a second PDCCH or a Two ePDCCH or physical hybrid automatic request retransmission indicator channel (Physical HARQ (Hybrid Automatic Repeat reQuest) Indicator Channel, PHICH).
  • Physical HARQ Hybrid Automatic Repeat reQuest
  • the first time unit is one of the following: a minislot, a minislot set, a time slot, a time slot set, a subframe, a subframe set, and a frame.
  • the first downlink part, the second downlink part, and the uplink part may belong to the same link or different links, and the link is an access link or a first backhaul link or a second backhaul link .
  • the first backhaul link and the second backhaul link are backhaul links having at least one different transport node.
  • both the first downlink portion and the second downlink portion are access links.
  • the first downlink part is a first backhaul link
  • the second downlink part is a second backhaul link or an access link.
  • the first time unit structure may be specified by a protocol.
  • the base station 10 can determine the first time unit structure according to the communication protocol used.
  • the base station 10 can select from a plurality of time unit structures, and determine one of the plurality of time unit structures as the first time unit structure.
  • the plurality of time unit structures herein may be the above (0) to (9), or the plurality of time unit structures herein may be the above-mentioned partial species, for example, the plurality of time unit structures may be the above (0) to ( 4) Kind, and so on.
  • the base station 10 may send indication information indicating that the first time unit structure is to be used.
  • the indication information is carried in a System Information Block (SIB), or a Master Information Block (MIB), or a Radio Resource Control (RRC) signaling, or a downlink control.
  • SIB System Information Block
  • MIB Master Information Block
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • MAC CE media access control control element
  • the first RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as CSI-RS and/or synchronization signal.
  • the third RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as CSI-RS and/or synchronization signal.
  • the second RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS or a preamble sequence.
  • the base station 10 may send indication information to the UE 20 for notifying the UE 20 that the time unit structure used is the first time unit structure.
  • the indication information is used to reach a consensus with the UE 20 to use the first time unit structure.
  • the indication information may be carried in a System Information Block (SIB), or the indication information may be transmitted through RRC signaling, or the indication information may be input through a synchronization signal. Line transmission, or the indication information can be indicated by the MIB, and so on.
  • SIB System Information Block
  • the first time unit structure may be configured in the high layer signaling, and the Downlink Control Information (DCI) includes information that enables the configuration. This embodiment of the present invention is not limited thereto.
  • the base station 10 performs transmission according to the first time unit structure, or performs transmission and reception.
  • the base station 10 transmits channels and/or signals according to the first time unit structure, or the base station 10 transmits and receives channels and/or signals according to the first time unit structure.
  • the base station 10 transmits the first downlink portion according to the first time unit structure. And if the first time unit structure includes the second downlink part, the sending the first downlink part includes: sending the first downlink part and the second downlink part. If the first time unit structure includes the uplink portion, the method further includes: the base station receiving the uplink portion according to a first time unit structure.
  • the base station 10 transmits the first downlink part in S302. If the first time unit structure is the above (2)-(4), the base station 10 transmits the first downlink portion and the second downlink portion in S302. If the first time unit structure is the above (5)-(6), the base station 10 transmits the first downlink portion in S302 and receives the uplink portion. If the first time unit structure is the above (7), the base station 10 transmits the first downlink portion and the second downlink portion in S302, and receives the uplink portion.
  • the first downlink part includes a first PDCCH and a PDSCH, and when the first downlink part is sent by the base station 10, the base station 10 may include:
  • the base station 10 transmits Downlink Control Information (DCI), the DCI is carried on a first downlink control channel, and the DCI is used to indicate some or all channels and/or signals carried by using the first time unit structure. And / or the symbol occupied by the GP.
  • DCI Downlink Control Information
  • the channel here may include a first downlink control channel, a second downlink control channel, a PUCCH, a PDSCH, and a PUSCH.
  • the signal here may include a first RS, a second RS.
  • the GP here may include a first GP, a second GP, and a third GP.
  • the DCI may be further used to indicate a sending method of the first RS. If the first time unit structure includes a second downlink control channel, the DCI may be further used to indicate a sending method of the second downlink control channel.
  • the sending method includes at least one of the following: a transmitting or receiving beam used, a resource mapping manner used, and occupied subcarriers.
  • the first time unit structure and the information indicated by the DCI will be described in detail below.
  • the channels and/or signals and/or GPs carried by the first time unit structure are collectively referred to as information carried by the first time unit structure.
  • the symbol occupied by the information carried by the first time unit structure may include at least a symbol occupied by the PDSCH.
  • the DCI may indicate the length of time of the PDSCH and the length of time of the first GP. Or, the DCI may indicate the number of symbols occupied by the PDSCH and the number of symbols occupied by the first GP. Further, the DCI may also indicate a symbol occupied by the first downlink control channel.
  • the base station can indicate the configuration of the first time unit structure by using the high layer signaling in S301, and the indication information of the first time unit structure is enabled by the DCI in S302.
  • the time unit that is sent by the base station 10 in S302, or transmitted and received may be referred to as a target time unit.
  • the symbols occupied by the PDSCH may include the symbols occupied by the PDSCH and the De-Modulation Reference Signal (DMRS). It should be noted that the following embodiments of the embodiments of the present invention are used for the convenience of description.
  • the symbol "occupied by the PDSCH” means "the symbol occupied by the PDSCH and its DMRS”. And the symbols occupied by the PDSCH may include the location and number of symbols occupied by the PDSCH.
  • the symbol may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the information carried on the symbols other than the symbols occupied by the first PDCCH and the PDSCH in the time unit includes channels and/or signals and/or GPs. It can be understood that after S301, the base station 10 can indicate the information carried on the other symbols by using the indication information.
  • the information carried on the symbols other than the symbols occupied by the first downlink control channel and/or the PDSCH and/or the third reference signal RS in the time unit includes any one of the following: (1) a first RS and/or a second downlink control channel for beam scanning; (2) a first GP; (3) a first GP and a first RS and/or a second downlink control channel; (4) a first RS And/or a second downlink control channel, a second GP and a PUCCH and/or a second RS; (5) a first GP, a first RS and/or a second downlink control channel, a second GP and a PUCCH, and/or a second RS; (6) second GP and PUCCH and/or second RS.
  • the second downlink control channel may be the second PDCCH or the second ePDCCH or the PHICH.
  • the second PDCCH or the second ePDCCH may include indication information of an uplink time unit after the time unit, that is, the uplink DCI in the second PDCCH or the second ePDCCH may include an indication of a corresponding time unit.
  • the PHICH is used to indicate feedback information of an uplink time unit before the time unit.
  • the feedback information may be an Acknowledgement (ACK) or a Negative ACKnowledgement (NACK).
  • the first RS and the second downlink control channel are multiplexed with the same resource.
  • the information carried on the other symbols includes the first RS and the second downlink control channel
  • the information carried on the other symbols includes the first RS and the second PDCCH.
  • the first RS and the second PDCCH multiplex the same resource.
  • the information carried on the other symbols includes the first GP, the first RS, and/or the second downlink control channel, and the information carried on the other symbols includes the first GP, the first RS, and the second PDCCH, and the first The RS multiplexes the same resources with the second PDCCH.
  • the second RS and the PUCCH are multiplexed with the same resource.
  • the information carried on other symbols includes the second GP, the PUCCH, and the second RS
  • the PUCCH and the second RS multiplex the same resources.
  • the information carried on the other symbols includes the first RS, the second GP, the PUCCH, and the second RS
  • the PUCCH and the second RS multiplex the same resources.
  • the information carried on the other symbols includes the first GP, the first RS, the second GP, the PUCCH, and the second RS, the PUCCH and the second RS multiplex the same resources.
  • the “first RS and/or the second downlink control channel” includes the following three situations: (1) the first RS, (2) the second downlink control channel, and (3) multiplexing.
  • the “PUCCH and/or the second RS” includes the following three situations: (1) PUCCH, (2) Two RS, (3) multiplexed PUCCH and second RS.
  • the second RS in the embodiment of the present invention may be a Sounding Reference Signal (SRS) for uplink.
  • SRS Sounding Reference Signal
  • the information carried on the symbols other than the first downlink control channel and the symbol occupied by the PDSCH in the time unit may be: the first RS and/or the second downlink control channel, or The first GP, or the first GP and the first RS and/or the second downlink control channel.
  • the information carried on the symbols other than the first downlink control channel and the symbol occupied by the PDSCH in the time unit may be: a first GP, or a second GP and a PUCCH and/or a second RS .
  • the information carried on the symbols other than the first downlink control channel and the symbol occupied by the PDSCH in the time unit may be: a first RS and/or a second downlink control channel, a second GP and a PUCCH. And/or a second RS, or a first GP, a first RS and/or a second downlink control channel, a second GP and PUCCH and/or a second RS.
  • the time unit is a downlink time unit, and the information carried on the symbols other than the first downlink control channel and the symbol occupied by the PDSCH in the downlink time unit includes a first guard interval (Guard Period, GP) and a first reference signal (RS) and/or a second downlink control channel for beam scanning.
  • the first downlink control channel is a first PDCCH or a first ePDCCH
  • the second downlink control channel may be a second PDCCH or a second ePDCCH or a PHICH.
  • the base station 10 may send the second downlink control channel in the downlink time unit.
  • the second downlink control channel may be used to indicate the configuration of the next uplink time unit of the downlink time unit.
  • the analog beam used for PDSCH transmission in the downlink time unit is different from the analog beam of the second downlink control channel.
  • the configuration is the case 1. That is, the information carried on other symbols includes the first GP and the second downlink control channel.
  • the first GP needs to be configured between the PDSCH and the second downlink control channel because switching time is required between different analog beams.
  • the configuration may be determined to be the case 1. That is, the information carried on other symbols includes the first GP and the first RS.
  • the first GP needs to be configured between the PDSCH and the first RS because switching time is required between different analog beams.
  • the base station 10 may include the second downlink control channel and the first RS in the time unit, and the second downlink control channel multiplexes the same resource with the first RS.
  • the resource of the downlink time unit can be divided into four parts according to time division, as shown in FIG. 4, which are resource 0, resource 1, resource 2, and resource 3.
  • case 1 corresponds to the resource 0 in FIG. 4 carrying the first downlink control channel, the resource 1 carrying the PDSCH, the resource 2 carrying the first GP, and the resource 3 carrying the first RS and/or the second downlink control channel.
  • case 1 may be as shown in FIG. 5( a ).
  • the DCI described in S302 can also be used to indicate the symbols occupied by the first GP.
  • the symbol occupied by the first GP may include the location and number of symbols occupied by the first GP. Wherein, as shown in (a) of FIG. 5, the position of the symbol occupied by the first GP may be adjacent to the position of the symbol occupied by the PDSCH.
  • the DCI described in S302 may be further used to indicate the duration of the first GP, assuming that the duration of the first GP is represented as t 1 , then for this case 1, t 1 >0.
  • the DCI may also be used to indicate a sending method of the first RS.
  • the first RS may have N 1 different transmission methods.
  • N 1 different transmission methods may be referred to as a first type to a first one kind of N transmission method.
  • the sending method includes at least one of the following: a transmit or receive beam used, a time dimension length, and a occupied subcarrier.
  • the sending method is related to the used transmitting beam or receiving beam, the time dimension length, the occupied subcarriers, etc.
  • the different transmitting methods refer to different transmitting beams or receiving beams used, or different transmitting methods. It means that the length of the time dimension is different, or different transmission methods mean that the transmit beam or the receive beam and the time dimension are different, or different transmission methods mean that the time dimension is different from the occupied subcarriers.
  • different transmission methods refer to different transmission beams or reception beams, different time dimension lengths, and occupied subcarriers, and the like.
  • the time unit is a downlink time unit, and the information carried on the symbols other than the first downlink control channel and the symbol occupied by the PDSCH in the downlink time unit includes a first RS for beam scanning. And/or a second downlink control channel.
  • the first downlink control channel is a first PDCCH or a first ePDCCH
  • the second downlink control channel may be a second PDCCH or a second ePDCCH or a PHICH.
  • the base station 10 may send the second downlink control channel in the downlink time unit.
  • the second downlink control channel may be used to indicate the configuration of the next uplink time unit of the downlink time unit.
  • the analog beam used for PDSCH transmission is the same as the analog beam of the second downlink control channel. At this point, you can determine that the configuration is case 2. Since the analog beams of the two (PDSCH and the second downlink control channel) are the same, there may be no first GP between the two.
  • the configuration can be determined to be the case 2. Since the analog beams of the two (PDSCH and the first RS) are the same, there may be no first GP between the two.
  • the base station 10 may include the second downlink control channel and the first RS in the time unit, and the second downlink control channel multiplexes the same resource with the first RS.
  • case 2 is equivalent to the resource 0 in FIG. 4 carrying the first downlink control channel, the resource 1 and the resource 2 carrying the PDSCH, and the resource 3 carrying the first RS and/or the second downlink control channel.
  • case 2 can be as shown in FIG. 5(b).
  • the second downlink control channel may occupy part of the bandwidth of the resource 3, that is, part of the bandwidth of the resource 3 carries the second downlink control channel, and the remaining part of the bandwidth of the resource 3 may be used to carry the PDSCH. In this way, the utilization of resources can be further improved.
  • the DCI in S302 can be further used to indicate the symbols occupied by the first GP.
  • the DCI may also A method for transmitting the first RS.
  • the first RS may have N 2 different transmission methods.
  • N 2 different transmission methods can be written to the N 1 +1 kind of N 1 + N 2 kinds of transmission methods.
  • the switching time of the analog beam is not required, so that the resource 2 can carry the PDSCH, thereby being able to utilize the original
  • the resources in which the guard interval (that is, the first GP) is located are downlinked, so that resources can be fully utilized and downlink throughput can be improved.
  • the DCI can indicate the sending method of the first RS of different beam scanning, thereby supporting the receiving of the analog beam switching between the time units, that is, the dynamic configuration of the time unit level can be supported, and the flexibility of the downlink information transmission is increased.
  • Case 3 The information carried on the symbols other than the first downlink control channel and the symbols occupied by the PDSCH in the time unit includes the second GP and the PUCCH and/or the second RS.
  • the information carried on the other symbols includes the second GP and the PUCCH, or the information carried on the other symbols includes the second GP and the second RS, or the information carried on the other symbols includes the second GP, the PUCCH, and The second RS, wherein the PUCCH and the second RS multiplex the same resource.
  • the uplink transmission in the time unit may include an uplink control channel (ie, PUCCH) or an uplink pilot (ie, a second RS).
  • PUCCH uplink control channel
  • a second RS uplink pilot
  • the base station 10 determines that the time unit includes uplink and downlink transmissions, then it may be determined that the configuration is the case 3.
  • the switching time is required between the uplink and the downlink, it is necessary to configure the second GP between the PDSCH and the PUCCH and/or the second RS. That is, the second GP needs to be configured between the PDSCH and the PUCCH, or the second GP needs to be configured between the PDSCH and the second RS, or the second GP needs to be configured between the PDSCH and the PUCCH and the second RS.
  • case 3 corresponds to the resource 0 in FIG. 4 carrying the first downlink control channel, the resource 1 carrying the PDSCH, the resource 2 carrying the second GP, and the resource 3 carrying the PUCCH and/or the second RS.
  • case 3 can be as shown in (c) of FIG.
  • case 3 the resource 2 and resource 3 time domains can also be translated before the resource 1, that is, the resource 2 and the resource 3 are located between the resource 0 and the resource 1 in the time domain.
  • the first downlink control channel is the first PDCCH
  • case 3 may be as shown in (d) of FIG. 5.
  • the DCI may be used to indicate the duration of the second GP, GP assumed that the duration of the second expressed as t 2, then for the case 3, t 2> 0.
  • the DCI may also be used to indicate a sending method of the second RS.
  • the DCI may also be used to indicate a method of transmitting the PUCCH.
  • the second RS and/or PUCCH in case 3 may have N 3 different transmission methods.
  • N 3 different transmission methods may be a first N 1 + N 2 +1 species through N 1 + N 2 + N 3 kinds of transmission method in mind.
  • the time unit is a downlink time unit, and the information carried on the symbols other than the first downlink control channel and the symbol occupied by the PDSCH in the downlink time unit includes the first GP.
  • the base station 10 determines that the downlink time unit does not need to perform beam scanning, and the next time unit of the downlink time unit is also a downlink time unit, the simulation used by the downlink time unit and the next downlink time unit is used.
  • the beams are not the same, then you can determine the configuration as the case 4.
  • the case 4 is equivalent to the resource 3 in FIG. 4 being merged into the resource 1.
  • the resource 1 and the resource 3 carry the PDSCH, and the resource 2 carries the first GP.
  • the situation may also be understood as: resource 3 does not exist, or The source 2 time domain is translated to the end of the time unit.
  • case 4 can be as shown in (e) of FIG.
  • the resource 2 in FIG. 6 carries the first GP because different analog beams of two adjacent downlink time units require switching time.
  • the DCI described in S302 can be used to indicate the duration of the first GP, assuming that the duration of the first GP is represented as t 1 , then for this case 4, t 1 >0.
  • Case 5 The PDSCH occupies all symbols of the time unit. That is to say, in the time unit, except for the symbols occupied by the first downlink control channel and the PDSCH, there are no other symbols.
  • the information carried on the symbols other than the first downlink control channel and the symbols occupied by the PDSCH in the time unit is empty.
  • the time unit does not carry other information except the first downlink control channel and the PDSCH.
  • case 5 corresponds to the resource 0 in FIG. 4 carrying the first downlink control channel, and the resources 1, the resource 2 and the resource 3 are all used to carry the PDSCH.
  • case 5 can be as shown in (f) of FIG.
  • the time unit is a downlink time unit, and the time unit does not need to perform beam scanning, and there is no need to leave a GP between time units, then it may be determined that the configuration is the case 5.
  • the resources 2 and the resources 3 can be used to carry the PDSCH, that is, the resources of the original protection interval are fully utilized for downlink transmission, and the resources of the first RS scanned by the original beam are fully utilized for downlink transmission, so that the resources can be fully utilized and improved. Downstream throughput.
  • the time unit does not need to perform uplink transmission on the resource 3, that is, the resource 3 does not transmit the uplink control information, it may be determined that the configuration is the case 5.
  • the first RS for beam scanning may be transmitted periodically, which may be X time units. In this way, some time units need to send the first RS, and some time units do not need to send the first RS.
  • the resource 2 and the resource 3 can be used to carry the PDSCH, that is, the resource in which the original protection interval is located is used for downlink transmission, and the resource in which the original uplink transmission (uplink control information) is located is used for downlink transmission, so that the resource can be fully utilized. Improve downstream throughput.
  • a Resource Flag may be added to the DCI to indicate various situations as described above.
  • the resource identifiers in Table 2 are 0 to 3 corresponding to the above case 1, the resource identifiers 4 to 5 correspond to the above case 2, the resource identifiers 8 to 10 correspond to the above case 3, and the resource identifiers 6 correspond to In the case 4 described above, the resource identifier 7 corresponds to the case 5 described above.
  • the corresponding configuration may be indicated by the ResourceFlag in the DCI.
  • the base station 10 may send according to the DCI, and accordingly, the UE 20 may receive according to the configuration.
  • Dynamic configuration can be implemented to increase the flexibility of downlink transmission.
  • the first GP carried by the resource 2 may have a fixed form or have a plurality of different forms.
  • the form of the first GP may be related to the length of the time domain, or may be related to other content. It can be understood that if there are many different forms of the first GP, then the number of ResourceFlags needs to be increased accordingly.
  • the DCI may also be used. Indicates the length of the first GP.
  • the DCI may also be used to indicate the length of the first GP. If the length of the first GP indicated by the DCI is 0, it indicates that the first GP is not carried in the time unit.
  • the embodiment of the present invention does not limit the time domain length of the first GP carried by the resource 2.
  • the first GP may be of a fixed time domain length, both of which are 2 OFDM symbols.
  • the first GP may have a dynamically variable time domain length, and the time domain occupied by the first GP may be 1 OFDM symbol, or 1.5 OFDM symbols.
  • the number of OFDM symbols occupied by the first GP may also be indicated by ResourceFlag in the DCI.
  • the resource identifiers in Table 4 are 0 to 2 corresponding to Case 3 described above, and the resource identifier 3 is corresponding to Case 5 described above.
  • the first GP carried by the resource 2 may have a fixed form or have a plurality of different forms.
  • the form of the first GP may be related to the length of the time domain, or may be related to other content. It can be understood that if there are many different forms of the first GP, then the number of ResourceFlags needs to be increased accordingly.
  • the original protection interval and the resource in which the uplink transmission is located can be fully utilized for downlink transmission, and the different uplink transmission modes are also supported. Since the indication information is carried in the downlink DCI, time unit level dynamic configuration can be supported, and the flexibility of downlink information and PUCCH/second RS transmission is increased.
  • the information carried on the symbols other than the first downlink control channel and the symbol occupied by the PDSCH in the time unit includes any one of the following: (1), the first RS and/or the a second downlink control channel, a second GP, and a PUCCH and/or a second RS; (2), a first GP, a first RS and/or a second downlink control channel, a second GP, and a PUCCH and/or a second RS.
  • the second downlink control information may include a second PDCCH or a second ePDCCH or a PHICH.
  • the resource of the time unit can be divided into six parts according to time division, as shown in FIG. 7, which are resource 0 and resource 1, respectively.
  • Resources 2 Resources 3, Resources 4, and Resources 5.
  • (1) in case 6 is equivalent to resource 0 carrying the first downlink control channel, resource 1 and resource 2 carrying the PDSCH, resource 3 carrying the first RS and/or the second downlink control channel, and resource 4 carrying the second GP.
  • the resource 5 carries the PUCCH and/or the second RS.
  • the (1) in case 6 can be as shown in (g) of FIG. 5 .
  • the first RS may perform resource multiplexing with the first downlink control channel.
  • the first downlink control channel is the first PDCCH
  • the situation may be as shown in (h) of FIG. 5.
  • the resource that originally sent the first RS can be used to send the PDSCH, which can fully utilize resources and improve downlink throughput.
  • the (1) in case 6 can be as shown in (i) of FIG. 5.
  • the DCI described in S302 may further be used to indicate the symbol occupied by the first GP and the symbol occupied by the second GP. That is, the DCI described in S302 can be further used to indicate the duration of the first GP and the duration of the second GP, assuming that the duration of the first GP is represented as t 1 and the duration of the second GP is represented For t 2 , then t 1 >0, t 2 >0.
  • the DCI may also indicate the sending method of the first RS. If the information carried on the other symbols includes the second RS, the DCI may also indicate the sending method of the second RS. If the information carried on the other symbols includes the PUCCH, the DCI may also indicate the method of transmitting the PUCCH.
  • the first RS may transmit N 2 different methods exist, the PUCCH and / or the second RS may transmit N 3 different methods exist, then, in the DCI, M may be added
  • the indication information of the bit is used to indicate the configuration, wherein
  • the first RS may have N 1 different transmission methods, and the PUCCH and/or the second RS may have N 3 different transmission methods. Then, in the DCI, M may be added.
  • the indication information of the bit is used to indicate the configuration, wherein
  • the second GP can also have a fixed form or have a variety of different forms. Accordingly, if the second GP exists in many different forms, it is necessary to increase the number of ResourceFlags in the DCI accordingly.
  • the DCI may also be used. Indicates the length of the second GP.
  • the DCI may also be used to indicate the length of the second GP. If the DCI refers The length of the second GP shown is 0, indicating that the second GP is not carried in the time unit.
  • resource 1, resource 2, and resource 3 in case 6 can be analogized to resource 1, resource 2, and resource 3 corresponding to the downlink time unit in case 1, case 2, case 4, and case 5 above;
  • the resource 4 and the resource 5 can be analogous to the resource 2 and the resource 3 corresponding to the uplink and downlink in the case 3 and the case 5 described above.
  • case 6 can be considered as a combination of the frame structure of the above downlink time unit and the uplink and downlink simultaneously transmitted.
  • (1) in Case 6 corresponds to a combination of Case 2 and Case 3
  • (2) in Case 6 corresponds to a combination of Case 1 and Case 3.
  • the above cases 1 to 6 can be considered as the resources 1 to 5 shown in FIG. 7 correspondingly carrying different information.
  • the resource 1 carries the PDSCH
  • the resource 2 carries the first GP or the PDSCH
  • the resource 3 carries the first RS and/or the second downlink control channel or the PDSCH or does not exist
  • the resource 4 carries the second GP or the PDSCH
  • the resource 5 carries the PUCCH.
  • / or the second RS or PDSCH can be considered as the resources 1 to 5 shown in FIG. 7 correspondingly carrying different information.
  • the resource 1 carries the PDSCH
  • the resource 2 carries the first GP or the PDSCH
  • the resource 3 carries the first RS and/or the second downlink control channel or the PDSCH or does not exist
  • the resource 4 carries the second GP or the PDSCH
  • the resource 5 carries the PUCCH.
  • / or the second RS or PDSCH carries the PUCCH.
  • the first time unit structure may further include an additional resource for carrying the third GP as the current time unit and the next time.
  • the guard interval between time units Not listed here one by one.
  • the UE 20 may receive the first downlink part sent by the base station 10 according to the first time unit structure.
  • the UE 20 may receive the first downlink portion and the second downlink portion transmitted by the base station 10 according to the first time unit structure.
  • the method further includes: the UE 20 may send the uplink portion to the base station 10 according to the first time unit structure.
  • the UE 20 may receive according to the first time unit structure, or the UE 20 may receive and transmit according to the first time unit structure.
  • the base station 10 sends the DCI to the UE 20 through the DCI. Further, the base station 10 can transmit according to the DCI, and the UE 20 can receive according to the DCI. It can be understood that the pilot position and/or the number of the pilot channel in the configuration is adjusted according to the symbols occupied by the shared channel in the configuration, and the resource element (Resource Element, RE) mapping rule of the data is adjusted. Specifically, the adjustment manner may be preset, or the adjustment manner may be high layer signaling or DCI configuration.
  • FIG. 8 is a schematic diagram of a structural block diagram of a base station according to an embodiment of the present invention.
  • the base station 80 shown in FIG. 8 includes a determining unit 801, a transmitting unit 802, and a receiving unit 803.
  • the determining unit 801 is configured to determine a first time unit structure, where the first time unit structure includes any one of the following:
  • first downlink portion a first downlink portion, a first GP portion, and a second downlink portion
  • first downlink portion a first downlink portion, a first GP, a second downlink portion, and a third GP
  • the first downlink portion, the second GP portion, and the uplink portion are identical to each other.
  • a first downlink portion a second GP, an uplink portion, and a third GP
  • a first downlink portion a second downlink portion, a second GP, and an uplink portion
  • first downlink portion a first GP
  • second downlink portion a second GP
  • uplink portion a first downlink portion, a first GP, a second downlink portion, a second GP, and an uplink portion
  • first downlink portion a first GP, a second downlink portion, a second GP, an uplink portion, and a third GP;
  • the sending unit 802 is configured to send the first downlink part according to the first time unit structure determined by the determining unit 801;
  • the sending unit 802 is specifically configured to send the first downlink part according to the first time unit structure determined by the determining unit 801.
  • the receiving unit 803 is configured to receive the uplink part according to the first time unit structure determined by the determining unit 801;
  • the first downlink part is a first downlink control channel and/or a physical layer shared channel PDSCH and/or a third reference signal RS;
  • the second downlink part is a first reference signal RS and/or a second a downlink control channel;
  • the uplink part is a physical uplink control channel PUCCH and/or a second RS and/or a physical uplink shared channel PUSCH;
  • the first downlink control channel is a first physical downlink control channel PDCCH or a first enhanced type a physical downlink control channel ePDCCH;
  • the second downlink control channel includes a second PDCCH or a second ePDCCH or a physical hybrid automatic request retransmission indication channel PHICH.
  • the first time unit is one of the following: a minislot, a minislot set, a time slot, a time slot set, a subframe, a subframe set, and a frame.
  • the first downlink part, the second downlink part, and the uplink part may belong to the same link or different links, and the link is an access link or a first backhaul link or a second backhaul link .
  • the first backhaul link and the second backhaul link are backhaul links having at least one different transport node.
  • both the first downlink part and the second downlink part are access links.
  • the optional first downlink part is a first backhaul link
  • the second downlink part is a second backhaul link or an access link.
  • the sending unit 802 is further configured to: send indication information, where the indication information is used to indicate that the first time unit structure is to be used; the indication information is carried in a system information block SIB, or a main message block MIB, Or radio resource control RRC signaling, or downlink control information DCI, or media access control control element MAC CE.
  • SIB system information block
  • MIB main message block
  • RRC radio resource control
  • the sending unit 802 is further configured to: send downlink control information DCI, where the DCI is carried on the first downlink control channel, where the DCI is used to indicate a part that is carried by using the first time unit structure or Symbols occupied by all channels and/or signals and/or GPs.
  • the base station transmits a time unit, or the base station transmits and receives it, it is called a time unit.
  • the time unit includes at least a first downlink part, that is, includes a first downlink control channel and a PDSCH.
  • the information carried in the time unit except the first downlink control channel and/or the symbol occupied by the PDSCH and/or the third RS includes any one of the following:
  • a first RS a second GP, and a PUCCH and/or a second RS
  • a first GP a first RS, a second GP, and a PUCCH and/or a second RS;
  • the second downlink control channel includes a second PDCCH or a second ePDCCH or a PHICH.
  • the first downlink control channel and the PDSCH occupy all symbols of the time unit.
  • the DCI is further used to indicate a sending method of the first RS; and if the information carried on the other symbol includes the second RS And the DCI is further used to indicate a sending method of the second RS. If the information about the bearer on the other symbol includes the PUCCH, the DCI is further used to indicate a sending method of the PUCCH.
  • the sending method includes at least one of the following: a transmit or receive beam used, a time dimension length, and an occupied subcarrier.
  • the first RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as CSI-RS and/or synchronization signal.
  • the third RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as CSI-RS and/or synchronization signal.
  • the second RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS or a preamble sequence.
  • the determining unit 801 in FIG. 8 may be implemented by a processor, the transmitting unit 802 may be implemented by a transmitter, and the receiving unit 803 may be implemented by a receiver.
  • the base station 90 in FIG. 9 includes a processor 901, a receiver 902, a transmitter 903, and a memory 904.
  • the memory 904 is configured to store code and the like executed by the processor 901.
  • bus system 905 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • FIG. 10 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 100 of FIG. 10 includes an input interface 1010, an output interface 1020, at least one processor 1030, and a memory 1040.
  • the input interface 1010, the output interface 1020, the processor 1030, and the memory 1040 are connected by a bus 1050.
  • the processor 1030 is configured to execute code in the memory 1040, and when the code is executed, the processor 1030 implements the method performed by the base station in Figures 3-7.
  • the input interface 1010 and the output interface 1020 in FIG. 10 can also be implemented by one input/output interface. This embodiment of the present invention does not limit this.
  • the base station 80 shown in FIG. 8 , the base station 90 shown in FIG. 9 , or the system chip 100 shown in FIG. 10 can be used to implement various processes implemented by the base station in the foregoing method embodiments of FIG. 3 to FIG. 7 . I won't go into details here.
  • FIG. 11 is a schematic flowchart of a method for uplink transmission according to an embodiment of the present invention. The method shown in Figure 11 includes:
  • the base station 10 determines a first time unit structure.
  • the first time unit structure includes any one of the following:
  • the first uplink part is a PUSCH and/or a third reference signal RS
  • the second uplink part is a PUCCH and/or a first RS
  • the downlink part is a second downlink control channel and/or a second RS, where the The second downlink control channel includes a second PDCCH or a second ePDCCH or PHICH.
  • the first time unit is one of the following: a minislot, a minislot set, a time slot, a time slot set, a subframe, a subframe set, and a frame.
  • the downlink part, the first uplink part and the second uplink part may belong to the same link or different links, and the link is an access link or a first backhaul link or a second backhaul link.
  • the first backhaul link and the second backhaul link are backhaul links having at least one different transport node.
  • both the first uplink portion and the second uplink portion are access links.
  • the optional first uplink part is a first backhaul link
  • the second uplink part is a second backhaul link or an access link.
  • the first time unit structure may be specified by a protocol.
  • the base station 10 can determine the first time unit structure according to the communication protocol used.
  • the base station 10 can select from a plurality of time unit structures, and determine one of the plurality of time unit structures as the first time unit structure.
  • the plurality of time unit structures herein may be the above (0) to (9), or the plurality of time unit structures herein may be the above-mentioned partial species, for example, the plurality of time unit structures may be the above (0) to ( 4) Kind, and so on.
  • the base station 10 may send indication information indicating that the first time unit structure is to be used.
  • the first RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS and/or a preamble sequence.
  • the third RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS and/or a preamble sequence.
  • the second RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as CSI-RS and/or synchronization signal.
  • the base station 10 may send indication information to the UE 20 for notifying the UE 20 that the time unit structure used is the first time unit structure.
  • the indication information is used to reach a consensus with the UE 20 to use the first time unit structure.
  • the indication information may be carried in a System Information Block (SIB), or the indication information may be transmitted through RRC signaling, or the indication information may be transmitted by using a synchronization signal, or The indication information can be indicated by the MIB, and the like.
  • SIB System Information Block
  • the first time unit structure may be configured in the high layer signaling, and the downlink control information (Downlink Control Information (DCI) includes Information that can be configured.
  • DCI Downlink Control Information
  • the base station 10 performs reception according to the first time unit structure, or performs reception and transmission.
  • the base station 10 receives channels and/or signals according to a first time unit structure, or the base station 10 receives and transmits channels and/or signals according to a first time unit structure.
  • the base station 10 receives the first uplink portion according to the first time unit structure. If the first time unit structure includes the second uplink portion, the receiving the first uplink portion includes: receiving the first uplink portion and the second uplink portion. If the first time unit structure includes the downlink part, the method further includes: the base station transmitting the downlink part according to a first time unit structure.
  • the base station 10 receives the first uplink portion in S302. If the first time unit structure is the above (2)-(4), the base station 10 receives the first uplink portion and the second uplink portion in S302. If the first time unit structure is the above (5)-(6), the base station 10 receives the first uplink portion in S302 and transmits the downlink portion. If the first time unit structure is the above (7), the base station 10 receives the first uplink portion and the second uplink portion in S302, and transmits the downlink portion.
  • the method may include: the base station 10 sends downlink control information DCI for uplink scheduling, where the DCI is carried on a first downlink control channel, where the DCI is used to indicate that the first time unit structure is used. a part or all of the channel and/or a symbol occupied by the signal and/or the GP; wherein the first downlink control channel is the first PDCCH or the first ePDCCH.
  • the channel here may include a second downlink control channel, a PUCCH, and a PUSCH.
  • the signal here may include a first RS, a second RS.
  • the GP here may include a first GP, a second GP, and a third GP.
  • the DCI is further used to indicate a sending method of the PUCCH. If the first time unit structure includes the first RS, the DCI is further used to indicate a sending method of the first RS.
  • the DCI is further used to indicate a sending method of the second downlink control channel. If the first time unit structure includes a second RS, the DCI is further used to indicate a sending method of the second RS.
  • the sending method includes at least one of the following: a used transmit or receive beam, a used resource mapping manner, and occupied subcarriers.
  • the first time unit structure and the information indicated by the DCI will be described in detail below.
  • the channels and/or signals and/or GPs carried by the first time unit structure are collectively referred to as information carried by the first time unit structure.
  • the symbol occupied by the information carried by the first time unit structure may include at least a symbol occupied by the PUSCH.
  • the DCI may indicate the number of symbols occupied by the PUSCH.
  • the DCI may indicate the number of symbols occupied by the PUSCH and the number of symbols occupied by the first GP.
  • the time unit received by the base station 10 in S112, or received and transmitted may be called Target time unit.
  • the symbols occupied by the PUSCH may include the symbols occupied by the PUSCH and the Demodulation Reference Signal (DMRS), and the following embodiments of the present invention are all occupied by the PUSCH.
  • symbol means “symbol occupied by PUSCH and its DMRS”.
  • the symbols occupied by the PUSCH may include the location and number of symbols occupied by the PUSCH.
  • the symbol may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the information carried on the symbols other than the symbols occupied by the PUSCH in the time unit includes channels and/or signals and/or GPs. It can be understood that after S111, the base station 10 can indicate the information carried on the other symbols by using the indication information.
  • the information carried on the symbols other than the symbols occupied by the PUSCH in the time unit includes any one of the following: a first RS of the first GP beam scan; a first GP; a first RS and a first a GP; downlink control information, a second GP and a first RS; downlink control information, a second GP, a first RS, and a first GP; downlink control information and a second GP.
  • the second downlink control channel includes a second PDCCH or a second ePDCCH or a PHICH.
  • the PHICH is used to indicate feedback information of an uplink time unit before the time unit.
  • the feedback information may be an Acknowledgement (ACK) or a Negative ACKnowledgement (NACK).
  • the PUCCH and the first RS multiplex the same resource.
  • the information carried by the other symbols includes the second downlink control channel and the second RS, the second downlink control channel and the second RS multiplex the same resources.
  • the “PUCCH and/or the first RS” includes the following three scenarios: (1) PUCCH, (2) the first RS, and (3) the multiplexed PUCCH and the first RS.
  • the “second downlink control channel and/or the second RS” includes the following three situations: (1) a second downlink control channel, (2) a second RS, and (3) a second downlink that is multiplexed. Control channel and second RS.
  • the information carried on the symbols other than the symbols occupied by the PUSCH in the time unit may be a PUCCH and/or a first RS, or a first GP, or a PUCCH and/or a first RS. And the first GP.
  • the information carried on the symbols other than the symbols occupied by the PUSCH in the time unit may be the first GP, or the second downlink control channel and/or the second RS and the second GP.
  • the information carried on the symbols other than the symbols occupied by the PUSCH in the time unit may be the second downlink control channel and/or the second RS, the second GP, and the PUCCH and/or the first RS, or Two downlink control channels and/or a second RS, a second GP, a PUCCH, and/or a first RS and a first GP.
  • the time unit is an uplink time unit, and the information carried on the symbols other than the symbols occupied by the PUSCH in the uplink time unit includes a PUCCH and/or a first RS and a first GP.
  • the configuration may be determined to be the case 1. That is, the information carried on the other symbols includes the first RS and the first GP. Wherein, since the switching time is required between different analog beams, the first GP needs to be configured between the first RS and the PUSCH.
  • the base station 10 determines that the uplink time unit needs to transmit a PUCCH, and the analog beam used for PDSCH transmission in the downlink time unit is different from the analog beam of the PUCCH. At this point, it can be determined that the configuration is the case 1. That is, the information carried on other symbols includes the PUCCH and the first GP. The first GP needs to be configured between the PDSCH and the PUCCH because switching time is required between different analog beams.
  • the base station 10 may simultaneously include a PUCCH and a first RS in the time unit, and the PUCCH multiplexes the same resource with the first RS.
  • the resource of the downlink time unit can be divided into three parts according to time division, as shown in FIG. 12, which are resource 1, resource 2, and resource 3.
  • case 1 corresponds to the resource 1 carrying the PUCCH and/or the first RS in FIG. 12, the resource 2 carrying the first GP, and the resource 3 carrying the PUSCH.
  • case 1 can be as shown in (a) of FIG.
  • DCI may further be used to indicate the duration of the first GP, GP assumed that the duration of the first is represented by t 1, then for the case 1, t 1> 0.
  • the uplink DCI may also be used to indicate a PUCCH and/or a first RS transmission method.
  • the first RS may have N 1 different transmission methods.
  • N 1 different transmission methods may be referred to as a first type to a first one kind of N transmission method.
  • the sending method includes at least one of the following: a used transmit beam or a receive beam, a time dimension length, and an occupied subcarrier. That is to say, the sending method is related to the used transmitting beam or receiving beam, the time dimension length, the occupied subcarriers, etc., and the different transmitting methods refer to different transmitting beams or receiving beams used, or different transmitting methods. It means that the length of the time dimension is different, or different transmission methods mean that the transmit beam or the receive beam and the time dimension are different, or different transmission methods refer to the transmit beam or receive beam used, and the time dimension length. Different from the occupied subcarriers, and so on.
  • the time unit is an uplink time unit, and the information carried on the symbols other than the symbols occupied by the PUSCH in the uplink time unit includes a PUCCH and/or a first RS.
  • the configuration can be determined to be the case 2.
  • the configuration may be determined to be the case 2.
  • the base station 10 may simultaneously include a PUCCH and a first RS in the time unit, and the PUCCH multiplexes the same resource with the first RS.
  • case 2 is equivalent to resource 1 carrying PUCCH and/or first RS in FIG. 12, and resource 2 and resource 3 carrying PUSCH. Case 2 can be as shown in (b) of FIG.
  • the DCI can be further used to indicate the symbols occupied by the first GP.
  • the uplink DCI may also be used to indicate a PUCCH and/or a first RS transmission method.
  • the first RS as an example, for example, the first RS in case 2 may have N 2 different transmission methods.
  • N 2 different transmission methods can be written to the N 1 +1 kind of N 1 + N 2 kinds of transmission methods.
  • the analog beam of the base station receiving the PUSCH is the same as the analog beam of the PUCCH and/or the first RS, the switching time of the analog beam is not required, so that the resource 2 can carry the PUSCH, thereby being able to utilize the original guard interval.
  • the resources are uplinked, which enables full utilization of resources and improves uplink throughput.
  • the uplink DCI can indicate different PUCCH and/or the first RS transmission method, so as to support the time unit to receive the analog beam switching, that is, the dynamic configuration of the time unit level can be supported, and the flexibility of the uplink information transmission is increased.
  • the information carried on the symbols other than the symbols occupied by the PUSCH in the time unit includes the second downlink control information and/or the second RS and the second GP, where the second downlink control information includes the second PDCCH. Or a second ePDCCH or PHICH.
  • the information carried on the other symbols includes the second downlink control information and the second GP; or the information carried on the other symbols includes the second RS and the second GP; or the information carried on the other symbols includes the second Downlink control information and a second RS and a second GP, wherein the second downlink control information and the second RS multiplex the same resource.
  • the downlink transmission in the time unit may include a second downlink control channel (ie, a second PDCCH or a second ePDCCH or PHICH) and/or a downlink pilot (ie, Two RS).
  • a second downlink control channel ie, a second PDCCH or a second ePDCCH or PHICH
  • a downlink pilot ie, Two RS
  • the base station 10 determines that the time unit includes uplink and downlink transmissions, then it may be determined that the configuration is the case 3.
  • the second GP needs to be configured between the second downlink control information and/or the second RS and the PUSCH.
  • case 3 corresponds to the resource 1 in FIG. 12 carrying the second downlink control information and/or the second RS, the resource 2 carrying the second GP, and the resource 3 carrying the PUSCH.
  • the second downlink control channel is the second PDCCH
  • case 3 can be as shown in (c) of FIG.
  • DCI may further be used to indicate the duration of the second GP, GP assumed that the duration of the second expressed as t 2, then for the case 3, t 2> 0.
  • the uplink DCI may also be used to indicate the second downlink control information and/or the second RS transmission method.
  • the second RS as an example, for example, the second RS in case 3 may have N 3 different transmission methods.
  • N 3 different transmission methods may be a first N 1 + N 2 +1 species through N 1 + N 2 + N 3 kinds of transmission method in mind.
  • the time unit is an uplink time unit, and the information carried on the symbols other than the symbols occupied by the PUSCH in the uplink time unit includes the first GP.
  • the base station 10 determines that the uplink time unit does not need to perform beam scanning, and the previous time unit of the uplink time unit is also an uplink time unit, the analog beam used by the uplink time unit and the simulation used by the previous uplink time unit The beams are not the same, then you can determine the configuration as the case 4.
  • case 4 is equivalent to the resource 1 in FIG. 12 being merged into the resource 3.
  • the resource 1 and the resource 3 carry the PUSCH, and the resource 2 carries the first GP.
  • the situation can also be understood as: resource 1 does not exist, or the resource 2 time domain is translated to the head of the time unit.
  • Case 4 can be as shown in (d) of FIG.
  • the resource 2 in FIG. 14 carries the first GP because different analog beams of two adjacent uplink time units require switching time.
  • the DCI can be used to indicate the duration of the first GP, assuming that the duration of the first GP is represented as t 1 , then for this case 4, t 1 >
  • the information carried on the symbols other than the symbols occupied by the PUSCH in the time unit is empty.
  • the time unit does not carry other information except the PUSCH.
  • the time unit is an uplink time unit, and the time unit does not need to perform beam scanning, and there is no need to leave a GP between time units, then it may be determined that the configuration is the case 5.
  • the resource 1 and the resource 2 can carry the PUSCH, that is, the uplink of the original PUCCH and/or the resource of the first RS can be fully utilized, and the resource can be fully utilized. Increase upstream throughput.
  • the time unit does not need to perform downlink transmission on the resource 1, that is, the resource 1 does not transmit the downlink control information, it may be determined that the configuration is the case 5.
  • the first RS for beam scanning may be transmitted periodically, which may be X time units. It can be understood that some time units need to send the first RS, and some time units do not need to send the first RS.
  • the resource 1 and the resource 2 can carry the PUSCH, that is, the uplink of the original downlink transmission (the second downlink control information and/or the second RS) is utilized for the uplink transmission. It can realize the full utilization of resources and improve the uplink throughput.
  • a resource flag may be added to the uplink DCI to indicate various situations as described above.
  • the resource identifiers in Table 5 correspond to the above case 1
  • the resource identifiers 4 to 5 correspond to the above case 2
  • the resource identifiers 8 to 10 correspond to the above case 3
  • the resource identifiers 6 correspond to In the case 4 described above
  • the resource identifier 7 corresponds to the case 5 described above.
  • the corresponding configuration may be indicated by the ResourceFlag in the uplink DCI.
  • the base station 10 may send according to the DCI, and accordingly, the UE 20 may receive according to the DCI.
  • Dynamic configuration can be implemented to increase the flexibility of uplink transmission.
  • an M-bit (bit) ResourceFlag can be added to the uplink DCI to indicate the corresponding configuration, where
  • the first GP carried by the resource 2 may have a fixed form or have a plurality of different forms.
  • the form of the first GP may be related to the length of the time domain, or may be related to other content. It can be understood that if there are many different forms of the first GP, then the number of ResourceFlags needs to be increased accordingly.
  • different forms of the first GP may be indicated by different ResourceFlags in the uplink DCI.
  • the uplink DCI may be used to indicate the length of the first GP.
  • the uplink DCI may also be used to indicate the length of the first GP. If the length of the first GP indicated by the uplink DCI is 0, it indicates that the first GP is not carried in the time unit.
  • the embodiment of the present invention does not limit the time domain length of the first GP carried by the resource 2.
  • the first GP may be of a fixed time domain length, both of which are 2 OFDM symbols.
  • the first GP may have a dynamically variable time domain length, and the time domain occupied by the first GP may be 1 OFDM symbol, or 1.5 OFDM symbols.
  • the number of OFDM symbols occupied by the first GP may also be indicated by ResourceFlag in the uplink DCI.
  • the resource identifiers in Table 7 are 0 to 2 corresponding to the above case 3, and the resource identifier 3 is corresponding to the case 5 described above.
  • the first GP carried by the resource 2 may have a fixed form or have a plurality of different forms.
  • the form of the first GP may be related to the length of the time domain, or may be related to other content. It can be understood that if there are many different forms of the first GP, then the number of ResourceFlags needs to be increased accordingly.
  • the original protection interval and the resource where the downlink transmission is located can be fully utilized for uplink transmission, and the different downlink transmission modes are also supported. Since the indication information is carried in the uplink DCI, time unit level dynamic configuration can be supported, and the flexibility of uplink information (PUSCH) and PDCCH/ePDCCH/second RS transmission is increased.
  • the information carried on the symbols other than the symbols occupied by the PUSCH in the time unit includes any one of the following: (1), the second downlink control information and/or the second RS, the second GP and PUCCH and/or first RS; (2), second downlink control information and/or second RS, second GP, PUCCH and/or first RS and first GP.
  • the second downlink control information includes a second PDCCH or a second ePDCCH or a PHICH.
  • the resource of the time unit can be divided into five parts according to time division, as shown in FIG. 15, which are resource 1, resource 2, resource 3, resource 4, and resource 5.
  • (1) in case 6 is equivalent to the resource 1 carrying the second downlink control information and/or the second RS, the resource 2 carrying the second GP, the resource 3 carrying the PUCCH and/or the first RS, the resource 4 and the resource 5 carrying PUSCH.
  • the second downlink control channel is the second PDCCH
  • (1) in case 6 can be as shown in (f) of FIG.
  • the DCI may be further used to indicate the duration of the second GP, assuming that the duration of the second GP is represented as t 2 , t 2 >0.
  • the second downlink control channel is the second PDCCH
  • (1) in case 6 can be as shown in (g) of FIG.
  • DCI may further be used to indicate the duration of the first duration and the second GP GP, assuming the duration of the first GP expressed as t 1, the duration of the second representation GP For t 2 , then t 1 >0, t 2 >0.
  • the DCI may also indicate the sending method of the first RS. If the information carried on the other symbols includes the second RS, the DCI may also indicate the sending method of the second RS. If the information carried on the other symbols includes the PUCCH, the DCI may also indicate the method of transmitting the PUCCH. If the information carried on the other symbols includes the second downlink control channel, the DCI may also indicate a method for transmitting the second downlink control channel.
  • the PUCCH and/or the first RS may have N 2 different transmission methods, and the second downlink control information and/or the second RS may have N 3 different transmission methods, then In the uplink DCI, an indication of M bits may be added to indicate the configuration, where
  • the PUCCH and/or the first RS may have N 1 different transmission methods, and the second downlink control information and/or the second RS may have N 3 different transmission methods, then In the uplink DCI, an indication of M bits may be added to indicate the configuration, where
  • the second GP can also have a fixed form or have a variety of different forms. Accordingly, if the second GP exists in many different forms, it is necessary to increase the number of ResourceFlags in the uplink DCI accordingly.
  • different forms of the second GP may be indicated by different ResourceFlags in the uplink DCI.
  • the uplink DCI may be used to indicate the length of the second GP.
  • the uplink DCI may also be used to indicate the length of the second GP. If the length of the second GP indicated by the uplink DCI is 0, it indicates that the second GP is not carried in the time unit.
  • resource 3, resource 4, and resource 5 in case 6 can be analogized to resource 1, resource 2, and resource 3 corresponding to the uplink time unit in case 1, case 2, case 4, and case 5 above;
  • the resource 1 and the resource 2 can be analogous to the resource 1 and the resource 2 corresponding to the uplink and downlink in the case 3 and the case 5 described above.
  • case 6 can be considered as a combination of the above-mentioned uplink time unit and the frame structure transmitted simultaneously by the uplink and the downlink.
  • (1) in Case 6 corresponds to a combination of Case 2 and Case 3
  • (2) in Case 6 corresponds to a combination of Case 1 and Case 3.
  • the above cases 1 to 6 can be considered as the resources 1 to 5 shown in FIG. 15 correspondingly carrying different information.
  • the resource 1 carries the second downlink control channel and/or the second RS, or the PUSCH
  • the resource 2 carries the second GP or the PUSCH
  • the resource 3 carries the PUCCH and/or the first RS, or the PUSCH or does not exist
  • the resource 4 carries The first GP or PUSCH
  • the resource 5 carries the PUSCH.
  • the first time unit structure may further include an additional resource for carrying the third GP as the current time unit and the next time.
  • the guard interval between time units Not listed here one by one.
  • the UE 20 may send the first uplink part to the base station 10 according to the first time unit structure.
  • the UE 20 may receive the first uplink portion and the second uplink portion to the base station 10 according to the first time unit structure.
  • the method further includes: the UE 20 may receive the downlink part sent by the base station 10 according to the first time unit structure.
  • the UE 20 may transmit according to the first time unit structure, or the UE 20 may transmit and receive according to the first time unit structure.
  • the base station 10 sends the configuration to the UE 20 through the uplink DCI. Further, the UE 20 can transmit according to the configuration, and the base station 10 can receive according to the configuration. It can be understood that the pilot position and/or the number of the pilot channel in the configuration is adjusted according to the symbols occupied by the shared channel in the configuration, and the resource element (Resource Element, RE) mapping rule of the data is adjusted. Specifically, the adjustment manner may be preset, or the adjustment manner may be high layer signaling or DCI configuration.
  • FIG. 16 is a block diagram showing the structure of a base station according to an embodiment of the present invention.
  • the base station 160 shown in FIG. 16 includes a determining unit 161, a receiving unit 162, and a transmitting unit 163.
  • the determining unit 161 is configured to determine a first time unit structure, where the first time unit structure includes any one of the following:
  • a second uplink portion a first GP, a first uplink portion, and a third GP
  • a downlink portion a downlink portion, a second GP, a second uplink portion, and a first uplink portion
  • a downlink portion a second GP, a second uplink portion, a first GP, and a first uplink portion
  • a downlink portion a second GP, a second uplink portion, a first GP, a first uplink portion, and a third GP;
  • the receiving unit 162 is configured to receive the first uplink part according to the first time unit structure determined by the determining unit 161;
  • the receiving unit 162 is specifically configured to receive the first uplink part and the location according to the first time unit structure determined by the determining unit 161. Said second upward part;
  • the sending unit 163 is configured to: send the downlink part according to the first time unit structure determined by the determining unit 161;
  • the first uplink part is a physical uplink shared channel PUSCH and/or a third reference signal RS
  • the second uplink part is a physical uplink control channel PUCCH and/or a first reference signal RS
  • the downlink part is a second downlink control channel.
  • the second downlink control channel includes a second physical downlink control channel PDCCH or a second enhanced physical downlink control channel ePDCCH or a physical hybrid automatic request retransmission indication channel PHICH.
  • the first time unit is one of the following: a minislot, a minislot set, a time slot, a time slot set, a subframe, a subframe set, and a frame.
  • the downlink part, the first uplink part, and the second uplink part may belong to the same link or different links,
  • the link is an access link or a first backhaul link or a second backhaul link.
  • the first backhaul link and the second backhaul link are backhaul links having at least one different transport node.
  • both the first uplink portion and the second uplink portion are access links.
  • the optional first uplink part is a first backhaul link
  • the second uplink part is a second backhaul link or an access link.
  • the sending unit 163 is further configured to: send indication information, where the indication information is used to indicate that the first time unit structure is to be used; the indication information is carried in a system information block SIB, or a main message block. MIB, or radio resource control RRC signaling, or downlink control information DCI, or media access control control element MAC CE.
  • SIB system information block
  • RRC radio resource control
  • the sending unit 163 is further configured to: send downlink control information DCI for uplink scheduling, where the DCI is carried on a first downlink control channel, where the DCI is used to indicate that the first time unit is used.
  • the part of the first downlink control channel is the first PDCCH or the first ePDCCH.
  • the first RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS and/or a preamble sequence.
  • the third RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS and/or a preamble sequence.
  • the second RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as CSI-RS and/or synchronization signal.
  • the base station receives a time unit, or the base station receives and transmits it, it is called a time unit.
  • the time unit includes at least a first uplink portion, that is, includes a PUSCH.
  • the information carried on the symbols other than the symbols occupied by the PUSCH and/or the third RS in the time unit includes any one of the following:
  • the second downlink control channel includes a second PDCCH or a second ePDCCH or a PHICH.
  • the PUSCH occupies all symbols of the time unit.
  • the DCI is further used to indicate a sending method of the PUCCH; if the information carried on the other symbol includes the first And the DCI is further used to indicate the sending method of the first RS; if the information about the bearer on the other symbol includes the second downlink control channel, the DCI is further used to indicate the And a method for transmitting the second downlink control channel; if the information carried on the other symbols includes the second RS, the DCI is further used to indicate a sending method of the second RS.
  • the time unit is one of the following: a minislot, a minislot set, a slot, a set of slots, a subframe, a set of subframes, and a frame.
  • the sending method includes at least one of the following: a transmit or receive beam used, a time dimension length, and an occupied subcarrier.
  • the first RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS and/or a preamble sequence.
  • the third RS may be a signal for uplink channel measurement and/or channel state information acquisition and/or beam management and/or uplink access, such as an SRS and/or a preamble sequence.
  • the second RS may be a signal for downlink channel measurement and/or channel state information acquisition and/or beam management and/or synchronization time acquisition, such as CSI-RS and/or synchronization signal.
  • the determining unit 161 in FIG. 16 may be implemented by a processor, the receiving unit 162 may be implemented by a receiver, the transmitting unit 163 may be implemented by a transmitter, and the receiving unit 1622 may be implemented by a receiver, as shown in FIG. 17, in FIG.
  • the base station 170 includes a processor 171, a receiver 172, a transmitter 173, and a memory 174.
  • the memory 174 is used to store code and the like executed by the processor 171.
  • bus system 175 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • Figure 18 is a schematic structural diagram of a system chip of an embodiment of the present invention.
  • the system chip 180 of FIG. 18 includes an input interface 1810, an output interface 1820, at least one processor 1830, and a memory 1840.
  • the input interface 1810, the output interface 1820, the processor 1830, and the memory 1840 are connected by a bus 1850.
  • the processor 1830 is configured to execute code in the memory 1840, and when the code is executed, the processor 1830 implements the method performed by the base station in Figures 11-15.
  • the base station 160 shown in FIG. 16 , the base station 170 shown in FIG. 17 or the system chip 180 shown in FIG. 18 can be used to implement the processes implemented by the base station in the foregoing method embodiments of FIG. 11 to FIG. 15 to avoid repetition. I won't go into details here.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the embodiments of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种用于下行传输的方法,包括:基站确定第一时间单元结构,所述第一时间单元结构至少包括第一下行部分;所述基站根据所述第一时间单元结构,发送所述第一下行部分;如果所述第一时间单元结构包括所述第二下行部分,所述发送所述第一下行部分,包括:发送所述第一下行部分和所述第二下行部分;如果所述第一时间单元结构包括所述上行部分,所述方法还包括:所述基站根据第一时间单元结构,接收所述上行部分。本发明实施例中的基站能够动态地确定待使用的时间单元结构,从而能够保证资源的利用率,避免资源浪费。

Description

数据传输的方法以及基站 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种数据传输的方法以及基站。
背景技术
随着移动互联网技术的发展,多天线技术得到了越来越多的应用。为了提升多天线场景下的性能和覆盖,需要大量增加天线数目和发送单元(Transceiver Unit,TXRU)的数目,以使波束更集中。然而,与此同时也导致发送端成本大量增加,特别是在高频场景下,发送端的成本将变得不可接受。为此,引入了混合波束成形(Hybrid Beam forming,HBF)方案。在HBF的应用中,将原有的纯数字波束成形(Digital Beam forming,DBF)变为DBF和模拟波束成形(Analog Beam forming,ABF)的组合,物理器件上由一部分移相器代替了射频链路,这样在增加天线数目的同时降低了成本。
与射频链路不同,移相器的相位调整需要调整时间,且该调整时间在现有的通信系统中不可忽略,由于是否需要模拟波束切换是动态决定的,因此预留固定的切换时间可能导致一定的资源浪费。
在时分双工(Time-Division Duplexing,TDD)系统中,存在下行到上行的切换过程,由于各用户到基站的距离不同,各用户与基站之间信息传输所需的时间也不同,为了防止距离基站较远的用户的上行传输和下行传输间相互干扰,需要在上行传输与下行传输之间预留一定的保护间隔(Guard Period,GP)。
此外,基站需要对所有的模拟波束进行扫描以获知每个用户最优的模拟波束(组)的信息,由于模拟波束扫描在一些情况下可以复用现有的参考信号(Reference Signal,RS),所以固定的波束扫描可能造成一定的资源浪费。
由此可见,无论是保护间隔还是模拟波束扫描,固定发送的形式都导致了资源浪费。
发明内容
本发明实施例提供了一种数据传输传输的方法,能够动态地确定时间单元结构,从而能够保证资源的利用率,避免资源浪费。
第一方面,提供了一种数据传输的方法,包括:
基站确定第一时间单元结构,所述第一时间单元结构包括以下中的任意一种:
第一下行部分,
第一下行部分和第一保护间隔GP,
第一下行部分和第二下行部分,
第一下行部分、第一GP和第二下行部分,
第一下行部分、第一GP、第二下行部分和第三GP,
第一下行部分、第二GP和上行部分,
第一下行部分、第二GP、上行部分和第三GP,
第一下行部分、第二下行部分、第二GP和上行部分,
第一下行部分、第一GP、第二下行部分、第二GP和上行部分,
第一下行部分、第一GP、第二下行部分、第二GP、上行部分和第三GP;
所述基站根据所述第一时间单元结构,发送所述第一下行部分;
如果所述第一时间单元结构包括所述第二下行部分,所述发送所述第一下行部分,包括:发送所述第一下行部分和所述第二下行部分;
如果所述第一时间单元结构包括所述上行部分,所述方法还包括:所述基站根据第一时间单元结构,接收所述上行部分;
其中,所述第一下行部分为第一下行控制信道和/或物理层共享信道PDSCH和/或第三参考信号RS;所述第二下行部分为第一参考信号RS和/或第二下行控制信道;所述上行部分为物理上行控制信道PUCCH和/或第二RS和/或物理上行共享信道PUSCH;所述第一下行控制信道为第一物理下行控制信道PDCCH或第一增强型物理下行控制信道ePDCCH;所述第二下行控制信道包括第二PDCCH或第二ePDCCH或物理混合自动请求重传指示信道PHICH;
所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
本发明实施例中,基站在进行传输时,可以动态地确定待使用的第一时间单元结构。进一步地,基站可以根据该第一时间单元结构进行发送,相应地,UE可以根据该第一时间单元结构进行接收。从而能够保证资源的利用率,避免资源浪费。
可选地,在所述发送所述第一下行部分之前,还包括:所述基站发送指示信息,所述指示信息用于指示将要使用所述第一时间单元结构。
可选地,所述指示信息承载于系统信息块SIB,或主消息块(Master Information Block,MIB),或无线资源控制RRC信令,或下行控制信息DCI,或媒体接入控制控制元素MAC CE。
这样,基站可以通过指示信息将确定的第一时间单元结构通知UE,能够使得UE根据该第一时间单元结构进行接收。
可选地,所述发送所述第一下行部分,包括:所述基站发送下行控制信息DCI,所述DCI承载于所述第一下行控制信道,所述DCI用于指示使用所述第一时间单元结构承载的部分或全部信道和/或信号和/或GP所占用的符号。
可选地,若所述第一时间单元结构包括第一RS,则所述DCI还用于指示所述第一RS的发送方法。若所述第一时间单元结构包括第二下行控制信道,则所述DCI还用于指示所述第二下行控制信道的发送方法。其中,所述发送方法包括以下至少一种:所使用的发送或接收波束,所使用的资源映射方式,所占用的子载波。
可选地,若所述第一时间单元结构包括第一GP,所述DCI还用于指示所述第一GP的持续时间t1,其中t1=0或t1>0;和/或,若所述第一时间单元结构包括第二GP,所述DCI还用于指示所述第二GP的持续时间t2,其中t2=0或t2>0;和/或,若所述第一时间单元结构包括第三GP,所述DCI还用于指示所述第三GP的持续时间t3,其中t3=0或t3>0。
可选的,第一RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)和/或同步信号。
可选的,第三RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如CSI-RS和/或同步信号。
可选的,第二RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如上行的探测参考信号(Sounding Reference Signal,SRS)和/或前导序列。
第二方面,提供了一种数据传输的方法,包括:
基站确定第一时间单元结构,所述第一时间单元结构包括以下中的任意一种:
第一上行部分,
第一保护间隔GP和第一上行部分,
第二上行部分和第一上行部分,
第二上行部分、第一GP和第一上行部分,
第二上行部分、第一GP、第一上行部分和第三GP,
下行部分、第二GP和第一上行部分,
下行部分、第二GP、第一上行部分和第三GP,
下行部分、第二GP、第二上行部分和第一上行部分,
下行部分、第二GP、第二上行部分、第一GP和第一上行部分,
下行部分、第二GP、第二上行部分、第一GP、第一上行部分和第三GP;
所述基站根据所述第一时间单元结构,接收所述第一上行部分;
如果所述第一时间单元结构包括所述第二上行部分,所述接收所述第一上行部分,包括:接收所述第一上行部分和所述第二上行部分;
如果所述第一时间单元结构包括所述下行部分,所述方法还包括:所述基站根据第一时间单元结构,发送所述下行部分;
其中,所述第一上行部分为物理上行共享信道PUSCH和/或第三参考信号RS,第二上行部分为物理上行控制信道PUCCH和/或第一参考信号RS,下行部分为第二下行控制信道和/或第二RS,所述第二下行控制信道包括第二物理下行控制信道PDCCH或第二增强型物理下行控制信道ePDCCH或物理混合自动请求重传指示信道PHICH;
所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
可选的,第一RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS和/或前导序列。
可选的,第三RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS和/或前导序列。
可选的,第二RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如CSI-RS和/或同步信号。
本发明实施例中,基站在进行传输时,可以动态地确定待使用的第一时间单元结构,进一步地,UE可以根据第一时间单元结构,进行发送基站可以根据该第一时间单元结构进行接收。从而能够保证资源的利用率,避免资源浪费。
第三方面,提供了一种数据传输的方法,该方法包括:UE获取基站确定的第一时间单元结构,并根据该时间单元结构进行接收,或者根据该时间单元结构进行接收和发送。其中,该第一时间单元结构如上述第一方面中所述。
第四方面,提供了一种数据传输的方法,该方法包括:UE获取基站确定的第一时间单元结构,并根据该时间单元结构进行发送,或者根据该时间单元结构进行接收和发送。 其中,该第一时间单元结构如上述第二方面中所述。
第五方面,提供了一种基站,该基站包括:确定单元,发送单元和接收单元,用于执行前述第一方面及各种实现方式中的用于下行传输的方法中由基站执行的各个过程。
第六方面,提供了一种基站,该基站包括:确定单元,发送单元和接收单元,用于执行前述第二方面及各种实现方式中的用于上行传输的方法中由基站执行的各个过程。
第七方面,提供了一种基站,该基站包括处理器、发送器、接收器和存储器。该基站可以用于执行前述第一方面及各种实现方式中的用于下行传输的方法中由基站执行的各个过程。
第八方面,提供了一种基站,该基站包括处理器、发送器、接收器和存储器。该基站可以用于执行前述第二方面及各种实现方式中的用于上行传输的方法中由基站执行的各个过程。
第九方面,提供了一种UE,包括获取单元、接收单元和发送单元,用于执行前述第三方面及各种实现方式中的用于下行传输的方法中由UE执行的各个过程。
第十方面,提供了一种UE,包括获取单元、接收单元和发送单元,用于执行前述第四方面及各种实现方式中的用于上行传输的方法中由UE执行的各个过程。
第十一方面,提供了一种计算机芯片,包括:输入接口、输出接口、至少一个处理器、存储器,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器可以实现前述第一方面及各种实现方式中的用于下行传输的方法中由基站执行的各个过程。
第十二方面,提供了一种计算机芯片,包括:输入接口、输出接口、至少一个处理器、存储器,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器可以实现前述第二方面及各种实现方式中的用于上行传输的方法中由基站执行的各个过程。
第十三方面,提供了一种计算机芯片,包括:输入接口、输出接口、至少一个处理器、存储器,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器可以实现前述第三方面或第四方面及各种实现方式中的用于上行传输的方法中由UE执行的各个过程。
第十四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得基站执行上述第一方面,及其各种实现方式中的任一种用于下行传输的方法。
第十五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得基站执行上述第二方面,及其各种实现方式中的任一种用于上行传输的方法。
第十六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得UE执行上述第三方面或第四方面,及其各种实现方式中的任一种用于上行传输的方法。
第十七方面,提供了一种通信系统,包括前述所述的基站,以及前述所述的UE。
附图说明
图1是本发明实施例的应用场景的示意图;
图2是在LTE中承载上下行切换的特殊子帧的示意图;
图3是本发明实施例的用于下行传输的方法的示意性流程图;
图4是本发明实施例的时间单元结构的一个示意图;
图5中(a)-(i)是本发明实施例的时间单元结构的另一个示意图;
图6是本发明实施例的时间单元结构的另一个示意图;
图7是本发明实施例的时间单元结构的另一个示意图;
图8是本发明实施例的基站的结构框图的一个示意图;
图9是本发明实施例的基站的结构框图的另一个示意图;
图10是本发明实施例的系统芯片的一个示意性结构图;
图11是本发明实施例的用于上行传输的方法的示意性流程图;
图12是本发明实施例的时间单元结构的另一个示意图;
图13中(a)-(g)是本发明实施例的时间单元结构的另一个示意图;
图14是本发明实施例的时间单元结构的另一个示意图;
图15是本发明实施例的时间单元结构的另一个示意图;
图16是本发明实施例的基站的结构框图的另一个示意图;
图17是本发明实施例的基站的结构框图的另一个示意图;
图18是本发明实施例的系统芯片的另一个示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本发明实施例的应用场景的示意图。在图1中,UE 20能够与基站10进行通信。并且,图1中所示出的箭头可以表示通过UE 20与基站10之间的蜂窝链路进行的上/下行传输。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
还应理解,本发明实施例中,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是未来5G网络中的基站设备等,本发明实施例对此并不限定。
还应理解,在本发明实施例中,UE可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,UE可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。UE可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或 连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备等。
在现有的LTE TDD系统中,存在下行到上行的切换过程,为了防止下行传输与上行传输之间的相互干扰,需要预留一定的GP,如图2所示为在LTE中承载上下行切换的特殊子帧的示意图,其中,在下行导频时隙(Downlink Pilot Time Slot,DwPTS)与上行导频时隙(Uplink Pilot Time Slot,UpPTS)之间包括GP。
并且,在现有的LTE中的高层信令对特殊子帧的配置可以如下表一所示,包括下行普通循环前缀(Cyclic Prefix,CP)和下行扩展CP的配置。其中LTE中的子帧为子帧或TTI。这样,可以针对不同的场景,例如不同的上下行需求、不同的小区半径等信息,使用不同的配置。
表一
Figure PCTCN2017079079-appb-000001
然而,现有LTE系统中的配置是通过高层配置的,该配置变换是缓变的。但是HBF传输中系统的模拟波束是每个传输时间间隔(Transmission Time Interval,TTI)都可能变化的,也就是说,HBF传输中是快变的。可见,现有LTE的配置方法无法支持HBF系统的子帧变化速度。即现有LTE的配置方式仅支持了子帧内各信道/信号/GP的时域长度配置,不能支持对信道/信号本身的TTI级配置。
本发明实施例提供了一种能够动态地指示时间单元的配置的方法。如图3所示为用于下行传输的方法的示意性流程图,该方法包括:
S301,基站10确定第一时间单元结构。
所述第一时间单元结构包括以下中的任意一种:
(0)第一下行部分,
(1)第一下行部分和第一保护间隔(Guard Period,GP),
(2)第一下行部分和第二下行部分,
(3)第一下行部分、第一GP和第二下行部分,
(4)第一下行部分、第一GP、第二下行部分和第三GP,
(5)第一下行部分、第二GP和上行部分,
(6)第一下行部分、第二GP、上行部分和第三GP,
(7)第一下行部分、第二下行部分、第二GP和上行部分,
(8)第一下行部分、第一GP、第二下行部分、第二GP和上行部分,
(9)第一下行部分、第一GP、第二下行部分、第二GP、上行部分和第三GP。
其中,所述第一下行部分为第一下行控制信道和/或物理层共享信道(Physical Downlink Shared Channel,PDSCH)和/或第三参考信号RS;所述第二下行部分为第一参考信号(Reference Signal,RS)和/或第二下行控制信道;所述上行部分为物理上行控制信道(Physical Uplink Control Channel,PUCCH)和/或第二RS和/或物理上行共享信道PUSCH;所述第一下行控制信道为第一物理下行控制信道(Physical Downlink Control Channel,PDCCH)或第一增强型物理下行控制信道(enhanced PDCCH,ePDCCH);所述第二下行控制信道包括第二PDCCH或第二ePDCCH或物理混合自动请求重传指示信道(Physical HARQ(Hybrid Automatic Repeat reQuest)Indicator Channel,PHICH)。
所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
所述第一下行部分,第二下行部分和上行部分可以属于相同的链路或不同的链路,所述链路为接入链路或第一回传链路或第二回传链路。第一回传链路和第二回传链路为具有至少一个不同传输节点的回传链路。例如,第一下行部分和第二下行部分都为接入链路。可选地,第一下行部分为第一回传链路,第二下行部分为第二回传链路或接入链路。此时,可以根据中继的链路切换能力和中继所处于的不同链路的定时,确定第一时间单元结构中是否有GP。
其中,作为一个实施例,该第一时间单元结构可以是协议规定好的。基站10可以根据所使用的通信协议确定该第一时间单元结构。
其中,作为另一个实施例,基站10可以从多种时间单元结构中进行选择,将多种时间单元结构中的一种确定为第一时间单元结构。这里的多种时间单元结构可以是上述的(0)至(9)种,或者这里的多种时间单元结构可以是上述的部分种,例如多种时间单元结构可以是上述的(0)至(4)种,等等。
可选地,在S301之后,基站10可以发送指示信息,所述指示信息用于指示将要使用所述第一时间单元结构。
可选地,所述指示信息承载于系统信息块(System Information Block,SIB),或主消息块(Master Information Block,MIB),或无线资源控制(Radio Resource Control,RRC)信令,或下行控制信息(Downlink Control Information,DCI),或媒体接入控制控制元素(media access control control element,MAC CE)。
可选的,第一RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如CSI-RS和/或同步信号。
可选的,第三RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如CSI-RS和/或同步信号。
可选的,第二RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS或前导序列。
基站10可以向UE 20发送指示信息,用于通知UE 20所使用的时间单元结构为第一时间单元结构。或者,可以理解,该指示信息用于与UE 20达成使用第一时间单元结构的共识。
可选地,该指示信息可携带在为系统信息块(System Information Block,SIB)中,或者,该指示信息可以通过RRC信令进行传输,或者,该指示信息可以通过同步信号进 行传输,或者,该指示信息可以通过MIB进行指示,等等。或者,该第一时间单元结构可以在高层信令中配置,下行控制信息(Downlink Control Information,DCI)中包括使能该配置的信息。本发明实施例对此不限定。
S302,基站10根据第一时间单元结构,进行发送,或,进行发送和接收。
也就是说,基站10根据第一时间单元结构发送信道和/或信号,或,基站10根据第一时间单元结构发送和接收信道和/或信号。
具体地,基站10根据第一时间单元结构发送所述第一下行部分。如果所述第一时间单元结构包括所述第二下行部分,所述发送所述第一下行部分,包括:发送所述第一下行部分和所述第二下行部分。如果所述第一时间单元结构包括所述上行部分,所述方法还包括:所述基站根据第一时间单元结构,接收所述上行部分。
可理解,若第一时间单元结构为上述的(0)-(1),则基站10在S302中发送第一下行部分。若第一时间单元结构为上述的(2)-(4),则基站10在S302中发送第一下行部分和第二下行部分。若第一时间单元结构为上述的(5)-(6),则基站10在S302中发送第一下行部分,并接收上行部分。若第一时间单元结构为上述的(7),则基站10在S302中发送第一下行部分和第二下行部分,并接收上行部分。
其中,第一下行部分包括第一PDCCH和PDSCH,基站10在发送第一下行部分时,可以包括:
基站10发送下行控制信息(Downlink Control Information,DCI),所述DCI承载于第一下行控制信道,所述DCI用于指示使用所述第一时间单元结构承载的部分或全部信道和/或信号和/或GP所占用的符号。
这里的信道可以包括第一下行控制信道、第二下行控制信道、PUCCH、PDSCH、PUSCH。这里的信号可以包括第一RS、第二RS。这里的GP可以包括第一GP、第二GP和第三GP。
可选地,若所述第一时间单元结构包括第一RS,则所述DCI还可以用于指示所述第一RS的发送方法。若所述第一时间单元结构包括第二下行控制信道,则所述DCI还可以用于指示所述第二下行控制信道的发送方法。所述发送方法包括以下至少一种:所使用的发送或接收波束,所使用的资源映射方式,所占用的子载波。
另外,可选地,若所述第一时间单元结构包括第一GP,所述DCI还用于指示所述第一GP的持续时间t1,其中t1=0或t1>0。和/或,若所述第一时间单元结构包括第二GP,所述DCI还用于指示所述第二GP的持续时间t2,其中t2=0或t2>0。和/或,若所述第一时间单元结构包括第三GP,所述DCI还用于指示所述第三GP的持续时间t3,其中t3=0或t3>0。
以下将对第一时间单元结构以及DCI所指示的信息进行详细的描述。
为了描述方便,将第一时间单元结构所承载的信道和/或信号和/或GP统称为第一时间单元结构承载的信息。
可选地,使用所述第一时间单元结构承载的信息所占用的符号可以至少包括PDSCH占用的符号。
举例来说,若第一时间单元结构为前述的(1),则DCI可以指示PDSCH的时间长度以及第一GP的时间长度。或,DCI可以指示PDSCH占用的符号个数以及第一GP占用的符号个数。进一步地,DCI还可以指示第一下行控制信道所占用的符号。
可以理解,基站在S301中可以通过高层信令指示第一时间单元结构的配置,在S302中由DCI包括使能该第一时间单元结构的指示信息。
本发明实施例中,可以将S302中基站10发送,或者,发送和接收的时间单元称为目标时间单元。
本发明实施例中,PDSCH占用的符号可以包括PDSCH及其解调参考信号(De-Modulation Reference Signal,DMRS)所占用的符号,应注意,为描述简便,本发明实施例后续实施例均以“PDSCH占用的符号”表示“PDSCH及其DMRS所占用的符号”。且PDSCH占用的符号可以包括PDSCH所占用的符号的位置及数量。其中,符号可以为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
所述时间单元中除所述第一PDCCH和所述PDSCH占用的符号外的其他符号上所承载的信息包括信道和/或信号和/或GP。可理解,在S301后,基站10可以通过指示信息指示该其他符号上所承载的信息。
其中,所述时间单元中除所述第一下行控制信道和/或所述PDSCH和/或第三参考信号RS占用的符号外的其他符号上所承载的信息包括以下中的任意一种:(1)波束扫描的第一RS和/或第二下行控制信道;(2)第一GP;(3)第一GP和第一RS和/或第二下行控制信道;(4)第一RS和/或第二下行控制信道、第二GP和PUCCH和/或第二RS;(5)第一GP、第一RS和/或第二下行控制信道、第二GP和PUCCH和/或第二RS;(6)第二GP和PUCCH和/或第二RS。其中,第二下行控制信道可以为第二PDCCH或第二ePDCCH或PHICH。
其中,第二PDCCH或者第二ePDCCH可以包括该时间单元之后的某上行时间单元的指示信息,即第二PDCCH或者第二ePDCCH中的上行DCI可以包括相应时间单元的指示。其中,PHICH用于指示该时间单元之前的某上行时间单元的反馈信息,例如,反馈信息可以是肯定确认(Acknowledgement,ACK)或否定确认(Negative ACKnowledgement,NACK)。
本发明实施例中,所述其他符号所承载的信息同时包括第一RS和第二下行控制信道时,第一RS和第二下行控制信道复用相同的资源。以第二下行控制信道为第二PDCCH为例,其他符号上所承载的信息包括第一RS和第二下行控制信道,是指,其他符号上所承载的信息包括第一RS和第二PDCCH,且第一RS与第二PDCCH复用相同的资源。其他符号上所承载的信息包括第一GP、第一RS和/或第二下行控制信道,是指,其他符号上所承载的信息包括第一GP、第一RS和第二PDCCH,且第一RS与第二PDCCH复用相同的资源。
同样地,可理解,所述其他符号所承载的信息同时包括第二RS和PUCCH时,第二RS和PUCCH复用相同的资源。举例来说,其他符号上所承载的信息包括第二GP、PUCCH和第二RS时,PUCCH和第二RS复用相同的资源。其他符号上所承载的信息包括第一RS、第二GP、PUCCH和第二RS时,PUCCH和第二RS复用相同的资源。其他符号上所承载的信息包括第一GP、第一RS、第二GP、PUCCH和第二RS时,PUCCH和第二RS复用相同的资源。
也就是说,本发明实施例中,“第一RS和/或第二下行控制信道”包括以下三种情形:(1)第一RS,(2)第二下行控制信道,(3)复用的第一RS和第二下行控制信道。本发明实施例中,“PUCCH和/或第二RS”包括以下三种情形:(1)PUCCH,(2)第 二RS,(3)复用的PUCCH和第二RS。
可选地,本发明实施例中的第二RS可以是用于上行的探测参考信号(Sounding Reference Signal,SRS)。
也就是说,所述时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息可以为:第一RS和/或第二下行控制信道,或者,第一GP,或者,第一GP与第一RS和/或第二下行控制信道。所述时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息可以为:第一GP,或者,第二GP与PUCCH和/或第二RS。所述时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息可以为:第一RS和/或第二下行控制信道、第二GP与PUCCH和/或第二RS,或者,第一GP、第一RS和/或第二下行控制信道、第二GP与PUCCH和/或第二RS。
具体地,可以根据具体的情形进行确定,可以分为如下所示的多种情况:
情况1:该时间单元为下行时间单元,该下行时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息包括第一保护间隔(Guard Period,GP)和用于波束扫描的第一参考信号(Reference Signal,RS)和/或第二下行控制信道。其中,第一下行控制信道为第一PDCCH或第一ePDCCH,第二下行控制信道可以为第二PDCCH或第二ePDCCH或PHICH。
具体地,基站10可以在该下行时间单元中发送第二下行控制信道,可选地,该第二下行控制信道可以用于指示该下行时间单元的下一个上行时间单元的配置。并且该下行时间单元中的PDSCH发送所用的模拟波束与第二下行控制信道的模拟波束不相同。此时,可以确定配置为该情况1。即,其他符号上所承载的信息包括第一GP和第二下行控制信道。其中,由于不同的模拟波束之间需要切换时间,因此需要在PDSCH和第二下行控制信道之间配置第一GP。
具体地,如果基站10确定该下行时间单元需要进行波束扫描,并且PDSCH发送所用的模拟波束与第一RS的模拟波束不相同,那么,可以确定配置为该情况1。即,其他符号上所承载的信息包括第一GP和第一RS。其中,由于不同的模拟波束之间需要切换时间,因此需要在PDSCH和第一RS之间配置第一GP。
具体地,基站10可以在该时间单元中同时包括第二下行控制信道和第一RS,且第二下行控制信道与第一RS复用相同的资源。
可以将该下行时间单元的资源时分地分为4部分,如图4所示,分别为资源0、资源1、资源2和资源3。
可见,情况1相当于图4中的资源0承载第一下行控制信道,资源1承载PDSCH,资源2承载第一GP,资源3承载第一RS和/或第二下行控制信道。
举例来说,若第一下行控制信道为第一PDCCH,第二下行控制信道为第二PDCCH,那么情况1可以如图5中(a)所示。
S302中所述的DCI还可以用于指示第一GP所占用的符号。第一GP所占用的符号可以包括第一GP所占用的符号的位置及数量。其中,如图5中(a)所示,第一GP所占用的符号的位置可以是与PDSCH所占用的符号的位置相邻。
或者,S302中所述的DCI可以进一步用于指示第一GP的持续时间,假设该第一GP的持续时间表示为t1,那么对于该情况1,t1>0。
进一步地,若所述其他符号所承载的信息包括第一RS,DCI还可以用于指示第一RS的发送方法。例如,第一RS可以有N1种不同的发送方法。这里,N1种不同的发送方法可以记为第1种至第N1种发送方法。
其中,发送方法包括以下至少一种:所使用的发送或接收波束,时间维长度,所占用的子载波。
也就是说,发送方法与所使用的发送波束或接收波束、时间维长度、所占用的子载波等有关,不同的发送方法是指所使用的发送波束或接收波束不同,或者,不同的发送方法是指时间维长度不同,或者,不同的发送方法是指所使用的发送波束或接收波束和时间维长度均不同,或者,不同的发送方法是指时间维长度和所占用的子载波均不同,或者,不同的发送方法是指所使用的发送波束或接收波束、时间维长度和所占用的子载波均不同,等等。
情况2:该时间单元为下行时间单元,该下行时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息包括用于波束扫描的第一RS和/或第二下行控制信道。其中,第一下行控制信道为第一PDCCH或第一ePDCCH,第二下行控制信道可以为第二PDCCH或第二ePDCCH或PHICH。
具体地,基站10可以在该下行时间单元中发送第二下行控制信道,可选地,该第二下行控制信道可以用于指示该下行时间单元的下一个上行时间单元的配置。并且PDSCH发送所用的模拟波束与第二下行控制信道的模拟波束相同。此时,可以确定配置为该情况2。由于两者(PDSCH与第二下行控制信道)的模拟波束相同,所以两者之间可以没有第一GP。
具体地,如果基站10确定该下行时间单元需要进行波束扫描,并且PDSCH发送所用的模拟波束与第一RS的模拟波束相同,那么,可以确定配置为该情况2。由于两者(PDSCH与第一RS)的模拟波束相同,所以两者之间可以没有第一GP。
具体地,基站10可以在该时间单元中同时包括第二下行控制信道和第一RS,且第二下行控制信道与第一RS复用相同的资源。
可见,情况2相当于图4中的资源0承载第一下行控制信道,资源1和资源2承载PDSCH,资源3承载第一RS和/或第二下行控制信道。
举例来说,若第一下行控制信道为第一PDCCH,第二下行控制信道为第二PDCCH,那么情况2可以如图5中(b)所示。可选地,第二下行控制信道可以占用资源3的部分带宽,也就是说,资源3的部分带宽承载第二下行控制信道,资源3的剩余部分带宽可以用于承载PDSCH。这样,能够进一步提高资源的利用率。
结合与情况1的描述,S302中的DCI还可以进一步用于指示第一GP所占用的符号。或者,S302中所述的DCI可以用于指示第一GP的持续时间,假设该第一GP的持续时间表示为t1,那么这里,t1=0。
可见,DCI可以进一步用于指示第一GP的持续时间,假设该第一GP的持续时间表示为t1,t1>0或者t1=0。相应地,UE 20可以根据该第一GP的持续时间确定是情况1(t1>0)还是情况2(t1=0)。
进一步地,若所述其他符号所承载的信息包括第一RS,也就是说,若情况2中的资源3承载第一RS或者资源3承载第一RS和第二下行控制信道,则DCI还可以用于指示第一RS的发送方法。例如,情况2中第一RS可以有N2种不同的发送方法。这里,N2 种不同的发送方法可以记为第N1+1种至第N1+N2种发送方法。
对于情况2,由于PDSCH的模拟波束与第一RS和/或第二下行控制信道的模拟波束相同,因此模拟波束的切换时间是不需要的,这样,可以将资源2承载PDSCH,从而能够利用原本保护间隔(即第一GP)所在的资源进行下行传输,这样能够实现资源的充分利用,提升下行吞吐量。同时DCI能够指示不同波束扫描的第一RS的发送方法,从而支持时间单元间接收模拟波束切换,也就是说,可以支持时间单元级的动态配置,增加了下行信息发送的灵活度。
情况3:该时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息包括第二GP与PUCCH和/或第二RS。
即,其他符号上所承载的信息包括第二GP和PUCCH,或者,其他符号上所承载的信息包括第二GP和第二RS,或者,其他符号上所承载的信息包括第二GP、PUCCH和第二RS,其中,PUCCH和第二RS复用相同的资源。
对于可能同时包括上下行传输的时间单元的发送和接收,该时间单元中的上行传输可以包括上行控制信道(即PUCCH)或上行导频(即第二RS)。
具体地,如果基站10确定该时间单元包括上下行传输,那么,可以确定配置为该情况3。其中,由于上下行之间需要切换时间,因此需要在PDSCH与PUCCH和/或第二RS之间配置第二GP。即需要在PDSCH与PUCCH之间配置第二GP,或者,需要在PDSCH与第二RS之间配置第二GP,或者,需要在PDSCH与PUCCH和第二RS之间配置第二GP。
可见,情况3相当于图4中的资源0承载第一下行控制信道,资源1承载PDSCH,资源2承载第二GP,资源3承载PUCCH和/或第二RS。
举例来说,若第一下行控制信道为第一PDCCH,那么情况3可以如图5中(c)所示。
或者,情况3中也可以将资源2和资源3时域平移至资源1之前,即资源2和资源3在时域上位于资源0和资源1之间。举例来说,若若第一下行控制信道为第一PDCCH,那么情况3可以如图5中(d)所示。
S302中所述的DCI可以用于指示第二GP的持续时间,假设该第二GP的持续时间表示为t2,那么对于该情况3,t2>0。
可选地,对于该情况3,S302中所述的DCI也可以用于指示第一GP的持续时间t1,且t1=0。
进一步地,若该其他符号上所承载的信息包括第二RS,那么DCI还可以用于指示第二RS的发送方法。若该其他符号上所承载的信息包括PUCCH,那么DCI还可以用于指示PUCCH的发送方法。例如,情况3中的第二RS和/或PUCCH可以有N3种不同的发送方法。这里,N3种不同的发送方法可以记为第N1+N2+1种至第N1+N2+N3种发送方法。
情况4:该时间单元为下行时间单元,该下行时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息包括第一GP。
具体地,如果基站10确定该下行时间单元不需要进行波束扫描,并且该下行时间单元的下一个时间单元也是下行时间单元,该下行时间单元所用的模拟波束与下一个下行时间单元所使用的模拟波束不相同,那么,可以确定配置为该情况4。
可见,情况4相当于图4中的资源3并入资源1,如图6所示,资源1和资源3承载PDSCH,资源2承载第一GP。可选地,该情形也可以理解为:资源3不存在,或,将资 源2时域平移至时间单元的尾部。
举例来说,若第一下行控制信道为第一PDCCH,那么情况4可以如图5中(e)所示。
可理解,图6中的资源2承载第一GP是因为相邻的两个下行时间单元不同的模拟波束需要切换时间。
相应地,S302中所述的DCI可以用于指示第一GP的持续时间,假设该第一GP的持续时间表示为t1,那么对于该情况4,t1>0。
可选地,对于该情况4,S302中所述的DCI也可以用于指示第二GP的持续时间t2,且t2=0。
情况5:PDSCH占用该时间单元的所有符号。也就是说,该时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外,不存在其他的符号。
也就是说,该时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息为空。或者说,该时间单元中除所述第一下行控制信道和所述PDSCH之外,不承载其他的信息。
可见,情况5相当于图4中的资源0承载第一下行控制信道,资源1、资源2和资源3都用来承载PDSCH。
举例来说,若第一下行控制信道为第一PDCCH,那么情况5可以如图5中(f)所示。
具体地,作为一例,如果该时间单元为下行时间单元,且该时间单元不需要进行波束扫描,并且不需要在时间单元之间留GP,那么,可以确定配置为该情况5。
这样,可以将资源2和资源3承载PDSCH,即充分利用原本保护间隔所在的资源进行下行传输,且充分利用原本波束扫描的第一RS所在的资源进行下行传输,能够实现资源的充分利用,提升下行吞吐量。
具体地,作为另一例,如果该时间单元不需要在资源3进行上行传输,即资源3不传输上行控制信息,可以确定配置为该情况5。
举例来说,用于波束扫描的第一RS可以周期性地发送,该周期可以为X个时间单元。这样,某些时间单元需要发送第一RS,某些时间单元却不需要发送第一RS。
这样,可以将资源2和资源3承载PDSCH,即充分利用原本保护间隔所在的资源进行下行传输,且充分利用原本上行传输(上行控制信息)所在的资源进行下行传输,能够实现资源的充分利用,提升下行吞吐量。
可选地,对于该情况5,S302中所述的DCI也可以用于指示第一GP的持续时间t1,且t1=0。或者,对于该情况5,S302中所述的DCI也可以用于指示第二GP的持续时间t2,且t2=0。或者,对于该情况5,S302中所述的DCI也可以用于指示第一GP的持续时间t1和第二GP的持续时间t2,且t1=t2=0。
对于上述所描述的情况1至情况5,可选地,作为一个实施例,可以在DCI中添加资源标识(Resource Flag)用于表示上述的各种情况。
举例来说,下面的表二以N1=4,N2=2,N3=3为例进行说明。
表二
Figure PCTCN2017079079-appb-000002
Figure PCTCN2017079079-appb-000003
其中,表二中资源标识为0~3对应于上述的情况1,资源标识为4~5对应于上述的情况2,资源标识为8~10对应于上述的情况3,资源标识为6对应于上述的情况4,资源标识为7对应于上述的情况5。
这样,本发明实施例中,可以在DCI中通过ResourceFlag指示相应的配置,进一步地,在S302中,基站10可以根据该DCI发送,相应地,UE 20可以根据该配置进行接收。能够实现动态配置,增加下行发送的灵活度。
举例来说,如果已经确定该时间单元为下行时间单元。那么,可以在DCI中添加M比特(bit)的ResourceFlag来表示相应的配置,其中
Figure PCTCN2017079079-appb-000004
这里,
Figure PCTCN2017079079-appb-000005
表示上取整。以下的表三为N1=4,N2=2时对应的配置,此时M=3。
表三
Figure PCTCN2017079079-appb-000006
其中,资源标识列与0~7对应的为M=3比特的000~111。
应注意,资源2所承载的第一GP可以具有固定的形式或者具有多种不同的形式。举例来说,第一GP的形式可以与时域长度有关,也可以与其他的内容有关。可理解,若第一GP存在多种不同的形式,那么需要相应地增加ResourceFlag的数量。
也就是说,可以在DCI中以不同的ResourceFlag来指示不同的第一GP的形式。
可选地,作为一个实施例,若所述时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息包括第一GP,DCI还可以用于指示第一GP的长度。
可选地,作为另一个实施例,DCI还可以用于指示第一GP的长度。若该DCI所指示的第一GP的长度为0,说明该时间单元中不承载第一GP。
以时域长度为例,本发明实施例对资源2所承载的第一GP的时域长度不做限制。例如,第一GP可以是具有固定的时域长度的,均为2个OFDM符号。例如,第一GP可以具有动态可变的时域长度,第一GP所占用的时域长度可以为1个OFDM符号,或者1.5个OFDM符号。该第一GP占用的OFDM符号的个数也可以通过DCI中的ResourceFlag进行指示。
举例来说,如果已经确定该时间单元同时包含上下行传输。那么,可以在DCI中添加M比特(bit)的ResourceFlag来表示相应的配置,其中
Figure PCTCN2017079079-appb-000007
以下的表四为N3=3时对应的配置,此时M=2。
表四
Figure PCTCN2017079079-appb-000008
其中,表四中资源标识为0~2对应于上述的情况3,资源标识为3对应于上述的情况5。其中,资源标识列与0~3对应的为M=2比特的00~11。
应注意,资源2所承载的第一GP可以具有固定的形式或者具有多种不同的形式。举例来说,第一GP的形式可以与时域长度有关,也可以与其他的内容有关。可理解,若第一GP存在多种不同的形式,那么需要相应地增加ResourceFlag的数量。
可见,在本实施例中,可以在不需要上行传输时充分利用原本保护间隔和上行传输所在的资源进行下行传输,同时还支持指示不同的上行发送方式。由于该指示信息承载于下行DCI,所以可以支持时间单元级动态配置,增加下行信息和PUCCH/第二RS发送的灵活度。
基于上述的情况1至情况5的描述,还可以考虑同时包括第一RS和/或第二下行控制信道以及PUCCH和/或第二RS的情形。具体地,如下的情况所示:
情况6:时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息包括以下中的任意一种:(1),第一RS和/或第二下行控制信道、第二GP以及PUCCH和/或第二RS;(2),第一GP、第一RS和/或第二下行控制信道、第二GP以及PUCCH和/或第二RS。其中,第二下行控制信息可以包括第二PDCCH或者第二ePDCCH或PHICH。
可以将该时间单元的资源时分地分为6部分,如图7所示,分别为资源0、资源1、 资源2、资源3、资源4和资源5。
可见,情况6中的(1)相当于是资源0承载第一下行控制信道,资源1和资源2承载PDSCH,资源3承载第一RS和/或第二下行控制信道,资源4承载第二GP,资源5承载PUCCH和/或第二RS。
举例来说,若第一下行控制信道为第一PDCCH,第二下行控制信道为第二PDCCH,那么情况6中的(1)可以如图5中(g)所示。
可选地,若情况6中的(1)为第一RS、第二GP以及PUCCH和/或第二RS。此时,第一RS可以与第一下行控制信道进行资源复用。举例来说,若第一下行控制信道为第一PDCCH,那么该情形可以如图5中(h)所示。这样,原本发送第一RS的资源可以用于发送PDSCH,能够实现资源的充分利用,提升下行吞吐量。
对于情况6中的(1),S302中所述的DCI进一步还可以用于指示第二GP所占用的符号。也就是说,S302中所述的DCI可以进一步用于指示第二GP的持续时间,假设该第二GP的持续时间表示为t2,t2>0。可选地,该DCI还可以进一步用于指示第一GP的持续时间,假设该第一GP的持续时间表示为t1,且t1=0。
情况6中的(2)相当于是资源0承载第一下行控制信道,资源1承载PDSCH,资源2承载第一GP,资源3承载第一RS和/或第二下行控制信道,资源4承载第二GP,资源5承载PUCCH和/或第二RS。
举例来说,若第一下行控制信道为第一PDCCH,第二下行控制信道为第二PDCCH,那么情况6中的(1)可以如图5中(i)所示。
对于情况6中的(2),S302中所述的DCI进一步还可以用于指示第一GP所占用的符号以及第二GP所占用的符号。也就是说,S302中所述的DCI可以进一步用于指示第一GP的持续时间和第二GP的持续时间,假设该第一GP的持续时间表示为t1,该第二GP的持续时间表示为t2,则t1>0,t2>0。
另外,若其他符号上所承载的信息包括第一RS,则DCI还可以指示该第一RS的发送方法。若其他符号上所承载的信息包括第二RS,则DCI还可以指示该第二RS的发送方法。若其他符号上所承载的信息包括PUCCH,则DCI还可以指示该PUCCH的发送方法。
对于情况6中的(1)来说,第一RS可以存在N2种不同的发送方法,PUCCH和/或第二RS可以存在N3种不同的发送方法,那么,在DCI中,可以添加M比特的指示信息用于指示该配置,其中
Figure PCTCN2017079079-appb-000009
对于情况6中的(2)来说,第一RS可以存在N1种不同的发送方法,PUCCH和/或第二RS可以存在N3种不同的发送方法,那么,在DCI中,可以添加M比特的指示信息用于指示该配置,其中
Figure PCTCN2017079079-appb-000010
类似地,第二GP也可以具有固定的形式或者具有多种不同的形式。相应地,若第二GP存在多种不同的形式,那么需要在DCI中相应地增加ResourceFlag的数量。
也就是说,可以在DCI中以不同的ResourceFlag来指示不同的第二GP的形式。
可选地,作为一个实施例,若所述时间单元中除所述第一下行控制信道和所述PDSCH占用的符号外的其他符号上所承载的信息包括第二GP,DCI还可以用于指示第二GP的长度。
可选地,作为另一个实施例,DCI还可以用于指示第二GP的长度。若该DCI所指 示的第二GP的长度为0,说明该时间单元中不承载第二GP。
作为一种理解,情况6中的资源1、资源2和资源3可以类比与上述情况1、情况2、情况4和情况5中下行时间单元对应的资源1、资源2和资源3;情况6中的资源4和资源5可以类比与上述情况3和情况5中上下行同时传输对应的资源2和资源3。也就是说,情况6可以认为是上述下行时间单元与上下行同时传输的帧结构的组合。具体地,情况6中的(1)相当于情况2和情况3的组合,情况6中的(2)相当于情况1和情况3的组合。
作为另一种理解,上述情况1至情况6都可以认为是图7所示的资源1至资源5相应地承载不同的信息。具体地,资源1承载PDSCH,资源2承载第一GP或PDSCH,资源3承载第一RS和/或第二下行控制信道或PDSCH或不存在,资源4承载第二GP或PDSCH,资源5承载PUCCH和/或第二RS或PDSCH。
另外,关于该情况6的更具体的描述,可以参见前述情况1至情况5部分的相关描述,这里不再赘述。
可见,上述情况1至情况6中,所述DCI可以用于指示所述其他符号上所承载的信息中的第一GP的持续时间t1,其中t1=0或t1>0;和/或,所述DCI还用于指示所述其他符号上所承载的信息中的第二GP的持续时间t2,其中t2=0或t2>0。
另外,可理解,对于如图5中的(a)、(c)和(i)的情形,在第一时间单元结构还可以包括额外的资源用于承载第三GP,作为当前时间单元与下一个时间单元之间的保护间隔。这里不在一一罗列。
相应地,可以理解,本发明实施例中,在S302中,UE 20可以根据第一时间单元结构接收基站10发送的第一下行部分。
如果第一时间单元结构包括第二下行部分,UE 20可以根据第一时间单元结构接收基站10发送的第一下行部分和第二下行部分。
如果第一时间单元结构包括上行部分,则还包括:UE 20可以根据第一时间单元结构向基站10发送上行部分。
也就是说,在S302中,UE 20可以根据第一时间单元结构进行接收,或者,UE 20根据第一时间单元结构进行接收和发送。
本发明实施例中,基站10将DCI通过DCI发送至UE 20。进一步地,基站10可以根据该DCI进行发送,UE 20可以根据该DCI进行接收。可理解,需要根据配置中的共享信道所占用的符号来调整其中的导频位置和/或数量,并调整数据的资源单元(Resource Element,RE)映射规则。具体地,该调整方式可以是预设的,或者,该调整方式可以是高层信令或DCI配置的。
图8是本发明实施例的基站的结构框图的一个示意图。图8所示的基站80包括确定单元801、发送单元802和接收单元803。
所述确定单元801,用于确定第一时间单元结构,所述第一时间单元结构包括以下中的任意一种:
第一下行部分和第一保护间隔GP,
第一下行部分和第二下行部分,
第一下行部分、第一GP和第二下行部分,
第一下行部分、第一GP、第二下行部分和第三GP,
第一下行部分、第二GP和上行部分,
第一下行部分、第二GP、上行部分和第三GP,
第一下行部分、第二下行部分、第二GP和上行部分,
第一下行部分、第一GP、第二下行部分、第二GP和上行部分,
第一下行部分、第一GP、第二下行部分、第二GP、上行部分和第三GP;
所述发送单元802,用于根据所述确定单元801确定的所述第一时间单元结构,发送所述第一下行部分;
如果所述第一时间单元结构包括所述第二下行部分,所述发送单元802,具体用于根据所述确定单元801确定的所述第一时间单元结构,发送所述第一下行部分和所述第二下行部分;
如果所述第一时间单元结构包括所述上行部分,所述接收单元803,用于根据所述确定单元801确定的第一时间单元结构,接收所述上行部分;
其中,所述第一下行部分为第一下行控制信道和/或物理层共享信道PDSCH和/或第三参考信号RS;所述第二下行部分为第一参考信号RS和/或第二下行控制信道;所述上行部分为物理上行控制信道PUCCH和/或第二RS和/或物理上行共享信道PUSCH;所述第一下行控制信道为第一物理下行控制信道PDCCH或第一增强型物理下行控制信道ePDCCH;所述第二下行控制信道包括第二PDCCH或第二ePDCCH或物理混合自动请求重传指示信道PHICH。
所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
所述第一下行部分,第二下行部分和上行部分可以属于相同的链路或不同的链路,所述链路为接入链路或第一回传链路或第二回传链路。第一回传链路和第二回传链路为具有至少一个不同传输节点的回传链路。例如第一下行部分和第二下行部分都为接入链路。可选的第一下行部分为第一回传链路,第二下行部分为第二回传链路或接入链路。此时可以根据中继的链路切换能力和中继所处于的不同链路的定时,确定第一时间单元结构中是否有GP。
可选地,发送单元802,还用于:发送指示信息,所述指示信息用于指示将要使用所述第一时间单元结构;所述指示信息承载于系统信息块SIB,或主消息块MIB,或无线资源控制RRC信令,或下行控制信息DCI,或媒体接入控制控制元素MAC CE。
可选地,发送单元802,还用于:发送下行控制信息DCI,所述DCI承载于所述第一下行控制信道,所述DCI用于指示使用所述第一时间单元结构承载的部分或全部信道和/或信号和/或GP所占用的符号。
如果将基站发送的称为时间单元,或者,将基站发送和接收的称为时间单元。该时间单元至少包括第一下行部分,即包括第一下行控制信道和PDSCH。
可选地,所述时间单元中除所述第一下行控制信道和/或所述PDSCH和/或第三RS占用的符号外的其他符号上所承载的信息包括以下中的任意一种:
第一GP,
第一RS和/或第二下行控制信道,
第一GP以及第一RS和/或第二下行控制信道,
第二GP以及PUCCH和/或第二RS,
第一RS、第二GP以及PUCCH和/或第二RS,
第一GP、第一RS、第二GP以及PUCCH和/或第二RS;
其中,所述第二下行控制信道包括第二PDCCH或第二ePDCCH或PHICH。
可选地,所述第一下行控制信道和所述PDSCH占用所述时间单元的所有符号。
若所述其他符号上所承载的信息包括所述第一RS,则所述DCI还用于指示所述第一RS的发送方法;若所述其他符号上所承载的信息包括所述第二RS,则所述DCI还用于指示所述第二RS的发送方法;若所述其他符号上所述承载的信息包括所述PUCCH,则所述DCI还用于指示所述PUCCH的发送方法。其中,所述发送方法包括以下至少一种:所使用的发送或接收波束,时间维长度,所占用的子载波。
可选地,作为一个实施例,所述DCI还用于指示所述其他符号上所承载的信息中的第一GP的持续时间t1,其中t1=0或t1>0;和/或,所述DCI还用于指示所述其他符号上所承载的信息中的第二GP的持续时间t2,其中t2=0或t2>0。
可选的,第一RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如CSI-RS和/或同步信号。
可选的,第三RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如CSI-RS和/或同步信号。
可选的,第二RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS或前导序列。
具体地,关于该配置可以参见前述图3至图7的方法实施例部分关于该配置的详细描述,这里不再赘述。
图8中的确定单元801可以由处理器实现,发送单元802可以由发送器实现,接收单元803可以由接收器实现。如图9所示,图9中的基站90包括处理器901、接收器902、发送器903和存储器904。
存储器904,用于存储处理器901执行的代码等。
基站90中的各个组件通过总线系统905耦合在一起,其中总线系统905除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图10是本发明实施例的系统芯片的一个示意性结构图。图10的系统芯片100包括输入接口1010、输出接口1020、至少一个处理器1030、存储器1040,所述输入接口1010、输出接口1020、所述处理器1030以及存储器1040之间通过总线1050相连,所述处理器1030用于执行所述存储器1040中的代码,当所述代码被执行时,所述处理器1030实现图3-7中由基站执行的方法。
可理解,图10中的输入接口1010和输出接口1020也可以由一个输入/输出接口实现。本发明实施例对此不作限定。
图8所示的基站80、图9所示的基站90或图10所示的系统芯片100能够用于实施前述图3至图7的方法实施例中由基站实现的各个过程,为避免重复,这里不再赘述。
图11是本发明实施例的用于上行传输的方法的示意性流程图。图11所示的方法包括:
S111,基站10确定第一时间单元结构。
所述第一时间单元结构包括以下中的任意一种:
(0)第一上行部分,
(1)第一保护间隔GP和第一上行部分,
(2)第二上行部分和第一上行部分,
(3)第二上行部分、第一GP和第一上行部分,
(4)第二上行部分、第一GP、第一上行部分和第三GP,
(5)下行部分、第二GP和第一上行部分,
(6)下行部分、第二GP、第一上行部分和第三GP,
(7)下行部分、第二GP、第二上行部分和第一上行部分,
(8)下行部分、第二GP、第二上行部分、第一GP和第一上行部分,
(9)下行部分、第二GP、第二上行部分、第一GP、第一上行部分和第三GP。
其中,所述第一上行部分为PUSCH和/或第三参考信号RS,第二上行部分为PUCCH和/或第一RS,下行部分为第二下行控制信道和/或第二RS,所述第二下行控制信道包括第二PDCCH或第二ePDCCH或PHICH。
所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
所述下行部分,第一上行部分和第二上行部分可以属于相同的链路或不同的链路,所述链路为接入链路或第一回传链路或第二回传链路。第一回传链路和第二回传链路为具有至少一个不同传输节点的回传链路。例如第一上行部分和第二上行部分都为接入链路。可选的第一上行部分为第一回传链路,第二上行部分为第二回传链路或接入链路。此时可以根据中继的链路切换能力和中继所处于的不同链路的定时,确定第一时间单元结构中是否有GP。
其中,作为一个实施例,该第一时间单元结构可以是协议规定好的。基站10可以根据所使用的通信协议确定该第一时间单元结构。
其中,作为另一个实施例,基站10可以从多种时间单元结构中进行选择,将多种时间单元结构中的一种确定为第一时间单元结构。这里的多种时间单元结构可以是上述的(0)至(9)种,或者这里的多种时间单元结构可以是上述的部分种,例如多种时间单元结构可以是上述的(0)至(4)种,等等。
可选地,在S301之后,基站10可以发送指示信息,所述指示信息用于指示将要使用所述第一时间单元结构。
可选的,第一RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS和/或前导序列。
可选的,第三RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS和/或前导序列。
可选的,第二RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如CSI-RS和/或同步信号。
基站10可以向UE 20发送指示信息,用于通知UE 20所使用的时间单元结构为第一时间单元结构。或者,可以理解,该指示信息用于与UE 20达成使用第一时间单元结构的共识。
可选地,该指示信息可携带在为系统信息块(System Information Block,SIB)中,或者,该指示信息可以通过RRC信令进行传输,或者,该指示信息可以通过同步信号进行传输,或者,该指示信息可以通过MIB进行指示,等等。或者,该第一时间单元结构可以在高层信令中配置,下行控制信息(Downlink Control Information,DCI)中包括使 能该配置的信息。本发明实施例对此不限定。
S112,基站10根据第一时间单元结构,进行接收,或,进行接收和发送。
也就是说,基站10根据第一时间单元结构接收信道和/或信号,或,基站10根据第一时间单元结构接收和发送信道和/或信号。
具体地,基站10根据所述第一时间单元结构,接收所述第一上行部分。如果所述第一时间单元结构包括所述第二上行部分,所述接收所述第一上行部分,包括:接收所述第一上行部分和所述第二上行部分。如果所述第一时间单元结构包括所述下行部分,所述方法还包括:所述基站根据第一时间单元结构,发送所述下行部分。
可理解,若第一时间单元结构为上述的(0)-(1),则基站10在S302中接收第一上行部分。若第一时间单元结构为上述的(2)-(4),则基站10在S302中接收第一上行部分和第二上行部分。若第一时间单元结构为上述的(5)-(6),则基站10在S302中接收第一上行部分,并发送下行部分。若第一时间单元结构为上述的(7),则基站10在S302中接收第一上行部分和第二上行部分,并发送下行部分。
可选地,在S302之前,可以包括:基站10发送用于上行调度的下行控制信息DCI,所述DCI承载于第一下行控制信道,所述DCI用于指示使用所述第一时间单元结构承载的部分或全部信道和/或信号和/或GP所占用的符号;其中,所述第一下行控制信道为第一PDCCH或第一ePDCCH。
这里的信道可以包括第二下行控制信道、PUCCH、PUSCH。这里的信号可以包括第一RS、第二RS。这里的GP可以包括第一GP、第二GP和第三GP。
可选地,若所述第一时间单元结构包括PUCCH,则所述DCI还用于指示所述PUCCH的发送方法。若所述第一时间单元结构包括第一RS,则所述DCI还用于指示所述第一RS的发送方法。
可选地,若所述第一时间单元结构包括第二下行控制信道,则所述DCI还用于指示所述第二下行控制信道的发送方法。若所述第一时间单元结构包括第二RS,则所述DCI还用于指示所述第二RS的发送方法。
其中,所述发送方法包括以下至少一种:所使用的发送或接收波束,所使用的资源映射方式,所占用的子载波。
另外,可选地,若所述第一时间单元结构包括第一GP,所述DCI还用于指示所述第一GP的持续时间t1,其中t1=0或t1>0。和/或,若所述第一时间单元结构包括第二GP,所述DCI还用于指示所述第二GP的持续时间t2,其中t2=0或t2>0。和/或,若所述第一时间单元结构包括第三GP,所述DCI还用于指示所述第三GP的持续时间t3,其中t3=0或t3>0。
以下将对第一时间单元结构以及DCI所指示的信息进行详细的描述。
为了描述方便,将第一时间单元结构所承载的信道和/或信号和/或GP统称为第一时间单元结构承载的信息。
可选地,使用所述第一时间单元结构承载的信息所占用的符号可以至少包括PUSCH占用的符号。
举例来说,若第一时间单元结构为前述的(1),DCI可以指示PUSCH占用的符号个数。作为另一例,DCI可以指示PUSCH占用的符号个数以及第一GP占用的符号个数。
本发明实施例中,可以将S112中基站10接收,或者,接收和发送的时间单元称为 目标时间单元。
本发明实施例中,PUSCH占用的符号可以包括PUSCH及其解调参考信号(DeModulation Reference Signal,DMRS)所占用的符号,应注意,为描述简便,本发明实施例后续实施例均以“PUSCH占用的符号”表示“PUSCH及其DMRS所占用的符号”。且PUSCH占用的符号可以包括PUSCH所占用的符号的位置及数量。其中,符号可以为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
所述时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息包括信道和/或信号和/或GP。可理解,在S111后,基站10可以通过指示信息指示该其他符号上所承载的信息。
其中,所述时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息包括以下中的任意一种:第一GP波束扫描的第一RS;第一GP;第一RS和第一GP;下行控制信息、第二GP和第一RS;下行控制信息、第二GP、第一RS和第一GP;下行控制信息和第二GP。(1)第一GP;(2)物理上行控制信道(Physical Uplink Control Channel,PUCCH)和/或第一RS;(3)PUCCH和/或第一RS以及第一GP;(4)第二下行控制信道和/或第二RS以及第二GP;(5)第二下行控制信道和/或第二RS、第二GP以及PUCCH和/或第一RS;(6)第二下行控制信道和/或第二RS、第二GP、PUCCH和/或第一RS以及第一GP。其中,所述第二下行控制信道包括第二PDCCH或第二ePDCCH或PHICH。
其中,PHICH用于指示该时间单元之前的某上行时间单元的反馈信息,例如,反馈信息可以是肯定确认(Acknowledgement,ACK)或否定确认(Negative ACKnowledgement,NACK)。
其中,所述其他符号所承载的信息同时包括PUCCH和第一RS时,PUCCH和第一RS复用相同的资源。所述其他符号所承载的信息同时包括第二下行控制信道和第二RS时,第二下行控制信道和第二RS复用相同的资源。
本发明实施例中,“PUCCH和/或第一RS”包括以下三种情形:(1)PUCCH,(2)第一RS,(3)复用的PUCCH和第一RS。本发明实施例中,“第二下行控制信道和/或第二RS”包括以下三种情形:(1)第二下行控制信道,(2)第二RS,(3)复用的第二下行控制信道和第二RS。
也就是说,所述时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息可以为PUCCH和/或第一RS,或者,第一GP,或者,PUCCH和/或第一RS以及第一GP。所述时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息可以为第一GP,或者,第二下行控制信道和/或第二RS以及第二GP。所述时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息可以为第二下行控制信道和/或第二RS、第二GP以及PUCCH和/或第一RS,或者,第二下行控制信道和/或第二RS、第二GP、PUCCH和/或第一RS以及第一GP。
具体地,可以根据具体的情形进行确定,可以分为如下所示的多种情况:
情况1:该时间单元为上行时间单元,该上行时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息包括PUCCH和/或第一RS与第一GP。
具体地,如果基站10确定该上行时间单元需要进行波束扫描,并且基站10接收PUSCH所用的模拟波束与第一RS的模拟波束不相同,那么,可以确定配置为该情况1。 即,其他符号上所承载的信息包括第一RS和第一GP。其中,由于不同的模拟波束之间需要切换时间,因此需要在第一RS和PUSCH之间配置第一GP。
具体地,如果基站10确定该上行时间单元需要发送PUCCH,并且该下行时间单元中的PDSCH发送所用的模拟波束与PUCCH的模拟波束不相同。此时,可以确定配置为该情况1。即,其他符号上所承载的信息包括PUCCH和第一GP。其中,由于不同的模拟波束之间需要切换时间,因此需要在PDSCH和PUCCH之间配置第一GP。
具体地,基站10可以在该时间单元中同时包括PUCCH和第一RS,且PUCCH与第一RS复用相同的资源。
可以将该下行时间单元的资源时分地分为3部分,如图12所示,分别为资源1、资源2和资源3。
可见,情况1相当于图12中的资源1承载PUCCH和/或第一RS,资源2承载第一GP,资源3承载PUSCH。举例来说,该情况1可以如图13中(a)所示。
DCI可以进一步用于指示第一GP的持续时间,假设该第一GP的持续时间表示为t1,那么对于该情况1,t1>0。
进一步地,上行DCI还可以用于指示PUCCH和/或第一RS的发送方法。以第一RS为例,例如,第一RS可以有N1种不同的发送方法。这里,N1种不同的发送方法可以记为第1种至第N1种发送方法。
其中,发送方法包括以下至少一种:所使用的发送波束或接收波束,时间维长度,所占用的子载波。也就是说,发送方法与所使用的发送波束或接收波束、时间维长度、所占用的子载波等有关,不同的发送方法是指所使用的发送波束或接收波束不同,或者,不同的发送方法是指时间维长度不同,或者,不同的发送方法是指所使用的发送波束或接收波束和时间维长度均不同,或者,不同的发送方法是指所使用的发送波束或接收波束、时间维长度和所占用的子载波均不同,等等。
情况2:该时间单元为上行时间单元,该上行时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息包括PUCCH和/或第一RS。
具体地,如果基站10确定该上行时间单元需要进行波束扫描,并且基站接收PUSCH所用的模拟波束与第一RS的模拟波束相同,那么,可以确定配置为该情况2。
具体地,如果基站10确定该上行时间单元需要发送PUCCH,并且基站接收PUSCH所用的模拟波束与PUCCH的模拟波束相同,那么,可以确定配置为该情况2。
具体地,基站10可以在该时间单元中同时包括PUCCH和第一RS,且PUCCH与第一RS复用相同的资源。
可见,情况2相当于图12中的资源1承载PUCCH和/或第一RS,资源2和资源3承载PUSCH。情况2可以如图13中(b)所示。
结合与情况1的描述,DCI还可以进一步用于指示第一GP所占用的符号。或者,DCI可以用于指示第一GP的持续时间,假设该第一GP的持续时间表示为t1,那么这里,t1=0。
可见,DCI进一步可以用于指示第一GP的持续时间,假设该第一GP的持续时间表示为t1,t1>0或者t1=0。相应地,UE 20可以根据该第一GP的持续时间确定是情况1(t1>0)还是情况2(t1=0)。
进一步地,上行DCI还可以用于指示PUCCH和/或第一RS的发送方法。以第一RS 为例,例如,情况2中第一RS可以有N2种不同的发送方法。这里,N2种不同的发送方法可以记为第N1+1种至第N1+N2种发送方法。
对于情况2,由于基站接收PUSCH的模拟波束与PUCCH和/或第一RS的模拟波束相同,因此模拟波束的切换时间是不需要的,这样,可以将资源2承载PUSCH,从而能够利用原本保护间隔所在的资源进行上行传输,这样能够实现资源的充分利用,提升上行吞吐量。同时上行DCI能够指示不同PUCCH和/或第一RS的发送方法,从而支持时间单元间接收模拟波束切换,也就是说,可以支持时间单元级的动态配置,增加了上行信息发送的灵活度。
情况3:该时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息包括第二下行控制信息和/或第二RS以及第二GP,其中第二下行控制信息包括第二PDCCH或第二ePDCCH或PHICH。
即,其他符号上所承载的信息包括第二下行控制信息以及第二GP;或者,其他符号上所承载的信息包括第二RS以及第二GP;或者,其他符号上所承载的信息包括第二下行控制信息和第二RS以及第二GP,其中,第二下行控制信息和第二RS复用相同的资源。
对于可能同时包括上下行传输的时间单元的发送和接收,该时间单元中的下行传输可以包括第二下行控制信道(即第二PDCCH或第二ePDCCH或PHICH)和/或下行导频(即第二RS)。
具体地,如果基站10确定该时间单元包括上下行传输,那么,可以确定配置为该情况3。其中,由于上下行之间需要切换时间,因此需要在第二下行控制信息和/或第二RS与PUSCH之间配置第二GP。
可见,情况3相当于图12中的资源1承载第二下行控制信息和/或第二RS,资源2承载第二GP,资源3承载PUSCH。
举例来说,第二下行控制信道为第二PDCCH,那么情况3可以如图13中(c)所示。
DCI可以进一步用于指示第二GP的持续时间,假设该第二GP的持续时间表示为t2,那么对于该情况3,t2>0。
进一步地,上行DCI还可以用于指示第二下行控制信息和/或第二RS的发送方法。以第二RS为例,例如,情况3中的第二RS可以有N3种不同的发送方法。这里,N3种不同的发送方法可以记为第N1+N2+1种至第N1+N2+N3种发送方法。
情况4:该时间单元为上行时间单元,该上行时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息包括第一GP。
具体地,如果基站10确定该上行时间单元不需要进行波束扫描,并且该上行时间单元的前一个时间单元也是上行时间单元,该上行时间单元所用的模拟波束与前一个上行时间单元所使用的模拟波束不相同,那么,可以确定配置为该情况4。
可见,情况4相当于图12中的资源1并入资源3,如图14所示,资源1和资源3承载PUSCH,资源2承载第一GP。可选地,该情形也可以理解为:资源1不存在,或,将资源2时域平移至时间单元的头部。举例来说,情况4可以如图13中(d)所示。
可理解,图14中的资源2承载第一GP是因为相邻的两个上行时间单元不同的模拟波束需要切换时间。
相应地,DCI可以用于指示第一GP的持续时间,假设该第一GP的持续时间表示为 t1,那么对于该情况4,t1>0。
可选地,对于该情况4,DCI也可以用于指示第二GP的持续时间t2,且t2=0。
情况5:PUSCH占用该时间单元的所有符号。也就是说,该时间单元中除所述PUSCH占用的符号外,不存在其他的符号。
也就是说,该时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息为空。或者说,该时间单元中除所述PUSCH之外,不承载其他的信息。
可见,情况5相当于图12中的资源1、资源2和资源3都用来承载PUSCH,如图13中(e)所示。
具体地,作为一例,如果该时间单元为上行时间单元,且该时间单元不需要进行波束扫描,并且不需要在时间单元之间留GP,那么,可以确定配置为该情况5。
这样,可以将资源1和资源2承载PUSCH,即充分利用原本保护间隔所在的资源进行上行传输,且充分利用原本PUCCH和/或第一RS所在的资源进行上行传输,能够实现资源的充分利用,提升上行吞吐量。
具体地,作为另一例,如果该时间单元不需要在资源1进行下行传输,即资源1不传输下行控制信息,可以确定配置为该情况5。
举例来说,用于波束扫描的第一RS可以周期性地发送,该周期可以为X个时间单元。可理解,某些时间单元需要发送第一RS,某些时间单元却不需要发送第一RS。
这样,可以将资源1和资源2承载PUSCH,即充分利用原本保护间隔所在的资源进行上行传输,且充分利用原本下行传输(第二下行控制信息和/或第二RS)所在的资源进行上行传输,能够实现资源的充分利用,提升上行吞吐量。
可选地,对于该情况5,DCI也可以用于指示第一GP的持续时间t1,且t1=0。或者,对于该情况5,DCI也可以用于指示第二GP的持续时间t2,且t2=0。或者,对于该情况5,S111中所述的DCI也可以用于指示第一GP的持续时间t1和第二GP的持续时间t2,且t1=t2=0。
对于上述所描述的情况1至情况5,可选地,作为一个实施例,可以在上行DCI中添加资源标识(Resource Flag)用于表示上述的各种情况。
举例来说,下面的表五以N1=4,N2=2,N3=3为例进行说明。
表五
Figure PCTCN2017079079-appb-000011
Figure PCTCN2017079079-appb-000012
其中,表五中资源标识为0~3对应于上述的情况1,资源标识为4~5对应于上述的情况2,资源标识为8~10对应于上述的情况3,资源标识为6对应于上述的情况4,资源标识为7对应于上述的情况5。
这样,本发明实施例中,可以在上行DCI中通过ResourceFlag指示相应的配置,进一步地,在S112中,基站10可以根据该DCI发送,相应地,UE 20可以根据该DCI进行接收。能够实现动态配置,增加上行发送的灵活度。
举例来说,如果已经确定该时间单元为上行时间单元。那么,可以在上行DCI中添加M比特(bit)的ResourceFlag来表示相应的配置,其中
Figure PCTCN2017079079-appb-000013
这里,
Figure PCTCN2017079079-appb-000014
表示上取整。以下的表六为N1=4,N2=2时对应的配置,此时M=3。
表六
Figure PCTCN2017079079-appb-000015
其中,资源标识列与0~7对应的为M=3比特的000~111。
应注意,资源2所承载的第一GP可以具有固定的形式或者具有多种不同的形式。举例来说,第一GP的形式可以与时域长度有关,也可以与其他的内容有关。可理解,若第一GP存在多种不同的形式,那么需要相应地增加ResourceFlag的数量。
也就是说,可以在上行DCI中以不同的ResourceFlag来指示不同的第一GP的形式。
可选地,作为一个实施例,若所述时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息包括第一GP,上行DCI还可以用于指示第一GP的长度。
可选地,作为另一个实施例,上行DCI还可以用于指示第一GP的长度。若该上行DCI所指示的第一GP的长度为0,说明该时间单元中不承载第一GP。
以时域长度为例,本发明实施例对资源2所承载的第一GP的时域长度不做限制。例如,第一GP可以是具有固定的时域长度的,均为2个OFDM符号。例如,第一GP可以具有动态可变的时域长度,第一GP所占用的时域长度可以为1个OFDM符号,或 者1.5个OFDM符号。该第一GP占用的OFDM符号的个数也可以通过上行DCI中的ResourceFlag进行指示。
举例来说,如果已经确定该时间单元同时包含上下行传输。那么,可以在上行DCI中添加M比特(bit)的ResourceFlag来表示相应的配置,其中
Figure PCTCN2017079079-appb-000016
以下的表七为N3=3时对应的配置,此时M=2。
表七
Figure PCTCN2017079079-appb-000017
其中,表七中资源标识为0~2对应于上述的情况3,资源标识为3对应于上述的情况5。其中,资源标识列位于括号中的与0~3对应的为M=2比特的00~11。
应注意,资源2所承载的第一GP可以具有固定的形式或者具有多种不同的形式。举例来说,第一GP的形式可以与时域长度有关,也可以与其他的内容有关。可理解,若第一GP存在多种不同的形式,那么需要相应地增加ResourceFlag的数量。
可见,在本实施例中,可以在不需要下行传输时充分利用原本保护间隔和下行传输所在的资源进行上行传输,同时还支持指示不同的下行发送方式。由于该指示信息承载于上行DCI,所以可以支持时间单元级动态配置,增加上行信息(PUSCH)和PDCCH/ePDCCH/第二RS发送的灵活度。
基于上述的情况1至情况5的描述,还可以考虑同时包括PUCCH和/或第一RS以及第二下行控制信息和/或第二RS的情形。具体地,如下的情况所示:
情况6:时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息包括以下中的任意一种:(1),第二下行控制信息和/或第二RS、第二GP和PUCCH和/或第一RS;(2),第二下行控制信息和/或第二RS、第二GP、PUCCH和/或第一RS和第一GP。其中,第二下行控制信息包括第二PDCCH或第二ePDCCH或PHICH。
可以将该时间单元的资源时分地分为5部分,如图15所示,分别为资源1、资源2、资源3、资源4和资源5。
可见,情况6中的(1)相当于是资源1承载第二下行控制信息和/或第二RS,资源2承载第二GP,资源3承载PUCCH和/或第一RS,资源4和资源5承载PUSCH。
举例来说,若第二下行控制信道为第二PDCCH,那么情况6中的(1)可以如图13中(f)所示。
对于情况6中的(1),DCI可以进一步用于指示第二GP的持续时间,假设该第二GP的持续时间表示为t2,t2>0。可选地,该DCI还可以进一步用于指示第一GP的持续时间,假设该第一GP的持续时间表示为t1,且t1=0。
情况6中的(2)相当于是资源1承载第二下行控制信息和/或第二RS,资源2承载第二GP,资源3承载PUCCH和/或第一RS,资源4承载第一GP,资源5承载PUSCH。
举例来说,若第二下行控制信道为第二PDCCH,那么情况6中的(1)可以如图13中(g)所示。
对于情况6中的(2),DCI可以进一步用于指示第一GP的持续时间和第二GP的持续时间,假设该第一GP的持续时间表示为t1,该第二GP的持续时间表示为t2,则t1>0,t2>0。
另外,若其他符号上所承载的信息包括第一RS,则DCI还可以指示该第一RS的发送方法。若其他符号上所承载的信息包括第二RS,则DCI还可以指示该第二RS的发送方法。若其他符号上所承载的信息包括PUCCH,则DCI还可以指示该PUCCH的发送方法。若其他符号上所承载的信息包括第二下行控制信道,则DCI还可以指示该第二下行控制信道的发送方法。
对于情况6中的(1)来说,PUCCH和/或第一RS可以存在N2种不同的发送方法,第二下行控制信息和/或第二RS可以存在N3种不同的发送方法,那么,在上行DCI中,可以添加M比特的指示信息用于指示该配置,其中
Figure PCTCN2017079079-appb-000018
对于情况6中的(2)来说,PUCCH和/或第一RS可以存在N1种不同的发送方法,第二下行控制信息和/或第二RS可以存在N3种不同的发送方法,那么,在上行DCI中,可以添加M比特的指示信息用于指示该配置,其中
Figure PCTCN2017079079-appb-000019
类似地,第二GP也可以具有固定的形式或者具有多种不同的形式。相应地,若第二GP存在多种不同的形式,那么需要在上行DCI中相应地增加ResourceFlag的数量。
也就是说,可以在上行DCI中以不同的ResourceFlag来指示不同的第二GP的形式。
可选地,作为一个实施例,若所述时间单元中除所述PUSCH占用的符号外的其他符号上所承载的信息包括第二GP,上行DCI还可以用于指示第二GP的长度。
可选地,作为另一个实施例,上行DCI还可以用于指示第二GP的长度。若该上行DCI所指示的第二GP的长度为0,说明该时间单元中不承载第二GP。
作为一种理解,情况6中的资源3、资源4和资源5可以类比与上述情况1、情况2、情况4和情况5中上行时间单元对应的资源1、资源2和资源3;情况6中的资源1和资源2可以类比与上述情况3和情况5中上下行同时传输对应的资源1和资源2。也就是说,情况6可以认为是上述上行时间单元与上下行同时传输的帧结构的组合。具体地,情况6中的(1)相当于情况2和情况3的组合,情况6中的(2)相当于情况1和情况3的组合。
作为另一种理解,上述情况1至情况6都可以认为是图15所示的资源1至资源5相应地承载不同的信息。具体地,资源1承载第二下行控制信道和/或第二RS,或PUSCH,资源2承载第二GP或PUSCH,资源3承载PUCCH和/或第一RS,或PUSCH或不存在,资源4承载第一GP或PUSCH,资源5承载PUSCH。
另外,关于该情况6的更具体的描述,可以参见前述情况1至情况5部分的相关描述,这里不再赘述。
可见,上述情况1至情况6中,所述DCI可以用于指示所述其他符号上所承载的信息中的第一GP的持续时间t1,其中t1=0或t1>0;和/或,所述DCI还用于指示所述其他符号上所承载的信息中的第二GP的持续时间t2,其中t2=0或t2>0。
另外,可理解,对于如图13中的(a)、(c)和(g)的情形,在第一时间单元结构还可以包括额外的资源用于承载第三GP,作为当前时间单元与下一个时间单元之间的保护间隔。这里不在一一罗列。
相应地,可以理解,本发明实施例中,在S112中,UE 20可以根据第一时间单元结构向基站10发送第一上行部分。
如果第一时间单元结构包括第二上行部分,UE 20可以根据第一时间单元结构接收向基站10发送第一上行部分和第二上行部分。
如果第一时间单元结构包括下行部分,则还包括:UE 20可以根据第一时间单元结构接收基站10发送的下行部分。
也就是说,在S112中,UE 20可以根据第一时间单元结构进行发送,或者,UE 20根据第一时间单元结构进行发送和接收。
本发明实施例中,基站10将配置通过上行DCI发送至UE 20。进一步地,UE 20可以根据该配置进行发送,基站10可以根据该配置进行接收。可理解,需要根据配置中的共享信道所占用的符号来调整其中的导频位置和/或数量,并调整数据的资源单元(Resource Element,RE)映射规则。具体地,该调整方式可以是预设的,或者,该调整方式可以是高层信令或DCI配置的。
图16是本发明实施例的基站的一个结构框图。图16所示的基站160包括确定单元161、接收单元162和发送单元163。
确定单元161,用于确定第一时间单元结构,所述第一时间单元结构包括以下中的任意一种:
第一保护间隔GP和第一上行部分,
第二上行部分和第一上行部分,
第二上行部分、第一GP和第一上行部分,
第二上行部分、第一GP、第一上行部分和第三GP,
下行部分、第二GP和第一上行部分,
下行部分、第二GP、第一上行部分和第三GP,
下行部分、第二GP、第二上行部分和第一上行部分,
下行部分、第二GP、第二上行部分、第一GP和第一上行部分,
下行部分、第二GP、第二上行部分、第一GP、第一上行部分和第三GP;
所述接收单元162,用于根据所述确定单元161确定的所述第一时间单元结构,接收所述第一上行部分;
如果所述第一时间单元结构包括所述第二上行部分,所述接收单元162,具体用于根据所述确定单元161确定的所述第一时间单元结构,接收所述第一上行部分和所述第二上行部分;
如果所述第一时间单元结构包括所述下行部分,所述发送单元163,用于:根据所述确定单元161确定的第一时间单元结构,发送所述下行部分;
其中,所述第一上行部分为物理上行共享信道PUSCH和/或第三参考信号RS,第二上行部分为物理上行控制信道PUCCH和/或第一参考信号RS,下行部分为第二下行控制信道和/或第二RS,所述第二下行控制信道包括第二物理下行控制信道PDCCH或第二增强型物理下行控制信道ePDCCH或物理混合自动请求重传指示信道PHICH。
所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
所述下行部分,第一上行部分和第二上行部分可以属于相同的链路或不同的链路, 所述链路为接入链路或第一回传链路或第二回传链路。第一回传链路和第二回传链路为具有至少一个不同传输节点的回传链路。例如第一上行部分和第二上行部分都为接入链路。可选的第一上行部分为第一回传链路,第二上行部分为第二回传链路或接入链路。此时可以根据中继的链路切换能力和中继所处于的不同链路的定时,确定第一时间单元结构中是否有GP。
可选地,所述发送单元163,还用于:发送指示信息,所述指示信息用于指示将要使用所述第一时间单元结构;所述指示信息承载于系统信息块SIB,或主消息块MIB,或无线资源控制RRC信令,或下行控制信息DCI,或媒体接入控制控制元素MAC CE。
可选地,所述发送单元163,还用于:发送用于上行调度的下行控制信息DCI,所述DCI承载于第一下行控制信道,所述DCI用于指示使用所述第一时间单元结构承载的部分或全部信道和/或信号和/或GP所占用的符号;其中,所述第一下行控制信道为第一PDCCH或第一ePDCCH。
可选的,第一RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS和/或前导序列。
可选的,第三RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS和/或前导序列。
可选的,第二RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如CSI-RS和/或同步信号。
如果将基站接收的称为时间单元,或者,将基站接收和发送的称为时间单元。该时间单元至少包括第一上行部分,即包括PUSCH。
可选地,所述时间单元中除所述PUSCH和/或第三RS占用的符号外的其他符号上所承载的信息包括以下中的任意一种:
第一GP,
PUCCH和/或第一RS,
PUCCH和/或第一RS以及第一GP,
第二下行控制信道和/或第二RS以及第二GP,
第二下行控制信道和/或第二RS、第二GP以及PUCCH和/或第一RS,
第二下行控制信道和/或第二RS、第二GP、PUCCH和/或第一RS以及第一GP;
其中,所述第二下行控制信道包括第二PDCCH或第二ePDCCH或PHICH。
可选地,所述PUSCH占用所述时间单元的所有符号。
可选地,若所述其他符号上所述承载的信息包括所述PUCCH,则所述DCI还用于指示所述PUCCH的发送方法;若所述其他符号上所承载的信息包括所述第一RS,则所述DCI还用于指示所述第一RS的发送方法;若所述其他符号上所述承载的信息包括所述第二下行控制信道,则所述DCI还用于指示所述第二下行控制信道的发送方法;若所述其他符号上所承载的信息包括所述第二RS,则所述DCI还用于指示所述第二RS的发送方法。
所述时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。其中,所述发送方法包括以下至少一种:所使用的发送或接收波束,时间维长度,所占用的子载波。
可选地,所述DCI还用于指示所述其他符号上所承载的信息中的第一GP的持续时 间t1,其中t1=0或t1>0;和/或,所述DCI还用于指示所述其他符号上所承载的信息中的第二GP的持续时间t2,其中t2=0或t2>0。
可选的,第一RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS和/或前导序列。
可选的,第三RS可以为用于上行信道测量和/或信道状态信息获取和/或波束管理和/或上行接入的信号,例如SRS和/或前导序列。
可选的,第二RS可以为用于下行信道测量和/或信道状态信息获取和/或波束管理和/或同步时间获取的信号,例如CSI-RS和/或同步信号。
具体地,关于该配置可以参见前述图11至图15的方法实施例部分关于该配置的详细描述,这里不再赘述。
图16中的确定单元161可以由处理器实现,接收单元162可以由接收器实现,发送单元163可以由发送器实现,接收单元1622可以由接收器实现,如图17所示,图17中的基站170包括处理器171、接收器172、发送器173和存储器174。
存储器174,用于存储处理器171执行的代码等。
基站170中的各个组件通过总线系统175耦合在一起,其中总线系统175除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图18是本发明实施例的系统芯片的一个示意性结构图。图18的系统芯片180包括输入接口1810、输出接口1820、至少一个处理器1830、存储器1840,所述输入接口1810、输出接口1820、所述处理器1830以及存储器1840之间通过总线1850相连,所述处理器1830用于执行所述存储器1840中的代码,当所述代码被执行时,所述处理器1830实现图11-15中由基站执行的方法。
图16所示的基站160、图17所示的基站170或图18所示的系统芯片180能够用于实施前述图11至图15的方法实施例中由基站实现的各个过程,为避免重复,这里不再赘述。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically  EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明实施例所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以权利要求的保护范围为准。

Claims (28)

  1. 一种数据传输的方法,其特征在于,包括:
    基站确定第一时间单元结构,所述第一时间单元结构包括以下中的任意一种:
    第一下行部分,
    第一下行部分和第一保护间隔GP,
    第一下行部分和第二下行部分,
    第一下行部分、第一GP和第二下行部分,
    第一下行部分、第一GP、第二下行部分和第三GP,
    第一下行部分、第二GP和上行部分,
    第一下行部分、第二GP、上行部分和第三GP,
    第一下行部分、第二下行部分、第二GP和上行部分,
    第一下行部分、第一GP、第二下行部分、第二GP和上行部分,
    第一下行部分、第一GP、第二下行部分、第二GP、上行部分和第三GP;
    所述基站根据所述第一时间单元结构,发送所述第一下行部分;
    如果所述第一时间单元结构包括所述第二下行部分,所述发送所述第一下行部分,包括:发送所述第一下行部分和所述第二下行部分;
    如果所述第一时间单元结构包括所述上行部分,所述方法还包括:所述基站根据第一时间单元结构,接收所述上行部分;
    其中,所述第一下行部分为第一下行控制信道和/或物理层共享信道PDSCH和/或第三参考信号RS;所述第二下行部分为第一参考信号RS和/或第二下行控制信道;所述上行部分为物理上行控制信道PUCCH和/或第二RS和/或物理上行共享信道PUSCH;所述第一下行控制信道为第一物理下行控制信道PDCCH或第一增强型物理下行控制信道ePDCCH;所述第二下行控制信道包括第二PDCCH或第二ePDCCH或物理混合自动请求重传指示信道PHICH;
    所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
  2. 根据权利要求1所述的方法,其特征在于,在所述发送所述第一下行部分之前,还包括:
    所述基站发送指示信息,所述指示信息用于指示将要使用所述第一时间单元结构。
  3. 根据权利要求1或2所述的方法,其特征在于,所述发送所述第一下行部分,包括:
    所述基站发送下行控制信息DCI,所述DCI承载于所述第一下行控制信道,所述DCI用于指示使用所述第一时间单元结构承载的部分或全部信道和/或信号和/或GP所占用的符号。
  4. 根据权利要求3所述的方法,其特征在于,若所述第一时间单元结构包括第一RS,则所述DCI还用于指示所述第一RS的发送方法。
  5. 根据权利要求3或4所述的方法,其特征在于,若所述第一时间单元结构包括第二下行控制信道,则所述DCI还用于指示所述第二下行控制信道的发送方法。
  6. 根据权利要求4或5所述的方法,其特征在于,所述发送方法包括以下至少一种:
    所使用的发送或接收波束,所使用的资源映射方式,所占用的子载波。
  7. 根据权利要求3至6任一项所述的方法,其特征在于,
    若所述第一时间单元结构包括第一GP,所述DCI还用于指示所述第一GP的持续时间t1,其中t1=0或t1>0;和/或,
    若所述第一时间单元结构包括第二GP,所述DCI还用于指示所述第二GP的持续时间t2,其中t2=0或t2>0;和/或,
    若所述第一时间单元结构包括第三GP,所述DCI还用于指示所述第三GP的持续时间t3,其中t3=0或t3>0。
  8. 一种数据传输的方法,其特征在于,包括:
    基站确定第一时间单元结构,所述第一时间单元结构包括以下中的任意一种:
    第一上行部分,
    第一保护间隔GP和第一上行部分,
    第二上行部分和第一上行部分,
    第二上行部分、第一GP和第一上行部分,
    第二上行部分、第一GP、第一上行部分和第三GP,
    下行部分、第二GP和第一上行部分,
    下行部分、第二GP、第一上行部分和第三GP,
    下行部分、第二GP、第二上行部分和第一上行部分,
    下行部分、第二GP、第二上行部分、第一GP和第一上行部分,
    下行部分、第二GP、第二上行部分、第一GP、第一上行部分和第三GP;
    所述基站根据所述第一时间单元结构,接收所述第一上行部分;
    如果所述第一时间单元结构包括所述第二上行部分,所述接收所述第一上行部分,包括:接收所述第一上行部分和所述第二上行部分;
    如果所述第一时间单元结构包括所述下行部分,所述方法还包括:所述基站根据第一时间单元结构,发送所述下行部分;
    其中,所述第一上行部分为物理上行共享信道PUSCH和/或第三参考信号RS,第二上行部分为物理上行控制信道PUCCH和/或第一参考信号RS,下行部分为第二下行控制信道和/或第二RS,所述第二下行控制信道包括第二物理下行控制信道PDCCH或第二增强型物理下行控制信道ePDCCH或物理混合自动请求重传指示信道PHICH;
    所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
  9. 根据权利要求8所述的方法,其特征在于,在所述接收所述第一上行部分之前,还包括:
    基站发送指示信息,所述指示信息用于指示将要使用所述第一时间单元结构媒体接入控制控制元素。
  10. 根据权利要求8或9所述的方法,其特征在于,在所述接收所述第一上行部分之前,还包括:
    所述基站发送用于上行调度的下行控制信息DCI,所述DCI承载于第一下行控制信道,所述DCI用于指示使用所述第一时间单元结构承载的部分或全部信道和/或信号和/或GP所占用的符号;
    其中,所述第一下行控制信道为第一PDCCH或第一ePDCCH。
  11. 根据权利要求10所述的方法,其特征在于,
    若所述第一时间单元结构包括PUCCH,则所述DCI还用于指示所述PUCCH的发送方法;
    若所述第一时间单元结构包括第一RS,则所述DCI还用于指示所述第一RS的发送方法。
  12. 根据权利要求10或11所述的方法,其特征在于,
    若所述第一时间单元结构包括第二下行控制信道,则所述DCI还用于指示所述第二下行控制信道的发送方法;
    若所述第一时间单元结构包括第二RS,则所述DCI还用于指示所述第二RS的发送方法。
  13. 根据权利要求11或12所述的方法,其特征在于,所述发送方法包括以下至少一种:
    所使用的发送或接收波束,所使用的资源映射方式,所占用的子载波。
  14. 根据权利要求10至13任一项所述的方法,其特征在于,
    若所述第一时间单元结构包括第一GP,所述DCI还用于指示所述第一GP的持续时间t1,其中t1=0或t1>0;和/或,
    若所述第一时间单元结构包括第二GP,所述DCI还用于指示所述第二GP的持续时间t2,其中t2=0或t2>0;和/或,
    若所述第一时间单元结构包括第三GP,所述DCI还用于指示所述第三GP的持续时间t3,其中t3=0或t3>0。
  15. 一种基站,其特征在于,包括:确定单元、发送单元和接收单元,
    所述确定单元,用于确定第一时间单元结构,所述第一时间单元结构包括以下中的任意一种:
    第一下行部分,
    第一下行部分和第一保护间隔GP,
    第一下行部分和第二下行部分,
    第一下行部分、第一GP和第二下行部分,
    第一下行部分、第一GP、第二下行部分和第三GP,
    第一下行部分、第二GP和上行部分,
    第一下行部分、第二GP、上行部分和第三GP,
    第一下行部分、第二下行部分、第二GP和上行部分,
    第一下行部分、第一GP、第二下行部分、第二GP和上行部分,
    第一下行部分、第一GP、第二下行部分、第二GP、上行部分和第三GP;
    所述发送单元,用于根据所述确定单元确定的所述第一时间单元结构,发送所述第一下行部分;
    如果所述第一时间单元结构包括所述第二下行部分,所述发送单元,具体用于根据所述确定单元确定的所述第一时间单元结构,发送所述第一下行部分和所述第二下行部分;
    如果所述第一时间单元结构包括所述上行部分,所述接收单元,用于根据所述确定单元确定的第一时间单元结构,接收所述上行部分;
    其中,所述第一下行部分为第一下行控制信道和/或物理层共享信道PDSCH和/或第三参考信号RS;所述第二下行部分为第一参考信号RS和/或第二下行控制信道;所述上行部分为物理上行控制信道PUCCH和/或第二RS和/或物理上行共享信道PUSCH;所述第一下行控制信道为第一物理下行控制信道PDCCH或第一增强型物理下行控制信道ePDCCH;所述第二下行控制信道包括第二PDCCH或第二ePDCCH或物理混合自动请求重传指示信道PHICH;
    所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
  16. 根据权利要求15所述的基站,其特征在于,所述发送单元,还用于:
    发送指示信息,所述指示信息用于指示将要使用所述第一时间单元结构。
  17. 根据权利要求15或16所述的基站,其特征在于,所述发送单元,还用于:
    发送下行控制信息DCI,所述DCI承载于所述第一下行控制信道,所述DCI用于指示使用所述第一时间单元结构承载的部分或全部信道和/或信号和/或GP所占用的符号。
  18. 根据权利要求17所述的基站,其特征在于,若所述第一时间单元结构包括第一RS,则所述DCI还用于指示所述第一RS的发送方法。
  19. 根据权利要求17或18所述的基站,其特征在于,若所述第一时间单元结构包括第二下行控制信道,则所述DCI还用于指示所述第二下行控制信道的发送方法。
  20. 根据权利要求18或19所述的基站,其特征在于,所述发送方法包括以下至少一种:
    所使用的发送或接收波束,所使用的资源映射方式,所占用的子载波。
  21. 根据权利要求17至20任一项所述的基站,其特征在于,
    若所述第一时间单元结构包括第一GP,所述DCI还用于指示所述第一GP的持续时间t1,其中t1=0或t1>0;和/或,
    若所述第一时间单元结构包括第二GP,所述DCI还用于指示所述第二GP的持续时间t2,其中t2=0或t2>0;和/或,
    若所述第一时间单元结构包括第三GP,所述DCI还用于指示所述第三GP的持续时间t3,其中t3=0或t3>0。
  22. 一种基站,其特征在于,包括:确定单元、发送单元和接收单元,
    所述确定单元,用于确定第一时间单元结构,所述第一时间单元结构包括以下中的任意一种:
    第一上行部分,
    第一保护间隔GP和第一上行部分,
    第二上行部分和第一上行部分,
    第二上行部分、第一GP和第一上行部分,
    第二上行部分、第一GP、第一上行部分和第三GP,
    下行部分、第二GP和第一上行部分,
    下行部分、第二GP、第一上行部分和第三GP,
    下行部分、第二GP、第二上行部分和第一上行部分,
    下行部分、第二GP、第二上行部分、第一GP和第一上行部分,
    下行部分、第二GP、第二上行部分、第一GP、第一上行部分和第三GP;
    所述接收单元,用于根据所述确定单元确定的所述第一时间单元结构,接收所述第一上行部分;
    如果所述第一时间单元结构包括所述第二上行部分,所述接收单元,具体用于根据所述确定单元确定的所述第一时间单元结构,接收所述第一上行部分和所述第二上行部分;
    如果所述第一时间单元结构包括所述下行部分,所述发送单元,用于:根据所述确定单元确定的第一时间单元结构,发送所述下行部分;
    其中,所述第一上行部分为物理上行共享信道PUSCH和/或第三参考信号RS,第二上行部分为物理上行控制信道PUCCH和/或第一参考信号RS,下行部分为第二下行控制信道和/或第二RS,所述第二下行控制信道包括第二物理下行控制信道PDCCH或第二增强型物理下行控制信道ePDCCH或物理混合自动请求重传指示信道PHICH;
    所述第一时间单元为以下之一:迷你时隙,迷你时隙集合,时隙,时隙集合,子帧,子帧集合和帧。
  23. 根据权利要求22所述的基站,其特征在于,所述发送单元,还用于:
    发送指示信息,所述指示信息用于指示将要使用所述第一时间单元结构。
  24. 根据权利要求22或23所述的基站,其特征在于,所述发送单元,还用于:
    发送用于上行调度的下行控制信息DCI,所述DCI承载于第一下行控制信道,所述DCI用于指示使用所述第一时间单元结构承载的部分或全部信道和/或信号和/或GP所占用的符号;
    其中,所述第一下行控制信道为第一PDCCH或第一ePDCCH。
  25. 根据权利要求24所述的基站,其特征在于,
    若所述第一时间单元结构包括PUCCH,则所述DCI还用于指示所述PUCCH的发送方法;
    若所述第一时间单元结构包括第一RS,则所述DCI还用于指示所述第一RS的发送方法。
  26. 根据权利要求24或25所述的基站,其特征在于,
    若所述第一时间单元结构包括第二下行控制信道,则所述DCI还用于指示所述第二下行控制信道的发送方法;
    若所述第一时间单元结构包括第二RS,则所述DCI还用于指示所述第二RS的发送方法。
  27. 根据权利要求25或26所述的基站,其特征在于,所述发送方法包括以下至少一种:
    所使用的发送或接收波束,所使用的资源映射方式,所占用的子载波。
  28. 根据权利要求24至27任一项所述的基站,其特征在于,
    若所述第一时间单元结构包括第一GP,所述DCI还用于指示所述第一GP的持续时间t1,其中t1=0或t1>0;和/或,
    若所述第一时间单元结构包括第二GP,所述DCI还用于指示所述第二GP的持续时间t2,其中t2=0或t2>0;和/或,
    若所述第一时间单元结构包括第三GP,所述DCI还用于指示所述第三GP的持续时间t3,其中t3=0或t3>0。
PCT/CN2017/079079 2016-03-31 2017-03-31 数据传输的方法以及基站 WO2017167292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610204620.6 2016-03-31
CN201610204620.6A CN107294688B (zh) 2016-03-31 2016-03-31 数据传输的方法以及基站

Publications (1)

Publication Number Publication Date
WO2017167292A1 true WO2017167292A1 (zh) 2017-10-05

Family

ID=59962646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079079 WO2017167292A1 (zh) 2016-03-31 2017-03-31 数据传输的方法以及基站

Country Status (2)

Country Link
CN (1) CN107294688B (zh)
WO (1) WO2017167292A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678122B (zh) * 2017-11-17 2019-11-21 大陸商電信科學技術研究院有限公司 多時隙傳輸的方法和設備

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282883B (zh) * 2017-01-06 2020-03-24 电信科学技术研究院 一种信息传输方法及装置
CN109818723B (zh) * 2017-11-21 2020-12-29 中国移动通信有限公司研究院 一种进行数据传输的方法、网络侧设备及终端
CN114221837B (zh) * 2020-09-04 2023-08-11 维沃移动通信有限公司 帧结构指示方法、帧结构更新方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083096A (zh) * 2010-03-22 2011-06-01 大唐移动通信设备有限公司 回程链路上的控制信令发送及信令检测方法、系统和设备
CN103249153A (zh) * 2012-02-10 2013-08-14 中兴通讯股份有限公司 一种tdd系统动态帧结构分配方法、系统及演进基站
CN103795516A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 一种发送和接收反馈信息的方法、系统及设备
WO2015057367A1 (en) * 2013-10-14 2015-04-23 Qualcomm Incorporated Downlink control management in an unlicensed or shared spectrum
CN104782067A (zh) * 2012-11-06 2015-07-15 Lg电子株式会社 用于在无线通信系统中发送和接收数据的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868975B (zh) * 2011-03-31 2019-07-19 华为技术有限公司 时分双工系统中子帧配置的方法、基站及用户设备
CN102958058B (zh) * 2011-08-17 2016-07-06 上海贝尔股份有限公司 在异构网中用于通知动态上下行配置的方法和装置
CN103840931B (zh) * 2012-11-23 2018-04-17 电信科学技术研究院 时分双工tdd保护频带内的数据传输方法和设备
WO2015014407A1 (en) * 2013-08-02 2015-02-05 Nokia Solutions And Networks Oy Transmission mode arrangement for flexible time division duplexing (tdd)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083096A (zh) * 2010-03-22 2011-06-01 大唐移动通信设备有限公司 回程链路上的控制信令发送及信令检测方法、系统和设备
CN103249153A (zh) * 2012-02-10 2013-08-14 中兴通讯股份有限公司 一种tdd系统动态帧结构分配方法、系统及演进基站
CN103795516A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 一种发送和接收反馈信息的方法、系统及设备
CN104782067A (zh) * 2012-11-06 2015-07-15 Lg电子株式会社 用于在无线通信系统中发送和接收数据的方法和设备
WO2015057367A1 (en) * 2013-10-14 2015-04-23 Qualcomm Incorporated Downlink control management in an unlicensed or shared spectrum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678122B (zh) * 2017-11-17 2019-11-21 大陸商電信科學技術研究院有限公司 多時隙傳輸的方法和設備

Also Published As

Publication number Publication date
CN107294688B (zh) 2021-01-15
CN107294688A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
US11229046B2 (en) Data transmission method and terminal
WO2018196550A1 (zh) 传输反馈信息的方法和装置
US20210111846A1 (en) Method for transmitting and receiving channel state information between terminal and base station in wireless communication system and apparatus supporting same
US9191170B2 (en) Method for transreceiving reference signal in wireless access system and apparatus for same
CN109327884B (zh) 通信方法、网络设备和中继设备
JP6988894B2 (ja) 上りリンク伝送制御方法及びその装置、通信システム
WO2019213845A1 (zh) 无线通信方法、通信设备、芯片和系统
TWI829760B (zh) 用於側行鏈路的通信方法和設備
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
WO2018170673A1 (zh) 传输数据的方法、终端设备和网络设备
CN115767750A (zh) 用于下行链路控制物理结构的方法和设备
WO2018228502A1 (zh) 传输控制信息的方法和设备
WO2017167292A1 (zh) 数据传输的方法以及基站
WO2017101018A1 (zh) 载波跳转的方法、终端和基站
WO2019033396A1 (zh) 无线通信方法和设备
US10791571B2 (en) Downlink signal receiving method and user equipment, and downlink signal transmission method and base station
US11330615B2 (en) Wireless communication method, terminal device and transmitting and receiving nodes
WO2019084877A1 (zh) 用于配置资源的方法、终端设备和网络设备
WO2021056135A1 (zh) 传输上行控制信息的方法和终端设备
EP3817482A1 (en) Uplink signal transmission method, terminal device, and network device
JP2022500906A (ja) 情報伝送方法、装置及び記憶媒体
EP4007392B1 (en) Wireless communication methods and communication device
WO2017024467A1 (zh) 无线通信的方法、网络设备和终端设备
EP3606249B1 (en) Communication method, terminal device, and network device
WO2020143743A1 (zh) 接收数据的方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773322

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773322

Country of ref document: EP

Kind code of ref document: A1