WO2024025158A1 - 슬롯 다이 코터 - Google Patents

슬롯 다이 코터 Download PDF

Info

Publication number
WO2024025158A1
WO2024025158A1 PCT/KR2023/008781 KR2023008781W WO2024025158A1 WO 2024025158 A1 WO2024025158 A1 WO 2024025158A1 KR 2023008781 W KR2023008781 W KR 2023008781W WO 2024025158 A1 WO2024025158 A1 WO 2024025158A1
Authority
WO
WIPO (PCT)
Prior art keywords
die coater
slot die
groove
upper plate
shim
Prior art date
Application number
PCT/KR2023/008781
Other languages
English (en)
French (fr)
Inventor
박준선
김국태
김현민
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230062678A external-priority patent/KR20240016870A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP23846817.7A priority Critical patent/EP4371672A1/en
Priority to CN202380013348.1A priority patent/CN117881487A/zh
Publication of WO2024025158A1 publication Critical patent/WO2024025158A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general

Definitions

  • the present invention relates to a slot die coater, and particularly to a slot die coater that improves die block deformation due to internal pressure.
  • This application is a priority claim application for Korean Patent Application No. 10-2022-0094861 filed on July 29, 2022 and Korean Patent Application No. 10-2023-0062678 filed on May 15, 2023. , all contents disclosed in the specification and drawings of the application are incorporated by reference into this application.
  • the electrode assembly has a form in which a positive electrode, a separator, and a negative electrode are stacked at least once, and the positive electrode and the negative electrode are manufactured by applying and drying the positive electrode active material slurry and the negative electrode active material slurry on a current collector made of aluminum foil and copper foil, respectively.
  • These secondary batteries contain, as positive electrode active materials, lithium-containing manganese oxides such as lithium-containing cobalt oxide (LiCoO 2 ) with a layered crystal structure, LiMnO 2 with a layered crystal structure, and LiMn 2 O 4 with a spinel crystal structure, and lithium-containing nickel oxide (LiNiO 2 ) is generally used.
  • lithium-based manganese oxides such as lithium-containing cobalt oxide (LiCoO 2 ) with a layered crystal structure, LiMnO 2 with a layered crystal structure, and LiMn 2 O 4 with a spinel crystal structure
  • lithium-containing nickel oxide (LiNiO 2 ) is generally used.
  • carbon-based materials are mainly used as negative electrode active materials, and recently, due to the increasing demand for high-energy lithium secondary batteries, mixed use with silicon-based materials and silicon oxide-based materials, which have an effective capacity of 10 times more than carbon-based materials, is being considered.
  • Figure 1 is a perspective view showing a conventional slot die coater
  • Figure 2 is an exploded perspective view of a conventional slot die coater.
  • the active material slurry discharged from the slot die coater (1) onto the current collector (not shown) transported by a coating roll (not shown). will be applied.
  • the active material slurry discharged from the slot die coater 1 is spread widely on one side of the current collector to form an active material layer.
  • the slot die coater 1 includes two die blocks 10 and 20, and a slot 30 is formed between the two die blocks 10 and 20.
  • the two die blocks 10 and 20 are fastened by coupling bolts 70.
  • the active material layer can be formed by discharging the active material slurry through the discharge port 40 connected to the slot 30.
  • the slot die coater (1) has the advantage of being able to apply at high speeds compared to bar coating or comma coating, so it is widely applied from the viewpoint of high productivity.
  • the coating width of the active material layer coated on the current collector is determined by the width (W) of the slot 30. If the coating width needs to be changed, various coating widths can be implemented by changing the shim 60 that determines the inner space of the manifold 50 and the width (W) of the slot 30.
  • the slot die coater 1 shown as an example in FIG. 1 is a vertical die type in which the active material slurry is discharged in a direction opposite to gravity.
  • the slot die coater (1) When coating is performed by configuring the slot die coater (1) in the vertical direction, there is a phenomenon in which the space between the die blocks (10, 20) is widened due to the internal pressure of the die blocks (10, 20).
  • an uncoated portion uncoated portion, uncoated portion of the current collector
  • the space between the two die blocks (10, 20) widens.
  • the active material slurry flows in, the active material slurry intermittently sticks to the uncoated part, causing surface defects.
  • Figure 3 is a cross-sectional view showing the first assembled state of a conventional slot die coater, and corresponds to cross-section II-II' in Figure 1.
  • Figure 4 is a cross-sectional view showing deformation due to internal die pressure in a conventional slot die coater.
  • Figure 5 is a diagram showing a problem in a conventional slot die coater in which slurry seeps into the die and causes surface defects in the uncoated portion of the current collector.
  • the two die blocks 10 and 20 are fastened by coupling bolts 70.
  • torque T due to the internal pressure is generated with the coupling bolt 70 as a starting point (reference point), as shown in FIG. 4.
  • the farthest part receives the greatest force, causing the die lips 10a and 20a, which are the leading ends of the die blocks 10 and 20, to spread.
  • the active material slurry penetrates into parts that should be prevented from being discharged by blocking the active material slurry with the shim 60.
  • the active material slurry 75 seeps into the inside of the die blocks 10 and 20 where it should not be, causing surface defects in the uncoated portion 80a of the current collector 80. (90) occurs. There must be no surface defects 90 to prevent slitting defects from occurring when forming electrodes with each active material layer 80b by slitting along the uncoated area 80a formed in the MD direction. Electrode disconnection does not occur after manufacturing the secondary battery due to surface defects 90 remaining at 80a.
  • the present invention was created in consideration of the above-mentioned problems, and the purpose of the present invention is to prevent discharge of the active material slurry from the uncoated portion due to an increase in the internal pressure of the die.
  • the problem to be solved by the present invention is to provide a slot die coater that improves die block deformation due to internal pressure.
  • the slot die coater of the present invention for solving the above-described problems includes an upper plate and a lower plate that are assembled together to form a discharge port; and a shim interposed between the lower plate and the upper plate to form a slot communicating with the discharge port, wherein the upper plate has a groove recessed into the upper plate above the slot and parallel to the shim, and in the groove. It further includes a tapered block and a pressure bolt that are fitted to press the shim.
  • the height of the groove gradually decreases as it goes inside the groove, and the slope of the tapered block may be adjusted accordingly.
  • the pressure bolt may pass through the tapered block from the front of the groove and be fastened to the upper plate.
  • the groove is recessed from the front side of the top plate toward the back side, and the pressure bolt can be fastened to the tapered block at the front side of the top plate.
  • the tapered block is fastened to the press bolt and moves back and forth in a direction parallel to the direction of the discharge hole, and can generate force due to a height difference between the groove and the taper block to press the shim.
  • the shim includes a plurality of extensions vertically connected to the base to include a plurality of openings and extending toward the discharge port, the horizontal length of the tapered block is no greater than the horizontal length of the extension, and the tapered block is connected to the extension portion. It can be inserted into the groove at a position corresponding to .
  • the tapered block may be provided at a position corresponding to an extension part excluding the extension part on the side.
  • a manifold may be further included in the lower plate, and the length of the tapered block may be shorter than the length of the land, which is an area from the front end of the manifold to the discharge port.
  • the groove is formed on the discharge port side.
  • a bolt groove into which the pressure bolt is fastened may be formed at a position aligned with the groove.
  • a hole may be formed in the tapered block to align with the bolt groove so that the pressure bolt can pass through.
  • the pressure bolt passes through the upper plate from the rear of the upper plate and is fastened to the tapered block.
  • a hole is formed in the width direction at the rear of the upper plate so that the pressing bolt can be inserted.
  • a plurality of press bolts and tapered blocks may be provided along the width direction.
  • a thread to which the pressure bolt can be fastened may be formed in the tapered block.
  • the residual hole may be formed from the rear side to the front side of the upper plate, the groove may be formed from the front side to the rear side of the upper plate, and the residual hole may be formed at a position aligned with the groove.
  • a manifold for accommodating the coating liquid is provided on the lower plate, and the manifold may communicate with the slot.
  • the slot die coater discharges and applies the coating liquid onto the substrate through the discharge port, and the shim may be provided with a plurality of openings in which one area is intermittently cut to determine the coating width of the coating layer applied on the substrate. .
  • the tapered block and the pressure bolt can prevent the gap between the upper and lower plates by pressing the shim without affecting the opening.
  • the present invention by changing the structure of the upper plate in the slot die coater and further including a tapered block and pressurizing bolts, discharge of the active material slurry from the uncoated portion due to an increase in pressure inside the slot die can be prevented.
  • surface defects during electrode formation can be improved by preventing discharge of active material slurry from the uncoated portion.
  • the active material layer when forming an active material layer in the shape of a stripe pattern, the active material layer can be formed stably without causing pattern defects in the uncoated area.
  • slot die coater of the present invention it is possible to uniformly form a coating layer, especially an electrode active material layer, with a desired thickness and shape.
  • Figure 1 is a perspective view showing a conventional slot die coater.
  • Figure 2 is an exploded perspective view of a conventional slot die coater.
  • Figure 3 is a cross-sectional view showing the first assembled state of a conventional slot die coater.
  • Figure 4 is a cross-sectional view showing deformation due to internal die pressure in a conventional slot die coater.
  • Figure 5 is a diagram showing a problem in a conventional slot die coater in which slurry seeps into the die and causes surface defects in the uncoated portion of the current collector.
  • Figure 6 is a perspective view showing a slot die coater according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view perpendicular to the width direction of the slot die coater shown in FIG. 6.
  • FIG. 8 is a diagram of a modification of the slot die coater shown in FIG. 7.
  • FIG. 9 is another cross-sectional view perpendicular to the width direction of the slot die coater shown in FIG. 6.
  • Figure 10 is a partial enlarged view of Figure 7.
  • Figure 11 is a front view of the slot die coater shown in Figure 6.
  • Figure 12 is a perspective view showing an example of a shim that can be included in the slot die coater shown in Figure 6.
  • Figure 13 is a perspective view showing a slot die coater according to another embodiment of the present invention.
  • Figure 14 is a modified example of Figure 13.
  • FIG. 15 is a cross-sectional view perpendicular to the width direction of the slot die coater shown in FIG. 13.
  • FIG. 16 is a cross-sectional view perpendicular to the width direction of the slot die coater shown in FIG. 14.
  • FIG. 17 is a perspective view of a modified example of the slot die coater shown in FIG. 13 from another direction.
  • Figure 18 is a perspective view showing an example of a shim that can be included in the slot die coater shown in Figure 13.
  • Figure 19 is a partial enlarged view of Figure 17.
  • Figure 20 is a perspective view of the slot die coater shown in Figure 17 from another direction.
  • Figure 21 is a modified example of Figure 20.
  • FIG. 6 is a perspective view showing a slot die coater according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view perpendicular to the width direction of the slot die coater shown in FIG. 6, corresponds to the VII-VII' cross-section of FIG. 6, and shows a cross-section parallel to the direction of the discharge port.
  • FIG. 8 is a diagram of a modification of the slot die coater shown in FIG. 7.
  • FIG. 9 is another cross-sectional view perpendicular to the width direction of the slot die coater shown in FIG. 6, which corresponds to the VIII-VIII' cross-section of FIG. 6 and also shows a cross-section parallel to the direction of the discharge port.
  • FIG. 10 is a partially enlarged view of FIG. 7, and FIG. 11 is a front view of the slot die coater shown in FIG. 6.
  • the coater 100 includes an upper plate 110 (structure changed), a lower plate 120, a shim 160, a taper block 180, and a pressure bolt 190.
  • the slot die coater 100 of the present invention is a device that has a slot 130 and coats a coating liquid on a substrate through the slot 130.
  • the 'substrate' described below is a current collector, and the 'coating liquid' is an active material slurry.
  • the substrate may be a porous support constituting the separator, and the coating liquid may be an organic material.
  • the substrate and coating liquid may be any.
  • 'before' may refer to the direction toward which the discharge port faces (X-axis direction) and 'after' may refer to the opposite direction.
  • 'Left/right' is a direction perpendicular to the direction the discharge port faces and may refer to the width direction of the slot (Y-axis direction).
  • the slot die coater 100 is a slot die coater provided with a slot 130 for discharging a coating liquid, and includes an upper plate 110 and a lower plate 120. ) includes. For example, if the slot die coater 100 is installed so that the
  • the upper plate 110 and the lower plate 120 are assembled together to form a discharge port 140 in communication with the slot 130.
  • the upper plate 110/lower plate 120 can be assembled with fixing bolts 170.
  • the upper plate 110 forms a slot 130 between the lower plate 120 and the lower plate 120 .
  • a shim 160 is interposed between the lower plate 120 and the upper plate 110 to form a slot 130 in communication with the discharge port 140.
  • the upper plate 110 and the lower plate 120 are rectangular members whose width in the Y-axis direction perpendicular to it is longer than in the X-axis direction, which is in front of the discharge port 140.
  • the shim 160 is in contact with the contact surface of the upper plate 110 and the lower plate 120, and is held between the upper plate 110 and the lower plate 120 by the fixing bolt 170 that fastens the upper plate 110 and the lower plate 120. Can be assembled.
  • the slot 130 is formed between the upper plate 110 and the lower plate 120 facing each other.
  • the shim 160 is interposed and a gap is provided between them, thereby forming a slot 130 corresponding to a passage through which the coating liquid can flow.
  • the thickness of the shim 160 determines the vertical width (Z-axis direction, slot gap) of the slot 130.
  • the surfaces of the upper plate 110 and lower plate 120 can be manufactured to be almost vertical.
  • these upper plate 110 and lower plate 120 since the edges of the surfaces are formed at right angles, a right angle part exists in the cross section, and a vertical or horizontal surface can be used as a reference surface, making it easy to manufacture and handle, and precision is guaranteed. do.
  • the parts facing each other can support each other with a high degree of surface contact, so fastening and maintenance are very excellent.
  • the combined state of the upper plate 110 and the lower plate 120 has an overall shape of a roughly rectangular parallelepiped, and only the front portion where the coating liquid is discharged may be inclined toward the substrate.
  • the upper plate 110 and lower plate 120 are, for example, made of SUS material.
  • Materials that are easy to process such as SUS420J2, SUS630, SUS440C, SUS304, and SUS316L, can be used.
  • SUS is easy to process, inexpensive, has high corrosion resistance, and has the advantage of being able to be manufactured into desired shapes at low cost.
  • the upper plate 110 has a groove H1 recessed into the upper plate 110 above the slot 130 and parallel to the shim 160.
  • the tapered block 180 and the pressure bolt 190 are inserted into the groove H1 to press the shim 160.
  • a groove H1 into which the tapered block 180 can be inserted is processed in the upper plate 110.
  • the groove H1 is formed on the discharge port 140 side.
  • the groove H1 is formed on the front surface of the upper plate 110.
  • the groove H1 is recessed from the front to the back of the top plate 110, that is, into the inside of the top plate 110.
  • the groove H1 may correspond to a portion of the upper plate 110 being depressed or a portion of the upper plate 110 being dug out. It is desirable that the groove H1 be as large as necessary but as small as possible so as not to impair the mechanical rigidity of the upper plate 110. As shown, the groove H1 may or may not be elongated in the width direction.
  • a bolt groove (H2) for fixing and pressurizing the upper plate 110 is machined.
  • the bolt groove H2 may be formed so that the pressure bolt 190 is fastened to a position aligned with the groove H1.
  • the pressure bolt 190 is fastened to the tapered block 180 at the front of the upper plate 110.
  • the pressure bolt 190 is operated from the front of the top plate 110.
  • the tapered block 180 and the pressurizing bolt 190 are positioned to press the shim 160 in areas of the shim 160 excluding the left and right sides.
  • the pressure bolt 190 fixes the position of the taper block 180 within the groove H1 and at the same time generates a pressing force according to the height difference between the taper block 180 and the groove H1 to pressurize the shim 160. It plays a role in enabling
  • the pressing force can be adjusted by adjusting the position of the taper block 180 based on the tightening degree of the pressing bolt 190.
  • the position of the tapered block 180 is variable by the pressurizing bolt 190.
  • the tapered block 180 is fastened to the pressure bolt 190 and can move back and forth in a direction parallel to the direction of the discharge hole.
  • a hole (O) is formed in the tapered block 180 to align with the bolt groove (H2) so that the pressure bolt 190 can pass through.
  • the bolt groove H2 is formed to have a size similar to the diameter of the pressure bolt 190, and is threaded so that the pressure bolt 190 can be fastened.
  • the bolt groove H2 is formed further inward than the groove H1, and is capable of fastening the end of the pressure bolt 190.
  • the pressure bolt 190 has a thread formed all the way to the end.
  • Figure 8 is another example, and the pressure bolt 190 has a thread formed only up to a certain length and the end is bare.
  • a stopper with a U-shaped hole that is fitted across the bolt groove (H2) may be further included.
  • the bolt groove (H2) is formed widely at the rear end of the latch, so that stress at the end of the pressurizing bolt (190) can be relieved.
  • the lower plate 120 may be provided with a manifold 150 to accommodate the coating liquid.
  • the manifold 150 may have a predetermined shape and depth. Although not shown in the drawing, this manifold 150 is connected to an externally installed coating liquid supply chamber (not shown) through a supply pipe to receive the coating liquid. When the manifold 150 is filled with the coating liquid, the coating liquid is guided to flow along the slot 130 and is discharged to the outside through the discharge port 140.
  • the manifold 150 is formed to uniformly supply/discharge a coating liquid such as an active material slurry onto a substrate such as a current collector.
  • the manifold 150 may be provided on the upper plate 110.
  • reference numerals 110a and 120a indicate die lips, which are the leading ends of the upper plate 110 and the lower plate 120.
  • the groove H1 into which the tapered block 180 can be inserted increases in height (h) toward the inside of the groove (H1), that is, from the front to the back of the top plate 110. gets lower and lower. And, the inclination of the tapered block 180 can be adjusted accordingly.
  • the height h of the groove H1 is formed to gradually decrease as it goes into the interior of the upper plate 110, and the tapered block 180 may also be formed in the same way.
  • the tapered block 180 is designed to move in the forward and backward directions within the groove H1 by the pressurizing bolt 190.
  • the tapered block 180 may have a flat lower surface and an inclined upper surface as shown.
  • the groove H1 may also have a flat lower surface and an inclined upper surface, so that the height h becomes gradually lower as it goes inside the groove H1.
  • the groove H1 By flattening the lower surface of the groove H1, the groove H1 can be made parallel to the shim 160. By flattening the lower surface of the tapered block 180, an even force can be applied in the direction of the shim 160. Even if both the upper and lower surfaces of the groove (H1) and the tapered block 180 are inclined, the height (h) can be gradually lowered from the front to the back of the upper plate 110, but by making the lower surface flat, machining work or manipulation is possible. It can be used as a reference surface and the groove (H1) and the tapered block 180 can be processed with very high precision (straightness, flatness ⁇ 5 ⁇ m).
  • the pressure bolt 190 may be fastened to the upper plate 110 by penetrating the tapered block 180 from the front of the groove H1. That is, the pressure bolt 190 can be operated from the front of the upper plate 110.
  • a force (F) is applied.
  • the height (h) gradually decreases as the groove (H1) goes inward.
  • the force F in the direction of pressing the shim 160 is particularly used.
  • This force (F) tightens the space between the upper plate 110, the core 160, and the lower plate 120. Due to the bottom area (BA) of the tapered block 180, the shim 160 can be tightened evenly. Even in a situation where the internal pressure of the slot die coater 100 increases due to the discharge of the coating liquid, the taper block 180 exerts a force (F) pressing the shim 160, preventing deformation of the upper plate 110 and the lower plate 120. This can prevent discharge of the active material slurry from the uncoated part.
  • the length D1 of the tapered block 180 must be shorter than the length L of the land 120b.
  • Land 120b refers to the area from the front end of the manifold 150 to the discharge port 140. If the length D1 of the tapered block 180 is longer than the length L of the land 120b, the manifold 150 may be affected.
  • the horizontal length D2 of the tapered block 180 should not be greater than the length S of the shim 160 in the width direction. If the horizontal length D2 of the tapered block 180 is greater than the length S of the shim 160, the slot gap G may be affected. In this way, the tapered block 180 acts on the center portion of the upper plate 110, and the tapered block 180 is not so long that it affects the discharge port 140 in the width direction. The tapered block 180 is designed to act only on the shim 160 below it. The tapered block 180 does not change the slot gap (G).
  • Figure 12 is a perspective view showing an example of a shim that can be included in the slot die coater shown in Figure 6.
  • the shim 160 is a gasket that prevents the coating liquid from leaking through the gap between the upper plate 110 and the lower plate 120, except for the area where the discharge hole 140 is formed. It is preferable that it is made of a material that also functions as a sealant and has sealing properties.
  • the shim 160 may be made of plastic or metal, for example, but the present invention is not limited thereto.
  • the shim 160 may be, for example, a resin sheet such as Teflon or polyester, or a metal sheet such as copper or aluminum.
  • the seam 160 may be an integrated structure without seams.
  • the shim 160 may have a flat upper surface and a flat lower surface. That is, it may be a sheet-like member.
  • the shim 160 may be inserted in the remaining portion of the border area of the opposing surfaces of the upper plate 110 and the lower plate 120 except for one side. Accordingly, an outlet 140 through which the coating liquid can be discharged to the outside is formed between the die lips 110a and 120a.
  • the discharge port 140 can be said to be formed by separating the die lips 110a and 120a, and the end of the slot 130 becomes the discharge port 140.
  • the shim 160 has a plurality of openings 160a in which one area is intermittently cut to determine the coating width of the coating layer applied on the substrate.
  • the opening 160a defines the slot 130, and the end of the slot 130 becomes the discharge port 140. If the number of open portions 160a is one, one coating layer can be formed. As shown, if the number of open portions 160a is two, two coating layers can be formed side by side along the Y-axis direction.
  • the shim 160 may include a plurality of extension portions 162 that are vertically connected to the base portion 161 and extend toward the discharge port 140 to include a plurality of opening portions 160a.
  • the width of the open portion 160a of the seam 160 is designed to be b.
  • the tapered block 180 may be provided at a position corresponding to the extension portion 162, excluding the extension portion on the side, among the plurality of extension portions 162.
  • the horizontal length D2 of the tapered block 180 is not greater than the length S of the extension 162 of the shim 160, especially the extension 162 located at the center, and the tapered block 180 is not larger than the length S of the extension 162 located at the center. It can be inserted into the groove (H1) at a position corresponding to the part 162 and press the extension part 162 at the corresponding part.
  • the tapered block 180 presses the land 120b without affecting the manifold 150.
  • the taper block 180 Since the taper block 180 has a size that does not penetrate into the openings 160a on both sides of the extension 162 from the position corresponding to the extension 162, the taper block 180 and the pressure bolt 190 are open.
  • the seam 160 can be pressed without affecting the portion 160a. By compressing the shim 160, the gap between the upper plate 110 and the lower plate 120 can be prevented.
  • a shim 160 is located below the tapered block 180. Since the shim 160 supports the upper plate 110, manipulating the tapered block 180 does not affect the opening portion 160a, and thus there is no deformation of the slot gap G. In other words, there is no change in the coating liquid flow rate through the discharge port 140 even when the taper block 180 is manipulated.
  • the present invention is not aimed at changing the slot gap (G) and does not affect the slot gap (G).
  • the tapered block 180 tightens the space between the upper plate 110, the shim 160, and the lower plate 120, so that the die lips 110a and 120a do not spread. Furthermore, the active material slurry does not penetrate into areas that should block the active material slurry and prevent it from being discharged. Therefore, an electrode active material layer pattern can be formed without surface defects caused by active material slurry on the uncoated area.
  • the lower surface of the upper plate 110 and the upper surface of the shim 160 can be coupled to each other without a gap, and the upper surface of the lower plate 120 and the lower surface of the shim 160 can be coupled to each other without a gap.
  • the space between the upper plate 110 and the lower plate 120 can be prevented by further compressing the space between the upper plate 110, the shim 160, and the lower plate 120 through the tapered block 180 and the pressure bolt 190. there is. Through this, the coating liquid reliably flows only within the slot 130 defined by the shim 160 and does not invade the uncoated portion.
  • a rotatable coating roll (not shown) is placed in front of the slot die coater 100, and the coating roll is rotated to travel the substrate to be coated,
  • the coating liquid can be discharged and applied continuously in contact with the surface of the substrate.
  • a pattern coating may be formed intermittently on the substrate by alternately supplying and stopping the coating solution. Since the coating liquid does not invade the uncoated area, a coating layer can be formed without pattern defects.
  • the positive electrode includes a current collector and a positive electrode active material layer formed on the surface of the current collector.
  • the current collector is one that exhibits electrical conductivity, such as Al or Cu, and an appropriate current collector can be used depending on the polarity of the current collector electrode known in the secondary battery field.
  • the positive electrode active material layer may further include one or more of a plurality of positive electrode active material particles, a conductive material, and a binder.
  • the positive electrode may further include various additives for the purpose of supplementing or improving electrochemical properties.
  • the active material is not limited to a specific component as long as it can be used as a positive electrode active material for a lithium ion secondary battery.
  • Non-limiting examples thereof include layered compounds such as lithium manganese complex oxide (LiMn 2 O 4 , LiMnO 2 , etc.), lithium cobalt oxide (LiCoO 2 ), and lithium nickel oxide (LiNiO 2 ), or compounds substituted with one or more transition metals.
  • the conductive material may typically be added in an amount of 1 wt% to 20 wt% based on the total weight of the mixture including the active material.
  • These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and examples include graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; It may contain one type or a mixture of two or more types selected from conductive materials such as polyphenylene derivatives.
  • the binder is not particularly limited as long as it is a component that assists in the bonding of the active material and the conductive material and the bonding to the current collector.
  • polyvinylidene fluoride polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxyl Propylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluoroelastomer, various copolymers etc.
  • the binder may typically be included in the range of 1 wt% to 30 wt%, or 1 wt% to 10 wt%, based on 100 wt% of the electrode layer.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the surface of the current collector.
  • the negative electrode active material layer may further include one or more of a plurality of negative electrode active material particles, a conductive material, and a binder.
  • the cathode may further include various additives for the purpose of supplementing or improving electrochemical properties.
  • the negative electrode active material is carbon materials such as graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotubes, and carbon nanohorns, lithium metal materials, alloy materials such as silicon and tin, Nb 2 O 5 , Li 5 Ti 4 O Oxide-based materials such as 12 , TiO 2 , or composites thereof can be used.
  • the conductive material, binder, and current collector can be referred to the information described for the positive electrode.
  • the active material slurry containing such a positive electrode active material or a negative electrode active material has a very high viscosity.
  • the viscosity may be 1000 cps or more.
  • the viscosity of the active material slurry used to form secondary battery electrodes may be 2000 cps to 30000 cps.
  • the negative electrode active material slurry may have a viscosity of 2000 cps to 4000 cps.
  • the positive electrode active material slurry may have a viscosity of 8000 cps to 30000 cps.
  • the slot die coater 100 of the present invention can be used with a coating liquid with a lower viscosity, such as a photosensitive emulsion liquid, a magnetic liquid, a liquid that provides anti-reflection or anti-glare properties, etc. It is different from the structure of a device that applies ordinary resin solutions, such as a solution that provides a viewing angle expansion effect or a pigment solution for color filters, and is not a device that can be achieved by changing it.
  • the slot die coater 100 of the present invention is for applying an active material slurry that may contain an active material with a particle size of, for example, an average particle diameter of about 10 ⁇ m, so it is possible to apply another coating solution that does not contain particles of this size. There is a difference in the structure of the device and it is not a device that can be reached by changing it.
  • the slot die coater 100 of the present invention is optimized as a coater for electrode manufacturing.
  • the coating liquid does not invade unnecessary areas inside the slot die coater 100. Therefore, there is no concern that the active material slurry will scatter and coat the uncoated area, causing contamination at the boundary or causing boundary irregularities such as wave patterns at the boundary.
  • the coating interface formed in the MD direction must be formed uniformly to prevent slitting defects when forming electrodes with each active material layer by slitting along the uncoated area later, and to prevent secondary battery manufacturing by contaminating the uncoated area by any chance of contamination remaining in the uncoated area. After electrode disconnection does not occur. When the slot die coater 100 according to the present invention is used, slitting defects or electrode disconnections do not occur.
  • the structure of the upper plate 110 is changed compared to the prior art, and further includes a tapered block 180 and a pressing bolt 190.
  • the tapered block 180 and the pressure bolt 190 closely press the upper plate 110, the shim 160, and the lower plate 120, so that the upper plate 110, the shim 160, and the lower plate 120 are flat and there is a gap between them. It is difficult for an empty space to appear in . Accordingly, even if torque is generated due to the internal pressure of the slot die coater 100, the surface where the upper plate 110 and the lower plate 120 come into contact with each other with the shim 160 in between can be supported. In other words, it is possible to prevent the slot 130 from opening.
  • FIG. 13 is a perspective view showing a slot die coater according to another embodiment of the present invention
  • Figure 14 is a drawing of a modified example.
  • FIGS. 15 and 16 are cross-sectional views perpendicular to the width direction of the slot die coater shown in FIGS. 13 and 14, respectively, and correspond to cross sections taken along line XIII-XIII' of FIGS. 13 and 14.
  • FIG. 17 is a perspective view of a modified example of the slot die coater shown in FIG. 13 from another direction, showing the front of the slot die coater.
  • Figure 18 is a perspective view showing an example of a shim that can be included in the slot die coater shown in Figure 13.
  • Figure 19 is a partial enlarged view of Figure 17.
  • FIG. 20 is a perspective view of the slot die coater shown in FIG. 17 from another direction, showing the rear of the slot die coater.
  • Figure 21 is a modified example of Figure 20.
  • the slot die coater 200 does not have a bolt groove (H2) for fixing and pressurizing the tapered block 180 on the upper plate 110. , a small hole (H3) is processed in the width direction at that position.
  • the remaining hole H3 is formed to be long in the width direction at the rear of the top plate 110 so that the pressure bolt 190 can be inserted.
  • the pressure bolt 190 passes through the upper plate 110 from the rear of the upper plate 110 and is fastened to the tapered block 180. That is, the pressure bolt 190 is inserted from the rear portion of the upper plate 110 and enters the tapered block 180. For this purpose, a thread through which the pressure bolt 190 can be fastened is processed within the tapered block 180. What is different from the previous embodiment is that the pressure bolt 190 is fastened to the tapered block 180 at the rear of the upper plate 110.
  • the pressurizing bolt 190 is operated from the rear of the upper plate 110. Since the pressure bolt 190 is operated from the rear part, rather than the front part where the coating liquid is discharged, management of work, maintenance, etc. is easier.
  • pressure bolts 190 can be added corresponding to the number of patterns to be formed, and a tapered block ( 180) can be added as the corresponding number. In other words, each pattern can be configured separately.
  • the remaining hole H3 is formed to have a size similar to the diameter of the pressurizing bolt 190.
  • the pressurizing bolt 190 is bare and has a thread formed at its end.
  • the cross-sectional shape of the hole H3 and the shape of the pressurizing bolt 190 may vary from those shown.
  • the residual hole H3 is formed to be long in the width direction on the rear side of the upper plate 110. This structure makes it easy to position the pressure bolt 190 at any position in the remaining hole H3.
  • the remaining hole H3 is formed to be larger than the diameter of the pressing bolt 190.
  • the front middle of the empty hole H3 and the rear of the top plate 110 are blocked to act as a stopper. Since the remaining hole H3 is formed wider than the previous embodiment, the fastening stress caused by the pressure bolt 190 is not applied to the upper plate 110.
  • the shim 160 is vertically connected to the base portion 161 to include three opening portions 160a and may include four extension portions 162 extending toward the discharge port 140. .
  • the tapered block 180 is provided to correspond to the remaining two extension parts 162 except for the left and right sides among the four extension parts 162.
  • the number of taper blocks 180 can be increased and their positions can be changed to match the position of the shim 160. Accordingly, a plurality of press bolts 190 and tapered blocks 180 may be provided along the width direction. Additionally, when the shape of the shim 160 is changed, the positions of the taper block 180 and the pressure bolt 190 can be changed to a desired location in the width direction.
  • the taper block 180 and the pressure bolt 190 do not affect the slot gap (G), so the slot gap (G) is maintained corresponding to the set thickness (H) of the shim 160. It can be. That is, in the present invention, the size of the slot gap (G) is adjusted by the thickness (H) of the shim 160, and the taper block 180 and the pressure bolt 190 are adjusted to the shim without affecting the slot gap (G). By pressing (160), the gap between the upper plate 110 and the lower plate 120 is prevented.
  • a plurality of tapered blocks 180 may be provided in the width direction. When there are a plurality of tapered blocks 180 and the spacing between them is adjusted to be constant, more even force can be transmitted and deformation of the upper plate 110 and lower plate 120 can be prevented through stable balance.
  • the die lips 110a and 120a do not spread. Therefore, the active material slurry does not penetrate into the area where the active material slurry is blocked by the shim 160 and is prevented from being discharged.
  • the slot die coaters 100 and 200 were described as an example of a vertical die type that discharges the active material slurry, which is a coating liquid, in the direction opposite to gravity.
  • the direction of the discharge port 140 is installed almost horizontally so that it is horizontal.
  • the present invention can be applied even when configured as a die type (approximately: ⁇ 5 degrees).
  • the slot die coaters 100 and 200 have been described as having a single-layer slot 130 between the upper plate 110 and the lower plate 120, but the slots are formed in two layers including the upper plate, middle plate, and lower plate.
  • the present invention can be implemented with one dual slot die coater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating Apparatus (AREA)

Abstract

내부 압력에 의한 다이 블록 변형을 개선한 슬롯 다이 코터를 제공한다. 발명의 슬롯 다이 코터는, 서로 조립되어 토출구를 형성하는 상판과 하판; 및 상기 하판과 상판 사이에 개재되어 상기 토출구와 연통된 슬롯을 형성하는 심;을 포함하고, 상기 상판은 상기 슬롯 위쪽으로 상기 심과 평행하게 상기 상판 내부로 만입된 홈을 구비하고, 상기 홈에 끼워져 상기 심을 압박하는 테이퍼 블록 및 가압 볼트를 더 포함한다.

Description

슬롯 다이 코터
본 발명은 슬롯 다이 코터에 관한 것으로, 특히 내부 압력에 의한 다이 블록 변형을 개선한 슬롯 다이 코터에 관한 것이다. 본 출원은 2022년 7월 29일자로 출원된 한국 특허출원번호 제10-2022-0094861호 및 2023년 5월 15일자로 출원된 한국 특허출원번호 제10-2023-0062678호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있고, 이러한 이차 전지는 발전 요소인 전극 조립체를 필수적으로 포함하고 있다. 전극 조립체는, 양극, 분리막 및 음극이 적어도 1회 이상 적층된 형태를 가지며, 양극과 음극은 각각 알루미늄 호일과 구리 호일로 이루어진 집전체에 양극 활물질 슬러리 및 음극 활물질 슬러리가 도포 및 건조되어 제조된다. 이러한 이차 전지는 양극 활물질로서, 층상 결정구조의 리튬 함유 코발트 산화물(LiCoO2), 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)을 일반적으로 사용한다. 또한, 음극 활물질로서 탄소계 물질이 주로 사용되며, 최근에는 고에너지 리튬 이차 전지의 수요 증가로 탄소계 물질보다 10배 이상의 유효 용량을 가지는 실리콘계 물질, 실리콘 산화물계 물질과의 혼합 사용이 고려되고 있다. 이차 전지의 충방전 특성을 균일하게 하기 위해서는, 이러한 양극 활물질 슬러리 및 음극 활물질 슬러리가 집전체에 고르게 코팅되어야 하며, 종래부터 슬롯 다이 코터를 이용하고 있다.
도 1은 종래 슬롯 다이 코터를 나타낸 사시도이고, 도 2는 종래 슬롯 다이 코터의 분해 사시도이다.
도 1 및 도 2를 참조하면, 슬롯 다이 코터(1)를 이용한 전극 제조 방법에서는, 코팅 롤(미도시)에 의해 이송되는 집전체(미도시) 위에 슬롯 다이 코터(1)로부터 토출된 활물질 슬러리를 도포하게 된다. 슬롯 다이 코터(1)에서 토출된 활물질 슬러리는 집전체의 일 면에 넓게 도포되어 활물질층을 형성한다.
슬롯 다이 코터(1)는 2개의 다이 블록(10, 20)을 포함하고 2개의 다이 블록(10, 20) 사이에 슬롯(30)을 형성한 것이다. 2개의 다이 블록(10, 20)은 결합 볼트(70)에 의해 체결되어 있다. 슬롯(30)과 연통된 토출구(40)를 통해 활물질 슬러리를 토출하여 활물질층을 형성할 수가 있다. 슬롯 다이 코터(1)는 바 코팅 또는 콤마 코팅에 비하여 고속 도포가 가능한 이점이 있어 높은 생산성의 관점에서 많이 적용되고 있다.
집전체 위에 코팅되는 활물질층의 코팅폭은 슬롯(30)의 폭(W)에 의해 결정된다. 코팅폭의 변경이 필요할 경우, 매니폴드(50)의 내부 공간 및 슬롯(30)의 폭(W)을 결정하는 심(60)을 변경하여 다양한 코팅폭을 구현할 수 있다.
도 1에 예로 든 슬롯 다이 코터(1)는 활물질 슬러리가 중력 반대 방향으로 토출되는 수직 다이 타입이다. 수직 방향으로 슬롯 다이 코터(1)를 구성해 코팅하는 경우, 다이 블록(10, 20) 내부 압력에 의해 다이 블록(10, 20) 사이가 벌어지는 현상이 있다. 2개의 다이 블록(10, 20) 사이에 심(60)을 이용해 미코팅부(집전체에 코팅이 되지 않은 부분, 무지부)를 구현할 때에, 2개의 다이 블록(10, 20) 사이가 벌어지면서 활물질 슬러리가 유입되는 경우, 미코팅부에 간헐적으로 활물질 슬러리가 묻어 표면 불량이 되는 문제가 발생하게 된다.
도 3은 종래 슬롯 다이 코터의 최초 결합 상태를 보여주는 단면도이고, 도 1의 II-II' 단면에 해당한다. 도 4는 종래 슬롯 다이 코터에서 다이 내부 압력에 의한 변형을 보여주는 단면도이다. 도 5는 종래 슬롯 다이 코터에서 다이 내부에 슬러리가 스며들어 집전체의 무지부에 표면 불량이 발생하는 문제점을 보이는 도면이다.
도 3에서 2개의 다이 블록(10, 20)은 결합 볼트(70)에 의해 체결되어 있다. 다이 블록(10, 20) 내부 압력 증가시, 도 4에 도시한 바와 같이 결합 볼트(70)를 기점(기준점)으로 내부 압력에 의한 토크(T)가 발생한다. 그로 인하여 가장 먼 부분이 가장 큰 힘을 받아 다이 블록(10, 20)의 선단부인 다이 립(10a, 20a) 부분이 벌어지게 된다. 그렇게 되면 심(60)으로 활물질 슬러리를 막아 토출되지 못하게 해야 하는 부분에까지 활물질 슬러리가 스며들게 된다.
이에 따라 도 5에 도시한 바와 같이 활물질 슬러리(75)가 있어서는 안 될 다이 블록(10, 20) 내부에까지 활물질 슬러리(75)가 스며들어, 집전체(80)의 무지부(80a)에 표면 불량(90)이 발생한다. 표면 불량(90)이 없어야 MD 방향으로 형성되는 무지부(80a)를 따라 슬리팅(slitting)하여 각각의 활물질층(80b)으로 전극을 형성할 때에 슬리팅 불량을 발생시키지 않으며, 혹시라도 무지부(80a)에 남아 있는 표면 불량(90)에 의해 이차 전지 제조 후 전극 단선이 되는 일이 발생하지 않는다.
본 발명은, 상술한 문제점을 고려하여 창안된 것으로서, 본 발명의 목적은 다이 내압 증가에 따른 미코팅부 활물질 슬러리 토출을 방지하도록 하는 것이다.
이에 따라 본 발명이 해결하고자 하는 과제는, 내부 압력에 의한 다이 블록 변형을 개선한 슬롯 다이 코터를 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 슬롯 다이 코터는, 서로 조립되어 토출구를 형성하는 상판과 하판; 및 상기 하판과 상판 사이에 개재되어 상기 토출구와 연통된 슬롯을 형성하는 심;을 포함하고, 상기 상판은 상기 슬롯 위쪽으로 상기 심과 평행하게 상기 상판 내부로 만입된 홈을 구비하고, 상기 홈에 끼워져 상기 심을 압박하는 테이퍼 블록 및 가압 볼트를 더 포함한다.
상기 홈은 상기 홈의 안쪽으로 갈수록 높이가 점점 낮아지며 상기 테이퍼 블록의 경사가 그에 맞춰진 것일 수 있다.
상기 가압 볼트는 상기 홈의 앞쪽에서부터 상기 테이퍼 블록을 관통하여 상기 상판에 체결될 수 있다.
상기 홈은 상기 상판의 전면에서부터 후면 쪽으로 만입되어 있고, 상기 가압 볼트는 상기 상판의 전면에서 상기 테이퍼 블록에 체결될 수 있다.
상기 테이퍼 블록은 상기 가압 볼트에 체결되어 상기 토출구의 방향과 나란한 방향에서 전후로 움직이며, 상기 홈과 테이퍼 블록의 높이 차이에 의한 힘을 발생시켜 상기 심을 압박할 수 있다.
상기 심은 다수의 개방부를 포함하도록 베이스부에 수직으로 연결되어 상기 토출구 쪽으로 연장되는 다수의 연장부를 포함하며, 상기 테이퍼 블록의 가로 길이는 상기 연장부의 가로 길이보다 크지 않으며, 상기 테이퍼 블록은 상기 연장부에 대응되는 위치에서 상기 홈에 끼워질 수 있다.
상기 다수의 연장부 중 사이드에 있는 연장부를 제외한 연장부에 대응되는 위치에 상기 테이퍼 블록이 구비될 수 있다.
상기 하판에 매니폴드를 더 포함하며, 상기 매니폴드 앞단에서부터 상기 토출구까지의 영역인 랜드의 길이보다 상기 테이퍼 블록의 길이가 짧을 수 있다.
본 발명의 일 측면에 따르면, 상기 홈은 상기 토출구 쪽에 형성된다.
상기 홈과 정렬되는 위치에 상기 가압 볼트가 체결되는 볼트 홈이 형성될 수 있다.
상기 테이퍼 블록에 상기 볼트 홈과 정렬되어 상기 가압 볼트가 관통할 수 있도록 홀이 형성되어 있을 수 있다.
본 발명의 다른 측면에 따르면, 상기 가압 볼트는 상기 상판의 후면에서부터 상기 상판을 관통하여 상기 테이퍼 블록에 체결된다.
상기 가압 볼트가 삽입될 수 있도록 상기 상판의 후면에 폭 방향으로 잔공 홀을 포함한다.
상기 가압 볼트와 테이퍼 블록이 상기 폭 방향을 따라 복수개가 구비될 수 있다.
상기 테이퍼 블록 내에 상기 가압 볼트가 체결될 수 있는 나사선이 형성되어 있을 수 있다.
상기 잔공 홀은 상기 상판의 후면에서 전면 쪽으로 형성되고, 상기 홈은 상기 상판의 전면에서 후면 쪽으로 형성되며, 상기 잔공 홀은 상기 홈과 정렬되는 위치에 형성되어 있을 수 있다.
상기 하판에 코팅액을 수용하는 매니폴드가 구비되고, 상기 매니폴드가 상기 슬롯과 연통할 수 있다.
상기 슬롯 다이 코터는 상기 토출구를 통해 상기 코팅액을 기재 상에 토출하여 도포하며, 상기 심은 상기 기재 상에 도포되는 코팅층의 코팅폭을 결정하도록 일 영역이 간헐적으로 절개되어 다수의 개방부를 구비할 수도 있다.
상기 테이퍼 블록과 가압 볼트는 상기 개방부에 영향을 주지 않고 상기 심을 압박하여 상기 상판과 하판 사이 벌어짐을 방지할 수 있다.
본 발명에 따르면, 슬롯 다이 코터에서 상판의 구조를 변경하고 테이퍼 블록 및 가압 볼트를 더 포함하여, 슬롯 다이 내부 압력 증가에 따른 미코팅부 활물질 슬러리 토출을 방지할 수 있다.
이에 따라, 미코팅부 활물질 슬러리 토출을 방지하여 전극 형성시 표면 불량을 개선할 수 있다. 특히 스트라이프 패턴 모양의 활물질층을 형성할 때에 무지부에 패턴 불량을 발생시키는 일이 없이 안정적으로 활물질층을 형성할 수 있다.
이러한 본 발명의 슬롯 다이 코터를 이용하면 소망하는 두께 및 모양으로 균일하게 코팅층, 특히 전극 활물질층을 형성할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래 슬롯 다이 코터를 나타낸 사시도이다.
도 2는 종래 슬롯 다이 코터의 분해 사시도이다.
도 3은 종래 슬롯 다이 코터의 최초 결합 상태를 보여주는 단면도이다.
도 4는 종래 슬롯 다이 코터에서 다이 내부 압력에 의한 변형을 보여주는 단면도이다.
도 5는 종래 슬롯 다이 코터에서 다이 내부에 슬러리가 스며들어 집전체의 무지부에 표면 불량이 발생하는 문제점을 보이는 도면이다.
도 6은 본 발명의 일 실시예에 따른 슬롯 다이 코터를 나타낸 사시도이다.
도 7은 도 6에 나타낸 슬롯 다이 코터의 폭 방향에 수직인 단면도이다.
도 8은 도 7에 나타낸 슬롯 다이 코터의 변형예의 도면이다.
도 9는 도 6에 나타낸 슬롯 다이 코터의 폭 방향에 수직인 다른 단면도이다.
도 10은 도 7의 부분 확대도다.
도 11은 도 6에 나타낸 슬롯 다이 코터의 정면도이다.
도 12는 도 6에 나타낸 슬롯 다이 코터에 포함될 수 있는 심의 일 예를 도시한 사시도이다.
도 13은 본 발명의 다른 실시예에 따른 슬롯 다이 코터를 나타낸 사시도이다.
도 14는 도 13의 변형예이다.
도 15는 도 13에 나타낸 슬롯 다이 코터의 폭 방향에 수직인 단면도이다.
도 16은 도 14에 나타낸 슬롯 다이 코터의 폭 방향에 수직인 단면도이다.
도 17은 도 13에 나타낸 슬롯 다이 코터의 변형예로서 다른 방향에서의 사시도이다.
도 18은 도 13에 나타낸 슬롯 다이 코터에 포함될 수 있는 심의 일 예를 도시한 사시도이다.
도 19는 도 17의 부분 확대도이다.
도 20은 도 17에 나타낸 슬롯 다이 코터의 다른 방향에서의 사시도이다.
도 21은 도 20의 변형예이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
동일한 도면부호는 동일한 구성요소를 지칭한다. 또한, 도면들에 있어서, 구성요소들의 두께, 비율, 및 치수는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
도 6은 본 발명의 일 실시예에 따른 슬롯 다이 코터를 나타낸 사시도이다. 도 7은 도 6에 나타낸 슬롯 다이 코터의 폭 방향에 수직인 단면도로서, 도 6의 VII-VII' 단면에 해당하며, 토출구의 방향과 나란한 단면을 보여준다. 도 8은 도 7에 나타낸 슬롯 다이 코터의 변형예의 도면이다. 도 9는 도 6에 나타낸 슬롯 다이 코터의 폭 방향에 수직인 다른 단면도로서, 도 6의 VIII-VIII' 단면에 해당하고, 역시 토출구의 방향과 나란한 단면을 보여준다. 도 10은 도 7의 부분 확대도이고, 도 11은 도 6에 나타낸 슬롯 다이 코터의 정면도이다.
앞서 도 1에서 본 바와 같이, 기존 슬롯 다이 코터(1)가 두 개의 다이 블록(10, 20)과 심(60)으로 구성되어 있는 반면, 도 6 내지 도 11에 나타낸 바와 같은 본 발명의 슬롯 다이 코터(100)에서는 상판(110, 구조 변경), 하판(120), 심(160), 테이퍼 블록(180, taper block) 및 가압 볼트(190)를 포함하여 구성되어 있다.
본 발명의 슬롯 다이 코터(100)는 슬롯(130)을 구비하고 슬롯(130)을 통해 기재 상에 코팅액을 코팅하는 장치이다. 이하의 설명하는 '기재'는 집전체이고 '코팅액'은 활물질 슬러리이다. 다만, 본 발명의 권리범위가 이에 반드시 제한되는 것은 아니다. 예컨대 기재는 분리막을 구성하는 다공성 지지체이고 코팅액은 유기물일 수 있다. 즉, 박막 코팅이 요구되는 경우라면 기재와 코팅액은 어떠한 것이어도 좋다. 본 명세서에서 '전'은 토출구가 향하는 방향(X축 방향)을 가리키고 '후'는 그 반대 방향을 가리킬 수 있다. '좌/우'는 토출구가 향하는 방향에 수직인 방향으로, 슬롯의 폭 방향(Y축 방향)을 가리킬 수 있다.
도 6 내지 도 11을 참조하면, 본 발명의 일 실시예에 따른 슬롯 다이 코터(100)는, 코팅액을 토출하기 위한 슬롯(130)을 구비하는 슬롯 다이 코터로서, 상판(110)과 하판(120)을 포함한다. 예를 들어 토출구(140)의 방향인 X축 방향을 중력 반대 방향이 되게 슬롯 다이 코터(100)를 설치하면 의도한 바에 따라 코팅액을 중력 반대 방향으로 토출하는 수직 다이로 구현할 수 있다.
상판(110)과 하판(120)은 서로 조립되어 슬롯(130)과 연통된 토출구(140)를 형성한다. 상판(110)/하판(120)은 고정 볼트(170)로 조립이 될 수 있다.
상판(110)은 하판(120)과의 사이에 슬롯(130)을 형성한다. 심(160, shim)이 하판(120)과 상판(110) 사이에 개재되어 토출구(140)와 연통된 슬롯(130)을 형성하게 된다.
상판(110)과 하판(120)은 토출구(140)가 향하는 전방인 X축 방향으로의 길이보다 그에 수직인 Y축 방향으로의 폭이 긴 장방형 부재이다. 심(160)은 상판(110)과 하판(120)의 접면에 면접하며, 상판(110)과 하판(120)을 체결하는 고정 볼트(170)에 의해 상판(110)과 하판(120) 사이에 조립될 수 있다.
슬롯(130)은 상판(110)과 하판(120)이 서로 대면하는 곳 사이에 형성된다. 여기에 심(160)이 개재되어 이들 사이에 간극이 마련됨으로써 코팅액이 유동할 수 있는 통로에 해당하는 슬롯(130)이 형성되는 것이다. 심(160)의 두께는 슬롯(130)의 상하 폭(Z축 방향, 슬롯 갭)을 결정한다.
상판(110)과 하판(120)의 대부분의 면은 거의 수직이 되도록 제작된 것을 사용할 수 있다. 이러한 상판(110)과 하판(120)에서는 면과 면이 이루는 모서리가 직각으로 구성되기 때문에 단면상 직각부가 존재하고 수직 또는 수평면을 기준이 되는 면으로 할 수 있기 때문에 그 제작이나 취급이 쉽고 정밀도가 보장된다. 또한, 상판(110)과 하판(120)을 조합할 때에 대면하는 부분들이 높은 면 접촉도를 가지고 서로 지지될 수 있기 때문에 체결 고정 및 유지가 매우 우수하다. 뿐만 아니라, 상판(110)과 하판(120)이 조합된 상태는 전체적으로 대략 직육면체 형태를 가지며, 코팅액이 토출되는 전방부만 기재를 향하여 비스듬한 형태를 가지게 할 수도 있다.
상판(110)과 하판(120)은 예컨대 SUS 재질이다. SUS420J2, SUS630, SUS440C, SUS304, SUS316L 등의 가공이 용이한 재질을 이용할 수 있다. SUS는 가공이 용이하고 저렴하며 내식성이 높고 저비용으로 원하는 형상으로 제작할 수 있는 이점이 있다.
일반적으로 SUS 조립체의 결합면에서는 액체 누설이 쉽게 발생하기 때문에, 고무링이나 기타 연성 재질의 재료를 구성물 사이에 위치시켜 씰링함으로써 누설을 억제시킨다. 하지만 이러한 씰링 방식은 균일한 조립 형태(예를 들어 10㎛ 미만의 조립 편차)를 제어하는 데에 적합하지 않아, 슬롯 다이 코터(100)에는 적용하기 어렵다. 이 때문에 슬롯 다이 코터(100)는 매우 높은 정밀도(진직도, 평탄도 ±5㎛)로 가공된 상판(110)과 하판(120)을 고정 볼트(170)로 체결해 조립한다. 액체 누설을 방지하여야 하므로 고정 볼트(170) 체결은 200~350N 정도의 고압으로 함이 바람직하다.
상판(110)은 슬롯(130) 위쪽으로 심(160)과 평행하게 상판(110) 내부로 만입된 홈(H1)을 구비한다. 테이퍼 블록(180) 및 가압 볼트(190)는 홈(H1)에 끼워져 심(160)을 압박하게 된다.
이와 같이 본 발명에서는 상판(110)에 테이퍼 블록(180)이 끼워질 수 있는 홈(H1)이 가공된다. 홈(H1)은 토출구(140) 쪽에 형성된다. 다시 말해, 홈(H1)은 상판(110)의 전면에 형성된다. 홈(H1)은 상판(110) 전면에서부터 후면 쪽으로, 즉 상판(110) 내부로 만입되어 있다.
홈(H1)은 상판(110)의 일부가 함몰된 것 혹은 상판(110)을 파낸 것에 해당할 수 있다. 홈(H1)은 필요한 만큼, 그러나 가능한 한 최소의 크기로 하여 상판(110)의 기계적 강성을 해치지 않도록 함이 바람직하다. 도시한 바와 같이 홈(H1)은 폭 방향으로 길쭉한 형태일 수 있고, 그렇지 않을 수도 있다.
그리고, 도 7 및 도 8을 참조하면, 상판(110)에 고정 및 가압을 위한 볼트 홈(H2)을 가공한다. 볼트 홈(H2)은 홈(H1)과 정렬되는 위치에 가압 볼트(190)가 체결되도록 형성될 수 있다. 가압 볼트(190)는 상판(110)의 전면에서 테이퍼 블록(180)에 체결된다. 가압 볼트(190) 조작은 상판(110) 전면에서 이루어진다.
또한, 테이퍼 블록(180) 및 가압 볼트(190)는 좌우 사이드를 제외한 심(160) 부위에 심(160)을 압박할 수 있도록 위치한다. 가압 볼트(190)는 홈(H1) 내에 테이퍼 블록(180)의 위치를 고정하면서, 동시에 테이퍼 블록(180) 및 홈(H1)의 높이 차에 따른 압박 힘을 발생시켜 심(160)을 가압할 수 있도록 하는 역할을 한다.
가압 볼트(190)의 조여지는 정도를 가지고 테이퍼 블록(180)의 위치를 조절하여 압박 힘을 조절할 수 있다. 테이퍼 블록(180)은 가압 볼트(190)에 의해 위치가 가변된다. 특히 테이퍼 블록(180)은 가압 볼트(190)에 체결되어 토출구의 방향과 나란한 방향에서 전후로 움직일 수 있게 된다. 테이퍼 블록(180)에는 볼트 홈(H2)과 정렬되어 가압 볼트(190)가 관통할 수 있도록 홀(O)이 형성되어 있다.
도 7에서, 볼트 홈(H2)은 가압 볼트(190)의 직경과 유사한 정도의 크기로 형성되어 있으며, 가압 볼트(190)가 체결될 수 있게 나사선 가공이 되어 있다. 볼트 홈(H2)은 홈(H1)보다 더 안쪽으로까지 형성되어 있고, 가압 볼트(190)의 단부를 체결할 수 있게 되어 있다. 가압 볼트(190)는 단부에까지 나사선이 형성되어 있다.
도 8은 다른 예이고, 가압 볼트(190)는 일정 길이까지만 나사선이 형성되어 있고 단부는 민자이다. 이러한 가압 볼트(190) 단부가 볼트 홈(H2) 안에서 헛돌지 않도록, 볼트 홈(H2)에 가로 질러 끼워지는 U자형 통공이 있는 걸림쇠가 더 포함될 수 있다. 걸림쇠 후단으로는 볼트 홈(H2)이 넓게 형성되어 있어 가압 볼트(190)의 단부 응력을 해소할 수 있다.
하판(120)에는 코팅액을 수용하는 매니폴드(150, manifold)가 구비될 수 있다. 매니폴드(150)는 소정의 형상과 깊이를 가질 수 있다. 도면에 도시되어 있지는 않으나, 이러한 매니폴드(150)는 외부에 설치된 코팅액 공급 챔버(미도시)와 공급관으로 연결되어 코팅액을 공급받는다. 매니폴드(150) 내에 코팅액이 가득 차게 되면, 상기 코팅액이 슬롯(130)을 따라 흐름이 유도되고 토출구(140)를 통해 외부로 토출되게 된다.
매니폴드(150)는 활물질 슬러리와 같은 코팅액을 집전체와 같은 기재 상으로 균일하게 공급/토출하기 위하여 형성되어 있는 것이다. 매니폴드(150)는 상판(110)에 구비될 수도 있다.
도면에서 참조부호 110a와 120a는 상판(110)과 하판(120)의 선단부인 다이 립을 가리킨다.
도 7 및 도 10에 상세히 나타낸 바와 같이, 테이퍼 블록(180)이 끼워질 수 있는 홈(H1)은 홈(H1)의 안쪽으로 갈수록, 즉 상판(110)의 전면에서 후면으로 갈수록 높이(h)가 점점 낮아진다. 그리고, 테이퍼 블록(180)의 경사가 그에 맞춰질 수 있다. 다시 말해, 홈(H1)은 상판(110)의 내부로 들어갈수록 높이(h)가 점점 낮아지게 형성되어 있고, 테이퍼 블록(180)도 그러하게 형성되어 있을 수 있다.
테이퍼 블록(180)은 이러한 홈(H1) 안에서 가압 볼트(190)에 의해 전후 방향으로 움직일 수 있도록 설계되어 있다. 예를 들어, 테이퍼 블록(180)은 도시한 바와 같이 하면이 평평하고 상면이 경사진 것일 수 있다. 이에 맞춰 홈(H1)도 하면이 평평하고 상면이 경사지게 형성되어 홈(H1)의 안쪽으로 갈수록 높이(h)가 점점 낮아지게 형성되어 있을 수 있다.
홈(H1)의 하면을 평평하게 함으로써, 홈(H1)을 심(160)과 평행하게 만들 수 있다. 테이퍼 블록(180)의 하면을 평평하게 함으로써, 고른 힘이 심(160) 방향으로 가해질 수 있도록 할 수 있다. 홈(H1)과 테이퍼 블록(180)의 상면과 하면을 모두 경사지게 하여도 상판(110)의 전면에서 후면으로 갈수록 높이(h)가 점점 낮아지게 할 수 있지만, 하면을 평평하게 함으로써 가공 작업이나 조작의 기준면이 되게 하고 홈(H1)과 테이퍼 블록(180)을 매우 높은 정밀도(진직도, 평탄도 ±5㎛)로 가공할 수 있다.
가압 볼트(190)는 홈(H1)의 앞쪽에서부터 테이퍼 블록(180)을 관통하여 상판(110)에 체결될 수 있다. 즉, 가압 볼트(190)의 조작은 상판(110)의 전면에서 이루어질 수 있다.
테이퍼 블록(180)의 가압 볼트(190)를 조일수록, 즉 도 10에서 작은 화살표 방향으로 테이퍼 블록(180)이 홈(H1)의 안쪽을 향해 움직일수록, 해당 지점에 수직 방향으로 굵은 화살표로 표시한 힘(F)이 가해진다. 홈(H1)이 안쪽으로 갈수록 높이(h)가 점점 낮아지는데, 여기에 테이퍼 블록(180)을 밀어넣으면 넣을수록 홈(H1)과 테이퍼 블록(180)의 높이 차이가 발생하고, 좁은 틈에 큰 물체를 끼워 넣는 것에 해당하여 사방으로 밀어내려는 힘을 발생시킨다. 이와 같이 테이퍼 블록(180)이 사방으로 밀어 홈(H1)을 사방으로 벌어지게 하려는 힘 중에서 특히 심(160)을 누르는 방향으로의 힘(F)을 이용한다. 이 힘(F)이 상판(110), 심(160) 및 하판(120) 사이를 조여주게 된다. 테이퍼 블록(180)의 하면 면적(BA)으로 인하여 고르게 심(160)을 조여줄 수 있다. 코팅액 토출에 의해 슬롯 다이 코터(100) 내부 압력이 증가되는 상황에서도 테이퍼 블록(180)이 심(160)을 압박하는 힘(F)이 작용하므로, 상판(110)과 하판(120) 변형을 방지하여 미코팅부 활물질 슬러리 토출을 방지할 수 있다.
도 7과 도 8을 참조하면, 테이퍼 블록(180)의 길이(D1)는 랜드(120b, land)의 길이(L)보다 짧아야 한다. 랜드(120b)는 매니폴드(150) 앞단에서부터 토출구(140)까지의 영역을 가리킨다. 테이퍼 블록(180)의 길이(D1)가 랜드(120b)의 길이(L)보다 길 경우에는 매니폴드(150) 부분에 영향을 줄 수 있다.
또한, 도 11을 참조하면, 테이퍼 블록(180)의 가로 길이(D2)는 폭 방향으로 심(160)의 길이(S)보다 크지 않아야 한다. 테이퍼 블록(180)의 가로 길이(D2)가 심(160)의 길이(S)보다 클 경우 슬롯 갭(G)에 영향을 줄 수 있다. 이와 같이, 테이퍼 블록(180)은 상판(110)에서도 센터 부분에 작용을 하며, 테이퍼 블록(180)이 폭 방향으로 토출구(140)에 영향을 미칠 정도로 너무 길게 이어져 있지는 않다. 테이퍼 블록(180)은 그 아래의 심(160) 부분에만 작용하도록 되어 있다. 테이퍼 블록(180)은 슬롯 갭(G)을 변화시키지 않는다.
도 12는 도 6에 나타낸 슬롯 다이 코터에 포함될 수 있는 심의 일 예를 도시한 사시도이다.
도 6 및 도 12를 함께 참조하면, 심(160)은 토출구(140)가 형성되는 영역을 제외하고는, 상판(110)과 하판(120)의 틈새로 코팅액이 누출되지 않도록 하는 가스켓(gasket)으로서의 기능을 겸함으로 밀봉성을 갖는 재질로 이루어지는 것이 바람직하다. 심(160)은 예를 들어 플라스틱제 또는 금속제일 수 있지만 본 발명이 이에 제한되는 것은 아니다. 심(160)은 예를 들어 테플론, 폴리에스테르 등의 수지 시트, 또는 구리, 알루미늄 등의 금속 시트일 수 있다.
심(160)은 이음매없이 일체형 구조물일 수 있다. 심(160)은 상면이 평평하고 하면도 평평할 수 있다. 즉, 시트형 부재일 수 있다.
심(160)은 상판(110)과 하판(120)의 대향면의 테두리 영역 중 일 측을 제외한 나머지 부분에 개재될 수 있다. 이에 코팅액이 외부로 토출될 수 있는 토출구(140)는 다이 립(110a, 120a) 사이에 형성된다. 토출구(140)는 다이 립(110a, 120a) 사이가 이격됨으로써 형성된 곳이라 할 수 있고, 슬롯(130)의 끝단이 토출구(140)가 된다. 심(160)은 기재 상에 도포되는 코팅층의 코팅폭을 결정하도록 일 영역이 간헐적으로 절개되어 다수의 개방부(160a)를 구비한다. 개방부(160a)는 슬롯(130)을 정의하고 슬롯(130)의 말단이 토출구(140)가 된다. 개방부(160a)의 개수가 1개이면 하나의 코팅층을, 도시한 바와 같이 개방부(160a)의 개수가 2개이면 2개의 코팅층을 Y축 방향을 따라 좌우로 나란히 형성할 수가 있다.
예를 들어, 심(160)은 다수의 개방부(160a)를 포함하도록 베이스부(161)에 수직으로 연결되어 토출구(140) 쪽으로 연장되는 다수의 연장부(162)를 포함할 수 있다. 기재 위에 코팅폭이 b인 활물질층을 여러 개 형성하고 각 활물질층의 양 옆으로는 무지부가 형성되도록 하기 위하여, 심(160)의 개방부(160a)의 폭을 b로 설계한다. 도 12과 같은 심(160)을 적용시, 기재 상에 스트라이프(stripe) 패턴 모양의 코팅층이 형성된다.
도 11을 참조하여 설명한 바와 같이, 다수의 연장부(162) 중 사이드에 있는 연장부를 제외한 연장부(162)에 대응되는 위치에 테이퍼 블록(180)이 구비될 수 있다. 특히 테이퍼 블록(180)의 가로 길이(D2)는 심(160)의 연장부(162), 특히 센터에 위치한 연장부(162)의 길이(S)보다 크지 않으며, 테이퍼 블록(180)은 이러한 연장부(162)에 대응되는 위치에서 홈(H1)에 끼워지고, 해당 부위의 연장부(162)를 압박할 수 있다. 또한, 테이퍼 블록(180)의 길이(D1)를 조절하여, 테이퍼 블록(180)은 매니폴드(150)에 영향을 주지 않고 랜드(120b) 부위를 가압하는 방식이다. 테이퍼 블록(180)은 연장부(162)에 대응되는 위치에서 연장부(162) 양측의 개방부(160a)까지는 침범하지 않는 크기를 가지고 있으므로, 테이퍼 블록(180)과 가압 볼트(190)는 개방부(160a)에 영향을 주지 않으면서 심(160)을 압박할 수 있다. 심(160)을 압박하여 상판(110)과 하판(120) 사이 벌어짐을 방지하게끔 할 수 있다.
테이퍼 블록(180)의 하방에 심(160)이 위치한다. 심(160)이 상판(110)을 받치고 있어서, 테이퍼 블록(180)을 조작하여도 개방부(160a)에 영향을 주지 않고, 그에 따라 슬롯 갭(G) 변형이 없다. 즉, 테이퍼 블록(180)을 조작하여도 토출구(140)를 통한 코팅액 유량의 변동이 없다. 본 발명은 슬롯 갭(G) 변화를 목적으로 하는 것이 아니고, 슬롯 갭(G)에 영향을 주지 않는다.
종래에는 슬롯 다이 코터(1)의 내부 압력 증가시 다이 립(10a, 20a) 부분이 벌어지는 문제가 있었다(도 1 내지 도 5 참조). 하지만, 본 발명에 따르면, 테이퍼 블록(180)이 상판(110), 심(160) 및 하판(120) 사이를 조여주게 되어, 다이 립(110a, 120a) 부분이 벌어지지 않는다. 나아가, 활물질 슬러리를 막아 토출되지 못하게 해야 하는 부분에까지 활물질 슬러리가 스며들지 않는다. 따라서, 무지부에 활물질 슬러리가 묻어서 생기는 표면 불량 없이 전극 활물질층 패턴을 형성할 수 있다.
매니폴드(150)의 뒤쪽과 앞쪽에서 상판(110)의 하면과 심(160)의 상면이 서로 틈새 없이 결합하고 하판(120)의 상면과 심(160)의 하면이 서로 틈새없이 결합할 수 있다. 특히, 테이퍼 블록(180)과 가압 볼트(190)를 통해 상판(110), 심(160) 및 하판(120) 사이를 더욱 압박하여 상판(110)과 하판(120) 사이가 벌어지지 않게 할 수 있다. 이를 통해 코팅액은 심(160)에 의해 정의된 슬롯(130) 안에서만 확실하게 유동하게 되고, 미코팅부로 침범하지 않는다.
이러한 구성을 갖는 슬롯 다이 코터(100)에 의하면, 회전 가능하게 마련되는 코팅 롤(미도시)을 슬롯 다이 코터(100)의 전방에 배치하고, 상기 코팅 롤을 회전시킴으로써 코팅될 기재를 주행시키면서, 코팅액을 토출해 연속적으로 상기 기재의 표면에 접촉시켜 도포할 수가 있다. 또는 코팅액의 공급 및 중단을 번갈아 수행하여 기재 상에 간헐적으로 패턴 코팅을 형성할 수도 있다. 코팅액이 미코팅부로 침범하지 않아, 패턴 불량없이 코팅층을 형성할 수 있다.
예를 들어, 본 발명의 슬롯 다이 코터(100)를 이용하여 양극 활물질 슬러리를 코팅함으로써 이차 전지의 양극 제조에 적용될 수 있다. 양극은 집전체 및 상기 집전체의 표면에 형성된 양극 활물질층을 포함한다. 집전체는 Al, Cu, 등 전기 전도성을 나타내는 것으로서 이차 전지 분야에서 공지된 집전체 전극의 극성에 따라 적절한 것을 사용할 수 있다. 상기 양극 활물질층은 복수의 양극 활물질 입자, 도전재 및 바인더 중 하나 이상을 더 포함할 수 있다. 또한, 상기 양극은 전기화학적 특성의 보완이나 개선의 목적으로 다양한 첨가제를 더 포함할 수 있다.
활물질은 리튬 이온 이차 전지의 양극 활물질로 사용될 수 있는 것이면 특정한 성분으로 한정되는 것은 아니다. 이의 비제한적인 예로는 리튬 망간복합 산화물(LiMn2O4, LiMnO2 등), 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 중 1종 또는 2종 이상의 혼합물을 포함할 수 있다. 본 발명에 있어서, 상기 양극은 고체 전해질 재료로 고분자계 고체 전해질, 산화물계 고체 전해질 및 황화물계 고체 전해질 중 하나 이상을 포함할 수 있다.
도전재는 통상적으로 활물질을 포함한 혼합물 전체 중량을 기준으로 1wt% 내지 20wt%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재에서 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 바인더는 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분이면 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. 상기 바인더는 통상적으로 전극층 100wt% 대비 1wt% 내지 30wt%, 또는 1wt% 내지 10wt%의 범위로 포함될 수 있다.
본 발명의 슬롯 다이 코터(100)를 이용하여 음극 활물질 슬러리를 코팅함으로써 이차 전지의 음극 제조에 적용될 수도 있다. 상기 음극은 집전체 및 상기 집전체의 표면에 형성된 음극 활물질층을 포함한다. 상기 음극 활물질층은 복수의 음극 활물질 입자, 도전재 및 바인더 중 하나 이상을 더 포함할 수 있다. 또한, 상기 음극은 전기화학적 특성의 보완이나 개선의 목적으로 다양한 첨가제를 더 포함할 수 있다.
상기 음극 활물질은 흑연, 비정질 탄소, 다이아몬드상 탄소, 풀러렌, 탄소 나노튜브, 탄소나노 혼 등의 탄소 재료나 리튬 금속 재료, 실리콘이나 주석 등의 합금계 재료, Nb2O5, Li5Ti4O12, TiO2 등의 산화물계 재료, 혹은 이들의 복합물을 이 용할 수 있다. 음극에 대해서 도전재, 바인더 및 집전체에 대해서는 양극에 대해 기재한 내용을 참조할 수 있다.
이러한 양극 활물질이나 음극 활물질을 포함하는 활물질 슬러리는 점도가 매우 높다. 예를 들어 점도는 1000 cps 이상일 수 있다. 이차 전지 전극을 형성하기 위한 용도의 활물질 슬러리의 점도는 2000 cps 내지 30000 cps일 수도 있다. 예를 들어 음극 활물질 슬러리는 점도가 2000 cps 내지 4000 cps일 수 있다. 양극 활물질 슬러리는 점도가 8000 cps 내지 30000 cps일 수 있다. 점도 1200 cps 이상의 코팅액을 코팅할 수 있어야 하는 것이므로 본 발명의 슬롯 다이 코터(100)는 이보다 낮은 점도의 코팅액, 예를 들면 사진 감광 유제액, 자성액, 반사 방지나 방현성 등을 부여하는 액, 시야각 확대 효과를 부여하는 액, 컬러 필터용 안료액 등 보통의 수지액을 도포하는 장치 구조와는 차이가 있고 그것을 변경하여 도달할 수 있는 장치가 아니다. 본 발명의 슬롯 다이 코터(100)는 예를 들어 평균 입경이 10㎛ 내외의 입자 크기를 가지는 활물질을 포함할 수도 있는 활물질 슬러리를 도포하기 위한 것이므로, 이러한 크기의 입자를 포함하지 않는 다른 코팅액을 도포하는 장치 구조와도 차이가 있고 그것을 변경하여 도달할 수 있는 장치가 아니다. 본 발명의 슬롯 다이 코터(100)는 전극 제조용 코터로 최적화되어 있다.
점도가 높은 활물질 슬러리와 같은 코팅액을 토출하게 되는 경우, 토출 압력에 의해서도 토출구(140) 주변에 힘이 가해질 수 있다. 종래에는 다이 블록(10, 20)의 변형 때문에 심(60) 이외의 다이 블록(10, 20) 내부에까지 활물질 슬러리가 침투하여 패턴 불량이 발생하는 문제가 있었다(도 1 내지 도 5 참조). 본 발명에 따르면, 테이퍼 블록(180)과 가압 볼트(190)를 구비하므로, 상판(110)과 하판(120)의 변형이 방지되어 심(160)을 가지고 규정한 폭, 이를테면 도 12의 'b'를 벗어나서 활물질 슬러리와 같은 코팅액이 슬롯 다이 코터(100) 내부로 침범할 수가 없다. 따라서, 패턴 불량없이 양호한 활물질층을 형성할 수가 있다.
본 발명에 따르면, 슬롯 다이 코터(100) 내부로 불필요한 부위에 코팅액이 침범하지 않는다. 따라서, 활물질 슬러리가 비산하여 무지부에 코팅이 되면서 경계부 오염을 발생시키거나, 경계면에 물결 무늬와 같은 경계면 불균일을 유발할 염려가 없다. MD 방향으로 형성되는 코팅 경계면은 균일하게 형성되어야 나중에 무지부를 따라 슬리팅하여 각각의 활물질층으로 전극을 형성할 때에 슬리팅 불량을 발생시키지 않으며, 혹시라도 무지부에 남아 있는 오염에 의해 이차 전지 제조 후 전극 단선이 되는 일이 발생하지 않는다. 본 발명에 따른 슬롯 다이 코터(100)를 이용하면 슬리팅 불량이나 전극 단선이 일어나지 않는다.
본 발명에 따르면, 상판(110)의 구조가 종래에 비해 변경되고, 테이퍼 블록(180)과 가압 볼트(190)를 더 포함한다. 테이퍼 블록(180)과 가압 볼트(190)는 상판(110), 심(160) 및 하판(120)을 긴밀히 압박하여, 상판(110), 심(160) 및 하판(120)은 면접하고 이들 사이에는 빈 틈이 생기기 어렵다. 이에 따라, 슬롯 다이 코터(100)의 내부 압력에 의한 토크가 발생하더라도 상판(110)과 하판(120)이 심(160)을 사이에 두고 서로 맞닿는 면을 지탱해줄 수 있다. 다시 말해, 슬롯(130) 벌어짐을 방지할 수 있다. 상판(110)과 하판(120) 사이가 벌어지면서 활물질 슬러리가 유입되는 경우, 미코팅부에 간헐적으로 활물질 슬러리가 묻어 표면 불량이 되는 문제가 발생하게 되겠지만, 본 발명에 슬롯 다이 코터(100)에서는 상판(110)과 하판(120) 사이가 벌어지지 않아 표면 불량 없이 전극을 형성할 수 있게 된다.
도 13은 본 발명의 다른 실시예에 따른 슬롯 다이 코터를 나타낸 사시도이고, 도 14는 변형예의 도면이다. 도 15와 도 16은 각각 도 13과 도 14에 나타낸 슬롯 다이 코터의 폭 방향에 수직인 단면도로서, 도 13과 도 14의 XIII-XIII' 단면에 해당한다. 도 17은 도 13에 나타낸 슬롯 다이 코터의 변형예로서 다른 방향에서의 사시도로서, 슬롯 다이 코터의 전방을 보여주고 있다. 도 18은 도 13에 나타낸 슬롯 다이 코터에 포함될 수 있는 심의 일 예를 도시한 사시도이다. 도 19는 도 17의 부분 확대도이다. 도 20은 도 17에 나타낸 슬롯 다이 코터의 다른 방향에서의 사시도로서, 슬롯 다이 코터의 후방을 보여주고 있다. 도 21은 도 20의 변형예이다.
이상의 도면들을 참조하여 본 발명의 다른 실시예에 따른 슬롯 다이 코터를 설명한다.
앞서 설명한 슬롯 다이 코터(100)와 비교하여, 본 발명의 다른 실시예에 따른 슬롯 다이 코터(200)는 상판(110)에 있던 테이퍼 블록(180) 고정 및 가압을 위한 볼트 홈(H2)이 없고, 그 위치에 폭 방향으로 잔공 홀(H3)을 가공한다.
잔공 홀(H3)은 가압 볼트(190)가 삽입될 수 있도록 상판(110)의 후면에 폭 방향으로 길게 형성되어 있다.
가압 볼트(190)는 상판(110)의 후면에서부터 상판(110)을 관통하여 테이퍼 블록(180)에 체결된다. 즉, 가압 볼트(190)는 상판(110)의 후면 부분에서 삽입되어 테이퍼 블록(180)에까지 들어간다. 이를 위해 테이퍼 블록(180) 내에 가압 볼트(190)가 체결될 수 있는 나사선을 가공한다. 앞선 실시예에서와 다른 점은 가압 볼트(190)가 상판(110)의 후면에서 테이퍼 블록(180)에 체결된다는 것이다. 가압 볼트(190) 조작은 상판(110) 후면에서 이루어진다. 코팅액 토출이 이루어지는 전방부가 아닌, 후방부에서 가압 볼트(190) 조작이 이루어지므로 작업, 유지 보수 등의 관리가 더욱 용이하다.
잔공 홀(H3)이 폭 방향으로 길게 형성되어 있어, 형성하는 패턴의 개수에 대응되게 가압 볼트(190)를 추가할 수 있고, 상판(110)의 전면에 형성한 홈(H1)에 테이퍼 블록(180)을 그에 대응되는 개수로 추가할 수 있다. 즉, 패턴별로 별도 구성 가능하다.
특히 도 13과 도 15를 참조하면, 잔공 홀(H3)은 가압 볼트(190)의 직경과 유사한 정도의 크기로 형성되어 있다. 가압 볼트(190)는 민자로 되어 있고 단부에 나사선이 형성되어 있다. 잔공 홀(H3)의 단면 모양과 가압 볼트(190)의 모양은 도시한 바에서 얼마든지 달라질 수 있다. 잔공 홀(H3)은 상판(110)의 후면에 폭 방향으로 길게 형성되어 있다. 잔공 홀(H3)의 임의 위치에 가압 볼트(190)를 위치시키는 것이 용이한 구조이다.
변형예인 도 14와 도 16을 참조하면, 잔공 홀(H3)은 가압 볼트(190)의 직경보다 크게 형성되어 있다. 가압 볼트(190)가 이러한 잔공 홀(H3) 안에서 헛돌지 않도록, 잔공 홀(H3) 전면 중간, 상판(110) 후면이 걸림쇠 역할을 하도록 막혀 있다. 잔공 홀(H3)이 앞선 실시예보다는 넓게 형성되어 있어 가압 볼트(190)에 의한 체결 응력이 상판(110)에 걸리지 않는 구조이다.
한편, 도 17과 도 20 및 도 21에서는 테이퍼 블록(180)이 2개인 경우를 상세히 도시하여 예로 들고 있다. 이 경우에 사용할 수 있는 심(160)은 도 18에 도시되어 있다.
도 18을 참조하면, 심(160)은 3개의 개방부(160a)를 포함하도록 베이스부(161)에 수직으로 연결되어 토출구(140) 쪽으로 연장되는 4개의 연장부(162)를 포함할 수 있다. 테이퍼 블록(180)은 4개의 연장부(162) 중 좌우 사이드를 제외한 나머지 2개의 연장부(162)에 대응되게 구비된다.
이와 같이, 본 발명의 다른 실시예에 따르면, 심(160)의 위치에 맞게 테이퍼 블록(180)의 개수를 증가할 수 있고 위치를 변경할 수 있다. 따라서, 가압 볼트(190)와 테이퍼 블록(180)이 폭 방향을 따라 복수개가 구비될 수 있다. 또한, 심(160)의 모양이 변경되는 경우, 테이퍼 블록(180) 및 가압 볼트(190) 위치를 폭 방향으로 원하는 곳으로 변경할 수 있다.
도 19에서와 같이, 테이퍼 블록(180)과 가압 볼트(190)는 슬롯 갭(G)에는 영향을 미치지 않아, 슬롯 갭(G)은 설정한 심(160)의 두께(H)에 대응되게 유지될 수 있다. 즉, 본 발명에서 슬롯 갭(G) 크기는 심(160)의 두께(H)로 조절하고, 테이퍼 블록(180) 및 가압 볼트(190)는 슬롯 갭(G)에 영향을 주는 일이 없이 심(160)을 압박하여 상판(110)과 하판(120) 사이 벌어짐을 방지한다.
테이퍼 블록(180)은 폭 방향으로 복수개가 구비될 수 있다. 테이퍼 블록(180)이 복수개이고 서로간의 간격이 일정하도록 조정하는 경우, 보다 고른 힘의 전달이 가능하고 안정된 균형으로 상판(110)과 하판(120)의 변형을 방지할 수 있다.
테이퍼 블록(180)과 가압 볼트(190)를 통해, 다이 립(110a, 120a) 부분이 벌어지지 않는다. 그러므로, 심(160)으로 활물질 슬러리를 막아 토출되지 못하게 하는 부분에 활물질 슬러리가 스며들지 않게 된다.
한편, 앞선 실시예들에서 슬롯 다이 코터(100, 200)는 코팅액인 활물질 슬러리를 중력 반대 방향으로 토출하는 수직 다이 타입인 경우를 예로 들어 설명하였으나, 토출구(140)의 방향을 거의 수평으로 설치해 수평 다이 타입으로 구성하는 경우에도 본 발명이 적용될 수 있다(거의: ± 5도). 또한, 슬롯 다이 코터(100, 200)는 상판(110)과 하판(120) 사이에 1층의 슬롯(130)을 가지는 경우를 설명하였으나, 상판, 중판 및 하판을 포함하여 슬롯을 2층으로 형성한 듀얼 슬롯 다이 코터로도 본 발명이 구현될 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
100, 200: 슬롯 다이 코터 110: 상판
110a, 120a: 다이 립 120: 하판
120b: 랜드 130: 슬롯
140: 토출구 150: 매니폴드
160: 심 170: 고정 볼트
180: 테이퍼 블록 190: 가압 볼트

Claims (19)

  1. 서로 조립되어 토출구를 형성하는 상판과 하판; 및
    상기 하판과 상판 사이에 개재되어 상기 토출구와 연통된 슬롯을 형성하는 심;을 포함하고,
    상기 상판은 상기 슬롯 위쪽으로 상기 심과 평행하게 상기 상판 내부로 만입된 홈을 구비하고,
    상기 홈에 끼워져 상기 심을 압박하는 테이퍼 블록 및 가압 볼트를 더 포함하는 슬롯 다이 코터.
  2. 제1항에 있어서, 상기 홈은 상기 홈의 안쪽으로 갈수록 높이가 점점 낮아지며 상기 테이퍼 블록의 경사가 그에 맞춰진 것을 특징으로 하는 슬롯 다이 코터.
  3. 제1항에 있어서, 상기 가압 볼트는 상기 홈의 앞쪽에서부터 상기 테이퍼 블록을 관통하여 상기 상판에 체결되는 것을 특징으로 하는 슬롯 다이 코터.
  4. 제1항에 있어서, 상기 홈은 상기 상판의 전면에서부터 후면 쪽으로 만입되어 있고, 상기 가압 볼트는 상기 상판의 전면에서 상기 테이퍼 블록에 체결되는 것을 특징으로 하는 슬롯 다이 코터.
  5. 제1항에 있어서, 상기 테이퍼 블록은 상기 가압 볼트에 체결되어 상기 토출구의 방향과 나란한 방향에서 전후로 움직이며, 상기 홈과 테이퍼 블록의 높이 차이에 의한 힘을 발생시켜 상기 심을 압박하는 것을 특징으로 하는 슬롯 다이 코터.
  6. 제1항에 있어서, 상기 심은 다수의 개방부를 포함하도록 베이스부에 수직으로 연결되어 상기 토출구 쪽으로 연장되는 다수의 연장부를 포함하며, 상기 테이퍼 블록의 가로 길이는 상기 연장부의 가로 길이보다 크지 않으며, 상기 테이퍼 블록은 상기 연장부에 대응되는 위치에서 상기 홈에 끼워지는 것을 특징으로 하는 슬롯 다이 코터.
  7. 제6항에 있어서, 상기 다수의 연장부 중 사이드에 있는 연장부를 제외한 연장부에 대응되는 위치에 상기 테이퍼 블록이 구비되는 것을 특징으로 하는 슬롯 다이 코터.
  8. 제1항에 있어서, 상기 슬롯 다이 코터는 상기 하판에 매니폴드를 더 포함하며, 상기 매니폴드 앞단에서부터 상기 토출구까지의 영역인 랜드의 길이보다 상기 테이퍼 블록의 길이가 짧은 것을 특징으로 하는 슬롯 다이 코터.
  9. 제1항에 있어서, 상기 홈은 상기 토출구 쪽에 형성되는 것을 특징으로 하는 슬롯 다이 코터.
  10. 제1항에 있어서, 상기 홈과 정렬되는 위치에 상기 가압 볼트가 체결되는 볼트 홈이 형성되어 있는 것을 특징으로 하는 슬롯 다이 코터.
  11. 제10항에 있어서, 상기 테이퍼 블록에 상기 볼트 홈과 정렬되어 상기 가압 볼트가 관통할 수 있도록 홀이 형성되어 있는 것을 특징으로 하는 슬롯 다이 코터.
  12. 제1항에 있어서, 상기 가압 볼트는 상기 상판의 후면에서부터 상기 상판을 관통하여 상기 테이퍼 블록에 체결되는 것을 특징으로 하는 슬롯 다이 코터.
  13. 제12항에 있어서, 상기 가압 볼트가 삽입될 수 있도록 상기 상판의 후면에 폭 방향으로 잔공 홀을 포함하는 것을 특징으로 하는 슬롯 다이 코터.
  14. 제13항에 있어서, 상기 가압 볼트와 테이퍼 블록이 상기 폭 방향을 따라 복수개가 구비되는 것을 특징으로 하는 슬롯 다이 코터.
  15. 제13항에 있어서, 상기 테이퍼 블록 내에 상기 가압 볼트가 체결될 수 있는 나사선이 형성되어 있는 것을 특징으로 하는 슬롯 다이 코터.
  16. 제13항에 있어서, 상기 잔공 홀은 상기 상판의 후면에서 전면 쪽으로 형성되고, 상기 홈은 상기 상판의 전면에서 후면 쪽으로 형성되며, 상기 잔공 홀은 상기 홈과 정렬되는 위치에 형성되어 있는 것을 특징으로 하는 슬롯 다이 코터.
  17. 제1항에 있어서, 상기 하판에 코팅액을 수용하는 매니폴드가 구비되고, 상기 매니폴드가 상기 슬롯과 연통하는 것을 특징으로 하는 슬롯 다이 코터.
  18. 제17항에 있어서, 상기 슬롯 다이 코터는 상기 토출구를 통해 상기 코팅액을 기재 상에 토출하여 도포하며, 상기 심은 상기 기재 상에 도포되는 코팅층의 코팅폭을 결정하도록 일 영역이 간헐적으로 절개되어 다수의 개방부를 구비하는 것을 특징으로 하는 슬롯 다이 코터.
  19. 제18항에 있어서, 상기 테이퍼 블록과 가압 볼트는 상기 개방부에 영향을 주지 않고 상기 심을 압박하여 상기 상판과 하판 사이 벌어짐을 방지하는 것을 특징으로 하는 슬롯 다이 코터.
PCT/KR2023/008781 2022-07-29 2023-06-23 슬롯 다이 코터 WO2024025158A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23846817.7A EP4371672A1 (en) 2022-07-29 2023-06-23 Slot die coater
CN202380013348.1A CN117881487A (zh) 2022-07-29 2023-06-23 槽模涂布机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220094861 2022-07-29
KR10-2022-0094861 2022-07-29
KR10-2023-0062678 2023-05-15
KR1020230062678A KR20240016870A (ko) 2022-07-29 2023-05-15 슬롯 다이 코터

Publications (1)

Publication Number Publication Date
WO2024025158A1 true WO2024025158A1 (ko) 2024-02-01

Family

ID=89706687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008781 WO2024025158A1 (ko) 2022-07-29 2023-06-23 슬롯 다이 코터

Country Status (2)

Country Link
EP (1) EP4371672A1 (ko)
WO (1) WO2024025158A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181453A (ja) * 2004-12-27 2006-07-13 Toyo Knife Co Ltd 塗布ヘッド
KR20100023580A (ko) * 2008-08-22 2010-03-04 주식회사 디엠에스 슬릿 노즐
US20220016665A1 (en) * 2018-10-01 2022-01-20 Lg Chem, Ltd. Slot Die Coater Adjusting Device for Controlling Distance Between Upper Discharge Port and Lower Discharge Port of Slot Die Coater, and Electrode Active Material Coating System Including Same
KR20220043035A (ko) * 2020-09-28 2022-04-05 주식회사 엘지에너지솔루션 듀얼 슬롯 다이 코터
KR20220043030A (ko) * 2020-09-28 2022-04-05 주식회사 엘지에너지솔루션 다중 슬롯 다이 코터
KR20220094861A (ko) 2020-12-29 2022-07-06 에브리봇 주식회사 로봇청소기
KR20230062678A (ko) 2016-12-02 2023-05-09 미쯔비시 케미컬 주식회사 착색 감광성 수지 조성물, 안료 분산액, 격벽, 유기 전계 발광 소자, 화상 표시 장치 및 조명

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181453A (ja) * 2004-12-27 2006-07-13 Toyo Knife Co Ltd 塗布ヘッド
KR20100023580A (ko) * 2008-08-22 2010-03-04 주식회사 디엠에스 슬릿 노즐
KR20230062678A (ko) 2016-12-02 2023-05-09 미쯔비시 케미컬 주식회사 착색 감광성 수지 조성물, 안료 분산액, 격벽, 유기 전계 발광 소자, 화상 표시 장치 및 조명
US20220016665A1 (en) * 2018-10-01 2022-01-20 Lg Chem, Ltd. Slot Die Coater Adjusting Device for Controlling Distance Between Upper Discharge Port and Lower Discharge Port of Slot Die Coater, and Electrode Active Material Coating System Including Same
KR20220043035A (ko) * 2020-09-28 2022-04-05 주식회사 엘지에너지솔루션 듀얼 슬롯 다이 코터
KR20220043030A (ko) * 2020-09-28 2022-04-05 주식회사 엘지에너지솔루션 다중 슬롯 다이 코터
KR20220094861A (ko) 2020-12-29 2022-07-06 에브리봇 주식회사 로봇청소기

Also Published As

Publication number Publication date
EP4371672A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019172661A1 (ko) 음극의 제조 방법
WO2021132992A1 (ko) 코팅 균일성이 우수한 전극 슬러리 토출용 코팅 심 및 이를 포함하는 코팅 다이
WO2020076091A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019013557A2 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2021075773A1 (ko) 서로 다른 바인더 함량을 갖는 전극 합제 영역을 포함하는 이차전지용 극판 및 이를 이용한 이차전지용 전극의 제조방법
WO2021054581A1 (ko) 초크바 슬롯 다이 및 이를 포함하는 슬러리 코팅 장치
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2019054811A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019198938A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021241899A1 (ko) 리튬 이차전지의 퇴화 원인 진단 방법
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021133127A1 (ko) 수계 양극용 슬러리, 양극 조성물 및 이 양극 조성물을 포함하는 리튬 이온 이차전지, 그리고 이들의 제조 방법
WO2019103546A2 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2024025158A1 (ko) 슬롯 다이 코터
WO2022060177A1 (ko) 듀얼 슬롯 다이 코터 및 이를 이용한 전극 활물질 슬러리 코팅 방법
WO2021045580A1 (ko) 음극 전극의 전소듐화 방법, 전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2020226354A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 양극 및 이를 포함하는 리튬 이차전지
WO2017082680A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2022060174A1 (ko) 듀얼 슬롯 다이 코터, 이를 이용한 전극 활물질 슬러리 코팅 방법 및 이를 이용하여 제조한 전극
WO2022092679A1 (ko) 전극 조립체 및 이를 포함하는 전지셀
WO2021149960A1 (ko) 리튬 이차전지용 전극 활물질의 퇴화 진단 방법
WO2021261754A1 (ko) 저항층이 형성된 전극의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023846817

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023846817

Country of ref document: EP

Effective date: 20240212

WWE Wipo information: entry into national phase

Ref document number: 202380013348.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846817

Country of ref document: EP

Kind code of ref document: A1