WO2023190613A1 - Conductive paste, electronic component, and multilayer ceramic capacitor - Google Patents

Conductive paste, electronic component, and multilayer ceramic capacitor Download PDF

Info

Publication number
WO2023190613A1
WO2023190613A1 PCT/JP2023/012692 JP2023012692W WO2023190613A1 WO 2023190613 A1 WO2023190613 A1 WO 2023190613A1 JP 2023012692 W JP2023012692 W JP 2023012692W WO 2023190613 A1 WO2023190613 A1 WO 2023190613A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
mass
less
paste according
powder
Prior art date
Application number
PCT/JP2023/012692
Other languages
French (fr)
Japanese (ja)
Inventor
尚史 吉田
達男 相川
清 高野
卓哉 河村
周星 成田
健二 福田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2023190613A1 publication Critical patent/WO2023190613A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to a conductive paste, an electronic component, and a multilayer ceramic capacitor.
  • Multilayer ceramic capacitors have a structure in which multiple dielectric layers and multiple internal electrode layers are alternately stacked, and by making these dielectric layers and internal electrode layers thinner, they can be made smaller and have higher capacitance. can be achieved.
  • a multilayer ceramic capacitor is manufactured, for example, as follows. First, a conductive paste for internal electrodes is printed in a predetermined electrode pattern on the surface of a green sheet containing a dielectric powder such as barium titanate (BaTiO 3 ) and a binder resin, and dried to form a dry film. (conductive film) is formed. Next, the dry membranes and green sheets are laminated in an alternating manner to obtain a laminate. Next, this laminate is heat-pressed and integrated to form a crimped body. This pressed body is cut, subjected to an organic binder removal treatment in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain fired chips. Next, an external electrode paste is applied to both ends of the fired chip, and after firing, nickel plating or the like is applied to the external electrode surface to obtain a multilayer ceramic capacitor.
  • a conductive paste for internal electrodes is printed in a predetermined electrode pattern on the surface of a green sheet containing a dielectric powder such as barium titanate (BaT
  • the dry film may peel off from the green sheet (base material) or the layer structure may shift, resulting in the resulting multilayer ceramic capacitor not having the desired electrical characteristics.
  • Patent Document 1 for the purpose of improving the adhesion of a conductive paste containing (meth)acrylic resin as a binder resin to a ceramic green sheet, (meth)acrylic resin as a binder resin, an organic solvent, and A conductive paste containing metal powder, the (meth)acrylic resin has a glass transition point Tg in the range of -60°C to 120°C, and a hydroxy group in the molecule of 0.01% by mass to 5% by mass.
  • a conductive paste is disclosed which has an acid value in the range of 1 mgKOH/g to 50 mgKOH/g and a weight average molecular weight in the range of 10,000 Mv to 350,000 Mv.
  • Patent Document 2 discloses a conductive paste for forming an electrode layer on a base material, with the aim of providing a conductive paste that can form a conductive film with excellent adhesion to a base material.
  • the organic additive contains a conductive powder, a resin binder, an organic additive, and an organic solvent, and the organic additive has two or more (meth)acryloyl groups in one molecule, and has a number average
  • a conductive paste containing a (meth)acrylate compound having a molecular weight of 1000 or less is disclosed.
  • Patent Document 3 discloses a conductive dry film for the purpose of providing a dry film for internal electrodes that has excellent adhesion to a dielectric layer and can form internal electrodes whose shape does not change significantly before and after heat treatment.
  • a dry membrane is disclosed.
  • the conventional conductive paste does not provide sufficient adhesion between the dried film and the base material, resulting in misalignment of the dried film and This may lead to a decrease in the rate. Therefore, there is a need for a conductive paste that can further improve adhesion to a base material when a dry film is formed.
  • the present invention aims to provide a conductive paste that can further improve adhesion to a base material.
  • the first aspect of the present invention includes a conductive powder, a binder resin, an additive, and an organic solvent, and as an additive, a compound having a structure represented by the following structural formula (1) or the following structural formula (2).
  • a conductive paste is provided comprising:
  • R 1 , R 2 , and R 3 each independently represent a saturated or unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms, and the aliphatic hydrocarbon group is linear or branched. It may be chain-like, and one or more methylene (-CH 2 -) contained in the aliphatic hydrocarbon group may be substituted with oxygen (-O-).)
  • the above compound is contained in an amount of 0.01% by mass or more and 2.0% by mass or less based on the entire conductive paste. Further, it is preferable that the temperature of the above compound at which the weight loss rate in thermogravimetric analysis is maximum is 200° C. or higher. Further, it is preferable that the molecular weight of the above compound is 250 or more and 3000 or less. It is preferable that the conductive paste further contains an acidic dispersant and/or a basic dispersant. Moreover, it is preferable that the conductive powder contains at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof.
  • the conductive powder has an average particle size of 0.05 ⁇ m or more and 1.0 ⁇ m or less.
  • the binder resin contains a butyral resin.
  • the conductive paste further contains ceramic powder.
  • the ceramic powder contains barium titanate.
  • the ceramic powder has an average particle size of 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the ceramic powder is contained in an amount of 1% by mass or more and 20% by mass or less based on the entire conductive paste.
  • the conductive paste is used for internal electrodes of laminated ceramic components.
  • a second aspect of the present invention provides an electronic component formed using the above conductive paste.
  • a third aspect of the present invention provides a multilayer ceramic capacitor having at least a laminate in which a dielectric layer and an internal electrode layer are stacked, the internal electrode layer being formed using the above conductive paste.
  • the conductive paste of the present invention can further improve adhesion to the base material. Furthermore, in the manufacturing process of a multilayer ceramic capacitor, the dry film (internal electrode layer) formed using the conductive paste of the present invention has high adhesion to the green sheet (dielectric layer).
  • FIG. 1 is a perspective view and a sectional view showing a multilayer ceramic capacitor according to an embodiment.
  • the conductive paste of this embodiment includes conductive powder, ceramic powder, dispersant, binder resin, and organic solvent. Each component will be explained in detail below.
  • the conductive powder is not particularly limited, and metal powder can be used, for example, one or more powders selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof can be used. .
  • powder of Ni or an alloy thereof (hereinafter sometimes referred to as "Ni powder") is preferred from the viewpoints of conductivity, corrosion resistance, and cost.
  • Ni powder for example, an alloy of Ni and at least one element selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Au, Pt, and Pd can be used.
  • the Ni content in the Ni alloy is, for example, 50% by mass or more, preferably 80% by mass or more.
  • the Ni powder may contain about several hundred ppm of element S in order to suppress rapid gas generation due to partial thermal decomposition of the binder resin during binder removal treatment.
  • the average particle size of the conductive powder is preferably 0.05 ⁇ m or more and 1.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the average particle size is a value obtained from observation with a scanning electron microscope (SEM), and is obtained by measuring the particle size of each particle from an image observed with a SEM at a magnification of 10,000 times. This is the average value (SEM average particle size).
  • the content of the conductive powder is preferably 30% by mass or more and less than 70% by mass, more preferably 40% by mass or more and 60% by mass or less, based on the entire conductive paste. When the content of the conductive powder is within the above range, the conductivity and dispersibility are excellent.
  • the ceramic powder is not particularly limited, and for example, in the case of a paste for internal electrodes of a multilayer ceramic capacitor, a known ceramic powder is appropriately selected depending on the type of multilayer ceramic capacitor to which it is applied.
  • a perovskite oxide containing Ba and Ti can be used, and preferably barium titanate (BaTiO 3 ) is used.
  • a ceramic powder containing barium titanate as a main component and an oxide as a subcomponent may be used.
  • oxides include oxides of Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb, and one or more rare earth elements.
  • the ceramic powder When used as a conductive paste for internal electrodes, the ceramic powder may have the same composition as the dielectric ceramic powder that constitutes the green sheet of a multilayer ceramic capacitor (electronic component). This suppresses the occurrence of cracks due to shrinkage mismatch at the interface between the dielectric layer and the internal electrode layer during the sintering process.
  • such ceramic powders include, for example, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 , TiO 2 , Nd 2 O 3 and the like. Examples include oxides. Note that one type of ceramic powder may be used, or two or more types of ceramic powder may be used.
  • the average particle size of the ceramic powder is, for example, 0.01 ⁇ m or more and 0.5 ⁇ m or less, preferably 0.01 ⁇ m or more and 0.3 ⁇ m or less. Since the average particle size of the ceramic powder is within the above range, when used as an internal electrode paste, a sufficiently thin and uniform internal electrode can be formed.
  • the average particle size is a value obtained from observation using a scanning electron microscope (SEM), and is obtained by measuring the particle size of each particle from an image observed with a SEM at a magnification of 50,000 times. This is the average value (SEM average particle size).
  • the content of the ceramic powder is preferably 1% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less, based on the entire conductive paste. When the content of the ceramic powder is within the above range, the dispersibility and sinterability are excellent.
  • the content of the ceramic powder is preferably 1 part by mass or more and 30 parts by mass or less, and more preferably 3 parts by mass or more and 30 parts by mass or less, based on 100 parts by mass of the conductive powder.
  • the binder resin preferably contains a butyral resin. Furthermore, when used as a paste for internal electrodes, a butyral-based resin may be included, or a butyral-based resin may be used alone, from the viewpoint of improving the adhesive strength with the green sheet. Examples of the butyral resin include polyvinyl butyral (PVB). When the conductive paste contains a butyral resin, the adhesive strength with the green sheet can be further improved.
  • the content of the butyral resin may be, for example, 20% by mass or more, 40% by mass or more, or 60% by mass or more based on the entire binder resin.
  • the adhesiveness is further improved and the adhesive strength between the dry film and the green sheet (substrate) is improved.
  • the upper limit of the content of the butyral resin is not particularly limited, but may be, for example, 90% by mass or less, or 80% by mass or less, based on the entire binder resin.
  • the conductive paste has appropriate hardness, so problems such as the printed film not peeling off from the support film and the electrode being crushed during thermocompression bonding are less likely to occur.
  • the weight average molecular weight (Mw) of the butyral resin may be 30,000 or more and 300,000 or less, 50,000 or more and 200,000 or less, or 100,000 or more and 150,000 or less.
  • the glass transition point Tg of the butyral resin may be 50°C or more and 90°C or less, or 60°C or more and 80°C or less.
  • binder resins other than butyral-based resins may be included as binder resins.
  • Binder resins other than those mentioned above are not particularly limited, and known resins can be used, such as cellulose resins such as methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, and nitrocellulose, and acrylic resins.
  • cellulose resins such as methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, and nitrocellulose
  • acrylic resins it is preferable to contain cellulose resin, and more preferably to contain ethyl cellulose.
  • the weight average molecular weight (Mw) may be 10,000 or more and 300,000 or less, 30,000 or more and 250,000 or less, or 50,000 or more and 200,000 or less. It may be.
  • the hydroxyl value of the cellulose resin is not particularly limited, but is preferably 0.1 mgKOH/g or more and 15 mgKOH/g or less, more preferably 0.5 mgKOH/g or more and 7 mgKOH/g or less, and even more preferably 1 .5 mgKOH/g or more and 3 mgKOH/g or less.
  • one type of cellulose resin may be contained alone, or two or more types of cellulose resins may be contained.
  • the binder resin contains a cellulose resin and a butyral resin
  • the butyral resin is added to the total content (100% by mass) of the cellulose resin and the butyral resin.
  • the content may be 20% by mass or more, 40% by mass or more, more than 50% by mass, or 60% by mass or more.
  • the adhesiveness may be further improved, and the adhesive strength between the dry film and the green sheet (substrate) may be improved.
  • the upper limit of the content of the butyral resin is not particularly limited, and may be less than 100% by mass, may be less than 90% by mass, or may be less than 80% by mass.
  • the conductive paste can have appropriate hardness, and problems such as the printed film not peeling off from the support film and the electrode being crushed during thermocompression bonding are less likely to occur.
  • the content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 7% by mass or less, based on the entire conductive paste. When the content of the binder resin is within the above range, the conductivity and dispersibility are excellent.
  • the content of the binder resin is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 1 part by mass or more and 14 parts by mass or less, based on 100 parts by mass of the conductive powder.
  • Organic solvent is not particularly limited, and any known organic solvent that can dissolve the binder resin can be used.
  • examples of the organic solvent include terpene solvents, acetate solvents, ether solvents, and ketone solvents.
  • terpene solvents examples include terpineol, dihydroterpineol, dihydroterpineyl acetate, and the like.
  • Acetate solvents include isobornyl acetate, isobornyl propinate, isobornyl butyrate and isobornyl isobutyrate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene Glycol ether acetates such as glycol methyl ether acetate, 3-methoxy 3-methylbutyl acetate, 1-methoxypropyl-2-acetate, propylene glycol diacetate, 1,4-butanediol diacetate, 1,3-butylene glycol diacetate Examples include acetate, glycol diacetates such as 1,6-hexanediol diacetate, and cyclohexanol acetate.
  • Ether solvents include propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, diethylene glycol mono-2-ethylhexyl ether, and ethylene glycol mono-2- Examples include ethylene glycol ethers such as ethylhexyl ether, diethylene glycol monohexyl ether, and ethylene glycol monohexyl ether, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl-n-butyl ether, and dipropylene glycol dimethyl ether.
  • propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, diethylene glycol mono
  • ketone solvents examples include methyl isobutyl ketone and diisobutyl ketone.
  • a ketone solvent is included, the viscosity can be adjusted without impairing the dispersibility, and the drying properties can be improved.
  • the organic solvent preferably contains at least one selected from the group consisting of terpineol, dihydroterpineol, dihydroterpineyl acetate, propylene glycol monobutyl ether, and diethylene glycol monobutyl ether acetate.
  • the content of the organic solvent (total) is preferably 20% by mass or more and 60% by mass or less, more preferably 25% by mass or more and 45% by mass or less, based on the total amount of the conductive paste.
  • the conductivity and dispersibility are excellent.
  • the content of the organic solvent is preferably 50 parts by mass or more and 130 parts by mass or less, more preferably 60 parts by mass or more and 90 parts by mass or less, based on 100 parts by mass of the conductive powder.
  • the conductivity and dispersibility are excellent.
  • one type of organic solvent may be used, or two or more types may be used.
  • at least one selected from the group consisting of terpineol, dihydroterpineol, dihydroterpineyl acetate, propylene glycol monobutyl ether, and diethylene glycol monobutyl ether acetate, and a hydrocarbon solvent. May include.
  • at least one selected from methyl isobutyl ketone and diisobutyl ketone may be included.
  • hydrocarbon solvent examples include solvents containing tridecane, nonane, cyclohexane, mineral spirits, naphthenic solvents, and the like. Among these, it is preferable to include mineral spirits.
  • the content of the hydrocarbon solvent may be 10% by mass or more and 50% by mass or less, or 20% by mass or more and 40% by mass or less, based on the entire organic solvent.
  • ester compound (a) Ester compound
  • the conductive paste according to the present embodiment contains a compound having a structural moiety represented by the following formula (A) or formula (B) (hereinafter also referred to as "ester compound") as an additive. .
  • R 1 represents a saturated or unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms, and the aliphatic hydrocarbon group may be linear or branched; One or more methylenes (-CH 2 -) contained in the group hydrocarbon group may be substituted with oxygen (-O-).)
  • ester compound has a structure represented by the following structural formula (1) or the following structural formula (2).
  • R 1 , R 2 and R 3 each independently represent a saturated or unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms; may be linear or branched, and one or more methylene (-CH 2 -) contained in the aliphatic hydrocarbon group may be substituted with oxygen (-O-). Note that the number of carbon atoms in R 1 , R 2 and R 3 includes the number of carbon atoms in methylene (-CH 2 -) substituted with oxygen (-O-).
  • the adhesion of the dried film can be improved.
  • the above ester compound inhibits the interaction between resins, causing the dried film to become moderately soft, resulting in a dry film that becomes easily deformed due to softening, and a dry film that does not interact. It is thought that the adhesion between the dried film and the ceramic green sheet (dielectric layer) is improved because the resin or the like tends to cause entanglement at the adhesive interface.
  • the lower limit of the number of carbon atoms in R 1 and R 3 may each independently be 3 or more, or 5 or more. Further, the upper limit of the number of carbon atoms in R 1 and R 3 may be independently 10 or less, or 8 or less. Moreover, the number of carbon atoms in R 1 and R 3 may be the same.
  • R 1 and R 3 may be unsubstituted aliphatic hydrocarbon groups, for example, one methylene (-CH 2 -) may be substituted with oxygen (-O-). Moreover, R 1 and R 3 may have the same structure.
  • the lower limit of the number of carbon atoms in R 2 may be 3 or more. Further, the upper limit of the number of carbon atoms in R 2 may be 10 or less, or may be 8 or less. Further, R 2 may be, for example, one or more methylene (-CH 2 -) substituted with oxygen (-O-), or may be an unsubstituted aliphatic hydrocarbon group.
  • the temperature at which the weight loss rate is maximum in thermogravimetric analysis of the ester compound may be, for example, 200°C or higher, 220°C or higher, or 250°C or higher. is preferred. When the maximum thermal decomposition temperature is within the above range, delamination and cracking of the laminate can be suppressed. Further, the upper limit of the boiling point or thermal decomposition temperature is not particularly limited, but may be, for example, 450°C or lower, 400°C or lower, or 350°C or lower.
  • the maximum thermal decomposition temperature is a value determined by the thermogravimetry (TG) method using the following method. That is, when the temperature was raised from 20°C to 550°C at a rate of 5°C/min in a nitrogen atmosphere using a pyrolysis weight measuring device (manufactured by Netch, STA25000REGULUS), and the weight loss at that time was measured, differential heating was detected. The temperature at which the weight loss was greatest was defined as the maximum thermal decomposition temperature.
  • TG thermogravimetry
  • the molecular weight of the ester compound is preferably 250 or more and 3000 or less, more preferably 250 or more and 1000 or less, and even more preferably 250 or more and 500 or less.
  • the adhesion to the ceramic green sheet (dielectric layer) is further improved.
  • the content of the ester compound is preferably 0.01% by mass or more and 1.0% by mass or less based on the entire conductive paste.
  • the content of the ester compound is within the above range, the adhesion between the dry film and the ceramic green sheet (dielectric layer) is improved.
  • the lower limit of the content of the ester compound may be 0.05% by mass or more, and may be 0.1% by mass or more, based on the entire conductive paste, from the viewpoint of further improving adhesion. Good too.
  • the upper limit of the content of the ester compound may be 0.7% by mass or less, or may be 0.4% by mass or less.
  • the upper limit of the content of the ester compound is not particularly limited, but may be, for example, 2% by mass or less, 1.8% by mass or less, 1.5% by mass or less, It may be 1.0% by mass or less.
  • the content of the ester compound can be adjusted as appropriate within the above range depending on the usage environment and the like.
  • the content of the ester compound can be appropriately set depending on the type and content of the binder resin.
  • the content of the ester compound may be set depending on the content of the butyral resin.
  • the content of the ester compound may be, for example, 10 parts by mass or more and 90 parts by mass or less, 10 parts by mass and 60 parts by mass or less, 10 parts by mass or less, based on 100 parts by mass of the butyral resin.
  • the amount may be 50 parts by mass or more and 50 parts by mass or less.
  • the dispersant may include, for example, an acidic dispersant, a basic dispersant, a nonionic dispersant, an amphoteric dispersant, etc., and preferably includes at least one of an acidic dispersant and a basic dispersant, It is more preferable that an acidic dispersant is included. Note that these dispersants may be used alone or in combination of two or more.
  • the acid-based dispersant may include acid-based dispersants having acidic groups such as carboxylic acid-based dispersants such as higher fatty acids, polycarboxylic acid-based dispersants, phosphoric acid-based dispersants, and polymeric surfactants. , a polycarboxylic acid dispersant, and a phosphoric acid dispersant. Further, the polycarboxylic acid dispersant may be a comb-shaped carboxylic acid having a comb-shaped structure.
  • Higher fatty acids may be unsaturated carboxylic acids or saturated carboxylic acids, and are not particularly limited, but include stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, linolenic acid, etc. having 11 or more carbon atoms. Examples include: Among these, oleic acid or stearic acid is preferred.
  • acid-based dispersants include oleoyl sarcosine, which is a compound of glycine and oleic acid, and alkyl monoamine salt type, which is an amide compound using higher fatty acids such as stearic acid or lauric acid instead of oleic acid. It may be.
  • dicarboxylic acid may be included.
  • a dicarboxylic acid is a carboxylic acid having two carboxyl groups (COO- groups). Further, the average molecular weight of the dicarboxylic acid is not particularly limited, but may be, for example, 200 or more and 1000 or less.
  • the basic dispersant examples include aliphatic amines such as laurylamine, rosinamine, cetylamine, myristylamine, and stearylamine.
  • aliphatic amines such as laurylamine, rosinamine, cetylamine, myristylamine, and stearylamine.
  • the dispersant is contained, for example, from 0.01% by mass to 3% by mass with respect to the entire conductive paste.
  • the range including the upper limit of the dispersant content may be 2% by mass or less, 1% by mass or less, or 0.5% by mass or less.
  • the conductive paste of this embodiment may contain other additives other than the above-mentioned components, as necessary.
  • additives conventionally known additives such as antifoaming agents, plasticizers, surfactants, and thickeners can be used.
  • the method for manufacturing the conductive paste according to this embodiment is not particularly limited, and conventionally known methods can be used.
  • the conductive paste can be produced, for example, by stirring and kneading the above-mentioned components using a three-roll mill, a ball mill, a mixer, or the like.
  • the conductive paste according to the present embodiment can improve the adhesion between the dry film and the green sheet. It is thought that by inhibiting the interaction between the resins, the dried film is moderately softened (lowering the glass transition point Tg) and becomes easily deformed.
  • the glass transition of this dried product is lower than the glass transition point Tg' of a dried body formed under the same conditions except that it does not contain the above-mentioned ester compound.
  • the ester compound may lower Tg by 10°C or more, 13°C or more, 15°C or more, or 20°C or more compared to Tg'.
  • the glass transition point Tg of the dried body may be 60°C or lower, 55°C or lower, or 50°C or lower. Note that the lower limit of the glass transition point Tg is, for example, 30° C. or higher.
  • the conductive paste contains two or more types of resins as binder resins
  • multiple glass transition points Tg may be measured depending on the resins contained.
  • the glass transition point Tg indicates the glass transition point Tg in the lowest temperature region.
  • the glass transition point Tg of the dried body can be measured by the method described in Examples.
  • the Vickers hardness of the dry film surface at room temperature is preferably 10 or less, and 9 or less. More preferably, it is 8 or less. Note that the lower limit of Vickers hardness (room temperature) is, for example, 3.5 or more.
  • the Vickers hardness of the dry film surface at 60° C. is preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less.
  • the lower limit of Vickers hardness (60° C.) is, for example, 3 or more.
  • the conductive paste can be suitably used for electronic components such as multilayer ceramic capacitors.
  • a multilayer ceramic capacitor includes, for example, a dielectric layer formed using a dielectric green sheet and an internal electrode layer formed using a conductive paste.
  • FIGS. 1A and 1B are diagrams showing a multilayer ceramic capacitor 1.
  • the multilayer ceramic capacitor 1 includes a ceramic laminate 10 in which dielectric layers 12 and internal electrode layers 11 are alternately stacked, and an external electrode 20.
  • a method for manufacturing a multilayer ceramic capacitor using the above conductive paste will be explained.
  • a conductive paste is printed on a ceramic green sheet and dried to form a dry film.
  • a plurality of ceramic green sheets having this dry film on the upper surface are laminated by pressure bonding to obtain a laminate, and then the laminate is baked and integrated, so that the internal electrode layer 11 and the dielectric layer 12 are alternately formed.
  • a ceramic laminate 10 is produced in which the ceramic laminate 10 is laminated.
  • a pair of external electrodes 20 are formed at both ends of the ceramic laminate 10, thereby manufacturing the multilayer ceramic capacitor 1. This will be explained in more detail below.
  • a green sheet which is an unfired ceramic sheet, is prepared.
  • This green sheet is made of a dielectric layer paste obtained by adding a binder resin such as polyvinyl butyral and a solvent such as terpineol to a predetermined ceramic raw material powder such as barium titanate. Examples include those that are applied in the form of a sheet onto a film and dried to remove the solvent.
  • the thickness of the dielectric layer made of green sheets is not particularly limited, but from the viewpoint of the demand for miniaturization of multilayer ceramic capacitors, it is preferably 0.05 ⁇ m or more and 3 ⁇ m or less.
  • a plurality of green sheets are prepared in which the above-mentioned conductive paste is printed and applied on one side of the green sheet and dried to form a dry film on one side of the green sheet.
  • the thickness of the dried film formed from the conductive paste is preferably 1 ⁇ m or less after drying, from the viewpoint of reducing the thickness of the internal electrode layer 11.
  • the green sheets are peeled off from the support film, and the green sheets and the dry film formed on one side of the green sheets are laminated so that they are alternately arranged, and then a laminate is obtained by heat and pressure treatment.
  • a configuration may be adopted in which protective ceramic green sheets to which no conductive paste is applied are further disposed on both sides of the laminate.
  • the green chip is subjected to binder removal treatment and fired in a reducing atmosphere to produce a laminated ceramic fired body (ceramic laminate 10).
  • the atmosphere during the binder removal treatment is preferably air or N 2 gas atmosphere.
  • the temperature during the binder removal treatment is, for example, 200°C or more and 400°C or less. Further, it is preferable that the holding time at the above temperature during the binder removal treatment is 0.5 hours or more and 24 hours or less.
  • the firing is performed in a reducing atmosphere to suppress oxidation of the metal used for the internal electrode layer, and the temperature when firing the laminate is, for example, 1000°C or more and 1350°C or less, and the firing is The temperature is maintained for a period of, for example, 0.5 hours or more and 8 hours or less.
  • the organic binder in the ceramic green sheet is completely removed, and the ceramic raw material powder is fired to form the ceramic dielectric layer 12. Further, the organic vehicle in the dry film is removed, and the nickel powder or alloy powder mainly composed of nickel is sintered or melted and integrated to form the internal electrode layer 11, and the dielectric layer 12 and the internal electrode A laminated ceramic fired body is formed in which a plurality of layers 11 are alternately laminated. Note that from the viewpoint of increasing reliability by incorporating oxygen into the dielectric layer and suppressing re-oxidation of the internal electrodes, the fired multilayer ceramic fired body may be subjected to an annealing treatment.
  • the multilayer ceramic capacitor 1 is manufactured by providing a pair of external electrodes 20 on the produced multilayer ceramic fired body.
  • the external electrode 20 includes an external electrode layer 21 and a plating layer 22.
  • External electrode layer 21 is electrically connected to internal electrode layer 11 .
  • the material for the external electrode 20 for example, copper, nickel, or an alloy thereof can be suitably used.
  • electronic components other than multilayer ceramic capacitors can also be used as the electronic components.
  • a conductive paste (sample) was applied to the surface of a green sheet containing barium titanate and polyvinyl butyral prepared in advance to form a conductive paste film with a WET thickness of 35 ⁇ m.
  • the obtained green sheet and a sheet consisting of a conductive paste film for internal electrodes formed on the surface thereof were dried at 75° C. for 20 minutes to form a dry film on the green sheet.
  • the dried sheet (dried film - green sheet) and another green sheet were stacked with the conductive paste applied side sandwiched between the green sheets, and then pressed at a temperature of 40°C and a pressure of 20 MPa for 20 seconds. By doing so, a laminate (for evaluation) was created.
  • both sides of the laminate were set in the jig of a tensile testing machine (AGS-50NX, manufactured by Shimadzu Corporation) using tape, and then a tensile test was conducted.
  • the force to break (force to peel the dry film from the green sheet) was recorded at a test speed of 20 mm/min.
  • the breaking force of each sample was evaluated in %, with the breaking force of Comparative Example 1 being 100%.
  • the components contained in the conductive paste are the same as the amounts contained in the conductive paste.
  • the obtained liquid (mixture) was applied onto a PET film using an applicator to form a wet film thickness of 254 ⁇ m. It was coated and dried at 120° C. for 40 minutes to obtain a sample for evaluation. Note that the organic solvent in the mixture is removed during drying.
  • thermolysis temperature measurement The thermal decomposition temperature of the additive used in the conductive paste was measured using a thermal decomposition weight measuring device (STA25000REGULUS manufactured by Netch). The measurement temperature atmosphere was nitrogen, and the measurement temperature range was from 20°C to 550°C at a heating rate of 5°C/min. The temperature at which the differential heating loss was greatest, that is, the temperature at which the weight loss rate in thermogravimetric analysis was the greatest, was defined as the thermal decomposition temperature (maximum thermal decomposition temperature).
  • conductive powder As the conductive powder, Ni powder (SEM average particle size: 0.2 ⁇ m) was used.
  • Ceramic powder Barium titanate (BaTiO 3 ; SEM average particle size 0.10 ⁇ m) was used as the ceramic powder.
  • binder resin polyvinyl butyral resin (PVB) and ethyl cellulose resin (EC) were used.
  • additives were used.
  • ⁇ Additive a Polycarboxylic acid having polyoxyalkylene as a graft chain (does not have the structure of formula (1) or (2) above)
  • ⁇ Additive b Oxyethylene laurylamine (polyetheramine)
  • ⁇ Additive c dicarboxylic acid (2-(octadecen-1-yl)succinic acid)
  • Organic solvent Dihydroterpineol (DHT) and mineral spirit (MSA) were used as organic solvents.
  • a conductive paste was prepared. Table 1 shows the content of each material in the conductive paste and the evaluation results.
  • Examples 1 to 9, Comparative Examples 1 to 4 A conductive paste was prepared and evaluated in the same manner as in Example 1, except that the type and content of the additive were changed as shown in Table 1.
  • Table 2 shows the content of each material in the conductive paste and the evaluation results.
  • the conductive pastes of Examples 1 to 9 have lower glass transition points (Tg ) decreased, Vickers hardness decreased, and adhesion improved.
  • the conductive paste of the present invention When the conductive paste of the present invention is used to form internal electrodes of a multilayer ceramic capacitor, a highly reliable multilayer ceramic capacitor can be obtained with high productivity. Therefore, the conductive paste of the present invention can be particularly suitably used for internal electrodes of multilayer ceramic capacitors, which are chip components of electronic devices that are becoming increasingly smaller, such as mobile phones and digital devices.
  • Embodiments of the present invention can include the following configurations.
  • [1] Contains conductive powder, binder resin, additives, and organic solvent, A conductive paste containing, as the additive, a compound having a structure represented by the following structural formula (1) or the following structural formula (2).
  • R 1 , R 2 , and R 3 each independently represent a saturated or unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms, and the aliphatic hydrocarbon group is a linear or branched aliphatic hydrocarbon group.
  • One or more methylenes (-CH 2 -) contained in the aliphatic hydrocarbon group may be substituted with oxygen (-O-).
  • conductive powder according to any one of [1] to [5], wherein the conductive powder contains at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof. conductive paste.
  • Multilayer ceramic capacitor 10 Ceramic laminate 11 Internal electrode layer 12 Dielectric layer 20 External electrode 21 External electrode layer 22 Plating layer

Abstract

Provided is a conductive paste of which adhesion with a base material is further improved. The conductive paste comprises a conductive powder, a binder resin, an additive, and an organic solvent, the additive comprising a compound having a structure indicated by structural formula (1) or structural formula (2). (wherein R1, R2, and R3 each independently represent a saturated or unsaturated aliphatic hydrocarbon group comprising 2 to 12 carbon atoms, the aliphatic hydrocarbon group may be straight or branched, and one or more methylenes (-CH2-) included in the aliphatic hydrocarbon group may be substituted with oxygen (-O-)).

Description

導電性ペースト、電子部品、及び積層セラミックコンデンサConductive paste, electronic components, and multilayer ceramic capacitors
 本発明は、導電性ペースト、電子部品、及び積層セラミックコンデンサに関する。 The present invention relates to a conductive paste, an electronic component, and a multilayer ceramic capacitor.
 携帯電話やデジタル機器などの電子機器の小型化及び高性能化に伴い、積層セラミックコンデンサなどを含む電子部品についても小型化及び高容量化が望まれている。積層セラミックコンデンサは、複数の誘電体層と複数の内部電極層とが交互に積層した構造を有し、これらの誘電体層及び内部電極層を薄膜化することにより、小型化及び高容量化を図ることができる。 As electronic devices such as mobile phones and digital devices become smaller and have higher performance, electronic components including multilayer ceramic capacitors are also desired to be smaller and have higher capacity. Multilayer ceramic capacitors have a structure in which multiple dielectric layers and multiple internal electrode layers are alternately stacked, and by making these dielectric layers and internal electrode layers thinner, they can be made smaller and have higher capacitance. can be achieved.
 積層セラミックコンデンサは、例えば、次のように製造される。まず、チタン酸バリウム(BaTiO)などの誘電体粉末及びバインダー樹脂を含有するグリーンシートの表面上に、内部電極用の導電性ペーストを、所定の電極パターンで印刷し、乾燥して、乾燥膜(導電膜)を形成する。次いで、乾燥膜とグリーンシートとを、交互に重なるように積層して、積層体を得る。次に、この積層体を、加熱圧着して一体化し、圧着体を形成する。この圧着体を切断し、酸化性雰囲気又は不活性雰囲気中にて脱有機バインダー処理を行った後、焼成を行い、焼成チップを得る。次いで、焼成チップの両端部に外部電極用ペーストを塗布し、焼成後、外部電極表面にニッケルメッキなどを施して、積層セラミックコンデンサが得られる。 A multilayer ceramic capacitor is manufactured, for example, as follows. First, a conductive paste for internal electrodes is printed in a predetermined electrode pattern on the surface of a green sheet containing a dielectric powder such as barium titanate (BaTiO 3 ) and a binder resin, and dried to form a dry film. (conductive film) is formed. Next, the dry membranes and green sheets are laminated in an alternating manner to obtain a laminate. Next, this laminate is heat-pressed and integrated to form a crimped body. This pressed body is cut, subjected to an organic binder removal treatment in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain fired chips. Next, an external electrode paste is applied to both ends of the fired chip, and after firing, nickel plating or the like is applied to the external electrode surface to obtain a multilayer ceramic capacitor.
 乾燥膜とグリーンシートとを積み重ねて形成された積層体を、加熱圧着、及び切断する工程において、乾燥膜とグリーンシート(基材)との密着性が不十分である場合、乾燥膜(導電膜)がグリーンシート(基材)から剥離したり、層構造がずれたりして、得られる積層セラミックコンデンサが所望の電気的特性を有しないことがある。 In the process of heat-pressing and cutting a laminate formed by stacking a dry film and a green sheet, if the adhesion between the dry film and the green sheet (substrate) is insufficient, the dry film (conductive film) ) may peel off from the green sheet (base material) or the layer structure may shift, resulting in the resulting multilayer ceramic capacitor not having the desired electrical characteristics.
 例えば、特許文献1では、バインダ樹脂として(メタ)アクリル樹脂を含む導電性ペーストの、セラミックグリーンシートに対する密着性を向上させることを目的として、バインダ樹脂としての(メタ)アクリル樹脂、有機溶剤、及び金属粉末を含む、導電性ペーストであって、(メタ)アクリル樹脂は、ガラス転移点Tgが-60℃~120℃の範囲にあり、分子中のヒドロキシ基が0.01質量%~5質量%の範囲にあり、酸価が1mgKOH/g~50mgKOH/gの範囲にあり、重量平均分子量が10000Mv~350000Mvの範囲にある、導電性ペーストが開示されている。 For example, in Patent Document 1, for the purpose of improving the adhesion of a conductive paste containing (meth)acrylic resin as a binder resin to a ceramic green sheet, (meth)acrylic resin as a binder resin, an organic solvent, and A conductive paste containing metal powder, the (meth)acrylic resin has a glass transition point Tg in the range of -60°C to 120°C, and a hydroxy group in the molecule of 0.01% by mass to 5% by mass. A conductive paste is disclosed which has an acid value in the range of 1 mgKOH/g to 50 mgKOH/g and a weight average molecular weight in the range of 10,000 Mv to 350,000 Mv.
 また、特許文献2では、基材との密着性に優れた導電膜を形成することができる導電性ペーストを提供することを目的として、基材上に電極層を形成するための導電性ペーストであって、導電性粉末と、樹脂バインダーと、有機添加剤と、有機溶剤とを含み、前記有機添加剤は、1分子中に2個以上の(メタ)アクリロイル基を有し、かつ、数平均分子量が1000以下である(メタ)アクリレート化合物を含む、導電性ペーストが開示されている。 Furthermore, Patent Document 2 discloses a conductive paste for forming an electrode layer on a base material, with the aim of providing a conductive paste that can form a conductive film with excellent adhesion to a base material. The organic additive contains a conductive powder, a resin binder, an organic additive, and an organic solvent, and the organic additive has two or more (meth)acryloyl groups in one molecule, and has a number average A conductive paste containing a (meth)acrylate compound having a molecular weight of 1000 or less is disclosed.
 また、特許文献3では、誘電体層との密着性に優れ且つ熱処理の前後で形状が大きく変化しない内部電極を形成することが可能な内部電極用乾燥膜を提供することを目的として、導電性粉末と有機バインダ樹脂とを含有する組成物で形成された、積層セラミックコンデンサの内部電極用乾燥膜であって、ビッカース硬度が47Hv以上51Hv以下であることを特徴とする積層セラミックコンデンサの内部電極用乾燥膜が開示されている。 Furthermore, Patent Document 3 discloses a conductive dry film for the purpose of providing a dry film for internal electrodes that has excellent adhesion to a dielectric layer and can form internal electrodes whose shape does not change significantly before and after heat treatment. A dry film for internal electrodes of a multilayer ceramic capacitor formed of a composition containing a powder and an organic binder resin, characterized in that the film has a Vickers hardness of 47 Hv or more and 51 Hv or less. A dry membrane is disclosed.
国際公開第2013/187183号International Publication No. 2013/187183 特開2018-055933号公報Japanese Patent Application Publication No. 2018-055933 特開2019-121744号公報Japanese Patent Application Publication No. 2019-121744
 近年、生産性の向上やコスト削減の観点から、積層セラミックコンデンサの製造工程において、乾燥膜とセラミックグリーンシートとを交互に積層して得られた積層体を加熱圧着する際に圧着時のプレス時間の短縮や圧力を低くすることがある。 In recent years, from the perspective of improving productivity and reducing costs, in the manufacturing process of multilayer ceramic capacitors, the pressing time during pressure bonding has been reduced when heat-pressing the laminate obtained by alternately laminating dry membranes and ceramic green sheets. may shorten or lower pressure.
 しかしながら、圧着時のプレス時間の短縮や圧力を低くした場合、従来の導電性ペーストでは乾燥膜と基材との間で十分な密着性が得られずに、乾燥膜の位置ずれが生じ、収率の低下を招くことがある。そのため、乾燥膜を形成した際に基材との密着性をより向上させることができる導電性ペーストが求められている。 However, when the pressing time or pressure during crimping is shortened or the pressure is lowered, the conventional conductive paste does not provide sufficient adhesion between the dried film and the base material, resulting in misalignment of the dried film and This may lead to a decrease in the rate. Therefore, there is a need for a conductive paste that can further improve adhesion to a base material when a dry film is formed.
 本発明は、このような状況に鑑み、基材との密着性をより向上させることができる導電性ペーストを提供することを目的とする。 In view of this situation, the present invention aims to provide a conductive paste that can further improve adhesion to a base material.
 本発明の第1の態様では、導電性粉末、バインダー樹脂、添加剤、及び有機溶剤を含み、添加剤として、下記構造式(1)又は下記構造式(2)で示される構造を有する化合物を含む、導電性ペーストが提供される。
Figure JPOXMLDOC01-appb-C000002
The first aspect of the present invention includes a conductive powder, a binder resin, an additive, and an organic solvent, and as an additive, a compound having a structure represented by the following structural formula (1) or the following structural formula (2). A conductive paste is provided comprising:
Figure JPOXMLDOC01-appb-C000002
(ただし、R、R、Rは、それぞれ独立に、炭素数2~12の飽和又は不飽和の脂肪族炭化水素基を表し、前記脂肪族炭化水素基は、直鎖状、又は分岐鎖状であってもよく、前記脂肪族炭化水素基に含まれる1以上のメチレン(-CH-)が酸素(-O-)に置換されてもよい。) (However, R 1 , R 2 , and R 3 each independently represent a saturated or unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms, and the aliphatic hydrocarbon group is linear or branched. It may be chain-like, and one or more methylene (-CH 2 -) contained in the aliphatic hydrocarbon group may be substituted with oxygen (-O-).)
 また、上記化合物が、導電性ペースト全体に対して0.01質量%以上2.0質量%以下含まれることが好ましい。また、上記化合物は、熱重量分析における重量減少速度が最大となる温度が200℃以上であることが好ましい。また、上記化合物の分子量が250以上3000以下であることが好ましい。導電性ペーストは、さらに、酸系分散剤及び/又は塩基系分散剤を含むことが好ましい。また、導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる少なくとも1種の金属粉末を含むことが好ましい。また、導電性粉末は、平均粒径が0.05μm以上1.0μm以下であることが好ましい。また、バインダー樹脂が、ブチラール系樹脂を含むことが好ましい。また、導電性ペーストは、さらに、セラミック粉末を含むことが好ましい。また、セラミック粉末が、チタン酸バリウムを含むことが好ましい。また、セラミック粉末は、平均粒径が0.01μm以上0.5μm以下であることが好ましい。また、セラミック粉末は、導電性ペースト全体に対して1質量%以上20質量%以下含まれることが好ましい。また、導電性ペーストは、積層セラミック部品の内部電極用であることが好ましい。 Furthermore, it is preferable that the above compound is contained in an amount of 0.01% by mass or more and 2.0% by mass or less based on the entire conductive paste. Further, it is preferable that the temperature of the above compound at which the weight loss rate in thermogravimetric analysis is maximum is 200° C. or higher. Further, it is preferable that the molecular weight of the above compound is 250 or more and 3000 or less. It is preferable that the conductive paste further contains an acidic dispersant and/or a basic dispersant. Moreover, it is preferable that the conductive powder contains at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof. Moreover, it is preferable that the conductive powder has an average particle size of 0.05 μm or more and 1.0 μm or less. Moreover, it is preferable that the binder resin contains a butyral resin. Moreover, it is preferable that the conductive paste further contains ceramic powder. Moreover, it is preferable that the ceramic powder contains barium titanate. Moreover, it is preferable that the ceramic powder has an average particle size of 0.01 μm or more and 0.5 μm or less. Further, it is preferable that the ceramic powder is contained in an amount of 1% by mass or more and 20% by mass or less based on the entire conductive paste. Moreover, it is preferable that the conductive paste is used for internal electrodes of laminated ceramic components.
 本発明の第2の態様では、上記導電性ペーストを用いて形成された電子部品が提供される。 A second aspect of the present invention provides an electronic component formed using the above conductive paste.
 本発明の第3の態様では、誘電体層と内部電極層とを積層した積層体を少なくとも有し、内部電極層は、上記導電性ペーストを用いて形成された積層セラミックコンデンサが提供される。 A third aspect of the present invention provides a multilayer ceramic capacitor having at least a laminate in which a dielectric layer and an internal electrode layer are stacked, the internal electrode layer being formed using the above conductive paste.
 本発明の導電性ペーストは、基材との密着性をより向上させることができる。また、積層セラミックコンデンサの製造工程において、本発明の導電性ペーストを用いて形成される乾燥膜(内部電極層)は、グリーンシート(誘電体層)との高い密着性を有する。 The conductive paste of the present invention can further improve adhesion to the base material. Furthermore, in the manufacturing process of a multilayer ceramic capacitor, the dry film (internal electrode layer) formed using the conductive paste of the present invention has high adhesion to the green sheet (dielectric layer).
図1は、実施形態に係る積層セラミックコンデンサを示す斜視図及び断面図である。FIG. 1 is a perspective view and a sectional view showing a multilayer ceramic capacitor according to an embodiment.
[導電性ペースト]
 本実施形態の導電性ペーストは、導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含む。以下、各成分について詳細に説明する。
[Conductive paste]
The conductive paste of this embodiment includes conductive powder, ceramic powder, dispersant, binder resin, and organic solvent. Each component will be explained in detail below.
(導電性粉末)
 導電性粉末としては、特に限定されず、金属粉末を用いることができ、例えば、Ni、Pd、Pt、Au、Ag、Cu、及びこれらの合金から選ばれる1種以上の粉末を用いることができる。これらの中でも、導電性、耐食性及びコストの観点から、Ni、又はその合金の粉末(以下、「Ni粉末」と称する場合がある)が好ましい。Ni合金としては、例えば、Mn、Cr、Co、Al、Fe、Cu、Zn、Ag、Au、Pt及びPdからなる群より選択される少なくとも1種以上の元素とNiとの合金が用いることができる。Ni合金におけるNiの含有量は、例えば、50質量%以上、好ましくは80質量%以上である。また、Ni粉末は、脱バインダー処理の際、バインダー樹脂の部分的な熱分解による急激なガス発生を抑制するために、数百ppm程度の元素Sを含んでもよい。
(conductive powder)
The conductive powder is not particularly limited, and metal powder can be used, for example, one or more powders selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof can be used. . Among these, powder of Ni or an alloy thereof (hereinafter sometimes referred to as "Ni powder") is preferred from the viewpoints of conductivity, corrosion resistance, and cost. As the Ni alloy, for example, an alloy of Ni and at least one element selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Au, Pt, and Pd can be used. can. The Ni content in the Ni alloy is, for example, 50% by mass or more, preferably 80% by mass or more. Further, the Ni powder may contain about several hundred ppm of element S in order to suppress rapid gas generation due to partial thermal decomposition of the binder resin during binder removal treatment.
 導電性粉末の平均粒径は、好ましくは0.05μm以上1.0μm以下であり、より好ましくは0.1μm以上0.5μm以下である。導電性粉末の平均粒径が上記範囲である場合、薄膜化した積層セラミックコンデンサ(積層セラミック部品)の内部電極用ペーストとして好適に用いることができる。平均粒径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率10,000倍にて観察した画像から、複数の粒子一つ一つの粒径を測定して、得られる平均値(SEM平均粒径)である。 The average particle size of the conductive powder is preferably 0.05 μm or more and 1.0 μm or less, more preferably 0.1 μm or more and 0.5 μm or less. When the average particle size of the conductive powder is within the above range, it can be suitably used as a paste for internal electrodes of thin-film multilayer ceramic capacitors (multilayer ceramic components). The average particle size is a value obtained from observation with a scanning electron microscope (SEM), and is obtained by measuring the particle size of each particle from an image observed with a SEM at a magnification of 10,000 times. This is the average value (SEM average particle size).
 導電性粉末の含有量は、導電性ペースト全体に対して、好ましくは30質量%以上70質量%未満であり、より好ましくは40質量%以上60質量%以下である。導電性粉末の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the conductive powder is preferably 30% by mass or more and less than 70% by mass, more preferably 40% by mass or more and 60% by mass or less, based on the entire conductive paste. When the content of the conductive powder is within the above range, the conductivity and dispersibility are excellent.
(セラミック粉末)
 セラミック粉末としては、特に限定されず、例えば、積層セラミックコンデンサの内部電極用ペーストである場合、適用する積層セラミックコンデンサの種類により適宜、公知のセラミック粉末が選択される。セラミック粉末としては、例えば、Ba及びTiを含むペロブスカイト型酸化物を用いることができ、好ましくはチタン酸バリウム(BaTiO)を含む。
(ceramic powder)
The ceramic powder is not particularly limited, and for example, in the case of a paste for internal electrodes of a multilayer ceramic capacitor, a known ceramic powder is appropriately selected depending on the type of multilayer ceramic capacitor to which it is applied. As the ceramic powder, for example, a perovskite oxide containing Ba and Ti can be used, and preferably barium titanate (BaTiO 3 ) is used.
 セラミック粉末としては、チタン酸バリウムを主成分とし、酸化物を副成分として含むセラミック粉末を用いてもよい。酸化物としては、Mn、Cr、Si、Ca、Ba、Mg、V、W、Ta、Nb及び1種類以上の希土類元素の酸化物が挙げられる。また、セラミック粉末としては、例えば、チタン酸バリウム(BaTiO)のBa原子やTi原子を他の原子、例えば、Sn、Pb、Zrなどで置換したペロブスカイト型酸化物強誘電体のセラミック粉末を用いてもよい。 As the ceramic powder, a ceramic powder containing barium titanate as a main component and an oxide as a subcomponent may be used. Examples of oxides include oxides of Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb, and one or more rare earth elements. In addition, as the ceramic powder, for example, a perovskite oxide ferroelectric ceramic powder in which Ba atoms and Ti atoms of barium titanate (BaTiO 3 ) are replaced with other atoms, such as Sn, Pb, and Zr, is used. It's okay.
 内部電極用の導電性ペーストとして用いる場合、セラミック粉末は、積層セラミックコンデンサ(電子部品)のグリーンシートを構成する誘電体セラミック粉末と同一組成の粉末を用いてもよい。これにより、焼結工程における誘電体層と内部電極層との界面での収縮のミスマッチによるクラック発生が抑制される。このようなセラミック粉末としては、上記以外に、例えば、ZnO、フェライト、PZT、BaO、Al、Bi、R(希土類元素)、TiO、Ndなどの酸化物が挙げられる。なお、セラミック粉末は、1種類を用いてもよく、2種類以上を用いてもよい。 When used as a conductive paste for internal electrodes, the ceramic powder may have the same composition as the dielectric ceramic powder that constitutes the green sheet of a multilayer ceramic capacitor (electronic component). This suppresses the occurrence of cracks due to shrinkage mismatch at the interface between the dielectric layer and the internal electrode layer during the sintering process. In addition to the above, such ceramic powders include, for example, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 , TiO 2 , Nd 2 O 3 and the like. Examples include oxides. Note that one type of ceramic powder may be used, or two or more types of ceramic powder may be used.
 セラミック粉末の平均粒径は、例えば、0.01μm以上0.5μm以下であり、好ましくは0.01μm以上0.3μm以下の範囲である。セラミック粉末の平均粒径が上記範囲であることにより、内部電極用ペーストとして用いた場合、十分に細く薄い均一な内部電極を形成することができる。平均粒径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率50,000倍にて観察した映像から、複数の粒子一つ一つの粒径を測定して、得られる平均値(SEM平均粒径)である。 The average particle size of the ceramic powder is, for example, 0.01 μm or more and 0.5 μm or less, preferably 0.01 μm or more and 0.3 μm or less. Since the average particle size of the ceramic powder is within the above range, when used as an internal electrode paste, a sufficiently thin and uniform internal electrode can be formed. The average particle size is a value obtained from observation using a scanning electron microscope (SEM), and is obtained by measuring the particle size of each particle from an image observed with a SEM at a magnification of 50,000 times. This is the average value (SEM average particle size).
 セラミック粉末の含有量は、導電性ペースト全体に対して、好ましくは1質量%以上20質量%以下であり、より好ましくは3質量%以上15質量%以下である。セラミック粉末の含有量が上記範囲である場合、分散性及び焼結性に優れる。 The content of the ceramic powder is preferably 1% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less, based on the entire conductive paste. When the content of the ceramic powder is within the above range, the dispersibility and sinterability are excellent.
 また、セラミック粉末の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは3質量部以上30質量部以下である。 Further, the content of the ceramic powder is preferably 1 part by mass or more and 30 parts by mass or less, and more preferably 3 parts by mass or more and 30 parts by mass or less, based on 100 parts by mass of the conductive powder.
(バインダー樹脂)
 バインダー樹脂としては、ブチラール系樹脂を含むことが好ましい。また、内部電極用ペーストとして用いる場合、グリーンシートとの接着強度を向上させる観点から、ブチラール系樹脂を含んでもよく、又は、ブチラール系樹脂を単独で使用してもよい。ブチラール系樹脂としては、ポリビニルブチラール(PVB)が挙げられる。導電性ペーストがブチラール系樹脂を含む場合、グリーンシートとの接着強度をより向上させることができる。
(binder resin)
The binder resin preferably contains a butyral resin. Furthermore, when used as a paste for internal electrodes, a butyral-based resin may be included, or a butyral-based resin may be used alone, from the viewpoint of improving the adhesive strength with the green sheet. Examples of the butyral resin include polyvinyl butyral (PVB). When the conductive paste contains a butyral resin, the adhesive strength with the green sheet can be further improved.
 ブチラール系樹脂の含有量は、例えば、バインダー樹脂全体に対して、20質量%以上であってもよく、40質量%以上であってもよく、60質量%以上であってもよい。ブチラール系樹脂の含有量が上記範囲である場合、接着性がより向上し、乾燥膜とグリーンシート(基材)との接着強度が向上する。 The content of the butyral resin may be, for example, 20% by mass or more, 40% by mass or more, or 60% by mass or more based on the entire binder resin. When the content of the butyral resin is within the above range, the adhesiveness is further improved and the adhesive strength between the dry film and the green sheet (substrate) is improved.
 また、ブチラール系樹脂の含有量の上限は、特に限定されないが、例えば、バインダー樹脂全体に対して、90質量%以下であってもよく、80質量%以下であってもよい。ブチラール系樹脂の含有量が上記範囲である場合、導電性ペーストが適度な硬度を有するため、印刷膜が支持フィルムから剥がれなくなる、熱圧着時に電極がつぶれる等の不具合の発生が起こりにくくなる。 Further, the upper limit of the content of the butyral resin is not particularly limited, but may be, for example, 90% by mass or less, or 80% by mass or less, based on the entire binder resin. When the content of the butyral resin is within the above range, the conductive paste has appropriate hardness, so problems such as the printed film not peeling off from the support film and the electrode being crushed during thermocompression bonding are less likely to occur.
 また、ブチラール系樹脂の重量平均分子量(Mw)は、3万以上30万以下であってもよく、5万以上20万以下であってもよく、10万以上15万以下であってもよい。また、ブチラール樹脂のガラス転移点Tgは、50℃以上90℃以下であってもよく、60℃以上80℃以下であってもよい。上記特性を有するブチラール系樹脂とあわせて、後述する添加剤を含むことにより、密着性がより向上した導電性ペーストを得ることができる。なお、ブチラール系樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Further, the weight average molecular weight (Mw) of the butyral resin may be 30,000 or more and 300,000 or less, 50,000 or more and 200,000 or less, or 100,000 or more and 150,000 or less. Further, the glass transition point Tg of the butyral resin may be 50°C or more and 90°C or less, or 60°C or more and 80°C or less. By including the below-mentioned additives in addition to the butyral resin having the above characteristics, a conductive paste with improved adhesion can be obtained. In addition, one type of butyral resin may be used alone, or two or more types may be used in combination.
 また、ブチラール系樹脂以外の樹脂をバインダー樹脂として含んでもよい。上記以外のバインダー樹脂としては、特に限定されず、公知の樹脂を用いることができ、例えば、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、ニトロセルロースなどのセルロース系樹脂、アクリル系樹脂などが挙げられる。中でも、溶剤への溶解性、燃焼分解性の観点などから、セルロース系樹脂を含むことが好ましく、エチルセルロースを含むことがより好ましい。 Additionally, resins other than butyral-based resins may be included as binder resins. Binder resins other than those mentioned above are not particularly limited, and known resins can be used, such as cellulose resins such as methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, and nitrocellulose, and acrylic resins. Among these, from the viewpoint of solubility in solvents and combustion decomposability, it is preferable to contain cellulose resin, and more preferably to contain ethyl cellulose.
 例えば、バインダー樹脂としてセルロース系樹脂を含む場合、重量平均分子量(Mw)は、1万以上30万以下であってもよく、3万以上25万以下であってもよく、5万以上20万以下であってもよい。また、セルロース系樹脂の水酸基価は、特に限定されないが、好ましくは0.1mgKOH/g以上15mgKOH/g以下であり、より好ましくは0.5mgKOH/g以上7mgKOH/g以下であり、さらに好ましくは1.5mgKOH/g以上3mgKOH/g以下である。なお、セルロース系樹脂は、1種単独で含まれてもよいし、2種以上含まれてもよい。 For example, when a cellulose resin is included as the binder resin, the weight average molecular weight (Mw) may be 10,000 or more and 300,000 or less, 30,000 or more and 250,000 or less, or 50,000 or more and 200,000 or less. It may be. The hydroxyl value of the cellulose resin is not particularly limited, but is preferably 0.1 mgKOH/g or more and 15 mgKOH/g or less, more preferably 0.5 mgKOH/g or more and 7 mgKOH/g or less, and even more preferably 1 .5 mgKOH/g or more and 3 mgKOH/g or less. In addition, one type of cellulose resin may be contained alone, or two or more types of cellulose resins may be contained.
 また、バインダー樹脂が、セルロース系樹脂及びブチラール系樹脂を含む場合、密着性を向上させるという観点から、セルロース系樹脂及びブチラール系樹脂の合計含有量(100質量%)に対して、ブチラール系樹脂を20質量%以上含んでもよく、40質量%以上含んでもよく、50質量%超含んでもよく、60質量%以上含んでもよい。両樹脂の含有量が上記範囲である場合、接着性がより向上し、乾燥膜とグリーンシート(基材)との接着強度が向上することがある。また、ブチラール系樹脂の含有量の上限は特に限定されず、100質量%未満であってもよく、90質量%以下であってもよく、80質量%以下であってもよい。両樹脂の含有量が上記範囲である場合、導電性ペーストが適度な硬度を有することができ、印刷膜が支持フィルムから剥がれなくなる、熱圧着時に電極がつぶれる等の不具合の発生が起こりにくくなる。 In addition, when the binder resin contains a cellulose resin and a butyral resin, from the viewpoint of improving adhesion, the butyral resin is added to the total content (100% by mass) of the cellulose resin and the butyral resin. The content may be 20% by mass or more, 40% by mass or more, more than 50% by mass, or 60% by mass or more. When the content of both resins is within the above range, the adhesiveness may be further improved, and the adhesive strength between the dry film and the green sheet (substrate) may be improved. Further, the upper limit of the content of the butyral resin is not particularly limited, and may be less than 100% by mass, may be less than 90% by mass, or may be less than 80% by mass. When the content of both resins is within the above range, the conductive paste can have appropriate hardness, and problems such as the printed film not peeling off from the support film and the electrode being crushed during thermocompression bonding are less likely to occur.
 バインダー樹脂の含有量は、導電性ペースト全体に対して、好ましくは0.5質量%以上10質量%以下であり、より好ましくは1質量%以上7質量%以下である。バインダー樹脂の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 7% by mass or less, based on the entire conductive paste. When the content of the binder resin is within the above range, the conductivity and dispersibility are excellent.
 バインダー樹脂の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上20質量部以下であり、より好ましくは1質量部以上14質量部以下である。 The content of the binder resin is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 1 part by mass or more and 14 parts by mass or less, based on 100 parts by mass of the conductive powder.
(有機溶剤)
 有機溶剤としては、特に限定されず、バインダー樹脂を溶解することができる公知の有機溶剤を用いることができる。有機溶剤としては、例えば、テルペン系溶剤、アセテート系溶剤、エーテル系溶剤、ケトン系溶剤などが挙げられる。
(Organic solvent)
The organic solvent is not particularly limited, and any known organic solvent that can dissolve the binder resin can be used. Examples of the organic solvent include terpene solvents, acetate solvents, ether solvents, and ketone solvents.
 テルペン系溶剤としては、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテートなどが挙げられる。 Examples of terpene solvents include terpineol, dihydroterpineol, dihydroterpineyl acetate, and the like.
 アセテート系溶剤としては、イソボルニルアセテート、イソボルニルプロピネート、イソボルニルブチレート及びイソボルニルイソブチレートなど、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、3-メトキシー3-メチルブチルアセテート、1-メトキシプロピル-2-アセテートなどのグリコールエーテルアセテート類、プロピレングリコールジアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテートなどのグリコールジアセテート類、シクロヘキサノールアセテートなどが挙げられる。 Acetate solvents include isobornyl acetate, isobornyl propinate, isobornyl butyrate and isobornyl isobutyrate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene Glycol ether acetates such as glycol methyl ether acetate, 3-methoxy 3-methylbutyl acetate, 1-methoxypropyl-2-acetate, propylene glycol diacetate, 1,4-butanediol diacetate, 1,3-butylene glycol diacetate Examples include acetate, glycol diacetates such as 1,6-hexanediol diacetate, and cyclohexanol acetate.
 エーテル系溶剤としては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどのプロピレングリコールモノアルキルエーテル類、ジエチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールモノヘキシルエーテルなどのエチレングリコールエーテル類、ジプロピレングリコールメチルーn-プロピルエーテル、ジプロピレングリコールメチルーn-ブチルエーテル、ジプロピレングリコールジメチルエーテルなどが挙げられる。 Ether solvents include propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, diethylene glycol mono-2-ethylhexyl ether, and ethylene glycol mono-2- Examples include ethylene glycol ethers such as ethylhexyl ether, diethylene glycol monohexyl ether, and ethylene glycol monohexyl ether, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl-n-butyl ether, and dipropylene glycol dimethyl ether.
 ケトン系溶剤としては、メチルイソブチルケトン、ジイソブチルケトンなどが挙げられる。ケトン系溶剤を含む場合、分散性を損なうことなく、粘度の調整が可能であり、かつ乾燥性を向上することができる。 Examples of ketone solvents include methyl isobutyl ketone and diisobutyl ketone. When a ketone solvent is included, the viscosity can be adjusted without impairing the dispersibility, and the drying properties can be improved.
 有機溶剤としては、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテート、プロピレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテートからなる群から選ばれる少なくとも1種を含むことが好ましい。これらの有機溶剤を含むことにより、バインダー樹脂との相溶性に優れ、かつ、フィラーの分散性に優れる。 The organic solvent preferably contains at least one selected from the group consisting of terpineol, dihydroterpineol, dihydroterpineyl acetate, propylene glycol monobutyl ether, and diethylene glycol monobutyl ether acetate. By containing these organic solvents, the composition has excellent compatibility with the binder resin and excellent dispersibility of the filler.
 有機溶剤(全体)の含有量は、導電性ペースト全量に対して、20質量%以上60質量%以下が好ましく、25質量%以上45質量%以下がより好ましい。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the organic solvent (total) is preferably 20% by mass or more and 60% by mass or less, more preferably 25% by mass or more and 45% by mass or less, based on the total amount of the conductive paste. When the content of the organic solvent is within the above range, the conductivity and dispersibility are excellent.
 有機溶剤の含有量は、導電性粉末100質量部に対して、好ましくは50質量部以上130質量部以下であり、より好ましくは60質量部以上90質量部以下である。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the organic solvent is preferably 50 parts by mass or more and 130 parts by mass or less, more preferably 60 parts by mass or more and 90 parts by mass or less, based on 100 parts by mass of the conductive powder. When the content of the organic solvent is within the above range, the conductivity and dispersibility are excellent.
 また、有機溶剤は、1種類を用いてもよく、2種類以上を用いてもよい。例えば、有機溶剤として、2種類以上を含む場合、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテート、プロピレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテートからなる群から選ばれる少なくとも1種と、炭化水素系溶剤とを含んでもよい。また、これらの有機溶剤とあわせて、メチルイソブチルケトン、及びジイソブチルケトンから選ばれる少なくとも1種を含んでもよい。 Moreover, one type of organic solvent may be used, or two or more types may be used. For example, when two or more organic solvents are included, at least one selected from the group consisting of terpineol, dihydroterpineol, dihydroterpineyl acetate, propylene glycol monobutyl ether, and diethylene glycol monobutyl ether acetate, and a hydrocarbon solvent. May include. In addition to these organic solvents, at least one selected from methyl isobutyl ketone and diisobutyl ketone may be included.
 炭化水素系溶剤としては、例えば、トリデカン、ノナン、シクロヘキサンなどを含む溶剤、ミネラルスピリット、ナフテン系溶剤などが挙げられる。中でも、ミネラルスピリットを含むことが好ましい。炭化水素系溶剤の含有量は、有機溶剤全体に対して、10質量%以上50質量%以下であってもよく、20質量%以上40質量%以下であってもよい。 Examples of the hydrocarbon solvent include solvents containing tridecane, nonane, cyclohexane, mineral spirits, naphthenic solvents, and the like. Among these, it is preferable to include mineral spirits. The content of the hydrocarbon solvent may be 10% by mass or more and 50% by mass or less, or 20% by mass or more and 40% by mass or less, based on the entire organic solvent.
(添加剤)
(a)エステル化合物
 本実施形態に係る導電性ペーストは、添加剤として、下記の式(A)又は式(B)に示される構造部分を有する化合物(以下、「エステル化合物」ともいう)を含む。
(Additive)
(a) Ester compound The conductive paste according to the present embodiment contains a compound having a structural moiety represented by the following formula (A) or formula (B) (hereinafter also referred to as "ester compound") as an additive. .
Figure JPOXMLDOC01-appb-C000003
(ただし、Rは、炭素数2~12の飽和又は不飽和の脂肪族炭化水素基を表し、前記脂肪族炭化水素基は、直鎖状、又は分岐鎖状であってもよく、前記脂肪族炭化水素基に含まれる1以上のメチレン(-CH-)が酸素(-O-)に置換されてもよい。)
Figure JPOXMLDOC01-appb-C000003
(However, R 1 represents a saturated or unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms, and the aliphatic hydrocarbon group may be linear or branched; One or more methylenes (-CH 2 -) contained in the group hydrocarbon group may be substituted with oxygen (-O-).)
 エステル化合物は、具体的には、下記構造式(1)又は下記構造式(2)で示される構造を有する。
Figure JPOXMLDOC01-appb-C000004
Specifically, the ester compound has a structure represented by the following structural formula (1) or the following structural formula (2).
Figure JPOXMLDOC01-appb-C000004
 上記式(1)、(2)において、R、R、Rは、それぞれ独立に、炭素数2~12の飽和又は不飽和の脂肪族炭化水素基を表し、前記脂肪族炭化水素基は、直鎖状、又は分岐鎖状であってもよく、前記脂肪族炭化水素基に含まれる1以上のメチレン(-CH-)が酸素(-O-)に置換されてもよい。なお、R、R、及びRの炭素数は、酸素(-O-)に置換されたメチレン(-CH-)の炭素の数を含む。 In the above formulas (1) and (2), R 1 , R 2 and R 3 each independently represent a saturated or unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms; may be linear or branched, and one or more methylene (-CH 2 -) contained in the aliphatic hydrocarbon group may be substituted with oxygen (-O-). Note that the number of carbon atoms in R 1 , R 2 and R 3 includes the number of carbon atoms in methylene (-CH 2 -) substituted with oxygen (-O-).
 導電性ペーストが上記エステル化合物を含む場合、乾燥膜の密着性を向上させることができる。この理由の詳細は不明であるが、例えば、上記エステル化合物が樹脂同士の相互作用を阻害することで乾燥膜が適度に軟化し、軟化により変形しやすくなった乾燥膜や、相互作用を生じなかった樹脂等により、接着界面での絡み合いが生じやすくなるため、乾燥膜とセラミックグリーンシート(誘電体層)との密着性が向上する、と考えられる。 When the conductive paste contains the above-mentioned ester compound, the adhesion of the dried film can be improved. The details of the reason for this are unknown, but for example, the above ester compound inhibits the interaction between resins, causing the dried film to become moderately soft, resulting in a dry film that becomes easily deformed due to softening, and a dry film that does not interact. It is thought that the adhesion between the dried film and the ceramic green sheet (dielectric layer) is improved because the resin or the like tends to cause entanglement at the adhesive interface.
 上記式(1)、(2)において、R及びRの炭素数の下限は、それぞれ独立に、3以上であってもよく、5以上であってもよい。また、R及びRの炭素数の上限は、それぞれ独立に、10以下であってもよく、8以下であってもよい。また、RとRの炭素数は同じであってもよい。 In the above formulas (1) and (2), the lower limit of the number of carbon atoms in R 1 and R 3 may each independently be 3 or more, or 5 or more. Further, the upper limit of the number of carbon atoms in R 1 and R 3 may be independently 10 or less, or 8 or less. Moreover, the number of carbon atoms in R 1 and R 3 may be the same.
 また、R及びRは、無置換の脂肪族炭化水素基であってもよく、例えば、1つのメチレン(-CH-)が酸素(-O-)に置換されてもよい。また、RとRは、同様の構造を有してもよい。 Further, R 1 and R 3 may be unsubstituted aliphatic hydrocarbon groups, for example, one methylene (-CH 2 -) may be substituted with oxygen (-O-). Moreover, R 1 and R 3 may have the same structure.
 上記(1)、(2)において、Rの炭素数の下限は、3以上であってもよい。また、Rの炭素数の上限は、10以下であってもよく、8以下であってもよい。また、Rは、例えば、1以上のメチレン(-CH-)が酸素(-O-)に置換されてもよいが、無置換の脂肪族炭化水素基であってもよい。 In (1) and (2) above, the lower limit of the number of carbon atoms in R 2 may be 3 or more. Further, the upper limit of the number of carbon atoms in R 2 may be 10 or less, or may be 8 or less. Further, R 2 may be, for example, one or more methylene (-CH 2 -) substituted with oxygen (-O-), or may be an unsubstituted aliphatic hydrocarbon group.
 上記エステル化合物の熱重量分析における重量減少速度が最大となる温度(最大熱分解温度)が、例えば、200℃以上であってもよく、220℃以上であってもよく、250℃以上であることが好ましい。最大熱分解温度が上記範囲である場合、積層体のデラミネーションやクラックを抑えられる。また、沸点又は熱分解温度の上限は特に限定されないが、例えば、450℃以下であってもよく、400℃以下であってもよく、350℃以下であってもよい。 The temperature at which the weight loss rate is maximum in thermogravimetric analysis of the ester compound (maximum thermal decomposition temperature) may be, for example, 200°C or higher, 220°C or higher, or 250°C or higher. is preferred. When the maximum thermal decomposition temperature is within the above range, delamination and cracking of the laminate can be suppressed. Further, the upper limit of the boiling point or thermal decomposition temperature is not particularly limited, but may be, for example, 450°C or lower, 400°C or lower, or 350°C or lower.
 なお、最大熱分解温度とは、以下の方法で熱重量測定(TG)法により求めた値である。すなわち、熱分解重量測定装置(ネッチ製、STA25000REGULUS)を用い、窒素雰囲気下、20℃から550℃まで昇温速度5℃/分で昇温し、その際の重量減量を測定した際、微分加熱減量が最も大きくなる温度を最大熱分解温度とした。 Note that the maximum thermal decomposition temperature is a value determined by the thermogravimetry (TG) method using the following method. That is, when the temperature was raised from 20°C to 550°C at a rate of 5°C/min in a nitrogen atmosphere using a pyrolysis weight measuring device (manufactured by Netch, STA25000REGULUS), and the weight loss at that time was measured, differential heating was detected. The temperature at which the weight loss was greatest was defined as the maximum thermal decomposition temperature.
 上記エステル化合物の分子量は、250以上3000以下であることが好ましく、250以上1000以下であることがより好ましく、250以上500以下であることがさらに好ましい。上記エステル化合物の分子量が上記範囲である場合、セラミックグリーンシート(誘電体層)との密着性がより向上する。 The molecular weight of the ester compound is preferably 250 or more and 3000 or less, more preferably 250 or more and 1000 or less, and even more preferably 250 or more and 500 or less. When the molecular weight of the ester compound is within the above range, the adhesion to the ceramic green sheet (dielectric layer) is further improved.
 また、上記エステル化合物の含有量は、導電性ペースト全体に対して、好ましくは0.01質量%以上1.0質量%以下である。上記エステル化合物の含有量が上記範囲である場合、乾燥膜とセラミックグリーンシート(誘電体層)との密着性が向上する。また、エステル化合物の含有量の下限は、より密着性を向上させるという観点から、導電性ペースト全体に対して、0.05質量%以上であってもよく、0.1質量%以上であってもよい。また、エステル化合物の含有量の上限は、0.7質量%以下であってもよく、0.4質量%以下であってもよい。 Furthermore, the content of the ester compound is preferably 0.01% by mass or more and 1.0% by mass or less based on the entire conductive paste. When the content of the ester compound is within the above range, the adhesion between the dry film and the ceramic green sheet (dielectric layer) is improved. In addition, the lower limit of the content of the ester compound may be 0.05% by mass or more, and may be 0.1% by mass or more, based on the entire conductive paste, from the viewpoint of further improving adhesion. Good too. Moreover, the upper limit of the content of the ester compound may be 0.7% by mass or less, or may be 0.4% by mass or less.
 エステル化合物の含有量の上限は、特に限定されないが、例えば、2質量%以下であってもよく、1.8質量%以下であってもよく、1.5質量%以下であってもよく、1.0質量%以下であってもよい。エステル化合物の含有量が1.0質量%を超えると、密着性は向上するものの、乾燥膜とセラミックグリーンシートとの積層体の圧着体を脱バインダー処理する際に、熱分解してガスが発生することがある。エステル化合物の含有量は、上記の範囲内で、使用環境などに応じて適宜調整することができる。 The upper limit of the content of the ester compound is not particularly limited, but may be, for example, 2% by mass or less, 1.8% by mass or less, 1.5% by mass or less, It may be 1.0% by mass or less. When the content of the ester compound exceeds 1.0% by mass, although adhesion improves, gas is generated due to thermal decomposition during debinding of the pressed laminate of the dry membrane and ceramic green sheet. There are things to do. The content of the ester compound can be adjusted as appropriate within the above range depending on the usage environment and the like.
 また、エステル化合物の含有量は、上記バインダー樹脂の種類及び含有量に応じて、適宜設定することができる。例えば、エステル化合物の含有量は、ブチラール系樹脂の含有量に応じて設定してもよい。エステル化合物の含有量は、例えば、ブチラール系樹脂100質量部に対して、エステル化合物を10質量部以上90質量部以下含有してもよく、10質量部60質量部以下であってもよく、10質量部以上50質量部以下であってもよい。 Furthermore, the content of the ester compound can be appropriately set depending on the type and content of the binder resin. For example, the content of the ester compound may be set depending on the content of the butyral resin. The content of the ester compound may be, for example, 10 parts by mass or more and 90 parts by mass or less, 10 parts by mass and 60 parts by mass or less, 10 parts by mass or less, based on 100 parts by mass of the butyral resin. The amount may be 50 parts by mass or more and 50 parts by mass or less.
(b)分散剤
 導電性ペーストが分散剤を含む場合、導電性粉末及びセラミック粉末の分散性を向上することができる。分散剤としては、例えば、酸系分散剤、塩基系分散剤、非イオン系分散剤、両性分散剤などを含んでもよく、酸系分散剤及び塩基系分散剤の少なくとも一方を含むことが好ましく、酸系分散剤を含むことがより好ましい。なお、これらの分散剤は、1種又は2種以上組み合わせて用いてもよい。
(b) Dispersant When the conductive paste contains a dispersant, the dispersibility of the conductive powder and ceramic powder can be improved. The dispersant may include, for example, an acidic dispersant, a basic dispersant, a nonionic dispersant, an amphoteric dispersant, etc., and preferably includes at least one of an acidic dispersant and a basic dispersant, It is more preferable that an acidic dispersant is included. Note that these dispersants may be used alone or in combination of two or more.
 酸系分散剤としては、高級脂肪酸などのカルボン酸系分散剤、ポリカルボン酸系分散剤、リン酸系分散剤、高分子界面活性剤等の酸性基を有する酸系分散剤などを含んでもよく、ポリカルボン酸系分散剤、及び、リン酸系分散剤の少なくとも一方を含むことが好ましい。また、ポリカルボン酸系分散剤は、くし形構造を有するくし形カルボン酸であってもよい。 The acid-based dispersant may include acid-based dispersants having acidic groups such as carboxylic acid-based dispersants such as higher fatty acids, polycarboxylic acid-based dispersants, phosphoric acid-based dispersants, and polymeric surfactants. , a polycarboxylic acid dispersant, and a phosphoric acid dispersant. Further, the polycarboxylic acid dispersant may be a comb-shaped carboxylic acid having a comb-shaped structure.
 高級脂肪酸としては、不飽和カルボン酸でも飽和カルボン酸でもよく、特に限定されるものではないが、ステアリン酸、オレイン酸、ミリスチン酸、パルミチン酸、リノール酸、ラウリン酸、リノレン酸など炭素数11以上のものが挙げられる。中でもオレイン酸、又はステアリン酸が好ましい。 Higher fatty acids may be unsaturated carboxylic acids or saturated carboxylic acids, and are not particularly limited, but include stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, linolenic acid, etc. having 11 or more carbon atoms. Examples include: Among these, oleic acid or stearic acid is preferred.
 また、酸系分散剤としては、例えば、グリシンとオレイン酸の化合物であるオレオイルザルコシンや、オレイン酸の代わりにステアリン酸あるいはラウリン酸などの高級脂肪酸を用いたアミド化合物であるアルキルモノアミン塩型であってもよい。 Examples of acid-based dispersants include oleoyl sarcosine, which is a compound of glycine and oleic acid, and alkyl monoamine salt type, which is an amide compound using higher fatty acids such as stearic acid or lauric acid instead of oleic acid. It may be.
 また、導電性粉末とセラミック粉末との分離抑制効果をより向上させるという観点から、ジカルボン酸を含んでもよい。ジカルボン酸は、2つのカルボキシル基(COO-基)を有するカルボン酸である。また、ジカルボン酸の平均分子量は、特に限定されないが、例えば、200以上1000以下であってもよい。 Further, from the viewpoint of further improving the effect of suppressing separation between the conductive powder and the ceramic powder, dicarboxylic acid may be included. A dicarboxylic acid is a carboxylic acid having two carboxyl groups (COO- groups). Further, the average molecular weight of the dicarboxylic acid is not particularly limited, but may be, for example, 200 or more and 1000 or less.
 塩基系分散剤としては、例えば、ラウリルアミン、ロジンアミン、セチルアミン、ミリスチルアミン、ステアリルアミンなどの脂肪族アミンなどが挙げられる。導電性ペーストは、上記の酸系分散剤と塩基系分散とを含有する場合、より分散性に優れ、経時的な粘度安定性にも優れることがある。 Examples of the basic dispersant include aliphatic amines such as laurylamine, rosinamine, cetylamine, myristylamine, and stearylamine. When the conductive paste contains the above-mentioned acid-based dispersant and base-based dispersion, it may have better dispersibility and better viscosity stability over time.
 分散剤は、導電性ペースト全体に対して、例えば、0.01質量%以上3質量%以下含有される。分散剤の含有量の上限を含む範囲は、2質量%以下であってもよく、1質量%以下であってもよく、0.5質量%以下であってもよい。分散剤の含有量が上記範囲である場合、導電性ペーストの分散性を向上させたり、シートアタックやグリーンシートの剥離不良を抑制したりすることができる。 The dispersant is contained, for example, from 0.01% by mass to 3% by mass with respect to the entire conductive paste. The range including the upper limit of the dispersant content may be 2% by mass or less, 1% by mass or less, or 0.5% by mass or less. When the content of the dispersant is within the above range, it is possible to improve the dispersibility of the conductive paste and to suppress sheet attack and poor peeling of the green sheet.
(c)その他の添加剤
 本実施形態の導電性ペーストは、必要に応じて、上記の成分以外のその他の添加剤を含んでもよい。その他の添加剤としては、例えば、消泡剤、可塑剤、界面活性剤、増粘剤などの従来公知の添加物を用いることができる。
(c) Other additives The conductive paste of this embodiment may contain other additives other than the above-mentioned components, as necessary. As other additives, conventionally known additives such as antifoaming agents, plasticizers, surfactants, and thickeners can be used.
(導電性ペースト)
 本実施形態に係る導電性ペーストの製造方法は、特に限定されず、従来公知の方法を用いることができる。導電性ペーストは、例えば、上記の各成分を、3本ロールミル、ボールミル、ミキサーなどで攪拌・混練することにより製造することができる。
(conductive paste)
The method for manufacturing the conductive paste according to this embodiment is not particularly limited, and conventionally known methods can be used. The conductive paste can be produced, for example, by stirring and kneading the above-mentioned components using a three-roll mill, a ball mill, a mixer, or the like.
 本実施形態に係る導電性ペーストは、上記エステル化合物を含むことにより、乾燥膜とグリーンシートとの密着性を向上させることができ、この密着性向上の一因として、上述したように、エステル化合物が樹脂同士の相互作用を阻害することで乾燥膜を適度に軟化(ガラス転移点Tgを低下)させて、変形しやすくなることが考えられる。 By containing the above-mentioned ester compound, the conductive paste according to the present embodiment can improve the adhesion between the dry film and the green sheet. It is thought that by inhibiting the interaction between the resins, the dried film is moderately softened (lowering the glass transition point Tg) and becomes easily deformed.
 例えば、導電性ペースト中の導電性粉末及びセラミック粉末を除いた成分を120℃、40分乾燥して、有機溶剤を除去した乾燥体(評価用サンプル)を用意した場合、この乾燥体のガラス転移点Tgは、上記エステル化合物を含まないこと以外は、同様の条件で形成された乾燥体のガラス転移点Tg’よりも低下することが好ましい。上記エステル化合物は、TgをTg’と比較して、10℃以上、13℃以上、15℃以上、又は20℃以上、低下させるものであってもよい。例えば、乾燥体(評価用サンプル)のガラス転移点Tgは、60℃以下であってもよく、55℃以下であってもよく、50℃以下であってもよい。なお、ガラス転移点Tgの下限は、例えば、30℃以上である。 For example, if a dried product (evaluation sample) is prepared by drying the components of the conductive paste excluding the conductive powder and ceramic powder at 120°C for 40 minutes and removing the organic solvent, the glass transition of this dried product is It is preferable that the point Tg is lower than the glass transition point Tg' of a dried body formed under the same conditions except that it does not contain the above-mentioned ester compound. The ester compound may lower Tg by 10°C or more, 13°C or more, 15°C or more, or 20°C or more compared to Tg'. For example, the glass transition point Tg of the dried body (sample for evaluation) may be 60°C or lower, 55°C or lower, or 50°C or lower. Note that the lower limit of the glass transition point Tg is, for example, 30° C. or higher.
 なお、導電性ペーストがバインダー樹脂として、2種類以上の樹脂を含有する場合、含まれる樹脂に応じて、複数のガラス転移点Tgが測定されることがあるが、本明細書における評価用サンプルのガラス転移点Tgは、最も低温領域におけるガラス転移点Tgを示す。また、上記乾燥体(評価用サンプル)のガラス転移点Tgは、実施例に記載の方法で測定することができる。 Note that when the conductive paste contains two or more types of resins as binder resins, multiple glass transition points Tg may be measured depending on the resins contained. The glass transition point Tg indicates the glass transition point Tg in the lowest temperature region. Further, the glass transition point Tg of the dried body (sample for evaluation) can be measured by the method described in Examples.
 また、導電性ペーストを基材の表面に塗布し、75℃、20分で乾燥して、乾燥膜を形成した場合、室温における乾燥膜表面のビッカース硬度が10以下であることが好ましく、9以下であることがより好ましく、8以下であることがさらに好ましい。なお、ビッカース硬度(室温)の下限は、例えば、3.5以上である。 In addition, when a conductive paste is applied to the surface of a base material and dried at 75°C for 20 minutes to form a dry film, the Vickers hardness of the dry film surface at room temperature is preferably 10 or less, and 9 or less. More preferably, it is 8 or less. Note that the lower limit of Vickers hardness (room temperature) is, for example, 3.5 or more.
 また、60℃における乾燥膜表面のビッカース硬度が8以下であることが好ましく、7以下であることがより好ましく、6以下であることがさらに好ましい。なお、ビッカース硬度(60℃)の下限は、例えば、3以上である。なお、乾燥膜はビッカース硬度(60℃)の測定の際、予め測定する乾燥膜を60℃、3分放置して状態調節することが望ましい。 Furthermore, the Vickers hardness of the dry film surface at 60° C. is preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less. Note that the lower limit of Vickers hardness (60° C.) is, for example, 3 or more. In addition, when measuring the Vickers hardness (60° C.) of the dried film, it is desirable to condition the dried film to be previously measured by leaving it at 60° C. for 3 minutes.
 導電性ペーストは、積層セラミックコンデンサなどの電子部品に好適に用いることができる。積層セラミックコンデンサは、例えば、誘電体グリーンシートを用いて形成される誘電体層及び導電性ペーストを用いて形成される内部電極層を有する。 The conductive paste can be suitably used for electronic components such as multilayer ceramic capacitors. A multilayer ceramic capacitor includes, for example, a dielectric layer formed using a dielectric green sheet and an internal electrode layer formed using a conductive paste.
[積層セラミックコンデンサ]
 以下、本発明の積層セラミックコンデンサの実施形態について、図面を参照しながら説明する。図面においては、適宜、模式的に表現することや、縮尺を変更して表現することがある。また、部材の位置や方向などを、適宜、図1などに示すXYZ直交座標系を参照して説明する。このXYZ直交座標系において、X方向及びY方向は水平方向であり、Z方向は鉛直方向(上下方向)である。
[Multilayer ceramic capacitor]
Embodiments of the multilayer ceramic capacitor of the present invention will be described below with reference to the drawings. In the drawings, the drawings may be expressed schematically or with a changed scale, as appropriate. Further, the positions and directions of members will be explained with reference to the XYZ orthogonal coordinate system shown in FIG. 1 and the like as appropriate. In this XYZ orthogonal coordinate system, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction (up and down direction).
 図1A及びBは、積層セラミックコンデンサ1を示す図である。積層セラミックコンデンサ1は、誘電体層12及び内部電極層11を交互に積層したセラミック積層体10と外部電極20とを備える。 FIGS. 1A and 1B are diagrams showing a multilayer ceramic capacitor 1. The multilayer ceramic capacitor 1 includes a ceramic laminate 10 in which dielectric layers 12 and internal electrode layers 11 are alternately stacked, and an external electrode 20.
 以下、上記導電性ペーストを使用した積層セラミックコンデンサの製造方法について説明する。まず、セラミックグリーンシート上に、導電性ペーストを印刷し、乾燥して、乾燥膜を形成する。この乾燥膜を上面に有する複数のセラミックグリーンシートを、圧着により積層させて積層体を得た後、積層体を焼成して一体化することにより、内部電極層11と誘電体層12とが交互に積層したセラミック積層体10を作製する。その後、セラミック積層体10の両端部に一対の外部電極20を形成することにより積層セラミックコンデンサ1が製造される。以下に、より詳細に説明する。 Hereinafter, a method for manufacturing a multilayer ceramic capacitor using the above conductive paste will be explained. First, a conductive paste is printed on a ceramic green sheet and dried to form a dry film. A plurality of ceramic green sheets having this dry film on the upper surface are laminated by pressure bonding to obtain a laminate, and then the laminate is baked and integrated, so that the internal electrode layer 11 and the dielectric layer 12 are alternately formed. A ceramic laminate 10 is produced in which the ceramic laminate 10 is laminated. Thereafter, a pair of external electrodes 20 are formed at both ends of the ceramic laminate 10, thereby manufacturing the multilayer ceramic capacitor 1. This will be explained in more detail below.
 まず、未焼成のセラミックシートであるグリーンシートを用意する。このグリーンシートとしては、例えば、チタン酸バリウム等の所定のセラミックの原料粉末に、ポリビニルブチラール等のバインダー樹脂とターピネオール等の溶剤とを加えて得た誘電体層用ペーストを、PETフィルム等の支持フィルム上にシート状に塗布し、乾燥させて溶剤を除去したものが挙げられる。なお、グリーンシートからなる誘電体層の厚みは、特に限定されないが、積層セラミックコンデンサの小型化の要請の観点から、0.05μm以上3μm以下が好ましい。 First, a green sheet, which is an unfired ceramic sheet, is prepared. This green sheet is made of a dielectric layer paste obtained by adding a binder resin such as polyvinyl butyral and a solvent such as terpineol to a predetermined ceramic raw material powder such as barium titanate. Examples include those that are applied in the form of a sheet onto a film and dried to remove the solvent. Note that the thickness of the dielectric layer made of green sheets is not particularly limited, but from the viewpoint of the demand for miniaturization of multilayer ceramic capacitors, it is preferably 0.05 μm or more and 3 μm or less.
 次いで、グリーンシートの片面に、上述の導電性ペーストを印刷して塗布し、乾燥して、グリーンシートの片面に乾燥膜を形成したものを複数枚、用意する。なお、導電性ペーストから形成される乾燥膜の厚みは、内部電極層11の薄層化の要請の観点から、乾燥後1μm以下とすることが好ましい。 Next, a plurality of green sheets are prepared in which the above-mentioned conductive paste is printed and applied on one side of the green sheet and dried to form a dry film on one side of the green sheet. Note that the thickness of the dried film formed from the conductive paste is preferably 1 μm or less after drying, from the viewpoint of reducing the thickness of the internal electrode layer 11.
 次いで、支持フィルムから、グリーンシートを剥離するとともに、グリーンシートとその片面に形成された乾燥膜とが交互に配置されるように積層した後、加熱・加圧処理により積層体を得る。なお、積層体の両面に、導電性ペーストを塗布していない保護用のセラミックグリーンシートを更に配置する構成としても良い。 Next, the green sheets are peeled off from the support film, and the green sheets and the dry film formed on one side of the green sheets are laminated so that they are alternately arranged, and then a laminate is obtained by heat and pressure treatment. Note that a configuration may be adopted in which protective ceramic green sheets to which no conductive paste is applied are further disposed on both sides of the laminate.
 次いで、積層体を所定サイズに切断してグリーンチップを形成した後、グリーンチップに対して脱バインダー処理を施し、還元雰囲気下において焼成することにより、積層セラミック焼成体(セラミック積層体10)を製造する。なお、脱バインダー処理における雰囲気は、大気又はNガス雰囲気にすることが好ましい。脱バインダー処理を行う際の温度は、例えば200℃以上400℃以下である。また、脱バインダー処理を行う際の、上記温度の保持時間を0.5時間以上24時間以下とすることが好ましい。また、焼成は、内部電極層に用いる金属の酸化を抑制するために還元雰囲気で行われ、また、積層体の焼成を行う際の温度は、例えば、1000℃以上1350℃以下であり、焼成を行う際の、温度の保持時間は、例えば、0.5時間以上8時間以下である。 Next, after cutting the laminate into a predetermined size to form a green chip, the green chip is subjected to binder removal treatment and fired in a reducing atmosphere to produce a laminated ceramic fired body (ceramic laminate 10). do. Note that the atmosphere during the binder removal treatment is preferably air or N 2 gas atmosphere. The temperature during the binder removal treatment is, for example, 200°C or more and 400°C or less. Further, it is preferable that the holding time at the above temperature during the binder removal treatment is 0.5 hours or more and 24 hours or less. Further, the firing is performed in a reducing atmosphere to suppress oxidation of the metal used for the internal electrode layer, and the temperature when firing the laminate is, for example, 1000°C or more and 1350°C or less, and the firing is The temperature is maintained for a period of, for example, 0.5 hours or more and 8 hours or less.
 グリーンチップの焼成を行うことにより、セラミックグリーンシート中の有機バインダーが完全に除去されるとともに、セラミックの原料粉末が焼成されて、セラミック製の誘電体層12が形成される。また乾燥膜中の有機ビヒクルが除去されるとともに、ニッケル粉末又はニッケルを主成分とする合金粉末が焼結もしくは溶融、一体化されて、内部電極層11が形成され、誘電体層12と内部電極層11とが複数枚、交互に積層された積層セラミック焼成体が形成される。なお、酸素を誘電体層の内部に取り込んで信頼性を高めるとともに、内部電極の再酸化を抑制するとの観点から、焼成後の積層セラミック焼成体に対して、アニール処理を施してもよい。 By firing the green chip, the organic binder in the ceramic green sheet is completely removed, and the ceramic raw material powder is fired to form the ceramic dielectric layer 12. Further, the organic vehicle in the dry film is removed, and the nickel powder or alloy powder mainly composed of nickel is sintered or melted and integrated to form the internal electrode layer 11, and the dielectric layer 12 and the internal electrode A laminated ceramic fired body is formed in which a plurality of layers 11 are alternately laminated. Note that from the viewpoint of increasing reliability by incorporating oxygen into the dielectric layer and suppressing re-oxidation of the internal electrodes, the fired multilayer ceramic fired body may be subjected to an annealing treatment.
 そして、作製した積層セラミック焼成体に対して、一対の外部電極20を設けることにより、積層セラミックコンデンサ1が製造される。例えば、外部電極20は、外部電極層21及びメッキ層22を備える。外部電極層21は、内部電極層11と電気的に接続する。なお、外部電極20の材料としては、例えば、銅やニッケル、又はこれらの合金が好適に使用できる。なお、電子部品として、積層セラミックコンデンサ以外の電子部品を用いることもできる。 Then, the multilayer ceramic capacitor 1 is manufactured by providing a pair of external electrodes 20 on the produced multilayer ceramic fired body. For example, the external electrode 20 includes an external electrode layer 21 and a plating layer 22. External electrode layer 21 is electrically connected to internal electrode layer 11 . Note that as the material for the external electrode 20, for example, copper, nickel, or an alloy thereof can be suitably used. Note that electronic components other than multilayer ceramic capacitors can also be used as the electronic components.
 以下、本発明を実施例と比較例に基づき詳細に説明するが、本発明は実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be explained in detail based on Examples and Comparative Examples, but the present invention is not limited by the Examples in any way.
[評価方法]
(密着性評価)
 予め作製しておいたチタン酸バリウム及びポリビニルブチラールを含有するグリーンシートの表面に、導電性ペースト(試料)を塗布し、WET膜厚35μmの導電性ペースト膜を形成した。得られたグリーンシート及びその表面に形成した内部電極用の導電性ペースト膜からなるシートを75℃で20分間、乾燥処理し、グリーンシート上に乾燥膜を形成した。乾燥させたシート(乾燥膜-グリーンシート)と、別のグリーンシートとを、導電性ペーストを塗布した面をグリーンシートで挟み込む形で、重ねた後、温度40℃、圧力20MPaで20秒間プレスを行う事で積層体(評価用)を作成した。
[Evaluation method]
(Adhesion evaluation)
A conductive paste (sample) was applied to the surface of a green sheet containing barium titanate and polyvinyl butyral prepared in advance to form a conductive paste film with a WET thickness of 35 μm. The obtained green sheet and a sheet consisting of a conductive paste film for internal electrodes formed on the surface thereof were dried at 75° C. for 20 minutes to form a dry film on the green sheet. The dried sheet (dried film - green sheet) and another green sheet were stacked with the conductive paste applied side sandwiched between the green sheets, and then pressed at a temperature of 40°C and a pressure of 20 MPa for 20 seconds. By doing so, a laminate (for evaluation) was created.
 得られた積層体を1cm角で切断後、テープを用いて積層体の両面をそれぞれ引張試験機(株式会社島津製作所製、AGS-50NX)の治具にセットした後、引張試験を行った。試験速度20mm/minで、破断する力(グリーンシートから乾燥膜を剥離する力)を記録した。比較例1の破断する力を100%として、それぞれの破断する力を%で評価した。 After cutting the obtained laminate into 1 cm square pieces, both sides of the laminate were set in the jig of a tensile testing machine (AGS-50NX, manufactured by Shimadzu Corporation) using tape, and then a tensile test was conducted. The force to break (force to peel the dry film from the green sheet) was recorded at a test speed of 20 mm/min. The breaking force of each sample was evaluated in %, with the breaking force of Comparative Example 1 being 100%.
(硬度測定)
 密着性評価と同様の条件で作製した導電性ペースト膜(乾燥膜)を形成したグリーンシートの表面(乾燥膜側)を、マイクロビッカース硬度計(株式会社島津製作所製、HMV-G21DT)を用いて、試験力98mNの条件で表面のビッカース硬度をn=5点で計測し、それらの平均値を求めた。硬度測定は、サンプルをガラス基板に貼り付け、硬度計の試料台である加熱ステージ上に置き、加熱なしの室温(25℃)及び、60℃に加熱した状態でそれぞれ行った。なお、ビッカース硬度(60℃)の測定の際は、予め測定する乾燥膜を60℃、3分間放置して状態調節した後、60℃で加熱した状態のまま測定した。
(hardness measurement)
The surface (dry film side) of a green sheet on which a conductive paste film (dry film) was formed under the same conditions as for adhesion evaluation was measured using a micro Vickers hardness meter (manufactured by Shimadzu Corporation, HMV-G21DT). The Vickers hardness of the surface was measured at n=5 points under the conditions of a test force of 98 mN, and the average value thereof was determined. Hardness measurements were carried out at room temperature (25° C.) without heating and at 60° C. by attaching the sample to a glass substrate and placing it on a heating stage, which is the sample stand of the hardness meter. In addition, when measuring the Vickers hardness (60°C), the dried film to be measured was left at 60°C for 3 minutes to condition it, and then the measurement was performed while it was heated at 60°C.
(ガラス転移点Tgの測定)
 導電性ペーストに含まれる成分のうち、導電性粉末及びセラミック粉末を除いた成分、すなわち、エチルセルロース樹脂、ポリビニルブチラール樹脂、添加剤、及び、有機溶剤を、導電性ペーストに含まれる量と同様となるように秤量し、自公転ミキサー(シンキー製、ARE-310)を用いて、2000rpm、4分間混合した後、得られた液体(混合物)をPETフィルム上にアプリケータを用いてwet膜厚254μmで塗布し、120℃、40分乾燥して、評価用のサンプルを得た。なお、混合物中の有機溶剤は、乾燥の際に除去される。
(Measurement of glass transition point Tg)
Among the components contained in the conductive paste, the components excluding the conductive powder and the ceramic powder, that is, the ethyl cellulose resin, polyvinyl butyral resin, additives, and organic solvents, are the same as the amounts contained in the conductive paste. After mixing at 2000 rpm for 4 minutes using a rotation-revolution mixer (ARE-310 manufactured by Shinky), the obtained liquid (mixture) was applied onto a PET film using an applicator to form a wet film thickness of 254 μm. It was coated and dried at 120° C. for 40 minutes to obtain a sample for evaluation. Note that the organic solvent in the mixture is removed during drying.
 示差走査熱量計(ネッチ・ジャパン株式会社、DSC3100)を用い、乾燥させた評価用のサンプル10mgをアルミ製のパンに入れ、100mL/分の窒素気流下において、0℃から140℃まで昇温速度10℃/分で昇温させて得られる吸熱カーブのピークから、低温領域側のガラス転移点Tgを求めた。 Using a differential scanning calorimeter (Netch Japan Co., Ltd., DSC3100), 10 mg of the dried sample for evaluation was placed in an aluminum pan, and the temperature was increased from 0°C to 140°C under a nitrogen flow of 100 mL/min. The glass transition point Tg in the low temperature region was determined from the peak of the endothermic curve obtained by raising the temperature at 10° C./min.
(熱分解温度測定)
 導電性ペーストに用いた添加剤の熱分解温度は、熱分解重量測定装置(ネッチ製、STA25000REGULUS)を用いて、測定した。測定温度雰囲気は窒素下で、測定温度範囲として20℃から550℃まで昇温速度5℃/分で昇温した。微分加熱減量が最も大きくなる温度、すなわち熱重量分析における重量減少速度が最大となる温度を熱分解温度(最大熱分解温度)とした。
(Pyrolysis temperature measurement)
The thermal decomposition temperature of the additive used in the conductive paste was measured using a thermal decomposition weight measuring device (STA25000REGULUS manufactured by Netch). The measurement temperature atmosphere was nitrogen, and the measurement temperature range was from 20°C to 550°C at a heating rate of 5°C/min. The temperature at which the differential heating loss was greatest, that is, the temperature at which the weight loss rate in thermogravimetric analysis was the greatest, was defined as the thermal decomposition temperature (maximum thermal decomposition temperature).
[使用材料]
(導電性粉末)
 導電性粉末としては、Ni粉末(SEM平均粒径0.2μm)を使用した。
[Materials used]
(conductive powder)
As the conductive powder, Ni powder (SEM average particle size: 0.2 μm) was used.
(セラミック粉末)
 セラミック粉末としては、チタン酸バリウム(BaTiO;SEM平均粒径0.10μm)を使用した。
(ceramic powder)
Barium titanate (BaTiO 3 ; SEM average particle size 0.10 μm) was used as the ceramic powder.
(バインダー樹脂)
 バインダー樹脂としては、ポリビニルブチラール樹脂(PVB)、エチルセルロース樹脂(EC)を使用した。
(binder resin)
As the binder resin, polyvinyl butyral resin (PVB) and ethyl cellulose resin (EC) were used.
(分散剤)
 実施例及び比較例において、共通に含有する分散剤(添加剤)として、酸系分散剤であるポリカルボン酸系分散剤を用いた。
(dispersant)
In Examples and Comparative Examples, a polycarboxylic acid dispersant, which is an acid dispersant, was used as a commonly contained dispersant (additive).
(添加剤)
 エステル化合物として、下記構造式(1)又は下記構造式(2)で示される構造を有する、表1の化合物1-A、2-A~Cを用いた。
(Additive)
Compounds 1-A and 2-A to C in Table 1, each having a structure represented by the following structural formula (1) or the following structural formula (2), were used as the ester compounds.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 また、比較例として、以下の添加剤を用いた。
 ・添加剤a:グラフト鎖としてポリオキシアルキレンを有するポリカルボン酸(上記式(1)又は(2)の構造を有さない)
 ・添加剤b:オキシエチレンラウリルアミン(ポリエーテルアミン)
 ・添加剤c:ジカルボン酸(2-(オクタデセン-1-イル)コハク酸)
Further, as a comparative example, the following additives were used.
・Additive a: Polycarboxylic acid having polyoxyalkylene as a graft chain (does not have the structure of formula (1) or (2) above)
・Additive b: Oxyethylene laurylamine (polyetheramine)
・Additive c: dicarboxylic acid (2-(octadecen-1-yl)succinic acid)
(有機溶剤)
 有機溶剤としては、ジヒドロターピネオール(DHT)及びミネラルスピリット(MSA)を用いた。
(Organic solvent)
Dihydroterpineol (DHT) and mineral spirit (MSA) were used as organic solvents.
[実施例1]
 導電性粉末49質量%、セラミック粉末12質量%、酸系分散剤0.15質量%、式(2-A)の添加剤0.3質量%、バインダー樹脂2.5質量%(PVB:EC=7:3(質量比))、及び、残部として有機溶剤(DHT:MSA=60:40(質量比))を添加して、全体として100質量%となるように配合し、これらの材料を混合して導電性ペーストを作製した。導電性ペーストの各材料の含有量、及び、評価結果を表1に示す。
[Example 1]
Conductive powder 49% by mass, ceramic powder 12% by mass, acid dispersant 0.15% by mass, additive of formula (2-A) 0.3% by mass, binder resin 2.5% by mass (PVB:EC= 7:3 (mass ratio)) and the remainder an organic solvent (DHT:MSA = 60:40 (mass ratio)) to make a total of 100% by mass, and mix these materials. A conductive paste was prepared. Table 1 shows the content of each material in the conductive paste and the evaluation results.
[実施例1~9、比較例1~4]
 添加剤の種類及び含有量を表1に示されるように変更した以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの各材料の含有量、及び、評価結果を表2に示す。
[Examples 1 to 9, Comparative Examples 1 to 4]
A conductive paste was prepared and evaluated in the same manner as in Example 1, except that the type and content of the additive were changed as shown in Table 1. Table 2 shows the content of each material in the conductive paste and the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(評価結果)
 実施例1~9の導電性ペーストは、式(1)又は(2)で示されるエステル化合物を含まない、比較例1~4の導電性ペーストと比較して、低温領域のガラス転移点(Tg)が低下し、ビッカース硬度が低下し、密着性が向上していた。
(Evaluation results)
The conductive pastes of Examples 1 to 9 have lower glass transition points (Tg ) decreased, Vickers hardness decreased, and adhesion improved.
 本発明の導電性ペーストを積層セラミックコンデンサの内部電極の形成に用いた場合、信頼性の高い積層セラミックコンデンサを生産性高く得ることができる。よって、本発明の導電性ペーストは、特に携帯電話やデジタル機器などの小型化が進む電子機器のチップ部品である積層セラミックコンデンサの内部電極用として好適に用いることができる。 When the conductive paste of the present invention is used to form internal electrodes of a multilayer ceramic capacitor, a highly reliable multilayer ceramic capacitor can be obtained with high productivity. Therefore, the conductive paste of the present invention can be particularly suitably used for internal electrodes of multilayer ceramic capacitors, which are chip components of electronic devices that are becoming increasingly smaller, such as mobile phones and digital devices.
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。また、法令で許容される限りにおいて、日本特許出願である特願2022-052665の内容を援用して本文の記載の一部とする。 Note that the technical scope of the present invention is not limited to the aspects described in the above-mentioned embodiments. One or more of the requirements described in the above embodiments and the like may be omitted. Furthermore, the requirements described in the above embodiments and the like can be combined as appropriate. In addition, to the extent permitted by law, the disclosures of all documents cited in the above-mentioned embodiments are incorporated into the description of the main text. In addition, to the extent permitted by law, the content of Japanese Patent Application No. 2022-052665, which is a Japanese patent application, is incorporated into the main text.
 本発明の実施形態は、以下の構成を含むことができる。 Embodiments of the present invention can include the following configurations.
〔1〕導電性粉末、バインダー樹脂、添加剤、及び有機溶剤を含み、
 前記添加剤として、下記構造式(1)又は下記構造式(2)で示される構造を有する化合物を含む、導電性ペースト。
Figure JPOXMLDOC01-appb-C000008
(ただし、R、R、Rは、それぞれ独立に、炭素数2~12の飽和又は不飽和の脂肪族炭化水素基を表し、前記脂肪族炭化水素基は、直鎖状又は分岐鎖状であってもよく、前記脂肪族炭化水素基に含まれる1以上のメチレン(-CH-)が酸素(-O-)に置換されてもよい。)
[1] Contains conductive powder, binder resin, additives, and organic solvent,
A conductive paste containing, as the additive, a compound having a structure represented by the following structural formula (1) or the following structural formula (2).
Figure JPOXMLDOC01-appb-C000008
(However, R 1 , R 2 , and R 3 each independently represent a saturated or unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms, and the aliphatic hydrocarbon group is a linear or branched aliphatic hydrocarbon group. One or more methylenes (-CH 2 -) contained in the aliphatic hydrocarbon group may be substituted with oxygen (-O-).)
〔2〕前記化合物が、導電性ペースト全体に対して0.01質量%以上2.0質量%以下含まれる、〔1〕に記載の導電性ペースト。 [2] The conductive paste according to [1], wherein the compound is contained in an amount of 0.01% by mass or more and 2.0% by mass or less based on the entire conductive paste.
〔3〕前記化合物は、熱重量分析における重量減少速度が最大となる温度が200℃以上である、〔1〕又は〔2〕に記載の導電性ペースト。 [3] The conductive paste according to [1] or [2], wherein the temperature at which the compound has a maximum weight loss rate in thermogravimetric analysis is 200° C. or higher.
〔4〕前記化合物の分子量が250以上3000以下である〔1〕~〔3〕のいずれか1つに記載の導電性ペースト。 [4] The conductive paste according to any one of [1] to [3], wherein the compound has a molecular weight of 250 or more and 3000 or less.
〔5〕さらに、酸系分散剤及び/又は塩基系分散剤を含む、〔1〕~〔4〕のいずれか1つに記載の導電性ペースト。 [5] The conductive paste according to any one of [1] to [4], further comprising an acidic dispersant and/or a basic dispersant.
〔6〕前記導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる少なくとも1種の金属粉末を含む、〔1〕~〔5〕のいずれか1つに記載の導電性ペースト。 [6] The conductive powder according to any one of [1] to [5], wherein the conductive powder contains at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof. conductive paste.
〔7〕前記導電性粉末は、平均粒径が0.05μm以上1.0μm以下である、〔1〕~〔6〕のいずれか1つに記載の導電性ペースト。 [7] The conductive paste according to any one of [1] to [6], wherein the conductive powder has an average particle size of 0.05 μm or more and 1.0 μm or less.
〔8〕 前記バインダー樹脂が、ブチラール系樹脂を含む、〔1〕~〔7〕のいずれか1つに記載の導電性ペースト。 [8] The conductive paste according to any one of [1] to [7], wherein the binder resin contains a butyral resin.
〔9〕さらに、セラミック粉末を含む、〔1〕~〔8〕のいずれか1つに記載の導電性ペースト。 [9] The conductive paste according to any one of [1] to [8], further comprising ceramic powder.
〔10〕前記セラミック粉末が、チタン酸バリウムを含む、〔9〕に記載の導電性ペースト。 [10] The conductive paste according to [9], wherein the ceramic powder contains barium titanate.
〔11〕前記セラミック粉末は、平均粒径が0.01μm以上0.5μm以下である、〔9〕又は〔10〕に記載の導電性ペースト。 [11] The conductive paste according to [9] or [10], wherein the ceramic powder has an average particle size of 0.01 μm or more and 0.5 μm or less.
〔12〕前記セラミック粉末は、導電性ペースト全体に対して1質量%以上20質量%以下含まれる、〔9〕~〔11〕のいずれか1つに記載の導電性ペースト。 [12] The conductive paste according to any one of [9] to [11], wherein the ceramic powder is contained in an amount of 1% by mass or more and 20% by mass or less based on the entire conductive paste.
〔13〕積層セラミック部品の内部電極用である、〔1〕~〔12〕のいずれか1つに記載の導電性ペースト。 [13] The conductive paste according to any one of [1] to [12], which is used for internal electrodes of laminated ceramic parts.
〔14〕〔1〕~〔13〕のいずれか1つに記載の導電性ペーストを用いて形成された電子部品。 [14] An electronic component formed using the conductive paste according to any one of [1] to [13].
〔15〕誘電体層と内部電極層とを積層した積層体を少なくとも有し、
 前記内部電極層は、〔13〕に記載の導電性ペーストを用いて形成された積層セラミックコンデンサ。
[15] At least a laminate including a dielectric layer and an internal electrode layer,
A multilayer ceramic capacitor in which the internal electrode layer is formed using the conductive paste described in [13].
1    積層セラミックコンデンサ
10   セラミック積層体
11   内部電極層
12   誘電体層
20   外部電極
21   外部電極層
22   メッキ層
1 Multilayer ceramic capacitor 10 Ceramic laminate 11 Internal electrode layer 12 Dielectric layer 20 External electrode 21 External electrode layer 22 Plating layer

Claims (15)

  1.  導電性粉末、バインダー樹脂、添加剤、及び有機溶剤を含み、
     前記添加剤として、下記構造式(1)又は下記構造式(2)で示される構造を有する化合物を含む、導電性ペースト。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、R、R、Rは、それぞれ独立に、炭素数2~12の飽和又は不飽和の脂肪族炭化水素基を表し、前記脂肪族炭化水素基は、直鎖状又は分岐鎖状であってもよく、前記脂肪族炭化水素基に含まれる1以上のメチレン(-CH-)が酸素(-O-)に置換されてもよい。)
    Contains conductive powder, binder resin, additives, and organic solvent,
    A conductive paste containing, as the additive, a compound having a structure represented by the following structural formula (1) or the following structural formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (However, R 1 , R 2 , and R 3 each independently represent a saturated or unsaturated aliphatic hydrocarbon group having 2 to 12 carbon atoms, and the aliphatic hydrocarbon group is a linear or branched aliphatic hydrocarbon group. One or more methylenes (-CH 2 -) contained in the aliphatic hydrocarbon group may be substituted with oxygen (-O-).)
  2.  前記化合物が、導電性ペースト全体に対して0.01質量%以上2.0質量%以下含まれる、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the compound is contained in an amount of 0.01% by mass or more and 2.0% by mass or less based on the entire conductive paste.
  3.  前記化合物は、熱重量分析における重量減少速度が最大となる温度が200℃以上である、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the compound has a maximum weight loss rate in thermogravimetric analysis at a temperature of 200°C or higher.
  4.  前記化合物の分子量が250以上3000以下である請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the compound has a molecular weight of 250 or more and 3000 or less.
  5.  さらに、酸系分散剤及び/又は塩基系分散剤を含む、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, further comprising an acidic dispersant and/or a basic dispersant.
  6.  前記導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる少なくとも1種の金属粉末を含む、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the conductive powder contains at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof.
  7.  前記導電性粉末は、平均粒径が0.05μm以上1.0μm以下である、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the conductive powder has an average particle size of 0.05 μm or more and 1.0 μm or less.
  8.  前記バインダー樹脂が、ブチラール系樹脂を含む、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the binder resin includes a butyral resin.
  9.  さらに、セラミック粉末を含む、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, further comprising ceramic powder.
  10.  前記セラミック粉末が、チタン酸バリウムを含む、請求項9に記載の導電性ペースト。 The conductive paste according to claim 9, wherein the ceramic powder contains barium titanate.
  11.  前記セラミック粉末は、平均粒径が0.01μm以上0.5μm以下である、請求項9に記載の導電性ペースト。 The conductive paste according to claim 9, wherein the ceramic powder has an average particle size of 0.01 μm or more and 0.5 μm or less.
  12.  前記セラミック粉末は、導電性ペースト全体に対して1質量%以上20質量%以下含まれる、請求項9に記載の導電性ペースト。 The conductive paste according to claim 9, wherein the ceramic powder is contained in an amount of 1% by mass or more and 20% by mass or less based on the entire conductive paste.
  13.  積層セラミック部品の内部電極用である、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, which is used for internal electrodes of laminated ceramic parts.
  14.  請求項1~13のいずれか一項に記載の導電性ペーストを用いて形成された電子部品。 An electronic component formed using the conductive paste according to any one of claims 1 to 13.
  15.  誘電体層と内部電極層とを積層した積層体を少なくとも有し、
     前記内部電極層は、請求項13に記載の導電性ペーストを用いて形成された積層セラミックコンデンサ。
    It has at least a laminate including a dielectric layer and an internal electrode layer,
    A multilayer ceramic capacitor in which the internal electrode layer is formed using the conductive paste according to claim 13.
PCT/JP2023/012692 2022-03-28 2023-03-28 Conductive paste, electronic component, and multilayer ceramic capacitor WO2023190613A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022052665 2022-03-28
JP2022-052668 2022-03-28
JP2022052668 2022-03-28
JP2022-052665 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023190613A1 true WO2023190613A1 (en) 2023-10-05

Family

ID=88201918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012692 WO2023190613A1 (en) 2022-03-28 2023-03-28 Conductive paste, electronic component, and multilayer ceramic capacitor

Country Status (2)

Country Link
TW (1) TW202403789A (en)
WO (1) WO2023190613A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004905A (en) * 2004-03-10 2006-01-05 Murata Mfg Co Ltd Conductive paste and ceramic electronic component using this
JP2017183247A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Conductive metal powder paste
WO2019107501A1 (en) * 2017-11-30 2019-06-06 住友金属鉱山株式会社 Conductive paste, electronic component, and laminate ceramic capacitor
WO2020137290A1 (en) * 2018-12-25 2020-07-02 住友金属鉱山株式会社 Conductive paste, electronic component, and laminated ceramic capacitor
WO2021106470A1 (en) * 2019-11-29 2021-06-03 住友金属鉱山株式会社 Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004905A (en) * 2004-03-10 2006-01-05 Murata Mfg Co Ltd Conductive paste and ceramic electronic component using this
JP2017183247A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Conductive metal powder paste
WO2019107501A1 (en) * 2017-11-30 2019-06-06 住友金属鉱山株式会社 Conductive paste, electronic component, and laminate ceramic capacitor
WO2020137290A1 (en) * 2018-12-25 2020-07-02 住友金属鉱山株式会社 Conductive paste, electronic component, and laminated ceramic capacitor
WO2021106470A1 (en) * 2019-11-29 2021-06-03 住友金属鉱山株式会社 Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor

Also Published As

Publication number Publication date
TW202403789A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2021106470A1 (en) Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor
WO2019220667A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
WO2020067363A1 (en) Conductive paste, electronic component, and multilayer ceramic capacitor
WO2020137290A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP7279643B2 (en) Conductive paste, electronic parts, and laminated ceramic capacitors
JP2024032861A (en) Conductive paste, electronic components, and multilayer ceramic capacitors
JP2019046781A (en) Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
TWI819190B (en) Conductive paste, electronic components, and laminated ceramic capacitors
JP7279642B2 (en) Conductive paste, electronic parts, and laminated ceramic capacitors
WO2020022291A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
WO2023190613A1 (en) Conductive paste, electronic component, and multilayer ceramic capacitor
WO2023190614A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
JP2019046782A (en) Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
WO2023190615A1 (en) Conductive paste, electronic component, and multilayer ceramic capacitor
WO2023190616A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
WO2020067362A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
TW202410071A (en) Conductive paste, electronic components, and laminated ceramic capacitors
WO2024024534A1 (en) Carboxy group-containing polymer dispersant, electroconductive paste, electronic component, and laminated ceramic capacitor
WO2022255467A1 (en) Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
WO2024010075A1 (en) Conductive paste, dried film, internal electrode and layered ceramic capacitor
TW202414441A (en) Conductive paste, dry film, internal electrodes, and multilayer ceramic capacitors
JP2023037498A (en) Conductive paste for gravure printing, electronic component, and multilayer ceramic capacitor
TW202411411A (en) Polymer dispersants containing carboxyl groups, conductive pastes, electronic components and laminated ceramic capacitors
CN116113671A (en) Conductive paste for gravure printing, electronic component, and multilayer ceramic capacitor
WO2019043673A2 (en) Conductive paste, electronic component, and multilayer ceramic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780622

Country of ref document: EP

Kind code of ref document: A1