WO2024024534A1 - Carboxy group-containing polymer dispersant, electroconductive paste, electronic component, and laminated ceramic capacitor - Google Patents

Carboxy group-containing polymer dispersant, electroconductive paste, electronic component, and laminated ceramic capacitor Download PDF

Info

Publication number
WO2024024534A1
WO2024024534A1 PCT/JP2023/025984 JP2023025984W WO2024024534A1 WO 2024024534 A1 WO2024024534 A1 WO 2024024534A1 JP 2023025984 W JP2023025984 W JP 2023025984W WO 2024024534 A1 WO2024024534 A1 WO 2024024534A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
mass
dispersant
less
containing polymer
Prior art date
Application number
PCT/JP2023/025984
Other languages
French (fr)
Japanese (ja)
Inventor
健二 福田
正剛 川口
聖也 山本
Original Assignee
住友金属鉱山株式会社
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社, 国立大学法人山形大学 filed Critical 住友金属鉱山株式会社
Publication of WO2024024534A1 publication Critical patent/WO2024024534A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/52Natural or synthetic resins or their salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a carboxy group-containing polymer dispersant, a conductive paste, an electronic component, and a multilayer ceramic capacitor.
  • Multilayer ceramic capacitors have a structure in which multiple dielectric layers and multiple internal electrode layers are alternately stacked, and by making these dielectric layers and internal electrode layers thinner, they can be made smaller and have higher capacitance. can be achieved.
  • a multilayer ceramic capacitor is manufactured, for example, as follows. First, a paste for internal electrodes (conductive powder) containing conductive powder, binder resin, organic solvent, etc. paste) printed with a predetermined electrode pattern and stacked in multiple layers to obtain a laminate in which internal electrodes and dielectric green sheets are stacked in multiple layers. Next, this laminate is heat-pressed and integrated to form a crimped body. This pressed body is cut, treated to remove the organic binder in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain fired chips. Next, an external electrode paste is applied to both ends of the fired chip, and after firing, nickel plating or the like is applied to the external electrode surface to obtain a multilayer ceramic capacitor.
  • a paste for internal electrodes conductive powder
  • binder resin binder resin
  • organic solvent etc. paste
  • One of the methods of printing conductive paste is a continuous printing method in which the conductive paste is transferred from the plate by filling the concave portions of the plate with the conductive paste and pressing it against the surface to be printed.
  • a gravure printing method has been proposed. Gravure printing has fast printing speed and excellent productivity. When using the gravure printing method, it is necessary to appropriately select the binder resin, dispersant, solvent, etc. in the conductive paste, and adjust the properties such as viscosity to a range suitable for gravure printing.
  • a conductive paste is used to form an inner conductor film by gravure printing in a laminated ceramic electronic component including a plurality of ceramic layers and an inner conductor film extending along a specific interface between the ceramic layers.
  • the viscosity ⁇ 0.1 at a shear rate of 0.1 (s -1 ) is 1 Pa ⁇ s or more, and the viscosity at a shear rate of 0.02 (s -1 )
  • a conductive paste is described that is a thixotropic fluid, satisfying the condition that ⁇ 0.02 is expressed by a specific formula.
  • Patent Document 2 discloses a conductive paste used for forming by gravure printing as in Patent Document 1, which contains 30 to 70% by weight of a solid component including metal powder and 1 to 10% by weight of a conductive paste.
  • a thixotropic fluid containing a resin component, 0.05 to 5% by weight of a dispersant, and the remainder a solvent component, and having a viscosity of 1 Pa ⁇ s or more at a shear rate of 0.1 (s -1 ),
  • a conductive paste is described that has a viscosity change rate of 50% or more at a shear rate of 10 (s -1 ), based on the viscosity at a shear rate of 0.1 (s -1 ).
  • these conductive pastes are thixotropic fluids with a viscosity of 1 Pa ⁇ s or more at a shear rate of 0.1 (s ⁇ 1 ), and are stable at high speeds in gravure printing. It is said that continuous printing can be achieved and multilayer ceramic electronic components such as multilayer ceramic capacitors can be manufactured with good production efficiency.
  • Patent Document 3 discloses a conductive material for multilayer ceramic capacitor internal electrodes containing a conductive powder (A), an organic resin (B), an organic solvent (C), an additive (D), and a dielectric powder (E).
  • the organic resin (B) is composed of polyvinyl butyral having a degree of polymerization of 10,000 or more and 50,000 or less, and ethyl cellulose having a weight average molecular weight of 10,000 or more and 100,000 or less
  • the organic solvent (C) is propylene glycol monobutyl ether, Or, it consists of either a mixed solvent of propylene glycol monobutyl ether and propylene glycol methyl ether acetate, or a mixed solvent of propylene glycol monobutyl ether and mineral spirit
  • the additive (D) consists of a separation inhibitor and a dispersant for gravure printing.
  • a conductive paste is described. According to Patent Document 3, this conductive paste has a viscosity suitable for gravure printing and has good drying properties.
  • a phenomenon called "white floating" two-layer separation
  • a white separation layer containing ceramic powder appears on the top. If the composition in the paste becomes non-uniform in this way, the surface of the dry film after application will not be smooth, and for example, if used for the internal electrodes of a multilayer ceramic capacitor, short circuits between the internal electrodes may occur, and the specified capacitance may be reduced. may not be obtained.
  • the present invention provides a conductive paste that stably maintains a low paste viscosity over a long period of time even in a low-viscosity conductive paste, and is capable of suppressing separation of conductive powder and ceramic powder.
  • the purpose of the present invention is to provide a conductive paste with good smoothness on the surface of a dried film after drying.
  • Another object of the present invention is to provide a carboxy group-containing polymer dispersant that can provide such a conductive paste, and electronic components and multilayer ceramic capacitors formed using such a conductive paste.
  • the dispersant of the present invention combines at least either acrylic acid or methacrylic acid, and an acrylic ester represented by the following general formula (1) or a methacrylic ester represented by the following general formula (2).
  • a carboxyl group-containing polymeric dispersant consisting of a copolymer with at least one of the following, which has a mass average molecular weight of 2,000 or more and less than 30,000, and has a molar ratio of the sum of the acrylic acid and the methacrylic acid to the acrylic acid.
  • the ratio of the ester to the total of the methacrylic ester is X:1-X, where X is 0.1 or more and less than 0.4, and in the following general formula (1) and the following general formula (2), R 1 is a dispersant which is a linear or branched alkyl group.
  • the conductive paste of the present invention is a conductive paste containing the carboxy group-containing polymer dispersant of the present invention.
  • the conductive paste of the present invention further includes a conductive powder, a ceramic powder, a binder resin, and an organic solvent, and the content of the carboxy group-containing polymer dispersant is 0.01% by mass or more and less than 2.0% by mass. There may be.
  • the organic solvent is from the group consisting of dihydroterpineol (DHT), dihydroterpineyl acetate (DHTA), terpineol (TPO), propylene glycol monobutyl ether (PNB), diethylene glycol monobutyl ether acetate (BCA), and diisobutyl ketone (DIBK). It may include one or more selected types.
  • the conductive paste of the present invention contains a dispersant other than the carboxy group-containing polymer dispersant, and the content of the carboxy group-containing polymer dispersant is 30% by mass with respect to the total amount of the dispersant in the conductive paste. It may be more than that.
  • the conductive paste contains an acid-based dispersant having a mass average molecular weight of less than 2000 as a dispersant other than the carboxy group-containing polymer dispersant, and the acid-based dispersant is based on the total amount of the dispersant in the conductive paste.
  • the content may be more than 0% by mass and 70% by mass or less.
  • the conductive powder may include one or more metal powders selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof.
  • the number average particle diameter of the conductive powder may be 0.05 ⁇ m or more and 1.0 ⁇ m or less.
  • the ceramic powder may include barium titanate.
  • the number average particle diameter of the ceramic powder may be 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the content of the ceramic powder may be 1% by mass or more and 20% by mass or less.
  • the binder resin may include a cellulose resin.
  • the conductive paste of the present invention may be used for internal electrodes of laminated ceramic parts.
  • the conductive paste of the present invention may have a viscosity of 2.0 Pa ⁇ S or less at a shear rate of 100 sec ⁇ 1 at a temperature of 25° C.
  • the electronic component of the present invention is an electronic component formed using the conductive paste of the present invention.
  • the multilayer ceramic capacitor of the present invention has at least a laminate in which a dielectric layer and an internal electrode layer are laminated, and the internal electrode layer is formed using the conductive paste of the present invention.
  • This is a multilayer ceramic capacitor formed by
  • a low-viscosity conductive paste can stably maintain a low paste viscosity over a long period of time, and can suppress separation of the conductive powder and ceramic powder, and the dry film surface after application. It is possible to provide a conductive paste with good smoothness. Furthermore, it is possible to provide a carboxy group-containing polymer dispersant that can provide such a conductive paste, and electronic components and multilayer ceramic capacitors formed using such a conductive paste.
  • the conductive paste of the present invention can suppress separation of the conductive powder and the ceramic powder even if it is a low-viscosity paste, and the dry film surface after application has good smoothness, and Good long-term viscosity stability eliminates the need for viscosity adjustment during printing, contributing to the simplification of the printing process. It is particularly effective when used in gravure printing, which performs high-speed printing with low viscosity.
  • FIG. 1A is a schematic diagram of a multilayer ceramic capacitor according to the present embodiment, with FIG. 1A being a perspective view and FIG. 1B being a sectional view.
  • the carboxyl group-containing polymer dispersant of the present invention includes at least one of acrylic acid or methacrylic acid, and at least one of an acrylic ester represented by the following general formula (1) or a methacrylic ester represented by the following general formula (2).
  • a carboxyl group-containing polymer dispersant consisting of a copolymer of methacrylic acid and methacrylic acid, which has a mass average molecular weight of 2,000 or more and less than 30,000, and has a molar ratio of the sum of the acrylic acid and the methacrylic acid, the acrylic acid ester, and the methacrylic acid.
  • R 1 is a linear or branched alkyl group.
  • the low-viscosity conductive paste described below has a stable low viscosity with little change in viscosity over time by containing a certain amount of a carboxy group-containing polymer dispersant having a mass average molecular weight of 2000 or more.
  • a carboxy group-containing polymer dispersant having a mass average molecular weight of 2000 or more.
  • separation of the conductive powder and ceramic powder can be suppressed, and a smooth dry film can be obtained.
  • a carboxyl group-containing polymer dispersant has a carboxyl group as an adsorption group to conductive powder or ceramic powder.
  • the copolymers include copolymers of acrylic acid and acrylic esters, copolymers of acrylic acid and methacrylic esters, copolymers of methacrylic acid and acrylic esters, and copolymers of methacrylic acid and methacrylic acid.
  • Copolymers with esters, copolymers with acrylic acid and methacrylic acid, and acrylic esters copolymers with acrylic acid, methacrylic acid, and methacrylic esters, acrylic acid, acrylic esters, and methacrylic esters Copolymers of methacrylic acid, acrylic esters and methacrylic esters, and copolymers of acrylic acid and methacrylic acid and acrylic esters and methacrylic esters.
  • acrylic acid and acrylic ester when used together, their molar ratio can be adjusted as appropriate. Moreover, when using an acrylic ester and a methacrylic ester together, the molar ratio of these can be adjusted as appropriate.
  • an appropriate ratio exists between the total of acrylic acid and methacrylic acid and the total of acrylic ester and methacrylic ester. That is, when the total ratio X of acrylic acid and methacrylic acid is 0.1 or more and less than 0.4, the solubility in organic solvents and the effect of improving the dispersibility of the conductive powder are well balanced, As a result, separation of the conductive powder and ceramic powder can be suppressed, and a low-viscosity conductive paste with good viscosity stability over time and good smoothness of the dry film surface after application is provided. be able to.
  • R 1 of the acrylic ester and methacrylic ester shown in the general formula (1) and the general formula (2) is a linear or branched alkyl group.
  • the number of carbon chains is preferably 2 or more and 10 or less, more preferably 2 or more and 4 or less. If the number of carbon chains is 1, the carbon chain of the acrylic ester or methacrylic ester is too short, so when used as a dispersant for conductive paste, the effect of suppressing separation of the conductive paste is not sufficiently exhibited. This is not preferable because there are cases.
  • the carbon chains of the acrylic ester or methacrylic ester are too long, so when used as a dispersant for conductive paste, the effect of suppressing separation of the conductive paste is insufficient. This is not preferable because the conductive paste may not be effective, or the surface roughness and density of the dried film after forming the conductive paste by gravure printing or the like may deteriorate.
  • R 1 is a branched alkyl group
  • the total number of carbon atoms in R 1 is preferably 3 or more and 14 or less
  • the number of carbon chains in the straight chain part is 2 or more and 10 or less
  • the number of carbon chains in the branched part is 2 or more and 10 or less
  • the number of carbon atoms is preferably 1 or more and 4 or less.
  • the mass average molecular weight of the carboxyl group-containing polymer dispersant is 2,000 or more, may be 5,000 or more, or may be 10,000 or more.
  • the mass average molecular weight of the carboxyl group-containing polymer dispersant affects the initial viscosity, time-dependent viscosity increase, separation amount, etc. of the conductive paste using the same. Therefore, when the mass average molecular weight is 2000 or more, a stable dispersion effect can be exhibited, and thickening and separation over time can be sufficiently suppressed.
  • the upper limit of the mass average molecular weight is not particularly limited, but if the mass average molecular weight is too large, the initial viscosity of the conductive paste itself may become high, making it unsuitable for gravure printing. Therefore, the mass average molecular weight may be 30,000 or less. Note that the mass average molecular weight of the carboxy group-containing polymer dispersant can be measured by, for example, GPC (gel permeation chromatography).
  • the conductive paste of this embodiment contains the carboxyl group-containing polymer dispersant of the present invention. Further, it may further contain a conductive powder, a ceramic powder, a binder resin, and an organic solvent. Each of these components will be explained in detail below.
  • the conductive powder is not particularly limited, and metal powder can be used, for example, one or more powders selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof can be used. .
  • powder of Ni or its alloy Ni alloy
  • Ni alloy Ni alloy
  • the Ni alloy for example, an alloy of Ni and at least one element selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Au, Pt and Pd can be used. can.
  • the Ni content in the Ni alloy is, for example, 50% by mass or more, preferably 80% by mass or more. Further, the Ni powder may contain about several hundred ppm of element S in order to suppress rapid gas generation due to partial thermal decomposition of the binder resin during binder removal treatment.
  • the number average particle diameter of the conductive powder is preferably 0.05 ⁇ m or more and 1.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the number average particle diameter is a value obtained from observation with a scanning electron microscope (SEM), and the particle diameter of each particle is measured from an image observed with a SEM at a magnification of 10,000 times. This is the average value (SEM average particle diameter) obtained.
  • the content of the conductive powder is preferably 30% by mass or more and less than 70% by mass, more preferably 40% by mass or more and 60% by mass or less, based on the entire conductive paste. When the content of the conductive powder is within the above range, the conductivity and dispersibility are excellent.
  • the ceramic powder is not particularly limited, and for example, in the case of a paste for internal electrodes of a multilayer ceramic capacitor, a known ceramic powder is appropriately selected depending on the type of multilayer ceramic capacitor to which it is applied.
  • a perovskite oxide containing Ba and Ti can be used, and preferably barium titanate (BaTiO 3 ) is used.
  • a ceramic powder containing barium titanate as a main component and an oxide as a subcomponent may be used.
  • the oxide include one or more oxides selected from Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb, and rare earth elements.
  • ceramic powders include ceramic powders of perovskite-type oxide ferroelectrics in which Ba and Ti atoms of barium titanate (BaTiO 3 ) are replaced with other atoms, such as Sn, Pb, and Zr. Can be mentioned.
  • the ceramic powder used for the conductive paste for the internal electrodes a powder having the same composition as the dielectric ceramic powder constituting the green sheet of the multilayer ceramic capacitor (electronic component) may be used. This suppresses the occurrence of cracks due to shrinkage mismatch at the interface between the dielectric layer and the internal electrode layer during the sintering process.
  • ceramic powders include, in addition to the above-mentioned perovskite oxides containing Ba and Ti, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 , Examples include oxides such as TiO 2 and Nd 2 O 3 . Note that one type of ceramic powder may be used, or two or more types of ceramic powder may be used.
  • the number average particle diameter of the ceramic powder is, for example, 0.01 ⁇ m or more and 0.5 ⁇ m or less, preferably 0.01 ⁇ m or more and 0.3 ⁇ m or less. Since the number average particle diameter of the ceramic powder is within the above range, when used as a conductive paste for internal electrodes, sufficiently thin and uniform internal electrodes can be formed.
  • the number average particle diameter is a value obtained from observation with a scanning electron microscope (SEM), and the particle diameter of each particle is measured from an image observed with a SEM at a magnification of 50,000 times. This is the average value (SEM average particle diameter) obtained.
  • the content of the ceramic powder is preferably 1% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less, based on the entire conductive paste. When the content of the ceramic powder is within the above range, the dispersibility and sinterability are excellent.
  • the content of the ceramic powder is preferably 1 part by mass or more and 30 parts by mass or less, and more preferably 3 parts by mass or more and 30 parts by mass or less, based on 100 parts by mass of the conductive powder.
  • the conductivity and dispersibility are excellent.
  • the binder resin is not particularly limited, and any known resin can be used.
  • the binder resin include cellulose resins such as methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, and nitrocellulose, acrylic resins, and acetal resins including butyral resins such as polyvinyl butyral.
  • cellulose resins such as methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, and nitrocellulose
  • acrylic resins and acetal resins including butyral resins such as polyvinyl butyral.
  • butyral resins such as polyvinyl butyral.
  • it when used as a paste for internal electrodes, from the viewpoint of improving the adhesive strength with the green sheet, it may contain a butyral resin or may be used alone.
  • the binder resin contains an acetal resin
  • the viscosity can be easily adjusted to be suitable for gravure printing, and the adhesive strength with the green sheet can be further improved.
  • the binder resin may contain, for example, 20% by mass or more, or 30% by mass or more of acetal resin based on the entire binder resin. Further, the binder resin may contain 50% by mass or less of acetal resin based on the entire binder resin.
  • the weight average molecular weight of the binder resin can be adjusted as appropriate within the range of 10,000 or more and 200,000 or less, depending on the required viscosity of the conductive paste.
  • the content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 7% by mass or less, based on the entire conductive paste. When the content of the binder resin is within the above range, the conductivity and dispersibility are excellent.
  • the content of the binder resin is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 1 part by mass or more and 14 parts by mass or less, based on 100 parts by mass of the conductive powder.
  • the conductivity and dispersibility are excellent.
  • Organic solvent is not particularly limited, and any known organic solvent that can dissolve the binder resin and dispersant can be used.
  • examples of the organic solvent include terpene solvents, glycol ether solvents, acetate solvents, acetate ester solvents, ketone solvents, and hydrocarbon solvents.
  • one type of organic solvent may be used, or two or more types may be used.
  • terpene solvent examples include terpineol, dihydroterpineol (DHT), dihydroterpineyl acetate, and the like, with dihydroterpineol (DHT) being preferred.
  • glycol ether solvents include (di)ethylene glycol ethers such as diethylene glycol mono-2-ethylhexyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monohexyl ether, and ethylene glycol monohexyl ether, and propylene glycol.
  • examples include propylene glycol monoalkyl ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether (PNB).
  • propylene glycol monoalkyl ethers are preferred, and propylene glycol monobutyl ether (PNB) is more preferred.
  • the organic solvent contains a glycol ether solvent, it has excellent compatibility with the above-mentioned binder resin and has excellent drying properties.
  • Examples of acetate solvents include ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate (butyl carbitol acetate), dipropylene glycol methyl ether acetate, 3-methoxy 3-methylbutyl acetate, 1-methoxypropyl-2-acetate, etc.
  • Examples include glycol ether acetates, isobornyl acetate, isobornyl propinate, isobornyl butyrate, isobornyl isobutyrate, and the like.
  • Examples of acetate-based solvents include ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, and the like.
  • Examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and the like.
  • hydrocarbon solvents examples include aliphatic hydrocarbon solvents such as tridecane, nonane, cyclohexane, naphthenic solvents, and mineral spirits, and aromatic hydrocarbon solvents such as toluene and xylene. Hydrogen solvents are preferred, mineral spirits are more preferred. Further, the mineral spirit may contain chain saturated hydrocarbons as a main component, and may contain 20% by mass or more of chain saturated hydrocarbons based on the entire mineral spirit.
  • the organic solvents include dihydroterpineol (DHT), dihydroterpineyl acetate (DHTA), terpineol (TPO), propylene glycol monobutyl ether (PNB), diethylene glycol monobutyl ether acetate (BCA), and diisobutyl ketone (DIBK). It is preferable to include one or more types selected from the group. By using these solvents, it is possible to achieve both appropriate viscosity and drying speed.
  • DHT dihydroterpineol
  • DHTA dihydroterpineyl acetate
  • TPO terpineol
  • PPB propylene glycol monobutyl ether
  • BCA diethylene glycol monobutyl ether acetate
  • DIBK diisobutyl ketone
  • the organic solvent may include one or more terpene solvents (a) selected from the group consisting of dihydroterpineol (DHT), dihydroterpineyl acetate (DHTA), and terpineol (TPO), and propylene glycol monobutyl ether (PNB). , diethylene glycol monobutyl ether acetate (BCA), and a hydrocarbon solvent.
  • a terpene solvents
  • DHT dihydroterpineol
  • DHTA dihydroterpineyl acetate
  • TPO terpineol
  • PNB propylene glycol monobutyl ether
  • BCA diethylene glycol monobutyl ether acetate
  • hydrocarbon solvent a hydrocarbon solvent
  • the total content of organic solvents is preferably 20% by mass or more and 50% by mass or less, more preferably 25% by mass or more and 45% by mass or less, based on the total amount of the conductive paste.
  • the content of the organic solvent is within the above range, the conductivity and dispersibility are excellent.
  • the total content of organic solvents is preferably 50 parts by mass or more and 130 parts by mass or less, more preferably 60 parts by mass or more and 90 parts by mass or less, based on 100 parts by mass of the conductive powder.
  • the content of the organic solvent is within the above range, the conductivity and dispersibility are excellent.
  • the total content of the terpene solvent (a) may be 5% by mass or more and 40% by mass or less, and 10% by mass or less, based on the total amount of the conductive paste. It may be at least 12% by mass and at most 25% by mass, and may be at least 12% by mass and at most 25% by mass.
  • the conductive paste contains a solvent (b) such as propylene glycol monobutyl ether (PNB), the total content of the solvent (b) is 3% by mass and 20% by mass or less based on the total amount of the conductive paste. It may be 5% by mass or more and 20% by mass or less.
  • a solvent such as propylene glycol monobutyl ether (PNB)
  • PPB propylene glycol monobutyl ether
  • the total content of the hydrocarbon solvent may be 1% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, based on the total amount of the conductive paste. It may be less than or equal to 5% by mass and less than or equal to 10% by mass.
  • the total content of diisobutyl ketone is preferably 1% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, based on the total amount of the conductive paste. It may be 3% by mass or more and 10% by mass or less.
  • the carboxyl group-containing polymer dispersant of the present invention is contained in an amount of 0.01% by mass or more and less than 2.0% by mass, preferably 0.01% by mass or more and 1.0% by mass based on 100% by mass of the entire conductive paste.
  • the content is more preferably 0.03% by mass or more and 0.5% by mass or less.
  • the dispersant may be composed only of the carboxyl group-containing polymer dispersant represented by the above general formula (1), but may also contain a dispersant other than the carboxyl group-containing polymer dispersant as described below. .
  • the content of the carboxy group-containing polymer dispersant may be, for example, 30% by mass or more based on the total amount of the dispersant, preferably 60% by mass. or more, and more preferably 80% by mass or more. The greater the content of the carboxyl group-containing polymer dispersant based on the total amount of the dispersant, the better the effect of suppressing separation between the conductive powder and the ceramic powder.
  • the conductive paste of the present embodiment may further contain an acid-based dispersant (a dispersant having an acidic adsorption group) other than the carboxy group-containing polymer dispersant.
  • an acid-based dispersant a dispersant having an acidic adsorption group
  • examples of the acid-based dispersant include acid-based dispersants having a mass average molecular weight of less than 2,000. Note that the acidic dispersants may be used alone or in combination of two or more.
  • Examples of acid-based dispersants having a mass average molecular weight of less than 2000 include higher fatty acids, dicarboxylic acids, polycarboxylic acid-based dispersants, and carboxylic acid-based dispersants such as alkyl monoamine salt types.
  • the conductive paste contains an acid-based dispersant with a mass average molecular weight of less than 2000 together with a carboxyl group-containing polymer dispersant, the viscosity may decrease or the dispersibility of ceramic powder such as barium titanate may be further improved.
  • the mass average molecular weight of the acidic dispersant having a mass average molecular weight of less than 2,000 may be 1,000 or less.
  • Higher fatty acids may be unsaturated carboxylic acids or saturated carboxylic acids, and are not particularly limited to those having 11 carbon atoms such as stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, and linolenic acid. These include the above. Among these, oleic acid or stearic acid is preferred as the higher fatty acid.
  • alkyl monoamine salt types include oleoyl sarcosine, which is a compound of glycine and oleic acid, stearamide, lauriloyl, which is an amide compound using a higher fatty acid such as stearic acid or lauric acid instead of oleic acid. Sarcosine is preferred.
  • the content of the acid-based dispersant with an average molecular weight of less than 2000 is too large, there is a concern that it will have an adverse effect such as inhibiting the adsorption of the carboxy group-containing polymer dispersant to the metal powder material (filler).
  • the content of the acid-based dispersant with an average molecular weight of less than 2000 is too large, there is a concern that it will have an adverse effect such as inhibiting the adsorption of the carboxy group-containing polymer dispersant to the metal powder material (filler).
  • the content of the acid-based dispersant with an average molecular weight of less than 2000 is too large, there is a concern that it will have an adverse effect such as inhibiting the adsorption of the carboxy group-containing polymer dispersant to the metal powder material (filler).
  • the metal powder material filler
  • the content of the acidic dispersant having a mass average molecular weight of less than 2000 may be more than 0% by mass and 70% by mass or less, preferably 40% by mass or less, based on 100% by mass of the total amount of the dispersant.
  • the content is more preferably 20% by mass or less.
  • the dispersant may include a dispersant other than the acid-based dispersant.
  • dispersants other than acidic dispersants include basic dispersants, nonionic dispersants, amphoteric dispersants, and the like. These dispersants may be used alone or in combination of two or more.
  • Examples of the basic dispersant include aliphatic amines such as laurylamine, rosinamine, cetylamine, myristylamine, stearylamine, and oleylamine.
  • the content of the dispersant (total) is preferably less than 2.0% by mass based on the entire conductive paste. If the content of the above-mentioned carboxylic acid-based polymer dispersant or the entire dispersant is too high, the conductive paste will not be sufficiently dried during the printing process or drying process, leaving the internal electrode layer in a soft state. Lamination misalignment may occur during the lamination process. Further, the dispersant remaining during firing may vaporize, and the vaporized gas components may generate internal stress or cause structural destruction of the laminate.
  • the conductive paste of this embodiment may contain other additives other than the above-mentioned dispersant, if necessary.
  • additives such as antifoaming agents, plasticizers, surfactants, and thickeners can be used.
  • polycarboxylic acid polymers and polycarboxylic acid salts are described as separation inhibitors that suppress separation of conductive powder and dielectric powder, but in this specification, such In a broad sense, separation inhibitors are also included in acid-based dispersants as agents that improve the dispersibility of inorganic powders.
  • the method for manufacturing the conductive paste according to this embodiment is not particularly limited, and conventionally known methods can be used.
  • the conductive paste can be produced, for example, by stirring and kneading the above-mentioned components using a three-roll mill, a ball mill, a mixer, or the like.
  • dicarboxylic acid separatation inhibitor
  • the conductive paste of the present invention preferably has a viscosity of 2.0 Pa ⁇ S or less at a shear rate of 100 sec -1 at a temperature of 25°C.
  • the viscosity at a shear rate of 100 sec -1 is within the above range, it is suitable for efficient coating at high speed. If it exceeds the above range, the viscosity of the conductive paste will be too high and the smoothness of the dried film surface after application may be poor.
  • the lower limit of the viscosity at a shear rate of 100 sec -1 is not particularly limited, but is, for example, 0.2 Pa ⁇ S or more.
  • the thickness of the white floating layer observed one week after the conductive paste is less than 8% of the total thickness of the conductive paste, and % or less, or 2% or less.
  • the smaller the thickness of the white floating layer the better the effect of suppressing separation between the conductive powder and the ceramic powder.
  • the thickness of the white floating layer can be measured by the method described in Examples described later.
  • the conductive paste of this embodiment can be suitably used for electronic components such as multilayer ceramic capacitors.
  • a multilayer ceramic capacitor has a dielectric layer and an internal electrode layer formed using a dielectric green sheet, and the conductive paste of this embodiment can be suitably applied to forming the internal electrode layer.
  • the multilayer ceramic capacitor 1 includes a laminate 10 in which dielectric layers 12 and internal electrode layers 11 are alternately stacked, and an external electrode 20.
  • a conductive paste is gravure printed on a ceramic green sheet (dielectric green sheet) and dried to form a dry film.
  • a plurality of ceramic green sheets having this dry film on the upper surface are laminated by pressure bonding to obtain a laminate, and then the laminate is baked and integrated, so that the internal electrode layer 11 and the dielectric layer 12 are alternately formed.
  • a ceramic laminate 10 is produced in which the ceramic laminate 10 is laminated. Thereafter, a pair of external electrodes 20 are formed at both ends of the ceramic laminate 10, thereby manufacturing the multilayer ceramic capacitor 1. This will be explained in more detail below.
  • a ceramic green sheet which is an unfired ceramic sheet
  • this ceramic green sheet is made of a dielectric layer paste obtained by adding an organic binder such as polyvinyl butyral and a solvent such as terpineol to a specified ceramic raw material powder such as barium titanate. Examples include those obtained by coating a sheet on a support film and drying it to remove the solvent.
  • the thickness of the ceramic green sheet is not particularly limited, but from the viewpoint of the demand for miniaturization of multilayer ceramic capacitors, it is preferably 0.05 ⁇ m or more and 3 ⁇ m or less.
  • a plurality of ceramic green sheets are prepared in which the above-mentioned conductive paste is printed on one side of the ceramic green sheet using a gravure printing method and dried to form a dry film.
  • the thickness of the dried film is preferably 1 ⁇ m or less after drying, from the viewpoint of reducing the thickness of the internal electrode layer 11.
  • the ceramic green sheets are peeled off from the support film, and the ceramic green sheets and the dry film formed on one side of the sheets are laminated so that they are alternately arranged, and then the laminate is formed by heating and pressurizing at the same time. get.
  • a configuration may be adopted in which protective ceramic green sheets to which no conductive paste is applied are further disposed on both sides of the laminate.
  • the green chip is subjected to a binder removal treatment and fired in a reducing atmosphere to produce a fired laminate ceramic body (ceramic laminate 10).
  • the atmosphere in the binder removal treatment is preferably air or N 2 gas atmosphere.
  • the temperature during the binder removal treatment is, for example, 200°C or more and 400°C or less. Further, it is preferable that the holding time at the above temperature during the binder removal treatment is 0.5 hours or more and 24 hours or less.
  • the firing is performed in a reducing atmosphere to suppress oxidation of the metal used for the internal electrode layer, and the temperature when firing the laminate is, for example, 1000°C or more and 1350°C or less, and the firing is The temperature is maintained for a period of, for example, 0.5 hours or more and 8 hours or less.
  • the organic binder in the green sheet is completely removed, and the ceramic raw material powder is fired to form the ceramic dielectric layer 12. Further, the organic vehicle in the internal electrode layer 11 is removed, and the nickel powder or the alloy powder mainly composed of nickel is sintered or melted and integrated to form the internal electrode, and the dielectric layer 12 and the internal electrode A laminated ceramic fired body is formed in which a plurality of layers 11 are alternately laminated. Note that from the viewpoint of increasing reliability by incorporating oxygen into the dielectric layer and suppressing re-oxidation of the internal electrodes, the fired multilayer ceramic fired body may be subjected to an annealing treatment.
  • the multilayer ceramic capacitor 1 is manufactured by providing a pair of external electrodes 20 on the produced multilayer ceramic fired body.
  • the external electrode 20 includes an external electrode layer 21 and a plating layer 22.
  • External electrode layer 21 is electrically connected to internal electrode layer 11 .
  • the material for the external electrode 20 for example, copper, nickel, or an alloy thereof can be suitably used.
  • the electronic component is not limited to the multilayer ceramic capacitor, and electronic components other than the multilayer ceramic capacitor, such as a varistor, can also be used.
  • the viscosity of the conductive paste was measured at a temperature of 25°C at 1 day and 1 month after production, and the measured value at 1 day was taken as the initial viscosity, and the value at 1 month relative to this initial viscosity was measured.
  • the ratio of the measured values was evaluated as the viscosity increase ratio over time.
  • the initial viscosity was evaluated as " ⁇ " if it was 0.2 Pa ⁇ s or more and not more than 2.0 Pa ⁇ s, and "x" if it was higher than 2.0 Pa ⁇ s.
  • a ratio of less than 130 was evaluated as " ⁇ " (sufficient viscosity stability), and a ratio of 130 or more was evaluated as "x" (insufficient viscosity stability).
  • the prepared conductive paste was applied onto a glass substrate using an applicator so that the wet film thickness was 10 ⁇ m, and then a drying process was performed at 300° C. for 10 minutes in the air to produce a dry film.
  • the average roughness of the dried film was measured using a laser microscope (VK-X130, manufactured by Keyence Corporation) within a measurement range of 200 x 250 ⁇ m, and the measurements were repeated at five random locations.
  • the average value (arithmetic mean height Sa) of the obtained values was taken as the average roughness of the conductive paste dry film.
  • conductive powder As the conductive powder, Ni powder (SEM average particle size: 0.2 ⁇ m) was used.
  • Ceramic powder Barium titanate (BaTiO 3 ; SEM average particle size: 0.10 ⁇ m) was used as the ceramic powder.
  • binder resin polyvinyl butyral and ethyl cellulose were used.
  • (dispersant) A copolymer of acrylic acid ester (general formula (1)) having a linear or branched alkyl group and acrylic acid, and a carboxyl group-containing polymer dispersant with a mass average molecular weight of 2000 or more, and acrylic acid and acrylic acid for comparison.
  • An acidic low-molecular dispersant containing no acrylic acid ester polymer and a carboxyl group-containing polymer dispersant having a mass average molecular weight smaller or larger than those in the examples were used.
  • the ratio of acrylic acid in the molar ratio during copolymerization (X), the number of carbon atoms in the alkyl group, the structure of the alkyl group, the name of the acrylic ester, the mass average molecular weight, the content of the carboxy group-containing polymer dispersant in the conductive paste The amounts are shown in Table 1.
  • Example 1 As an example of synthesis of a carboxyl group-containing polymer dispersant, the procedure for synthesizing the carboxyl group-containing polymer dispersant of Example 1 is shown below. In addition, in Examples 2 to 11, Comparative Example 1, Comparative Examples 4 and 5, the molar ratio of acrylic acid and acrylic ester was changed so that the structure of the alkyl group of the acrylic ester and the ratio (X) of acrylic acid were changed. Synthesis was carried out in the same manner as the following synthesis procedure by changing the synthesis temperature, synthesis time, and amount of chain transfer agent added.
  • the obtained polymeric dispersant was analyzed by NMR (nuclear magnetic resonance) and SEC (size exclusion chromatography) to analyze the acrylic acid ratio (X) and mass average molecular weight.
  • 2-mercaptoethanol can also be used as the chain transfer agent.
  • organic solvent dihydroterpineol (DHT) was used as the main solvent, and mineral spirit and propylene glycol monobutyl ether (PNB) were used as the subsolvents.
  • DHT dihydroterpineol
  • PNB propylene glycol monobutyl ether
  • X acrylic acid ratio
  • the initial viscosity was measured, the viscosity ratio over time was calculated, white cast was observed, and the surface roughness of the dried film was measured.
  • the evaluation results are shown in Table 1 along with the detailed conditions of the additives.
  • Examples 2 to 11 A carboxyl group-containing polymer dispersant was prepared from the carboxyl group-containing polymer dispersant of Example 1 by adjusting the acrylic acid ratio x, the number of carbon atoms in the alkyl group of the acrylic ester, the presence or absence of branching of the carbon chain of the alkyl group, and the mass average. The molecular weight was changed to a carboxy group-containing polymer dispersant shown in Table 1, and in Examples 10 and 11, the amount of the carboxy group-containing polymer dispersant added was changed so that the amount of the above-mentioned conductive paste was 100% by mass. A conductive paste was prepared and evaluated in the same manner as in Example 1, except that the amount of organic solvent added was adjusted. Table 1 shows the conditions and evaluation results for the dispersant.
  • Comparative Example 1 was carried out in the same manner as in Example 1, except that although it was a carboxyl group-containing polymer dispersant, the dispersant had an acrylic acid ratio (X) of 0.05, which was outside the scope of the present invention.
  • a conductive paste was prepared.
  • a dicarboxylic acid with an average molecular weight of 370 was used as an acid-based low-molecular dispersant that has been widely used conventionally
  • Comparative Example 3 male anhydride with a mass-average molecular weight of 50,000 was used as a carboxylic acid-based polymer dispersant.
  • a conductive paste was produced in the same manner as in Example 1 except that an acid copolymer was used.
  • Example 1 was prepared except that the same carboxyl group-containing polymer dispersant as used in Example 5 was added in a content (0.005% by mass) that was less than the range of the present invention.
  • a conductive paste was prepared in the same manner.
  • Comparative Example 5 a conductive paste was prepared in the same manner as in Example 5 except that the mass average molecular weight of the carboxyl group-containing polymer dispersant was 1000. Comparative Examples 1 to 5 were also evaluated in the same manner as in the Examples. Table 1 shows the conditions and evaluation results for the dispersant.
  • the conductive paste of the example has an aging viscosity increase ratio of 125 or less after one month, and a viscosity of 2.0 Pa ⁇ s or less after one month, so it has excellent viscosity stability over time. I know that there is. Furthermore, the percentage of white flaking that occurs after one week due to storage is sufficiently small at 5% or less, indicating that it has a separation suppressing effect.
  • the conductive paste of Comparative Example 1 has the same structure as the dispersant of the present invention, but since the proportion of acrylic acid (X) is lower than the range of the present invention, the initial viscosity cannot be kept low, and after drying The roughness of the dry film surface becomes high, which is undesirable.
  • the conductive paste of Comparative Example 2 by using a low molecular weight acidic dispersant, the viscosity is sufficiently stabilized and the dry film surface roughness after drying is also good, but the percentage of white floating is not acceptable. It has exceeded its capacity.
  • the conductive paste of Comparative Example 3 a carboxyl group-containing polymer dispersant was used, but it was not possible to suppress the increase in viscosity over time, and the white cast rate and dry film surface roughness after drying were also poor. Not suitable for gravure printing.
  • the dispersant of the present invention was used, but since the content was less than the range of the present invention, the effect of the additive was not sufficiently exhibited, the initial viscosity was high, and the dispersant after drying was This is not preferable because the surface roughness of the dried film becomes high.
  • the mass average molecular weight of the carboxyl group-containing polymer dispersant is small, so the dispersion performance is poor, and the surface roughness of the dry film after drying becomes high, which is not preferable.
  • the conductive paste of the present invention stably has a viscosity suitable for gravure printing over a long period of time, the separation between the conductive powder and the ceramic powder is sufficiently small, and the surface roughness of the dry film after drying is also sufficient. low. Therefore, the conductive paste of the present invention can be suitably used as a raw material for internal electrodes of multilayer ceramic capacitors, which are chip components of electronic devices that are becoming increasingly smaller, such as mobile phones and digital devices. It can be suitably used as a conductive paste.
  • Multilayer ceramic capacitor 10 Ceramic laminate 11 Internal electrode layer 12 Dielectric layer 20 External electrode 21 External electrode layer 22 Plating layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

The present invention provides: a low viscosity electroconductive paste that can suppress separation between electroconductive powder and ceramic powder, has good viscosity stability over time, and has good smoothness of a dry membrane surface after application; a carboxy group-containing polymer dispersant; an electronic component; and a laminated ceramic capacitor. This carboxy group-containing polymer dispersant comprises a copolymer of at least one of an acrylic acid or methacrylic acid, and at least one of an acrylic acid ester represented by general formula (1) or a methacrylic acid ester represented by general formula (2). In the dispersant, the mass-average molecular weight is 2000 or greater and less than 30,000, for the mole ratio, the ratio of the total of the acrylic acid and the methacrylic acid to the total of the acrylic acid ester and the methacrylic acid ester is X:1–X, X is 0.1 or greater and less than 0.4, and in general formula (1) and general formula (2), R1 is a straight chain or a branched alkyl group.

Description

カルボキシ基含有高分子分散剤、導電性ペースト、電子部品及び積層セラミックコンデンサCarboxy group-containing polymer dispersants, conductive pastes, electronic components and multilayer ceramic capacitors
 本発明は、カルボキシ基含有高分子分散剤、導電性ペースト、電子部品及び積層セラミックコンデンサに関する。 The present invention relates to a carboxy group-containing polymer dispersant, a conductive paste, an electronic component, and a multilayer ceramic capacitor.
 携帯電話やデジタル機器等の電子機器の小型化および高性能化に伴い、積層セラミックコンデンサ等を含む電子部品についても小型化および高容量化が望まれている。積層セラミックコンデンサは、複数の誘電体層と複数の内部電極層とが交互に積層した構造を有し、これらの誘電体層及び内部電極層を薄膜化することにより、小型化及び高容量化を図ることができる。 As electronic devices such as mobile phones and digital devices become smaller and have higher performance, electronic components including multilayer ceramic capacitors are also desired to be smaller and have higher capacity. Multilayer ceramic capacitors have a structure in which multiple dielectric layers and multiple internal electrode layers are alternately stacked, and by making these dielectric layers and internal electrode layers thinner, they can be made smaller and have higher capacitance. can be achieved.
 積層セラミックコンデンサは、例えば、次のように製造される。まず、チタン酸バリウム(BaTiO)等の誘電体粉末及びバインダー樹脂を含有する誘電体グリーンシートの表面上に、導電性粉末、バインダー樹脂、及び、有機溶剤等を含む内部電極用ペースト(導電性ペースト)を、所定の電極パターンで印刷したものを、多層に積み重ねることにより、内部電極と誘電体グリーンシートとを多層に積み重ねた積層体を得る。次に、この積層体を加熱圧着して一体化し、圧着体を形成する。この圧着体を切断し、酸化性雰囲気または不活性雰囲気中にて脱有機バインダー処理を行った後、焼成を行い、焼成チップを得る。次いで、焼成チップの両端部に外部電極用ペーストを塗布し、焼成後、外部電極表面にニッケルメッキ等を施して、積層セラミックコンデンサが得られる。 A multilayer ceramic capacitor is manufactured, for example, as follows. First, a paste for internal electrodes (conductive powder) containing conductive powder, binder resin, organic solvent, etc. paste) printed with a predetermined electrode pattern and stacked in multiple layers to obtain a laminate in which internal electrodes and dielectric green sheets are stacked in multiple layers. Next, this laminate is heat-pressed and integrated to form a crimped body. This pressed body is cut, treated to remove the organic binder in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain fired chips. Next, an external electrode paste is applied to both ends of the fired chip, and after firing, nickel plating or the like is applied to the external electrode surface to obtain a multilayer ceramic capacitor.
 導電性ペーストを誘電体グリーンシートに印刷する際に用いられる印刷法としては、従来、スクリーン印刷法が一般的に用いられてきたが、電子デバイスの小型化、薄膜化や生産性向上の要求から、より微細な電極パターンを生産性高く印刷することが求められている。 Conventionally, screen printing has been commonly used as the printing method for printing conductive paste onto dielectric green sheets, but due to demands for smaller electronic devices, thinner films, and improved productivity. There is a need to print finer electrode patterns with high productivity.
 導電性ペーストの印刷法の一つとして、製版に設けられた凹部に導電性ペーストを充填し、これを被印刷面に押し当てることで、その製版から導電性ペーストを転写する連続印刷法であるグラビア印刷法が提案されている。グラビア印刷法は印刷速度が速く、生産性に優れる。グラビア印刷法を用いる場合、導電性ペースト中のバインダー樹脂、分散剤、溶剤等を適宜選択して、粘度等の特性をグラビア印刷に適した範囲に調整する必要がある。 One of the methods of printing conductive paste is a continuous printing method in which the conductive paste is transferred from the plate by filling the concave portions of the plate with the conductive paste and pressing it against the surface to be printed. A gravure printing method has been proposed. Gravure printing has fast printing speed and excellent productivity. When using the gravure printing method, it is necessary to appropriately select the binder resin, dispersant, solvent, etc. in the conductive paste, and adjust the properties such as viscosity to a range suitable for gravure printing.
 例えば、特許文献1では、複数のセラミック層および前記セラミック層間の特定の界面に沿って延びる内部導体膜を備える積層セラミック電子部品における前記内部導体膜をグラビア印刷によって形成するために用いられる導電性ペーストであって、金属粉末を含む30~70重量%の固形成分と、1~10重量%のエトキシ基含有率が49.6%以上のエチルセルロース樹脂成分と、0.05~5重量%の分散剤と、残部としての溶剤成分とを含み、ずり速度0.1(s-1)での粘度η0.1が1Pa・s以上であり、かつずり速度0.02(s-1)での粘度η0.02が特定の式で表わされる条件を満たす、チキソトロピー流体である、導電性ペーストが記載されている。 For example, in Patent Document 1, a conductive paste is used to form an inner conductor film by gravure printing in a laminated ceramic electronic component including a plurality of ceramic layers and an inner conductor film extending along a specific interface between the ceramic layers. 30 to 70% by weight solid component containing metal powder, 1 to 10% by weight ethyl cellulose resin component having an ethoxy group content of 49.6% or more, and 0.05 to 5% by weight dispersant. and a solvent component as the remainder, the viscosity η 0.1 at a shear rate of 0.1 (s -1 ) is 1 Pa·s or more, and the viscosity at a shear rate of 0.02 (s -1 ) A conductive paste is described that is a thixotropic fluid, satisfying the condition that η 0.02 is expressed by a specific formula.
 また、特許文献2では、上記特許文献1と同様にグラビア印刷によって形成するために用いられる導電性ペーストであって、金属粉末を含む30~70重量%の固形成分と、1~10重量%の樹脂成分と、0.05~5重量%の分散剤と、残部としての溶剤成分とを含み、ずり速度0.1(s-1)での粘度が1Pa・s以上のチキソトロピー流体であって、ずり速度0.1(s-1)での粘度を基準としたときに、ずり速度10(s-1)での粘度変化率が50%以上である、導電性ペーストが記載されている。 Furthermore, Patent Document 2 discloses a conductive paste used for forming by gravure printing as in Patent Document 1, which contains 30 to 70% by weight of a solid component including metal powder and 1 to 10% by weight of a conductive paste. A thixotropic fluid containing a resin component, 0.05 to 5% by weight of a dispersant, and the remainder a solvent component, and having a viscosity of 1 Pa·s or more at a shear rate of 0.1 (s -1 ), A conductive paste is described that has a viscosity change rate of 50% or more at a shear rate of 10 (s -1 ), based on the viscosity at a shear rate of 0.1 (s -1 ).
 上記特許文献1、2によれば、これらの導電性ペーストは、ずり速度0.1(s-1)での粘度が1Pa・s以上であるチキソトロピー流体であり、グラビア印刷において高速での安定した連続印刷性が得られ、良好な生産効率をもって、積層セラミックコンデンサのような積層セラミック電子部品を製造することができるとされている。 According to Patent Documents 1 and 2, these conductive pastes are thixotropic fluids with a viscosity of 1 Pa·s or more at a shear rate of 0.1 (s −1 ), and are stable at high speeds in gravure printing. It is said that continuous printing can be achieved and multilayer ceramic electronic components such as multilayer ceramic capacitors can be manufactured with good production efficiency.
 また、特許文献3には、導電性粉末(A)、有機樹脂(B)、及び有機溶剤(C)、添加剤(D)、及び誘電体粉末(E)を含む積層セラミックコンデンサ内部電極用導電性ペーストであって、有機樹脂(B)は、重合度が10000以上50000以下のポリビニルブチラールと、重量平均分子量が10000以上100000以下のエチルセルロースからなり、有機溶剤(C)は、プロピレングリコールモノブチルエーテル、もしくはプロピレングリコールモノブチルエーテルとプロピレングリコールメチルエーテルアセテートの混合溶剤、又はプロピレングリコールモノブチルエーテルとミネラルスピリットの混合溶剤のいずれかからなり、添加剤(D)は、分離抑制剤と分散剤からなるグラビア印刷用導電性ペーストが記載されている。特許文献3によれば、この導電性ペーストは、グラビア印刷に適した粘度を有し、かつ、乾燥性がよいとされている。 Further, Patent Document 3 discloses a conductive material for multilayer ceramic capacitor internal electrodes containing a conductive powder (A), an organic resin (B), an organic solvent (C), an additive (D), and a dielectric powder (E). The organic resin (B) is composed of polyvinyl butyral having a degree of polymerization of 10,000 or more and 50,000 or less, and ethyl cellulose having a weight average molecular weight of 10,000 or more and 100,000 or less, and the organic solvent (C) is propylene glycol monobutyl ether, Or, it consists of either a mixed solvent of propylene glycol monobutyl ether and propylene glycol methyl ether acetate, or a mixed solvent of propylene glycol monobutyl ether and mineral spirit, and the additive (D) consists of a separation inhibitor and a dispersant for gravure printing. A conductive paste is described. According to Patent Document 3, this conductive paste has a viscosity suitable for gravure printing and has good drying properties.
特開2003-187638号公報Japanese Patent Application Publication No. 2003-187638 特開2003-242835号公報Japanese Patent Application Publication No. 2003-242835 特開2012-174797号公報Japanese Patent Application Publication No. 2012-174797
 電子部品の小型化に伴い、導電ペーストを印刷して形成する電極や配線等も薄膜化している。導電性ペーストを薄く平滑に塗布するために、低粘度化が要求されている。しかしながら、低粘度の導電性ペーストは、チタン酸バリウム等のセラミック粉末とNi等の導電性粉末とを添加した際に、これらの粉末の比重差による沈降速度差が影響して、導電性粉末とセラミック粉末とが分離することがある。 As electronic components become smaller, electrodes and wiring formed by printing conductive paste are also becoming thinner. In order to apply conductive paste thinly and smoothly, lower viscosity is required. However, when a ceramic powder such as barium titanate and a conductive powder such as Ni are added to a low-viscosity conductive paste, the difference in sedimentation rate due to the difference in specific gravity of these powders affects the difference between the conductive powder and the conductive powder. Ceramic powder may separate.
 例えば、低粘度の導電性ペーストを作製した際にセラミック粉末を含む白い分離層が上部に発生する「白浮き」と称する現象(二層分離)が生じることがある。この様にペースト内の組成が不均一になると、塗布後の乾燥膜表面の平滑性が得られず、例えば、積層セラミックコンデンサの内部電極用に用いると内部電極間の短絡や所定の静電容量が得られない場合がある。 For example, when a low-viscosity conductive paste is produced, a phenomenon called "white floating" (two-layer separation) may occur in which a white separation layer containing ceramic powder appears on the top. If the composition in the paste becomes non-uniform in this way, the surface of the dry film after application will not be smooth, and for example, if used for the internal electrodes of a multilayer ceramic capacitor, short circuits between the internal electrodes may occur, and the specified capacitance may be reduced. may not be obtained.
 また、本発明者らが検討した結果、低粘度の導電性ペーストは、長期保管後に増粘してしまい、製造直後の粘度に対する長期保管後の粘度の比率として計算される経時増粘比が高くなりやすいことが分かった。平滑で均一な薄膜を得るためには、適用するペーストには粘度を一定範囲内に制御することが求められるが、経時増粘比が高いペーストは長期間使用していると印刷時に平滑な印刷面が得られなかったり、一定期間の使用で都度粘度調整が必要になる等、印刷工程が複雑化してしまったりするという問題がある。 In addition, as a result of studies conducted by the present inventors, low-viscosity conductive pastes tend to thicken after long-term storage, and the viscosity increase ratio over time calculated as the ratio of the viscosity after long-term storage to the viscosity immediately after manufacture is high. I found out that it's easy to do. In order to obtain a smooth and uniform thin film, it is necessary to control the viscosity of the applied paste within a certain range, but pastes with a high viscosity increase ratio over time will not print smoothly if used for a long period of time. There are problems in that the printing process becomes complicated, such as not being able to obtain a uniform surface or requiring viscosity adjustment each time it is used for a certain period of time.
 本発明は、このような状況に鑑み、低粘度の導電性ペーストにおいても低いペースト粘度を長期にわたり安定して有し、かつ、導電性粉末とセラミック粉末との分離を抑制することができ、塗布後の乾燥膜表面の平滑性が良好な、導電性ペーストを提供することを目的とする。また、このような導電性ペーストを提供することのできるカルボキシ基含有高分子分散剤、このような導電性ペーストを用いて形成された電子部品及び積層セラミックコンデンサを提供することを目的とする。 In view of these circumstances, the present invention provides a conductive paste that stably maintains a low paste viscosity over a long period of time even in a low-viscosity conductive paste, and is capable of suppressing separation of conductive powder and ceramic powder. The purpose of the present invention is to provide a conductive paste with good smoothness on the surface of a dried film after drying. Another object of the present invention is to provide a carboxy group-containing polymer dispersant that can provide such a conductive paste, and electronic components and multilayer ceramic capacitors formed using such a conductive paste.
 上記の課題を解決するため、本発明の分散剤は、アクリル酸またはメタクリル酸の少なくともいずれかと、下記一般式(1)で示されるアクリル酸エステルまたは下記一般式(2)で示されるメタクリル酸エステルの少なくともいずれかとの共重合体からなるカルボキシ基含有高分子分散剤であって、質量平均分子量が2000以上30000未満であり、モル比で、前記アクリル酸および前記メタクリル酸の合計と、前記アクリル酸エステルおよび前記メタクリル酸エステルの合計との比がX:1-Xであり、当該Xは0.1以上0.4未満であり、下記一般式(1)および下記一般式(2)において、Rは、直鎖または分岐のアルキル基である、分散剤である。 In order to solve the above problems, the dispersant of the present invention combines at least either acrylic acid or methacrylic acid, and an acrylic ester represented by the following general formula (1) or a methacrylic ester represented by the following general formula (2). A carboxyl group-containing polymeric dispersant consisting of a copolymer with at least one of the following, which has a mass average molecular weight of 2,000 or more and less than 30,000, and has a molar ratio of the sum of the acrylic acid and the methacrylic acid to the acrylic acid. The ratio of the ester to the total of the methacrylic ester is X:1-X, where X is 0.1 or more and less than 0.4, and in the following general formula (1) and the following general formula (2), R 1 is a dispersant which is a linear or branched alkyl group.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 また、上記の課題を解決するため、本発明の導電性ペーストは、本発明のカルボキシ基含有高分子分散剤を含む、導電性ペーストである。 Furthermore, in order to solve the above problems, the conductive paste of the present invention is a conductive paste containing the carboxy group-containing polymer dispersant of the present invention.
 本発明の導電性ペーストは、導電性粉末、セラミック粉末、バインダー樹脂及び有機溶剤を更に含み、前記カルボキシ基含有高分子分散剤の含有量は、0.01質量%以上2.0質量%未満であってもよい。 The conductive paste of the present invention further includes a conductive powder, a ceramic powder, a binder resin, and an organic solvent, and the content of the carboxy group-containing polymer dispersant is 0.01% by mass or more and less than 2.0% by mass. There may be.
 前記有機溶剤がジヒドロターピネオール(DHT)、ジヒドロターピニルアセテート(DHTA)、ターピネオール(TPO)、プロピレングリコールモノブチルエーテル(PNB)、ジエチレングリコールモノブチルエーテルアセテート(BCA)、およびジイソブチルケトン(DIBK)からなる群より選ばれる1種類以上を含んでもよい。 The organic solvent is from the group consisting of dihydroterpineol (DHT), dihydroterpineyl acetate (DHTA), terpineol (TPO), propylene glycol monobutyl ether (PNB), diethylene glycol monobutyl ether acetate (BCA), and diisobutyl ketone (DIBK). It may include one or more selected types.
 本発明の導電性ペーストは、前記カルボキシ基含有高分子分散剤以外の分散剤を含み、前記導電性ペースト中の分散剤の全量に対する前記カルボキシ基含有高分子分散剤の含有量が、30質量%以上であってもよい。 The conductive paste of the present invention contains a dispersant other than the carboxy group-containing polymer dispersant, and the content of the carboxy group-containing polymer dispersant is 30% by mass with respect to the total amount of the dispersant in the conductive paste. It may be more than that.
 前記導電性ペーストは、前記カルボキシ基含有高分子分散剤以外の分散剤として、質量平均分子量が2000未満の酸系分散剤を含み、前記導電性ペースト中の分散剤の全量に対する前記酸系分散剤の含有量が、0質量%より多く70質量%以下であってもよい。 The conductive paste contains an acid-based dispersant having a mass average molecular weight of less than 2000 as a dispersant other than the carboxy group-containing polymer dispersant, and the acid-based dispersant is based on the total amount of the dispersant in the conductive paste. The content may be more than 0% by mass and 70% by mass or less.
 前記導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる1種以上の金属粉末を含んでもよい。 The conductive powder may include one or more metal powders selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof.
 前記導電性粉末の数平均粒子径が0.05μm以上1.0μm以下であってもよい。 The number average particle diameter of the conductive powder may be 0.05 μm or more and 1.0 μm or less.
 前記セラミック粉末はチタン酸バリウムを含んでもよい。 The ceramic powder may include barium titanate.
 前記セラミック粉末の数平均粒子径が0.01μm以上0.5μm以下であってもよい。 The number average particle diameter of the ceramic powder may be 0.01 μm or more and 0.5 μm or less.
 前記セラミック粉末の含有量は1質量%以上20質量%以下であってもよい。 The content of the ceramic powder may be 1% by mass or more and 20% by mass or less.
 前記バインダー樹脂がセルロース系樹脂を含んでもよい。 The binder resin may include a cellulose resin.
 本発明の導電性ペーストは、積層セラミック部品の内部電極用であってもよい。 The conductive paste of the present invention may be used for internal electrodes of laminated ceramic parts.
 本発明の導電性ペーストは、温度25℃におけるずり速度100sec-1での粘度が2.0Pa・S以下であってもよい。 The conductive paste of the present invention may have a viscosity of 2.0 Pa·S or less at a shear rate of 100 sec −1 at a temperature of 25° C.
 また、上記の課題を解決するため、本発明の電子部品は、本発明の導電性ペーストを用いて形成された電子部品である。 Furthermore, in order to solve the above problems, the electronic component of the present invention is an electronic component formed using the conductive paste of the present invention.
 また、上記の課題を解決するため、本発明の積層セラミックコンデンサは、誘電体層と内部電極層とを積層した積層体を少なくとも有し、前記内部電極層は、本発明の導電性ペーストを用いて形成される積層セラミックコンデンサである。 Further, in order to solve the above problems, the multilayer ceramic capacitor of the present invention has at least a laminate in which a dielectric layer and an internal electrode layer are laminated, and the internal electrode layer is formed using the conductive paste of the present invention. This is a multilayer ceramic capacitor formed by
 本発明であれば、低粘度の導電性ペーストにおいても低いペースト粘度を長期にわたり安定して有し、かつ、導電性粉末とセラミック粉末との分離を抑制することができ、塗布後の乾燥膜表面の平滑性が良好な、導電性ペーストを提供することができる。また、このような導電性ペーストを提供することのできるカルボキシ基含有高分子分散剤、このような導電性ペーストを用いて形成された電子部品及び積層セラミックコンデンサを提供することができる。特に、本発明の導電性ペーストは、低粘度のペーストであっても、導電性粉末とセラミック粉末との分離を抑制することができ、塗布後の乾燥膜表面の平滑性が良好で、かつ、長期にわたる粘度安定性が良好であるため、印刷時の粘度調整が不要となり、印刷工程の簡略化に寄与する。特に、低粘度で高速印刷を行うグラビア印刷用に用いると効果的である。 With the present invention, even a low-viscosity conductive paste can stably maintain a low paste viscosity over a long period of time, and can suppress separation of the conductive powder and ceramic powder, and the dry film surface after application. It is possible to provide a conductive paste with good smoothness. Furthermore, it is possible to provide a carboxy group-containing polymer dispersant that can provide such a conductive paste, and electronic components and multilayer ceramic capacitors formed using such a conductive paste. In particular, the conductive paste of the present invention can suppress separation of the conductive powder and the ceramic powder even if it is a low-viscosity paste, and the dry film surface after application has good smoothness, and Good long-term viscosity stability eliminates the need for viscosity adjustment during printing, contributing to the simplification of the printing process. It is particularly effective when used in gravure printing, which performs high-speed printing with low viscosity.
本実施形態に係る積層セラミックコンデンサの概略図であり、図1Aは斜視図、図1Bは断面図である。FIG. 1A is a schematic diagram of a multilayer ceramic capacitor according to the present embodiment, with FIG. 1A being a perspective view and FIG. 1B being a sectional view.
 以下、本発明のカルボキシ基含有高分子分散剤、導電性ペースト、電子部品及び積層セラミックコンデンサの一実施形態について説明する。 Hereinafter, one embodiment of the carboxy group-containing polymer dispersant, conductive paste, electronic component, and multilayer ceramic capacitor of the present invention will be described.
[カルボキシ基含有高分子分散剤]
 本発明のカルボキシ基含有高分子分散剤は、アクリル酸またはメタクリル酸の少なくともいずれかと、下記一般式(1)で示されるアクリル酸エステルまたは下記一般式(2)で示されるメタクリル酸エステルの少なくともいずれかとの共重合体からなるカルボキシ基含有高分子分散剤であって、質量平均分子量が2000以上30000未満であり、モル比で、前記アクリル酸および前記メタクリル酸の合計と、前記アクリル酸エステルおよび前記メタクリル酸エステルの合計との比がX:1-Xであり、当該Xは0.1以上0.4未満である、分散剤である。ここで、下記一般式(1)および下記一般式(2)において、Rは、直鎖または分岐のアルキル基である。
[Carboxy group-containing polymer dispersant]
The carboxyl group-containing polymer dispersant of the present invention includes at least one of acrylic acid or methacrylic acid, and at least one of an acrylic ester represented by the following general formula (1) or a methacrylic ester represented by the following general formula (2). A carboxyl group-containing polymer dispersant consisting of a copolymer of methacrylic acid and methacrylic acid, which has a mass average molecular weight of 2,000 or more and less than 30,000, and has a molar ratio of the sum of the acrylic acid and the methacrylic acid, the acrylic acid ester, and the methacrylic acid. A dispersant having a ratio of X:1-X to the total amount of methacrylic acid esters, where X is 0.1 or more and less than 0.4. Here, in the following general formula (1) and the following general formula (2), R 1 is a linear or branched alkyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本発明者らは、後述する低粘度の導電性ペーストが、質量平均分子量が2000以上であるカルボキシ基含有高分子分散剤を一定量含むことにより、粘度の経時変化が少なく安定した低粘度を有し、かつ、導電性粉末とセラミック粉末との分離を抑制し、平滑な乾燥膜を得ることができることを見出した。 The present inventors have discovered that the low-viscosity conductive paste described below has a stable low viscosity with little change in viscosity over time by containing a certain amount of a carboxy group-containing polymer dispersant having a mass average molecular weight of 2000 or more. We have also found that separation of the conductive powder and ceramic powder can be suppressed, and a smooth dry film can be obtained.
 カルボキシ基含有高分子分散剤は、導電性粉末やセラミック粉末への吸着基としてカルボキシ基を有する。そして、アクリル酸またはメタクリル酸の少なくともいずれかと、アクリル酸エステルまたはメタクリル酸エステルの少なくともいずれかとの共重合体の構造を持つことで、後述する有機溶媒に対する溶解性と、導電性粉末の分散性の向上効果を両立することができる。 A carboxyl group-containing polymer dispersant has a carboxyl group as an adsorption group to conductive powder or ceramic powder. By having a copolymer structure of at least one of acrylic acid or methacrylic acid and at least one of acrylic ester or methacrylic ester, the solubility in organic solvents and the dispersibility of the conductive powder, which will be described later, are improved. It is possible to achieve both improvement effects.
 ここで、共重合体としては、アクリル酸とアクリル酸エステルとの共重合体、アクリル酸とメタクリル酸エステルとの共重合体、メタクリル酸とアクリル酸エステルとの共重合体、メタクリル酸とメタクリル酸エステルとの共重合体、アクリル酸およびメタクリル酸と、アクリル酸エステルとの共重合体、アクリル酸およびメタクリル酸と、メタクリル酸エステルとの共重合体、アクリル酸と、アクリル酸エステルおよびメタクリル酸エステルとの共重合体、メタクリル酸と、アクリル酸エステルおよびメタクリル酸エステルとの共重合体、アクリル酸およびメタクリル酸と、アクリル酸エステルおよびメタクリル酸エステルとの共重合体、が挙げられる。 Here, the copolymers include copolymers of acrylic acid and acrylic esters, copolymers of acrylic acid and methacrylic esters, copolymers of methacrylic acid and acrylic esters, and copolymers of methacrylic acid and methacrylic acid. Copolymers with esters, copolymers with acrylic acid and methacrylic acid, and acrylic esters, copolymers with acrylic acid, methacrylic acid, and methacrylic esters, acrylic acid, acrylic esters, and methacrylic esters Copolymers of methacrylic acid, acrylic esters and methacrylic esters, and copolymers of acrylic acid and methacrylic acid and acrylic esters and methacrylic esters.
 また、アクリル酸とアクリル酸エステルとを併用する場合には、これらのモル比は適宜調整することができる。また、アクリル酸エステルとメタクリル酸エステルを併用する場合にも、これらのモル比は適宜調整することができる。 Furthermore, when acrylic acid and acrylic ester are used together, their molar ratio can be adjusted as appropriate. Moreover, when using an acrylic ester and a methacrylic ester together, the molar ratio of these can be adjusted as appropriate.
 また、共重合する際のモル比において、アクリル酸およびメタクリル酸の合計(X)と、アクリル酸エステルおよびメタクリル酸エステルの合計(1-X)との比率を調整することで、有機溶媒に対する溶解性と導電性粉末の分散性が変化する。アクリル酸およびメタクリル酸の合計の比率が低すぎると、導電性粉末に対して吸着基として働くカルボキシ基の量が少ないために、分散性が低下する。一方、アクリル酸およびメタクリル酸の合計の比率が高すぎると、カルボキシ基含有高分子分散剤の親水性が高くなり、当該導電性ペーストに用いられる有機溶媒に対する溶解性が悪化する。 In addition, in the molar ratio during copolymerization, by adjusting the ratio of the total of acrylic acid and methacrylic acid (X) to the total of acrylic ester and methacrylic ester (1-X), dissolution in organic solvent The properties and dispersibility of the conductive powder change. If the total ratio of acrylic acid and methacrylic acid is too low, the amount of carboxy groups that act as adsorption groups for the conductive powder will be small, resulting in poor dispersibility. On the other hand, if the total ratio of acrylic acid and methacrylic acid is too high, the hydrophilicity of the carboxy group-containing polymer dispersant will increase, and the solubility in the organic solvent used in the conductive paste will deteriorate.
 そのため、モル比において、アクリル酸およびメタクリル酸の合計と、アクリル酸エステルおよびメタクリル酸エステルの合計とには、適切な比率が存在する。すなわち、アクリル酸およびメタクリル酸の合計の割合Xが0.1以上0.4未満の場合に、有機溶剤への溶解性と、導電性粉末の分散性を向上させる効果とのバランスが良好となり、結果として、導電性粉末とセラミック粉末との分離を抑制することができ、経時的な粘度安定性が良好で、塗布後の乾燥膜表面の平滑性が良好な低粘度の導電性ペーストを提供することができる。 Therefore, in terms of molar ratio, an appropriate ratio exists between the total of acrylic acid and methacrylic acid and the total of acrylic ester and methacrylic ester. That is, when the total ratio X of acrylic acid and methacrylic acid is 0.1 or more and less than 0.4, the solubility in organic solvents and the effect of improving the dispersibility of the conductive powder are well balanced, As a result, separation of the conductive powder and ceramic powder can be suppressed, and a low-viscosity conductive paste with good viscosity stability over time and good smoothness of the dry film surface after application is provided. be able to.
 また、一般式(1)および一般式(2)に示すアクリル酸エステルおよびメタクリル酸エステルのRは、直鎖または分岐のアルキル基である。ここで、Rが直鎖のアルキル基である場合、炭素鎖数は、2以上10以下であることが好ましく、2以上4以下であることがさらに好ましい。炭素鎖数が1の場合は、アクリル酸エステルもしくはメタクリル酸エステルの炭素鎖が短すぎるため、導電性ペーストの分散剤として使用した際に、導電性ペーストの分離を抑制する効果が十分に発揮されない場合があるので好ましくない。また、炭素鎖数が11以上の場合は、アクリル酸エステルもしくはメタクリル酸エステルの炭素鎖が長すぎるため、導電性ペーストの分散剤として使用した際に、導電性ペーストの分離を抑制する効果が十分に発揮されない場合や、導電ペーストをグラビア印刷等で成膜した後の乾燥膜の表面粗さや乾燥膜の密度が悪化してしまう場合があるので好ましくない。 Further, R 1 of the acrylic ester and methacrylic ester shown in the general formula (1) and the general formula (2) is a linear or branched alkyl group. Here, when R 1 is a linear alkyl group, the number of carbon chains is preferably 2 or more and 10 or less, more preferably 2 or more and 4 or less. If the number of carbon chains is 1, the carbon chain of the acrylic ester or methacrylic ester is too short, so when used as a dispersant for conductive paste, the effect of suppressing separation of the conductive paste is not sufficiently exhibited. This is not preferable because there are cases. In addition, when the number of carbon chains is 11 or more, the carbon chains of the acrylic ester or methacrylic ester are too long, so when used as a dispersant for conductive paste, the effect of suppressing separation of the conductive paste is insufficient. This is not preferable because the conductive paste may not be effective, or the surface roughness and density of the dried film after forming the conductive paste by gravure printing or the like may deteriorate.
 また、Rが分岐のアルキル基である場合、Rの総炭素数は、3以上14以下であることが好ましく、直鎖部分の炭素鎖数は、2以上10以下であり、分岐部分の炭素数は1以上4以下であることが好ましい。これらの条件を満たすことで、有機溶剤への溶解性と、導電性粉末の分散性を向上させる効果とのバランスが良好となり、結果として、導電性粉末とセラミック粉末との分離を抑制することができ、経時的な粘度安定性が良好で、塗布後の乾燥膜表面の平滑性が良好な低粘度の導電性ペーストを提供することができる。一方で、これらの条件を満たさない場合には、導電性ペーストの分散剤として使用した際に、導電性ペーストの分離を抑制する効果が十分に発揮されない場合や、導電ペーストを成膜した後の乾燥膜の表面粗さや乾燥膜の密度が悪化してしまう場合がある。 Further, when R 1 is a branched alkyl group, the total number of carbon atoms in R 1 is preferably 3 or more and 14 or less, the number of carbon chains in the straight chain part is 2 or more and 10 or less, and the number of carbon chains in the branched part is 2 or more and 10 or less, and The number of carbon atoms is preferably 1 or more and 4 or less. By satisfying these conditions, there is a good balance between solubility in organic solvents and the effect of improving the dispersibility of the conductive powder, and as a result, separation of the conductive powder and the ceramic powder can be suppressed. It is possible to provide a low-viscosity conductive paste with good viscosity stability over time and good smoothness of the dry film surface after application. On the other hand, if these conditions are not met, the effect of suppressing the separation of the conductive paste may not be fully demonstrated when used as a dispersant for the conductive paste, or the The surface roughness of the dried film and the density of the dried film may deteriorate.
 また、カルボキシ基含有高分子分散剤の質量平均分子量は2000以上であり、5000以上であってもよく、10000以上であってもよい。カルボキシ基含有高分子分散剤の質量平均分子量は、これを用いた導電性ペーストの初期粘度、経時増粘及び分離量等に影響を及ぼす。そのため、質量平均分子量が2000以上である場合、安定した分散効果を発揮することができ、経時増粘及び分離を十分に抑制することができる。なお、経時増粘を抑制する観点では、質量平均分子量の上限は特に限定されないが、質量平均分子量が大きすぎる場合には導電性ペーストの初期粘度自体が高くなり、グラビア印刷に適さなくなることがあるため、質量平均分子量は30000以下であってもよい。なお、カルボキシ基含有高分子分散剤の質量平均分子量は、例えば、GPC(ゲルパーミエーションクロマトグラフィー)により測定することができる。 Further, the mass average molecular weight of the carboxyl group-containing polymer dispersant is 2,000 or more, may be 5,000 or more, or may be 10,000 or more. The mass average molecular weight of the carboxyl group-containing polymer dispersant affects the initial viscosity, time-dependent viscosity increase, separation amount, etc. of the conductive paste using the same. Therefore, when the mass average molecular weight is 2000 or more, a stable dispersion effect can be exhibited, and thickening and separation over time can be sufficiently suppressed. In addition, from the viewpoint of suppressing viscosity increase over time, the upper limit of the mass average molecular weight is not particularly limited, but if the mass average molecular weight is too large, the initial viscosity of the conductive paste itself may become high, making it unsuitable for gravure printing. Therefore, the mass average molecular weight may be 30,000 or less. Note that the mass average molecular weight of the carboxy group-containing polymer dispersant can be measured by, for example, GPC (gel permeation chromatography).
[導電性ペースト]
 本実施形態の導電性ペーストは、上記本発明のカルボキシ基含有高分子分散剤を含む。また、導電性粉末、セラミック粉末、バインダー樹脂及び有機溶剤を更に含んでもよい。以下、これらの各成分について詳細に説明する。
[Conductive paste]
The conductive paste of this embodiment contains the carboxyl group-containing polymer dispersant of the present invention. Further, it may further contain a conductive powder, a ceramic powder, a binder resin, and an organic solvent. Each of these components will be explained in detail below.
(導電性粉末)
 導電性粉末としては、特に限定されず、金属粉末を用いることができ、例えば、Ni、Pd、Pt、Au、Ag、Cu、およびこれらの合金から選ばれる1種以上の粉末を用いることができる。これらの中でも、導電性、耐食性及びコストの観点から、Ni、またはその合金(Ni合金)の粉末が好ましい。Ni合金としては、例えば、Mn、Cr、Co、Al、Fe、Cu、Zn、Ag、Au、PtおよびPdからなる群より選択される少なくとも1種以上の元素とNiとの合金が用いることができる。Ni合金におけるNiの含有量は、例えば、50質量%以上、好ましくは80質量%以上である。また、Ni粉末は、脱バインダー処理の際、バインダー樹脂の部分的な熱分解による急激なガス発生を抑制するために、数百ppm程度の元素Sを含んでもよい。
(conductive powder)
The conductive powder is not particularly limited, and metal powder can be used, for example, one or more powders selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof can be used. . Among these, powder of Ni or its alloy (Ni alloy) is preferred from the viewpoints of conductivity, corrosion resistance, and cost. As the Ni alloy, for example, an alloy of Ni and at least one element selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Au, Pt and Pd can be used. can. The Ni content in the Ni alloy is, for example, 50% by mass or more, preferably 80% by mass or more. Further, the Ni powder may contain about several hundred ppm of element S in order to suppress rapid gas generation due to partial thermal decomposition of the binder resin during binder removal treatment.
 導電性粉末の数平均粒子径は、好ましくは0.05μm以上1.0μm以下であり、より好ましくは0.1μm以上0.5μm以下である。導電性粉末の数平均粒子径が上記範囲である場合、薄膜化した積層セラミックコンデンサ(積層セラミック部品)の内部電極用ペーストとして好適に用いることができ、例えば、乾燥膜の平滑性及び乾燥膜密度が向上する。数平均粒子径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率10,000倍にて観察した画像から、複数の粒子一つ一つの粒子径を測定して、得られる平均値(SEM平均粒子径)である。 The number average particle diameter of the conductive powder is preferably 0.05 μm or more and 1.0 μm or less, more preferably 0.1 μm or more and 0.5 μm or less. When the number average particle diameter of the conductive powder is within the above range, it can be suitably used as a paste for internal electrodes of thin-film multilayer ceramic capacitors (multilayer ceramic components), and can improve the smoothness and density of dry films, for example. will improve. The number average particle diameter is a value obtained from observation with a scanning electron microscope (SEM), and the particle diameter of each particle is measured from an image observed with a SEM at a magnification of 10,000 times. This is the average value (SEM average particle diameter) obtained.
 導電性粉末の含有量は、導電性ペースト全体に対して、好ましくは30質量%以上70質量%未満であり、より好ましくは40質量%以上60質量%以下である。導電性粉末の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the conductive powder is preferably 30% by mass or more and less than 70% by mass, more preferably 40% by mass or more and 60% by mass or less, based on the entire conductive paste. When the content of the conductive powder is within the above range, the conductivity and dispersibility are excellent.
(セラミック粉末)
 セラミック粉末としては、特に限定されず、例えば、積層セラミックコンデンサの内部電極用ペーストである場合、適用する積層セラミックコンデンサの種類により適宜、公知のセラミック粉末が選択される。セラミック粉末としては、例えば、Ba及びTiを含むペロブスカイト型酸化物を用いることができ、好ましくはチタン酸バリウム(BaTiO)を含む。
(ceramic powder)
The ceramic powder is not particularly limited, and for example, in the case of a paste for internal electrodes of a multilayer ceramic capacitor, a known ceramic powder is appropriately selected depending on the type of multilayer ceramic capacitor to which it is applied. As the ceramic powder, for example, a perovskite oxide containing Ba and Ti can be used, and preferably barium titanate (BaTiO 3 ) is used.
 セラミック粉末としては、チタン酸バリウムを主成分とし、酸化物を副成分として含むセラミック粉末を用いてもよい。酸化物としては、Mn、Cr、Si、Ca、Ba、Mg、V、W、Ta、Nbおよび希土類元素から選ばれる1種以上の酸化物が挙げられる。このようなセラミック粉末としては、例えば、チタン酸バリウム(BaTiO)のBa原子やTi原子を他の原子、例えば、Sn、Pb、Zr等で置換したペロブスカイト型酸化物強誘電体のセラミック粉末が挙げられる。 As the ceramic powder, a ceramic powder containing barium titanate as a main component and an oxide as a subcomponent may be used. Examples of the oxide include one or more oxides selected from Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb, and rare earth elements. Examples of such ceramic powders include ceramic powders of perovskite-type oxide ferroelectrics in which Ba and Ti atoms of barium titanate (BaTiO 3 ) are replaced with other atoms, such as Sn, Pb, and Zr. Can be mentioned.
 内部電極用の導電性ペーストに用いるセラミック粉末としては、積層セラミックコンデンサ(電子部品)のグリーンシートを構成する誘電体セラミック粉末と同一組成の粉末を用いてもよい。これにより、焼結工程における誘電体層と内部電極層との界面での収縮のミスマッチによるクラック発生が抑制される。このようなセラミック粉末としては、上記Ba及びTiを含むペロブスカイト型酸化物以外に、例えば、ZnO、フェライト、PZT、BaO、Al、Bi、R(希土類元素)、TiO、Nd等の酸化物が挙げられる。なお、セラミック粉末は、1種類を用いてもよく、2種類以上を用いてもよい。 As the ceramic powder used for the conductive paste for the internal electrodes, a powder having the same composition as the dielectric ceramic powder constituting the green sheet of the multilayer ceramic capacitor (electronic component) may be used. This suppresses the occurrence of cracks due to shrinkage mismatch at the interface between the dielectric layer and the internal electrode layer during the sintering process. Examples of such ceramic powders include, in addition to the above-mentioned perovskite oxides containing Ba and Ti, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 , Examples include oxides such as TiO 2 and Nd 2 O 3 . Note that one type of ceramic powder may be used, or two or more types of ceramic powder may be used.
 セラミック粉末の数平均粒子径は、例えば、0.01μm以上0.5μm以下であり、好ましくは0.01μm以上0.3μm以下の範囲である。セラミック粉末の数平均粒子径が上記範囲であることにより、内部電極用の導電性ペーストとして用いた場合、十分に細く薄い均一な内部電極を形成することができる。数平均粒子径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率50,000倍にて観察した画像から、複数の粒子一つ一つの粒子径を測定して、得られる平均値(SEM平均粒子径)である。 The number average particle diameter of the ceramic powder is, for example, 0.01 μm or more and 0.5 μm or less, preferably 0.01 μm or more and 0.3 μm or less. Since the number average particle diameter of the ceramic powder is within the above range, when used as a conductive paste for internal electrodes, sufficiently thin and uniform internal electrodes can be formed. The number average particle diameter is a value obtained from observation with a scanning electron microscope (SEM), and the particle diameter of each particle is measured from an image observed with a SEM at a magnification of 50,000 times. This is the average value (SEM average particle diameter) obtained.
 セラミック粉末の含有量は、導電性ペースト全体に対して、好ましくは1質量%以上20質量%以下であり、より好ましくは3質量%以上15質量%以下である。セラミック粉末の含有量が上記範囲である場合、分散性および焼結性に優れる。 The content of the ceramic powder is preferably 1% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less, based on the entire conductive paste. When the content of the ceramic powder is within the above range, the dispersibility and sinterability are excellent.
 また、セラミック粉末の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは3質量部以上30質量部以下である。導電性粉末の含有量が上記範囲である場合、導電性及び分散性に優れる。 Further, the content of the ceramic powder is preferably 1 part by mass or more and 30 parts by mass or less, and more preferably 3 parts by mass or more and 30 parts by mass or less, based on 100 parts by mass of the conductive powder. When the content of the conductive powder is within the above range, the conductivity and dispersibility are excellent.
(バインダー樹脂)
 バインダー樹脂としては、特に限定されず、公知の樹脂を用いることができる。バインダー樹脂としては、例えば、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、ニトロセルロース等のセルロース系樹脂、アクリル系樹脂、ポリビニルブチラール等のブチラール系樹脂を含むアセタール系樹脂等が挙げられる。中でも、溶剤への溶解性、燃焼分解性の観点等から、セルロース系樹脂を含むことが好ましく、エチルセルロースを含むことがより好ましい。また、内部電極用ペーストとして用いる場合、グリーンシートとの接着強度を向上させる観点から、ブチラール系樹脂を含む、又は、ブチラール系樹脂単独で使用してもよい。バインダー樹脂がアセタール系樹脂を含む場合、グラビア印刷に適した粘度に容易に調整することができ、かつ、グリーンシートとの接着強度をより向上させることができる。バインダー樹脂は、例えば、バインダー樹脂全体に対して、アセタール系樹脂を20質量%以上含んでもよく、30質量%以上含んでもよい。また、バインダー樹脂は、バインダー樹脂全体に対して、アセタール系樹脂を50質量%以下含んでもよい。
(binder resin)
The binder resin is not particularly limited, and any known resin can be used. Examples of the binder resin include cellulose resins such as methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, and nitrocellulose, acrylic resins, and acetal resins including butyral resins such as polyvinyl butyral. Among these, from the viewpoints of solubility in solvents, combustion decomposability, etc., it is preferable that cellulose resin is included, and it is more preferable that ethyl cellulose is included. In addition, when used as a paste for internal electrodes, from the viewpoint of improving the adhesive strength with the green sheet, it may contain a butyral resin or may be used alone. When the binder resin contains an acetal resin, the viscosity can be easily adjusted to be suitable for gravure printing, and the adhesive strength with the green sheet can be further improved. The binder resin may contain, for example, 20% by mass or more, or 30% by mass or more of acetal resin based on the entire binder resin. Further, the binder resin may contain 50% by mass or less of acetal resin based on the entire binder resin.
 バインダー樹脂の重量平均分子量は、要求される導電性ペーストの粘度に応じて、10000以上の200000以下の範囲内で適宜調整することができる。 The weight average molecular weight of the binder resin can be adjusted as appropriate within the range of 10,000 or more and 200,000 or less, depending on the required viscosity of the conductive paste.
 バインダー樹脂の含有量は、導電性ペースト全体に対して、好ましくは0.5質量%以上10質量%以下であり、より好ましくは1質量%以上7質量%以下である。バインダー樹脂の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 7% by mass or less, based on the entire conductive paste. When the content of the binder resin is within the above range, the conductivity and dispersibility are excellent.
 バインダー樹脂の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上20質量部以下であり、より好ましくは1質量部以上14質量部以下である。バインダー樹脂の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the binder resin is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 1 part by mass or more and 14 parts by mass or less, based on 100 parts by mass of the conductive powder. When the content of the binder resin is within the above range, the conductivity and dispersibility are excellent.
(有機溶剤)
 有機溶剤としては、特に限定されず、上記バインダー樹脂および分散剤を溶解することができる公知の有機溶剤を用いることができる。有機溶剤としては、例えば、テルペン系溶剤、グリコールエーテル系溶剤、アセテート系溶剤、酢酸エステル系溶剤、ケトン系溶剤、炭化水素溶剤等が挙げられる。なお、有機溶剤は、1種類を用いてもよく、2種類以上を用いてもよい。
(Organic solvent)
The organic solvent is not particularly limited, and any known organic solvent that can dissolve the binder resin and dispersant can be used. Examples of the organic solvent include terpene solvents, glycol ether solvents, acetate solvents, acetate ester solvents, ketone solvents, and hydrocarbon solvents. In addition, one type of organic solvent may be used, or two or more types may be used.
 テルペン系溶剤としては、ターピネオール、ジヒドロターピネオール(DHT)、ジヒドロターピニルアセテート等が挙げられ、中でも、ジヒドロターピネオール(DHT)が好ましい。 Examples of the terpene solvent include terpineol, dihydroterpineol (DHT), dihydroterpineyl acetate, and the like, with dihydroterpineol (DHT) being preferred.
 グリコールエーテル系溶剤としては、例えば、ジエチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールモノヘキシルエーテル等の(ジ)エチレングリコールエーテル類、及び、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル(PNB)等のプロピレングリコールモノアルキルエーテル類等が挙げられる。中でも、プロピレングリコールモノアルキルエーテル類が好ましく、プロピレングリコールモノブチルエーテル(PNB)がより好ましい。有機溶剤がグリコールエーテル系溶剤を含む場合、上述したバインダー樹脂との相溶性に優れ、かつ、乾燥性に優れる。 Examples of glycol ether solvents include (di)ethylene glycol ethers such as diethylene glycol mono-2-ethylhexyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monohexyl ether, and ethylene glycol monohexyl ether, and propylene glycol. Examples include propylene glycol monoalkyl ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether (PNB). Among them, propylene glycol monoalkyl ethers are preferred, and propylene glycol monobutyl ether (PNB) is more preferred. When the organic solvent contains a glycol ether solvent, it has excellent compatibility with the above-mentioned binder resin and has excellent drying properties.
 アセテート系溶剤としては、例えば、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート)、ジプロピレングリコールメチルエーテルアセテート、3-メトキシー3-メチルブチルアセテート、1-メトキシプロピル-2-アセテート等のグリコールエーテルアセテート類、及び、イソボルニルアセテート、イソボルニルプロピネート、イソボルニルブチレート、イソボルニルイソブチレート等が挙げられる。 Examples of acetate solvents include ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate (butyl carbitol acetate), dipropylene glycol methyl ether acetate, 3-methoxy 3-methylbutyl acetate, 1-methoxypropyl-2-acetate, etc. Examples include glycol ether acetates, isobornyl acetate, isobornyl propinate, isobornyl butyrate, isobornyl isobutyrate, and the like.
 酢酸エステル系溶剤としては、例えば、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル等が挙げられる。ケトン系溶剤としては、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等が挙げられる。 Examples of acetate-based solvents include ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, and the like. Examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and the like.
 炭化水素溶剤としては、トリデカン、ノナン、シクロヘキサン、ナフテン系溶剤、ミネラルスピリット等の脂肪族系炭化水素溶剤、及びトルエン、キシレン等の芳香族系炭化水素溶剤等が挙げられ、中でも、脂肪族系炭化水素溶剤が好ましく、ミネラルスピリットがより好ましい。また、ミネラルスピリットは、鎖式飽和炭化水素を主成分として含んでもよく、鎖式飽和炭化水素をミネラルスピリット全体に対して、20質量%以上含んでもよい。 Examples of hydrocarbon solvents include aliphatic hydrocarbon solvents such as tridecane, nonane, cyclohexane, naphthenic solvents, and mineral spirits, and aromatic hydrocarbon solvents such as toluene and xylene. Hydrogen solvents are preferred, mineral spirits are more preferred. Further, the mineral spirit may contain chain saturated hydrocarbons as a main component, and may contain 20% by mass or more of chain saturated hydrocarbons based on the entire mineral spirit.
 また、有機溶剤は、ジヒドロターピネオール(DHT)、ジヒドロターピニルアセテート(DHTA)、ターピネオール(TPO)、プロピレングリコールモノブチルエーテル(PNB)、ジエチレングリコールモノブチルエーテルアセテート(BCA)、およびジイソブチルケトン(DIBK)からなる群より選ばれる1種類以上を含むことが好ましい。これらの溶剤を用いることで、適切な粘度と乾燥速度を両立することができる。 In addition, the organic solvents include dihydroterpineol (DHT), dihydroterpineyl acetate (DHTA), terpineol (TPO), propylene glycol monobutyl ether (PNB), diethylene glycol monobutyl ether acetate (BCA), and diisobutyl ketone (DIBK). It is preferable to include one or more types selected from the group. By using these solvents, it is possible to achieve both appropriate viscosity and drying speed.
 例えば、有機溶剤は、ジヒドロターピネオール(DHT)、ジヒドロターピニルアセテート(DHTA)、ターピネオール(TPO)からなる群より選ばれる1種類以上のテルペン系溶剤(a)と、プロピレングリコールモノブチルエーテル(PNB)、ジエチレングリコールモノブチルエーテルアセテート(BCA)からなる群より選ばれる1種類以上の溶剤(b)と、炭化水素溶剤とを含んでもよい。 For example, the organic solvent may include one or more terpene solvents (a) selected from the group consisting of dihydroterpineol (DHT), dihydroterpineyl acetate (DHTA), and terpineol (TPO), and propylene glycol monobutyl ether (PNB). , diethylene glycol monobutyl ether acetate (BCA), and a hydrocarbon solvent.
 有機溶剤の含有量の合計は、導電性ペースト全量に対して、20質量%以上50質量%以下が好ましく、25質量%以上45質量%以下がより好ましい。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 The total content of organic solvents is preferably 20% by mass or more and 50% by mass or less, more preferably 25% by mass or more and 45% by mass or less, based on the total amount of the conductive paste. When the content of the organic solvent is within the above range, the conductivity and dispersibility are excellent.
 有機溶剤の含有量の合計は、導電性粉末100質量部に対して、好ましくは50質量部以上130質量部以下であり、より好ましくは60質量部以上90質量部以下である。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 The total content of organic solvents is preferably 50 parts by mass or more and 130 parts by mass or less, more preferably 60 parts by mass or more and 90 parts by mass or less, based on 100 parts by mass of the conductive powder. When the content of the organic solvent is within the above range, the conductivity and dispersibility are excellent.
 導電性ペーストがテルペン系溶剤(a)を含む場合、テルペン系溶剤(a)の含有量の合計は、導電性ペースト全量に対して、5質量%以上40質量%以下であってもよく、10質量%以上30質量%以下であってもよく、12質量%以上25質量%以下であってもよい。 When the conductive paste contains a terpene solvent (a), the total content of the terpene solvent (a) may be 5% by mass or more and 40% by mass or less, and 10% by mass or less, based on the total amount of the conductive paste. It may be at least 12% by mass and at most 25% by mass, and may be at least 12% by mass and at most 25% by mass.
 導電性ペーストがプロピレングリコールモノブチルエーテル(PNB)等の溶剤(b)を含む場合、溶剤(b)の含有量の合計は、導電性ペースト全量に対して、3質量%20質量%以下であってもよく、5質量%以上20質量%以下であってもよい。 When the conductive paste contains a solvent (b) such as propylene glycol monobutyl ether (PNB), the total content of the solvent (b) is 3% by mass and 20% by mass or less based on the total amount of the conductive paste. It may be 5% by mass or more and 20% by mass or less.
 導電性ペーストが炭化水素系溶剤を含む場合、炭化水素系溶剤の含有量の合計は、導電性ペースト全量に対して、1質量%以上20質量%以下であってもよく、3質量%以上15質量%以下であってもよく、5質量%以上10質量%以下であってもよい。 When the conductive paste contains a hydrocarbon solvent, the total content of the hydrocarbon solvent may be 1% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, based on the total amount of the conductive paste. It may be less than or equal to 5% by mass and less than or equal to 10% by mass.
 また、導電性ペーストが、ジイソブチルケトンを含む場合、ジイソブチルケトンの含有量の合計は、導電性ペースト全量に対して、1質量%以上20質量%以下が好ましく、3質量%以上15質量%以下であってもよく、3質量%以上10質量%以下であってもよい。 Further, when the conductive paste contains diisobutyl ketone, the total content of diisobutyl ketone is preferably 1% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, based on the total amount of the conductive paste. It may be 3% by mass or more and 10% by mass or less.
(分散剤)
 本発明のカルボキシ基含有高分子分散剤は、導電性ペースト全体100質量%に対して0.01質量%以上2.0質量%未満含まれ、好ましくは0.01質量%以上1.0質量%以下、より好ましくは0.03質量%以上0.5質量%以下含まれる。カルボキシ基含有高分子分散剤を上記範囲で含む場合、導電性ペーストの低粘度状態を長期間安定的に有することができ、かつ、導電性粉末とセラミック粉末との分離を抑制することができる。
(dispersant)
The carboxyl group-containing polymer dispersant of the present invention is contained in an amount of 0.01% by mass or more and less than 2.0% by mass, preferably 0.01% by mass or more and 1.0% by mass based on 100% by mass of the entire conductive paste. The content is more preferably 0.03% by mass or more and 0.5% by mass or less. When the carboxy group-containing polymer dispersant is contained in the above range, the conductive paste can stably maintain a low viscosity state for a long period of time, and separation of the conductive powder and the ceramic powder can be suppressed.
 また、分散剤は、上記一般式(1)で示されるカルボキシ基含有高分子分散剤のみから構成されてもよいが、後述するようにカルボキシ基含有高分子分散剤以外の分散剤を含んでもよい。カルボキシ基含有高分子分散剤以外の分散剤を含む場合、カルボキシ基含有高分子分散剤の含有量は、例えば、分散剤全量に対して30質量%以上であってもよく、好ましくは60質量%以上であり、より好ましくは80質量%以上である。カルボキシ基含有高分子分散剤の分散剤全量に対する含有量が多いほど、導電性粉末とセラミック粉末との分離抑制の効果が向上する。 Further, the dispersant may be composed only of the carboxyl group-containing polymer dispersant represented by the above general formula (1), but may also contain a dispersant other than the carboxyl group-containing polymer dispersant as described below. . When a dispersant other than a carboxy group-containing polymer dispersant is included, the content of the carboxy group-containing polymer dispersant may be, for example, 30% by mass or more based on the total amount of the dispersant, preferably 60% by mass. or more, and more preferably 80% by mass or more. The greater the content of the carboxyl group-containing polymer dispersant based on the total amount of the dispersant, the better the effect of suppressing separation between the conductive powder and the ceramic powder.
 また、本実施形態の導電性ペーストは、カルボキシ基含有高分子分散剤以外の酸系分散剤(酸性の吸着基を有する分散剤)をさらに含んでもよい。酸系分散剤(上記カルボン酸系高分子分散剤を除く)としては、例えば、質量平均分子量が2000未満の酸系分散剤が挙げられる。なお、酸系分散剤は、1種または2種以上組み合わせて用いてもよい。 Furthermore, the conductive paste of the present embodiment may further contain an acid-based dispersant (a dispersant having an acidic adsorption group) other than the carboxy group-containing polymer dispersant. Examples of the acid-based dispersant (excluding the above-mentioned carboxylic acid-based polymer dispersant) include acid-based dispersants having a mass average molecular weight of less than 2,000. Note that the acidic dispersants may be used alone or in combination of two or more.
 質量平均分子量が2000未満の酸系分散剤としては、例えば、高級脂肪酸、ジカルボン酸、ポリカルボン酸系分散剤、アルキルモノアミン塩型等のカルボン酸系分散剤が挙げられる。導電性ペーストは、カルボキシ基含有高分子分散剤とともに質量平均分子量が2000未満の酸系分散剤を含む場合、粘度が低下したりチタン酸バリウム等のセラミック粉末の分散性がより向上したりすることがある。なお、質量平均分子量が2000未満の酸系分散剤の質量平均分子量は、1000以下であってもよい。 Examples of acid-based dispersants having a mass average molecular weight of less than 2000 include higher fatty acids, dicarboxylic acids, polycarboxylic acid-based dispersants, and carboxylic acid-based dispersants such as alkyl monoamine salt types. When the conductive paste contains an acid-based dispersant with a mass average molecular weight of less than 2000 together with a carboxyl group-containing polymer dispersant, the viscosity may decrease or the dispersibility of ceramic powder such as barium titanate may be further improved. There is. In addition, the mass average molecular weight of the acidic dispersant having a mass average molecular weight of less than 2,000 may be 1,000 or less.
 高級脂肪酸としては、不飽和カルボン酸でも飽和カルボン酸でもよく、特に限定されるものではないが、ステアリン酸、オレイン酸、ミリスチン酸、パルミチン酸、リノール酸、ラウリン酸、リノレン酸等の炭素数11以上のものが挙げられる。中でも、高級脂肪酸としては、オレイン酸、またはステアリン酸が好ましい。 Higher fatty acids may be unsaturated carboxylic acids or saturated carboxylic acids, and are not particularly limited to those having 11 carbon atoms such as stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, and linolenic acid. These include the above. Among these, oleic acid or stearic acid is preferred as the higher fatty acid.
 アルキルモノアミン塩型としては、例えば、グリシンとオレイン酸の化合物であるオレオイルザルコシンや、オレイン酸の代わりにステアリン酸あるいはラウリン酸等の高級脂肪酸を用いたアミド化合物であるステアリン酸アミド、ラウリロイルザルコシンが好ましい。 Examples of alkyl monoamine salt types include oleoyl sarcosine, which is a compound of glycine and oleic acid, stearamide, lauriloyl, which is an amide compound using a higher fatty acid such as stearic acid or lauric acid instead of oleic acid. Sarcosine is preferred.
 なお、平均分子量が2000未満の酸系分散剤の含有量が多すぎる場合、カルボキシ基含有高分子分散剤の金属粉末材料(フィラー)への吸着を阻害する等の悪影響を及ぼす懸念があるため、併用する際はその含有量を適宜調整することが好ましい。 In addition, if the content of the acid-based dispersant with an average molecular weight of less than 2000 is too large, there is a concern that it will have an adverse effect such as inhibiting the adsorption of the carboxy group-containing polymer dispersant to the metal powder material (filler). When used together, it is preferable to adjust the content appropriately.
 例えば、質量平均分子量が2000未満である酸系分散剤の含有量は、分散剤全量100質量%に対して0質量%より多く70質量%以下であってもよく、好ましくは40質量%以下であり、より好ましくは20質量%以下である。 For example, the content of the acidic dispersant having a mass average molecular weight of less than 2000 may be more than 0% by mass and 70% by mass or less, preferably 40% by mass or less, based on 100% by mass of the total amount of the dispersant. The content is more preferably 20% by mass or less.
 また、分散剤は、酸系分散剤以外の分散剤を含んでもよい。酸系分散剤以外の分散剤としては、塩基系分散剤、非イオン系分散剤、両性分散剤等が挙げられる。これらの分散剤は、1種または2種以上組み合わせて用いてもよい。 Furthermore, the dispersant may include a dispersant other than the acid-based dispersant. Examples of dispersants other than acidic dispersants include basic dispersants, nonionic dispersants, amphoteric dispersants, and the like. These dispersants may be used alone or in combination of two or more.
 塩基系分散剤としては、例えば、ラウリルアミン、ロジンアミン、セチルアミン、ミリスチルアミン、ステアリルアミン、オレイルアミン等の脂肪族アミン等が挙げられる。 Examples of the basic dispersant include aliphatic amines such as laurylamine, rosinamine, cetylamine, myristylamine, stearylamine, and oleylamine.
 また、分散剤(全体)の含有量としては、導電性ペースト全体に対して2.0質量%未満であることが好ましい。上記カルボン酸系高分子分散剤、又は、分散剤全体の含有量が多すぎる場合、導電性ペーストの印刷工程や乾燥工程で、乾燥が不十分となり、内部電極層が柔らかい状態となるため、その後の積層工程で積層ズレを生じることがある。また、焼成時に残留した分散剤が気化し、気化したガス成分によって内部応力が発生したり、積層体の構造破壊が生じたりすることがある。 Furthermore, the content of the dispersant (total) is preferably less than 2.0% by mass based on the entire conductive paste. If the content of the above-mentioned carboxylic acid-based polymer dispersant or the entire dispersant is too high, the conductive paste will not be sufficiently dried during the printing process or drying process, leaving the internal electrode layer in a soft state. Lamination misalignment may occur during the lamination process. Further, the dispersant remaining during firing may vaporize, and the vaporized gas components may generate internal stress or cause structural destruction of the laminate.
(添加剤)
 本実施形態の導電性ペーストは、必要に応じて、上記の分散剤以外のその他の添加剤を含んでもよい。その他の添加剤としては、例えば、消泡剤、可塑剤、界面活性剤、増粘剤等の従来公知の添加物を用いることができる。
(Additive)
The conductive paste of this embodiment may contain other additives other than the above-mentioned dispersant, if necessary. As other additives, conventionally known additives such as antifoaming agents, plasticizers, surfactants, and thickeners can be used.
 なお、例えば、特許文献3では、導電性粉末と誘電体粉末の分離を抑制する分離抑制剤として、ポリカルボン酸ポリマーおよびポリカルボン酸の塩が記載されているが、本明細書では、このような分離抑制剤も広義には無機粉末の分散性を向上させるものとして酸系分散剤に含める。 For example, in Patent Document 3, polycarboxylic acid polymers and polycarboxylic acid salts are described as separation inhibitors that suppress separation of conductive powder and dielectric powder, but in this specification, such In a broad sense, separation inhibitors are also included in acid-based dispersants as agents that improve the dispersibility of inorganic powders.
(導電性ペーストの製造方法)
 本実施形態に係る導電性ペーストの製造方法は、特に限定されず、従来公知の方法を用いることができる。導電性ペーストは、例えば、上記の各成分を、3本ロールミル、ボールミル、ミキサー等で攪拌・混練することにより製造することができる。なお、ジカルボン酸(分離抑制剤)については、他の材料と同様に、ミキサー等で撹拌・混錬する際に秤量して、添加することが好ましいが、撹拌・混錬(分散)終了後の材料に、分離抑制剤として添加しても同様の効果を得ることができる。
(Method for manufacturing conductive paste)
The method for manufacturing the conductive paste according to this embodiment is not particularly limited, and conventionally known methods can be used. The conductive paste can be produced, for example, by stirring and kneading the above-mentioned components using a three-roll mill, a ball mill, a mixer, or the like. Regarding dicarboxylic acid (separation inhibitor), it is preferable to weigh and add it when stirring and kneading with a mixer, etc., as with other materials, but after stirring and kneading (dispersing) A similar effect can be obtained by adding it to the material as a separation inhibitor.
 本発明の導電性ペーストは、温度25℃におけるずり速度100sec-1の粘度が、好ましくは2.0Pa・S以下である。ずり速度100sec-1の粘度が上記範囲である場合、高速で効率的に塗布するのに適している。上記範囲を超えると導電性ペーストの粘度が高すぎて、塗布後の乾燥膜表面の平滑性に劣る場合がある。ずり速度100sec-1の粘度の下限は、特に限定されないが、例えば、0.2Pa・S以上である。 The conductive paste of the present invention preferably has a viscosity of 2.0 Pa·S or less at a shear rate of 100 sec -1 at a temperature of 25°C. When the viscosity at a shear rate of 100 sec -1 is within the above range, it is suitable for efficient coating at high speed. If it exceeds the above range, the viscosity of the conductive paste will be too high and the smoothness of the dried film surface after application may be poor. The lower limit of the viscosity at a shear rate of 100 sec -1 is not particularly limited, but is, for example, 0.2 Pa·S or more.
 また、導電性ペーストは、当該導電性ペーストの作製直後から1週間経過後に観察される白浮きの層の厚みが、導電性ペースト全体の厚みに対して、8%未満であることが好ましく、5%以下であってもよく、2%以下であってもよい。白浮きの層の厚みが少ないほど、導電性粉末とセラミック粉末の分離抑制効果に優れる。なお、白浮きの層の厚みは、後述する実施例に記載の方法で測定することができる。 Further, in the conductive paste, it is preferable that the thickness of the white floating layer observed one week after the conductive paste is less than 8% of the total thickness of the conductive paste, and % or less, or 2% or less. The smaller the thickness of the white floating layer, the better the effect of suppressing separation between the conductive powder and the ceramic powder. In addition, the thickness of the white floating layer can be measured by the method described in Examples described later.
 また、本実施形態の導電性ペーストは、積層セラミックコンデンサ等の電子部品に好適に用いることができる。積層セラミックコンデンサは、誘電体グリーンシートを用いて形成される誘電体層及び内部電極層を有し、本実施形態の導電性ペーストは、内部電極層の形成に好適用いることができる。 Furthermore, the conductive paste of this embodiment can be suitably used for electronic components such as multilayer ceramic capacitors. A multilayer ceramic capacitor has a dielectric layer and an internal electrode layer formed using a dielectric green sheet, and the conductive paste of this embodiment can be suitably applied to forming the internal electrode layer.
[電子部品]
 以下、本実施形態に係る電子部品等の一例について、図面を参照しながら説明する。図面においては、適宜、模式的に表現することや、縮尺を変更して表現することがある。また、部材の位置や方向等を、適宜、図1A及び図1Bに示すXYZ直交座標系を参照して説明する。このXYZ直交座標系において、X方向およびY方向は水平方向であり、Z方向は鉛直方向(上下方向)である。
[Electronic parts]
Hereinafter, an example of an electronic component etc. according to the present embodiment will be described with reference to the drawings. In the drawings, the drawings may be expressed schematically or with a changed scale, as appropriate. Further, the positions and directions of the members will be explained with reference to the XYZ orthogonal coordinate system shown in FIGS. 1A and 1B as appropriate. In this XYZ orthogonal coordinate system, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction (up and down direction).
 図1A及び図1Bは、電子部品の一例である、積層セラミックコンデンサ1を示す斜視図及び側面断面図である。積層セラミックコンデンサ1は、誘電体層12及び内部電極層11を交互に積層した積層体10と外部電極20とを備える。 1A and 1B are a perspective view and a side sectional view showing a multilayer ceramic capacitor 1, which is an example of an electronic component. The multilayer ceramic capacitor 1 includes a laminate 10 in which dielectric layers 12 and internal electrode layers 11 are alternately stacked, and an external electrode 20.
 以下、上記導電性ペーストを使用した積層セラミックコンデンサ1の製造方法の一例について説明する。まず、セラミックグリーンシート(誘電体グリーンシート)上に、導電性ペーストをグラビア印刷し、乾燥して、乾燥膜を形成する。この乾燥膜を上面に有する複数のセラミックグリーンシートを、圧着により積層させて積層体を得た後、積層体を焼成して一体化することにより、内部電極層11と誘電体層12とが交互に積層したセラミック積層体10を作製する。その後、セラミック積層体10の両端部に一対の外部電極20を形成することにより積層セラミックコンデンサ1が製造される。以下に、より詳細に説明する。 Hereinafter, an example of a method for manufacturing a multilayer ceramic capacitor 1 using the above conductive paste will be described. First, a conductive paste is gravure printed on a ceramic green sheet (dielectric green sheet) and dried to form a dry film. A plurality of ceramic green sheets having this dry film on the upper surface are laminated by pressure bonding to obtain a laminate, and then the laminate is baked and integrated, so that the internal electrode layer 11 and the dielectric layer 12 are alternately formed. A ceramic laminate 10 is produced in which the ceramic laminate 10 is laminated. Thereafter, a pair of external electrodes 20 are formed at both ends of the ceramic laminate 10, thereby manufacturing the multilayer ceramic capacitor 1. This will be explained in more detail below.
 まず、未焼成のセラミックシートであるセラミックグリーンシートを用意する。このセラミックグリーンシートとしては、例えば、チタン酸バリウム等の所定のセラミックの原料粉末に、ポリビニルブチラール等の有機バインダーとターピネオール等の溶剤とを加えて得た誘電体層用ペーストを、PETフィルム等の支持フィルム上にシート状に塗布し、乾燥させて溶剤を除去したもの等が挙げられる。なお、セラミックグリーンシートの厚みは、特に限定されないが、積層セラミックコンデンサの小型化の要請の観点から、0.05μm以上3μm以下が好ましい。 First, a ceramic green sheet, which is an unfired ceramic sheet, is prepared. For example, this ceramic green sheet is made of a dielectric layer paste obtained by adding an organic binder such as polyvinyl butyral and a solvent such as terpineol to a specified ceramic raw material powder such as barium titanate. Examples include those obtained by coating a sheet on a support film and drying it to remove the solvent. Note that the thickness of the ceramic green sheet is not particularly limited, but from the viewpoint of the demand for miniaturization of multilayer ceramic capacitors, it is preferably 0.05 μm or more and 3 μm or less.
 次いで、このセラミックグリーンシートの片面に、グラビア印刷法を用いて、上述の導電性ペーストを印刷により塗布し、乾燥して、乾燥膜を形成したものを複数枚、用意する。なお、乾燥膜の厚みは、内部電極層11の薄層化の要請の観点から、乾燥後1μm以下とすることが好ましい。 Next, a plurality of ceramic green sheets are prepared in which the above-mentioned conductive paste is printed on one side of the ceramic green sheet using a gravure printing method and dried to form a dry film. Note that the thickness of the dried film is preferably 1 μm or less after drying, from the viewpoint of reducing the thickness of the internal electrode layer 11.
 次いで、支持フィルムから、セラミックグリーンシートを剥離するとともに、セラミックグリーンシートとその片面に形成された乾燥膜とが交互に配置されるように積層した後、加熱と加圧を同時に行う処理により積層体を得る。なお、積層体の両面に、導電性ペーストを塗布していない保護用のセラミックグリーンシートを更に配置する構成としても良い。 Next, the ceramic green sheets are peeled off from the support film, and the ceramic green sheets and the dry film formed on one side of the sheets are laminated so that they are alternately arranged, and then the laminate is formed by heating and pressurizing at the same time. get. Note that a configuration may be adopted in which protective ceramic green sheets to which no conductive paste is applied are further disposed on both sides of the laminate.
 次いで、積層体を所定サイズに切断してグリーンチップを形成した後、当該グリーンチップに対して脱バインダー処理を施し、還元雰囲気下において焼成することにより、積層セラミック焼成体(セラミック積層体10)を製造する。なお、脱バインダー処理における雰囲気は、大気またはNガス雰囲気にすることが好ましい。脱バインダー処理を行う際の温度は、例えば200℃以上400℃以下である。また、脱バインダー処理を行う際の、上記温度の保持時間を0.5時間以上24時間以下とすることが好ましい。また、焼成は、内部電極層に用いる金属の酸化を抑制するために還元雰囲気で行われ、また、積層体の焼成を行う際の温度は、例えば、1000℃以上1350℃以下であり、焼成を行う際の、温度の保持時間は、例えば、0.5時間以上8時間以下である。 Next, after cutting the laminate into a predetermined size to form a green chip, the green chip is subjected to a binder removal treatment and fired in a reducing atmosphere to produce a fired laminate ceramic body (ceramic laminate 10). Manufacture. Note that the atmosphere in the binder removal treatment is preferably air or N 2 gas atmosphere. The temperature during the binder removal treatment is, for example, 200°C or more and 400°C or less. Further, it is preferable that the holding time at the above temperature during the binder removal treatment is 0.5 hours or more and 24 hours or less. Further, the firing is performed in a reducing atmosphere to suppress oxidation of the metal used for the internal electrode layer, and the temperature when firing the laminate is, for example, 1000°C or more and 1350°C or less, and the firing is The temperature is maintained for a period of, for example, 0.5 hours or more and 8 hours or less.
 グリーンチップの焼成を行うことにより、グリーンシート中の有機バインダーが完全に除去されるとともに、セラミックの原料粉末が焼成されて、セラミック製の誘電体層12が形成される。また内部電極層11中の有機ビヒクルが除去されるとともに、ニッケル粉末またはニッケルを主成分とする合金粉末が焼結もしくは溶融、一体化されて、内部電極が形成され、誘電体層12と内部電極層11とが複数枚、交互に積層された積層セラミック焼成体が形成される。なお、酸素を誘電体層の内部に取り込んで信頼性を高めるとともに、内部電極の再酸化を抑制するとの観点から、焼成後の積層セラミック焼成体に対して、アニール処理を施してもよい。 By firing the green chip, the organic binder in the green sheet is completely removed, and the ceramic raw material powder is fired to form the ceramic dielectric layer 12. Further, the organic vehicle in the internal electrode layer 11 is removed, and the nickel powder or the alloy powder mainly composed of nickel is sintered or melted and integrated to form the internal electrode, and the dielectric layer 12 and the internal electrode A laminated ceramic fired body is formed in which a plurality of layers 11 are alternately laminated. Note that from the viewpoint of increasing reliability by incorporating oxygen into the dielectric layer and suppressing re-oxidation of the internal electrodes, the fired multilayer ceramic fired body may be subjected to an annealing treatment.
 そして、作製した積層セラミック焼成体に対して、一対の外部電極20を設けることにより、積層セラミックコンデンサ1が製造される。例えば、外部電極20は、外部電極層21及びメッキ層22を備える。外部電極層21は、内部電極層11と電気的に接続する。なお、外部電極20の材料としては、例えば、銅やニッケル、またはこれらの合金が好適に使用できる。なお、電子部品は、積層セラミックコンデンサに限定されず、バリスタ等の積層セラミックコンデンサ以外の電子部品を用いることもできる。 Then, the multilayer ceramic capacitor 1 is manufactured by providing a pair of external electrodes 20 on the produced multilayer ceramic fired body. For example, the external electrode 20 includes an external electrode layer 21 and a plating layer 22. External electrode layer 21 is electrically connected to internal electrode layer 11 . Note that, as the material for the external electrode 20, for example, copper, nickel, or an alloy thereof can be suitably used. Note that the electronic component is not limited to the multilayer ceramic capacitor, and electronic components other than the multilayer ceramic capacitor, such as a varistor, can also be used.
 以下、本発明を実施例と比較例に基づき詳細に説明するが、本発明は実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be explained in detail based on Examples and Comparative Examples, but the present invention is not limited by the Examples in any way.
[評価方法]
(導電性ペーストの粘度)
 導電性ペーストの粘度を、レオメーター(株式会社アントンパール・ジャパン製:レオメーターMCR302)を用いて測定した。粘度は、コーン角度1°、直径25mmのコーンプレートを用いて、ずり速度(せん断速度)100sec-1の条件で測定した場合の値を用いた。
[Evaluation method]
(Viscosity of conductive paste)
The viscosity of the conductive paste was measured using a rheometer (Rheometer MCR302, manufactured by Anton Paar Japan Co., Ltd.). The viscosity was measured using a cone plate with a cone angle of 1° and a diameter of 25 mm at a shear rate of 100 sec -1 .
 また、導電性ペーストの粘度は、25℃の温度条件下において、製造後1日時点及び1か月時点で測定され、1日時点の測定値を初期粘度とし、この初期粘度に対する1か月時点の測定値の比(1か月時点の測定値/1日時点の測定値×100)を経時増粘比として評価した。表1において、初期粘度の判定は、0.2Pa・s以上2.0Pa・s以下を「〇」、2.0Pa・sより高い値を「×」と評価した。経時増粘比は、130未満を「〇」(粘度安定性が十分)と評価し、130以上を「×」(粘度安定性が不十分)とした。 In addition, the viscosity of the conductive paste was measured at a temperature of 25°C at 1 day and 1 month after production, and the measured value at 1 day was taken as the initial viscosity, and the value at 1 month relative to this initial viscosity was measured. The ratio of the measured values (measured value at 1 month/measured value at 1 day x 100) was evaluated as the viscosity increase ratio over time. In Table 1, the initial viscosity was evaluated as "○" if it was 0.2 Pa·s or more and not more than 2.0 Pa·s, and "x" if it was higher than 2.0 Pa·s. Regarding the time-dependent thickening ratio, a ratio of less than 130 was evaluated as "○" (sufficient viscosity stability), and a ratio of 130 or more was evaluated as "x" (insufficient viscosity stability).
(白浮き)
 作製直後の導電性ペースト20gをガラス瓶(直径φ30×高さ65mm)中に室温にて静置し、1週間経過した後、導電性ペーストの外観を目視により観察し、白浮きが観察される割合を測定した。白浮きの割合(%)は、(白浮きの層の厚み/ペースト全体の量の厚み)*100で算出される。表1において、白浮きの割合(%)の判定は、5%未満を「〇」(分離抑制効果が良好)、5%以上8%未満を「△」(分離抑制効果がある)、8%以上を「×」(分離抑制効果が不十分)と評価した。
(white float)
Immediately after preparation, 20 g of the conductive paste was left standing at room temperature in a glass bottle (diameter φ30 x height 65 mm), and after one week, the appearance of the conductive paste was visually observed, and the percentage of white spots observed was determined. was measured. The white float ratio (%) is calculated as (thickness of the white float layer/thickness of the entire paste amount)*100. In Table 1, the percentage of white floatation (%) is judged as "〇" (good separation suppression effect) for less than 5%, "△" (good separation suppression effect) for 5% or more and less than 8%, and 8%. The above was evaluated as "x" (separation suppressing effect is insufficient).
(表面粗さ)
 ガラス基板上に、作製した導電性ペーストをアプリケータでウェット膜厚が10μmの厚さとなるように塗布した後、大気雰囲気中で300℃、10分間の乾燥処理を行い、乾燥膜を作製した。作製した乾燥膜の表面粗さを、レーザー顕微鏡(キーエンス社製VK-X130)で測定範囲200×250μmの範囲の乾燥膜の平均粗さを測定し、ランダムに5箇
所の測定を繰り返した。得られた値の平均値(算術平均高さSa)を導電性ペースト乾燥膜の平均粗さとした。表1において、表面粗さの判定は、0.065μm未満を「〇」(乾燥膜の表面が平滑である)、0.065μm以上を「×」(乾燥膜の表面が平滑ではない)と評価した。
(Surface roughness)
The prepared conductive paste was applied onto a glass substrate using an applicator so that the wet film thickness was 10 μm, and then a drying process was performed at 300° C. for 10 minutes in the air to produce a dry film. The average roughness of the dried film was measured using a laser microscope (VK-X130, manufactured by Keyence Corporation) within a measurement range of 200 x 250 μm, and the measurements were repeated at five random locations. The average value (arithmetic mean height Sa) of the obtained values was taken as the average roughness of the conductive paste dry film. In Table 1, the surface roughness is evaluated as "〇" (the surface of the dry film is smooth) when it is less than 0.065 μm, and "x" (the surface of the dry film is not smooth) when it is 0.065 μm or more. did.
 なお、表1の総合判定の項目では、行った試験の全ての判定で〇判定であった場合を「〇」(合格)、行った試験のうち1つでも×判定があった場合を「×」(不合格)と判定した。 In addition, in the overall judgment item in Table 1, if all the judgments of the tests conducted were ○, it is marked as "〇" (pass), and if even one of the tests conducted was judged as ×, it is marked as "×". ” (failed).
[使用材料]
(導電性粉末)
 導電性粉末としては、Ni粉末(SEM平均粒子径0.2μm)を使用した。
[Materials used]
(conductive powder)
As the conductive powder, Ni powder (SEM average particle size: 0.2 μm) was used.
(セラミック粉末)
 セラミック粉末としては、チタン酸バリウム(BaTiO;SEM平均粒子径0.10μm)を使用した。
(ceramic powder)
Barium titanate (BaTiO 3 ; SEM average particle size: 0.10 μm) was used as the ceramic powder.
(バインダー樹脂)
 バインダー樹脂としては、ポリビニルブチラール、エチルセルロースを使用した。
(binder resin)
As the binder resin, polyvinyl butyral and ethyl cellulose were used.
(分散剤)
 直鎖または分岐のアルキル基を有するアクリル酸エステル(一般式(1))とアクリル酸の共重合体で、質量平均分子量が2000以上のカルボキシ基含有高分子分散剤と、比較用にアクリル酸とアクリル酸エステルの重合体を含まない酸系低分子分散剤及び実施例よりも質量平均分子量の小さい又は大きいカルボキシ基含有高分子分散剤を用いた。共重合する際のモル比におけるアクリル酸の比率(X)やアルキル基の炭素数、アルキル基の構造、アクリル酸エステルの名称、質量平均分子量、カルボキシ基含有高分子分散剤の導電性ペーストにおける含有量を、表1に示す。
(dispersant)
A copolymer of acrylic acid ester (general formula (1)) having a linear or branched alkyl group and acrylic acid, and a carboxyl group-containing polymer dispersant with a mass average molecular weight of 2000 or more, and acrylic acid and acrylic acid for comparison. An acidic low-molecular dispersant containing no acrylic acid ester polymer and a carboxyl group-containing polymer dispersant having a mass average molecular weight smaller or larger than those in the examples were used. The ratio of acrylic acid in the molar ratio during copolymerization (X), the number of carbon atoms in the alkyl group, the structure of the alkyl group, the name of the acrylic ester, the mass average molecular weight, the content of the carboxy group-containing polymer dispersant in the conductive paste The amounts are shown in Table 1.
 カルボキシ基含有高分子分散剤の合成例として、実施例1のカルボキシ基含有高分子分散剤の合成手順を以下に示す。なお、実施例2~11、比較例1、比較例4、5についても、アクリル酸エステルのアルキル基の構造やアクリル酸の比率(X)が変わるようにアクリル酸とアクリル酸エステルのモル比を変更することや、合成温度や合成時間、連鎖移動剤の添加量を調整することで、以下の合成手順と同様にして合成した。 As an example of synthesis of a carboxyl group-containing polymer dispersant, the procedure for synthesizing the carboxyl group-containing polymer dispersant of Example 1 is shown below. In addition, in Examples 2 to 11, Comparative Example 1, Comparative Examples 4 and 5, the molar ratio of acrylic acid and acrylic ester was changed so that the structure of the alkyl group of the acrylic ester and the ratio (X) of acrylic acid were changed. Synthesis was carried out in the same manner as the following synthesis procedure by changing the synthesis temperature, synthesis time, and amount of chain transfer agent added.
 主原料モノマーであるアクリル酸(12.2mmol)及びアクリル酸エステル(2-エチルヘキシルアクリレート、48.8mmol)、重合開始剤であるAIBN(0.603mmol)、連鎖移動剤であるドデカンチオール(0.722mmol)、溶媒として50mLの1,4-ジオキサンを三ツ口フラスコに加え、氷浴下で溶媒を窒素でバブリングをした後、窒素雰囲気下で攪拌しながら65℃で12時間保持した。その後、メタノールを加えて再沈殿し、遠心分離処理によるデカンテーションを3回繰り返した。最後にベンゼンに溶解させたのち、凍結乾燥させて高分子分散剤を得た。得られた高分子分散剤について、NMR(核磁気共鳴装置)及びSEC(サイズ排除クロマトグラフィー)による分析を行い、アクリル酸の比率(X)及び質量平均分子量を解析した。なお、連鎖移動剤としては、2-メルカプトエタノールを用いることもできる。 Main raw material monomers acrylic acid (12.2 mmol) and acrylic ester (2-ethylhexyl acrylate, 48.8 mmol), polymerization initiator AIBN (0.603 mmol), chain transfer agent dodecanethiol (0.722 mmol) ), 50 mL of 1,4-dioxane as a solvent was added to a three-necked flask, and after bubbling the solvent with nitrogen in an ice bath, it was held at 65° C. for 12 hours with stirring under a nitrogen atmosphere. Thereafter, methanol was added to reprecipitate, and decantation by centrifugation was repeated three times. Finally, it was dissolved in benzene and freeze-dried to obtain a polymer dispersant. The obtained polymeric dispersant was analyzed by NMR (nuclear magnetic resonance) and SEC (size exclusion chromatography) to analyze the acrylic acid ratio (X) and mass average molecular weight. Note that 2-mercaptoethanol can also be used as the chain transfer agent.
(有機溶剤)
 有機溶剤としては、主溶媒をジヒドロターピネオール(DHT)、副溶剤をミネラルスピリットおよびプロピレングリコールモノブチルエーテル(PNB)を使用した。
(Organic solvent)
As the organic solvents, dihydroterpineol (DHT) was used as the main solvent, and mineral spirit and propylene glycol monobutyl ether (PNB) were used as the subsolvents.
[実施例1]
 導電性粉末50質量%、セラミック粉末12.5質量%、カルボキシ基含有高分子分散剤(アクリル酸比率(X)0.1、分岐鎖を有するアルキル基の炭素鎖数8、質量平均分子量約25000)0.3質量%、バインダー樹脂2.5質量%(内訳は、ポリビニルブチラール樹脂1.75質量%、エチルセルロース0.75質量%)、及び、残部としてDHTとミネラルスピリットとPNBからなる有機溶剤(質量比でDHT:ミネラルスピリット:PNB=53:20:27)を添加して、全体として100質量%となるよう配合した材料を準備した。これらの材料を混合分散処理して実施例1の導電性ペーストを作製した。
[Example 1]
Conductive powder 50% by mass, ceramic powder 12.5% by mass, carboxy group-containing polymer dispersant (acrylic acid ratio (X) 0.1, number of carbon chains of branched alkyl group 8, mass average molecular weight approximately 25,000 ) 0.3% by mass, binder resin 2.5% by mass (breakdown: polyvinyl butyral resin 1.75% by mass, ethyl cellulose 0.75% by mass), and the remainder an organic solvent consisting of DHT, mineral spirit, and PNB ( A material was prepared by adding DHT:mineral spirit:PNB=53:20:27 (mass ratio) so that the total amount was 100% by mass. The conductive paste of Example 1 was prepared by mixing and dispersing these materials.
 得られた導電性ペーストに対し、初期粘度の計測、経時粘度比の算出、白浮きの観察、及び乾燥膜の表面粗さの計測を行った。添加剤の詳細条件と共に評価結果を表1に示す。 For the obtained conductive paste, the initial viscosity was measured, the viscosity ratio over time was calculated, white cast was observed, and the surface roughness of the dried film was measured. The evaluation results are shown in Table 1 along with the detailed conditions of the additives.
[実施例2~11]
 カルボキシ基含有高分子分散剤を、実施例1のカルボキシ基含有高分子分散剤から、アクリル酸比率x、アクリル酸エステルのアルキル基中の炭素数、アルキル基の炭素鎖の分岐の有無、質量平均分子量を表1に示すカルボキシ基含有高分子分散剤に変更し、実施例10及び11では更にカルボキシ基含有高分子分散剤の添加量を変更し、導電性ペーストとして100質量%となるように上記の有機溶剤の添加量で調整した以外は、実施例1と同様に導電性ペーストを作製して、評価した。分散剤の条件及び評価結果を表1に示す。
[Examples 2 to 11]
A carboxyl group-containing polymer dispersant was prepared from the carboxyl group-containing polymer dispersant of Example 1 by adjusting the acrylic acid ratio x, the number of carbon atoms in the alkyl group of the acrylic ester, the presence or absence of branching of the carbon chain of the alkyl group, and the mass average. The molecular weight was changed to a carboxy group-containing polymer dispersant shown in Table 1, and in Examples 10 and 11, the amount of the carboxy group-containing polymer dispersant added was changed so that the amount of the above-mentioned conductive paste was 100% by mass. A conductive paste was prepared and evaluated in the same manner as in Example 1, except that the amount of organic solvent added was adjusted. Table 1 shows the conditions and evaluation results for the dispersant.
[比較例1~5]
 比較例1として、カルボキシ基含有高分子分散剤ではあるものの、アクリル酸の比率(X)を本発明の範囲外である0.05とした分散剤を用いた以外は、実施例1と同様に導電性ペーストを作製した。また、比較例2では従来一般的に広く用いられている酸系の低分子分散剤として平均分子量370のジカルボン酸、及び比較例3ではカルボン酸系高分子分散剤として質量平均分子量50000の無水マレイン酸共重合体を用いた以外は、実施例1と同様に導電性ペーストを作製した。そして、比較例4として、実施例5で用いたのと同じカルボキシ基含有高分子分散剤を、本発明の範囲に満たない含有量(0.005質量%)を添加した以外は、実施例1と同様に導電性ペーストを作製した。比較例5として、カルボキシ基含有高分子分散剤の質量平均分子量が1000であること以外は実施例5と同様に導電性ペーストを作製した。そして、比較例1~5についても実施例と同様に評価を行った。分散剤の条件及び評価結果を表1に示す。
[Comparative Examples 1 to 5]
Comparative Example 1 was carried out in the same manner as in Example 1, except that although it was a carboxyl group-containing polymer dispersant, the dispersant had an acrylic acid ratio (X) of 0.05, which was outside the scope of the present invention. A conductive paste was prepared. In addition, in Comparative Example 2, a dicarboxylic acid with an average molecular weight of 370 was used as an acid-based low-molecular dispersant that has been widely used conventionally, and in Comparative Example 3, male anhydride with a mass-average molecular weight of 50,000 was used as a carboxylic acid-based polymer dispersant. A conductive paste was produced in the same manner as in Example 1 except that an acid copolymer was used. As Comparative Example 4, Example 1 was prepared except that the same carboxyl group-containing polymer dispersant as used in Example 5 was added in a content (0.005% by mass) that was less than the range of the present invention. A conductive paste was prepared in the same manner. As Comparative Example 5, a conductive paste was prepared in the same manner as in Example 5 except that the mass average molecular weight of the carboxyl group-containing polymer dispersant was 1000. Comparative Examples 1 to 5 were also evaluated in the same manner as in the Examples. Table 1 shows the conditions and evaluation results for the dispersant.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(評価結果)
 実施例の導電性ペーストは、1か月後の経時増粘比が125以下であり、1か月後の粘度が2.0Pa・s以下であることから、経時的な粘度安定性に優れていることが分かる。また、保管により発生する1週間後の白浮きの割合が5%以下と十分小さく、分離抑制効果を有していることが分かる。
(Evaluation results)
The conductive paste of the example has an aging viscosity increase ratio of 125 or less after one month, and a viscosity of 2.0 Pa·s or less after one month, so it has excellent viscosity stability over time. I know that there is. Furthermore, the percentage of white flaking that occurs after one week due to storage is sufficiently small at 5% or less, indicating that it has a separation suppressing effect.
 また、実施例1~3の結果から、本発明の範囲内では、カルボキシ基含有高分子分散剤中のアクリル酸の割合(X)を増やす程、経時増粘、白浮きを抑え、乾燥膜表面が平滑になる傾向が見られる。また、実施例4~7の結果から、アクリル酸エステルのアルキル鎖長の炭素数が少ないほど乾燥膜表面の平滑性が高い傾向が見られる。そして、実施例5,8~9の結果から、本発明の範囲内では、カルボキシ基含有高分子分散剤の質量平均分子量は大きい程、経時増粘、白浮きを抑え、乾燥膜表面が平滑になる傾向が見られる。なお、実施例5、10~11の結果から、本発明の範囲内では、本発明のカルボキシ基含有高分子分散剤の含有量の影響は小さいが、カルボキシ基含有高分子分散剤含有量が多い方が、経時増粘、白浮きを抑え、乾燥膜表面が平滑になる傾向が見られる。 Furthermore, from the results of Examples 1 to 3, within the scope of the present invention, the more the proportion (X) of acrylic acid in the carboxyl group-containing polymer dispersant is increased, the more viscosity increase over time and white cast can be suppressed, and the dry film surface There is a tendency for the curve to become smoother. Further, from the results of Examples 4 to 7, it can be seen that the smoothness of the dried film surface tends to be higher as the number of carbon atoms in the alkyl chain length of the acrylic ester is smaller. From the results of Examples 5 and 8 to 9, within the scope of the present invention, the larger the mass average molecular weight of the carboxyl group-containing polymer dispersant, the more the viscosity increase over time and white cast can be suppressed, and the dried film surface will be smoother. A trend can be seen. In addition, from the results of Examples 5 and 10 to 11, within the scope of the present invention, the influence of the content of the carboxy group-containing polymer dispersant of the present invention is small, but the content of the carboxy group-containing polymer dispersant is large. However, there is a tendency for the dry film surface to become smoother and to suppress thickening and whitening over time.
 比較例1の導電性ペーストでは、本発明の分散剤と同等の構造を有するが、アクリル酸の割合(X)が本発明の範囲より少ないため、初期粘度を低く抑えることができず、乾燥後の乾燥膜表面の粗さが高くなり好ましくない。次に、比較例2の導電性ペーストでは、低分子量の酸系分散剤を用いることで、粘度が十分に安定し、乾燥後の乾燥膜表面粗さも良好であるが、白浮きの割合が許容量を超えてしまっている。そして、比較例3の導電性ペーストでは、カルボキシ基含有高分子分散剤を用いているが、経時の増粘を抑えることができず、白浮きの割合、乾燥後の乾燥膜表面粗さも悪く、グラビア印刷に適していない。また、比較例4の導電性ペーストでは、本発明の分散剤を用いたが、含有量が本発明の範囲より少ないため、添加剤の効果が十分発揮されず、初期粘度も高く、乾燥後の乾燥膜表面の粗さが高くなり好ましくない。比較例5の導電性ペーストでは、カルボキシ基含有高分子分散剤の質量平均分子量が小さいため分散性能に劣り、乾燥後の乾燥膜表面の粗さが高くなり、好ましくない。 The conductive paste of Comparative Example 1 has the same structure as the dispersant of the present invention, but since the proportion of acrylic acid (X) is lower than the range of the present invention, the initial viscosity cannot be kept low, and after drying The roughness of the dry film surface becomes high, which is undesirable. Next, in the conductive paste of Comparative Example 2, by using a low molecular weight acidic dispersant, the viscosity is sufficiently stabilized and the dry film surface roughness after drying is also good, but the percentage of white floating is not acceptable. It has exceeded its capacity. In the conductive paste of Comparative Example 3, a carboxyl group-containing polymer dispersant was used, but it was not possible to suppress the increase in viscosity over time, and the white cast rate and dry film surface roughness after drying were also poor. Not suitable for gravure printing. In addition, in the conductive paste of Comparative Example 4, the dispersant of the present invention was used, but since the content was less than the range of the present invention, the effect of the additive was not sufficiently exhibited, the initial viscosity was high, and the dispersant after drying was This is not preferable because the surface roughness of the dried film becomes high. In the conductive paste of Comparative Example 5, the mass average molecular weight of the carboxyl group-containing polymer dispersant is small, so the dispersion performance is poor, and the surface roughness of the dry film after drying becomes high, which is not preferable.
 なお、本発明の技術範囲は、上述の実施形態等で説明した態様に限定されるものではない。上述の実施形態等で説明した要件の1つ以上は、省略されることがある。また、上述の実施形態等で説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態等で引用した全ての文献の開示を援用して本文の記載の一部とする。 Note that the technical scope of the present invention is not limited to the aspects described in the above-mentioned embodiments. One or more of the requirements described in the above embodiments etc. may be omitted. Furthermore, the requirements described in the above embodiments and the like can be combined as appropriate. In addition, to the extent permitted by law, the disclosures of all documents cited in the above-mentioned embodiments, etc. are incorporated into the description of the main text.
 本発明の導電性ペーストは、グラビア印刷に適した粘度を長期間にわたり安定的に有し、かつ、導電性粉末とセラミック粉末との分離が十分に小さく、乾燥後の乾燥膜表面の粗さも十分低い。よって、本発明の導電性ペーストは、特に携帯電話やデジタル機器等の小型化が進む電子機器のチップ部品である積層セラミックコンデンサの内部電極用の原料として好適に用いることができ、グラビア印刷用の導電性ペーストとして好適に用いることができる。 The conductive paste of the present invention stably has a viscosity suitable for gravure printing over a long period of time, the separation between the conductive powder and the ceramic powder is sufficiently small, and the surface roughness of the dry film after drying is also sufficient. low. Therefore, the conductive paste of the present invention can be suitably used as a raw material for internal electrodes of multilayer ceramic capacitors, which are chip components of electronic devices that are becoming increasingly smaller, such as mobile phones and digital devices. It can be suitably used as a conductive paste.
1    積層セラミックコンデンサ
10   セラミック積層体
11   内部電極層
12   誘電体層
20   外部電極
21   外部電極層
22   メッキ層
1 Multilayer ceramic capacitor 10 Ceramic laminate 11 Internal electrode layer 12 Dielectric layer 20 External electrode 21 External electrode layer 22 Plating layer

Claims (16)

  1.  アクリル酸またはメタクリル酸の少なくともいずれかと、
     下記一般式(1)で示されるアクリル酸エステルまたは下記一般式(2)で示されるメタクリル酸エステルの少なくともいずれかとの共重合体からなるカルボキシ基含有高分子分散剤であって、
     質量平均分子量が2000以上30000未満であり、
     モル比で、前記アクリル酸および前記メタクリル酸の合計と、前記アクリル酸エステルおよび前記メタクリル酸エステルの合計との比がX:1-Xであり、当該Xは0.1以上0.4未満であり、
     下記一般式(1)および下記一般式(2)において、Rは、直鎖または分岐のアルキル基である、分散剤。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    at least one of acrylic acid or methacrylic acid;
    A carboxyl group-containing polymer dispersant comprising a copolymer with at least one of an acrylic ester represented by the following general formula (1) or a methacrylic ester represented by the following general formula (2),
    The mass average molecular weight is 2000 or more and less than 30000,
    In terms of molar ratio, the ratio of the total of the acrylic acid and the methacrylic acid to the total of the acrylic ester and the methacrylic ester is X:1-X, and the X is 0.1 or more and less than 0.4. can be,
    A dispersant in which R 1 is a linear or branched alkyl group in the following general formula (1) and the following general formula (2).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  2.  請求項1に記載のカルボキシ基含有高分子分散剤を含む、導電性ペースト。 A conductive paste comprising the carboxy group-containing polymer dispersant according to claim 1.
  3.  導電性粉末、セラミック粉末、バインダー樹脂及び有機溶剤を更に含み、
     前記カルボキシ基含有高分子分散剤の含有量は、0.01質量%以上2.0質量%未満である、請求項2に記載の導電性ペースト。
    further comprising conductive powder, ceramic powder, binder resin and organic solvent,
    The conductive paste according to claim 2, wherein the content of the carboxyl group-containing polymer dispersant is 0.01% by mass or more and less than 2.0% by mass.
  4.  前記有機溶剤がジヒドロターピネオール(DHT)、ジヒドロターピニルアセテート(DHTA)、ターピネオール(TPO)、プロピレングリコールモノブチルエーテル(PNB)、ジエチレングリコールモノブチルエーテルアセテート(BCA)、およびジイソブチルケトン(DIBK)からなる群より選ばれる1種類以上を含む、請求項3に記載の導電性ペースト。 The organic solvent is from the group consisting of dihydroterpineol (DHT), dihydroterpineyl acetate (DHTA), terpineol (TPO), propylene glycol monobutyl ether (PNB), diethylene glycol monobutyl ether acetate (BCA), and diisobutyl ketone (DIBK). The conductive paste according to claim 3, comprising one or more selected types.
  5.  前記導電性ペーストは、前記カルボキシ基含有高分子分散剤以外の分散剤を含み、
     前記導電性ペースト中の分散剤の全量に対する前記カルボキシ基含有高分子分散剤の含有量が、30質量%以上である、請求項3に記載の導電性ペースト。
    The conductive paste contains a dispersant other than the carboxy group-containing polymer dispersant,
    The conductive paste according to claim 3, wherein the content of the carboxy group-containing polymer dispersant based on the total amount of the dispersant in the conductive paste is 30% by mass or more.
  6.  前記導電性ペーストは、前記カルボキシ基含有高分子分散剤以外の分散剤として、質量平均分子量が2000未満の酸系分散剤を含み、
     前記導電性ペースト中の分散剤の全量に対する前記酸系分散剤の含有量が、0質量%より多く70質量%以下である、請求項5に記載の導電性ペースト。
    The conductive paste contains an acid-based dispersant having a mass average molecular weight of less than 2000 as a dispersant other than the carboxyl group-containing polymer dispersant,
    The conductive paste according to claim 5, wherein the content of the acidic dispersant based on the total amount of the dispersant in the conductive paste is more than 0% by mass and 70% by mass or less.
  7.  前記導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる1種以上の金属粉末を含む、請求項3に記載の導電性ペースト。 The conductive paste according to claim 3, wherein the conductive powder contains one or more metal powders selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof.
  8.  前記導電性粉末の数平均粒子径が0.05μm以上1.0μm以下である、請求項3に記載の導電性ペースト。 The conductive paste according to claim 3, wherein the conductive powder has a number average particle diameter of 0.05 μm or more and 1.0 μm or less.
  9.  前記セラミック粉末はチタン酸バリウムを含む、請求項3に記載の導電性ペースト。 The conductive paste according to claim 3, wherein the ceramic powder contains barium titanate.
  10.  前記セラミック粉末の数平均粒子径が0.01μm以上0.5μm以下である、請求項3に記載の導電性ペースト。 The conductive paste according to claim 3, wherein the ceramic powder has a number average particle diameter of 0.01 μm or more and 0.5 μm or less.
  11.  前記セラミック粉末の含有量は1質量%以上20質量%以下である、請求項3に記載の導電性ペースト。 The conductive paste according to claim 3, wherein the content of the ceramic powder is 1% by mass or more and 20% by mass or less.
  12.  前記バインダー樹脂がセルロース系樹脂を含む、請求項3に記載の導電性ペースト。 The conductive paste according to claim 3, wherein the binder resin includes a cellulose resin.
  13.  積層セラミック部品の内部電極用である、請求項2に記載の導電性ペースト。 The conductive paste according to claim 2, which is used for internal electrodes of laminated ceramic parts.
  14.  温度25℃におけるずり速度100sec-1での粘度が2.0Pa・S以下である、請求項2に記載の導電性ペースト。 The conductive paste according to claim 2, having a viscosity of 2.0 Pa·S or less at a shear rate of 100 sec -1 at a temperature of 25°C.
  15.  請求項2に記載の導電性ペーストを用いて形成された電子部品。 An electronic component formed using the conductive paste according to claim 2.
  16.  誘電体層と内部電極層とを積層した積層体を少なくとも有し、
     前記内部電極層は、請求項2に記載の導電性ペーストを用いて形成される積層セラミックコンデンサ。
    It has at least a laminate including a dielectric layer and an internal electrode layer,
    A multilayer ceramic capacitor in which the internal electrode layer is formed using the conductive paste according to claim 2.
PCT/JP2023/025984 2022-07-29 2023-07-14 Carboxy group-containing polymer dispersant, electroconductive paste, electronic component, and laminated ceramic capacitor WO2024024534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121641 2022-07-29
JP2022121641 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024534A1 true WO2024024534A1 (en) 2024-02-01

Family

ID=89706307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025984 WO2024024534A1 (en) 2022-07-29 2023-07-14 Carboxy group-containing polymer dispersant, electroconductive paste, electronic component, and laminated ceramic capacitor

Country Status (1)

Country Link
WO (1) WO2024024534A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477110A (en) * 1987-09-18 1989-03-23 Toa Gosei Chem Ind Aluminum electrolytic capacitor
JP2003055571A (en) * 2001-08-13 2003-02-26 Mikuni Color Ltd Aqueous dispersion of pigment and aqueous ink composition
JP2007238859A (en) * 2006-03-10 2007-09-20 Daido Toryo Kk Aqueous composition for conductive clear coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477110A (en) * 1987-09-18 1989-03-23 Toa Gosei Chem Ind Aluminum electrolytic capacitor
JP2003055571A (en) * 2001-08-13 2003-02-26 Mikuni Color Ltd Aqueous dispersion of pigment and aqueous ink composition
JP2007238859A (en) * 2006-03-10 2007-09-20 Daido Toryo Kk Aqueous composition for conductive clear coating

Similar Documents

Publication Publication Date Title
WO2021106470A1 (en) Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor
CN112334995B (en) Conductive paste, electronic component, and multilayer ceramic capacitor
CN113227246B (en) Conductive paste, electronic component, and multilayer ceramic capacitor
JP7279643B2 (en) Conductive paste, electronic parts, and laminated ceramic capacitors
TWI801445B (en) Conductive paste, electronic parts, and laminated ceramic capacitors
JP7405098B2 (en) Conductive paste, electronic components, and multilayer ceramic capacitors
JP2024032861A (en) Conductive paste, electronic components, and multilayer ceramic capacitors
CN111066098B (en) Conductive paste, electronic component, and multilayer ceramic capacitor
WO2024024534A1 (en) Carboxy group-containing polymer dispersant, electroconductive paste, electronic component, and laminated ceramic capacitor
WO2021020557A1 (en) Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
CN111095439A (en) Conductive paste, electronic component, and multilayer ceramic capacitor
CN111373490A (en) Conductive paste, electronic component, and multilayer ceramic capacitor
JP2022070803A (en) Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
WO2023033163A1 (en) Conductive paste for gravure printing, electronic component, and multilayer ceramic capacitor
WO2022255467A1 (en) Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
WO2023190613A1 (en) Conductive paste, electronic component, and multilayer ceramic capacitor
TW202411411A (en) Polymer dispersants containing carboxyl groups, conductive pastes, electronic components and laminated ceramic capacitors
WO2019043674A2 (en) Conductive paste, electronic component, and multilayer ceramic capacitor
WO2023190614A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
TW202229471A (en) Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
WO2019043673A2 (en) Conductive paste, electronic component, and multilayer ceramic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846265

Country of ref document: EP

Kind code of ref document: A1