WO2024026577A1 - Dispositivo para la filtración y purificación de agua grises u otras aguas residuales para generar una nueva fuente hídrica limpia y segura mediante un filtro de tipo biológico - Google Patents

Dispositivo para la filtración y purificación de agua grises u otras aguas residuales para generar una nueva fuente hídrica limpia y segura mediante un filtro de tipo biológico Download PDF

Info

Publication number
WO2024026577A1
WO2024026577A1 PCT/CL2022/050078 CL2022050078W WO2024026577A1 WO 2024026577 A1 WO2024026577 A1 WO 2024026577A1 CL 2022050078 W CL2022050078 W CL 2022050078W WO 2024026577 A1 WO2024026577 A1 WO 2024026577A1
Authority
WO
WIPO (PCT)
Prior art keywords
biocarrier
water
ring
pond
container
Prior art date
Application number
PCT/CL2022/050078
Other languages
English (en)
French (fr)
Inventor
Valentina del Carmen VELOSO GIMÉNEZ
Camila Valentina CÁRDENAS CALDERÓN
Alejandra Rita de Lourdes SERRANO CANALES
Macarena Andrea MUÑOZ SILVA
Ignacio Tomás VARGAS CUCURELLA
Original Assignee
Yaku Spa (90%)
Pontificia Universidad Católica De Chile (10%)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaku Spa (90%), Pontificia Universidad Católica De Chile (10%) filed Critical Yaku Spa (90%)
Priority to PCT/CL2022/050078 priority Critical patent/WO2024026577A1/es
Publication of WO2024026577A1 publication Critical patent/WO2024026577A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters

Definitions

  • the present invention is part of the water reuse industry, specifically, it refers to a device for the reuse of wastewater, such as gray water, which generates a new water source in places with water scarcity or deficit, allowing the reduction of the water consumption.
  • document CL200803104 describes a gray water regeneration system, which is controlled entirely by a foot, and which comprises; a primary tank, a secondary tank that has an aerator, a membrane and a suction pump, and a tertiary tank for chlorine dosing, where the three tanks are connected to a general collector.
  • This solution has the disadvantage that the water is treated sequentially in different tanks and not just in one, where microorganisms are not used in substrates as a biofilter to metabolize the contaminants in gray water for water filtration and purification.
  • document US20150191365 which describes a gray water recovery and reuse system comprising a body for collecting, conditioning and discharging gray water that includes an inlet connected to a source of gray water; a solids filter for gray water positioned at the entrance to the body; a waste outlet adjacent to and under the filter to separate said solids; a pond to receive filtered gray water; a disinfectant to disinfect filtered gray water; a pump to discharge the conditioned gray water from the pond; a discharge connection to the sewer system; a connection to a fresh water source; and a control system to control the operation of the system.
  • the system allows the water to be treated in a single body or pond, however, it does not use microorganisms in substrates that allow gray water pollutants to be metabolized, where the substrates are constantly agitated by an aeration device that favors the interaction between microorganisms and the water to be filtered.
  • document US4196082 which describes an integrated domestic wastewater disposal and water purification system comprising: a dry toilet; a main pond for waste composting; a sludge settling pond with an upper and lower part; a biofilter through which the water to be purified circulates; piping means for removing water from the settling pond to the biofilter; piping means for removing sludge from the settling pond to the main pond; piping means for feeding greywater from the toilet to mechanical purification means for filtering the water; piping means for feeding mechanically purified water from said mechanical purifying means to the sludge settling pond; and a common suction fan to change the air in the toilet and biofilter.
  • this system describes the use of biofilters for water treatment, this solution has the disadvantage that the water is treated sequentially in different tanks and not just in one, which makes the implementation of the system difficult.
  • biocarriers or carriers for water purification such as document US20070102354 that describes a support medium for biological growth, which comprises a tubular cross section, and a disturbed outer perimeter that creates a protected outer surface to support biological growth, wherein said disturbed perimeter can facilitate mixing of the medium.
  • none of the previous documents teaches a device for the filtration and purification of wastewater, such as gray water, that allows the reuse of said water with an efficient, simple and configuration. affordable to implement it locally or individually up to large volumes of water, using a plurality of biocarriers that maximize the contact between the water to be treated and the microorganisms in the substrates and improve the transfer of oxygen to said microorganisms, allowing their aerobic metabolism to be promoted and , consequently, improves the water purification process
  • none of said documents discloses carriers or biocarriers that present a configuration of cavities and blades that favors the growth of microorganisms and that ensures hydrodynamic performance for the interaction between the biocarrier and the water.
  • the invention refers to an integrated device for the filtration and purification of wastewater, such as gray water, that allows the reuse of said water, generating a new water source.
  • the device allows the regeneration of wastewater as a resource, such as gray water, which is generally wasted, generating a new, clean and safe water source, which allows reducing water consumption, which is especially relevant in places with drought. , water scarcity or water deficit.
  • Another objective of the invention is to provide a device that allows the treatment of wastewater, such as gray water, in a sustainable manner and free of toxic byproducts.
  • the device corresponds to a biological type filter that uses a biofilter that contains microorganisms, established on substrates, capable of removing contaminants and/or impurities from wastewater, such as gray water.
  • the design of the substrates used in the device improves their hydrodynamic behavior, achieving greater interaction with water and air that maximizes the contact between the water to be treated and the microorganisms on the substrates and improves the transfer of oxygen to said microorganisms, allowing favor its aerobic metabolism and, consequently, improves the purification process of wastewater, particularly gray water.
  • the device purifies water, allowing it to be reused 100% for irrigation, toilet flushing and/or industrial uses, reducing on average between 40-70% of water consumption, providing economic and water savings. It is an efficient, compact, sustainable technology, easy to operate, with low maintenance, low cost compared to other biological technologies and affordable for people.
  • the device is designed to be used by a wide range of users for local or single-family implementation up to large volumes of water, such as urban or rural families, farmers, companies that want to reduce water consumption, institutions and construction companies. and real estate, the industrial sector, or any consumer interested in reducing their water footprint.
  • the integrated device for the reuse of wastewater, such as gray water, to generate a new water source corresponds to a biological type filtering device, which includes a pond for the collection of the water to be treated; a biocarrier container comprising a plurality of biocarriers containing the grown microorganisms, which are responsible for to purify water by constituting a biofilter; and an aeration device to supply oxygen inside the pond to promote the aerobic metabolism of microorganisms, prevent the appearance of bad odors and keep the biocarriers in constant agitation for their interaction with the water.
  • a biological type filtering device which includes a pond for the collection of the water to be treated; a biocarrier container comprising a plurality of biocarriers containing the grown microorganisms, which are responsible for to purify water by constituting a biofilter; and an aeration device to supply oxygen inside the pond to promote the aerobic metabolism of microorganisms, prevent the appearance of bad odors and keep the biocarriers in
  • the aeration device allows for constant agitation of the biocarriers, allowing the interaction between microorganisms and water for filtration and purification.
  • the aeration device injects air promoting the aerobic metabolism of the microorganisms in the biofilter due to the addition of oxygen in the device.
  • the biocarrier design is developed so that it presents a hydrodynamic performance that favors the biofiltration process of wastewater, particularly gray water, so that the biocarriers achieve greater interaction with water and air, therefore, oxygen and aerobic metabolism. .
  • the pond includes an inlet to channel the water to be treated and to discharge the water once filtered and purified.
  • the pond can include an outlet separate from the inlet to extract the water once filtered and purified.
  • the device can include a prefilter at its inlet to remove particles and solids suspended in the water to be treated before entering the pond.
  • the device captures waste water, particularly gray water, from showers, bathtubs, hand washing and/or laundry to be treated until purified.
  • microorganisms are established in biocarriers that correspond to an inert and light substrate, which allow the growth of microorganisms inside, which are designed for their movement in the water, favoring the interaction between microorganisms and water, ensuring the purification of the treated water.
  • the biocarrier container contains the microorganisms grown on the plurality of biocarriers confined, being arranged inside the pond.
  • the biocarrier container includes fixing means that allow the container to be anchored in the pond so that it remains suspended without being in contact with the walls of said pond.
  • the device may include connections that allow the water to be treated to be channeled from its source to the collection pond. Also, the device may include water pumps to facilitate the loading of water to be treated and the discharge of purified water to and from the pond, respectively.
  • the device may also comprise a real-time monitoring system, which allows measuring water quality parameters through sensors that are integrated in a centralized circuit.
  • Figure 1 shows the device for filtration and purification of wastewater, such as gray water, according to one embodiment of the invention.
  • Figure 2 shows the biocarrier container according to one embodiment of the invention.
  • Figure 3 shows the opening of the pond according to one embodiment of the invention.
  • Figure 4 shows the air diffuser ring of the aeration apparatus connected to the biocarrier container according to one embodiment of the invention.
  • Figure 5 shows an alternative arrangement of the device for filtration and purification of wastewater, such as gray water.
  • Figure 6A shows an isometric view of a first biocarrier design.
  • Figure 6B shows a front view of a first biocarrier design.
  • Figure 7A shows an isometric view of a second biocarrier design.
  • Figure 7B shows a front view of a second biocarrier design.
  • Figure 8 shows a biocarrier design according to the state of the art.
  • Figure 9A shows the volume for the commercial K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 9B shows the volume for the commercial K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 10A shows the mass for the commercial K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 10B shows the mass for the commercial K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 1 1 A shows the floating time recorded for the commercial K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 1 1B shows the flotation time recorded for the commercial K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 12A shows the suspension time recorded for the commercial K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 12B shows the suspension time recorded for the commercial K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 13A shows the base time recorded for the commercial K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 13B shows the base time recorded for the commercial K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 14A shows the number of vertical rotations for the commercial K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 14B shows the number of vertical rotations for the commercial K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 15A shows the number of hourly rotations for the commercial K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 15B shows the number of hourly rotations for the commercial K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 16A shows the number of counterclockwise rotations for the commercial K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 16B shows the number of counterclockwise rotations for the commercial K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 17A shows the growth of microorganisms after 5 weeks on the K3 biocarrier made of HDPE comparing the initial state (left) and the final state (right).
  • Figure 17B shows the growth of microorganisms after 5 weeks in the K3 biocarrier made of PETG comparing the initial state (left) and the final state (right).
  • Figure 17C shows the growth of microorganisms after 5 weeks in the K3 biocarrier made of PLA comparing the initial state (left) and the final state (right).
  • Figure 18A shows the growth of microorganisms after 5 weeks in the V1 biocarrier made of PETG comparing the initial state (left) and the final state (right).
  • Figure 18B shows the growth of microorganisms after 5 weeks in the V1 biocarrier made of PLA comparing the initial state (left) and the final state (right).
  • Figure 19A shows the growth of microorganisms after 5 weeks in the V2 biocarrier made of PETG comparing the initial state (left) and the final state (right).
  • Figure 19B shows the growth of microorganisms after 5 weeks in the V2 biocarrier made of PLA comparing the initial state (left) and the final state (right).
  • Figure 20A shows the amount of fresh biomass after 3 months for the commercial version of the K3 biocarrier and each type of biocarrier made of PLA.
  • Figure 20B shows the amount of fresh biomass after 3 months for the commercial version of the K3 biocarrier and each type of biocarrier made of PETG.
  • Figure 21 A shows the amount of dry biomass after 3 months for the commercial version of the K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 21 B shows the amount of dry biomass after 3 months for the commercial version of the K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 22A shows the bacterial density obtained in the water quality test considering a 3-month biomass growth, constant aeration and weekly gray water change, for the commercial version of the K3 biocarrier and for each type of biocarrier manufactured in PLA.
  • Figure 22B shows the bacterial density obtained in the water quality test considering a 3-month biomass growth, constant aeration and weekly gray water change, for the commercial version of the K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 23A shows the quantification of the metabolic activity of the biomass obtained after 3 months, under constant aeration and weekly gray water change, for the commercial version of the K3 biocarrier and for each type of biocarrier manufactured in PLA.
  • Figure 23B shows the quantification of the metabolic activity of the biomass obtained after 3 months, under constant aeration and weekly gray water change, for the commercial version of the K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 24A shows the percentage of turbidity removal from the water compared to day 0 (untreated water), obtained in the water quality test after 24 hours of treatment, considering a biomass growth of 3 months, constant aeration and change of weekly gray water, for the commercial version of the K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 24B shows the percentage of turbidity removal from the water compared to day 0 (untreated water), obtained in the water quality test after 24 hours of treatment, considering a biomass growth of 3 months, constant aeration and change of weekly gray water, for the commercial version of the K3 biocarrier and for each type of biocarrier made of PETG.
  • Figure 25A shows the percentage of removal of the chemical oxygen demand of the water compared to day 0 (untreated water), obtained in the water quality test after 24 hours of treatment, considering a biomass growth of 3 months, constant aeration and weekly gray water change, for the commercial version of the K3 biocarrier and for each type of biocarrier made of PLA.
  • Figure 25B shows the percentage of removal of the chemical oxygen demand of the water compared to day 0 (untreated water), obtained in the water quality test after 24 hours of treatment, considering a biomass growth of 3 months, constant aeration and weekly gray water change, for the commercial version of the K3 biocarrier and for each type of biocarrier made of PETG.
  • the integrated device (1) for the filtration and purification of wastewater, such as gray water, which allows the reuse of said water to generate a new water source corresponds to a biological type filtering device, as shown in the figure.
  • Figure 1 includes a pond (2) for collecting the water to be treated; a container of biocarriers (3), arranged inside the pond (2), which comprises a plurality of biocarriers that contain the grown microorganisms, which are responsible for purifying the water, constituting a biofilter; and an aeration device to supply oxygen to the interior of the pond to promote the aerobic metabolism of microorganisms, prevent the appearance of bad odors and keep the biocarriers in constant agitation to promote their interaction with the water.
  • the pond (2) includes an inlet or opening (5) to channel the water to be treated and to discharge the water once filtered and purified.
  • the pond (2) can include an outlet or discharge separate from the inlet or opening (5) to extract the water once filtered and purified.
  • the microorganisms grow in the form of biofilms or biofilms.
  • the device captures gray water from showers, bathtubs, hand washing and/or laundry to be treated until purified.
  • the biocarrier container (3) contains the confined microorganisms grown on the plurality of biocarriers, as shown in Figure 2, it comprises an elongated body (31), made of a water-permeable material, with an upper end and a lower end. lower, opposite, where the lower end comprises connecting means (33) to connect with the aeration device.
  • the upper end of the biocarrier container (3) comprises fixing means (32) that allow the anchoring or mounting of the biocarrier container (3) to the pond (2), where the fixing means (32) allow anchor the biocarrier container (3) in the opening (5) of the pond (2), so that the biocarrier container (3) is suspended inside the pond (2) without being in contact with its walls and aligned with its opening (5).
  • the biocarrier container (3) can be suspended at different heights inside the pond (2), between a position where the upper end of the body (31) coincides with the opening (5) of the pond and a position where the lower end of the body (31) is close to a lower wall of the pond (2), while the biocarrier container (3) is not in contact with no wall of said pond (2).
  • the position of the biocarrier container (3) inside the pond (2) is determined by the fixing means (32), which can be fixed or adjustable.
  • the fixing means (32) comprise at least two straps (321) at the upper end of the body (31) of the biocarrier container (3); at least two fixing elements (322) consisting of a support tape (323) whose ends include quick joints (324) that are attached to a tie rod (321) and to the opening (5) of the tank (2), respectively.
  • the length of the support tape (323) determines the height at which the biocarrier container (3) is suspended, and may be of a fixed length to define a fixed suspension height or of variable or adjustable length to modify the position of the container. biocarrier container (3) inside the pond (2).
  • the support straps (323) may include loops at their ends to accommodate the quick couplings (324).
  • the opening (5) of the tank (2) comprises at least two mounting hooks (51) that facilitate and ensure the assembly or anchoring of the fixing means (32).
  • the mounting hooks (51) can be connected with a quick connection (324) of the fixing elements (322) in the fixing means (32).
  • the quick couplings (324) and mounting hooks (51) are made of a stainless material, such as stainless steel.
  • the body (31) of the biocarrier container (3) is a cloth bag made of porous material, cylindrical in shape, comprising a closure (311), preferably made of plastic, for access to the interior of the body to place and/or or replace biocarriers.
  • the porous material fabric is manufactured with recycled fabrics or a material of plant origin.
  • the biocarrier container (3) may include a ring at each end of said body (31).
  • said rings are manufactured with planza (polyethylene pipe), a material designed to be in contact with water.
  • said rings are manufactured with stainless steel.
  • the aeration apparatus comprises an air diffuser ring (4), attached to the biocarrier container (3) at the lower end of the body (31), connected to one end of an air hose (6), where the aeration hose Air (6) leaves the pond (2) so that the other end is connected to a mini air compressor that injects air into the pond (2) through the air diffuser ring (4), where the ring
  • the air diffuser (4) comprises a ring-shaped support, coupled to a circular diffuser hose, from where the air microbubbles emerge to supply oxygen to the interior of the pond (2) to promote the aerobic metabolism of the microorganisms. and prevent the appearance of bad odors.
  • the air diffuser ring support (4) is used to shape its structure and is preferably made of stainless steel.
  • the bubbles generated by the air diffuser ring (4) keep the plurality of biocarriers in constant agitation, favoring the interaction between microorganisms and water for filtration and purification.
  • the position of the biocarrier container (3) inside the tank (2) is such that the air diffuser ring (4) is well submerged, but is not in contact with the tank (2) in order to avoid noise generated by the vibration of said ring (4), which may cause discomfort to the user.
  • the air diffuser ring (4) is attached to the biocarrier container (3) by means of the connecting means (33) at the lower end of the body (31).
  • the joining means (33) comprise at least four support tapes (331), where one end of said tapes is attached to the lower end of the body (31) and the other end is connected to the air diffuser ring (4).
  • the connection between the connecting means (33) and the air diffuser ring (4) is made by means of a hook (332) at each end of the support tapes (331).
  • the support straps (331) may include a loop at their ends to place the hook (332).
  • the hooks (332) are made of stainless steel.
  • the connection between the connecting means (33) and the air diffuser ring (4) is made by means of cable ties.
  • a portion of the air hose (6) is fixed to the body (31) of the biocarrier container (3) by means of at least one transverse pin (34) close to each end of said body (31), of so that said portion of the air hose (6) is parallel to the longitudinal axis of the body (31).
  • the air hose (6) is arranged inside the pond (2) without being attached to the biocarrier container (3).
  • the tank (2) is substantially cylindrical and can have a vertical configuration, as in Figure 1, or a horizontal configuration, as in Figure 5.
  • the opening (5) is on the upper face and in case the pond (2) is in a horizontal configuration, the opening (5) is on the upper part of the pond (2) which corresponds to the curved surface or body of the cylinder.
  • the biocarrier container (3) and the aeration apparatus are arranged equivalently.
  • said biocarrier container (3) is arranged so that it is aligned with the opening (5) in the vertical direction.
  • the opening (5) includes a protective means that prevents the entry of foreign elements or contaminants, said protective means being, in one embodiment, a cover (7) that covers the opening (5).
  • the device (1) can include a prefilter before or in the opening (5) to remove particles and solids suspended in the water to be treated before entering the pond (2) or after the treatment has been carried out. once the water has already been biofiltered.
  • the device (1) may include connections that allow the water to be treated to be channeled from its source to the collection pond (2). Also, the device may include water pumps to facilitate the loading of water to be treated and the discharge of purified water to and from the pond (2), respectively. Optionally, the device (1) may include connections to communicate with a post-treatment pond to store the already treated or biofiltered water. Optionally, the device (1) may also comprise a real-time monitoring system, which allows measuring water quality parameters through sensors that are integrated in a centralized circuit and controlling the operation of the device (1). The monitoring system measures, at least, the pH, turbidity, temperature and electrical conductivity of the water in the pond (2). The monitoring system also includes a timer that allows generating different aeration cycles (on/off) to control the water purification time.
  • the device (1) can be incorporated for different uses according to the user's needs, such as, for example, in low-cost and highly efficient drip irrigation systems for the distribution of water to the roots of plants, toilet flushing or other uses. domestic or industrial, in accordance with the regulations of the country where the device is implemented. Furthermore, the device (1) can incorporate the use of renewable energy, for example, solar energy using solar panels, as a source of electricity to ensure operating autonomy.
  • renewable energy for example, solar energy using solar panels
  • the device (1) can be automated by implementing a controller that allows the general operation of the device (1), the loading and unloading of water, optionally incorporating water quality parameters.
  • the microorganisms are established in the plurality of biocarriers that correspond to an inert and light substrate that allow the growth of microorganisms and colonization, where said biocarriers are designed for movement in water, favoring the interaction between microorganisms and water, ensuring water purification.
  • Microorganisms correspond to specialized consortia that efficiently remove contaminants from wastewater, such as gray water, resist unfavorable conditions and adapt dynamically to variations in the composition of the water to be treated, to changes in pH, humidity and temperature.
  • the microorganisms of the device (1) correspond to environmental microorganisms that have filtering capabilities and that can grow attached to a substrate.
  • the microorganisms are previously enriched to ensure filtering efficiency, to have microorganisms grown on the substrate and to be included in the biocarrier container (3).
  • the biomass growth of the microorganisms on the biocarriers must be at least 3 months to ensure filtering efficiency.
  • the device (1) described can be implemented on various scales, such as, for example, for the in situ reuse of shower water to flush toilets, reuse of water from washing machines, of total gray water from a home, from a group of homes. or larger buildings, or even on an industrial scale.
  • the device (1) can be scaled for use with different wastewater flow rates, particularly gray water, where the size of the pond (2) can be any volume that is available depending on the user's needs.
  • the device (1) allows the filtration of residual water, particularly gray water, in a time between 12 to 24 hours depending on the volume of water.
  • residual water particularly gray water
  • at least 1 kilo of biocarriers is required to filter 1000 liters of gray water, requiring 12 hours for water treatment.
  • the biocarriers are scaled proportionally with the biomass. necessary for treatment. It is possible to accelerate the filtration process by adding biocarriers to the device (1) to reduce treatment time, maintaining the volume of water to be treated. To ensure optimal functioning of the system, the biocarriers must be replaced every 18 months.
  • the size of the biocarrier container (3) is adjusted to the amount of biocarriers used, so that it allows the movement of the biocarriers inside when they are agitated by the aeration apparatus.
  • the plurality of biocarriers can be inserted directly into the pond (2) without using the biocarrier container (3), allowing the free circulation of the biocarriers with microorganisms within the pond (2).
  • the device (1) is integrated with a post-treatment disinfection system, including chlorination, ultraviolet light, ozone or other chemical and physicochemical methods.
  • a post-treatment disinfection system including chlorination, ultraviolet light, ozone or other chemical and physicochemical methods.
  • the biocarrier design was developed so that it presents a hydrodynamic performance that favors the biofiltration process of wastewater, such as gray water, so that the biocarriers achieve greater interaction with water and air, therefore, oxygen. which promotes aerobic metabolism.
  • the biocarrier comprises a hollowed cylindrical outer ring (81); a polygonal inner ring (82), concentric with the outer ring (81) and located in the center of it; an intermediate ring (83) between said polygonal inner ring (82) and the outer ring (81), concentric to these and separating the biocarrier into a plurality of sections; where, from each vertex of the polygon of the polygonal inner ring (82), a first curved rib (84) is projected that connects all the rings (81, 82, 83) of the biocarrier, where each first rib (84) also projects outwards from the outer ring (81) forming blades (86) around it; and between each pair of first ribs (84) a second curved rib (85) is arranged that is
  • intersections generated between the rings (81, 82, 83) and the ribs (84, 85) form a plurality of cavities that increase the surface area of the biocarrier, improving the growth capacity of microorganisms inside.
  • the blades (86) around the outer ring (81) of the biocarrier favor rotation in the direction of the blades, allowing greater interaction to be generated between the biocarrier and the water, so that the contacts between the water to be treated and the biocarrier are maximized. as well as the transfer of oxygen to microorganisms to promote their aerobic metabolism, and with it, the functioning of the water purification process.
  • the biocarrier design has a hydrodynamic performance that favors the biofiltration process of wastewater, such as gray water. .
  • the biocarrier further comprises at least one additional intermediate ring (84) between the intermediate ring (83) and the polygonal inner ring (82), where the radii of the intermediate ring (83) and the at least one Additional intermediate ring (87) are such that all rings (81, 82, 83, 87) of the biocarrier are radially separated by the same distance.
  • additional cavities are formed that increase the surface area on which microorganisms can grow.
  • the cavities and surface area of the biocarrier allow greater growth of microorganisms, where the addition of blades (86) contributes to new points of biomass adhesion that allows the beginning of colonization in the context of aeration, movement and constant agitation of the biocarriers inside the biocarrier container (3) submerged in water to be treated.
  • This biocarrier design increases the surface area, number of cavities and hydrodynamic interactions to enhance biomass growth, reducing production costs and allowing local manufacturing.
  • Figures 6A, 6B, 7A and 7B show biocarrier modalities according to the indicated elements.
  • Figures 6A and 6B show a first biocarrier (8A) comprising an outer ring (81); a polygonal inner ring (82) of octagonal shape; an intermediate ring (83) between said polygonal inner ring (82) and the outer ring (81); an additional intermediate ring (87), between the intermediate ring (83) and the polygonal inner ring (82); eight first curved ribs (84) that project from each vertex of the polygonal inner ring (82), forming eight blades (86) around the outer ring (81); and eight curved second ribs (85), each arranged between each pair of first ribs (85) between the intermediate ring (83) and the outer ring (81).
  • the first biocarrier (8A) includes thirty-three cavities and eight blades (86).
  • Figures 7A and 7B show a second biocarrier (8B) that comprises an outer ring (81); a polygonal inner ring (82) of octagonal shape; an intermediate ring (83) between said polygonal inner ring (82) and the outer ring (81); eight first ribs (84) curved that project from each vertex of the polygonal inner ring (82), forming eight blades (86) around the outer ring (81); and eight curved second ribs (85), each arranged between each pair of first ribs (85) between the intermediate ring (83) and the outer ring (81).
  • the second biocarrier (8B) includes twenty-five cavities and eight blades (86).
  • the microorganisms used in the device (1) are adapted to grow attached to a plastic substrate, with the biocarriers being made of High Density Polyethylene (HDPE), Polyethylene Terephthalate with Glycol (PETG) or Polylactic Acid ( PLA, in English).
  • the biocarriers are manufactured using a 3D printer.
  • biocarrier designs are considered according to the first biocarrier (8A) called version 1 or V1, which includes thirty-three cavities and eight blades; the second biocarrier (8B) called version 2 or V2, which includes twenty-five cavities and eight blades; and a third biocarrier called K3 that corresponds to a biocarrier design available on the market, which is shown in Figure 8 and includes 19 cavities, without blades.
  • the sizes of biocarriers considered for the tests are the same for the three designs where they have a cavity area of 6027 mm 2 for the first biocarrier (8A), 5650 mm 2 for the second biocarrier (8B) and 3309 mm 2 for the biocarrier K3.
  • Biocarrier version K3 (or commercial) in HDPE material: this substrate is the one obtained on the market.
  • Biocarrier version K3 in PETG material substrate obtained by 3D printing using PETG filaments to then be compared with the rest of the conditions.
  • Biocarrier version K3 in PLA material substrate obtained by 3D printing using PLA filaments to then be able to compare with the rest of the conditions.
  • Biocarrier version 1 in PETG material substrate obtained by 3D printing using PETG filaments to then be compared with the rest of the conditions.
  • Biocarrier version 1 in PLA material substrate obtained through 3D printing using PLA filaments to then be able to compare with the rest of the conditions.
  • Biocarrier version 2 in PETG material substrate obtained by 3D printing using PETG filaments to then be able to compare with the rest of the conditions.
  • Biocarrier version 2 in PLA material substrate obtained by 3D printing using PLA filaments to then be able to compare with the rest of the conditions.
  • the volume, surface area and mass were measured for each version of the biocarrier.
  • the commercial K3 version has the lowest volume of all biocarrier versions.
  • the K3 version has less volume (in all its materials) than V1 and V2.
  • V1 has the same volume as V2 in PLA material, but V1 has a significantly larger volume in PETG material.
  • materials it can be mentioned that the PETG material occupies a larger volume than PLA.
  • Table 1 shows the number of cavities and surface area for the 3 biocarrier geometries considered, where it is obtained that both V1 and V2 have a greater number of internal cavities, with respect to K3, in particular, V1 increases by 73% and V2 by 31%, in addition, the new versions of biocarriers have a greater surface area compared to K3, where V1 increases by 82% and V2 increases by 70%.
  • the commercial K3-HDPE biocarrier is the lightest of all, which makes sense since it is the least dense material (0.95 g/cm3 of HDPE vs. 1.24 g/cm3 of HDPE). cm3 of PLA vs. 1.27 g/cm3 of PETG).
  • the biocarriers printed with PETG are heavier than those printed with PLA (same version), which is also explained according to the densities of the materials.
  • the weight of the biocarrier V1 is greater than that of V2, and the weight of V2, in turn, is greater than the weight of printed K3. This is explained because V1 is the one with the greatest surface area and therefore contains more material/printed unit. It is followed by V2 in surface area and then K3, following the same logic.
  • one of the aspects sought with the new biocarrier designs was to increase the surface area.
  • the theoretical surface area results correlate well with the volume results, proving that the volume of the new biocarrier designs increased.
  • the objective of these tests was to determine if there are differences in hydrodynamic behavior, that is, interaction with water, between the different types or versions of biocarriers.
  • the experiment consisted of submerging 10 biocarriers of the same type in a pond with water and aeration, recording a video for one minute each, with the aim of observing their behavior and movements. This was repeated 10 times for the same type of biocarrier, obtaining 10 videos for each type. The above is performed 7 times in total, that is, once for each different biocarrier design, thus having 70 measurements in total.
  • Flotation time corresponds to the amount of time that the biocarriers remain in the water line, being in contact with air.
  • Suspension time corresponds to the time in which the biocarriers are suspended in the pond, that is, they do not touch the bottom or the water line.
  • Time at the bottom corresponds to the time in which the biocarriers remain at the bottom.
  • Vertical rotations correspond to rotations carried out by the biocarriers in a non-circular direction, that is, around the axis perpendicular to the circumference.
  • Counterclockwise rotations these are the rotations that the biocarrier performs in a circular manner around the axis of its circumference in a counterclockwise direction.
  • the new V1 and V2 designs increase the total volume and movement capacity of the biocarriers in water, reporting an improvement compared to the commercial K3 geometry, achieving shorter floating time, longer suspension time with water, and greater vertical and circular rotation of the biocarrier, verifying that the increase in mass of the new designs V1 and V2 does not harm the hydrodynamic behavior of these biocarriers.
  • the best obtained in the new designs V1 and V2 allows generating greater interaction between the biocarriers and the water, to maximize the contacts between the water to be treated and the biocarriers, as well as the transfer of oxygen to the microorganisms to favor their aerobic metabolism, and thereby, the water purification process.
  • the inoculum of microorganisms from previously colonized biocarriers was added and domestic gray water (from laundry washing) was added. Water change was performed every 2 weeks and biomass growth on the new biocarriers was monitored. Incubation was carried out after 3 months under conditions of constant aeration and weekly water change. The evaluation of biomass was carried out after 5 weeks and 3 months, through macroscopic visualization, quantification of fresh and dry biomass (analytical balance), quantification of bacterial density (sonication and optical density at 600 nm) and metabolic activity (test of MTT).
  • the new versions present better growth compared to the K3-PLA geometry.
  • the new V1 design presents greater colonization than K3-PETG.
  • the addition of the blades is probably contributing new biomass adhesion points that allow the initiation of colonization in the context of aeration, movement and constant agitation of the biocarriers within the biofilter submerged in gray water.
  • the new designs V1 and V2 have a greater surface area than the K3 design, so for each unit of biocarrier there is a greater surface area available for the establishment and growth of microorganisms.
  • the amount of biomass was quantified on a high-precision analytical balance. To do this, the microorganisms were separated from the biocarriers by sonication, vortexing and centrifugation. The weight of the fresh microorganism pellet and the microorganism pellet dried for 48 hours at 65°C was measured.
  • the results in Figure 20A show a significant increase in the amount of fresh biomass when using PLA in any geometry, compared to the commercial K3 biocarrier (HDPE), meaning that the PLA material has a positive effect on the fresh weight of the biomass. Additionally, significantly greater fresh biomass is obtained for V1 compared to K3 PLA, that is, the change in geometry also has a positive effect on this parameter.
  • the fresh biomass was significantly higher in all geometries compared to commercial K3.
  • the new geometries V1 and V2 obtain greater biomass compared to the commercial K3 biocarrier (HDPE), but not K3 PLA.
  • FIG. 23A shows greater activity in biocarriers V1 and V2 in PLA material, compared to the commercial K3 biocarrier and K3-PLA, where the K3 biocarrier made of PLA has no differences. significant in terms of metabolic activity with the commercial K3 biocarrier.
  • V1 PLA has a significant improvement in metabolic activity compared to V2 PLA, which would indicate that the geometry of V1 itself promotes a higher metabolic rate of the biocarrier.
  • the V1 geometry made of PLA improves the functionality of the biocarrier, evidenced by greater fresh biomass, dry biomass, bacterial density and metabolic activity compared to the K3 geometry made of PLA. Therefore, when comparing different geometries with the same material, it is confirmed that the V1 geometry by itself favors the growth of biomass, improving the functionality of the biocarrier independent of the effect of the material.
  • V1 and V2 designs of biocarriers allow a significant increase in the growth of microorganism biomass with respect to the commercial K3 geometry, evaluated through images, fresh and dry weight, and bacterial density, which in turn It has greater metabolic activity that can favor the water filtration process.
  • the water quality was measured in the field, using a 2000 liter purification system, which consists of a 1000 liter pond with the device for filtration and purification inside (pond 1), a 1000 liter pond for the post water treatment (pond 2), and a water pump together with a gilder that drives and chlorinates the water from pond 1 to pond 2.
  • the filtered gray water comes from showers, sinks and laundry, and is used for the watering and refilling the toilet.
  • the water sample was taken after 14 hours of treatment carried out with the device according to the present invention, and the results are shown in table 2.
  • Table 2 Water quality measurement results for a water purification system that includes the device for water filtration and purification.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

Dispositivo (1 ) para la filtración y purificación de agua grises u otras aguas residuales para generar una nueva fuente hídrica limpia y segura, que comprende: un estanque (2) para el acopio de las aguas a tratar, que comprende una entrada o abertura (5) para canalizar las aguas a tratar y para la descarga del agua una vez filtrada y purificada; un contenedor de bioportadores (3), dispuesto en el interior del estanque (2), que comprende una pluralidad de bioportadores que contienen a los microorganismos crecidos, los cuales se encargan de purificar el agua; y un aparato de aireación para suministrar oxigeno en el interior del estanque para promover el metabolismo aeróbico de los microorganismos y prevenir la aparición de malos olores; y Bioportador para el crecimiento de microorganismos para la filtración y purificación de aguas grises u otras aguas residuales.

Description

Dispositivo para la filtración y purificación de agua grises u otras aguas residuales para generar una nueva fuente hídrica limpia y segura mediante un filtro de tipo biológico.
MEMORIA DESCRIPTIVA
CAMPO DE LA INVENCIÓN
La presente invención se enmarca en la industria de la reutilización de agua, específicamente, se refiere a un dispositivo para la reutilización de aguas residuales, como las aguas grises, que genera una nueva fuente hídrica en lugares con escasez o déficit hídhco, permitiendo reducir el consumo de agua.
ANTECEDENTES DE LA INVENCION
La crisis hídrica es un problema creciente y global. Se proyecta que en el 2030 habrá un 40% de déficit hídhco mundial. En particular, Chile es uno de los países más afectados, donde un 72% del territorio sufre sequía y más de 1 millón de chilenos no tienen acceso a agua. Este escenario hace necesario actuar, por lo que urge encontrar nuevas fuentes hídricas. Una alternativa atractiva es la reutilización de aguas residuales producidas por la actividad humana. Del total consumido por persona, entre un 40-75% corresponden a aguas residuales, principalmente aguas grises, generadas en duchas, lavamanos y lavadoras. Aunque el bajo nivel de contaminación de las aguas residuales o grises permite reutilizarlas, en la práctica se desperdician casi completamente debido a la falta de tecnologías sustentadles, eficientes, sencillas y asequibles para implementarlas localmente o ser adquiridas por clientes. Entre las soluciones disponibles en el estado de la técnica, se puede citar el documento CL200803104 que describe un sistema de regeneración de aguas grises, que está controlado íntegramente por un pie, y que comprende; un depósito primario, un depósito secundario que tiene un aireador, una membrana y una bomba de succión, y un depósito terciario para dosificación de cloro, donde los tres depósitos están conectados a un colector general. Esta solución presenta la desventaja de que el agua es tratada de manera secuencial en distintos depósitos y no solo en uno, en donde no se utilizan microorganismos en sustratos como biofiltro para metabolizar los contaminantes del agua gris para la filtración y purificación del agua.
Otro documento que se puede considerar es el documento US20150191365 que describe un sistema de recuperación y reutilización de aguas grises que comprende un cuerpo para recolectar, acondicionar y descargar aguas grises que incluye una entrada conectada a una fuente de agua gris; un filtro de sólidos para las aguas grises posicionado en la entrada del cuerpo; una salida de residuos adyacente y bajo el filtro para separar dichos sólidos; un estanque para recibir el agua gris filtrada; un desinfectante para desinfectar las aguas grises filtradas; una bomba para descargar las aguas grises acondicionadas desde el estanque; una conexión de descarga hacia el sistema de alcantarillado; una conexión a una fuente de agua dulce; y un sistema de control para controlar la operación del sistema. En este caso, el sistema permite tratar el agua en un solo cuerpo o estanque, sin embargo, no utiliza microorganismos en sustratos que permiten metabolizar los contaminantes del agua gris, donde los sustratos son agitados de manera constante mediante un aparato de aireación que favorece la interacción entre los microorganismos y el agua a filtrar. Otro documento que se puede citar, es el documento US4196082 que describe un sistema integrado de eliminación de aguas residuales domésticas y purificación de agua que comprende: un inodoro seco; un estanque principal para compostaje de residuos; un estanque de sedimentación de lodos con una parte superior e inferior; un biofiltro por el que circula el agua a depurar; medios de tubería para sacar el agua del estanque de sedimentación hacia el biofiltro; medios de tubería para eliminar el lodo del estanque de sedimentación hacia el estanque principal; medios de tuberías para alimentar aguas grises desde el inodoro a medios de purificación mecánicos para filtrar el agua; medios de tuberías para alimentar agua purificada mecánicamente desde dicho medio puhficador mecánico al estanque de sedimentación de lodos; y un ventilador de succión común para cambiar el aire en el inodoro y el biofiltro. A pesar de que este sistema describe el uso de biofiltros para el tratamiento del agua, esta solución presenta la desventaja de que el agua es tratada de manera secuencial en distintos depósitos y no solo en uno, lo que dificulta la implementación del sistema.
Adicionalmente, en el estado de la técnica existen distintos sustratos para microorganismos, específicamente, bioportadores o portadores para la purificación de agua, como por ejemplo, el documento US20070102354 que describe un medio de soporte para crecimiento biológico, que comprende una sección transversal tubular, y un perímetro exterior perturbado que crea una superficie exterior protegida para soportar el crecimiento biológico, en donde dicho perímetro perturbado puede facilitar el mezclado del medio.
De esta forma, ninguno de los documentos anteriores enseña un dispositivo para la filtración y purificación de aguas residuales, tales como las aguas grises, que permite la reutilización de dichas aguas con una configuración eficiente, sencilla y asequible para implementarlo de manera local o unifamiliar hasta grandes volúmenes de agua, utilizando una pluralidad de bioportadores que maximizan el contacto entre el agua a tratar y los microorganismos en los sustratos y mejora la transferencia de oxígeno hacia dichos microorganismos, permitiendo favorecer su metabolismo aeróbico y, en consecuencia, mejora el proceso de purificación del agua en donde ninguno de dichos documentos divulga portadores o bioportadores que presenten una configuración de cavidades y aspas que favorece el crecimiento de los microorganismos y que asegure el desempeño hidrodinámico para la interacción entre el bioportador y el agua.
RESUMEN DE LA INVENCIÓN
La invención se refiere a un dispositivo integrado para la filtración y purificación aguas residuales, tales como aguas grises que permite la reutilización de dichas aguas generando una nueva fuente hídñca. El dispositivo permite la revaloñzación como recurso de las aguas residuales, tales como las aguas grises, que generalmente se desperdicia, generando una nueva fuente hídñca, limpia y segura, que permite reducir el consumo de agua, lo cual es especialmente relevante en lugares con sequía, escasez hídñca o déficit hídñco.
Otro objetivo de la invención es proporcionar un dispositivo que permite el tratamiento de aguas residuales, como son las aguas grises, de manera sustentadle y libre de subproductos tóxicos.
Otro objetivo de la invención es generar una fuente hídñca que permite la regeneración de áreas verdes y cultivos que se hayan visto afectados por la falta de agua disponible. En particular, el dispositivo corresponde a un filtro de tipo biológico que utiliza un biofiltro que contiene microorganismos, establecidos sobre sustratos, capaces de remover los contaminantes y/o impurezas de las aguas residuales, como el agua gris. El diseño de los sustratos utilizados en el dispositivo mejora su comportamiento hidrodinámico, logrando una mayor interacción con el agua y el aire que maximiza el contacto entre el agua a tratar y los microorganismos en los sustratos y mejora la transferencia de oxígeno hacia dichos microorganismos, permitiendo favorecer su metabolismo aeróbico y, en consecuencia, mejora el proceso de purificación del agua residual, particularmente del agua gris.
El dispositivo purifica el agua, permitiendo reutilizarla en un 100% para riego, descarga de inodoro y/o usos industriales, reduciendo en promedio entre 40-70% del consumo de agua, entregando un ahorro económico e hídñco. Es una tecnología eficiente, compacta, sustentadle, fácil de operar, con baja mantención, de bajo costo en comparación a otras tecnologías biológicas y asequible para las personas.
El dispositivo está diseñado para ser utilizado por una amplia gama de usuarios para su implementación de manera local o unifamiliar hasta grandes volúmenes de agua, como por ejemplo, familias urbanas o rurales, agricultores, empresas que quieren disminuir el consumo de agua, instituciones y constructoras e inmobiliarias, el sector industrial, o cualquier consumidor interesado en reducir su huella hídñca.
El dispositivo integrado para la reutilización de aguas residuales, como las aguas grises, para generar una nueva fuente hídñca corresponde un dispositivo de filtrado de tipo biológico, que comprende un estanque para el acopio de las aguas a tratar; un contenedor de bioportadores que comprende una pluralidad de bioportadores que contienen a los microorganismos crecidos, los cuales se encargan de purificar el agua constituyendo un biofiltro; y un aparato de aireación para suministrar oxígeno en el interior del estanque para promover el metabolismo aeróbico de los microorganismos, prevenir la aparición de malos olores y mantener en agitación constante a los bioportadores para su interacción con el agua.
El aparato de aireación permite generar agitación constante de los bioportadores permitiendo la interacción entre los microorganismos y el agua para su filtración y purificación. Además, el aparato de aireación inyecta aire promoviendo el metabolismo aeróbico de los microorganismos del biofiltro debido a la adición de oxígeno en el dispositivo.
El diseño de bioportador está desarrollado de manera que presente un desempeño hidrodinámico que favorece el proceso de biofiltración de aguas residuales, particularmente de aguas grises, de manera que los bioportadores logran una mayor interacción con el agua y aire, por ende, oxígeno y metabolismo aeróbico.
El estanque comprende una entrada para canalizar las aguas a tratar y para la descarga del agua una vez filtrada y purificada. Opcionalmente, el estanque puede incluir una salida separada de la entrada para extraer el agua una vez filtrada y purificada. Opcionalmente el dispositivo puede incluir un prefiltro en su entrada para remover partículas y sólidos suspendidos en el agua a tratar antes de su ingreso en el estanque. En una modalidad, el dispositivo capta el agua residual, particularmente agua gris, proveniente de duchas, tinas, lavado de manos y/o lavado de ropa para ser tratada hasta lograr su purificación.
Los microorganismos están establecidos en bioportadores que corresponden a un sustrato inerte y liviano, que permiten el crecimiento de microorganismos en su interior, los cuales están diseñados para su movimiento en el agua favoreciendo la interacción entre los microorganismos y el agua, asegurando la purificación del agua tratada.
El contenedor de bioportadores contiene confinados los microorganismos crecidos sobre la pluralidad de bioportadores estando dispuesto en el interior del estanque. En una modalidad, el contenedor de bioportadores incluye medios de fijación que permiten el anclaje del contenedor en el estanque de manera que queda suspendido sin estar en contacto con las paredes de dicho estanque.
El dispositivo puede incluir conexiones que permitan canalizar las aguas a tratar desde su fuente hasta el estanque de acopio. También, el dispositivo puede incluir bombas de agua para facilitar la carga de agua a tratar y descarga de agua purificada hacia y desde el estanque, respectivamente.
Opcionalmente, el dispositivo puede comprender, además, un sistema de monitoreo en tiempo real, que permite medir parámetros de calidad del agua mediante sensores que se encuentran integrados en un circuito centralizado.
DESCRIPCIÓN DE LOS DIBUJOS
Los dibujos que se acompañan se incluyen para proporcionar una mayor comprensión de la invención y constituyen parte de esta descripción y además ¡lustran una realización preferida de la invención, donde se ve que:
La figura 1 muestra el dispositivo para la filtración y purificación de aguas residuales, tales como aguas grises, de acuerdo con una modalidad de la invención.
La figura 2 muestra el contenedor de bioportadores de acuerdo con una modalidad de la invención. La figura 3 muestra la abertura del estanque de acuerdo con una modalidad de la invención.
La figura 4 muestra el anillo difusor de aire del aparato de aireación conectado con el contenedor de bioportadores de acuerdo con una modalidad de la invención.
La figura 5 muestra una disposición alternativa del dispositivo para la filtración y purificación de aguas residuales, tales como aguas grises.
La figura 6A muestra una vista isométhca de un primer diseño de bioportador.
La figura 6B muestra una vista frontal de un primer diseño de bioportador.
La figura 7A muestra una vista isométñca de un segundo diseño de bioportador.
La figura 7B muestra una vista frontal de un segundo diseño de bioportador.
La figura 8 muestra un diseño de bioportador de acuerdo con el estado de la técnica.
La figura 9A muestra el volumen para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PLA.
La figura 9B muestra el volumen para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PETG.
La figura 10A muestra la masa para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PLA.
La figura 10B muestra la masa para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PETG.
La figura 1 1 A muestra el tiempo de flotación registrado para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PLA.
La figura 1 1 B muestra el tiempo de flotación registrado para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PETG. La figura 12A muestra el tiempo de suspensión registrado para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PLA.
La figura 12B muestra el tiempo de suspensión registrado para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PETG.
La figura 13A muestra el tiempo en base registrado para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PLA.
La figura 13B muestra el tiempo en base registrado para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PETG.
La figura 14A muestra número de rotaciones verticales para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PLA.
La figura 14B muestra número de rotaciones verticales para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PETG.
La figura 15A muestra número de rotaciones horarias para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PLA.
La figura 15B muestra número de rotaciones horarias para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PETG.
La figura 16A muestra número de rotaciones antihorarias para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PLA.
La figura 16B muestra número de rotaciones antihorahas para el bioportador K3 comercial y para cada tipo de bioportador fabricado en PETG.
La figura 17A muestra el crecimiento de microorganismos luego de 5 semanas en el bioportador K3 fabricado en HDPE comparando el estado inicial (izquierda) y el estado final (derecha). La figura 17B muestra el crecimiento de microorganismos luego de 5 semanas en el bioportador K3 fabricado en PETG comparando el estado inicial (izquierda) y el estado final (derecha).
La figura 17C muestra el crecimiento de microorganismos luego de 5 semanas en el bioportador K3 fabricado en PLA comparando el estado inicial (izquierda) y el estado final (derecha).
La figura 18A muestra el crecimiento de microorganismos luego de 5 semanas en el bioportador V1 fabricado en PETG comparando el estado inicial (izquierda) y el estado final (derecha).
La figura 18B muestra el crecimiento de microorganismos luego de 5 semanas en el bioportador V1 fabricado en PLA comparando el estado inicial (izquierda) y el estado final (derecha).
La figura 19A muestra el crecimiento de microorganismos luego de 5 semanas en el bioportador V2 fabricado en PETG comparando el estado inicial (izquierda) y el estado final (derecha).
La figura 19B muestra el crecimiento de microorganismos luego de 5 semanas en el bioportador V2 fabricado en PLA comparando el estado inicial (izquierda) y el estado final (derecha).
La figura 20A muestra la cantidad de biomasa fresca luego de 3 meses para la versión comercial del bioportador K3 y cada tipo de bioportador fabricado en PLA.
La figura 20B muestra la cantidad de biomasa fresca luego de 3 meses para la versión comercial del bioportador K3 y cada tipo de bioportador fabricado en PETG.
La figura 21 A muestra la cantidad de biomasa seca luego de 3 meses para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PLA. La figura 21 B muestra la cantidad de biomasa seca luego de 3 meses para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PETG.
La figura 22A muestra la densidad bacteriana obtenida en la prueba de calidad de agua considerando un crecimiento de biomasa de 3 meses, aireación constante y cambio de agua gris semanal, para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PLA.
La figura 22B muestra la densidad bacteriana obtenida en la prueba de calidad de agua considerando un crecimiento de biomasa de 3 meses, aireación constante y cambio de agua gris semanal, para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PETG.
La figura 23A muestra la cuantificación de la actividad metabólica de la biomasa obtenida al cabo de 3 meses, bajo aireación constante y cambio de agua gris semanal, para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PLA.
La figura 23B muestra la cuantificación de la actividad metabólica de la biomasa obtenida al cabo de 3 meses, bajo aireación constante y cambio de agua gris semanal, para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PETG.
La figura 24A muestra el porcentaje de remoción de turbidez del agua respecto al día 0 (agua no tratada), obtenida en la prueba de calidad de agua luego de 24 horas de tratamiento, considerando un crecimiento de biomasa de 3 meses, aireación constante y cambio de agua gris semanal, para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PLA. La figura 24B muestra el porcentaje de remoción de turbidez del agua respecto al día 0 (agua no tratada), obtenida en la prueba de calidad de agua luego de 24 horas de tratamiento, considerando un crecimiento de biomasa de 3 meses, aireación constante y cambio de agua gris semanal, para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PETG.
La figura 25A muestra el porcentaje de remoción de la demanda química de oxígeno del agua respecto al día 0 (agua no tratada), obtenida en la prueba de calidad de agua luego de 24 horas de tratamiento, considerando un crecimiento de biomasa de 3 meses, aireación constante y cambio de agua gris semanal, para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PLA.
La figura 25B muestra el porcentaje de remoción de la demanda química de oxígeno del agua respecto al día 0 (agua no tratada), obtenida en la prueba de calidad de agua luego de 24 horas de tratamiento, considerando un crecimiento de biomasa de 3 meses, aireación constante y cambio de agua gris semanal, para la versión comercial del bioportador K3 y para cada tipo de bioportador fabricado en PETG.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El dispositivo (1 ) integrado para la filtración y purificación de aguas residuales, tales como las aguas grises, que permite la reutilización de dichas aguas para generar una nueva fuente hídhca corresponde a un dispositivo de filtrado de tipo biológico, tal como se muestra en la figura 1 , comprende un estanque (2) para el acopio de las aguas a tratar; un contenedor de bioportadores (3), dispuesto en el interior del estanque (2), que comprende una pluralidad de bioportadores que contienen a los microorganismos crecidos, los cuales se encargan de purificar el agua constituyendo un biofiltro; y un aparato de aireación para suministrar oxigeno el interior del estanque para promover el metabolismo aeróbico de los microorganismos, prevenir la aparición de malos olores y mantener en agitación constante a los bioportadores para promover su interacción con el agua. El estanque (2) incluye una entrada o abertura (5) para canalizar las aguas a tratar y para la descarga del agua una vez filtrada y purificada. Opcionalmente, el estanque (2) puede incluir una salida o descarga separada de la entrada o abertura (5) para extraer el agua una vez filtrada y purificada. En una modalidad, los microorganismos crecen en forma de biofilms o biopelículas. En el caso de que se trate o purifiquen aguas residuales, particularmente grises, el dispositivo capta el agua gris proveniente de duchas, tinas, lavado de manos y/o lavado de ropa para ser tratada hasta lograr su purificación.
El contenedor de bioportadores (3) contiene confinados los microorganismos crecidos sobre la pluralidad de bioportadores, como se muestra en la figura 2, este comprende un cuerpo (31 ) alargado, fabricado con un material permeable al agua, con un extremo superior y un extremo inferior, opuestos, en donde el extremo inferior comprende medios de unión (33) para conectarse con el aparato de aireación.
En una modalidad, el extremo superior del contenedor de bioportadores (3) comprende medios de fijación (32) que permiten el anclaje o montaje del contenedor de bioportadores (3) al estanque (2), en donde los medios de fijación (32) permiten anclar el contenedor de bioportadores (3) en la abertura (5) del estanque (2), de manera que el contenedor de bioportadores (3) queda suspendido en el interior del estanque (2) sin estar en contacto con las paredes de este y alineado con su abertura (5). El contenedor de bioportadores (3) puede estar suspendido en distintas alturas al interior del estanque (2), entre una posición en donde el extremo superior del cuerpo (31 ) coincide con la abertura (5) del estanque y una posición en donde el extremo inferior del cuerpo (31 ) está cerca de una pared inferior del estanque (2), mientras el contenedor de bioportadores (3) no esté en contacto con ninguna pared de dicho estanque (2). La posición del contenedor de bioportadores (3) en el interior del estanque (2) queda determinada por los medios de fijación (32), la cual puede ser fija o ajustable.
En una modalidad, los medios de fijación (32) comprenden al menos dos tirantes (321 ) en el extremo superior del cuerpo (31 ) del contenedor de bioportadores (3); al menos dos elementos de fijación (322) constituidos por una cinta de soporte (323) cuyos extremos incluyen uniones rápidas (324) que se unen a un tirante (321 ) y a la abertura (5) del estanque (2), respectivamente. El largo de la cinta de soporte (323) determina la altura a la que queda suspendido el contenedor de bioportadores (3), pudiendo ser de un largo fijo para definir una altura de suspensión fija o de largo variable o ajustable para modificar la posición del contenedor de bioportadores (3) en el interior del estanque (2). Las cintas de soporte (323) pueden incluir bucles en sus extremos para colocar las uniones rápidas (324).
En una modalidad, como la que se muestra en la figura 3, la abertura (5) del estanque (2) comprende al menos dos ganchos de montaje (51 ) que facilitan y aseguran el montaje o anclaje de los medios de fijación (32). Específicamente, los ganchos de montaje (51 ) se pueden conectar con una unión rápida (324) de los elementos de fijación (322) en los medios de fijación (32). Preferentemente, las uniones rápidas (324) y ganchos de montajes (51 ) son de un material inoxidable, como por ejemplo, acero inoxidable. En una modalidad, el cuerpo (31 ) del contenedor de bioportadores (3) es una bolsa de tela de material poroso, de forma cilindrica que comprende un cierre (311 ), preferentemente de plástico, para acceso al interior del cuerpo para colocar y/o reemplazar los bioportadores. Preferentemente, la tela de material poroso es fabricada con telas recicladas o un material de origen vegetal.
Para asegurar que el cuerpo (31 ) mantenga su forma, el contenedor de bioportadores (3) puede incluir un anillo en cada extremo de dicho cuerpo (31 ). En una modalidad, dichos anillos son fabricados con planza (cañería de polietileno), material diseñado para estar en contacto con el agua. En otra modalidad, dichos anillos son fabricados con acero inoxidable.
El aparato de aireación comprende un anillo difusor de aire (4), unido al contenedor de bioportadores (3) en el extremo inferior del cuerpo (31 ), conectado a un extremo de una manguera de aire (6), en donde la manguera de aire (6) sale del estanque (2) de manera que el otro extremo está conectado a un mini compresor de aire que inyecta aire hacia el interior del estanque (2) a través del anillo difusor de aire (4), en donde el anillo difusor de aire (4) comprende un soporte, en forma de anillo, acoplado a una manguera difusora, de forma circular, desde donde salen las microburbujas de aire para suministrar oxígeno al interior del estanque (2) para promover el metabolismo aeróbico de los microorganismos y prevenir la aparición de malos olores. El soporte del anillo difusor de aire (4) se utiliza para darle forma a su estructura siendo, preferentemente, de acero inoxidable. Las burbujas generadas por el anillo difusor de aire (4) mantienen en agitación constante a la pluralidad de bioportadores favoreciendo la interacción entre los microorganismos y el agua para su filtración y purificación. Preferentemente, la posición del contenedor de bioportadores (3) en el interior del estanque (2) es tal que el anillo difusor de aire (4) quede bien sumergido, pero no esté en contacto con el estanque (2) con el fin de evitar el ruido generado por la vibración de dicho anillo (4), lo cual puede generar molestia en el usuario.
En una modalidad, es posible utilizar un mini compresor de al menos 38 Watts para el tratamiento del agua en un estanque de 1000 litros y un mini compresor de al menos 58 Watts para el tratamiento del agua en un estanque de 2000 litros.
Como se muestra en la figura 4, el anillo difusor de aire (4) está unido al contenedor de bioportadores (3) mediante los medios de unión (33) en el extremo inferior del cuerpo (31 ). Los medios de unión (33) comprenden al menos cuatro cintas de soporte (331 ), en donde un extremo de dichas cintas está unido al extremo inferior del cuerpo (31 ) y el otro extremo está conectado con el anillo difusor de aire (4). En una modalidad, la conexión entre el medio de unión (33) y el anillo difusor de aire (4) se realiza mediante un gancho (332) en cada extremo de las cintas de soporte (331 ). Las cintas de soporte (331 ) pueden incluir un bucle en sus extremos para colocar el gancho (332). Preferentemente, los ganchos (332) son de acero inoxidable. En otra modalidad, la conexión entre el medio de unión (33) y el anillo difusor de aire (4) se realiza mediante amarra cables.
En una modalidad, una porción de la manguera de aire (6) se encuentra fijada al cuerpo (31 ) del contenedor de bioportadores (3) mediante al menos un pasador (34) transversal cercano a cada extremo de dicho cuerpo (31 ), de manera que dicha porción de la manguera de aire (6) queda paralela al eje longitudinal del cuerpo (31 ). En otra modalidad, la manguera de aire (6) está dispuesta en el interior del estanque (2) sin estar unida al contenedor de bioportadores (3). En una modalidad, el estanque (2) es sustancialmente cilindrico y puede tener una configuración de forma vertical, como en la figura 1 , o una configuración de forma horizontal, como en la figura 5. En caso de que el estanque (2) tenga una configuración de forma vertical, la abertura (5) está en la cara superior y en caso de que el estanque (2) este en una configuración horizontal, la abertura (5) está en la parte superior del estanque (2) que corresponde a la superficie curva o cuerpo del cilindro. En ambos casos, el contenedor de bioportadores (3) y el aparato de aireación están dispuestos de forma equivalente. En la modalidad en que el contenedor de bioportadores (3) está anclado o montado en el estanque (2), dicho contenedor de bioportadores (3) está dispuesto de manera que está alineado con la abertura (5) en la dirección vertical. Además, la abertura (5) incluye un medio de protección que evita la entrada de elementos extraños o contaminantes, siendo dicho medio de protección, en una modalidad, una tapa (7) que cubre la abertura (5).
En una modalidad, el dispositivo (1 ) puede incluir un prefiltro antes de o en la abertura (5) para remover partículas y sólidos suspendidos en el agua a tratar antes de su ingreso en el estanque (2) o después de realizado el tratamiento una vez que el agua ya ha sido biofiltrada.
El dispositivo (1 ) puede incluir conexiones que permitan canalizar las aguas a tratar desde su fuente hasta el estanque (2) de acopio. También, el dispositivo puede incluir bombas de agua para facilitar la carga de agua a tratar y descarga de agua purificada hacia y desde el estanque (2), respectivamente. Opcionalmente, el dispositivo (1 ) puede incluir conexiones para comunicarse con un estanque de posttratamiento para almacenar el agua ya tratada o biofiltrada. Opcionalmente, el dispositivo (1 ) puede comprender, además, un sistema de monitoreo en tiempo real, que permite medir parámetros de calidad del agua mediante sensores que se encuentran integrados en un circuito centralizado y controlar la operación del dispositivo (1 ). El sistema de monitoreo mide, al menos, el pH, turbidez, temperatura y conductividad eléctrica del agua en el estanque (2). El sistema de monitoreo comprende, además, un tempohzador que permite generar distintos ciclos de aireación (encendido/pagado) para controlar el tiempo de purificación del agua.
El dispositivo (1 ) puede ser incorporado para distintos usos según las necesidades del usuario, como por ejemplo, en sistemas de riego por goteo de bajo costo y alta eficacia para la distribución del agua hacia las raíces de plantas, descarga de inodoros u otros usos doméstico o industriales, de acuerdo con la normativa del país en donde sea implementado el dispositivo. Además, el dispositivo (1 ) puede incorporar el uso de energía renovable, por ejemplo, energía solar utilizando paneles solares, como fuente de alimentación con electricidad para asegurar la autonomía de funcionamiento.
Adicionalmente, el dispositivo (1 ) puede ser automatizado mediante la implementación de un controlador que permita el funcionamiento general del dispositivo (1 ), la carga y descarga de agua, incorporando opcionalmente parámetros de calidad de agua.
Los microorganismos están establecidos en la pluralidad de bioportadores que corresponden a un sustrato inerte y liviano que permiten el crecimiento de microorganismos y la colonización, en donde dichos bioportadores están diseñados para su movimiento en el agua favoreciendo la interacción entre los microorganismos y el agua, asegurando la purificación del agua. Los microorganismos corresponden a consorcios especializados que remueven eficientemente los contaminantes de las aguas residuales, tales como las del agua gris, , resisten condiciones desfavorables y se adaptan de forma dinámica a las variaciones en la composición del agua a tratar, a cambios de pH, humedad y temperatura. En una modalidad, los microorganismos del dispositivo (1 ) corresponden a microorganismos ambientales que presentan capacidades filtradoras y que pueden crecer adheridos a un sustrato. Para ser utilizados, los microorganismos son previamente enriquecidos para asegurar la eficiencia filtradora, para tener microorganismos crecidos sobre el sustrato y ser incluidos en el contenedor de bioportadores (3). En una modalidad, el crecimiento de biomasa de los microorganismos sobre los bioportadores debe ser de al menos 3 meses para asegurar la eficiencia filtradora.
El dispositivo (1 ) descrito puede ser implementado en diversas escalas, como por ejemplo, para la reutilización in situ de agua de duchas para descarga de inodoros, reutilización de agua de lavadoras, de aguas grises totales de una vivienda, de un conjunto de viviendas o edificaciones de mayor envergadura, o incluso a escala industrial. De esta forma el dispositivo (1 ) puede ser escalado para su uso con distintos caudales de aguas residuales, particularmente aguas grises, en donde el tamaño del estanque (2) puede ser de cualquier volumen que esté disponible dependiendo de las necesidades del usuario.
El dispositivo (1 ) permite la filtración del agua residual, particularmente agua gris, en un tiempo entre 12 a 24 horas dependiendo del volumen de agua. Al respecto, se ha verificado que se requiere al menos 1 kilo de bioportadores, para filtrar 1000 litros de agua gris, requiriendo 12 horas para el tratamiento del agua. Para tratar otros volúmenes, se escala de manera proporcional los bioportadores con la biomasa necesaria para el tratamiento. Es posible acelerar el proceso de filtración añadiendo bioportadores al dispositivo (1 ) para reducir el tiempo del tratamiento, manteniendo el volumen de agua a tratar. Para asegurar un óptimo funcionamiento del sistema, se deben reemplazar de los bioportadores cada 18 meses.
El tamaño del contenedor de bioportadores (3) se ajusta a la cantidad de bioportadores utilizados, de manera que permite el movimiento de los bioportadores en su interior cuando estos son agitados por el aparato de aireación.
En una modalidad, la pluralidad de bioportadores pueden ser insertados directamente en el estanque (2) sin utilizar el contenedor de bioportadores (3), permitiendo la libre circulación de los bioportadores con microorganismos dentro del estanque (2).
En una modalidad, el dispositivo (1 ) se encuentra integrado con un sistema de desinfección post tratamiento, incluyendo cloración, luz ultravioleta, ozono u otros métodos químicos y fisicoquímicos.
El diseño de bioportador se desarrolló de manera que presente un desempeño hidrodinámico que favorece el proceso de biof iltraci ón de aguas residuales, tales como aguas grises, de manera que los bioportadores logran una mayor interacción con el agua y aire, por ende, el oxígeno que promueve el metabolismo aeróbico. Al respecto, el bioportador comprende un anillo exterior (81 ) cilindrico ahuecado; un anillo interior poligonal (82), concéntrico con el anillo exterior (81 ) y ubicado en el centro de este; un anillo intermedio (83) entre dicho anillo interior poligonal (82) y el anillo exterior (81 ), concéntrico a estos y que separa el bioportador en una pluralidad de secciones; en donde, desde cada vértice del polígono del anillo interior poligonal (82) se proyecta una primera nervadura (84) curvada que conecta todos los anillos (81 , 82, 83) del bioportador, en donde cada primera nervadura (84) se proyecta, además, hacia afuera del anillo exterior (81 ) formando aspas (86) alrededor de este; y entre cada par de primeras nervadura (84) se dispone una segunda nervadura (85) curvada que está conectada entre la pared exterior del anillo intermedio (83) y la pared interior del anillo exterior (81 ). Tanto la primera nervadura (84) y la segunda nervadura (85) presentan una curvatura equivalente.
Las intersecciones generadas entre los anillos (81 , 82, 83) y las nervaduras (84, 85) forman una pluralidad de cavidades que incrementan el área superficial del bioportador, mejorando la capacidad de crecimiento de microorganismos en su interior.
Las aspas (86) alrededor del anillo exterior (81 ) del bioportador favorecen la rotación en sentido de las aspas permitiendo generar una mayor interacción entre el bioportador y el agua, de manera que se maximizan los contactos entre el agua a tratar y el bioportador, así como también la transferencia de oxígeno hacia los microorganismos para favorecer su metabolismo aeróbico, y con ello, el funcionamiento del proceso de purificación del agua. De esta forma, el diseño de bioportador tiene un desempeño hidrodinámico que favorece el proceso de biofiltración de aguas residuales, tales como las aguas grises. .
En una modalidad, el bioportador comprende, además, al menos un anillo intermedio adicional (84) entre el anillo intermedio (83) y el anillo interior poligonal (82), en donde los radios del anillo intermedio (83) y el al menos un anillo intermedio adicional (87) son tal que todos los anillos (81 , 82, 83, 87) del bioportador están separados radialmente por la misma distancia. Al incluir anillos intermedios adicionales se forman cavidades adicionales que incrementan el área superficial sobre la cual pueden crecer microorganismos.
Las cavidades y área superficial del bioportador permiten obtener un mayor crecimiento de microorganismos, en donde la adición de aspas (86) contribuye con nuevos puntos de adhesión de biomasa que permite el inicio de la colonización en el contexto de aireación, movimiento y agitación constante de los bioportadores dentro del contenedor de bioportadores (3) sumergidos en agua a tratar.
Este diseño de bioportador aumenta el área superficial, número de cavidades e interacciones hidrodinámicas para potenciar el crecimiento de biomasa, disminuyendo los costos de producción y permitiendo la fabricación local.
Las figuras 6A, 6B, 7A y 7B, muestran modalidades de bioportador de acuerdo con los elementos señalados. Las figura 6A y 6B muestra un primer bioportador (8A) que comprende un anillo exterior (81 ); un anillo interior poligonal (82) de forma octagonal; un anillo intermedio (83) entre dicho anillo interior poligonal (82) y el anillo exterior (81 ); un anillo intermedio adicional (87), entre el anillo intermedio (83) y el anillo interior poligonal (82); ocho primeras nervaduras (84) curvadas que se proyectan desde cada vértice del anillo interior poligonal (82), formando ocho aspas (86) alrededor del anillo exterior (81 ); y ocho segundas nervaduras (85) curvadas, dispuestas cada una entre cada par de primeras nervaduras (85) entre el anillo intermedio (83) y el anillo exterior (81 ). De esta forma, el primer bioportador (8A) incluye treinta y tres cavidades y ocho aspas (86). Por otro lado, las figura 7A y 7B muestra un segundo bioportador (8B) que comprende un anillo exterior (81 ); un anillo interior poligonal (82) de forma octagonal; un anillo intermedio (83) entre dicho anillo interior poligonal (82) y el anillo exterior (81 ); ocho primeras nervaduras (84) curvadas que se proyectan desde cada vértice del anillo interior poligonal (82), formando ocho aspas (86) alrededor del anillo exterior (81 ); y ocho segundas nervaduras (85) curvadas, dispuestas cada una entre cada par de primeras nervaduras (85) entre el anillo intermedio (83) y el anillo exterior (81 ). De esta forma, el segundo bioportador (8B) incluye veinticinco cavidades y ocho aspas (86).
Los microorganismos utilizados en el dispositivo (1 ) están adaptados para crecer adheridos a un sustrato plástico, siendo los bioportadores fabricados de Polietileno de Alta Densidad (HDPE, en inglés), Politereftalato de Etileno con Glicol (PETG, en inglés) o Ácido Poliláctico (PLA, en inglés). En una modalidad, los bioportadores son fabricados utilizando una impresora 3D.
RESULTADOS EXPERIMENTALES:
Diseños de Bioportador:
Para las pruebas se consideran diseños de bioportador de acuerdo con el primer bioportador (8A) denominado versión 1 o V1 , que incluye treinta y tres cavidades y ocho aspas; el segundo bioportador (8B) denominado versión 2 o V2, que incluye veinticinco cavidades y ocho aspas; y un tercer bioportador denominado K3 que corresponde a un diseño de bioportador disponible en el mercado, el cual se muestra en la figura 8 e incluye 19 cavidades, sin aspas. Los tamaños de bioportadores considerados para las pruebas son ¡guales para los tres diseños en donde poseen un área de cavidades de 6027 mm2 para el primer bioportador (8A) 5650 mm2 para el segundo bioportador (8B) y 3309 mm2 para el bioportador K3.
En total, se tuvieron las siguientes condiciones: i) Bioportador versión K3 (o comercial) en material HDPE: este sustrato es el que se obtiene en el mercado.
¡i) Bioportador versión K3 en material PETG: sustrato obtenido mediante impresión 3D utilizando filamentos de PETG para luego poder comparar con resto de las condiciones. iii) Bioportador versión K3 en material PLA: sustrato obtenido mediante impresión 3D utilizando filamentos de PLA para luego poder comparar con resto de las condiciones. iv) Bioportador versión 1 en material PETG: sustrato obtenido mediante impresión 3D utilizando filamentos de PETG para luego poder comparar con resto de las condiciones. v) Bioportador versión 1 en material PLA: sustrato obtenido mediante impresión 3D utilizando filamentos de PLA para luego poder comparar con resto de las condiciones. vi) Bioportador versión 2 en material PETG: sustrato obtenido mediante impresión 3D utilizando filamentos de PETG para luego poder comparar con resto de las condiciones. vii) Bioportador versión 2 en material PLA: sustrato obtenido mediante impresión 3D utilizando filamentos de PLA para luego poder comparar con resto de las condiciones.
Caracterización general:
Como caracterización general, se midió el volumen, el área superficial y la masa, para cada versión del bioportador.
En cuanto al volumen, como se muestra en las figuras 9A y 9B se pudo observar como resultado que la versión K3 comercial (HDPE) tiene el menor volumen de todas las versiones de bioportadores. En general, la versión K3 tiene menor volumen (en todos sus materiales) que V1 y V2. La V1 tiene el mismo volumen que la V2 en material PLA, pero la V1 tiene un volumen significativamente mayor en material PETG. En cuanto a los materiales, se puede mencionar que el material PETG ocupa mayor volumen que el PLA.
En cuanto al área superficial, la tabla 1 muestra el número de cavidad y área de superficial para las 3 geometrías de bioportadores consideradas, en donde se obtiene que tanto V1 como V2, tienen mayor número de cavidades internas, respecto a K3, en particular, V1 aumenta en un 73% y V2 un 31 %, además, las nuevas versiones de bioportadores tienen mayor área superficial respecto a K3, donde V1 aumenta un 82% y V2 aumenta un 70%.
Tabla 1 : Número de cavidades y área superficial para los bioportadores
Figure imgf000027_0001
En cuanto a la masa de los bioportadores, se caracterizó si el aumento de área superficial y volumen de los nuevos diseños V1 y V2, están relacionados con un aumento en la masa del bioportador, que podría a su vez tener un efecto sobre sus propiedades hidrodinámicas. Como se muestra en las figuras 10A y 10B, el bioportador K3-HDPE comercial es el más liviano de todos, lo cual tiene sentido ya que es el material menos denso (0,95 g/cm3 del HDPE vs. 1 ,24 g/cm3 del PLA vs. 1 ,27 g/cm3 del PETG). En el caso de los nuevos diseños de bioportadores, ya sea para V1 y V2, los bioportadores impresos con PETG son más pesados que impresos con PLA (misma versión), lo cual también se explica acorde a las densidades de los materiales. Tanto para PLA como PETG, el peso del bioportador V1 es mayor que el de V2, y el peso de V2 a su vez, es mayor al peso de K3 impreso. Esto se explica debido a que V1 es la que tiene mayor área superficial y por ende, contiene más mateñal/unidad impresa. Le sigue en área superficial V2 y luego K3, siguiendo la misma lógica.
En resumen, uno de los aspectos que se buscaba con los nuevos diseños de bioportadores era aumentar el área superficial. Los resultados teóricos de área superficial se correlacionan bien con los resultados de volumen, comprobándose que el volumen de los nuevos diseños de bioportadores aumentó. Además, se detectó que, tal como era esperable, al aumentar el área superficial de los nuevos bioportadores, aumentó la masa de cada pieza, lo cual podría afectar las propiedades hidrodinámicas del bioportador.
Pruebas de comportamiento hidrodinámico:
El objetivo de estas pruebas consistió en determinar si existen diferencias de comportamiento hidrodinámico, es decir, de interacción con el agua, entre los diferentes tipos o versiones de bioportadores.
El experimento consistió en sumergir en un estanque con agua y aireación 10 bioportadores del mismo tipo, grabando un video durante un minuto cada uno, con el objetivo de observar su comportamiento y movimientos. Esto se repitió 10 veces para el mismo tipo de bioportador, obteniéndose 10 videos para cada tipo. Lo anterior se realizó 7 veces en total, es decir, una vez para cada diseño de bioportador diferente, teniendo así 70 mediciones en total.
En cada uno de los ensayos, la cantidad de aireación se mantuvo constante. También se mantuvo constante el volumen de agua en el estanque.
Se midieron los siguientes parámetros:
• Tiempo de flotación: corresponde a la cantidad de tiempo que permanecen los bioportadores en la línea de agua, estando en contacto con el aire.
• Tiempo de suspensión: corresponde al tiempo en que los bioportadores están suspendidos en el estanque, es decir no tocan ni el fondo ni la línea de agua.
• Tiempo en el fondo: corresponde al tiempo en que los bioportadores permanecen en el fondo.
• Rotaciones verticales: corresponden a rotaciones realizadas por los bioportadores en un sentido no circular, es decir, en torno al eje perpendicular a la circunferencia.
• Rotaciones horarias: son las rotaciones que el bioportador realiza de forma circular en torno al eje de su circunferencia en un sentido horario.
• Rotaciones antihorañas: son las rotaciones que el bioportador realiza de forma circular en torno al eje de su circunferencia en un sentido antihorario.
Los resultados obtenidos para dichos parámetros se muestran en las figuras 11 A a 16B. En los resultados, observamos que el bioportador K3-HDPE comercial, tal como muestran las figuras 11 A y 11 B, al mantenerse la mayor parte del tiempo en flotación, es decir, en la línea superior del agua en contacto con el aire, pierde interacciones en la zona del volumen de agua, presentando el menor número de rotaciones de todo tipo junto con el menor tiempo de suspensión y en el fondo de la columna de agua, tal como muestran las figuras 12A a 13B. Al comparar bioportadores de un mismo material, en el caso del PETG, vemos que V1 en material PETG tiene el mayor tiempo de suspensión en el agua (figura 12B), y menor tiempo en el fondo de la columna de agua (figura 13B) comparado con K3-PETG. En cuanto a la rotación vertical no hubo diferencias significativas entre el diseño K3 impreso y V2 tanto en PLA como PETG (ver figuras 14A y 14B). La rotación circular en sentido horario es mayor para los nuevos diseños V1 y V2, en comparación a K3-HDPE comercial, tanto para PLA como para PETG (ver figuras 15A y 15B), mientras que V2-PLA, además tiene mayor rotación que K3-PLA, observándose una mejora por el nuevo diseño (figura 15A). En cuanto a la rotación circular en sentido antihoraño, V2 tanto en PLA como PETG, tiene mejor desempeño que K3-HDPE comercial (ver figuras 16A y 16B). La mejora en la rotación circular se debe gracias al diseño de aspas incorporado en V1 y V2 que les permiten girar, favoreciendo su movimiento en el agua.
En conclusión, los nuevos diseños V1 y V2 aumentan el volumen total y la capacidad de movimiento de los bioportadores en el agua reportándose una mejora en comparación con la geometría K3 comercial, logrando menor tiempo de flotación, mayor tiempo de suspensión con el agua, y mayor rotación vertical y circular del bioportador, verificándose que el incremento de masa de los nuevos diseños V1 y V2 no perjudica el comportamiento hidrodinámico de estos bioportadores. La mejor obtenida en los nuevos diseños V1 y V2 permite generar mayor interacción entre los bioportadores y el agua, para maximizar los contactos entre el agua a tratar y los bioportadores, como también la transferencia de oxígeno hacia los microorganismos para favorecer su metabolismo aeróbico, y con ello, el proceso de purificación del agua. Pruebas de colonización:
Para este caso, se realizó un experimento donde se dividieron los tipos de bioportadores prototipados en diferentes matraces.
Para todas las condiciones, es decir, diferentes tipos de bioportadores, se añadió el inoculo de microorganismos provenientes de bioportadores previamente colonizados y se añadió agua gris doméstica (proveniente de lavados de ropa). Se realizó cambio de agua cada 2 semanas y se monitoreó el crecimiento de biomasa sobre los bioportadores nuevos. La incubación se realizó luego de 3 meses en condiciones de aireación constante y cambio de agua semanal. La evaluación de la biomasa se realizó luego de 5 semanas y 3 meses, mediante visualización macroscópica, cuantificación de biomasa fresca y seca (balanza analítica), cuantificación de densidad bacteriana (sonicación y densidad óptica a 600 nm) y de actividad metabólica (prueba de MTT).
Respecto a la visualización macroscópica, al comparar el mismo tipo de bioportador, por ejemplo, K3 en los tres diferentes materiales, podemos observar que se obtiene una mejor colonización con PETG y PLA. Esto nos sugiere que la versión comercial que se obtiene en el mercado K3 (HDPE) no es la mejor alternativa para el crecimiento de los microorganismos del biofiltro, ya que se observa mayor cantidad de biomasa en los K3 PETG y PLA, como muestran las figuras 17A, 17B y 17C.
Respecto a los nuevos diseños, se puede apreciar el crecimiento de microorganismos en las figuras 18A y 18B, para V1 en PETG y PLA, respectivamente, y en las figuras 19A y 19B, para V2 en PETG y PLA. Se puede mencionar que para la V1 y V2, ambos PETG y PLA presentan un mayor crecimiento de microorganismos respecto a la versión K3 comercial.
Por otro lado, al comparar sólo las geometrías fabricadas en PLA, podemos observar que las nuevas versiones (ya sea V1 o V2) presentan un mejor crecimiento en comparación a la geometría K3-PLA. En cuanto a los bioportadores fabricados en PETG, el nuevo diseño V1 presenta mayor colonización que K3-PETG. La adición de las aspas probablemente esté contribuyendo con nuevos puntos de adhesión de biomasa que permite el inicio de la colonización en el contexto de aireación, movimiento y agitación constante de los bioportadores dentro del biofiltro sumergido en agua gris. Además, los nuevos diseños V1 y V2 tienen mayor área superficial que el diseño K3, por lo que por cada unidad de bioportador existe mayor superficie disponible para el establecimiento y crecimiento de los microorganismos. Respecto a la cuantificación de biomasa fresca y seca, se cuantificó en balanza analítica de alta precisión la cantidad de biomasa. Para ello, los microorganismos fueron separados de los bioportadores mediante sonicación, vortex y centrifugación. Se midió el peso del pellet de microorganismos frescos y del pellet de microorganismos secados por 48 horas a 65°C.
Los resultados de la figura 20A muestran un aumento significativo en la cantidad de biomasa fresca al utilizar PLA en cualquier geometría, respecto al bioportador K3 comercial (HDPE), es decir que el material PLA tiene un efecto positivo para el peso fresco de la biomasa. Adicionalmente, se obtiene biomasa fresca significativamente mayor para la V1 en comparación con K3 PLA, es decir, que el cambio de la geometría también tiene un efecto positivo en este parámetro. Para el caso de PETG, como se muestra en la figura 20B, la biomasa fresca fue significativamente mayor en todas las geometrías en comparación a K3 comercial. Respecto a la biomasa seca de los bioportadores PLA, como se muestra en la figura 21 A, las nuevas geometrías V1 y V2 obtienen mayor biomasa respecto al bioportador K3 comercial (HDPE), no así K3 PLA. La mayor biomasa seca se obtiene para V1 en comparación a los demás grupos. En el caso de la biomasa seca de los bioportadores PETG, como muestra la figura 21 B, todas las geometrías aumentaron significativamente el peso seco de la biomasa en comparación a K3 comercial. Concluyendo, las nuevas geometrías tuvieron un efecto positivo en la biomasa, obteniéndose un efecto máximo para V1 , que permite una mejora significativa en el crecimiento de biomasa fresca y seca.
Respecto a la cuantificación de densidad bacteriana (OD600), se midió la absorbencia a 600nm de los microorganismos suspendidos en solución buffer PBS, luego del proceso de obtención mencionado en el párrafo anterior. En la figura 22A se observa una mayor densidad de microorganismos en los bioportadores V1 y V2 respecto al bioportador K3-PLA y a su vez, a K3 comercial, obteniéndose una mejora debido a material (PLA) y a la nueva geometría de los bioportadores V1 y V2. En el caso del PETG, en la figura 22B se observa una mayor densidad bacteriana de los tres bioportadores en PETG respecto del bioportador K3 comercial, obteniéndose una mejora debido al nuevo material, sin embargo, los resultados obtenidos no presentan diferencias significativas al utilizar distintas geometrías de bioportador.
En cuanto a la actividad metabólica, se realizó un test de reducción de MTT midiendo la absorbencia a 570nm. En la figura 23A, se muestra una mayor actividad en los bioportadores V1 y V2 en material PLA, respecto del bioportador K3 comercial y K3-PLA, en donde el bioportador K3 fabricado en PLA no tiene diferencias significativas en cuanto a la actividad metabólica con el bioportador K3 comercial. A su vez, V1 PLA tiene una mejora significativa en la actividad metabólica respecto a la V2 PLA, lo que indicaría que la geometría misma de V1 promueve una mayor tasa metabólica del bioportador. En la figura 23B, se observa que el bioportador K3-PETG no presenta diferencias significativas en cuanto a la actividad en comparación a su versión comercial K3-HDPE, mientras que las nuevas geometrías V2 y V1 presentan un aumento significativo de actividad en comparación con K3-HDPE comercial. De esta forma, se obtiene una mejor actividad metabólica debido a la nueva geometría de los bioportadores V1 y V2 respecto del bioportador comercial, y mayor actividad metabólica de la geometría de V2 comparado con K3 impreso en PLA y PETG.
Por su parte, la geometría V1 fabricada en PLA mejora la funcionalidad del bioportador, evidenciado como una mayor biomasa fresca, biomasa seca, densidad bacteriana y actividad metabólica en comparación a la geometría K3 fabricada en PLA. Por lo tanto, al comparar distintas geometrías con un mismo material, se corrobora que la geometría V1 por sí misma favorece el crecimiento de la biomasa, mejorando la funcionalidad del bioportador independiente del efecto del material.
En conclusión, de forma general ambos diseños V1 y V2 de bioportadores permiten un aumento significativo en el crecimiento de biomasa de microorganismos respecto a la geometría K3 comercial, evaluado a través de imágenes, peso fresco y seco, y densidad bacteriana, que a su vez presenta una mayor actividad metabólica que puede favorecer el proceso de filtración del agua.
Pruebas de calidad de agua: Para medir la calidad del agua biofiltrada, se utilizó el mismo setting experimental que para la medición de biomasa considerando un crecimiento de biomasa de 3 meses total, aireación constante y cambio de agua gris semanal, donde se dividieron los tipos de bioportadores prototipados en diferentes matraces, según:
1 . Bioportador versión K3 (o comercial) en material HDPE
2. Bioportador versión K3 en material PLA
3. Bioportador versión K3 en material PETG
4. Bioportador versión 1 en material PLA
5. Bioportador versión 1 en material PETG
6. Bioportador versión 2 en material PLA
7. Bioportador versión 2 en material PETG
Se tomaron 200ml de agua proveniente de cada matraz para la medición de parámetros de calidad de agua: remoción de turbidez y de demanda química de oxígeno (DQO).
En cuanto a los parámetros de calidad que dan cuenta del nivel de contaminación del agua, medido a través de remoción de turbidez respecto al día cero (agua no tratada) que se muestra en las figuras 24A y 24B, observamos una mayor remoción de turbidez para los nuevos diseños V1 y V2 fabricados en PLA y también en PETG, respecto de K3-HDPE comercial, alcanzando más del 80% de remoción luego de 24 horas de tratamiento. Respecto a la remoción de turbidez, entre el bioportador K3-PLA y el bioportador K3-PETG en comparación a V1 y V2 fabricados en el mismo material, no se detectaron diferencias significativas respectivamente, obteniéndose altos niveles de remoción en todos los grupos. Finalmente, se cuantificó la remoción de demanda química de oxígeno (DQO) respecto al día cero, como una medida de la materia orgánica presente en el agua, que se muestra en las figuras 25A y 25B. Los bioportadores de PLA en todas sus versiones presentan una mejora significativa en la remoción de DQO respecto al K3 comercial. Es decir, que hay un efecto positivo del material en cuanto a la remoción de la materia orgánica. Para los bioportadores PETG, hubo un aumento significativo de la remoción de DQO de la V2 PETG respecto a K3-HPDE y K3-PETG, indicando que la geometría V2 generó un efecto positivo en la remoción de la materia orgánica.
Estas mediciones de calidad de agua confirman que el nuevo diseño V2, tanto PLA y PETG y V1 PLA permiten mejorar la calidad del agua, con mayor remoción de turbidez y DQO, respecto a la geometría K3 comercial, otorgando mayor eficiencia al proceso de filtración de aguas.
Adicionalmente, se midió la calidad de agua en terreno, utilizando un sistema de purificación de 2000 litros, que consiste en un estanque de 1000 litros con el dispositivo para la filtración y purificación en su interior (estanque 1 ), un estanque de 1000 litros para el post tratamiento del agua (estanque 2), y una bomba de agua junto con un dorador que impulsa y clora el agua desde el estanque 1 al estanque 2. Las aguas grises filtradas provienen de duchas, lavamanos y lavadero, y se utilizan para el riego y recarga del inodoro. La muestra de agua se tomó luego de 14 horas del tratamiento realizado con el dispositivo de acuerdo con la presente invención, y los resultados se muestran en la tabla 2. Tabla 2: Resultados de medición de calidad de agua para un sistema de purificación de agua que incluye el dispositivo para la filtración y purificación de aguas.
Figure imgf000037_0001

Claims

REIVINDICACIONES
1. Un dispositivo (1 ) para la filtración y purificación de aguas residuales, CARACTERIZADO porque comprende:
• un estanque (2) para el acopio de las aguas a tratar, que comprende una entrada o abertura (5) para canalizar las aguas a tratar y para la descarga del agua una vez filtrada y purificada;
• un contenedor de bioportadores (3), dispuesto en el interior del estanque (2), que comprende una pluralidad de bioportadores que contienen microorganismos crecidos, los cuales se encargan de purificar el agua;
• un aparato de aireación para suministrar oxigeno al interior del estanque para promover el metabolismo aeróbico de microorganismos y prevenir la aparición de malos olores.
2. El dispositivo (1 ) de acuerdo con la reivindicación 1 , CARACTERIZADO porque el contenedor de bioportadores (3) comprende un cuerpo (31 ) alargado, fabricado con un material permeable al agua, con un extremo superior y un extremo inferior, opuestos; y medios de unión en el extremo inferior para conectarse con el aparato de aireación.
3. El dispositivo de acuerdo con la reivindicación 2, CARACTERIZADO porque el extremo superior del contenedor de bioportadores (3) comprende medios de fijaciones (32) en el extremo superior para el anclaje o montaje del contenedor de bioportadores (3) al estanque (2) de manera que el contenedor de bioportadores (3) queda suspendido en el interior del estanque (2) sin estar en contacto con las paredes de este y alineado con su abertura (5).
4. El dispositivo (1 ) de acuerdo con la reivindicación 3, CARACTERIZADO porque los medios de fijación (32) comprenden al menos dos tirantes (321 ) en el extremo superior del cuerpo (31 ) del contenedor de bioportadores (3); al menos dos elementos de fijación (322) constituidos por una cinta de soporte (323) cuyos extremos incluyen uniones rápidas (324) que se unen a un tirante (321 ) y a la abertura (5) del estanque
(2), respectivamente.
5. El dispositivo (1 ) de acuerdo con la reivindicación 4, CARACTERIZADO porque la cinta de soporte (323) tiene un largo fijo para definir una altura de suspensión fija o de largo variable o ajustable para modificar la posición del contenedor de bioportadores
(3) en el interior del estanque (2).
6. El dispositivo (1 ) de acuerdo con las reivindicaciones 4 o 5, CARACTERIZADO porque las cintas de soporte (323) puede incluir bucles en sus extremos para colocar las uniones rápidas (324).
7. El dispositivo (1 ) de acuerdo con las reivindicaciones 4 a 6, CARACTERIZADO porque las uniones rápidas (324) son de un material inoxidable.
8. El dispositivo (1 ) de acuerdo con las reivindicaciones 2 a 7, CARACTERIZADO porque el cuerpo (31 ) del contenedor de bioportadores (3) es una bolsa de tela de material poroso.
9. El dispositivo (1 ) de acuerdo con la reivindicación 8, CARACTERIZADO porque la tela de material poroso es fabricada con telas recicladas o un material de origen vegetal.
10. El dispositivo (1 ) de acuerdo con las reivindicaciones 2 a 9, CARACTERIZADO porque el cuerpo (31 ) del contenedor de bioportadores (3) es de forma cilindrica y comprende un anillo en cada extremo para mantener su forma.
1 1. El dispositivo (1 ) de acuerdo con la reivindicación 10, CARACTERIZADO porque los anillos en cada extremo del cuerpo (31 ) del contenedor de bioportadores (3) son fabricados con planza (cañería de polietileno) o con material inoxidable.
12. El dispositivo (1 ) de acuerdo con las reivindicaciones 2 a 1 1 , CARACTERIZADO porque el cuerpo (31 ) del contenedor de bioportadores (3) incluye un cierre (311 ) para acceso al interior del cuerpo (31 ) para colocar y/o reemplazar los bioportadores.
13. El dispositivo (1 ) de acuerdo con la reivindicación 1 , CARACTERIZADO porque el aparato de aireación comprende un anillo difusor de aire (4), unido a la parte inferior del contenedor de bioportadores (3); una manguera de aire (6) conectada en un extremo al anillo difusor de aire (4), en donde la manguera de aire (6) sale del estanque (2) de manera que el otro extremo está conectado a un mini compresor de aire que inyecta aire hacia el interior del estanque (2) a través de dicho anillo difusor de aire (4).
14. El dispositivo (1 ) de acuerdo con la reivindicación 13, CARACTERIZADO porque el anillo difusor de aire (4) comprende un soporte, en forma de anillo, a acoplado a una manguera difusora, de forma circular, desde donde salen las microburbujas de aire para suministrar oxígeno al interior del estanque (2) promoviendo el metabolismo aeróbico de microorganismos y evitando la aparición de malos olores
15. El dispositivo (1 ) de acuerdo con las reivindicaciones 13 o 14, CARACTERIZADO porque el anillo difusor (4) está unido el contenedor de bioportadores (3) mediante medios de unión (33) en la parte inferior de este.
16. El dispositivo (1 ) de acuerdo con la reivindicación 15, CARACTERIZADO porque los medios de unión (33) comprenden al menos cintas de soporte (331 ), en donde un extremo de dichas cintas está unido a la parte inferior del contenedor de bioportadores (3) y el otro extremo está conectado con el anillo difusor de aire (4).
17. El dispositivo (1 ) de acuerdo con la reivindicación 16, CARACTERIZADO porque la conexión entre el medio de unión (33) y el anillo difusor de aire (4) se realiza mediante un gancho (332) en cada extremo de las cintas de soporte (331 ).
18. El dispositivo (1 ) de acuerdo con la reivindicación 17, CARACTERIZADO porque las cintas de soporte (331 ) comprenden un bucle en sus extremos para colocar el gancho (332).
19. El dispositivo (1 ) de acuerdo con las reivindicaciones 16 o 17, CARACTERIZADO porque los ganchos (332) son de acero inoxidable.
20. El dispositivo (1 ) de acuerdo con la reivindicación 15, CARACTERIZADO porque la conexión entre el medio de unión (33) y el anillo difusor de aire (4) se realiza mediante amarracables.
21. El dispositivo (1 ) de acuerdo con las reivindicaciones 13 a 20, CARACTERIZADO porque una porción de la manguera de aire (6) está fijada al contenedor de bioportadores (3) mediante al menos un pasador (34) transversal cercano a la parte inferior y a la parte superior de dicho contenedor de bioportadores (3), de manera que dicha porción de la manguera de aire (6) queda paralela al eje longitudinal del contenedor de bioportadores (3).
22. El dispositivo (1 ) de acuerdo con las reivindicaciones 2 a 12, CARACTERIZADO porque la abertura (5) del estanque (2) comprende al menos dos ganchos de montaje (51 ) para asegurar el montaje o anclaje de los medios de fijación (32).
23. El dispositivo (1 ) de acuerdo con la reivindicación 22, CARACTERIZADO porque los ganchos de montaje (51 ) son de un material inoxidable.
24. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 23, CARACTERIZADO porque el estanque (2) es cilindrico, estando dispuesto de forma vertical, en donde la abertura (5) está en la cara superior del cilindro.
25. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 23, CARACTERIZADO porque el estanque (2) es cilindrico, estando dispuesto de forma horizontal, en donde la abertura (5) está en la parte superior del estanque (2) que corresponde a la superficie curva o cuerpo del cilindro.
26. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 22, CARACTERIZADO porque el estanque (2) comprende además, un medio de protección en la abertura (5) para evitar la entrada de elementos extraños o contaminantes.
27. El dispositivo (1 ) de acuerdo con la reivindicación 26, CARACTERIZADO porque el medio de protección en la abertura (5) es una tapa (7).
28. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 27, CARACTERIZADO porque la pluralidad de bioportadores comprende:
• un anillo exterior (81 ) cilindrico;
• un anillo interior poligonal (82), concéntrico con el anillo exterior (81 ) y ubicado en el centro de este;
• un anillo intermedio (83) entre dicho anillo interior poligonal (82) y el anillo exterior (81 ), concéntrico a estos; • en donde, desde cada vértice del polígono del anillo interior poligonal (82) se proyecta una primera nervadura (84) curvada que conecta todos los anillos (81 , 82, 83) del bioportador, en donde cada primera nervadura (84) se proyecta, además, hacia afuera del anillo exterior (81 ) formando aspas (86) alrededor de este; y
• entre cada par de primeras nervaduras (84) se dispone una segunda nervadura (85) curvada que está conectada entre la pared exterior del anillo intermedio (83) y la pared interior del anillo exterior (81 ).
29. El dispositivo (1 ) de acuerdo con la reivindicación 28, CARACTERIZADO porque la pluralidad de bioportadores comprende además, al menos un anillo intermedio adicional (84) entre el anillo intermedio (83) y el anillo interior poligonal (82).
30. El dispositivo (1 ) de acuerdo con la reivindicación 29, CARACTERIZADO porque los radios del anillo intermedio (83) y el al menos un anillo intermedio adicional (87) son tal que todos los anillos (81 , 82, 83, 87) del bioportador están separados radialmente por la misma distancia.
31 . El dispositivo (1 ) de acuerdo con las reivindicaciones 28 a 30, CARACTERIZADO porque el anillo interior poligonal (82) es de forma octagonal.
32. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 31 , CARACTERIZADO porque la pluralidad de bioportadores es fabricado de HDPE, PETG o PLA.
33. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 32, CARACTERIZADO porque comprende además, un prefiltro antes de o en la abertura (5) para remover partículas y sólidos suspendidos en el agua a tratar antes de su ingreso en el estanque (2) o después de realizado el tratamiento una vez que el agua ya ha sido biofiltrada.
34. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 33, CARACTERIZADO porque comprende además, conexiones para canalizar las aguas a tratar desde su fuente hasta el estanque (2) de acopio.
35. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 34, CARACTERIZADO porque comprende además, conexiones para comunicarse con un estanque de posttratamiento para almacenar el agua ya tratada o biofiltrada.
36. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 35, CARACTERIZADO porque comprende además, al menos una bomba de agua para facilitar la carga de agua a tratar y descarga de agua purificada hacia y desde el estanque (2), respectivamente.
37. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 36, CARACTERIZADO porque comprende además, un sistema de monitoreo en tiempo real, que permite medir parámetros de calidad del agua mediante sensores que se encuentran integrados en un circuito centralizado y controlar la operación del dispositivo (1 ).
38. El dispositivo (1 ) de acuerdo con la reivindicación 37, CARACTERIZADO porque el sistema de monitoreo comprende además, un tempohzador que permite generar distintos ciclos de aireación (encendido/pagado) para controlar el tiempo de purificación del agua.
39. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 38, CARACTERIZADO porque el estanque (2) comprende una salida o descarga separada de la entrada o abertura (5) para la extracción del agua una vez filtrada y purificada.
40. El dispositivo (1 ) de acuerdo con las reivindicaciones 1 a 39, CARACTERIZADO poque la cantidad de bioportadores en el estanque (2) es de al menos 1 kilo de bioportadores cada 1000 litros de agua a tratar.
41. Un bioportador para el crecimiento de microorganismos para la filtración y purificación de aguas residuales^ CARACTERIZADO porque comprende:
• un anillo exterior (81 ) cilindrico;
• un anillo interior poligonal (82), concéntrico con el anillo exterior (81 ) y ubicado en el centro de este;
• un anillo intermedio (83) entre dicho anillo interior poligonal (82) y el anillo exterior (81 ), concéntrico a estos;
• en donde, desde cada vértice del polígono del anillo interior poligonal (82) se proyecta una primera nervadura (84) curvada que conecta todos los anillos (81 , 82, 83) del bioportador, en donde cada primera nervadura (84) se proyecta, además, hacia afuera del anillo exterior (81 ) formando aspas (86) alrededor de este; y
• entre cada par de primeras nervaduras (84) se dispone una segunda nervadura (85) curvada que está conectada entre la pared exterior del anillo intermedio (83) y la pared interior del anillo exterior (81).
42. El bioportador de acuerdo con la reivindicación 41 , CARACTERIZADO porque la comprende además, al menos un anillo intermedio adicional (84) entre el anillo intermedio (83) y el anillo interior poligonal (82).
43. El bioportador de acuerdo con la reivindicación 42, CARACTERIZADO porque los radios del anillo intermedio (83) y el al menos un anillo intermedio adicional (87) son tal que todos los anillos (81 , 82, 83, 87) del bioportador están separados radialmente por la misma distancia.
44. El bioportador de acuerdo con las reivindicaciones 41 a 43, CARACTERIZADO porque el anillo interior poligonal (82) es de forma octagonal.
45. El bioportador de acuerdo con las reivindicaciones 41 a 44, CARACTERIZADO porque es fabricado de HDPE, PETG o PLA.
PCT/CL2022/050078 2022-08-02 2022-08-02 Dispositivo para la filtración y purificación de agua grises u otras aguas residuales para generar una nueva fuente hídrica limpia y segura mediante un filtro de tipo biológico WO2024026577A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050078 WO2024026577A1 (es) 2022-08-02 2022-08-02 Dispositivo para la filtración y purificación de agua grises u otras aguas residuales para generar una nueva fuente hídrica limpia y segura mediante un filtro de tipo biológico

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050078 WO2024026577A1 (es) 2022-08-02 2022-08-02 Dispositivo para la filtración y purificación de agua grises u otras aguas residuales para generar una nueva fuente hídrica limpia y segura mediante un filtro de tipo biológico

Publications (1)

Publication Number Publication Date
WO2024026577A1 true WO2024026577A1 (es) 2024-02-08

Family

ID=89848204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050078 WO2024026577A1 (es) 2022-08-02 2022-08-02 Dispositivo para la filtración y purificación de agua grises u otras aguas residuales para generar una nueva fuente hídrica limpia y segura mediante un filtro de tipo biológico

Country Status (1)

Country Link
WO (1) WO2024026577A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226588A (ja) * 1998-02-16 1999-08-24 Katsumi Iida 水処理用微生物担体要素
JP2001327986A (ja) * 2000-05-23 2001-11-27 Hitachi Chem Co Ltd 微生物担体およびそれを槽内に備えた浄化槽
US20040182762A1 (en) * 2003-03-18 2004-09-23 Acqua Minerale S. Benedetto S.P.A. Carrier for biofilm to be used in wastewater purification plants
EP2119499A1 (en) * 2008-04-28 2009-11-18 Dytras, S.A. Biofilm carrier used in waste water purification
JP4700541B2 (ja) * 2006-03-29 2011-06-15 株式会社クボタ 微生物担持体及び浄化槽
WO2015166125A1 (es) * 2014-04-29 2015-11-05 Biologia Y Filtración, S.L. Elemento portador de biomasa para sistemas de tratamiento biológico
WO2021074307A1 (en) * 2019-10-18 2021-04-22 Drain Fields Patents Ab Wastewater treatment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226588A (ja) * 1998-02-16 1999-08-24 Katsumi Iida 水処理用微生物担体要素
JP2001327986A (ja) * 2000-05-23 2001-11-27 Hitachi Chem Co Ltd 微生物担体およびそれを槽内に備えた浄化槽
US20040182762A1 (en) * 2003-03-18 2004-09-23 Acqua Minerale S. Benedetto S.P.A. Carrier for biofilm to be used in wastewater purification plants
JP4700541B2 (ja) * 2006-03-29 2011-06-15 株式会社クボタ 微生物担持体及び浄化槽
EP2119499A1 (en) * 2008-04-28 2009-11-18 Dytras, S.A. Biofilm carrier used in waste water purification
WO2015166125A1 (es) * 2014-04-29 2015-11-05 Biologia Y Filtración, S.L. Elemento portador de biomasa para sistemas de tratamiento biológico
WO2021074307A1 (en) * 2019-10-18 2021-04-22 Drain Fields Patents Ab Wastewater treatment system

Similar Documents

Publication Publication Date Title
CN108124432A (zh) 机械过滤元件、设备及方法
US9868649B2 (en) Process and apparatus for purifying water
WO2009108032A1 (es) Planta y método para tratar simultáneamente, aguas residuales y lodos generados
CN105314736B (zh) 一种富营养净化系统
CN107043196A (zh) 一种工厂化高密度水产养殖系统
CN105800881A (zh) 气提回流式污水处理装置
ES2676726T3 (es) Proceso de tratamiento biológico e instalación que incluye elevación por inyección de aire y postratamiento en filtro
KR101357802B1 (ko) 상수 저장용 물탱크
WO2024026577A1 (es) Dispositivo para la filtración y purificación de agua grises u otras aguas residuales para generar una nueva fuente hídrica limpia y segura mediante un filtro de tipo biológico
JP2007160295A (ja) 三相曝気装置とその汚水浄化装置
KR101391233B1 (ko) 용수의 고형물 제거 및 정화장치
JP2005270912A (ja) 水質浄化装置
CN206692520U (zh) 一体化生活污水净化器
CN205603432U (zh) 一种生活污水的一体化处理装置
CN208135988U (zh) 一种城镇供水系统
ES2330824B2 (es) Sistema compacto para tratamiento de aguas residuales de origen domestico.
KR20100129118A (ko) 하폐수 재활용 이온활성화 정화시스템
CN211064705U (zh) 一种海蛇驯养系统
KR102506174B1 (ko) 수산화이온을 이용한 수질 정화 장치
WO2022167702A1 (es) Instalación para tratamiento de aguas residuales industriales y urbanas
ES2352632A1 (es) Sistema de depuracion para el tratamiento de aguas residuales y una cubeta empleadaa para dicho sistema.
ES2370878B1 (es) Procedimiento para la depuración de aguas residuales mediante equipos ecológicos y compactos.
JPH0663669U (ja) 浄水システム用の貯水タンク
KR960003925B1 (ko) 오, 폐수 정화처리용 미생물 배양장치
CN207726930U (zh) 一种用于污水处理的好氧生物池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953395

Country of ref document: EP

Kind code of ref document: A1