WO2024024425A1 - Power conversion device and program - Google Patents

Power conversion device and program Download PDF

Info

Publication number
WO2024024425A1
WO2024024425A1 PCT/JP2023/024890 JP2023024890W WO2024024425A1 WO 2024024425 A1 WO2024024425 A1 WO 2024024425A1 JP 2023024890 W JP2023024890 W JP 2023024890W WO 2024024425 A1 WO2024024425 A1 WO 2024024425A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage unit
power storage
switch
motor
electrical path
Prior art date
Application number
PCT/JP2023/024890
Other languages
French (fr)
Japanese (ja)
Inventor
薫 ▲高▼嶋
佳祐 外山
諒哉 風岡
裕太 笹間
俊一 久保
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024024425A1 publication Critical patent/WO2024024425A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to a power conversion device and a program.
  • an in-vehicle system that includes a motor, an inverter electrically connected to an armature winding of the motor, and first and second power storage units.
  • This system includes a relay for switching the connection state of the first and second power storage units to a series connection state or a parallel connection state.
  • the first and second power storage units can be charged using either an external charger with a charging voltage of 400V or an external charger with a charging voltage of 800V.
  • an external charger with a charging voltage of 400V is used, the first and second power storage units are connected in parallel, so the system voltage is lowered to charge the first and second power storage units. be able to.
  • the main purpose of the present disclosure is to provide a power conversion device and a program that can simplify the configuration.
  • the present disclosure provides a high potential side electrical path electrically connectable to a positive terminal of a first power storage unit; a low potential side electrical path electrically connectable to the negative terminal of the second power storage unit; an inverter having an upper arm switch electrically connected to the high potential side electrical path, and a lower arm switch electrically connected to the low potential side electrical path; a motor having an armature winding electrically connected to a connection point of the upper arm switch and the lower arm switch via a conductive member;
  • a power conversion device comprising: an inter-power storage unit switch provided in an inter-power storage unit electrical path that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit; At least one of the electrical connection between the negative terminals of the first power storage unit and the second power storage unit, and the electrical connection between the positive terminals of the first power storage unit and the second power storage unit Bypass switch for making connections, a motor-side electrical path that electrically connects the armature winding or the conductive member and the inter-
  • connection state of the first and second power storage units becomes a series connection state by turning on the inter-power storage unit switch and turning off the bypass switch.
  • the connection state of the first and second power storage units is changed to that of the second power storage unit.
  • the positive terminal is connected to the high potential side electrical path via the motor side electrical path, the armature winding and the inverter, or the negative terminal of the first power storage unit is connected to the motor side electrical path, the armature winding and the inverter. It becomes connected to the low potential side electrical path.
  • the configurations of the motor and inverter are used. Therefore, it is possible to provide a power conversion device with a simplified configuration for switching the connection state of the first and second power storage units.
  • FIG. 1 is an overall configuration diagram of a system according to a first embodiment
  • FIG. 2 is a flowchart showing the procedure of charging processing
  • FIG. 3 is a diagram showing how the switch is operated during high-voltage charging
  • FIG. 4 is a diagram showing how the switch is operated during low-voltage charging
  • FIG. 5 is an overall configuration diagram of the system according to the second embodiment
  • FIG. 6 is a flowchart showing the procedure of charging processing
  • FIG. 7 is an overall configuration diagram of a system according to a third embodiment
  • FIG. 8 is a flowchart showing the procedure of charging processing
  • FIG. 1 is an overall configuration diagram of a system according to a first embodiment
  • FIG. 2 is a flowchart showing the procedure of charging processing
  • FIG. 3 is a diagram showing how the switch is operated during high-voltage charging
  • FIG. 4 is a diagram showing how the switch is operated during low-voltage charging
  • FIG. 5 is an overall configuration diagram of the system according to the second embodiment
  • FIG. 6 is a
  • FIG. 9 is a diagram showing the operation mode of the switch during low voltage charging
  • FIG. 10 is a diagram showing the operation mode of the switch during low voltage charging
  • FIG. 11 is an overall configuration diagram of the system according to the fourth embodiment
  • FIG. 12 is a flowchart showing the procedure of charging processing
  • FIG. 13 is an overall configuration diagram of the system according to the fifth embodiment
  • FIG. 14 is a flowchart showing the procedure of charging processing
  • FIG. 15 is an overall configuration diagram of the system according to the sixth embodiment
  • FIG. 16 is an overall configuration diagram of a system according to a modification of the sixth embodiment
  • FIG. 17 is an overall configuration diagram of a system according to a modification of the sixth embodiment
  • FIG. 18 is an overall configuration diagram of a system according to a modification of the sixth embodiment
  • FIG. 19 is an overall configuration diagram of the system according to the seventh embodiment
  • FIG. 20 is a diagram showing the operation mode of the switch when precharging with the first storage battery
  • FIG. 21 is a diagram showing the operation mode of the switch when precharging with the second storage battery
  • FIG. 22 is an overall configuration diagram of the system according to the eighth embodiment
  • FIG. 23 is a diagram showing the operation mode of the switch when precharging with the first storage battery
  • FIG. 24 is an overall configuration diagram of a system according to a modification of the seventh embodiment
  • FIG. 25 is an overall configuration diagram of a system according to another embodiment
  • FIG. 26 is an overall configuration diagram of a system according to another embodiment
  • FIG. 27 is an overall configuration diagram of a system according to another embodiment
  • FIG. 28 is an overall configuration diagram of a system according to another embodiment
  • FIG. 29 is an overall configuration diagram of a system according to another embodiment
  • FIG. 30 is an overall configuration diagram of a system according to another embodiment
  • FIG. 31 is an overall configuration diagram of a system according to another embodiment
  • FIG. 32 is an overall configuration diagram of a system according to another embodiment
  • FIG. 33 is an overall configuration diagram of a system according to another embodiment
  • FIG. 34 is an overall configuration diagram of a system according to another embodiment
  • FIG. 35 is an overall configuration diagram of a system according to another embodiment
  • FIG. 36 is an overall configuration diagram of a system according to another embodiment
  • FIG. 37 is an overall configuration diagram of a system according to another embodiment
  • FIG. 38 is an overall configuration diagram of a system according to another embodiment
  • FIG. 39 is a diagram showing how the switch is operated during low-voltage charging in the configuration of FIG. 38
  • FIG. 40 is an overall configuration diagram of a system according to another embodiment
  • FIG. 41 is an overall configuration diagram of
  • the power conversion device of this embodiment is installed in a vehicle such as an electric vehicle or a hybrid vehicle, and constitutes an in-vehicle system.
  • the system includes a power conversion device.
  • the power conversion device includes a motor 10, an inverter 20, a high potential electrical path 22H, and a low potential electrical path 22L.
  • the motor 10 is a three-phase synchronous machine, and includes star-connected armature windings 11 of U, V, and W phases, and a rotor (not shown).
  • the armature windings 11 of each phase are arranged to be shifted by 120 degrees in electrical angle.
  • the motor 10 is, for example, a permanent magnet synchronous machine.
  • the rotor is capable of transmitting power to the drive wheels of the vehicle. Therefore, the motor 10 becomes a source of torque that drives the vehicle.
  • the inverter 20 includes a series connection body of an upper arm switch SWH and a lower arm switch SWL for three phases.
  • An upper arm diode DH which is a freewheeling diode, is connected antiparallel to the upper arm switch SWH, and a lower arm diode DL, which is a freewheeling diode, is connected antiparallel to the lower arm switch SWL.
  • each switch SWH, SWL is an IGBT.
  • the inverter 20 includes a smoothing capacitor 21.
  • the high potential side terminal of the smoothing capacitor 21 is connected to the first end side of the elongated high potential side electrical path 22H.
  • a first end of a long low potential electrical path 22L is connected to the low potential terminal of the smoothing capacitor 21.
  • the smoothing capacitor 21 may be provided outside the inverter 20.
  • the armature winding is connected to the connection point between the emitter, which is the low potential side terminal of the upper arm switch SWH, and the collector, which is the high potential side terminal of the lower arm switch SWL, through a conductive member 23 such as a bus bar.
  • a first end of line 11 is connected.
  • the second ends of the armature windings 11 of each phase are connected at a neutral point.
  • the armature windings 11 of each phase are set to have the same number of turns. As a result, the armature windings 11 of each phase are set to have the same inductance, for example.
  • a high potential side electrical path 22H is connected to the collector of the upper arm switch SWH of each phase.
  • a low potential side electrical path 22L is connected to the emitter of the lower arm switch SWL of each phase.
  • the system includes a first storage battery 31 (corresponding to a "first power storage unit”) and a second storage battery 32 (corresponding to a "second power storage unit”).
  • Each of the storage batteries 31 and 32 serves as a power supply source for rotationally driving the rotor of the motor 10.
  • Each of the storage batteries 31 and 32 is an assembled battery configured as a series connection of battery cells that are single batteries.
  • the positive terminal of the first storage battery 31 is connected to the high potential side electrical path 22H, and the negative terminal of the second storage battery 32 is connected to the low potential side electrical path 22L.
  • the terminal voltages (for example, rated voltages) of each battery cell that constitute the assembled battery are set to be the same, for example.
  • the battery cell is, for example, a secondary battery such as a lithium ion battery.
  • Each storage battery 31, 32 can be charged by an external charger, which will be described later, provided outside the vehicle.
  • the external charger is, for example, a stationary charger.
  • a second end of the low-potential electric path 22L opposite to the connection point of the smoothing capacitor 21 is provided with a negative connection portion to which a negative terminal of an external charger can be connected.
  • the power conversion device includes a main switch for electrically connecting or disconnecting between the first and second storage batteries 31 and 32 and the inverter 20. Specifically, a high potential side main switch SMRH and a low potential side main switch SMRL are provided as the main switches. Further, the power conversion device includes a charging switch for electrically connecting or disconnecting between the external charger and the first and second storage batteries 31 and 32. Specifically, a high potential side charging switch DCRH and a low potential side charging switch DCRL are provided as the charging switches. In this embodiment, each switch SMRH, SMRL, DCRH, and DCRL is a mechanical relay. Each of the switches SMRH, SMRL, DCRH, and DCRL blocks bidirectional current flow when turned off, and allows bidirectional current flow when turned on.
  • the high potential side electrical path 22H is provided with a high potential side main switch SMRH and a high potential side charging switch DCRH in this order from the inverter 20 side.
  • the low potential side electrical path 22L is provided with a low potential side main switch SMRL and a low potential side charging switch DCRL in this order from the inverter 20 side.
  • the high potential side main switch SMRH, the low potential side main switch SMRL, the high potential side charging switch DCRH, and the low potential side charging switch DCRL are not limited to mechanical relays, and may be, for example, semiconductor switching elements.
  • the power conversion device includes an inter-battery switch 40 as a switch for switching the connection state of the first storage battery 31 and the second storage battery 32 to either a state in which they are connected in series to an external charger or a state in which they are connected via a motor.
  • a bypass switch 50 and a motor side switch 60 are provided.
  • the inter-battery switch 40, the bypass switch 50, and the motor-side switch 60 are mechanical relays.
  • the inter-battery switch 40, the bypass switch 50, and the motor side switch 60 block bidirectional current flow when turned off, and allow bidirectional current flow when turned on.
  • the inter-battery switch 40, the bypass switch 50, and the motor-side switch 60 are not limited to mechanical relays, and may be, for example, semiconductor switching elements.
  • the inter-battery switch 40 is provided in the inter-battery electrical path 24 (corresponding to the "inter-storage unit electrical path") that connects the negative terminal of the first storage battery 31 and the positive terminal of the second storage battery 32. By turning on the inter-battery switch 40, the negative terminal of the first storage battery 31 and the positive terminal of the second storage battery 32 are electrically connected. On the other hand, by turning off the inter-battery switch 40, the negative terminal of the first storage battery 31 and the positive terminal of the second storage battery 32 are electrically disconnected.
  • the bypass switch 50 connects the negative terminal of the first storage battery 31 and the low potential side electrical path 22L. By turning on the bypass switch 50, the negative terminal of the first storage battery 31 and the negative terminal of the second storage battery 32 are electrically connected. On the other hand, by turning off the bypass switch 50, the negative terminal of the first storage battery 31 and the negative terminal of the second storage battery 32 are electrically disconnected.
  • the motor-side switch 60 is provided in the motor-side electrical path 25 that connects the inter-battery electrical path 24 closer to the second storage battery 32 than the inter-battery switch 40 and the neutral point of the armature winding 11 .
  • the neutral point of the armature winding 11 and the positive terminal of the second storage battery 32 are electrically connected.
  • the neutral point of the armature winding 11 and the positive terminal of the second storage battery 32 are electrically disconnected.
  • the power conversion device includes a first voltage sensor 71 that detects the voltage between the terminals of the first storage battery 31 and a second voltage sensor 72 that detects the voltage between the terminals of the second storage battery 32.
  • the power conversion device includes a first current sensor 73 that detects the current flowing through the first storage battery 31 and a second current sensor 74 that detects the current flowing through the second storage battery 32.
  • the first current sensor 73 is provided on an electrical path that connects the positive terminal of the first storage battery 31 and the high potential side electrical path 22H.
  • the second current sensor 74 is provided on an electrical path that connects the negative terminal of the second storage battery 32 and the low potential side electrical path 22L.
  • the power conversion device includes, as other sensors, a rotation angle sensor that detects the rotation angle (electrical angle) of the rotor, and a phase current sensor that detects the phase current flowing in the armature winding 11 of each phase. There is.
  • the detected values of each sensor are input to a control device 100 (corresponding to a "control unit") included in the power conversion device.
  • the control device 100 is mainly configured with a microcomputer 101, and the microcomputer 101 includes a CPU.
  • the functions provided by the microcomputer 101 can be provided by software recorded in a physical memory device and a computer that executes it, only software, only hardware, or a combination thereof.
  • the microcomputer 101 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a large number of logic circuits or an analog circuit.
  • the microcomputer 101 executes a program stored in a non-transitory tangible storage medium, which serves as a storage unit included in the microcomputer 101 .
  • the program includes, for example, a program for processing shown in FIG. 2, which will be described later. By executing the program, a method corresponding to the program is executed.
  • the storage unit is, for example, a nonvolatile memory. Note that the program stored in the storage unit can be updated via a communication network such as the Internet, for example, OTA (Over The Air).
  • the control device 100 performs switching control of the switches SWH and SWL that constitute the inverter 20 in order to feedback control the control amount of the motor 10 to a command value based on the detected values of each sensor.
  • the controlled amount is, for example, torque.
  • the upper arm switch SWH and the lower arm switch SWL are turned on alternately. Through this feedback control, the rotational power of the rotor is transmitted to the drive wheels, and the vehicle runs.
  • the positive electrode side connection portion of the high potential side electrical path 22H and the negative electrode side connection portion of the low potential side electrical path 22L are interfaces for connection to an external charger.
  • the external charger is a high voltage charger 200 or a low voltage charger 210 (see FIG. 3).
  • the charging voltage of the high-voltage charger 200 is approximately the same as the voltage (specifically, the rated voltage) between the terminals of the series connection of the first and second storage batteries 31 and 32, and is, for example, 800V.
  • the charging voltage of the low-voltage charger 210 is lower than the rated voltage of the series connection of the first and second storage batteries 31 and 32, and is, for example, 400V.
  • the control device 100 when an external charger is connected to each connection part by a user or an operator and the first and second storage batteries 31 and 32 are charged by the external charger, the high potential side charging switch DCRH and the low potential side charging switch DCRL are , is switched on by the control device 100.
  • the high potential side charging switch DCRH and the low potential side charging switch DCRL are switched off by the control device 100.
  • the positive electrode side connection portion and the negative electrode side connection portion are exposed to the outside from the casing of the power conversion device, there is a possibility that the positive electrode side connection portion and the negative electrode side connection portion may be touched by a user or an operator.
  • the high potential side charging switch DCRH and the low potential side charging switch DCRL By turning off the high potential side charging switch DCRH and the low potential side charging switch DCRL, occurrence of electric shock is prevented.
  • step S10 it is determined whether the external charger connected to each connection part of each electrical path 22H, 22L is the high voltage charger 200.
  • This process is a process for determining whether or not the connection state of the first and second storage batteries 31 and 32 is to be connected in series.
  • step S10 If it is determined in step S10 that the external charger is the high voltage charger 200, the process proceeds to step S11, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Then, operate the inter-battery switch 40, the bypass switch 50, the motor side switch 60, and the upper and lower arm switches SWH and SWL of the inverter 20.
  • the inter-battery switch 40 is turned on, and the bypass switch 50, motor side switch 60, and upper and lower arm switches SWH and SWL of all phases of the inverter 20 are turned off.
  • the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Therefore, current flows through a closed circuit including the high-voltage charger 200, the high-potential electrical path 22H, the first storage battery 31, the inter-battery switch 40, the second storage battery 32, and the low-potential electrical path 22L, and the first storage battery 31 and The second storage battery 32 is charged while being connected in series.
  • step S10 if it is determined in step S10 that the external charger is not the high voltage charger 200, the process proceeds to step S12, and it is determined whether the connected external charger is the low voltage charger 210. do.
  • This process is a process for determining whether or not the connection state of the first and second storage batteries 31 and 32 should be set to the motor-via connection state.
  • step S12 If it is determined in step S12 that the external charger is the low-voltage charger 210, the process proceeds to step S13, and the inter-battery switch is set so that the connection state of the first and second storage batteries 31 and 32 becomes the connection state via the motor. 40, operate the bypass switch 50, the motor side switch 60, and the upper and lower arm switches SWH and SWL of the inverter 20. Thereby, the system voltage can be lowered to a voltage equivalent to the charging voltage of the low-voltage charger 210, and countermeasures against ground faults can be taken during charging by the low-voltage charger 210.
  • the inter-battery switch 40 is turned off, and the bypass switch 50 and motor side switch 60 are turned on. Further, the lower arm switches SWL of all phases of the inverter 20 are turned off, and the upper arm switch SWH of at least one phase is turned on.
  • the first storage battery 31 and the second storage battery 32 are connected to the low voltage charger 210 via the motor. Therefore, current flows through a closed circuit including the low-voltage charger 210, the high-potential electric path 22H, the first storage battery 31, the bypass switch 50, and the low-potential electric path 22L, and the first storage battery 31 is charged.
  • a closed circuit including a low voltage charger 210, a high potential side electrical path 22H, an upper arm switch SWH, an armature winding 11, a neutral point, a motor side switch 60, a second storage battery 32, and a low potential side electrical path 22L is provided. Current flows and the second storage battery 32 is charged. Note that in step S13, when the multi-phase upper arm switch SWH is turned on, the impedance of the charging path can be reduced.
  • step S13 the connection state of the first and second storage batteries 31 and 32 can be changed to the motor-via connection state.
  • the first storage battery 31 can be directly charged by the low voltage charger 210, and the second storage battery 32 can be charged via the inverter 20 and the armature winding 11.
  • the first , the second storage batteries 31 and 32 can be charged simultaneously without an additional power conversion circuit.
  • a configuration in which the system voltage is lowered in response to the charging voltage of the low-voltage charger 210 can be realized by reusing part of the configuration of the inverter 20 and the motor 10. Therefore, it is possible to provide a power conversion device with a simplified configuration for switching the connection state of the first and second storage batteries 31 and 32.
  • step S11 of FIG. 2 at least one phase of the upper arm switch SWH and the motor side switch 60 may be turned on, provided that the in-phase upper and lower arm switches SWH and SWL of the inverter 20 are not turned on. Further, in step S11, switching may be performed to repeatedly turn on and off one of the upper and lower arm switches SWH and SWL of the same phase, or switching may be performed to alternately turn on the upper and lower arm switches SWH and SWL of the same phase. It's okay.
  • the upper arm switch SWH is not limited to being kept on, but may be repeatedly turned on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. It's okay.
  • the torque of the motor 10 is 0 or a value near 0 (specifically, for example, the q-axis current flowing through the armature winding 11 is 0 or a value near 0). Switching may be performed so that
  • step S12 the voltage across the terminals of the first storage battery 31 detected by the first voltage sensor 71 (hereinafter referred to as first detection voltage VA) is the voltage of the second storage battery 32 detected by the second voltage sensor 72. If it is determined that the inter-terminal voltage (hereinafter referred to as second detected voltage VB) is higher than or equal to the terminal voltage, the process of step S13 may be performed. Further, after the determination in step S12 is affirmative, the second detection voltage VB is higher than the first detection voltage VA, and the value obtained by subtracting the first detection voltage VA from the second detection voltage VB is the threshold value ⁇ Vjde (>0.
  • step S13 If it is determined that the second threshold value ⁇ Vjde2 is equal to or less than the second threshold value ⁇ Vjde2, the process of step S13 may be performed.
  • the second storage battery 32 is connected to the motor side electrical path 25, the armature winding 11, the upper arm diode DH, and the high potential side electrical path 22H. It is possible to suppress the occurrence of a phenomenon in which current flows into the 1 storage battery 31, or to reduce the amount of current that flows even if this phenomenon occurs.
  • the threshold value ⁇ Vjde is a value smaller than the rated voltage of each storage battery 31, 32.
  • the threshold value ⁇ Vjde is set, for example, to a value of 1/10 or less, 1/20 or less, 1/50 or less, or 1/100 or less of the lower of the rated voltages of each storage battery 31, 32. has been done.
  • a situation where the second detection voltage VB and the first detection voltage VA are significantly different may occur, for example, in the following cases (1) to (3).
  • the bypass switch 51 connects the positive terminal of the second storage battery 32 and the high potential side electrical path 22H.
  • the motor side switch 61 connects the negative terminal of the first storage battery 31 and the neutral point of the armature winding 11.
  • FIG. 6 shows the procedure of the charging control process of this embodiment executed by the control device 100.
  • step S10 If it is determined in step S10 that the external charger is the high voltage charger 200, the process proceeds to step S14, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Then, the inter-battery switch 40 is turned on, and the bypass switch 51, motor side switch 61, and upper and lower arm switches SWH and SWL of all phases of the inverter 20 are turned off. Thereby, the first storage battery 31 and the second storage battery 32 are connected in series to the high-voltage charger 200, and the first storage battery 31 and the second storage battery 32 are charged while being connected in series.
  • step S12 If it is determined in step S12 that the external charger is the low-voltage charger 210, the process advances to step S15, and the connection state of the first storage battery 31 and the second storage battery 32 to the low-voltage charger 210 changes to the connection state via the motor.
  • the inter-battery switch 40 is turned off, the bypass switch 51 and the motor side switch 61 are turned on, the lower arm switches SWL of all phases of the inverter 20 are turned off, and the upper arm switch SWH of at least one phase is turned on.
  • the connection state of the first storage battery 31 and the second storage battery 32 to the low-voltage charger 210 becomes the connection state via the motor, and the first storage battery 31 and the second storage battery 32 are charged.
  • step S14 of FIG. 6 at least one phase of the lower arm switch SWL and the motor side switch 61 may be turned on, provided that the in-phase upper and lower arm switches SWH and SWL of the inverter 20 are not turned on. Further, in step S14, switching may be performed to repeatedly turn on and off one of the upper and lower arm switches SWH and SWL of the same phase, or switching may be performed to alternately turn on the upper and lower arm switches SWH and SWL of the same phase. It's okay.
  • the lower arm switch SWL is not limited to being kept on, but may be repeatedly turned on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. It's okay.
  • step S15 After making an affirmative determination in step S12, if it is determined that the second detection voltage VB is greater than or equal to the first detection voltage VA, the process in step S15 may be performed. Further, after the determination in step S12 is affirmative, it is determined that the first detection voltage VA is higher than the second detection voltage VB, and the value obtained by subtracting the second detection voltage VB from the first detection voltage VA is less than or equal to the threshold value ⁇ Vjde. In this case, the process of step S15 may be performed.
  • a bypass switch 80 that connects the positive terminal of the second storage battery 32 and the high potential side electrical path 22H is further provided.
  • the bypass switch 80 will be referred to as a second bypass switch 80
  • the bypass switch 50 will be referred to as a first bypass switch 50.
  • FIG. 8 shows the procedure of the charging control process of this embodiment executed by the control device 100.
  • step S20 similarly to step S10, it is determined whether the external charger is the high voltage charger 200.
  • step S20 If it is determined in step S20 that the external charger is the high voltage charger 200, the process proceeds to step S21, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Then, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, the motor side switch 60, and the upper and lower arm switches SWH and SWL of the inverter 20 are operated.
  • the inter-battery switch 40 is turned on, and the first bypass switch 50, second bypass switch 80, motor side switch 60, and upper and lower arm switches SWH and SWL of all phases of the inverter 20 are turned off.
  • the first storage battery 31 and the second storage battery 32 are connected in series to the high-voltage charger 200, and the first storage battery 31 and the second storage battery 32 are connected in series and are charged.
  • step S20 If it is determined in step S20 that the external charger is not the high voltage charger 200, the process proceeds to step S22, and similarly to step S12, it is determined whether the external charger is the low voltage charger 210.
  • step S22 If it is determined in step S22 that the external charger is the low-voltage charger 210, the process proceeds to step S23, and the absolute value of the difference between the first detection voltage VA and the second detection voltage VB is determined to be the first threshold value ⁇ Vjde1 (> 0) Determine whether or not.
  • step S23 If it is determined in step S23 that the absolute value of the difference is less than or equal to the first threshold value ⁇ Vjde1, the process proceeds to step S24, where the first storage battery 31 and the second storage battery 32 are each connected in parallel to the low-voltage charger 210. Operate the inter-battery switch 40, first bypass switch 50, second bypass switch 80, motor side switch 60, and upper and lower arm switches SWH and SWL of the inverter 20 so that
  • the inter-battery switch 40 and the motor side switch 60 are turned off, and the first bypass switch 50 and the second bypass switch 80 are turned on. Also, all phase upper and lower arm switches SWH and SWL of the inverter 20 are turned off. Thereby, as shown in FIG. 10, the first storage battery 31 and the second storage battery 32 are connected in parallel to the low-voltage charger 210. Therefore, current flows through a closed circuit including the low-voltage charger 210, the high-potential electric path 22H, the first storage battery 31, the first bypass switch 50, and the low-potential electric path 22L, and the first storage battery 31 is charged.
  • a current flows through a closed circuit including the low voltage charger 210, the high potential side electrical path 22H, the second bypass switch 80, the second storage battery 32, and the low potential side electrical path 22L, and the second storage battery 32 is charged.
  • the potential difference between the first and second storage batteries 31 and 32 is small, it is possible to suppress the occurrence of a phenomenon in which current flows from one of the first and second storage batteries 31 and 32 to the other, and to prevent this phenomenon from occurring.
  • the amount of current that flows can be reduced.
  • step S23 if it is determined in step S23 that the absolute value of the difference exceeds the first threshold value ⁇ Vjde1, the process proceeds to step S25, and the value obtained by subtracting the first detected voltage VA from the second detected voltage VB is determined. is equal to or less than a second threshold value ⁇ Vjde2 (>0), which is larger than the first threshold value ⁇ Vjde1. If it is determined in step S25 that "VB-VA> ⁇ Vjde2", charging by the low-voltage charger 210 is prohibited in the state where the first and second storage batteries 31 and 32 are connected via the motor and in the state where they are connected in parallel.
  • step S25 The situation in which it is determined in step S25 that "VB-VA> ⁇ Vjde2" is such that the second detection voltage VB is higher than the first detection voltage VA and the potential difference between the second detection voltage VB and the first detection voltage VA is 2 threshold value ⁇ Vjde2 is exceeded.
  • the first threshold value ⁇ Vjde1 is, for example, the impedance of the current path existing between the first storage battery 31 and the second storage battery 32 (specifically For example, the maximum value and steady-state value of the inrush current determined from the relationship between the impedance of the first and second storage batteries 31 and 32 and the potential difference between the first storage battery 31 and the second storage battery 32 are allowable.
  • the potential difference between the first storage battery 31 and the second storage battery 32 may be set to be equal to or less than the value.
  • the second threshold value ⁇ Vjde2 is, for example, when the connection state of the first and second storage batteries 31 and 32 is set to the motor-via connection state. (specifically, for example, the impedance of the first and second storage batteries 31 and 32, the impedance of the inverter 20 and the armature winding 11, and the forward direction impedance of the diode of the inverter 20), If the potential difference between the first storage battery 31 and the second storage battery 32 is set to such that the maximum value and steady-state value of the rush current determined from the relationship between the "potential difference between the storage battery 31 and the second storage battery 32" are below the allowable value. good.
  • the above-mentioned allowable value is, for example, the maximum current that components on the current path can withstand for safety.
  • step S25 if it is determined in step S25 that "VB-VA ⁇ Vjde2”, the process advances to step S26.
  • the situation in which it is determined that "VB-VA ⁇ Vjde2" in step S25 is such that the first detection voltage VA becomes higher than the second detection voltage VB and the potential difference between the second detection voltage VB and the first detection voltage VA exceeds the first threshold value ⁇ Vjde1, or the second detection voltage VB becomes higher than the first detection voltage VA, and the potential difference between the second detection voltage VB and the first detection voltage VA is larger than the first threshold value ⁇ Vjde1.
  • step S26 the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, the motor side switch 60, and the inverter 20 are connected so that the first storage battery 31 and the second storage battery 32 are connected to each other through the motor. Operate the upper and lower arm switches SWH and SWL.
  • the inter-battery switch 40 and the second bypass switch 80 are turned off, and the first bypass switch 50 and the motor side switch 60 are turned on. Further, the lower arm switches SWL of all phases of the inverter 20 are turned off, and the upper arm switch SWH of at least one phase is turned on. Thereby, as shown in FIG. 9, the connection state of the first storage battery 31 and the second storage battery 32 becomes the motor-via connection state. Therefore, a current flows through a closed circuit including the low-voltage charger 210, the high-potential electric path 22H, the first storage battery 31, the first bypass switch 50, and the low-potential electric path 22L, and the first storage battery 31 is charged.
  • a closed circuit including a low voltage charger 210, a high potential side electrical path 22H, an upper arm switch SWH, an armature winding 11, a neutral point, a motor side switch 60, a second storage battery 32, and a low potential side electrical path 22L is provided.
  • Current flows and the second storage battery 32 is charged.
  • it is possible to suppress the occurrence of a phenomenon in which current flows from the second storage battery 32 to the first storage battery 31 via the motor side electrical path 25, the armature winding 11 upper arm diode DH, and the high potential side electrical path 22H. Even if a phenomenon occurs, the amount of current flowing can be reduced.
  • step S25 in FIG. 8 may be omitted and the process of step S26 may be performed when the answer is affirmative in step S23.
  • the upper arm switch SWH is not limited to being kept on, but may be repeatedly turned on and off, or alternatively the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. You may go.
  • the fourth embodiment will be described below with reference to the drawings, focusing on the differences from the third embodiment.
  • the motor-side electrical path 25 in which the motor-side switch 61 is provided is located between the neutral point of the armature winding 11 and the inter-battery electrical path 24 that is closer to the inter-battery switch 40.
  • the first storage battery 31 side is connected.
  • FIG. 12 shows the procedure of the charging control process of this embodiment executed by the control device 100.
  • step S20 If it is determined in step S20 that the external charger is the high voltage charger 200, the process advances to step S26, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Then, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, the motor side switch 61, and the upper and lower arm switches SWH and SWL of the inverter 20 are operated.
  • the inter-battery switch 40 is turned on, and the first bypass switch 50, second bypass switch 80, motor side switch 61, and upper and lower arm switches SWH and SWL of all phases of the inverter 20 are turned off. Thereby, the first storage battery 31 and the second storage battery 32 are charged in a state where the first storage battery 31 and the second storage battery 32 are connected in series to the high-voltage charger 200 .
  • step S22 If it is determined in step S22 that the external charger is the low voltage charger 210, the process advances to step S23. If it is determined in step S23 that the absolute value of the difference between the first detection voltage VA and the second detection voltage VB is less than or equal to the first threshold value ⁇ Vjde1, the process advances to step S27. In step S27, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, and the motor are connected so that the first storage battery 31 and the second storage battery 32 are connected in parallel to the low-voltage charger 210. Operate the side switch 61 and the upper and lower arm switches SWH and SWL of the inverter 20.
  • the inter-battery switch 40 and the motor side switch 61 are turned off, and the first bypass switch 50 and the second bypass switch 80 are turned on. Also, all phase upper and lower arm switches SWH and SWL of the inverter 20 are turned off. Thereby, the first and second storage batteries 31 and 32 are charged in a state where the first and second storage batteries 31 and 32 are connected in parallel to the low voltage charger 210. At this time, since the potential difference between the first and second storage batteries 31 and 32 is small, it is possible to suppress the occurrence of a phenomenon in which current flows from one of the first and second storage batteries 31 and 32 to the other, and to prevent this phenomenon from occurring. However, the amount of current that flows can be reduced.
  • step S28 it is determined whether the value obtained by subtracting the second detection voltage VB from the first detection voltage VA is less than or equal to the second threshold value ⁇ Vjde2. If it is determined in step S28 that "VA-VB> ⁇ Vjde2", charging by the low-voltage charger 210 is prohibited when the first and second storage batteries 31 and 32 are connected via the motor and connected in parallel. The situation in which it is determined in step S28 that "VA-VB> ⁇ Vjde2" is such that the first detection voltage VA is higher than the second detection voltage VB and the potential difference between the second detection voltage VB and the first detection voltage VA is 2 threshold value ⁇ Vjde2 is exceeded.
  • step S28 determines whether "VA-VB ⁇ Vjde2” or "VA-VB ⁇ Vjde2” is the second detection voltage VB is higher than the second detection voltage VA, and the potential difference between the second detection voltage VB and the first detection voltage VA is exceeds the first threshold ⁇ Vjde1, or the first detection voltage VB becomes higher than the second detection voltage VB, and the potential difference between the second detection voltage VB and the first detection voltage VA is larger than the first threshold ⁇ Vjde1.
  • step S29 the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, the motor side switch 61, and the inverter 20 are connected so that the first storage battery 31 and the second storage battery 32 are connected to each other through the motor. Operate the upper and lower arm switches SWH and SWL.
  • the inter-battery switch 40 and the first bypass switch 50 are turned off, and the second bypass switch 80 and the motor side switch 61 are turned on. Further, the upper arm switches SWH of all phases of the inverter 20 are turned off, and the lower arm switch SWL of at least one phase is turned on. Thereby, the connection state of the first and second storage batteries 31 and 32 to the low voltage charger 210 becomes the motor-via connection state, and the first and second storage batteries 31 and 32 are charged. At this time, it is possible to suppress the occurrence of a phenomenon in which current flows from the first storage battery 31 to the second storage battery 32, or to reduce the amount of current flowing even if this phenomenon occurs.
  • step S28 in FIG. 12 may be omitted and the process of step S29 may be performed when the answer is affirmative in step S23.
  • the lower arm switch SWL is not limited to being kept on, but may be repeatedly turned on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. You may go.
  • the motor side switch in addition to a switch connecting the neutral point of the armature winding 11 and the negative terminal of the first storage battery 31, the motor side switch includes a switch connecting the neutral point of the armature winding 11 and the negative terminal of the first storage battery 31; A switch is provided to connect the point and the positive terminal of the second storage battery 32.
  • the first end of the common path 26 is connected to the neutral point of the armature winding 11.
  • a first end of a first electrical path 27 is connected to the second end of the common path 26, and a second storage battery is connected to the second end of the inter-battery electrical path 24 rather than the inter-battery switch 40.
  • 32 side is connected.
  • a first end of a second electrical path 28 is connected to the second end of the common path 26, and a second end of the second electrical path 28 is connected to a second end of the inter-battery electrical path 24 that is lower than the inter-battery switch 40.
  • 1 storage battery 31 side is connected.
  • the common path 26 and the first electrical path 27 correspond to the "first motor side electrical path”
  • the common path 26 and the second electrical path 28 correspond to the "second motor side electrical path”.
  • the common path 26 may not be provided, and the first ends of the first electrical path 27 and the second electrical path 28 may be connected to the neutral point of the armature winding 11.
  • a first motor side switch 60 is provided on the first electrical path 27.
  • a second motor side switch 61 is provided on the second electrical path 28 .
  • FIG. 14 shows the procedure of the charging control process of this embodiment executed by the control device 100.
  • step S20 If it is determined in step S20 that the external charger is the high voltage charger 200, the process proceeds to step S30, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. , turn on the inter-battery switch 40 and turn off the first bypass switch 50, second bypass switch 80, first motor side switch 60, second motor side switch 61, and upper and lower arm switches SWH and SWL of the inverter 20. . Thereby, the first storage battery 31 and the second storage battery 32 are charged in a state where the first storage battery 31 and the second storage battery 32 are connected in series to the high-voltage charger 200 .
  • step S22 If it is determined in step S22 that the external charger is the low voltage charger 210, the process advances to step S23. If it is determined in step S23 that the absolute value of the difference between the first detection voltage VA and the second detection voltage VB is less than or equal to the first threshold value ⁇ Vjde1, the process proceeds to step S31. In step S31, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, and the The first motor side switch 60, the second motor side switch 61, and the upper and lower arm switches SWH and SWL of the inverter 20 are operated.
  • the inter-battery switch 40, the first motor side switch 60, and the second motor side switch 61 are turned off, and the first bypass switch 50 and the second bypass switch 80 are turned on. Also, all phase upper and lower arm switches SWH and SWL of the inverter 20 are turned off. Thereby, the first and second storage batteries 31 and 32 are charged in a state where the first and second storage batteries 31 and 32 are connected in parallel to the low voltage charger 210. At this time, since the potential difference between the first and second storage batteries 31 and 32 is small, it is possible to suppress the occurrence of a phenomenon in which current flows from one of the first and second storage batteries 31 and 32 to the other, and to prevent this phenomenon from occurring. However, the amount of current that flows can be reduced.
  • step S34 it is determined which of the first detection voltage VA and the second detection voltage VB is higher. If it is determined in step S34 that "VA>VB”, the process proceeds to step S32, and the inter-battery switch 40 is set so that the first storage battery 31 and the second storage battery 32 are connected to each other via the first motor. , the first bypass switch 50, the second bypass switch 80, the first motor side switch 60, the second motor side switch 61, and the upper and lower arm switches SWH and SWL of the inverter 20.
  • the inter-battery switch 40, the second motor side switch 61, and the second bypass switch 80 are turned off, and the first bypass switch 50 and the first motor side switch 60 are turned on. Further, the lower arm switches SWL of all phases of the inverter 20 are turned off, and the upper arm switch SWH of at least one phase is turned on. As a result, the first and second storage batteries 31 and 32 are charged. At this time, since the potential difference between the first and second storage batteries 31 and 32 is small, it is possible to suppress the occurrence of a phenomenon in which current flows from the second storage battery 32 to the first storage battery 31, and even if this phenomenon occurs, the amount of current that flows You can make it smaller.
  • step S34 determines whether "VB>VA" or "VB>VA" or "VB>VA”
  • the process proceeds to step S33, and the battery is connected so that the first storage battery 31 and the second storage battery 32 are connected to each other via the second motor.
  • the switch 40, the first bypass switch 50, the second bypass switch 80, the first motor side switch 60, the second motor side switch 61, and the upper and lower arm switches SWH and SWL of the inverter 20 are operated.
  • the inter-battery switch 40, the first motor side switch 60, and the first bypass switch 50 are turned off, and the second bypass switch 80 and the second motor side switch 61 are turned on.
  • the upper arm switches SWH of all phases of the inverter 20 are turned off, and the lower arm switch SWL of at least one phase is turned on.
  • the first and second storage batteries 31 and 32 are charged.
  • the potential difference between the first and second storage batteries 31 and 32 is small, the occurrence of a phenomenon in which current flows from the first storage battery 31 to the second storage battery 32 is suppressed, and even if this phenomenon occurs, the amount of current that flows You can make it smaller.
  • the flow of current from one of the first and second storage batteries 31 and 32 to the other is prevented, regardless of the magnitude relationship between the voltages between the terminals of the first storage battery 31 and the second storage battery 32. It can be suppressed or the amount of current flowing can be reduced.
  • the upper arm switch SWH is not limited to being kept on, but switching may be performed repeatedly to turn on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. Switching may also be performed.
  • the lower arm switch SWL is not limited to being kept on, but may be repeatedly turned on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. You may go.
  • a part of the low-potential-side electrical path 22L (corresponding to the "target path") is connected to the neutral point side of the motor-side switch 60 via a series connection of a connection switch 91 and a capacitor 90.
  • a portion between the low potential side main switch SMRL and the low potential side charging switch DCRL is connected.
  • the connection switch 91 may be a mechanical relay or a semiconductor switching element.
  • the control device 100 turns off the connection switch 91 during switching control of the inverter 20 for driving the vehicle. Thereby, when controlling the control amount of the motor 10 to the command value, it is possible to suppress the control from being adversely affected.
  • the control device 100 turns on the connection switch 91, for example, during the charging process by the low-voltage charger 210 in step S13 in FIG. 2 above. Thereby, when current flows through the motor-side electrical path 25, noise or ripple included in the current flowing through the motor-side electrical path 25 can be caused to flow through the capacitor 90.
  • the connection switch 91 is turned off. This is because the inverter 20 is not switched during the charging process by the high voltage charger 200.
  • the low voltage charger 210 during the charging process by the low voltage charger 210, it is possible to suppress the high frequency current generated due to switching from flowing from the inverter 20 side to the second storage battery 32 and the low voltage charger 210.
  • the capacitor 90 may be connected to the motor side electric path 25 side, and the connection switch 91 may be connected to the low potential side electric path 22L side.
  • connection switch 91 may not be provided. That is, the motor side electrical path 25 and the low potential side electrical path 22L may be always connected.
  • the series connection body of the connection switch 92 and the capacitor 90 is connected to the part of the motor side electrical path 25 closer to the second storage battery 32 than the motor side switch 60, and to the low potential side electrical path 22L. may be connected.
  • connection switch 92 may not be provided. That is, the motor side electrical path 25 and the low potential side electrical path 22L may be always connected.
  • a plurality of capacitors may be provided.
  • a connection switch 93 is provided in the motor-side electrical path 25 closer to the neutral point than the motor-side switch 60 .
  • a high potential side electrical path 22H (corresponding to a "target path") is connected to a portion of the motor side electrical path 25 between the motor side switch 60 and the connection switch 93 via a first capacitor 93A, and
  • a low potential side electrical path 22L (corresponding to a "target path”) is connected via a second capacitor 93B.
  • either the first capacitor 93A or the second capacitor 93B may be omitted.
  • connection switch 94 As shown in FIG. 18, the first end of the connection switch 94 is connected to the neutral point side of the motor side electrical path 25 rather than the motor side switch 60, and the first capacitor 93A is connected to the second end of the connection switch 94. and a second capacitor 93B may be connected.
  • the control device 100 performs a precharge process to charge the smoothing capacitor 21, for example, when starting up the power conversion device.
  • the precharge process can be performed using the remaining storage battery.
  • the control device 100 turns on the high potential side main switch SMRH, the precharge switch SP, and the inter-battery switch 40, and turns off the low potential side main switch SMRL, the motor side switch 60, and the bypass switch 50. Further, the control device 100 turns off all phase upper and lower arm switches SWH and SWL of the inverter 20. Thereby, the smoothing capacitor 21 can be charged by the first storage battery 31.
  • the control device 100 turns on the low potential side main switch SMRL and the precharge switch SP, and turns off the high potential side main switch SMRH, the motor side switch 60, the inter-battery switch 40, and the bypass switch 50. Further, the control device 100 turns off all phase upper and lower arm switches SWH and SWL of the inverter 20. Thereby, the smoothing capacitor 21 can be charged by the second storage battery 32.
  • connection switch 93 and a capacitor 90 are provided.
  • a first end of a capacitor 90 is connected to a portion of the motor-side electrical path 25 between the connection point with the precharge switch SP and the connection switch 92 .
  • the second end of the capacitor 90 is connected to the inverter 20 side of the low potential side electrical path 22L rather than the low potential side main switch SMRL.
  • the control device 100 can charge the smoothing capacitor 21 and the capacitor 90 at the same time in the precharging process of charging the smoothing capacitor 21. Specifically, as shown in FIG. 23, the control device 100 turns on the high potential side main switch SMRH, the precharge switch SP, and the inter-battery switch 40, and turns on the low potential side main switch SMRL, the motor side switch 60, and the bypass switch 50. Turn off. Further, the control device 100 turns off all phase upper and lower arm switches SWH and SWL of the inverter 20.
  • a series connection of the precharge switch SP and the resistor 95 may be connected in parallel to the low potential side main switch SMRL.
  • the motor side switch 60 may not be provided in the configuration shown in FIG.
  • the motor side switch 61 may not be provided in the configuration shown in FIG.
  • the motor side switch 60 may not be provided in the configuration shown in FIG.
  • the motor side switch 61 may not be provided in the configuration shown in FIG. 11.
  • the first motor side switch 60 may not be provided in the configuration shown in FIG. 13. In this case, if a negative determination is made in step S34 of FIG. 14, charging by the low-voltage charger 210 in the state of connection via the motor may be prohibited.
  • the second motor side switch 61 may not be provided in the configuration shown in FIG. 13. In this case, if an affirmative determination is made in step S34 of FIG. 14, charging by the low-voltage charger 210 in the state of connection via the motor may be prohibited.
  • the first motor side switch 60 and the second bypass switch 80 may not be provided in the configuration shown in FIG. 13.
  • the second bypass switch 80 may not be provided in the configuration shown in FIG. 13.
  • the first bypass switch 50 may not be provided in the configuration shown in FIG. 13.
  • the positive terminal of the first storage battery 31 and the high potential side electrical path 22H may be connected by the first fuse 110A.
  • the negative terminal of the second storage battery 32 and the low potential side electrical path 22L may be connected by a second fuse 110B.
  • a third current sensor 75 may be provided in a portion of the high potential side electrical path 22H between the connection point with the first storage battery 31 and the high potential side charging switch DCRH.
  • the fourth current sensor 76 can be provided at any position on the motor-side electrical path 25.
  • the fourth current sensor 76 may be provided on the neutral point side of the motor-side electrical path 25 with respect to the motor-side switch 60. It may be.
  • a current sensor that detects the current flowing through each conductive member 23 may be provided, and the total value of the detected value of the current flowing through each conductive member 23 may be used instead of the detected value of the fourth current sensor.
  • connection destination of the motor-side electrical path 25 is not limited to the neutral point of the armature winding 11, but may be the intermediate portion of the armature winding 11, as shown in FIG. 37, for example.
  • connection destination of the motor-side electrical path 25 may be a conductive member 23, as shown in FIG. 38, for example.
  • the connection destination of the motor-side electrical path 25 may be a conductive member 23, as shown in FIG. 38, for example.
  • the low-voltage charger 210 as shown in FIG. All you have to do is turn off the arm switch SWL.
  • the high potential side charging switch DCRH and the positive electrode side connection part are provided on the side opposite to the first storage battery 31 side with respect to the inverter 20 in the high potential side electrical path 22H, and the low potential side electrical path 22H
  • a low potential side charging switch DCRL and a negative electrode side connection portion may be provided on the opposite side of the path 22L from the second storage battery 32 side with respect to the inverter 20.
  • one end of the capacitor 90 may be connected to the second storage battery 32 side of the motor side electrical path 25 rather than the motor side switch 60. In this case, a connection switch is not required.
  • Each main switch SMRH, SMRL, each charging switch DCRH, DCRL, inter-battery switch 40, bypass switch, motor side switch, and connection switch are not limited to one switch, but can be multiple switches connected in series. It may be composed of a connection body or a parallel connection body of a plurality of switches.
  • the switch of the inverter 20 is not limited to an IGBT, but may be an N-channel MOSFET including a body diode, for example. In this case, the high potential side terminal of the N-channel MOSFET becomes the drain, and the low potential side terminal becomes the source.
  • the motor is not limited to a star-connected motor, but may be a delta-connected motor. Further, the motor and inverter are not limited to three-phase motors, but may be two-phase motors or four-phase motors or more. Further, the motor is not limited to a permanent magnet type synchronous machine having a permanent magnet as a field pole on the rotor, but may be a wound field type synchronous machine having a field winding as a field pole on the rotor. In this case, the rotor may be equipped with both field windings and permanent magnets. Further, the motor is not limited to a synchronous machine, but may be an induction machine.
  • the power storage unit to be charged by the external charger is not limited to a storage battery, but may be, for example, a large-capacity electric double layer capacitor, or one that includes both a storage battery and an electric double layer capacitor.
  • the moving object on which the power conversion device is mounted is not limited to a vehicle, but may be an aircraft or a ship, for example.
  • the power converter device is not limited to a mobile object, but may be a stationary device.
  • control unit and the method described in the present disclosure are implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be realized.
  • the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by a processor configured with one or more dedicated hardware logic circuits.
  • the control unit and the method described in the present disclosure may be implemented using a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.
  • a power conversion device comprising: an inter-power storage unit switch (40) provided in an inter-power storage unit electrical path (24) that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit; At least one of the electrical connection between the negative terminals of the first power storage unit and the second power storage unit, and the electrical connection between
  • the first power storage unit and the second power storage unit may be connected in series, or the positive terminal of the second power storage unit may be connected to the high potential through the motor-side electrical path, the armature winding, and the inverter.
  • a control unit (100) that determines whether the motor is connected to the side electrical path or the motor-via connection state is selected.
  • the control unit includes: When it is determined that the first power storage unit and the second power storage unit are connected to each other in the series connection state, the inter-power storage unit switch is turned on and the bypass switch is turned off; On the condition that the connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, the inter-power storage unit switch is turned off, and the bypass switch and the motor side switch are turned on. , the power conversion device according to Configuration 2.
  • the bypass switch is a first bypass switch (50), The power conversion device according to configuration 2, comprising a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit.
  • connection state of the first power storage unit and the second power storage unit may be a series connection state, a parallel connection state, or a positive terminal of the second power storage unit may be connected to the motor side electrical path, the armature winding, and the inverter.
  • the control unit includes: When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the inter-power storage unit switch is turned on, and the first bypass switch and the second bypass switch are turned off, If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, performing a first operation; If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, performing a second operation;
  • the first operation is an operation of turning off the inter-power storage unit switch and the motor side switch, and turning on the first bypass switch and the second bypass switch,
  • the second operation is an operation of turning off the power storage unit switch and the second bypass switch, turning on the first bypass switch and the motor side switch, and operating the switch of the inverter,
  • the switch operation of the inverter is an operation of turning off the lower arm switch of each
  • the control unit includes: The connection state of the first power storage unit and the second power storage unit is determined to be the parallel connection state, and the potential difference between the first power storage unit and the second power storage unit is equal to or less than a first threshold value ( ⁇ Vjde1).
  • connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, and the value obtained by subtracting the voltage of the first power storage unit from the voltage of the second power storage unit is The power converter device according to configuration 5, wherein the second operation is performed when it is determined that the second threshold value ( ⁇ Vjde2) or less is greater than the first threshold value.
  • the bypass switch (51) is a switch that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit
  • the motor-side electrical path (25) is a path that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch,
  • the power conversion device according to Configuration 1, comprising a motor-side switch (61) provided in the motor-side electrical path.
  • the first power storage unit and the second power storage unit are connected in series, or the negative terminal of the first power storage unit is connected to the low potential side through the motor side electrical path, the armature winding, and the inverter.
  • a control unit (100) that determines whether the motor is connected to an electrical path or connected via a motor includes: When it is determined that the first power storage unit and the second power storage unit are connected to each other in the series connection state, the inter-power storage unit switch is turned on and the bypass switch is turned off; On the condition that the connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, the inter-power storage unit switch is turned off, and the bypass switch and the motor side switch are turned on. , the power conversion device according to configuration 7.
  • a first bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit; a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit; Equipped with The motor-side electrical path (25) is a path that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch,
  • the power conversion device according to Configuration 1, comprising a motor-side switch (61) provided in the motor-side electrical path.
  • connection state of the first power storage unit and the second power storage unit may be a series connection state, a parallel connection state, or the negative terminal of the first power storage unit may be connected to the motor side electrical path, the armature winding, and the inverter.
  • the control unit includes: When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the inter-power storage unit switch is turned on, and the first bypass switch and the second bypass switch are turned off, If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, performing a first operation; If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, performing a second operation; The first operation is an operation of turning off the inter-power storage unit switch and the motor side switch, and turning on the first bypass switch and the second bypass switch, The second operation is an operation of turning off the power storage unit switch and the first bypass switch, turning on the second bypass switch and the motor side switch, and operating a switch of the inverter.
  • the switch operation of the inverter is an operation of turning off the upper arm switch of each phase and turning on the lower arm switch of at least one phase, or at least one operation on the condition that the upper and lower arm switches of the same phase are not turned on at the same time.
  • the power conversion device according to configuration 9, wherein the operation is to repeatedly turn on and off the lower arm switch of a phase.
  • the control unit includes: It is determined that the connection state of the first power storage unit and the second power storage unit is set to the connection state via the motor, and the potential difference between the first power storage unit and the second power storage unit is equal to or lower than a first threshold value ( ⁇ Vjde1).
  • connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, and the value obtained by subtracting the voltage of the second power storage unit from the voltage of the first power storage unit is The power conversion device according to configuration 10, wherein the second operation is performed when it is determined that the second threshold value ( ⁇ Vjde2) or less is greater than the first threshold value.
  • a first bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit; a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit; Equipped with As the motor side electrical path, a first motor-side electrical path (26, 27) that electrically connects the armature winding to a side of the second power storage unit of the inter-power storage unit electrical path rather than the inter-power storage unit switch; a second motor-side electrical path (26, 28) that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path rather than the inter-power storage unit switch; Equipped with a first motor side switch (60) provided in the first motor side electrical path; a second motor side switch (61) provided in the second motor side electrical path;
  • the power conversion device according to Configuration 1, comprising: [Configuration 13] The connection state of the first power storage unit and the
  • the motor is connected to the high-potential electrical path, or the negative terminal of the first power storage unit is connected to the low-potential electrical path via the motor-side electrical path, the armature winding, and the inverter.
  • a control unit (100) for determining which of the via connection states is to be set;
  • the control unit includes: When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the inter-power storage unit switch is turned on, and the first bypass switch and the second bypass switch are turned off, If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, performing a first operation; If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, performing a second operation or a third operation;
  • the first operation is an operation of turning off at least one of the first motor-side switch and the second motor-side switch and the inter-power storage unit switch, and turning on the first
  • the second operation is to turn off the power storage section switch, the second bypass switch, and the second motor side switch, turn on the first bypass switch and the first motor side switch, and turn off the inverter switch.
  • the third operation is to turn off the power storage section switch, the first bypass switch, and the first motor side switch, turn on the second bypass switch and the second motor side switch, and turn off the inverter switch.
  • This is the operation of operating the second switch of The first switch operation of the inverter is an operation of turning off the lower arm switch of each phase and turning on the upper arm switch of at least one phase, or on the condition that the upper and lower arm switches of the same phase are not turned on at the same time.
  • the second switch operation of the inverter is an operation of turning off the upper arm switch of each phase and turning on the lower arm switch of at least one phase, or on the condition that the upper and lower arm switches of the same phase are not turned on at the same time.
  • the power conversion device according to configuration 12, wherein the operation is to repeatedly turn on and off the lower arm switch of at least one phase.
  • the control unit includes: It is determined that the connection state of the first power storage unit and the second power storage unit is set to the connection state via the motor, and the potential difference between the first power storage unit and the second power storage unit is equal to or lower than a first threshold value ( ⁇ Vjde1).
  • a positive terminal of the charger (200, 210) can be electrically connected to the high potential side electrical path
  • a negative terminal of the charger can be electrically connected to the low potential side electrical path
  • the control unit includes: When the charger connected to the high potential side electrical path and the low potential side electrical path is a high voltage charger (200), the connection state of the first power storage unit and the second power storage unit is set to a series connection state.
  • the first power storage unit on the condition that the charger connected to the high potential side electrical path and the low potential side electrical path is a low voltage charger (210) having a lower charging voltage than the high voltage charger; and the power conversion device according to any one of Configurations 3, 5, 6, 8, 10, and 11, wherein the power conversion device determines that the connection state of the second power storage unit is set to the motor-via connection state.
  • a positive terminal of the charger (200, 210) can be electrically connected to the high potential side electrical path
  • a negative terminal of the charger can be electrically connected to the low potential side electrical path
  • the control unit includes: When the charger connected to the high potential side electrical path and the low potential side electrical path is a high voltage charger (200), the connection state of the first power storage unit and the second power storage unit is set to a series connection state.
  • the first power storage unit on the condition that the charger connected to the high potential side electrical path and the low potential side electrical path is a low voltage charger (210) having a lower charging voltage than the high voltage charger; and the power conversion device according to configuration 13 or 14, wherein the power conversion device determines that the connection state of the second power storage unit is set to the first motor-via connection state or the second motor-via connection state.
  • Configurations 1 to 16 comprising a capacitor (90, 93A, 93B) that electrically connects the target path, which is at least one of the high potential side electrical path and the low potential side electrical path, and the motor side electrical path.
  • the power conversion device according to any one of the above.
  • a smoothing capacitor (21) that electrically connects the high potential side electrical path and the low potential side electrical path and smoothes the input voltage of the inverter; a series connection body of a switch (SP) and a resistor (95); Equipped with The capacitor electrically connects the armature winding side of the motor-side electrical path beyond the motor-side switch (60) to the target path; 20.
  • the power conversion device according to any one of configurations 1 to 19, wherein the series connection body is connected in parallel to the motor side switch.
  • [Configuration 21] a smoothing capacitor (21) that electrically connects the high potential side electrical path and the low potential side electrical path and smoothes the input voltage of the inverter; a series connection body of a switch (SP) and a resistor (95); Equipped with 20.
  • the power conversion device according to any one of configurations 1 to 19, wherein the series connection body is connected in parallel to a motor side switch (60) provided in the motor side electrical path.

Abstract

This power conversion device comprises: a high-potential-side electrical path (22H); a low-potential-side electrical path (22L); an inverter (20) having upper arm switches (SWH) and lower arm switches (SWL); and a motor (10) having armature windings (11) that are electrically connected, via conductive members (23), to connection points of the upper and lower arm switches. The power conversion device comprises: an inter-power-storage-unit switch (40) that is provided to an inter-power-storage-unit electrical path (24) that electrically connects a negative terminal of a first power storage unit (31) and a positive terminal of a second power storage unit (32); a bypass switch (50, 51) that makes an electrical connection between the negative terminals of the first and second power storage units and/or an electrical connection between the positive terminals of the first and second power storage units; and motor-side electrical paths (25–28) that electrically connect the armature windings or the conductive members to the inter-power-storage-unit electrical path.

Description

電力変換装置、プログラムPower converter, program 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年7月29日に出願された日本出願番号2022-122116号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2022-122116 filed on July 29, 2022, and the contents thereof are incorporated herein.
 本開示は、電力変換装置及びプログラムに関する。 The present disclosure relates to a power conversion device and a program.
 従来、特許文献1に記載されているように、モータ、モータの電機子巻線に電気的に接続されたインバータ、及び第1,第2蓄電部を備える車載システムが知られている。このシステムは、第1,第2蓄電部の接続状態を直列接続状態又は並列接続状態に切り替えるためのリレーを備えている。これにより、充電電圧が400Vの外部充電器又は充電電圧が800Vの外部充電器のいずれであっても、第1,第2蓄電部を充電することができる。また、充電電圧が400Vの外部充電器が用いられる場合において、第1,第2蓄電部の接続状態が並列接続状態にされるため、システム電圧を下げて第1,第2蓄電部を充電することができる。 Conventionally, as described in Patent Document 1, an in-vehicle system is known that includes a motor, an inverter electrically connected to an armature winding of the motor, and first and second power storage units. This system includes a relay for switching the connection state of the first and second power storage units to a series connection state or a parallel connection state. Thereby, the first and second power storage units can be charged using either an external charger with a charging voltage of 400V or an external charger with a charging voltage of 800V. In addition, when an external charger with a charging voltage of 400V is used, the first and second power storage units are connected in parallel, so the system voltage is lowered to charge the first and second power storage units. be able to.
特許第6930306号公報Patent No. 6930306
 第1,第2蓄電部の接続状態を切り替えるための構成を極力簡素化することが望まれている。 It is desired to simplify the configuration for switching the connection state of the first and second power storage units as much as possible.
 本開示は、構成の簡素化を図ることができる電力変換装置及びプログラムを提供することを主たる目的とする。 The main purpose of the present disclosure is to provide a power conversion device and a program that can simplify the configuration.
 本開示は、第1蓄電部の正極端子に電気的に接続可能な高電位側電気経路と、
 第2蓄電部の負極端子に電気的に接続可能な低電位側電気経路と、
 前記高電位側電気経路に電気的に接続された上アームスイッチ、及び前記低電位側電気経路に電気的に接続された下アームスイッチを有するインバータと、
 前記上アームスイッチ及び前記下アームスイッチの接続点に導電部材を介して電気的に接続された電機子巻線を有するモータと、
を備える電力変換装置において、
 前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路に設けられた蓄電部間スイッチと、
 前記第1蓄電部及び前記第2蓄電部の負極端子同士の電気的な接続と、前記第1蓄電部及び前記第2蓄電部の正極端子同士の電気的な接続とのうち、少なくとも一方の電気的な接続を行うバイパススイッチと、
 前記電機子巻線又は前記導電部材と、前記蓄電部間電気経路とを電気的に接続するモータ側電気経路と、
を備える。
The present disclosure provides a high potential side electrical path electrically connectable to a positive terminal of a first power storage unit;
a low potential side electrical path electrically connectable to the negative terminal of the second power storage unit;
an inverter having an upper arm switch electrically connected to the high potential side electrical path, and a lower arm switch electrically connected to the low potential side electrical path;
a motor having an armature winding electrically connected to a connection point of the upper arm switch and the lower arm switch via a conductive member;
In a power conversion device comprising:
an inter-power storage unit switch provided in an inter-power storage unit electrical path that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit;
At least one of the electrical connection between the negative terminals of the first power storage unit and the second power storage unit, and the electrical connection between the positive terminals of the first power storage unit and the second power storage unit Bypass switch for making connections,
a motor-side electrical path that electrically connects the armature winding or the conductive member and the inter-power storage unit electrical path;
Equipped with.
 本開示では、蓄電部間スイッチがオンされるとともにバイパススイッチがオフされることにより、第1,第2蓄電部の接続状態が直列接続状態になる。一方、蓄電部間スイッチがオフされるとともにバイパススイッチがオンされることと、モータ側電気経路が備えられていることとにより、第1,第2蓄電部の接続状態が、第2蓄電部の正極端子をモータ側電気経路、電機子巻線及びインバータを介して高電位側電気経路に接続した状態、又は第1蓄電部の負極端子をモータ側電気経路、電機子巻線及びインバータを介して低電位側電気経路に接続した状態になる。この際、モータ及びインバータの構成が流用される。したがって、第1,第2蓄電部の接続状態を切り替えるための構成の簡素化を図った電力変換装置を提供することができる。 In the present disclosure, the connection state of the first and second power storage units becomes a series connection state by turning on the inter-power storage unit switch and turning off the bypass switch. On the other hand, since the switch between the power storage units is turned off and the bypass switch is turned on, and the electric path on the motor side is provided, the connection state of the first and second power storage units is changed to that of the second power storage unit. The positive terminal is connected to the high potential side electrical path via the motor side electrical path, the armature winding and the inverter, or the negative terminal of the first power storage unit is connected to the motor side electrical path, the armature winding and the inverter. It becomes connected to the low potential side electrical path. At this time, the configurations of the motor and inverter are used. Therefore, it is possible to provide a power conversion device with a simplified configuration for switching the connection state of the first and second power storage units.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係るシステムの全体構成図であり、 図2は、充電処理の手順を示すフローチャートであり、 図3は、高圧充電時におけるスイッチの操作態様を示す図であり、 図4は、低圧充電時におけるスイッチの操作態様を示す図であり、 図5は、第2実施形態に係るシステムの全体構成図であり、 図6は、充電処理の手順を示すフローチャートであり、 図7は、第3実施形態に係るシステムの全体構成図であり、 図8は、充電処理の手順を示すフローチャートであり、 図9は、低圧充電時におけるスイッチの操作態様を示す図であり、 図10は、低圧充電時におけるスイッチの操作態様を示す図であり、 図11は、第4実施形態に係るシステムの全体構成図であり、 図12は、充電処理の手順を示すフローチャートであり、 図13は、第5実施形態に係るシステムの全体構成図であり、 図14は、充電処理の手順を示すフローチャートであり、 図15は、第6実施形態に係るシステムの全体構成図であり、 図16は、第6実施形態の変形例に係るシステムの全体構成図であり、 図17は、第6実施形態の変形例に係るシステムの全体構成図であり、 図18は、第6実施形態の変形例に係るシステムの全体構成図であり、 図19は、第7実施形態に係るシステムの全体構成図であり、 図20は、第1蓄電池でプリチャージする場合のスイッチの操作態様を示す図であり、 図21は、第2蓄電池でプリチャージする場合のスイッチの操作態様を示す図であり、 図22は、第8実施形態に係るシステムの全体構成図であり、 図23は、第1蓄電池でプリチャージする場合のスイッチの操作態様を示す図であり、 図24は、第7実施形態の変形例に係るシステムの全体構成図であり、 図25は、その他の実施形態に係るシステムの全体構成図であり、 図26は、その他の実施形態に係るシステムの全体構成図であり、 図27は、その他の実施形態に係るシステムの全体構成図であり、 図28は、その他の実施形態に係るシステムの全体構成図であり、 図29は、その他の実施形態に係るシステムの全体構成図であり、 図30は、その他の実施形態に係るシステムの全体構成図であり、 図31は、その他の実施形態に係るシステムの全体構成図であり、 図32は、その他の実施形態に係るシステムの全体構成図であり、 図33は、その他の実施形態に係るシステムの全体構成図であり、 図34は、その他の実施形態に係るシステムの全体構成図であり、 図35は、その他の実施形態に係るシステムの全体構成図であり、 図36は、その他の実施形態に係るシステムの全体構成図であり、 図37は、その他の実施形態に係るシステムの全体構成図であり、 図38は、その他の実施形態に係るシステムの全体構成図であり、 図39は、図38の構成の低圧充電時におけるスイッチの操作態様を示す図であり、 図40は、その他の実施形態に係るシステムの全体構成図であり、 図41は、その他の実施形態に係るシステムの全体構成図である。
The above objects and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an overall configuration diagram of a system according to a first embodiment, FIG. 2 is a flowchart showing the procedure of charging processing, FIG. 3 is a diagram showing how the switch is operated during high-voltage charging; FIG. 4 is a diagram showing how the switch is operated during low-voltage charging; FIG. 5 is an overall configuration diagram of the system according to the second embodiment, FIG. 6 is a flowchart showing the procedure of charging processing, FIG. 7 is an overall configuration diagram of a system according to a third embodiment, FIG. 8 is a flowchart showing the procedure of charging processing, FIG. 9 is a diagram showing the operation mode of the switch during low voltage charging, FIG. 10 is a diagram showing the operation mode of the switch during low voltage charging, FIG. 11 is an overall configuration diagram of the system according to the fourth embodiment, FIG. 12 is a flowchart showing the procedure of charging processing, FIG. 13 is an overall configuration diagram of the system according to the fifth embodiment, FIG. 14 is a flowchart showing the procedure of charging processing, FIG. 15 is an overall configuration diagram of the system according to the sixth embodiment, FIG. 16 is an overall configuration diagram of a system according to a modification of the sixth embodiment, FIG. 17 is an overall configuration diagram of a system according to a modification of the sixth embodiment, FIG. 18 is an overall configuration diagram of a system according to a modification of the sixth embodiment, FIG. 19 is an overall configuration diagram of the system according to the seventh embodiment, FIG. 20 is a diagram showing the operation mode of the switch when precharging with the first storage battery, FIG. 21 is a diagram showing the operation mode of the switch when precharging with the second storage battery, FIG. 22 is an overall configuration diagram of the system according to the eighth embodiment, FIG. 23 is a diagram showing the operation mode of the switch when precharging with the first storage battery, FIG. 24 is an overall configuration diagram of a system according to a modification of the seventh embodiment, FIG. 25 is an overall configuration diagram of a system according to another embodiment, FIG. 26 is an overall configuration diagram of a system according to another embodiment, FIG. 27 is an overall configuration diagram of a system according to another embodiment, FIG. 28 is an overall configuration diagram of a system according to another embodiment, FIG. 29 is an overall configuration diagram of a system according to another embodiment, FIG. 30 is an overall configuration diagram of a system according to another embodiment, FIG. 31 is an overall configuration diagram of a system according to another embodiment, FIG. 32 is an overall configuration diagram of a system according to another embodiment, FIG. 33 is an overall configuration diagram of a system according to another embodiment, FIG. 34 is an overall configuration diagram of a system according to another embodiment, FIG. 35 is an overall configuration diagram of a system according to another embodiment, FIG. 36 is an overall configuration diagram of a system according to another embodiment, FIG. 37 is an overall configuration diagram of a system according to another embodiment, FIG. 38 is an overall configuration diagram of a system according to another embodiment, FIG. 39 is a diagram showing how the switch is operated during low-voltage charging in the configuration of FIG. 38; FIG. 40 is an overall configuration diagram of a system according to another embodiment, FIG. 41 is an overall configuration diagram of a system according to another embodiment.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的に及び/又は構造的に対応する部分及び/又は関連付けられる部分には同一の参照符号、又は百以上の位が異なる参照符号が付される場合がある。対応する部分及び/又は関連付けられる部分については、他の実施形態の説明を参照することができる。 A plurality of embodiments will be described with reference to the drawings. In embodiments, functionally and/or structurally corresponding and/or related parts may be provided with the same reference numerals or with reference numerals that differ by hundreds or more. For corresponding parts and/or related parts, descriptions of other embodiments can be referred to.
 <第1実施形態>
 以下、本開示に係る電力変換装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態の電力変換装置は、電気自動車やハイブリッド車等の車両に搭載され、車載システムを構成する。
<First embodiment>
Hereinafter, a first embodiment embodying a power conversion device according to the present disclosure will be described with reference to the drawings. The power conversion device of this embodiment is installed in a vehicle such as an electric vehicle or a hybrid vehicle, and constitutes an in-vehicle system.
 システムは、電力変換装置を備えている。電力変換装置は、図1に示すように、モータ10と、インバータ20と、高電位側電気経路22Hと、低電位側電気経路22Lとを備えている。モータ10は、3相の同期機であり、星形結線されたU,V,W相の電機子巻線11と、図示しないロータとを備えている。各相の電機子巻線11は、電気角で120°ずつずれて配置されている。モータ10は、例えば永久磁石同期機である。ロータは、車両の駆動輪と動力伝達可能になっている。このため、モータ10は、車両を走行させるトルクの発生源となる。 The system includes a power conversion device. As shown in FIG. 1, the power conversion device includes a motor 10, an inverter 20, a high potential electrical path 22H, and a low potential electrical path 22L. The motor 10 is a three-phase synchronous machine, and includes star-connected armature windings 11 of U, V, and W phases, and a rotor (not shown). The armature windings 11 of each phase are arranged to be shifted by 120 degrees in electrical angle. The motor 10 is, for example, a permanent magnet synchronous machine. The rotor is capable of transmitting power to the drive wheels of the vehicle. Therefore, the motor 10 becomes a source of torque that drives the vehicle.
 インバータ20は、上アームスイッチSWHと下アームスイッチSWLとの直列接続体を3相分備えている。上アームスイッチSWHには、フリーホイールダイオードである上アームダイオードDHが逆並列に接続され、下アームスイッチSWLには、フリーホイールダイオードである下アームダイオードDLが逆並列に接続されている。本実施形態において、各スイッチSWH,SWLはIGBTである。 The inverter 20 includes a series connection body of an upper arm switch SWH and a lower arm switch SWL for three phases. An upper arm diode DH, which is a freewheeling diode, is connected antiparallel to the upper arm switch SWH, and a lower arm diode DL, which is a freewheeling diode, is connected antiparallel to the lower arm switch SWL. In this embodiment, each switch SWH, SWL is an IGBT.
 インバータ20は、平滑コンデンサ21を備えている。平滑コンデンサ21の高電位側端子には、長尺状の高電位側電気経路22Hの第1端側が接続されている。平滑コンデンサ21の低電位側端子には、長尺状の低電位側電気経路22Lの第1端側が接続されている。なお、平滑コンデンサ21は、インバータ20の外部に設けられていてもよい。 The inverter 20 includes a smoothing capacitor 21. The high potential side terminal of the smoothing capacitor 21 is connected to the first end side of the elongated high potential side electrical path 22H. A first end of a long low potential electrical path 22L is connected to the low potential terminal of the smoothing capacitor 21. Note that the smoothing capacitor 21 may be provided outside the inverter 20.
 各相において、上アームスイッチSWHの低電位側端子であるエミッタと、下アームスイッチSWLの高電位側端子であるコレクタとの接続点には、バスバー等の導電部材23を介して、電機子巻線11の第1端が接続されている。各相の電機子巻線11の第2端同士は、中性点で接続されている。なお、本実施形態において、各相の電機子巻線11は、ターン数が同じに設定されている。これにより、各相の電機子巻線11は、例えばインダクタンスが同じに設定されている。 In each phase, the armature winding is connected to the connection point between the emitter, which is the low potential side terminal of the upper arm switch SWH, and the collector, which is the high potential side terminal of the lower arm switch SWL, through a conductive member 23 such as a bus bar. A first end of line 11 is connected. The second ends of the armature windings 11 of each phase are connected at a neutral point. In this embodiment, the armature windings 11 of each phase are set to have the same number of turns. As a result, the armature windings 11 of each phase are set to have the same inductance, for example.
 各相の上アームスイッチSWHのコレクタには、高電位側電気経路22Hが接続されている。各相の下アームスイッチSWLのエミッタには、低電位側電気経路22Lが接続されている。 A high potential side electrical path 22H is connected to the collector of the upper arm switch SWH of each phase. A low potential side electrical path 22L is connected to the emitter of the lower arm switch SWL of each phase.
 システムは、第1蓄電池31(「第1蓄電部」に相当)及び第2蓄電池32(「第2蓄電部」に相当)を備えている。各蓄電池31,32は、モータ10のロータを回転駆動させるための電力供給源となる。各蓄電池31,32は、単電池である電池セルの直列接続体として構成された組電池である。第1蓄電池31の正極端子は高電位側電気経路22Hに接続され、第2蓄電池32の負極端子は低電位側電気経路22Lに接続されている。組電池を構成する各電池セルの端子電圧(例えば定格電圧)は、例えば互いに同じに設定されている。電池セルは、例えば、リチウムイオン電池等の2次電池である。 The system includes a first storage battery 31 (corresponding to a "first power storage unit") and a second storage battery 32 (corresponding to a "second power storage unit"). Each of the storage batteries 31 and 32 serves as a power supply source for rotationally driving the rotor of the motor 10. Each of the storage batteries 31 and 32 is an assembled battery configured as a series connection of battery cells that are single batteries. The positive terminal of the first storage battery 31 is connected to the high potential side electrical path 22H, and the negative terminal of the second storage battery 32 is connected to the low potential side electrical path 22L. The terminal voltages (for example, rated voltages) of each battery cell that constitute the assembled battery are set to be the same, for example. The battery cell is, for example, a secondary battery such as a lithium ion battery.
 各蓄電池31,32は、車両の外部に備えられた後述する外部充電器により充電可能である。外部充電器は、例えば定置式の充電器である。高電位側電気経路22Hのうち平滑コンデンサ21の接続点側とは反対側の第2端側には、外部充電器の正極端子が接続可能な正極側接続部が設けられている。低電位側電気経路22Lのうち平滑コンデンサ21の接続点側とは反対側の第2端側とは、外部充電器の負極端子が接続可能な負極側接続部が設けられている。 Each storage battery 31, 32 can be charged by an external charger, which will be described later, provided outside the vehicle. The external charger is, for example, a stationary charger. On the second end side of the high potential side electric path 22H, which is opposite to the connection point side of the smoothing capacitor 21, a positive side connection portion to which a positive electrode terminal of an external charger can be connected is provided. A second end of the low-potential electric path 22L opposite to the connection point of the smoothing capacitor 21 is provided with a negative connection portion to which a negative terminal of an external charger can be connected.
 電力変換装置は、第1,第2蓄電池31,32とインバータ20との間を電気的に接続又は遮断するためのメインスイッチを備えている。詳しくは、メインスイッチとして、高電位側メインスイッチSMRHと、低電位側メインスイッチSMRLとが設けられている。また、電力変換装置は、外部充電器と第1,第2蓄電池31,32との間を電気的に接続又は遮断するための充電スイッチを備えている。詳しくは、充電スイッチとして、高電位側充電スイッチDCRHと、低電位側充電スイッチDCRLとが設けられている。本実施形態において、各スイッチSMRH,SMRL,DCRH,DCRLは、機械式のリレーである。各スイッチSMRH,SMRL,DCRH,DCRLは、オフされると双方向の電流の流通を阻止し、オンされると双方向の電流の流通を許容する。高電位側電気経路22Hには、インバータ20側から順に、高電位側メインスイッチSMRH及び高電位側充電スイッチDCRHが設けられている。低電位側電気経路22Lには、インバータ20側から順に、低電位側メインスイッチSMRL及び低電位側充電スイッチDCRLが設けられている。なお、高電位側メインスイッチSMRH、低電位側メインスイッチSMRL、高電位側充電スイッチDCRH及び低電位側充電スイッチDCRLは、機械式のリレーに限らず、例えば半導体スイッチング素子であってもよい。 The power conversion device includes a main switch for electrically connecting or disconnecting between the first and second storage batteries 31 and 32 and the inverter 20. Specifically, a high potential side main switch SMRH and a low potential side main switch SMRL are provided as the main switches. Further, the power conversion device includes a charging switch for electrically connecting or disconnecting between the external charger and the first and second storage batteries 31 and 32. Specifically, a high potential side charging switch DCRH and a low potential side charging switch DCRL are provided as the charging switches. In this embodiment, each switch SMRH, SMRL, DCRH, and DCRL is a mechanical relay. Each of the switches SMRH, SMRL, DCRH, and DCRL blocks bidirectional current flow when turned off, and allows bidirectional current flow when turned on. The high potential side electrical path 22H is provided with a high potential side main switch SMRH and a high potential side charging switch DCRH in this order from the inverter 20 side. The low potential side electrical path 22L is provided with a low potential side main switch SMRL and a low potential side charging switch DCRL in this order from the inverter 20 side. Note that the high potential side main switch SMRH, the low potential side main switch SMRL, the high potential side charging switch DCRH, and the low potential side charging switch DCRL are not limited to mechanical relays, and may be, for example, semiconductor switching elements.
 電力変換装置は、第1蓄電池31及び第2蓄電池32の接続状態を、外部充電器に対して直列接続される状態又はモータ経由接続状態のいずれかに切り替えるためのスイッチとして、電池間スイッチ40、バイパススイッチ50及びモータ側スイッチ60を備えている。本実施形態において、電池間スイッチ40、バイパススイッチ50及びモータ側スイッチ60は、機械式のリレーである。電池間スイッチ40、バイパススイッチ50及びモータ側スイッチ60は、オフされると双方向の電流の流通を阻止し、オンされると双方向の電流の流通を許容する。なお、電池間スイッチ40、バイパススイッチ50及びモータ側スイッチ60は、機械式のリレーに限らず、例えば半導体スイッチング素子であってもよい。 The power conversion device includes an inter-battery switch 40 as a switch for switching the connection state of the first storage battery 31 and the second storage battery 32 to either a state in which they are connected in series to an external charger or a state in which they are connected via a motor. A bypass switch 50 and a motor side switch 60 are provided. In this embodiment, the inter-battery switch 40, the bypass switch 50, and the motor-side switch 60 are mechanical relays. The inter-battery switch 40, the bypass switch 50, and the motor side switch 60 block bidirectional current flow when turned off, and allow bidirectional current flow when turned on. Note that the inter-battery switch 40, the bypass switch 50, and the motor-side switch 60 are not limited to mechanical relays, and may be, for example, semiconductor switching elements.
 電池間スイッチ40は、第1蓄電池31の負極端子と第2蓄電池32の正極端子とを接続する電池間電気経路24(「蓄電部間電気経路」に相当)に設けられている。電池間スイッチ40がオンされることにより、第1蓄電池31の負極端子と第2蓄電池32の正極端子とが電気的に接続される。一方、電池間スイッチ40がオフされることにより、第1蓄電池31の負極端子と第2蓄電池32の正極端子とが電気的に遮断される。 The inter-battery switch 40 is provided in the inter-battery electrical path 24 (corresponding to the "inter-storage unit electrical path") that connects the negative terminal of the first storage battery 31 and the positive terminal of the second storage battery 32. By turning on the inter-battery switch 40, the negative terminal of the first storage battery 31 and the positive terminal of the second storage battery 32 are electrically connected. On the other hand, by turning off the inter-battery switch 40, the negative terminal of the first storage battery 31 and the positive terminal of the second storage battery 32 are electrically disconnected.
 バイパススイッチ50は、第1蓄電池31の負極端子と低電位側電気経路22Lとを接続する。バイパススイッチ50がオンされることにより、第1蓄電池31の負極端子と第2蓄電池32の負極端子とが電気的に接続される。一方、バイパススイッチ50がオフされることにより、第1蓄電池31の負極端子と第2蓄電池32の負極端子とが電気的に遮断される。 The bypass switch 50 connects the negative terminal of the first storage battery 31 and the low potential side electrical path 22L. By turning on the bypass switch 50, the negative terminal of the first storage battery 31 and the negative terminal of the second storage battery 32 are electrically connected. On the other hand, by turning off the bypass switch 50, the negative terminal of the first storage battery 31 and the negative terminal of the second storage battery 32 are electrically disconnected.
 モータ側スイッチ60は、電池間電気経路24のうち電池間スイッチ40よりも第2蓄電池32側と、電機子巻線11の中性点とを接続するモータ側電気経路25に設けられている。モータ側スイッチ60がオンされることにより、電機子巻線11の中性点と第2蓄電池32の正極端子とが電気的に接続される。一方、モータ側スイッチ60がオフされることにより、電機子巻線11の中性点と第2蓄電池32の正極端子とが電気的に遮断される。 The motor-side switch 60 is provided in the motor-side electrical path 25 that connects the inter-battery electrical path 24 closer to the second storage battery 32 than the inter-battery switch 40 and the neutral point of the armature winding 11 . By turning on the motor side switch 60, the neutral point of the armature winding 11 and the positive terminal of the second storage battery 32 are electrically connected. On the other hand, by turning off the motor side switch 60, the neutral point of the armature winding 11 and the positive terminal of the second storage battery 32 are electrically disconnected.
 電力変換装置は、第1蓄電池31の端子間電圧を検出する第1電圧センサ71と、第2蓄電池32の端子間電圧を検出する第2電圧センサ72とを備えている。電力変換装置は、第1蓄電池31に流れる電流を検出する第1電流センサ73と、第2蓄電池32に流れる電流を検出する第2電流センサ74とを備えている。第1電流センサ73は、第1蓄電池31の正極端子と高電位側電気経路22Hとを接続する電気経路に設けられている。第2電流センサ74は、第2蓄電池32の負極端子と低電位側電気経路22Lとを接続する電気経路に設けられている。なお、電力変換装置は、その他のセンサとして、ロータの回転角(電気角)を検出する回転角センサと、各相の電機子巻線11に流れる相電流を検出する相電流センサとを備えている。 The power conversion device includes a first voltage sensor 71 that detects the voltage between the terminals of the first storage battery 31 and a second voltage sensor 72 that detects the voltage between the terminals of the second storage battery 32. The power conversion device includes a first current sensor 73 that detects the current flowing through the first storage battery 31 and a second current sensor 74 that detects the current flowing through the second storage battery 32. The first current sensor 73 is provided on an electrical path that connects the positive terminal of the first storage battery 31 and the high potential side electrical path 22H. The second current sensor 74 is provided on an electrical path that connects the negative terminal of the second storage battery 32 and the low potential side electrical path 22L. Note that the power conversion device includes, as other sensors, a rotation angle sensor that detects the rotation angle (electrical angle) of the rotor, and a phase current sensor that detects the phase current flowing in the armature winding 11 of each phase. There is.
 各センサの検出値は、電力変換装置が備える制御装置100(「制御部」に相当)に入力される。制御装置100は、マイコン101を主体として構成され、マイコン101は、CPUを備えている。マイコン101が提供する機能は、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、マイコン101がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路によって提供することができる。例えば、マイコン101は、自身が備える記憶部としての非遷移的実体的記録媒体(non-transitory tangible storage medium)に格納されたプログラムを実行する。プログラムには、例えば、後述する図2等に示す処理のプログラムが含まれる。プログラムが実行されることにより、プログラムに対応する方法が実行される。記憶部は、例えば不揮発性メモリである。なお、記憶部に記憶されたプログラムは、例えばOTA(Over The Air)等、インターネット等の通信ネットワークを介して更新可能である。 The detected values of each sensor are input to a control device 100 (corresponding to a "control unit") included in the power conversion device. The control device 100 is mainly configured with a microcomputer 101, and the microcomputer 101 includes a CPU. The functions provided by the microcomputer 101 can be provided by software recorded in a physical memory device and a computer that executes it, only software, only hardware, or a combination thereof. For example, if the microcomputer 101 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a large number of logic circuits or an analog circuit. For example, the microcomputer 101 executes a program stored in a non-transitory tangible storage medium, which serves as a storage unit included in the microcomputer 101 . The program includes, for example, a program for processing shown in FIG. 2, which will be described later. By executing the program, a method corresponding to the program is executed. The storage unit is, for example, a nonvolatile memory. Note that the program stored in the storage unit can be updated via a communication network such as the Internet, for example, OTA (Over The Air).
 制御装置100は、各センサの検出値に基づいて、モータ10の制御量を指令値にフィードバック制御すべく、インバータ20を構成する各スイッチSWH,SWLのスイッチング制御を行う。制御量は例えばトルクである。各相において、上アームスイッチSWHと下アームスイッチSWLとは交互にオンされる。このフィードバック制御により、ロータの回転動力が駆動輪に伝達され、車両が走行する。 The control device 100 performs switching control of the switches SWH and SWL that constitute the inverter 20 in order to feedback control the control amount of the motor 10 to a command value based on the detected values of each sensor. The controlled amount is, for example, torque. In each phase, the upper arm switch SWH and the lower arm switch SWL are turned on alternately. Through this feedback control, the rotational power of the rotor is transmitted to the drive wheels, and the vehicle runs.
 高電位側電気経路22Hの正極側接続部及び低電位側電気経路22Lの負極側接続部は、外部充電器と接続するためのインターフェースである。本実施形態において、外部充電器は、高圧充電器200又は低圧充電器210である(図3参照)。高圧充電器200の充電電圧は、第1,第2蓄電池31,32の直列接続体の端子間電圧(具体的には定格電圧)と同程度の電圧であり、例えば800Vである。低圧充電器210の充電電圧は、第1,第2蓄電池31,32の直列接続体の定格電圧よりも低い電圧であり、例えば400Vである。例えばユーザ又は作業者により外部充電器が各接続部に接続され、外部充電器により第1,第2蓄電池31,32が充電される場合、高電位側充電スイッチDCRH及び低電位側充電スイッチDCRLは、制御装置100によりオンに切り替えられる。 The positive electrode side connection portion of the high potential side electrical path 22H and the negative electrode side connection portion of the low potential side electrical path 22L are interfaces for connection to an external charger. In this embodiment, the external charger is a high voltage charger 200 or a low voltage charger 210 (see FIG. 3). The charging voltage of the high-voltage charger 200 is approximately the same as the voltage (specifically, the rated voltage) between the terminals of the series connection of the first and second storage batteries 31 and 32, and is, for example, 800V. The charging voltage of the low-voltage charger 210 is lower than the rated voltage of the series connection of the first and second storage batteries 31 and 32, and is, for example, 400V. For example, when an external charger is connected to each connection part by a user or an operator and the first and second storage batteries 31 and 32 are charged by the external charger, the high potential side charging switch DCRH and the low potential side charging switch DCRL are , is switched on by the control device 100.
 一方、外部充電器による充電が実施されない場合又は外部充電器が接続されていない場合、高電位側充電スイッチDCRH及び低電位側充電スイッチDCRLは、制御装置100によりオフに切り替えられる。正極側接続部及び負極側接続部は、電力変換装置の筐体から外部に露出している場合、ユーザ又は作業者に触れられる可能性がある。高電位側充電スイッチDCRH及び低電位側充電スイッチDCRLがオフにされることにより、感電の発生を防止する。 On the other hand, when charging by the external charger is not performed or when the external charger is not connected, the high potential side charging switch DCRH and the low potential side charging switch DCRL are switched off by the control device 100. When the positive electrode side connection portion and the negative electrode side connection portion are exposed to the outside from the casing of the power conversion device, there is a possibility that the positive electrode side connection portion and the negative electrode side connection portion may be touched by a user or an operator. By turning off the high potential side charging switch DCRH and the low potential side charging switch DCRL, occurrence of electric shock is prevented.
 続いて、図2を用いて、外部充電器による充電処理について説明する。この処理は、制御装置100により実行される。 Next, the charging process using the external charger will be described using FIG. 2. This process is executed by the control device 100.
 ステップS10では、各電気経路22H,22Lの各接続部に接続された外部充電器が高圧充電器200であるか否かを判定する。この処理は、第1,第2蓄電池31,32の接続状態を直列接続状態にするか否かを判定するための処理である。 In step S10, it is determined whether the external charger connected to each connection part of each electrical path 22H, 22L is the high voltage charger 200. This process is a process for determining whether or not the connection state of the first and second storage batteries 31 and 32 is to be connected in series.
 ステップS10において外部充電器が高圧充電器200であると判定した場合には、ステップS11に進み、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になるように、電池間スイッチ40、バイパススイッチ50、モータ側スイッチ60及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 If it is determined in step S10 that the external charger is the high voltage charger 200, the process proceeds to step S11, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Then, operate the inter-battery switch 40, the bypass switch 50, the motor side switch 60, and the upper and lower arm switches SWH and SWL of the inverter 20.
 詳しくは、電池間スイッチ40をオンし、バイパススイッチ50、モータ側スイッチ60及びインバータ20の全相の上,下アームスイッチSWH,SWLをオフする。これにより、図3に示すように、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になる。このため、高圧充電器200、高電位側電気経路22H、第1蓄電池31、電池間スイッチ40、第2蓄電池32及び低電位側電気経路22Lを含む閉回路に電流が流れ、第1蓄電池31及び第2蓄電池32が直列接続された状態で充電される。この際、インバータ20の上アームスイッチSWH及びモータ側スイッチ60がオフされているため、高圧充電器200の充電電流がインバータ20及び電機子巻線11に流れることを回避できる。なお、図3では、各メインスイッチSMRH,SMRL及び各充電スイッチDCRH,DCRLの図示を省略している。 Specifically, the inter-battery switch 40 is turned on, and the bypass switch 50, motor side switch 60, and upper and lower arm switches SWH and SWL of all phases of the inverter 20 are turned off. Thereby, as shown in FIG. 3, the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Therefore, current flows through a closed circuit including the high-voltage charger 200, the high-potential electrical path 22H, the first storage battery 31, the inter-battery switch 40, the second storage battery 32, and the low-potential electrical path 22L, and the first storage battery 31 and The second storage battery 32 is charged while being connected in series. At this time, since the upper arm switch SWH of the inverter 20 and the motor side switch 60 are turned off, the charging current of the high voltage charger 200 can be prevented from flowing to the inverter 20 and the armature winding 11. In addition, in FIG. 3, illustration of each main switch SMRH, SMRL and each charging switch DCRH, DCRL is omitted.
 図2の説明に戻り、ステップS10において外部充電器が高圧充電器200ではないと判定した場合には、ステップS12に進み、接続された外部充電器が低圧充電器210であるか否かを判定する。この処理は、第1,第2蓄電池31,32の接続状態をモータ経由接続状態にするか否かを判定するための処理である。 Returning to the explanation of FIG. 2, if it is determined in step S10 that the external charger is not the high voltage charger 200, the process proceeds to step S12, and it is determined whether the connected external charger is the low voltage charger 210. do. This process is a process for determining whether or not the connection state of the first and second storage batteries 31 and 32 should be set to the motor-via connection state.
 ステップS12において外部充電器が低圧充電器210であると判定した場合には、ステップS13に進み、第1,第2蓄電池31,32の接続状態がモータ経由接続状態になるように、電池間スイッチ40、バイパススイッチ50、モータ側スイッチ60及びインバータ20の上,下アームスイッチSWH,SWLを操作する。これにより、システム電圧を低圧充電器210の充電電圧と同等の電圧まで低下させ、低圧充電器210による充電時における地絡対策を講じることができる。 If it is determined in step S12 that the external charger is the low-voltage charger 210, the process proceeds to step S13, and the inter-battery switch is set so that the connection state of the first and second storage batteries 31 and 32 becomes the connection state via the motor. 40, operate the bypass switch 50, the motor side switch 60, and the upper and lower arm switches SWH and SWL of the inverter 20. Thereby, the system voltage can be lowered to a voltage equivalent to the charging voltage of the low-voltage charger 210, and countermeasures against ground faults can be taken during charging by the low-voltage charger 210.
 詳しくは、電池間スイッチ40をオフし、バイパススイッチ50及びモータ側スイッチ60をオンする。また、インバータ20の全相の下アームスイッチSWLをオフし、少なくとも1相の上アームスイッチSWHをオンする。これにより、図4に示すように、低圧充電器210に対して第1蓄電池31及び第2蓄電池32がモータ経由接続状態になる。このため、低圧充電器210、高電位側電気経路22H、第1蓄電池31、バイパススイッチ50及び低電位側電気経路22Lを含む閉回路に電流が流れ、第1蓄電池31が充電される。また、低圧充電器210、高電位側電気経路22H、上アームスイッチSWH、電機子巻線11、中性点、モータ側スイッチ60、第2蓄電池32及び低電位側電気経路22Lを含む閉回路に電流が流れ、第2蓄電池32が充電される。なお、ステップS13において、複数相の上アームスイッチSWHがオンされる場合、充電経路のインピーダンスを低下させることができる。 Specifically, the inter-battery switch 40 is turned off, and the bypass switch 50 and motor side switch 60 are turned on. Further, the lower arm switches SWL of all phases of the inverter 20 are turned off, and the upper arm switch SWH of at least one phase is turned on. As a result, as shown in FIG. 4, the first storage battery 31 and the second storage battery 32 are connected to the low voltage charger 210 via the motor. Therefore, current flows through a closed circuit including the low-voltage charger 210, the high-potential electric path 22H, the first storage battery 31, the bypass switch 50, and the low-potential electric path 22L, and the first storage battery 31 is charged. In addition, a closed circuit including a low voltage charger 210, a high potential side electrical path 22H, an upper arm switch SWH, an armature winding 11, a neutral point, a motor side switch 60, a second storage battery 32, and a low potential side electrical path 22L is provided. Current flows and the second storage battery 32 is charged. Note that in step S13, when the multi-phase upper arm switch SWH is turned on, the impedance of the charging path can be reduced.
 ステップS13の処理により、第1,第2蓄電池31,32の接続状態をモータ経由接続状態にできる。これにより、第1蓄電池31を低圧充電器210により直接充電でき、第2蓄電池32をインバータ20及び電機子巻線11を介して充電できる。また、第1,第2蓄電池31,32の定格電圧が異なっている場合、又は定格電圧が同じ第1,第2蓄電池31,32の実際の端子間電圧が異なっている場合においても、第1,第2蓄電池31,32を追加の電力変換回路なしで同時に充電できる。 Through the process of step S13, the connection state of the first and second storage batteries 31 and 32 can be changed to the motor-via connection state. Thereby, the first storage battery 31 can be directly charged by the low voltage charger 210, and the second storage battery 32 can be charged via the inverter 20 and the armature winding 11. Furthermore, even when the rated voltages of the first and second storage batteries 31 and 32 are different, or when the actual terminal voltages of the first and second storage batteries 31 and 32 with the same rated voltage are different, the first , the second storage batteries 31 and 32 can be charged simultaneously without an additional power conversion circuit.
 以上詳述した本実施形態によれば、低圧充電器210の充電電圧に対応してシステム電圧を低下させる構成を、インバータ20及びモータ10の一部の構成を流用して実現できる。このため、第1,第2蓄電池31,32の接続状態を切り替えるための構成の簡素化を図った電力変換装置を提供することができる。 According to the present embodiment described in detail above, a configuration in which the system voltage is lowered in response to the charging voltage of the low-voltage charger 210 can be realized by reusing part of the configuration of the inverter 20 and the motor 10. Therefore, it is possible to provide a power conversion device with a simplified configuration for switching the connection state of the first and second storage batteries 31 and 32.
 <第1実施形態の変形例>
 ・図2のステップS11において、インバータ20の同相の上,下アームスイッチSWH,SWLがオンされないことを条件として、少なくとも1相の上アームスイッチSWH及びモータ側スイッチ60をオンしてもよい。また、ステップS11において、同相の上,下アームスイッチSWH,SWLのいずれか一方のオンオフを繰り返すスイッチングを行ってもよいし、同相の上,下アームスイッチSWH,SWLを交互にオンするスイッチングを行ってもよい。
<Modified example of the first embodiment>
- In step S11 of FIG. 2, at least one phase of the upper arm switch SWH and the motor side switch 60 may be turned on, provided that the in-phase upper and lower arm switches SWH and SWL of the inverter 20 are not turned on. Further, in step S11, switching may be performed to repeatedly turn on and off one of the upper and lower arm switches SWH and SWL of the same phase, or switching may be performed to alternately turn on the upper and lower arm switches SWH and SWL of the same phase. It's okay.
 ・ステップS13において、上アームスイッチSWHをオンに維持することに限らず、オンオフを繰り返すスイッチングを行ってもよいし、少なくとも1相において上,下アームスイッチSWH,SWLを交互にオンするスイッチングを行ってもよい。この場合、例えば、電気角の検出値に基づいて、モータ10のトルクが0又は0付近の値(具体的には例えば、電機子巻線11に流れるq軸電流が0又は0付近の値)となるようにスイッチングを行ってもよい。 - In step S13, the upper arm switch SWH is not limited to being kept on, but may be repeatedly turned on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. It's okay. In this case, for example, based on the detected electrical angle value, the torque of the motor 10 is 0 or a value near 0 (specifically, for example, the q-axis current flowing through the armature winding 11 is 0 or a value near 0). Switching may be performed so that
 ・ステップS12において肯定した後、第1電圧センサ71により検出された第1蓄電池31の端子間電圧(以下、第1検出電圧VA)が、第2電圧センサ72により検出された第2蓄電池32の端子間電圧(以下、第2検出電圧VB)以上であると判定した場合にステップS13の処理を行ってもよい。また、ステップS12において肯定した後、第2検出電圧VBが第1検出電圧VAよりも高く、かつ、第2検出電圧VBから第1検出電圧VAを差し引いた値が閾値ΔVjde(>0。後述の第2閾値ΔVjde2に相当)以下であると判定した場合にステップS13の処理を行ってもよい。これにより、ステップS13のように各スイッチの操作状態を切り替えた場合において第2蓄電池32からモータ側電気経路25、電機子巻線11、上アームダイオードDH及び高電位側電気経路22Hを介して第1蓄電池31に電流が流れ込む現象の発生を抑制したり、この現象が発生したとしても流れ込む電流量を小さくしたりできる。 - After the determination in step S12 is affirmative, the voltage across the terminals of the first storage battery 31 detected by the first voltage sensor 71 (hereinafter referred to as first detection voltage VA) is the voltage of the second storage battery 32 detected by the second voltage sensor 72. If it is determined that the inter-terminal voltage (hereinafter referred to as second detected voltage VB) is higher than or equal to the terminal voltage, the process of step S13 may be performed. Further, after the determination in step S12 is affirmative, the second detection voltage VB is higher than the first detection voltage VA, and the value obtained by subtracting the first detection voltage VA from the second detection voltage VB is the threshold value ΔVjde (>0. If it is determined that the second threshold value ΔVjde2 is equal to or less than the second threshold value ΔVjde2, the process of step S13 may be performed. As a result, when the operation state of each switch is changed as in step S13, the second storage battery 32 is connected to the motor side electrical path 25, the armature winding 11, the upper arm diode DH, and the high potential side electrical path 22H. It is possible to suppress the occurrence of a phenomenon in which current flows into the 1 storage battery 31, or to reduce the amount of current that flows even if this phenomenon occurs.
 なお、閾値ΔVjdeは、各蓄電池31,32の定格電圧よりも小さい値である。閾値ΔVjdeは、例えば、各蓄電池31,32の定格電圧のうち低い方の値の1/10以下の値、1/20以下の値、1/50以下の値又は1/100以下の値に設定されている。第2検出電圧VBと第1検出電圧VAとが大きく異なる状況は、例えば以下(1)~(3)の場合に発生し得る。 Note that the threshold value ΔVjde is a value smaller than the rated voltage of each storage battery 31, 32. The threshold value ΔVjde is set, for example, to a value of 1/10 or less, 1/20 or less, 1/50 or less, or 1/100 or less of the lower of the rated voltages of each storage battery 31, 32. has been done. A situation where the second detection voltage VB and the first detection voltage VA are significantly different may occur, for example, in the following cases (1) to (3).
 (1)各蓄電池31,32を構成する電池セルの定格電圧が同じ構成において、第1蓄電池31を構成する電池セルの数と第2蓄電池32を構成する電池セルの数とが異なる場合。 (1) In a configuration in which the rated voltages of the battery cells constituting each storage battery 31 and 32 are the same, the number of battery cells constituting the first storage battery 31 and the number of battery cells constituting the second storage battery 32 are different.
 (2)各蓄電池31,32を構成する電池セルの数が同じである構成において各蓄電池31,32の種類が異なり各蓄電池31,32の電池セルの定格電圧が異なる場合。 (2) In a configuration where the number of battery cells constituting each storage battery 31, 32 is the same, the types of each storage battery 31, 32 are different and the rated voltages of the battery cells of each storage battery 31, 32 are different.
 (3)各蓄電池31,32を構成する電池セルの数が異なるとともに、各蓄電池31,32の種類が異なり各蓄電池31,32の電池セルの定格電圧が異なる場合。 (3) A case where the number of battery cells configuring each storage battery 31, 32 is different, the type of each storage battery 31, 32 is different, and the rated voltage of the battery cell of each storage battery 31, 32 is different.
 <第2実施形態>
 以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図5に示すように、バイパススイッチ51は、第2蓄電池32の正極端子と高電位側電気経路22Hとを接続する。また、モータ側スイッチ61は、第1蓄電池31の負極端子と電機子巻線11の中性点とを接続する。
<Second embodiment>
The second embodiment will be described below with reference to the drawings, focusing on the differences from the first embodiment. In this embodiment, as shown in FIG. 5, the bypass switch 51 connects the positive terminal of the second storage battery 32 and the high potential side electrical path 22H. Further, the motor side switch 61 connects the negative terminal of the first storage battery 31 and the neutral point of the armature winding 11.
 図6に、制御装置100により実行される本実施形態の充電制御処理の手順を示す。 FIG. 6 shows the procedure of the charging control process of this embodiment executed by the control device 100.
 ステップS10において外部充電器が高圧充電器200であると判定した場合には、ステップS14に進み、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になるように、電池間スイッチ40をオンし、バイパススイッチ51、モータ側スイッチ61及びインバータ20の全相の上,下アームスイッチSWH,SWLをオフする。これにより、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になり、第1蓄電池31及び第2蓄電池32が直列接続された状態で充電される。 If it is determined in step S10 that the external charger is the high voltage charger 200, the process proceeds to step S14, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Then, the inter-battery switch 40 is turned on, and the bypass switch 51, motor side switch 61, and upper and lower arm switches SWH and SWL of all phases of the inverter 20 are turned off. Thereby, the first storage battery 31 and the second storage battery 32 are connected in series to the high-voltage charger 200, and the first storage battery 31 and the second storage battery 32 are charged while being connected in series.
 ステップS12において外部充電器が低圧充電器210であると判定した場合には、ステップS15に進み、低圧充電器210に対して第1蓄電池31及び第2蓄電池32の接続状態がモータ経由接続状態になるように、電池間スイッチ40をオフし、バイパススイッチ51及びモータ側スイッチ61をオンし、インバータ20の全相の下アームスイッチSWLをオフし、少なくとも1相の上アームスイッチSWHをオンする。これにより、低圧充電器210に対して第1蓄電池31及び第2蓄電池32の接続状態がモータ経由接続状態になり、第1蓄電池31及び第2蓄電池32が充電される。 If it is determined in step S12 that the external charger is the low-voltage charger 210, the process advances to step S15, and the connection state of the first storage battery 31 and the second storage battery 32 to the low-voltage charger 210 changes to the connection state via the motor. The inter-battery switch 40 is turned off, the bypass switch 51 and the motor side switch 61 are turned on, the lower arm switches SWL of all phases of the inverter 20 are turned off, and the upper arm switch SWH of at least one phase is turned on. As a result, the connection state of the first storage battery 31 and the second storage battery 32 to the low-voltage charger 210 becomes the connection state via the motor, and the first storage battery 31 and the second storage battery 32 are charged.
 <第2実施形態の変形例>
 ・図6のステップS14において、インバータ20の同相の上,下アームスイッチSWH,SWLがオンされないことを条件として、少なくとも1相の下アームスイッチSWL及びモータ側スイッチ61をオンしてもよい。また、ステップS14において、同相の上,下アームスイッチSWH,SWLのいずれか一方のオンオフを繰り返すスイッチングを行ってもよいし、同相の上,下アームスイッチSWH,SWLを交互にオンするスイッチングを行ってもよい。
<Modified example of second embodiment>
- In step S14 of FIG. 6, at least one phase of the lower arm switch SWL and the motor side switch 61 may be turned on, provided that the in-phase upper and lower arm switches SWH and SWL of the inverter 20 are not turned on. Further, in step S14, switching may be performed to repeatedly turn on and off one of the upper and lower arm switches SWH and SWL of the same phase, or switching may be performed to alternately turn on the upper and lower arm switches SWH and SWL of the same phase. It's okay.
 ・ステップS15において、下アームスイッチSWLをオンに維持することに限らず、オンオフを繰り返すスイッチングを行ってもよいし、少なくとも1相において上,下アームスイッチSWH,SWLを交互にオンするスイッチングを行ってもよい。 - In step S15, the lower arm switch SWL is not limited to being kept on, but may be repeatedly turned on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. It's okay.
 ・ステップS12において肯定した後、第2検出電圧VBが第1検出電圧VA以上であると判定した場合にステップS15の処理を行ってもよい。また、ステップS12において肯定した後、第1検出電圧VAが第2検出電圧VBよりも高く、かつ、第1検出電圧VAから第2検出電圧VBを差し引いた値が閾値ΔVjde以下であると判定した場合にステップS15の処理を行ってもよい。 - After making an affirmative determination in step S12, if it is determined that the second detection voltage VB is greater than or equal to the first detection voltage VA, the process in step S15 may be performed. Further, after the determination in step S12 is affirmative, it is determined that the first detection voltage VA is higher than the second detection voltage VB, and the value obtained by subtracting the second detection voltage VB from the first detection voltage VA is less than or equal to the threshold value ΔVjde. In this case, the process of step S15 may be performed.
 <第3実施形態>
 以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図7に示すように、第2蓄電池32の正極端子と高電位側電気経路22Hとを接続するバイパススイッチ80が更に備えられている。本実施形態において、バイパススイッチ80を第2バイパススイッチ80と称し、バイパススイッチ50を第1バイパススイッチ50と称すこととする。
<Third embodiment>
The third embodiment will be described below with reference to the drawings, focusing on the differences from the first embodiment. In this embodiment, as shown in FIG. 7, a bypass switch 80 that connects the positive terminal of the second storage battery 32 and the high potential side electrical path 22H is further provided. In this embodiment, the bypass switch 80 will be referred to as a second bypass switch 80, and the bypass switch 50 will be referred to as a first bypass switch 50.
 図8に、制御装置100により実行される本実施形態の充電制御処理の手順を示す。 FIG. 8 shows the procedure of the charging control process of this embodiment executed by the control device 100.
 ステップS20では、ステップS10と同様に、外部充電器が高圧充電器200であるか否かを判定する。 In step S20, similarly to step S10, it is determined whether the external charger is the high voltage charger 200.
 ステップS20において外部充電器が高圧充電器200であると判定した場合には、ステップS21に進み、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になるように、電池間スイッチ40、第1バイパススイッチ50、第2バイパススイッチ80、モータ側スイッチ60及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 If it is determined in step S20 that the external charger is the high voltage charger 200, the process proceeds to step S21, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Then, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, the motor side switch 60, and the upper and lower arm switches SWH and SWL of the inverter 20 are operated.
 詳しくは、電池間スイッチ40をオンし、第1バイパススイッチ50、第2バイパススイッチ80、モータ側スイッチ60及びインバータ20の全相の上,下アームスイッチSWH,SWLをオフする。これにより、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態で、第1蓄電池31及び第2蓄電池32が直列接続された状態で充電される。 Specifically, the inter-battery switch 40 is turned on, and the first bypass switch 50, second bypass switch 80, motor side switch 60, and upper and lower arm switches SWH and SWL of all phases of the inverter 20 are turned off. Thereby, the first storage battery 31 and the second storage battery 32 are connected in series to the high-voltage charger 200, and the first storage battery 31 and the second storage battery 32 are connected in series and are charged.
 ステップS20において外部充電器が高圧充電器200ではないと判定した場合には、ステップS22に進み、ステップS12と同様に、外部充電器が低圧充電器210であるか否かを判定する。 If it is determined in step S20 that the external charger is not the high voltage charger 200, the process proceeds to step S22, and similarly to step S12, it is determined whether the external charger is the low voltage charger 210.
 ステップS22において外部充電器が低圧充電器210であると判定した場合には、ステップS23に進み、第1検出電圧VAと第2検出電圧VBとの差の絶対値が、第1閾値ΔVjde1(>0)以下であるか否かを判定する。 If it is determined in step S22 that the external charger is the low-voltage charger 210, the process proceeds to step S23, and the absolute value of the difference between the first detection voltage VA and the second detection voltage VB is determined to be the first threshold value ΔVjde1 (> 0) Determine whether or not.
 ステップS23において差の絶対値が第1閾値ΔVjde1以下であると判定した場合には、ステップS24に進み、低圧充電器210に対して第1蓄電池31及び第2蓄電池32それぞれが並列接続された状態になるように、電池間スイッチ40、第1バイパススイッチ50、第2バイパススイッチ80、モータ側スイッチ60及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 If it is determined in step S23 that the absolute value of the difference is less than or equal to the first threshold value ΔVjde1, the process proceeds to step S24, where the first storage battery 31 and the second storage battery 32 are each connected in parallel to the low-voltage charger 210. Operate the inter-battery switch 40, first bypass switch 50, second bypass switch 80, motor side switch 60, and upper and lower arm switches SWH and SWL of the inverter 20 so that
 詳しくは、電池間スイッチ40及びモータ側スイッチ60をオフし、第1バイパススイッチ50及び第2バイパススイッチ80をオンする。また、インバータ20の全相の上,下アームスイッチSWH,SWLをオフする。これにより、図10に示すように、低圧充電器210に対して第1蓄電池31及び第2蓄電池32それぞれが並列接続された状態になる。このため、低圧充電器210、高電位側電気経路22H、第1蓄電池31、第1バイパススイッチ50及び低電位側電気経路22Lを含む閉回路に電流が流れ、第1蓄電池31が充電される。また、低圧充電器210、高電位側電気経路22H、第2バイパススイッチ80、第2蓄電池32及び低電位側電気経路22Lを含む閉回路に電流が流れ、第2蓄電池32が充電される。この際、第1,第2蓄電池31,32の電位差が小さいため、第1,第2蓄電池31,32のうち一方から他方へと電流が流れ込む現象の発生を抑制したり、この現象が発生したとしても流れ込む電流量を小さくしたりできる。 Specifically, the inter-battery switch 40 and the motor side switch 60 are turned off, and the first bypass switch 50 and the second bypass switch 80 are turned on. Also, all phase upper and lower arm switches SWH and SWL of the inverter 20 are turned off. Thereby, as shown in FIG. 10, the first storage battery 31 and the second storage battery 32 are connected in parallel to the low-voltage charger 210. Therefore, current flows through a closed circuit including the low-voltage charger 210, the high-potential electric path 22H, the first storage battery 31, the first bypass switch 50, and the low-potential electric path 22L, and the first storage battery 31 is charged. Further, a current flows through a closed circuit including the low voltage charger 210, the high potential side electrical path 22H, the second bypass switch 80, the second storage battery 32, and the low potential side electrical path 22L, and the second storage battery 32 is charged. At this time, since the potential difference between the first and second storage batteries 31 and 32 is small, it is possible to suppress the occurrence of a phenomenon in which current flows from one of the first and second storage batteries 31 and 32 to the other, and to prevent this phenomenon from occurring. However, the amount of current that flows can be reduced.
 図8の説明に戻り、ステップS23において差の絶対値が第1閾値ΔVjde1を超えていると判定した場合には、ステップS25に進み、第2検出電圧VBから第1検出電圧VAを差し引いた値が、第1閾値ΔVjde1よりも大きい第2閾値ΔVjde2(>0)以下であるか否かを判定する。ステップS25において「VB-VA>ΔVjde2」であると判定した場合には、第1,第2蓄電池31,32のモータ経由接続状態及び並列接続状態での低圧充電器210による充電を禁止する。ステップS25において「VB-VA>ΔVjde2」であると判定される状況は、第2検出電圧VBが第1検出電圧VAよりも高く、第2検出電圧VBと第1検出電圧VAとの電位差が第2閾値ΔVjde2を超える状況である。なお、第1閾値ΔVjde1は、例えば、第1,第2蓄電池31,32を並列接続状態にした場合において、「第1蓄電池31と第2蓄電池32との間に存在する電流経路のインピーダンス(具体的には例えば、第1,第2蓄電池31,32のインピーダンス)」と、「第1蓄電池31と第2蓄電池32との電位差」との関係性から定まる突入電流の最大値及び定常値が許容値以下となるような第1蓄電池31と第2蓄電池32との電位差に設定されればよい。また、第2閾値ΔVjde2は、例えば、第1,第2蓄電池31,32の接続状態をモータ経由接続状態にした場合において、「第1蓄電池31と第2蓄電池32との間に存在する電流経路のインピーダンス(具体的には例えば、第1,第2蓄電池31,32のインピーダンスと、インバータ20及び電機子巻線11のインピーダンスと、インバータ20のダイオードの順方向におけるインピーダンス)」と、「第1蓄電池31と第2蓄電池32との電位差」との関係性から定まる突入電流の最大値及び定常値が許容値以下となるような第1蓄電池31と第2蓄電池32との電位差に設定されればよい。ここで、上記許容値とは、例えば、電流経路上の構成部品が安全上耐え得る最大電流である。 Returning to the explanation of FIG. 8, if it is determined in step S23 that the absolute value of the difference exceeds the first threshold value ΔVjde1, the process proceeds to step S25, and the value obtained by subtracting the first detected voltage VA from the second detected voltage VB is determined. is equal to or less than a second threshold value ΔVjde2 (>0), which is larger than the first threshold value ΔVjde1. If it is determined in step S25 that "VB-VA>ΔVjde2", charging by the low-voltage charger 210 is prohibited in the state where the first and second storage batteries 31 and 32 are connected via the motor and in the state where they are connected in parallel. The situation in which it is determined in step S25 that "VB-VA>ΔVjde2" is such that the second detection voltage VB is higher than the first detection voltage VA and the potential difference between the second detection voltage VB and the first detection voltage VA is 2 threshold value ΔVjde2 is exceeded. Note that the first threshold value ΔVjde1 is, for example, the impedance of the current path existing between the first storage battery 31 and the second storage battery 32 (specifically For example, the maximum value and steady-state value of the inrush current determined from the relationship between the impedance of the first and second storage batteries 31 and 32 and the potential difference between the first storage battery 31 and the second storage battery 32 are allowable. The potential difference between the first storage battery 31 and the second storage battery 32 may be set to be equal to or less than the value. In addition, the second threshold value ΔVjde2 is, for example, when the connection state of the first and second storage batteries 31 and 32 is set to the motor-via connection state. (specifically, for example, the impedance of the first and second storage batteries 31 and 32, the impedance of the inverter 20 and the armature winding 11, and the forward direction impedance of the diode of the inverter 20), If the potential difference between the first storage battery 31 and the second storage battery 32 is set to such that the maximum value and steady-state value of the rush current determined from the relationship between the "potential difference between the storage battery 31 and the second storage battery 32" are below the allowable value. good. Here, the above-mentioned allowable value is, for example, the maximum current that components on the current path can withstand for safety.
 一方、ステップS25において「VB-VA≦ΔVjde2」であると判定した場合には、ステップS26に進む。ステップS25において「VB-VA≦ΔVjde2」であると判定される状況は、第1検出電圧VAが第2検出電圧VBよりも高くなるとともに、第2検出電圧VBと第1検出電圧VAとの電位差が第1閾値ΔVjde1を超える状況、又は第2検出電圧VBが第1検出電圧VAよりも高くなるとともに、第2検出電圧VBと第1検出電圧VAとの電位差が、第1閾値ΔVjde1よりも大きくかつ第2閾値ΔVjde2以下となる状況である。ステップS26では、第1蓄電池31及び第2蓄電池32の接続状態がモータ経由接続状態になるように、電池間スイッチ40、第1バイパススイッチ50、第2バイパススイッチ80、モータ側スイッチ60及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 On the other hand, if it is determined in step S25 that "VB-VA≦ΔVjde2", the process advances to step S26. The situation in which it is determined that "VB-VA≦ΔVjde2" in step S25 is such that the first detection voltage VA becomes higher than the second detection voltage VB and the potential difference between the second detection voltage VB and the first detection voltage VA exceeds the first threshold value ΔVjde1, or the second detection voltage VB becomes higher than the first detection voltage VA, and the potential difference between the second detection voltage VB and the first detection voltage VA is larger than the first threshold value ΔVjde1. This is a situation in which the second threshold value ΔVjde2 is also lower than the second threshold value ΔVjde2. In step S26, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, the motor side switch 60, and the inverter 20 are connected so that the first storage battery 31 and the second storage battery 32 are connected to each other through the motor. Operate the upper and lower arm switches SWH and SWL.
 詳しくは、電池間スイッチ40及び第2バイパススイッチ80をオフし、第1バイパススイッチ50及びモータ側スイッチ60をオンする。また、インバータ20の全相の下アームスイッチSWLをオフし、少なくとも1相の上アームスイッチSWHをオンする。これにより、図9に示すように、第1蓄電池31及び第2蓄電池32の接続状態がモータ経由接続状態になる。このため、低圧充電器210、高電位側電気経路22H、第1蓄電池31、第1バイパススイッチ50及び低電位側電気経路22Lを含む閉回路に電流が流れ、第1蓄電池31が充電される。また、低圧充電器210、高電位側電気経路22H、上アームスイッチSWH、電機子巻線11、中性点、モータ側スイッチ60、第2蓄電池32及び低電位側電気経路22Lを含む閉回路に電流が流れ、第2蓄電池32が充電される。この際、第2蓄電池32からモータ側電気経路25、電機子巻線11上アームダイオードDH及び高電位側電気経路22Hを介して第1蓄電池31に電流が流れ込む現象の発生を抑制したり、この現象が発生したとしても流れ込む電流量を小さくしたりできる。 Specifically, the inter-battery switch 40 and the second bypass switch 80 are turned off, and the first bypass switch 50 and the motor side switch 60 are turned on. Further, the lower arm switches SWL of all phases of the inverter 20 are turned off, and the upper arm switch SWH of at least one phase is turned on. Thereby, as shown in FIG. 9, the connection state of the first storage battery 31 and the second storage battery 32 becomes the motor-via connection state. Therefore, a current flows through a closed circuit including the low-voltage charger 210, the high-potential electric path 22H, the first storage battery 31, the first bypass switch 50, and the low-potential electric path 22L, and the first storage battery 31 is charged. In addition, a closed circuit including a low voltage charger 210, a high potential side electrical path 22H, an upper arm switch SWH, an armature winding 11, a neutral point, a motor side switch 60, a second storage battery 32, and a low potential side electrical path 22L is provided. Current flows and the second storage battery 32 is charged. At this time, it is possible to suppress the occurrence of a phenomenon in which current flows from the second storage battery 32 to the first storage battery 31 via the motor side electrical path 25, the armature winding 11 upper arm diode DH, and the high potential side electrical path 22H. Even if a phenomenon occurs, the amount of current flowing can be reduced.
 <第3実施形態の変形例>
 図8のステップS25の処理を無くし、ステップS23において肯定した場合にステップS26の処理を行ってもよい。また、ステップS26において、上アームスイッチSWHをオンに維持することに限らず、オンオフを繰り返すスイッチングを行ってもよいし、少なくとも1相において上,下アームスイッチSWH,SWLを交互にオンするスイッチングを行ってもよい。
<Modification of third embodiment>
The process of step S25 in FIG. 8 may be omitted and the process of step S26 may be performed when the answer is affirmative in step S23. Furthermore, in step S26, the upper arm switch SWH is not limited to being kept on, but may be repeatedly turned on and off, or alternatively the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. You may go.
 <第4実施形態>
 以下、第4実施形態について、第3実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図11に示すように、モータ側スイッチ61が設けられるモータ側電気経路25は、電機子巻線11の中性点と、電池間電気経路24のうち電池間スイッチ40よりも第1蓄電池31側とを接続する。
<Fourth embodiment>
The fourth embodiment will be described below with reference to the drawings, focusing on the differences from the third embodiment. In this embodiment, as shown in FIG. 11, the motor-side electrical path 25 in which the motor-side switch 61 is provided is located between the neutral point of the armature winding 11 and the inter-battery electrical path 24 that is closer to the inter-battery switch 40. The first storage battery 31 side is connected.
 図12に、制御装置100により実行される本実施形態の充電制御処理の手順を示す。 FIG. 12 shows the procedure of the charging control process of this embodiment executed by the control device 100.
 ステップS20において外部充電器が高圧充電器200であると判定した場合には、ステップS26に進み、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になるように、電池間スイッチ40、第1バイパススイッチ50、第2バイパススイッチ80、モータ側スイッチ61及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 If it is determined in step S20 that the external charger is the high voltage charger 200, the process advances to step S26, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. Then, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, the motor side switch 61, and the upper and lower arm switches SWH and SWL of the inverter 20 are operated.
 詳しくは、電池間スイッチ40をオンし、第1バイパススイッチ50、第2バイパススイッチ80、モータ側スイッチ61及びインバータ20の全相の上,下アームスイッチSWH,SWLをオフする。これにより、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態で、第1蓄電池31及び第2蓄電池32が充電される。 Specifically, the inter-battery switch 40 is turned on, and the first bypass switch 50, second bypass switch 80, motor side switch 61, and upper and lower arm switches SWH and SWL of all phases of the inverter 20 are turned off. Thereby, the first storage battery 31 and the second storage battery 32 are charged in a state where the first storage battery 31 and the second storage battery 32 are connected in series to the high-voltage charger 200 .
 ステップS22において外部充電器が低圧充電器210であると判定した場合には、ステップS23に進む。ステップS23において第1検出電圧VAと第2検出電圧VBとの差の絶対値が第1閾値ΔVjde1以下であると判定した場合には、ステップS27に進む。ステップS27では、低圧充電器210に対して第1蓄電池31及び第2蓄電池32それぞれが並列接続された状態になるように、電池間スイッチ40、第1バイパススイッチ50、第2バイパススイッチ80、モータ側スイッチ61及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 If it is determined in step S22 that the external charger is the low voltage charger 210, the process advances to step S23. If it is determined in step S23 that the absolute value of the difference between the first detection voltage VA and the second detection voltage VB is less than or equal to the first threshold value ΔVjde1, the process advances to step S27. In step S27, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, and the motor are connected so that the first storage battery 31 and the second storage battery 32 are connected in parallel to the low-voltage charger 210. Operate the side switch 61 and the upper and lower arm switches SWH and SWL of the inverter 20.
 詳しくは、電池間スイッチ40及びモータ側スイッチ61をオフし、第1バイパススイッチ50及び第2バイパススイッチ80をオンする。また、インバータ20の全相の上,下アームスイッチSWH,SWLをオフする。これにより、低圧充電器210に対して第1,第2蓄電池31,32が並列接続された状態で、第1,第2蓄電池31,32が充電される。この際、第1,第2蓄電池31,32の電位差が小さいため、第1,第2蓄電池31,32のうち一方から他方へと電流が流れ込む現象の発生を抑制したり、この現象が発生したとしても流れ込む電流量を小さくしたりできる。 Specifically, the inter-battery switch 40 and the motor side switch 61 are turned off, and the first bypass switch 50 and the second bypass switch 80 are turned on. Also, all phase upper and lower arm switches SWH and SWL of the inverter 20 are turned off. Thereby, the first and second storage batteries 31 and 32 are charged in a state where the first and second storage batteries 31 and 32 are connected in parallel to the low voltage charger 210. At this time, since the potential difference between the first and second storage batteries 31 and 32 is small, it is possible to suppress the occurrence of a phenomenon in which current flows from one of the first and second storage batteries 31 and 32 to the other, and to prevent this phenomenon from occurring. However, the amount of current that flows can be reduced.
 ステップS23において否定判定した場合には、ステップS28に進み、第1検出電圧VAから第2検出電圧VBを差し引いた値が第2閾値ΔVjde2以下であるか否かを判定する。ステップS28において「VA-VB>ΔVjde2」であると判定した場合には、第1,第2蓄電池31,32のモータ経由接続状態及び並列接続状態での低圧充電器210による充電を禁止する。ステップS28において「VA-VB>ΔVjde2」であると判定される状況は、第1検出電圧VAが第2検出電圧VBよりも高く、第2検出電圧VBと第1検出電圧VAとの電位差が第2閾値ΔVjde2を超える状況である。 If a negative determination is made in step S23, the process proceeds to step S28, and it is determined whether the value obtained by subtracting the second detection voltage VB from the first detection voltage VA is less than or equal to the second threshold value ΔVjde2. If it is determined in step S28 that "VA-VB>ΔVjde2", charging by the low-voltage charger 210 is prohibited when the first and second storage batteries 31 and 32 are connected via the motor and connected in parallel. The situation in which it is determined in step S28 that "VA-VB>ΔVjde2" is such that the first detection voltage VA is higher than the second detection voltage VB and the potential difference between the second detection voltage VB and the first detection voltage VA is 2 threshold value ΔVjde2 is exceeded.
 一方、ステップS28において「VA-VB≦ΔVjde2」であると判定した場合には、ステップS29に進む。ステップS28において「VA-VB≦ΔVjde2」であると判定される状況は、第2検出電圧VBが第2検出電圧VAよりも高くなるとともに、第2検出電圧VBと第1検出電圧VAとの電位差が第1閾値ΔVjde1を超える状況、又は第1検出電圧VBが第2検出電圧VBよりも高くなるとともに、第2検出電圧VBと第1検出電圧VAとの電位差が、第1閾値ΔVjde1よりも大きくかつ第2閾値ΔVjde2以下となる状況である。ステップS29では、第1蓄電池31及び第2蓄電池32の接続状態がモータ経由接続状態になるように、電池間スイッチ40、第1バイパススイッチ50、第2バイパススイッチ80、モータ側スイッチ61及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 On the other hand, if it is determined in step S28 that "VA-VB≦ΔVjde2", the process advances to step S29. The situation in which it is determined in step S28 that "VA-VB≦ΔVjde2" is such that the second detection voltage VB is higher than the second detection voltage VA, and the potential difference between the second detection voltage VB and the first detection voltage VA is exceeds the first threshold ΔVjde1, or the first detection voltage VB becomes higher than the second detection voltage VB, and the potential difference between the second detection voltage VB and the first detection voltage VA is larger than the first threshold ΔVjde1. This is a situation in which the second threshold value ΔVjde2 is also lower than the second threshold value ΔVjde2. In step S29, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, the motor side switch 61, and the inverter 20 are connected so that the first storage battery 31 and the second storage battery 32 are connected to each other through the motor. Operate the upper and lower arm switches SWH and SWL.
 詳しくは、電池間スイッチ40及び第1バイパススイッチ50をオフし、第2バイパススイッチ80及びモータ側スイッチ61をオンする。また、インバータ20の全相の上アームスイッチSWHをオフし、少なくとも1相の下アームスイッチSWLをオンする。これにより、低圧充電器210に対して第1,第2蓄電池31,32の接続状態がモータ経由接続状態となり、第1,第2蓄電池31,32が充電される。この際、第1蓄電池31から第2蓄電池32に電流が流れ込む現象の発生を抑制したり、この現象が発生したとしても流れ込む電流量を小さくしたりできる。 Specifically, the inter-battery switch 40 and the first bypass switch 50 are turned off, and the second bypass switch 80 and the motor side switch 61 are turned on. Further, the upper arm switches SWH of all phases of the inverter 20 are turned off, and the lower arm switch SWL of at least one phase is turned on. Thereby, the connection state of the first and second storage batteries 31 and 32 to the low voltage charger 210 becomes the motor-via connection state, and the first and second storage batteries 31 and 32 are charged. At this time, it is possible to suppress the occurrence of a phenomenon in which current flows from the first storage battery 31 to the second storage battery 32, or to reduce the amount of current flowing even if this phenomenon occurs.
 <第4実施形態の変形例>
 図12のステップS28の処理を無くし、ステップS23において肯定した場合にステップS29の処理を行ってもよい。また、ステップS29において、下アームスイッチSWLをオンに維持することに限らず、オンオフを繰り返すスイッチングを行ってもよいし、少なくとも1相において上,下アームスイッチSWH,SWLを交互にオンするスイッチングを行ってもよい。
<Modification of the fourth embodiment>
The process of step S28 in FIG. 12 may be omitted and the process of step S29 may be performed when the answer is affirmative in step S23. Further, in step S29, the lower arm switch SWL is not limited to being kept on, but may be repeatedly turned on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. You may go.
 <第5実施形態>
 以下、第5実施形態について、第4実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図13に示すように、モータ側スイッチとして、電機子巻線11の中性点と第1蓄電池31の負極端子とを接続するスイッチに加え、電機子巻線11の中性点と第2蓄電池32の正極端子とを接続するスイッチが備えられている。
<Fifth embodiment>
The fifth embodiment will be described below with reference to the drawings, focusing on the differences from the fourth embodiment. In this embodiment, as shown in FIG. 13, in addition to a switch connecting the neutral point of the armature winding 11 and the negative terminal of the first storage battery 31, the motor side switch includes a switch connecting the neutral point of the armature winding 11 and the negative terminal of the first storage battery 31; A switch is provided to connect the point and the positive terminal of the second storage battery 32.
 電機子巻線11の中性点には、共通経路26の第1端が接続されている。共通経路26の第2端には第1電気経路27の第1端が接続され、第1電気経路27の第2端には、電池間電気経路24のうち電池間スイッチ40よりも第2蓄電池32側が接続されている。また、共通経路26の第2端には第2電気経路28の第1端が接続され、第2電気経路28の第2端には、電池間電気経路24のうち電池間スイッチ40よりも第1蓄電池31側が接続されている。本実施形態において、共通経路26及び第1電気経路27が「第1モータ側電気経路」に相当し、共通経路26及び第2電気経路28が「第2モータ側電気経路」に相当する。なお、共通経路26が設けられず、第1電気経路27及び第2電気経路28それぞれの第1端が電機子巻線11の中性点に接続されていてもよい。 The first end of the common path 26 is connected to the neutral point of the armature winding 11. A first end of a first electrical path 27 is connected to the second end of the common path 26, and a second storage battery is connected to the second end of the inter-battery electrical path 24 rather than the inter-battery switch 40. 32 side is connected. Further, a first end of a second electrical path 28 is connected to the second end of the common path 26, and a second end of the second electrical path 28 is connected to a second end of the inter-battery electrical path 24 that is lower than the inter-battery switch 40. 1 storage battery 31 side is connected. In this embodiment, the common path 26 and the first electrical path 27 correspond to the "first motor side electrical path", and the common path 26 and the second electrical path 28 correspond to the "second motor side electrical path". Note that the common path 26 may not be provided, and the first ends of the first electrical path 27 and the second electrical path 28 may be connected to the neutral point of the armature winding 11.
 第1電気経路27には、第1モータ側スイッチ60が設けられている。第2電気経路28には、第2モータ側スイッチ61が設けられている。 A first motor side switch 60 is provided on the first electrical path 27. A second motor side switch 61 is provided on the second electrical path 28 .
 図14に、制御装置100により実行される本実施形態の充電制御処理の手順を示す。 FIG. 14 shows the procedure of the charging control process of this embodiment executed by the control device 100.
 ステップS20において外部充電器が高圧充電器200であると判定した場合には、ステップS30に進み、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になるように、電池間スイッチ40をオンし、第1バイパススイッチ50、第2バイパススイッチ80、第1モータ側スイッチ60、第2モータ側スイッチ61及びインバータ20の上,下アームスイッチSWH,SWLをオフする。これにより、高圧充電器200に対して第1蓄電池31及び第2蓄電池32が直列接続された状態で、第1蓄電池31及び第2蓄電池32が充電される。 If it is determined in step S20 that the external charger is the high voltage charger 200, the process proceeds to step S30, and the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 200. , turn on the inter-battery switch 40 and turn off the first bypass switch 50, second bypass switch 80, first motor side switch 60, second motor side switch 61, and upper and lower arm switches SWH and SWL of the inverter 20. . Thereby, the first storage battery 31 and the second storage battery 32 are charged in a state where the first storage battery 31 and the second storage battery 32 are connected in series to the high-voltage charger 200 .
 ステップS22において外部充電器が低圧充電器210であると判定した場合には、ステップS23に進む。ステップS23において第1検出電圧VAと第2検出電圧VBとの差の絶対値が第1閾値ΔVjde1以下であると判定した場合には、ステップS31に進む。ステップS31では、低圧充電器210に対して第1蓄電池31及び第2蓄電池32それぞれが並列接続された状態になるように、電池間スイッチ40、第1バイパススイッチ50、第2バイパススイッチ80、第1モータ側スイッチ60、第2モータ側スイッチ61及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 If it is determined in step S22 that the external charger is the low voltage charger 210, the process advances to step S23. If it is determined in step S23 that the absolute value of the difference between the first detection voltage VA and the second detection voltage VB is less than or equal to the first threshold value ΔVjde1, the process proceeds to step S31. In step S31, the inter-battery switch 40, the first bypass switch 50, the second bypass switch 80, and the The first motor side switch 60, the second motor side switch 61, and the upper and lower arm switches SWH and SWL of the inverter 20 are operated.
 詳しくは、電池間スイッチ40、第1モータ側スイッチ60及び第2モータ側スイッチ61をオフし、第1バイパススイッチ50及び第2バイパススイッチ80をオンする。また、インバータ20の全相の上,下アームスイッチSWH,SWLをオフする。これにより、低圧充電器210に対して第1,第2蓄電池31,32が並列接続された状態で、第1,第2蓄電池31,32が充電される。この際、第1,第2蓄電池31,32の電位差が小さいため、第1,第2蓄電池31,32のうち一方から他方へと電流が流れ込む現象の発生を抑制したり、この現象が発生したとしても流れ込む電流量を小さくしたりできる。 Specifically, the inter-battery switch 40, the first motor side switch 60, and the second motor side switch 61 are turned off, and the first bypass switch 50 and the second bypass switch 80 are turned on. Also, all phase upper and lower arm switches SWH and SWL of the inverter 20 are turned off. Thereby, the first and second storage batteries 31 and 32 are charged in a state where the first and second storage batteries 31 and 32 are connected in parallel to the low voltage charger 210. At this time, since the potential difference between the first and second storage batteries 31 and 32 is small, it is possible to suppress the occurrence of a phenomenon in which current flows from one of the first and second storage batteries 31 and 32 to the other, and to prevent this phenomenon from occurring. However, the amount of current that flows can be reduced.
 ステップS23において否定判定した場合には、ステップS34に進み、第1検出電圧VAと第2検出電圧VBとのどちらが高いかを判定する。ステップS34において「VA>VB」であると判定した場合には、ステップS32に進み、第1蓄電池31及び第2蓄電池32の接続状態が第1モータ経由接続状態になるように、電池間スイッチ40、第1バイパススイッチ50、第2バイパススイッチ80、第1モータ側スイッチ60、第2モータ側スイッチ61及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 If a negative determination is made in step S23, the process proceeds to step S34, and it is determined which of the first detection voltage VA and the second detection voltage VB is higher. If it is determined in step S34 that "VA>VB", the process proceeds to step S32, and the inter-battery switch 40 is set so that the first storage battery 31 and the second storage battery 32 are connected to each other via the first motor. , the first bypass switch 50, the second bypass switch 80, the first motor side switch 60, the second motor side switch 61, and the upper and lower arm switches SWH and SWL of the inverter 20.
 詳しくは、電池間スイッチ40、第2モータ側スイッチ61及び第2バイパススイッチ80をオフし、第1バイパススイッチ50及び第1モータ側スイッチ60をオンする。また、インバータ20の全相の下アームスイッチSWLをオフし、少なくとも1相の上アームスイッチSWHをオンする。これにより、第1,第2蓄電池31,32が充電される。この際、第1,第2蓄電池31,32の電位差が小さいため、第2蓄電池32から第1蓄電池31へと電流が流れ込む現象の発生を抑制したり、この現象が発生したとしても流れ込む電流量を小さくしたりできる。 Specifically, the inter-battery switch 40, the second motor side switch 61, and the second bypass switch 80 are turned off, and the first bypass switch 50 and the first motor side switch 60 are turned on. Further, the lower arm switches SWL of all phases of the inverter 20 are turned off, and the upper arm switch SWH of at least one phase is turned on. As a result, the first and second storage batteries 31 and 32 are charged. At this time, since the potential difference between the first and second storage batteries 31 and 32 is small, it is possible to suppress the occurrence of a phenomenon in which current flows from the second storage battery 32 to the first storage battery 31, and even if this phenomenon occurs, the amount of current that flows You can make it smaller.
 一方、ステップS34において「VB>VA」であると判定した場合には、ステップS33に進み、第1蓄電池31及び第2蓄電池32の接続状態が第2モータ経由接続状態になるように、電池間スイッチ40、第1バイパススイッチ50、第2バイパススイッチ80、第1モータ側スイッチ60、第2モータ側スイッチ61及びインバータ20の上,下アームスイッチSWH,SWLを操作する。 On the other hand, if it is determined in step S34 that "VB>VA", the process proceeds to step S33, and the battery is connected so that the first storage battery 31 and the second storage battery 32 are connected to each other via the second motor. The switch 40, the first bypass switch 50, the second bypass switch 80, the first motor side switch 60, the second motor side switch 61, and the upper and lower arm switches SWH and SWL of the inverter 20 are operated.
 詳しくは、電池間スイッチ40、第1モータ側スイッチ60及び第1バイパススイッチ50をオフし、第2バイパススイッチ80及び第2モータ側スイッチ61をオンする。また、インバータ20の全相の上アームスイッチSWHをオフし、少なくとも1相の下アームスイッチSWLをオンする。これにより、第1,第2蓄電池31,32が充電される。この際、第1,第2蓄電池31,32の電位差が小さいため、第1蓄電池31から第2蓄電池32へと電流が流れ込む現象の発生を抑制したり、この現象が発生したとしても流れ込む電流量を小さくしたりできる。 Specifically, the inter-battery switch 40, the first motor side switch 60, and the first bypass switch 50 are turned off, and the second bypass switch 80 and the second motor side switch 61 are turned on. Further, the upper arm switches SWH of all phases of the inverter 20 are turned off, and the lower arm switch SWL of at least one phase is turned on. As a result, the first and second storage batteries 31 and 32 are charged. At this time, since the potential difference between the first and second storage batteries 31 and 32 is small, the occurrence of a phenomenon in which current flows from the first storage battery 31 to the second storage battery 32 is suppressed, and even if this phenomenon occurs, the amount of current that flows You can make it smaller.
 以上説明した本実施形態によれば、第1蓄電池31及び第2蓄電池32の端子間電圧の大小関係によらず、第1,第2蓄電池31,32のうち一方から他方への電流の流れ込みを抑制したり、流れ込む電流量を小さくしたりできる。なお、図14のステップS32において、上アームスイッチSWHをオンに維持することに限らず、オンオフを繰り返すスイッチングを行ってもよいし、少なくとも1相において上,下アームスイッチSWH,SWLを交互にオンするスイッチングを行ってもよい。また、ステップS33において、下アームスイッチSWLをオンに維持することに限らず、オンオフを繰り返すスイッチングを行ってもよいし、少なくとも1相において上,下アームスイッチSWH,SWLを交互にオンするスイッチングを行ってもよい。 According to the present embodiment described above, the flow of current from one of the first and second storage batteries 31 and 32 to the other is prevented, regardless of the magnitude relationship between the voltages between the terminals of the first storage battery 31 and the second storage battery 32. It can be suppressed or the amount of current flowing can be reduced. Note that in step S32 of FIG. 14, the upper arm switch SWH is not limited to being kept on, but switching may be performed repeatedly to turn on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. Switching may also be performed. Further, in step S33, the lower arm switch SWL is not limited to being kept on, but may be repeatedly turned on and off, or the upper and lower arm switches SWH and SWL may be alternately turned on in at least one phase. You may go.
 <第6実施形態>
 以下、第6実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、低圧充電器210が接続された場合の充電処理において、第2蓄電池32の充電経路に含まれる上アームスイッチSWHのオンオフが繰り替えされるスイッチングが行われる。この場合、スイッチングに伴う高周波電流が発生する。本実施形態では、図15に示すように、スイッチングに伴い発生する高周波電流がインバータ20側から第2蓄電池32及び低圧充電器210へと流れ込むことを抑制するコンデンサ90が電力変換装置に備えられている。
<Sixth embodiment>
The sixth embodiment will be described below with reference to the drawings, focusing on the differences from the first embodiment. In this embodiment, in the charging process when the low voltage charger 210 is connected, switching is performed in which the upper arm switch SWH included in the charging path of the second storage battery 32 is repeatedly turned on and off. In this case, high frequency current is generated due to switching. In this embodiment, as shown in FIG. 15, the power conversion device is equipped with a capacitor 90 that suppresses high-frequency current generated due to switching from flowing from the inverter 20 side to the second storage battery 32 and the low-voltage charger 210. There is.
 モータ側電気経路25のうちモータ側スイッチ60よりも中性点側には、接続スイッチ91及びコンデンサ90の直列接続体を介して、低電位側電気経路22L(「対象経路」に相当)のうち低電位側メインスイッチSMRLと低電位側充電スイッチDCRLとの間の部分が接続されている。接続スイッチ91は、機械式リレーであってもよいし、半導体スイッチング素子であってもよい。 Of the motor-side electrical path 25, a part of the low-potential-side electrical path 22L (corresponding to the "target path") is connected to the neutral point side of the motor-side switch 60 via a series connection of a connection switch 91 and a capacitor 90. A portion between the low potential side main switch SMRL and the low potential side charging switch DCRL is connected. The connection switch 91 may be a mechanical relay or a semiconductor switching element.
 制御装置100は、車両を走行させるためのインバータ20のスイッチング制御中において、接続スイッチ91をオフにする。これにより、モータ10の制御量を指令値に制御する場合において、この制御に悪影響が及ぼされることを抑制できる。 The control device 100 turns off the connection switch 91 during switching control of the inverter 20 for driving the vehicle. Thereby, when controlling the control amount of the motor 10 to the command value, it is possible to suppress the control from being adversely affected.
 一方、制御装置100は、例えば先の図2のステップS13の低圧充電器210による充電処理時において、接続スイッチ91をオンにする。これにより、モータ側電気経路25に電流が流れる場合において、モータ側電気経路25に流れる電流に含まれるノイズ又はリップルをコンデンサ90に流すことができる。一方、例えばステップS11の高圧充電器200による充電処理時において、接続スイッチ91をオフにする。これは、高圧充電器200による充電処理時においては、インバータ20のスイッチングが行われないためである。 On the other hand, the control device 100 turns on the connection switch 91, for example, during the charging process by the low-voltage charger 210 in step S13 in FIG. 2 above. Thereby, when current flows through the motor-side electrical path 25, noise or ripple included in the current flowing through the motor-side electrical path 25 can be caused to flow through the capacitor 90. On the other hand, for example, during the charging process by the high voltage charger 200 in step S11, the connection switch 91 is turned off. This is because the inverter 20 is not switched during the charging process by the high voltage charger 200.
 以上説明した本実施形態によれば、低圧充電器210による充電処理時において、スイッチングに伴い発生する高周波電流がインバータ20側から第2蓄電池32及び低圧充電器210へと流れ込むことを抑制できる。 According to the embodiment described above, during the charging process by the low voltage charger 210, it is possible to suppress the high frequency current generated due to switching from flowing from the inverter 20 side to the second storage battery 32 and the low voltage charger 210.
 <第6実施形態の変形例>
 ・コンデンサ90がモータ側電気経路25側に接続され、接続スイッチ91が低電位側電気経路22L側に接続されていてもよい。
<Modified example of the sixth embodiment>
- The capacitor 90 may be connected to the motor side electric path 25 side, and the connection switch 91 may be connected to the low potential side electric path 22L side.
 ・接続スイッチ91が無くてもよい。つまり、モータ側電気経路25と低電位側電気経路22Lとが常時接続されていてもよい。 ・The connection switch 91 may not be provided. That is, the motor side electrical path 25 and the low potential side electrical path 22L may be always connected.
 ・図16に示すように、接続スイッチ92とコンデンサ90との直列接続体が、モータ側電気経路25のうちモータ側スイッチ60よりも第2蓄電池32側の部分と、低電位側電気経路22Lとを接続していてもよい。 - As shown in FIG. 16, the series connection body of the connection switch 92 and the capacitor 90 is connected to the part of the motor side electrical path 25 closer to the second storage battery 32 than the motor side switch 60, and to the low potential side electrical path 22L. may be connected.
 また、図16に示す構成において、接続スイッチ92が無くてもよい。つまり、モータ側電気経路25と低電位側電気経路22Lとが常時接続されていてもよい。 Furthermore, in the configuration shown in FIG. 16, the connection switch 92 may not be provided. That is, the motor side electrical path 25 and the low potential side electrical path 22L may be always connected.
 ・図17に示すように、コンデンサが複数設けられていてもよい。詳しくは、モータ側電気経路25のうちモータ側スイッチ60よりも中性点側には、接続スイッチ93が設けられている。モータ側電気経路25のうちモータ側スイッチ60と接続スイッチ93との間の部分には、第1コンデンサ93Aを介して高電位側電気経路22H(「対象経路」に相当)が接続され、また、第2コンデンサ93Bを介して低電位側電気経路22L(「対象経路」に相当)が接続されている。 - As shown in FIG. 17, a plurality of capacitors may be provided. Specifically, a connection switch 93 is provided in the motor-side electrical path 25 closer to the neutral point than the motor-side switch 60 . A high potential side electrical path 22H (corresponding to a "target path") is connected to a portion of the motor side electrical path 25 between the motor side switch 60 and the connection switch 93 via a first capacitor 93A, and A low potential side electrical path 22L (corresponding to a "target path") is connected via a second capacitor 93B.
 また、図17に示す構成において、第1コンデンサ93A及び第2コンデンサ93Bのうちいずれかが無くてもよい。 Furthermore, in the configuration shown in FIG. 17, either the first capacitor 93A or the second capacitor 93B may be omitted.
 ・図18に示すように、モータ側電気経路25のうちモータ側スイッチ60よりも中性点側に接続スイッチ94の第1端が接続され、接続スイッチ94の第2端に、第1コンデンサ93A及び第2コンデンサ93Bが接続されていてもよい。 - As shown in FIG. 18, the first end of the connection switch 94 is connected to the neutral point side of the motor side electrical path 25 rather than the motor side switch 60, and the first capacitor 93A is connected to the second end of the connection switch 94. and a second capacitor 93B may be connected.
 <第7実施形態>
 以下、第7実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。図19に示すように、モータ側スイッチ60に並列に、プリチャージスイッチSP及び抵抗体95の直列接続体が接続されている。なお、図19では、便宜上、制御装置100等の図示を省略している。
<Seventh embodiment>
The seventh embodiment will be described below with reference to the drawings, focusing on the differences from the first embodiment. As shown in FIG. 19, a series connection body of a precharge switch SP and a resistor 95 is connected in parallel to the motor side switch 60. Note that in FIG. 19, illustration of the control device 100 and the like is omitted for convenience.
 制御装置100は、例えば電力変換装置の起動時において、平滑コンデンサ21を充電するプリチャージ処理を行う。本実施形態では、第1蓄電池31又は第2蓄電池32のいずれかに異常が発生して使用不可能になったとしても、残りの蓄電池によりプリチャージ処理を行うことができる。 The control device 100 performs a precharge process to charge the smoothing capacitor 21, for example, when starting up the power conversion device. In this embodiment, even if an abnormality occurs in either the first storage battery 31 or the second storage battery 32 and the battery becomes unusable, the precharge process can be performed using the remaining storage battery.
 まず、図20を用いて、第2蓄電池32に異常が発生した場合について説明する。この場合、制御装置100は、高電位側メインスイッチSMRH、プリチャージスイッチSP及び電池間スイッチ40をオンし、低電位側メインスイッチSMRL、モータ側スイッチ60及びバイパススイッチ50をオフする。また、制御装置100は、インバータ20の全相の上,下アームスイッチSWH,SWLをオフする。これにより、第1蓄電池31により平滑コンデンサ21を充電することができる。 First, a case where an abnormality occurs in the second storage battery 32 will be described using FIG. 20. In this case, the control device 100 turns on the high potential side main switch SMRH, the precharge switch SP, and the inter-battery switch 40, and turns off the low potential side main switch SMRL, the motor side switch 60, and the bypass switch 50. Further, the control device 100 turns off all phase upper and lower arm switches SWH and SWL of the inverter 20. Thereby, the smoothing capacitor 21 can be charged by the first storage battery 31.
 続いて、図21を用いて、第1蓄電池31に異常が発生した場合について説明する。この場合、制御装置100は、低電位側メインスイッチSMRL及びプリチャージスイッチSPをオンし、高電位側メインスイッチSMRH、モータ側スイッチ60、電池間スイッチ40及びバイパススイッチ50をオフする。また、制御装置100は、インバータ20の全相の上,下アームスイッチSWH,SWLをオフする。これにより、第2蓄電池32により平滑コンデンサ21を充電することができる。 Next, a case where an abnormality occurs in the first storage battery 31 will be described using FIG. 21. In this case, the control device 100 turns on the low potential side main switch SMRL and the precharge switch SP, and turns off the high potential side main switch SMRH, the motor side switch 60, the inter-battery switch 40, and the bypass switch 50. Further, the control device 100 turns off all phase upper and lower arm switches SWH and SWL of the inverter 20. Thereby, the smoothing capacitor 21 can be charged by the second storage battery 32.
 <第8実施形態>
 以下、第8実施形態について、第6,第7実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図22に示すように、接続スイッチ93及びコンデンサ90が設けられている。モータ側電気経路25のうちプリチャージスイッチSPとの接続点と接続スイッチ92との間の部分にコンデンサ90の第1端が接続されている。コンデンサ90の第2端は、低電位側電気経路22Lのうち低電位側メインスイッチSMRLよりもインバータ20側に接続されている。
<Eighth embodiment>
The eighth embodiment will be described below with reference to the drawings, focusing on the differences from the sixth and seventh embodiments. In this embodiment, as shown in FIG. 22, a connection switch 93 and a capacitor 90 are provided. A first end of a capacitor 90 is connected to a portion of the motor-side electrical path 25 between the connection point with the precharge switch SP and the connection switch 92 . The second end of the capacitor 90 is connected to the inverter 20 side of the low potential side electrical path 22L rather than the low potential side main switch SMRL.
 制御装置100は、平滑コンデンサ21を充電するプリチャージ処理において、平滑コンデンサ21及びコンデンサ90を同時に充電することができる。詳しくは、図23に示すように、制御装置100は、高電位側メインスイッチSMRH、プリチャージスイッチSP及び電池間スイッチ40をオンし、低電位側メインスイッチSMRL、モータ側スイッチ60及びバイパススイッチ50をオフする。また、制御装置100は、インバータ20の全相の上,下アームスイッチSWH,SWLをオフする。 The control device 100 can charge the smoothing capacitor 21 and the capacitor 90 at the same time in the precharging process of charging the smoothing capacitor 21. Specifically, as shown in FIG. 23, the control device 100 turns on the high potential side main switch SMRH, the precharge switch SP, and the inter-battery switch 40, and turns on the low potential side main switch SMRL, the motor side switch 60, and the bypass switch 50. Turn off. Further, the control device 100 turns off all phase upper and lower arm switches SWH and SWL of the inverter 20.
 <第8実施形態の変形例>
 図24に示すように、プリチャージスイッチSP及び抵抗体95の直列接続体が低電位側メインスイッチSMRLに並列接続されていてもよい。
<Modified example of the eighth embodiment>
As shown in FIG. 24, a series connection of the precharge switch SP and the resistor 95 may be connected in parallel to the low potential side main switch SMRL.
 <その他の実施形態>
 なお、上記各実施形態は、以下のように変更して実施してもよい。
<Other embodiments>
Note that each of the above embodiments may be modified and implemented as follows.
 ・上記各実施形態の電力変換装置の回路構成は、例えば以下(A)~(J)のように変更できる。 - The circuit configuration of the power conversion device of each of the above embodiments can be modified as shown in (A) to (J) below, for example.
 (A)図25に示すように、図1に示した構成においてモータ側スイッチ60が無くてもよい。 (A) As shown in FIG. 25, the motor side switch 60 may not be provided in the configuration shown in FIG.
 (B)図26に示すように、図5に示した構成においてモータ側スイッチ61が無くてもよい。 (B) As shown in FIG. 26, the motor side switch 61 may not be provided in the configuration shown in FIG.
 (C)図27に示すように、図7に示した構成においてモータ側スイッチ60が無くてもよい。 (C) As shown in FIG. 27, the motor side switch 60 may not be provided in the configuration shown in FIG.
 (D)図28に示すように、図11に示した構成においてモータ側スイッチ61が無くてもよい。 (D) As shown in FIG. 28, the motor side switch 61 may not be provided in the configuration shown in FIG. 11.
 (E)図29に示すように、図13に示した構成において第1モータ側スイッチ60が無くてもよい。なお、この場合、図14のステップS34において否定判定した場合、モータ経由接続状態での低圧充電器210による充電を禁止すればよい。 (E) As shown in FIG. 29, the first motor side switch 60 may not be provided in the configuration shown in FIG. 13. In this case, if a negative determination is made in step S34 of FIG. 14, charging by the low-voltage charger 210 in the state of connection via the motor may be prohibited.
 (F)図30に示すように、図13に示した構成において第2モータ側スイッチ61が無くてもよい。なお、この場合、図14のステップS34において肯定判定した場合、モータ経由接続状態での低圧充電器210による充電を禁止すればよい。 (F) As shown in FIG. 30, the second motor side switch 61 may not be provided in the configuration shown in FIG. 13. In this case, if an affirmative determination is made in step S34 of FIG. 14, charging by the low-voltage charger 210 in the state of connection via the motor may be prohibited.
 (G)図31に示すように、図13に示した構成において第1モータ側スイッチ60及び第2バイパススイッチ80が無くてもよい。 (G) As shown in FIG. 31, the first motor side switch 60 and the second bypass switch 80 may not be provided in the configuration shown in FIG. 13.
 (H)図32に示すように、図13に示した構成において第2バイパススイッチ80が無くてもよい。 (H) As shown in FIG. 32, the second bypass switch 80 may not be provided in the configuration shown in FIG. 13.
 (I)図33に示すように、図13に示した構成において第2モータ側スイッチ61及び第1バイパススイッチ50が無くてもよい。 (I) As shown in FIG. 33, the second motor side switch 61 and the first bypass switch 50 may not be provided in the configuration shown in FIG.
 (J)図34に示すように、図13に示した構成において第1バイパススイッチ50が無くてもよい。 (J) As shown in FIG. 34, the first bypass switch 50 may not be provided in the configuration shown in FIG. 13.
 ・図35に示すように、第1蓄電池31の正極端子と高電位側電気経路22Hとが第1ヒューズ110Aにより接続されていてもよい。また、第2蓄電池32の負極端子と低電位側電気経路22Lとが第2ヒューズ110Bにより接続されていてもよい。 - As shown in FIG. 35, the positive terminal of the first storage battery 31 and the high potential side electrical path 22H may be connected by the first fuse 110A. Further, the negative terminal of the second storage battery 32 and the low potential side electrical path 22L may be connected by a second fuse 110B.
 ・図36に示すように、高電位側電気経路22Hのうち第1蓄電池31との接続点と高電位側充電スイッチDCRHとの間の部分に第3電流センサ75が設けられていてもよい。また、モータ側電気経路25の任意の位置に第4電流センサ76を設けることができ、例えば、モータ側電気経路25のうちモータ側スイッチ60よりも中性点側に第4電流センサ76が設けられていてもよい。ここで、第1~第4電流センサ73~76のうち、少なくとも2つ以上の電流センサが設けられていればよい。これにより、極力少ない電流センサにより各蓄電池31,32の充電制御が可能となる。また、各導電部材23を流れる電流を検出する電流センサが設けられ、第4電流センサの検出値に代えて、各導電部材23に流れる電流検出値の合計値が用いられてもよい。 - As shown in FIG. 36, a third current sensor 75 may be provided in a portion of the high potential side electrical path 22H between the connection point with the first storage battery 31 and the high potential side charging switch DCRH. Further, the fourth current sensor 76 can be provided at any position on the motor-side electrical path 25. For example, the fourth current sensor 76 may be provided on the neutral point side of the motor-side electrical path 25 with respect to the motor-side switch 60. It may be. Here, it is sufficient that at least two or more current sensors among the first to fourth current sensors 73 to 76 are provided. This makes it possible to control charging of each storage battery 31, 32 using as few current sensors as possible. Further, a current sensor that detects the current flowing through each conductive member 23 may be provided, and the total value of the detected value of the current flowing through each conductive member 23 may be used instead of the detected value of the fourth current sensor.
 ・モータ側電気経路25の接続先は、電機子巻線11の中性点に限らず、例えば図37に示すように、電機子巻線11の中間部であってもよい。 - The connection destination of the motor-side electrical path 25 is not limited to the neutral point of the armature winding 11, but may be the intermediate portion of the armature winding 11, as shown in FIG. 37, for example.
 また、モータ側電気経路25の接続先は、例えば図38に示すように、導電部材23であってもよい。この場合、低圧充電器210による充電処理において、図39に示すように、各相のうちモータ側電気経路25が導電部材23に接続された相以外の相における上アームスイッチSWHをオンし、下アームスイッチSWLをオフすればよい。 Furthermore, the connection destination of the motor-side electrical path 25 may be a conductive member 23, as shown in FIG. 38, for example. In this case, in the charging process by the low-voltage charger 210, as shown in FIG. All you have to do is turn off the arm switch SWL.
 ・図40に示すように、高電位側電気経路22Hのうちインバータ20に対して第1蓄電池31側とは反対側に高電位側充電スイッチDCRH及び正極側接続部が設けられ、低電位側電気経路22Lのうちインバータ20に対して第2蓄電池32側とは反対側に低電位側充電スイッチDCRL及び負極側接続部が設けられていてもよい。 - As shown in FIG. 40, the high potential side charging switch DCRH and the positive electrode side connection part are provided on the side opposite to the first storage battery 31 side with respect to the inverter 20 in the high potential side electrical path 22H, and the low potential side electrical path 22H A low potential side charging switch DCRL and a negative electrode side connection portion may be provided on the opposite side of the path 22L from the second storage battery 32 side with respect to the inverter 20.
 ・図41に示すように、コンデンサ90の一端が、モータ側電気経路25のうちモータ側スイッチ60よりも第2蓄電池32側に接続されていてもよい。この場合、接続スイッチが不要となる。 - As shown in FIG. 41, one end of the capacitor 90 may be connected to the second storage battery 32 side of the motor side electrical path 25 rather than the motor side switch 60. In this case, a connection switch is not required.
 ・各メインスイッチSMRH,SMRL、各充電スイッチDCRH,DCRL、電池間スイッチ40、バイパススイッチ、モータ側スイッチ及び接続スイッチとしては、1つのスイッチで構成されているものに限らず、複数のスイッチの直列接続体又は複数のスイッチの並列接続体で構成されていてもよい。 ・Each main switch SMRH, SMRL, each charging switch DCRH, DCRL, inter-battery switch 40, bypass switch, motor side switch, and connection switch are not limited to one switch, but can be multiple switches connected in series. It may be composed of a connection body or a parallel connection body of a plurality of switches.
 ・インバータ20のスイッチとしては、IGBTに限らず、例えばボディダイオードを備えるNチャネルMOSFETであってもよい。この場合、NチャネルMOSFETの高電位側端子がドレインとなり、低電位側端子がソースとなる。 - The switch of the inverter 20 is not limited to an IGBT, but may be an N-channel MOSFET including a body diode, for example. In this case, the high potential side terminal of the N-channel MOSFET becomes the drain, and the low potential side terminal becomes the source.
 ・モータとしては、星形結線されるものに限らず、Δ結線されるものであってもよい。また、モータ及びインバータとしては、3相のものに限らず、2相のもの、又は4相以上のものであってもよい。また、モータとしては、ロータに界磁極として永久磁石を有する永久磁石型の同期機に限らず、ロータに界磁極として界磁巻線を有する巻線界磁型の同期機であってもよい。この場合、ロータに界磁巻線及び永久磁石の双方が備えられていてもよい。また、モータとしては、同期機に限らず、誘導機であってもよい。 ・The motor is not limited to a star-connected motor, but may be a delta-connected motor. Further, the motor and inverter are not limited to three-phase motors, but may be two-phase motors or four-phase motors or more. Further, the motor is not limited to a permanent magnet type synchronous machine having a permanent magnet as a field pole on the rotor, but may be a wound field type synchronous machine having a field winding as a field pole on the rotor. In this case, the rotor may be equipped with both field windings and permanent magnets. Further, the motor is not limited to a synchronous machine, but may be an induction machine.
 ・外部充電器による充電対象となる蓄電部としては、蓄電池に限らず、例えば、大容量の電気二重層キャパシタ、又は蓄電池及び電気二重層キャパシタの双方を備えるものであってもよい。 - The power storage unit to be charged by the external charger is not limited to a storage battery, but may be, for example, a large-capacity electric double layer capacitor, or one that includes both a storage battery and an electric double layer capacitor.
 ・電力変換装置が搭載される移動体としては、車両に限らず、例えば、航空機又は船舶であってもよい。また、電力変換装置の搭載先は、移動体に限らず、定置式の装置であってもよい。 - The moving object on which the power conversion device is mounted is not limited to a vehicle, but may be an aircraft or a ship, for example. Furthermore, the power converter device is not limited to a mobile object, but may be a stationary device.
 ・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 - The control unit and the method described in the present disclosure are implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be realized. Alternatively, the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by a processor configured with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method described in the present disclosure may be implemented using a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured. The computer program may also be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.
 ・以下、上述した各実施形態から抽出される特徴的な構成を記載する。
[構成1]
 第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、
 第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、
 前記高電位側電気経路に電気的に接続された上アームスイッチ(SWH)、及び前記低電位側電気経路に電気的に接続された下アームスイッチ(SWL)を有するインバータ(20)と、
 前記上アームスイッチ及び前記下アームスイッチの接続点に導電部材(23)を介して電気的に接続された電機子巻線(11)を有するモータ(10)と、
を備える電力変換装置において、
 前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、
 前記第1蓄電部及び前記第2蓄電部の負極端子同士の電気的な接続と、前記第1蓄電部及び前記第2蓄電部の正極端子同士の電気的な接続とのうち、少なくとも一方の電気的な接続を行うバイパススイッチ(50,51)と、
 前記電機子巻線又は前記導電部材と、前記蓄電部間電気経路とを電気的に接続するモータ側電気経路(25~28)と、
を備える電力変換装置。
[構成2]
 前記バイパススイッチ(50)は、前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続するスイッチであり、
 前記モータ側電気経路(25)は、前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第2蓄電部側とを電気的に接続する経路であり、
 前記モータ側電気経路に設けられたモータ側スイッチ(60)を備える、構成1に記載の電力変換装置。
[構成3]
 前記第1蓄電部及び前記第2蓄電部の接続状態を、直列接続状態、又は前記第2蓄電部の正極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記高電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
 前記制御部は、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記バイパススイッチをオフし、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定したことを条件として、前記蓄電部間スイッチをオフするとともに、前記バイパススイッチ及び前記モータ側スイッチをオンする、構成2に記載の電力変換装置。
[構成4]
 前記バイパススイッチは、第1バイパススイッチ(50)であり、
 前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する第2バイパススイッチ(80)を備える、構成2に記載の電力変換装置。
[構成5]
 前記第1蓄電部及び前記第2蓄電部の接続状態を、直列接続状態、並列接続状態、又は前記第2蓄電部の正極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記高電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
 前記制御部は、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオフし、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定した場合、第1操作を行い、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定した場合、第2操作を行い、
 前記第1操作は、前記蓄電部間スイッチ及び前記モータ側スイッチをオフするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオンする操作であり、
 前記第2操作は、前記蓄電部間スイッチ及び前記第2バイパススイッチをオフし、かつ、前記第1バイパススイッチ及び前記モータ側スイッチをオンし、かつ、前記インバータのスイッチ操作を行う操作であり、
 前記インバータのスイッチ操作は、各相の前記下アームスイッチをオフするとともに少なくとも1相の前記上アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記上アームスイッチのオンオフを繰り返す操作である、構成4に記載の電力変換装置。
[構成6]
 前記制御部は、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定して、かつ、前記第1蓄電部と前記第2蓄電部との電位差が第1閾値(ΔVjde1)以下であると判定した場合、前記第1操作を行い、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定して、かつ、前記第2蓄電部の電圧から前記第1蓄電部の電圧を差し引いた値が、前記第1閾値よりも大きい第2閾値(ΔVjde2)以下であると判定した場合、前記第2操作を行う、構成5に記載の電力変換装置。
[構成7]
 前記バイパススイッチ(51)は、前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続するスイッチであり、
 前記モータ側電気経路(25)は、前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側とを電気的に接続する経路であり、
 前記モータ側電気経路に設けられたモータ側スイッチ(61)を備える、構成1に記載の電力変換装置。
[構成8]
 前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態、又は前記第1蓄電部の負極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記低電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
 前記制御部は、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記バイパススイッチをオフし、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定したことを条件として、前記蓄電部間スイッチをオフするとともに、前記バイパススイッチ及び前記モータ側スイッチをオンする、構成7に記載の電力変換装置。
[構成9]
 前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する第1バイパススイッチ(50)と、
 前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する第2バイパススイッチ(80)と、
を備え、
 前記モータ側電気経路(25)は、前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側とを電気的に接続する経路であり、
 前記モータ側電気経路に設けられたモータ側スイッチ(61)を備える、構成1に記載の電力変換装置。
[構成10]
 前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態、並列接続状態、又は前記第1蓄電部の負極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記低電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
 前記制御部は、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオフし、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定した場合、第1操作を行い、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定した場合、第2操作を行い、
 前記第1操作は、前記蓄電部間スイッチ及び前記モータ側スイッチをオフするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオンする操作であり、
 前記第2操作は、前記蓄電部間スイッチ及び前記第1バイパススイッチをオフし、かつ、前記第2バイパススイッチ及び前記モータ側スイッチをオンする操作し、かつ、前記インバータのスイッチ操作を行う操作であり、
 前記インバータのスイッチ操作は、各相の前記上アームスイッチをオフするとともに少なくとも1相の前記下アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記下アームスイッチのオンオフを繰り返す操作である、構成9に記載の電力変換装置。
[構成11]
 前記制御部は、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定して、かつ、前記第1蓄電部と前記第2蓄電部との電位差が第1閾値(ΔVjde1)以下であると判定した場合、前記第1操作を行い、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定して、かつ、前記第1蓄電部の電圧から前記第2蓄電部の電圧を差し引いた値が、前記第1閾値よりも大きい第2閾値(ΔVjde2)以下であると判定した場合、前記第2操作を行う、構成10に記載の電力変換装置。
[構成12]
 前記バイパススイッチとして、
 前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する第1バイパススイッチ(50)と、
 前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する第2バイパススイッチ(80)と、
を備え、
 前記モータ側電気経路として、
 前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第2蓄電部側とを電気的に接続する第1モータ側電気経路(26,27)と、
 前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側とを電気的に接続する第2モータ側電気経路(26,28)と、
を備え、
 前記第1モータ側電気経路に設けられた第1モータ側スイッチ(60)と、
 前記第2モータ側電気経路に設けられた第2モータ側スイッチ(61)と、
を備える、構成1に記載の電力変換装置。
[構成13]
 前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態、並列接続状態、又は前記第2蓄電部の正極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記高電位側電気経路に接続した状態若しくは前記第1蓄電部の負極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記低電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
 前記制御部は、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオフし、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定した場合、第1操作を行い、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定した場合、第2操作又は第3操作を行い、
 前記第1操作は、前記第1モータ側スイッチ及び前記第2モータ側スイッチの少なくとも一方と前記蓄電部間スイッチとをオフするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオンする操作であり、
 前記第2操作は、前記蓄電部間スイッチ、前記第2バイパススイッチ及び前記第2モータ側スイッチをオフし、かつ、前記第1バイパススイッチ及び前記第1モータ側スイッチをオンし、かつ、前記インバータの第1スイッチ操作を行う操作であり、
 前記第3操作は、前記蓄電部間スイッチ、前記第1バイパススイッチ及び前記第1モータ側スイッチをオフし、かつ、前記第2バイパススイッチ及び前記第2モータ側スイッチをオンし、かつ、前記インバータの第2スイッチ操作を行う操作であり、
 前記インバータの第1スイッチ操作は、各相の前記下アームスイッチをオフするとともに少なくとも1相の前記上アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記上アームスイッチのオンオフを繰り返す操作であり、
 前記インバータの第2スイッチ操作は、各相の前記上アームスイッチをオフするとともに少なくとも1相の前記下アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記下アームスイッチのオンオフを繰り返す操作である、構成12に記載の電力変換装置。
[構成14]
 前記制御部は、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定して、かつ、前記第1蓄電部と前記第2蓄電部との電位差が第1閾値(ΔVjde1)以下であると判定した場合、前記第1操作を行い、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定して、かつ、前記第1蓄電部の電圧が前記第2蓄電部の電圧よりも高いと判定した場合、前記第2操作を行い、
 前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定して、かつ、前記第2蓄電部の電圧が前記第1蓄電部の電圧よりも高いと判定した場合、前記第3操作を行う、構成13に記載の電力変換装置。
[構成15]
 前記高電位側電気経路に充電器(200,210)の正極端子が電気的に接続可能になっており、
 前記低電位側電気経路に前記充電器の負極端子が電気的に接続可能になっており、
 前記制御部は、
 前記高電位側電気経路及び前記低電位側電気経路に接続された前記充電器が高圧充電器(200)である場合、前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態にすると判定し、
 前記高電位側電気経路及び前記低電位側電気経路に接続された前記充電器が、前記高圧充電器よりも充電電圧が低い低圧充電器(210)であることを条件として、前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定する、構成3,5,6,8,10,11のいずれか1つに記載の電力変換装置。
[構成16]
 前記高電位側電気経路に充電器(200,210)の正極端子が電気的に接続可能になっており、
 前記低電位側電気経路に前記充電器の負極端子が電気的に接続可能になっており、
 前記制御部は、
 前記高電位側電気経路及び前記低電位側電気経路に接続された前記充電器が高圧充電器(200)である場合、前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態にすると判定し、
 前記高電位側電気経路及び前記低電位側電気経路に接続された前記充電器が、前記高圧充電器よりも充電電圧が低い低圧充電器(210)であることを条件として、前記第1蓄電部及び前記第2蓄電部の接続状態を前記第1モータ経由接続状態又は前記第2モータ経由接続状態にすると判定する、構成13又は14に記載の電力変換装置。
[構成17]
 前記高電位側電気経路及び前記低電位側電気経路のうち少なくとも一方である対象経路と、前記モータ側電気経路とを電気的に接続するコンデンサ(90,93A,93B)を備える、構成1~16のいずれか1つに記載の電力変換装置。
[構成18]
 オンされることにより前記対象経路と前記モータ側電気経路とが前記コンデンサにより電気的に接続された状態となり、オフされることにより前記対象経路及び前記モータ側電気経路の少なくとも一方と前記コンデンサとの電気的な接続を遮断する接続スイッチ(91~94)を備える、構成17に記載の電力変換装置。
[構成19]
 前記モータ側電気経路に電流を流すと判定した場合に前記接続スイッチをオンにする、構成18に記載の電力変換装置。
[構成20]
 前記高電位側電気経路と前記低電位側電気経路とを電気的に接続するとともに、前記インバータの入力電圧を平滑化する平滑コンデンサ(21)と、
 スイッチ(SP)及び抵抗体(95)の直列接続体と、
を備え、
 前記コンデンサは、前記モータ側電気経路のうちモータ側スイッチ(60)よりも前記電機子巻線側と前記対象経路とを電気的に接続し、
 前記直列接続体は、前記モータ側スイッチに並列に接続されている、構成1~19のいずれか1つに記載の電力変換装置。
[構成21]
 前記高電位側電気経路と前記低電位側電気経路とを電気的に接続するとともに、前記インバータの入力電圧を平滑化する平滑コンデンサ(21)と、
 スイッチ(SP)及び抵抗体(95)の直列接続体と、
を備え、
 前記直列接続体は、前記モータ側電気経路に設けられたモータ側スイッチ(60)に並列に接続されている、構成1~19のいずれか1つに記載の電力変換装置。
- Characteristic configurations extracted from each of the embodiments described above will be described below.
[Configuration 1]
a high potential side electrical path (22H) electrically connectable to the positive terminal of the first power storage unit (31);
a low potential side electrical path (22L) electrically connectable to the negative terminal of the second power storage unit (32);
an inverter (20) having an upper arm switch (SWH) electrically connected to the high potential side electrical path, and a lower arm switch (SWL) electrically connected to the low potential side electrical path;
a motor (10) having an armature winding (11) electrically connected to a connection point of the upper arm switch and the lower arm switch via a conductive member (23);
In a power conversion device comprising:
an inter-power storage unit switch (40) provided in an inter-power storage unit electrical path (24) that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit;
At least one of the electrical connection between the negative terminals of the first power storage unit and the second power storage unit, and the electrical connection between the positive terminals of the first power storage unit and the second power storage unit Bypass switches (50, 51) for making a connection,
a motor-side electrical path (25 to 28) that electrically connects the armature winding or the conductive member and the inter-power storage unit electrical path;
A power conversion device comprising:
[Configuration 2]
The bypass switch (50) is a switch that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit,
The motor-side electrical path (25) is a path that electrically connects the armature winding to the second power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch,
The power conversion device according to configuration 1, including a motor-side switch (60) provided in the motor-side electrical path.
[Configuration 3]
The first power storage unit and the second power storage unit may be connected in series, or the positive terminal of the second power storage unit may be connected to the high potential through the motor-side electrical path, the armature winding, and the inverter. A control unit (100) that determines whether the motor is connected to the side electrical path or the motor-via connection state is selected.
The control unit includes:
When it is determined that the first power storage unit and the second power storage unit are connected to each other in the series connection state, the inter-power storage unit switch is turned on and the bypass switch is turned off;
On the condition that the connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, the inter-power storage unit switch is turned off, and the bypass switch and the motor side switch are turned on. , the power conversion device according to Configuration 2.
[Configuration 4]
The bypass switch is a first bypass switch (50),
The power conversion device according to configuration 2, comprising a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit.
[Configuration 5]
The connection state of the first power storage unit and the second power storage unit may be a series connection state, a parallel connection state, or a positive terminal of the second power storage unit may be connected to the motor side electrical path, the armature winding, and the inverter. a control unit (100) that determines whether the motor is connected to the high potential side electric path or the motor-via connection state;
The control unit includes:
When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the inter-power storage unit switch is turned on, and the first bypass switch and the second bypass switch are turned off,
If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, performing a first operation;
If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, performing a second operation;
The first operation is an operation of turning off the inter-power storage unit switch and the motor side switch, and turning on the first bypass switch and the second bypass switch,
The second operation is an operation of turning off the power storage unit switch and the second bypass switch, turning on the first bypass switch and the motor side switch, and operating the switch of the inverter,
The switch operation of the inverter is an operation of turning off the lower arm switch of each phase and turning on the upper arm switch of at least one phase, or at least one operation on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. The power conversion device according to configuration 4, wherein the operation is to repeatedly turn on and off the upper arm switch of a phase.
[Configuration 6]
The control unit includes:
The connection state of the first power storage unit and the second power storage unit is determined to be the parallel connection state, and the potential difference between the first power storage unit and the second power storage unit is equal to or less than a first threshold value (ΔVjde1). If it is determined that there is, perform the first operation,
The connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, and the value obtained by subtracting the voltage of the first power storage unit from the voltage of the second power storage unit is The power converter device according to configuration 5, wherein the second operation is performed when it is determined that the second threshold value (ΔVjde2) or less is greater than the first threshold value.
[Configuration 7]
The bypass switch (51) is a switch that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit,
The motor-side electrical path (25) is a path that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch,
The power conversion device according to Configuration 1, comprising a motor-side switch (61) provided in the motor-side electrical path.
[Configuration 8]
The first power storage unit and the second power storage unit are connected in series, or the negative terminal of the first power storage unit is connected to the low potential side through the motor side electrical path, the armature winding, and the inverter. A control unit (100) that determines whether the motor is connected to an electrical path or connected via a motor,
The control unit includes:
When it is determined that the first power storage unit and the second power storage unit are connected to each other in the series connection state, the inter-power storage unit switch is turned on and the bypass switch is turned off;
On the condition that the connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, the inter-power storage unit switch is turned off, and the bypass switch and the motor side switch are turned on. , the power conversion device according to configuration 7.
[Configuration 9]
a first bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit;
a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit;
Equipped with
The motor-side electrical path (25) is a path that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch,
The power conversion device according to Configuration 1, comprising a motor-side switch (61) provided in the motor-side electrical path.
[Configuration 10]
The connection state of the first power storage unit and the second power storage unit may be a series connection state, a parallel connection state, or the negative terminal of the first power storage unit may be connected to the motor side electrical path, the armature winding, and the inverter. comprising a control unit (100) that determines whether the motor is connected to the low-potential side electrical path or the motor-via connection state;
The control unit includes:
When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the inter-power storage unit switch is turned on, and the first bypass switch and the second bypass switch are turned off,
If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, performing a first operation;
If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, performing a second operation;
The first operation is an operation of turning off the inter-power storage unit switch and the motor side switch, and turning on the first bypass switch and the second bypass switch,
The second operation is an operation of turning off the power storage unit switch and the first bypass switch, turning on the second bypass switch and the motor side switch, and operating a switch of the inverter. can be,
The switch operation of the inverter is an operation of turning off the upper arm switch of each phase and turning on the lower arm switch of at least one phase, or at least one operation on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. The power conversion device according to configuration 9, wherein the operation is to repeatedly turn on and off the lower arm switch of a phase.
[Configuration 11]
The control unit includes:
It is determined that the connection state of the first power storage unit and the second power storage unit is set to the connection state via the motor, and the potential difference between the first power storage unit and the second power storage unit is equal to or lower than a first threshold value (ΔVjde1). If it is determined that
The connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, and the value obtained by subtracting the voltage of the second power storage unit from the voltage of the first power storage unit is The power conversion device according to configuration 10, wherein the second operation is performed when it is determined that the second threshold value (ΔVjde2) or less is greater than the first threshold value.
[Configuration 12]
As the bypass switch,
a first bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit;
a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit;
Equipped with
As the motor side electrical path,
a first motor-side electrical path (26, 27) that electrically connects the armature winding to a side of the second power storage unit of the inter-power storage unit electrical path rather than the inter-power storage unit switch;
a second motor-side electrical path (26, 28) that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path rather than the inter-power storage unit switch;
Equipped with
a first motor side switch (60) provided in the first motor side electrical path;
a second motor side switch (61) provided in the second motor side electrical path;
The power conversion device according to Configuration 1, comprising:
[Configuration 13]
The connection state of the first power storage unit and the second power storage unit may be a series connection state, a parallel connection state, or the positive terminal of the second power storage unit may be connected to the motor side electrical path, the armature winding, and the inverter. The motor is connected to the high-potential electrical path, or the negative terminal of the first power storage unit is connected to the low-potential electrical path via the motor-side electrical path, the armature winding, and the inverter. comprising a control unit (100) for determining which of the via connection states is to be set;
The control unit includes:
When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the inter-power storage unit switch is turned on, and the first bypass switch and the second bypass switch are turned off,
If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, performing a first operation;
If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, performing a second operation or a third operation;
The first operation is an operation of turning off at least one of the first motor-side switch and the second motor-side switch and the inter-power storage unit switch, and turning on the first bypass switch and the second bypass switch. can be,
The second operation is to turn off the power storage section switch, the second bypass switch, and the second motor side switch, turn on the first bypass switch and the first motor side switch, and turn off the inverter switch. This is the operation of operating the first switch of
The third operation is to turn off the power storage section switch, the first bypass switch, and the first motor side switch, turn on the second bypass switch and the second motor side switch, and turn off the inverter switch. This is the operation of operating the second switch of
The first switch operation of the inverter is an operation of turning off the lower arm switch of each phase and turning on the upper arm switch of at least one phase, or on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. It is an operation of repeatedly turning on and off the upper arm switch of at least one phase,
The second switch operation of the inverter is an operation of turning off the upper arm switch of each phase and turning on the lower arm switch of at least one phase, or on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. The power conversion device according to configuration 12, wherein the operation is to repeatedly turn on and off the lower arm switch of at least one phase.
[Configuration 14]
The control unit includes:
It is determined that the connection state of the first power storage unit and the second power storage unit is set to the connection state via the motor, and the potential difference between the first power storage unit and the second power storage unit is equal to or lower than a first threshold value (ΔVjde1). If it is determined that
When it is determined that the connection state of the first power storage unit and the second power storage unit is set to the connection state via the motor, and it is determined that the voltage of the first power storage unit is higher than the voltage of the second power storage unit. , perform the second operation,
When it is determined that the connection state of the first power storage unit and the second power storage unit is set to the connection state via the motor, and it is determined that the voltage of the second power storage unit is higher than the voltage of the first power storage unit. , the power conversion device according to configuration 13, wherein the third operation is performed.
[Configuration 15]
A positive terminal of the charger (200, 210) can be electrically connected to the high potential side electrical path,
A negative terminal of the charger can be electrically connected to the low potential side electrical path,
The control unit includes:
When the charger connected to the high potential side electrical path and the low potential side electrical path is a high voltage charger (200), the connection state of the first power storage unit and the second power storage unit is set to a series connection state. Then, it is determined that
the first power storage unit, on the condition that the charger connected to the high potential side electrical path and the low potential side electrical path is a low voltage charger (210) having a lower charging voltage than the high voltage charger; and the power conversion device according to any one of Configurations 3, 5, 6, 8, 10, and 11, wherein the power conversion device determines that the connection state of the second power storage unit is set to the motor-via connection state.
[Configuration 16]
A positive terminal of the charger (200, 210) can be electrically connected to the high potential side electrical path,
A negative terminal of the charger can be electrically connected to the low potential side electrical path,
The control unit includes:
When the charger connected to the high potential side electrical path and the low potential side electrical path is a high voltage charger (200), the connection state of the first power storage unit and the second power storage unit is set to a series connection state. Then, it is determined that
the first power storage unit, on the condition that the charger connected to the high potential side electrical path and the low potential side electrical path is a low voltage charger (210) having a lower charging voltage than the high voltage charger; and the power conversion device according to configuration 13 or 14, wherein the power conversion device determines that the connection state of the second power storage unit is set to the first motor-via connection state or the second motor-via connection state.
[Configuration 17]
Configurations 1 to 16, comprising a capacitor (90, 93A, 93B) that electrically connects the target path, which is at least one of the high potential side electrical path and the low potential side electrical path, and the motor side electrical path. The power conversion device according to any one of the above.
[Configuration 18]
When turned on, the target path and the motor-side electric path are electrically connected by the capacitor, and when turned off, at least one of the target path and the motor-side electric path is connected to the capacitor. The power conversion device according to configuration 17, comprising connection switches (91 to 94) that cut off electrical connection.
[Configuration 19]
19. The power conversion device according to configuration 18, wherein the connection switch is turned on when it is determined that a current is to be passed through the motor-side electrical path.
[Configuration 20]
a smoothing capacitor (21) that electrically connects the high potential side electrical path and the low potential side electrical path and smoothes the input voltage of the inverter;
a series connection body of a switch (SP) and a resistor (95);
Equipped with
The capacitor electrically connects the armature winding side of the motor-side electrical path beyond the motor-side switch (60) to the target path;
20. The power conversion device according to any one of configurations 1 to 19, wherein the series connection body is connected in parallel to the motor side switch.
[Configuration 21]
a smoothing capacitor (21) that electrically connects the high potential side electrical path and the low potential side electrical path and smoothes the input voltage of the inverter;
a series connection body of a switch (SP) and a resistor (95);
Equipped with
20. The power conversion device according to any one of configurations 1 to 19, wherein the series connection body is connected in parallel to a motor side switch (60) provided in the motor side electrical path.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on examples, it is understood that the present disclosure is not limited to the examples or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.

Claims (26)

  1.  第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、
     第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、
     前記高電位側電気経路に電気的に接続された上アームスイッチ(SWH)、及び前記低電位側電気経路に電気的に接続された下アームスイッチ(SWL)を有するインバータ(20)と、
     前記上アームスイッチ及び前記下アームスイッチの接続点に導電部材(23)を介して電気的に接続された電機子巻線(11)を有するモータ(10)と、
    を備える電力変換装置において、
     前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、
     前記第1蓄電部及び前記第2蓄電部の負極端子同士の電気的な接続と、前記第1蓄電部及び前記第2蓄電部の正極端子同士の電気的な接続とのうち、少なくとも一方の電気的な接続を行うバイパススイッチ(50,51)と、
     前記電機子巻線又は前記導電部材と、前記蓄電部間電気経路とを電気的に接続するモータ側電気経路(25~28)と、
    を備える電力変換装置。
    a high potential side electrical path (22H) electrically connectable to the positive terminal of the first power storage unit (31);
    a low potential side electrical path (22L) electrically connectable to the negative terminal of the second power storage unit (32);
    an inverter (20) having an upper arm switch (SWH) electrically connected to the high potential side electrical path, and a lower arm switch (SWL) electrically connected to the low potential side electrical path;
    a motor (10) having an armature winding (11) electrically connected to a connection point of the upper arm switch and the lower arm switch via a conductive member (23);
    In a power conversion device comprising:
    an inter-power storage unit switch (40) provided in an inter-power storage unit electrical path (24) that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit;
    At least one of the electrical connection between the negative terminals of the first power storage unit and the second power storage unit, and the electrical connection between the positive terminals of the first power storage unit and the second power storage unit Bypass switches (50, 51) for making a connection,
    a motor-side electrical path (25 to 28) that electrically connects the armature winding or the conductive member and the inter-power storage unit electrical path;
    A power conversion device comprising:
  2.  前記バイパススイッチ(50)は、前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続するスイッチであり、
     前記モータ側電気経路(25)は、前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第2蓄電部側とを電気的に接続する経路であり、
     前記モータ側電気経路に設けられたモータ側スイッチ(60)を備える、請求項1に記載の電力変換装置。
    The bypass switch (50) is a switch that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit,
    The motor-side electrical path (25) is a path that electrically connects the armature winding to the second power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch,
    The power conversion device according to claim 1, further comprising a motor-side switch (60) provided in the motor-side electrical path.
  3.  前記第1蓄電部及び前記第2蓄電部の接続状態を、直列接続状態、又は前記第2蓄電部の正極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記高電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
     前記制御部は、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記バイパススイッチをオフし、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定したことを条件として、前記蓄電部間スイッチをオフするとともに、前記バイパススイッチ及び前記モータ側スイッチをオンする、請求項2に記載の電力変換装置。
    The first power storage unit and the second power storage unit may be connected in series, or the positive terminal of the second power storage unit may be connected to the high potential through the motor-side electrical path, the armature winding, and the inverter. A control unit (100) that determines whether the motor is connected to the side electrical path or the motor-via connection state is selected.
    The control unit includes:
    When it is determined that the first power storage unit and the second power storage unit are connected to each other in the series connection state, the inter-power storage unit switch is turned on and the bypass switch is turned off;
    On the condition that the connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, the inter-power storage unit switch is turned off, and the bypass switch and the motor side switch are turned on. , The power conversion device according to claim 2.
  4.  前記バイパススイッチは、第1バイパススイッチ(50)であり、
     前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する第2バイパススイッチ(80)を備える、請求項2に記載の電力変換装置。
    The bypass switch is a first bypass switch (50),
    The power conversion device according to claim 2, further comprising a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit.
  5.  前記第1蓄電部及び前記第2蓄電部の接続状態を、直列接続状態、並列接続状態、又は前記第2蓄電部の正極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記高電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
     前記制御部は、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオフし、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定した場合、第1操作を行い、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定した場合、第2操作を行い、
     前記第1操作は、前記蓄電部間スイッチ及び前記モータ側スイッチをオフするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオンする操作であり、
     前記第2操作は、前記蓄電部間スイッチ及び前記第2バイパススイッチをオフし、かつ、前記第1バイパススイッチ及び前記モータ側スイッチをオンし、かつ、前記インバータのスイッチ操作を行う操作であり、
     前記インバータのスイッチ操作は、各相の前記下アームスイッチをオフするとともに少なくとも1相の前記上アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記上アームスイッチのオンオフを繰り返す操作である、請求項4に記載の電力変換装置。
    The connection state of the first power storage unit and the second power storage unit may be a series connection state, a parallel connection state, or a positive terminal of the second power storage unit may be connected to the motor side electrical path, the armature winding, and the inverter. a control unit (100) that determines whether the motor is connected to the high potential side electric path or the motor-via connection state;
    The control unit includes:
    When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the inter-power storage unit switch is turned on, and the first bypass switch and the second bypass switch are turned off,
    If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, performing a first operation;
    If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, performing a second operation;
    The first operation is an operation of turning off the inter-power storage unit switch and the motor side switch, and turning on the first bypass switch and the second bypass switch,
    The second operation is an operation of turning off the power storage unit switch and the second bypass switch, turning on the first bypass switch and the motor side switch, and operating the switch of the inverter,
    The switch operation of the inverter is an operation of turning off the lower arm switch of each phase and turning on the upper arm switch of at least one phase, or at least one operation on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. The power conversion device according to claim 4, wherein the operation is to repeatedly turn on and off the upper arm switch of a phase.
  6.  前記制御部は、
     前記第1蓄電部と前記第2蓄電部との電位差が第1閾値(ΔVjde1)以下である場合に前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定し、
     前記第1蓄電部と前記第2蓄電部との電位差が前記第1閾値よりも大きくて、かつ、前記第2蓄電部の電圧から前記第1蓄電部の電圧を差し引いた値が、前記第1閾値よりも大きい第2閾値(ΔVjde2)以下である場合に前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定する、請求項5に記載の電力変換装置。
    The control unit includes:
    determining that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state when the potential difference between the first power storage unit and the second power storage unit is equal to or less than a first threshold value (ΔVjde1);
    The potential difference between the first power storage unit and the second power storage unit is greater than the first threshold value, and the value obtained by subtracting the voltage of the first power storage unit from the voltage of the second power storage unit is the first power storage unit. The power conversion device according to claim 5, wherein the power conversion device determines that the connection state of the first power storage unit and the second power storage unit is set to the connection state via the motor when the value is equal to or less than a second threshold value (ΔVjde2) larger than the threshold value.
  7.  前記バイパススイッチ(51)は、前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続するスイッチであり、
     前記モータ側電気経路(25)は、前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側とを電気的に接続する経路であり、
     前記モータ側電気経路に設けられたモータ側スイッチ(61)を備える、請求項1に記載の電力変換装置。
    The bypass switch (51) is a switch that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit,
    The motor-side electrical path (25) is a path that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch,
    The power conversion device according to claim 1, further comprising a motor-side switch (61) provided in the motor-side electrical path.
  8.  前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態、又は前記第1蓄電部の負極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記低電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
     前記制御部は、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記バイパススイッチをオフし、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定したことを条件として、前記蓄電部間スイッチをオフするとともに、前記バイパススイッチ及び前記モータ側スイッチをオンする、請求項7に記載の電力変換装置。
    The first power storage unit and the second power storage unit are connected in series, or the negative terminal of the first power storage unit is connected to the low potential side through the motor side electrical path, the armature winding, and the inverter. A control unit (100) that determines whether the motor is connected to an electrical path or connected via a motor,
    The control unit includes:
    When it is determined that the first power storage unit and the second power storage unit are connected to each other in the series connection state, the inter-power storage unit switch is turned on and the bypass switch is turned off;
    On the condition that the connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, the inter-power storage unit switch is turned off, and the bypass switch and the motor side switch are turned on. , The power conversion device according to claim 7.
  9.  前記バイパススイッチとして、
     前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する第1バイパススイッチ(50)と、
     前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する第2バイパススイッチ(80)と、
    を備え、
     前記モータ側電気経路(25)は、前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側とを電気的に接続する経路であり、
     前記モータ側電気経路に設けられたモータ側スイッチ(61)を備える、請求項1に記載の電力変換装置。
    As the bypass switch,
    a first bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit;
    a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit;
    Equipped with
    The motor-side electrical path (25) is a path that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch,
    The power conversion device according to claim 1, further comprising a motor-side switch (61) provided in the motor-side electrical path.
  10.  前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態、並列接続状態、又は前記第1蓄電部の負極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記低電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
     前記制御部は、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオフし、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定した場合、第1操作を行い、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定した場合、第2操作を行い、
     前記第1操作は、前記蓄電部間スイッチ及び前記モータ側スイッチをオフするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオンする操作であり、
     前記第2操作は、前記蓄電部間スイッチ及び前記第1バイパススイッチをオフし、かつ、前記第2バイパススイッチ及び前記モータ側スイッチをオンする操作し、かつ、前記インバータのスイッチ操作を行う操作であり、
     前記インバータのスイッチ操作は、各相の前記上アームスイッチをオフするとともに少なくとも1相の前記下アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記下アームスイッチのオンオフを繰り返す操作である、請求項9に記載の電力変換装置。
    The connection state of the first power storage unit and the second power storage unit may be a series connection state, a parallel connection state, or the negative terminal of the first power storage unit may be connected to the motor side electrical path, the armature winding, and the inverter. comprising a control unit (100) that determines whether the motor is connected to the low-potential side electrical path or the motor-via connection state;
    The control unit includes:
    When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the inter-power storage unit switch is turned on, and the first bypass switch and the second bypass switch are turned off,
    If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, performing a first operation;
    If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, performing a second operation;
    The first operation is an operation of turning off the inter-power storage unit switch and the motor side switch, and turning on the first bypass switch and the second bypass switch,
    The second operation is an operation of turning off the power storage unit switch and the first bypass switch, turning on the second bypass switch and the motor side switch, and operating a switch of the inverter. can be,
    The switch operation of the inverter is an operation of turning off the upper arm switch of each phase and turning on the lower arm switch of at least one phase, or at least one operation on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. The power conversion device according to claim 9, wherein the operation is to repeatedly turn on and off the lower arm switch of a phase.
  11.  前記制御部は、
     前記第1蓄電部と前記第2蓄電部との電位差が第1閾値(ΔVjde1)以下である場合に前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定し、
     前記第1蓄電部と前記第2蓄電部との電位差が前記第1閾値よりも大きくて、かつ、前記第1蓄電部の電圧から前記第2蓄電部の電圧を差し引いた値が、前記第1閾値よりも大きい第2閾値(ΔVjde2)以下である場合に前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定する、前記第2操作を行う、請求項10に記載の電力変換装置。
    The control unit includes:
    determining that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state when the potential difference between the first power storage unit and the second power storage unit is equal to or less than a first threshold value (ΔVjde1);
    The potential difference between the first power storage unit and the second power storage unit is greater than the first threshold value, and the value obtained by subtracting the voltage of the second power storage unit from the voltage of the first power storage unit is the first power storage unit. 10. The second operation is performed to determine that the connection state of the first power storage unit and the second power storage unit is set to the connection state via the motor when the second power storage unit and the second power storage unit are equal to or less than a second threshold value (ΔVjde2) larger than the threshold value. The power conversion device described in .
  12.  前記バイパススイッチとして、
     前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する第1バイパススイッチ(50)と、
     前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する第2バイパススイッチ(80)と、
    を備え、
     前記モータ側電気経路として、
     前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第2蓄電部側とを電気的に接続する第1モータ側電気経路(26,27)と、
     前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側とを電気的に接続する第2モータ側電気経路(26,28)と、
    を備え、
     前記第1モータ側電気経路に設けられた第1モータ側スイッチ(60)と、
     前記第2モータ側電気経路に設けられた第2モータ側スイッチ(61)と、
    を備える、請求項1に記載の電力変換装置。
    As the bypass switch,
    a first bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit;
    a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit;
    Equipped with
    As the motor side electrical path,
    a first motor-side electrical path (26, 27) that electrically connects the armature winding to a side of the second power storage unit of the inter-power storage unit electrical path rather than the inter-power storage unit switch;
    a second motor-side electrical path (26, 28) that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path rather than the inter-power storage unit switch;
    Equipped with
    a first motor side switch (60) provided in the first motor side electrical path;
    a second motor side switch (61) provided in the second motor side electrical path;
    The power conversion device according to claim 1, comprising:
  13.  前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態、並列接続状態、前記第2蓄電部の正極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記高電位側電気経路に接続した状態第1モータ経由接続状態、又は前記第1蓄電部の負極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記低電位側電気経路に接続した状態である第2モータ経由接続状態のいずれにするかを判定する制御部(100)を備え、
     前記制御部は、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオフし、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定した場合、第1操作を行い、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記第1モータ経由接続状態にすると判定した場合、第2操作を行い、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記第2モータ経由接続状態にすると判定した場合、第3操作を行い、
     前記第1操作は、前記第1モータ側スイッチ及び前記第2モータ側スイッチの少なくとも一方と前記蓄電部間スイッチとをオフするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオンする操作であり、
     前記第2操作は、前記蓄電部間スイッチ、前記第2バイパススイッチ及び前記第2モータ側スイッチをオフし、かつ、前記第1バイパススイッチ及び前記第1モータ側スイッチをオンし、かつ、前記インバータの第1スイッチ操作を行う操作であり、
     前記第3操作は、前記蓄電部間スイッチ、前記第1バイパススイッチ及び前記第1モータ側スイッチをオフし、かつ、前記第2バイパススイッチ及び前記第2モータ側スイッチをオンし、かつ、前記インバータの第2スイッチ操作を行う操作であり、
     前記インバータの第1スイッチ操作は、各相の前記下アームスイッチをオフするとともに少なくとも1相の前記上アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記上アームスイッチのオンオフを繰り返す操作であり、
     前記インバータの第2スイッチ操作は、各相の前記上アームスイッチをオフするとともに少なくとも1相の前記下アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記下アームスイッチのオンオフを繰り返す操作である、請求項12に記載の電力変換装置。
    The connection state of the first power storage unit and the second power storage unit is a series connection state or a parallel connection state, and the positive terminal of the second power storage unit is connected to the motor side electrical path, the armature winding, and the inverter. A state in which the negative terminal of the first power storage unit is connected to the high potential side electrical path, a state in which it is connected via the first motor, or a negative terminal of the first power storage unit is connected to the low potential side electrical path via the motor side electrical path, the armature winding, and the inverter. a control unit (100) that determines which of the connected state and the connected state via the second motor is to be set;
    The control unit includes:
    When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the inter-power storage unit switch is turned on, and the first bypass switch and the second bypass switch are turned off,
    If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, performing a first operation;
    If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the first motor, performing a second operation;
    If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the second motor, performing a third operation;
    The first operation is an operation of turning off at least one of the first motor-side switch and the second motor-side switch and the inter-power storage unit switch, and turning on the first bypass switch and the second bypass switch. can be,
    The second operation is to turn off the power storage section switch, the second bypass switch, and the second motor side switch, turn on the first bypass switch and the first motor side switch, and turn off the inverter switch. This is the operation of operating the first switch of
    The third operation is to turn off the power storage section switch, the first bypass switch, and the first motor side switch, turn on the second bypass switch and the second motor side switch, and turn off the inverter switch. This is the operation of operating the second switch of
    The first switch operation of the inverter is an operation of turning off the lower arm switch of each phase and turning on the upper arm switch of at least one phase, or on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. It is an operation of repeatedly turning on and off the upper arm switch of at least one phase,
    The second switch operation of the inverter is an operation of turning off the upper arm switch of each phase and turning on the lower arm switch of at least one phase, or on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. The power conversion device according to claim 12, wherein the operation is repeated turning on and off of at least one phase of the lower arm switch.
  14.  前記制御部は、
     前記第1蓄電部と前記第2蓄電部との電位差が第1閾値(ΔVjde1)以下である場合に前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定し、
     前記第1蓄電部と前記第2蓄電部との電位差が前記第1閾値よりも大きくて、かつ、前記第1蓄電部の電圧が前記第2蓄電部の電圧よりも高い場合に前記第1蓄電部及び前記第2蓄電部の接続状態を前記第1モータ経由接続状態にすると判定し、
     前記第1蓄電部と前記第2蓄電部との電位差が前記第1閾値よりも大きくて、かつ、前記第2蓄電部の電圧が前記第1蓄電部の電圧よりも高い場合に前記第1蓄電部及び前記第2蓄電部の接続状態を前記第2モータ経由接続状態にすると判定する、請求項13に記載の電力変換装置。
    The control unit includes:
    determining that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state when the potential difference between the first power storage unit and the second power storage unit is equal to or less than a first threshold value (ΔVjde1);
    When the potential difference between the first power storage unit and the second power storage unit is larger than the first threshold value, and the voltage of the first power storage unit is higher than the voltage of the second power storage unit, the first power storage unit determining that the connection state of the unit and the second power storage unit is set to the connection state via the first motor,
    When the potential difference between the first power storage unit and the second power storage unit is larger than the first threshold value, and the voltage of the second power storage unit is higher than the voltage of the first power storage unit, the first power storage unit The power conversion device according to claim 13, wherein the power conversion device determines that the connection state of the unit and the second power storage unit is set to the connection state via the second motor.
  15.  前記高電位側電気経路に充電器(200,210)の正極端子が電気的に接続可能になっており、
     前記低電位側電気経路に前記充電器の負極端子が電気的に接続可能になっており、
     前記制御部は、
     前記高電位側電気経路及び前記低電位側電気経路に接続された前記充電器が高圧充電器(200)である場合、前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態にすると判定し、
     前記高電位側電気経路及び前記低電位側電気経路に接続された前記充電器が、前記高圧充電器よりも充電電圧が低い低圧充電器(210)であることを条件として、前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定する、請求項3,5,6,8,10,11のいずれか1項に記載の電力変換装置。
    A positive terminal of the charger (200, 210) can be electrically connected to the high potential side electrical path,
    A negative terminal of the charger can be electrically connected to the low potential side electrical path,
    The control unit includes:
    When the charger connected to the high potential side electrical path and the low potential side electrical path is a high voltage charger (200), the connection state of the first power storage unit and the second power storage unit is set to a series connection state. Then, it is determined that
    the first power storage unit, on the condition that the charger connected to the high potential side electrical path and the low potential side electrical path is a low voltage charger (210) having a lower charging voltage than the high voltage charger; The power conversion device according to any one of claims 3, 5, 6, 8, 10, and 11, wherein the power converter determines that the second power storage unit is connected to the motor.
  16.  前記高電位側電気経路に充電器(200,210)の正極端子が電気的に接続可能になっており、
     前記低電位側電気経路に前記充電器の負極端子が電気的に接続可能になっており、
     前記制御部は、
     前記高電位側電気経路及び前記低電位側電気経路に接続された前記充電器が高圧充電器(200)である場合、前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態にすると判定し、
     前記高電位側電気経路及び前記低電位側電気経路に接続された前記充電器が、前記高圧充電器よりも充電電圧が低い低圧充電器(210)であることを条件として、前記第1蓄電部及び前記第2蓄電部の接続状態を前記第1モータ経由接続状態又は前記第2モータ経由接続状態にすると判定する、請求項13又は14に記載の電力変換装置。
    A positive terminal of the charger (200, 210) can be electrically connected to the high potential side electrical path,
    A negative terminal of the charger can be electrically connected to the low potential side electrical path,
    The control unit includes:
    When the charger connected to the high potential side electrical path and the low potential side electrical path is a high voltage charger (200), the connection state of the first power storage unit and the second power storage unit is set to a series connection state. Then, it is determined that
    the first power storage unit, on the condition that the charger connected to the high potential side electrical path and the low potential side electrical path is a low voltage charger (210) having a lower charging voltage than the high voltage charger; The power conversion device according to claim 13 or 14, wherein the power conversion device determines that the connection state of the second power storage unit is set to the first motor-via connection state or the second motor-via connection state.
  17.  前記高電位側電気経路及び前記低電位側電気経路のうち少なくとも一方である対象経路と、前記モータ側電気経路とを電気的に接続するコンデンサ(90,93A,93B)を備える、請求項1~14のいずれか1項に記載の電力変換装置。 Claims 1 to 3, further comprising a capacitor (90, 93A, 93B) that electrically connects the target path, which is at least one of the high potential side electrical path and the low potential side electrical path, and the motor side electrical path. 15. The power conversion device according to any one of 14.
  18.  オンされることにより前記対象経路と前記モータ側電気経路とが前記コンデンサにより電気的に接続された状態となり、オフされることにより前記対象経路及び前記モータ側電気経路の少なくとも一方と前記コンデンサとの電気的な接続を遮断する接続スイッチ(91~94)を備える、請求項17に記載の電力変換装置。 When turned on, the target path and the motor side electric path are electrically connected by the capacitor, and when turned off, at least one of the target path and the motor side electric path is connected to the capacitor. The power conversion device according to claim 17, further comprising a connection switch (91 to 94) for cutting off electrical connection.
  19.  前記モータ側電気経路に電流を流すと判定した場合に前記接続スイッチをオンにする、請求項18に記載の電力変換装置。 The power conversion device according to claim 18, wherein the connection switch is turned on when it is determined that a current should flow through the motor-side electrical path.
  20.  前記高電位側電気経路と前記低電位側電気経路とを電気的に接続するとともに、前記インバータの入力電圧を平滑化する平滑コンデンサ(21)と、
     スイッチ(SP)及び抵抗体(95)の直列接続体と、
    を備え、
     前記コンデンサは、前記モータ側電気経路のうちモータ側スイッチ(60)よりも前記電機子巻線側と前記対象経路とを電気的に接続し、
     前記直列接続体は、前記モータ側スイッチに並列に接続されている、請求項17に記載の電力変換装置。
    a smoothing capacitor (21) that electrically connects the high potential side electrical path and the low potential side electrical path and smoothes the input voltage of the inverter;
    a series connection body of a switch (SP) and a resistor (95);
    Equipped with
    The capacitor electrically connects the armature winding side of the motor-side electrical path beyond the motor-side switch (60) to the target path;
    The power conversion device according to claim 17, wherein the series connection body is connected in parallel to the motor side switch.
  21.  前記高電位側電気経路と前記低電位側電気経路とを電気的に接続するとともに、前記インバータの入力電圧を平滑化する平滑コンデンサ(21)と、
     スイッチ(SP)及び抵抗体(95)の直列接続体と、
    を備え、
     前記直列接続体は、前記モータ側電気経路に設けられたモータ側スイッチ(60)に並列接続されている、請求項1~14のいずれか1項に記載の電力変換装置。
    a smoothing capacitor (21) that electrically connects the high potential side electrical path and the low potential side electrical path and smoothes the input voltage of the inverter;
    a series connection body of a switch (SP) and a resistor (95);
    Equipped with
    The power conversion device according to any one of claims 1 to 14, wherein the series connection body is connected in parallel to a motor-side switch (60) provided in the motor-side electrical path.
  22.  第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、
     第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、
     前記高電位側電気経路に電気的に接続された上アームスイッチ(SWH)、及び前記低電位側電気経路に電気的に接続された下アームスイッチ(SWL)を有するインバータ(20)と、
     前記上アームスイッチ及び前記下アームスイッチの接続点に導電部材(23)を介して電気的に接続された電機子巻線(11)を有するモータ(10)と、
     コンピュータ(101)と、
    を備える電力変換装置に適用されるプログラムにおいて、
     前記電力変換装置は、
     前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、
     前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続するバイパススイッチ(50)と、
     前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第2蓄電部側とを電気的に接続するモータ側電気経路(25)と、
     前記モータ側電気経路に設けられたモータ側スイッチ(60)と、
    を備え、
     前記コンピュータに、
     前記第1蓄電部及び前記第2蓄電部の接続状態を、直列接続状態、又は前記第2蓄電部の正極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記高電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記バイパススイッチをオフする処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定したことを条件として、前記蓄電部間スイッチをオフするとともに、前記バイパススイッチ及び前記モータ側スイッチをオンする処理と、
    を行わせる、プログラム。
    a high potential side electrical path (22H) electrically connectable to the positive terminal of the first power storage unit (31);
    a low potential side electrical path (22L) electrically connectable to the negative terminal of the second power storage unit (32);
    an inverter (20) having an upper arm switch (SWH) electrically connected to the high potential side electrical path, and a lower arm switch (SWL) electrically connected to the low potential side electrical path;
    a motor (10) having an armature winding (11) electrically connected to a connection point of the upper arm switch and the lower arm switch via a conductive member (23);
    A computer (101) and
    In a program applied to a power conversion device equipped with
    The power conversion device includes:
    an inter-power storage unit switch (40) provided in an inter-power storage unit electrical path (24) that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit;
    a bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit;
    a motor-side electrical path (25) that electrically connects the armature winding and the second power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch;
    a motor-side switch (60) provided in the motor-side electrical path;
    Equipped with
    to the computer;
    The first power storage unit and the second power storage unit may be connected in series, or the positive terminal of the second power storage unit may be connected to the high potential through the motor-side electrical path, the armature winding, and the inverter. A process of determining whether to be in a state connected to a side electrical path or a state connected via a motor;
    When it is determined that the first power storage unit and the second power storage unit are connected to each other in the series connection state, turning on the inter-power storage unit switch and turning off the bypass switch;
    On the condition that the connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, the inter-power storage unit switch is turned off, and the bypass switch and the motor side switch are turned on. processing and
    A program that makes you do something.
  23.  第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、
     第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、
     前記高電位側電気経路に電気的に接続された上アームスイッチ(SWH)、及び前記低電位側電気経路に電気的に接続された下アームスイッチ(SWL)を有するインバータ(20)と、
     前記上アームスイッチ及び前記下アームスイッチの接続点に導電部材(23)を介して電気的に接続された電機子巻線(11)を有するモータ(10)と、
     コンピュータ(101)と、
    を備える電力変換装置に適用されるプログラムにおいて、
     前記電力変換装置は、
     前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、
     前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する第1バイパススイッチ(50)と、
     前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する第2バイパススイッチ(80)と、
     前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第2蓄電部側とを電気的に接続するモータ側電気経路(25)と、
     前記モータ側電気経路に設けられたモータ側スイッチ(60)と、
    を備え、
     前記コンピュータに、
     前記第1蓄電部及び前記第2蓄電部の接続状態を、直列接続状態、並列接続状態、又は前記第2蓄電部の正極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記高電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオフする処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定した場合、第1操作を行う処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定した場合、第2操作を行う処理と、
    を行わせ、
     前記第1操作は、前記蓄電部間スイッチ及び前記モータ側スイッチをオフするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオンする操作であり、
     前記第2操作は、前記蓄電部間スイッチ及び前記第2バイパススイッチをオフし、かつ、前記第1バイパススイッチ及び前記モータ側スイッチをオンし、かつ、前記インバータのスイッチ操作を行う操作であり、
     前記インバータのスイッチ操作は、各相の前記下アームスイッチをオフするとともに少なくとも1相の前記上アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記上アームスイッチのオンオフを繰り返す操作である、プログラム。
    a high potential side electrical path (22H) electrically connectable to the positive terminal of the first power storage unit (31);
    a low potential side electrical path (22L) electrically connectable to the negative terminal of the second power storage unit (32);
    an inverter (20) having an upper arm switch (SWH) electrically connected to the high potential side electrical path, and a lower arm switch (SWL) electrically connected to the low potential side electrical path;
    a motor (10) having an armature winding (11) electrically connected to a connection point of the upper arm switch and the lower arm switch via a conductive member (23);
    A computer (101) and
    In a program applied to a power conversion device equipped with
    The power conversion device includes:
    an inter-power storage unit switch (40) provided in an inter-power storage unit electrical path (24) that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit;
    a first bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit;
    a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit;
    a motor-side electrical path (25) that electrically connects the armature winding and the second power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch;
    a motor-side switch (60) provided in the motor-side electrical path;
    Equipped with
    to the computer;
    The connection state of the first power storage unit and the second power storage unit may be a series connection state, a parallel connection state, or a positive terminal of the second power storage unit may be connected to the motor side electrical path, the armature winding, and the inverter. a process of determining which state is to be set, that is, a state in which the motor is connected to the high potential side electrical path;
    When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the process of turning on the inter-power storage unit switch and turning off the first bypass switch and the second bypass switch; and,
    When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, a process of performing a first operation;
    If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, a process of performing a second operation;
    let them do it;
    The first operation is an operation of turning off the inter-power storage unit switch and the motor side switch, and turning on the first bypass switch and the second bypass switch,
    The second operation is an operation of turning off the power storage unit switch and the second bypass switch, turning on the first bypass switch and the motor side switch, and operating the switch of the inverter,
    The switch operation of the inverter is an operation of turning off the lower arm switch of each phase and turning on the upper arm switch of at least one phase, or at least one operation on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. A program that is an operation that repeatedly turns on and off the upper arm switch of the phase.
  24.  第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、
     第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、
     前記高電位側電気経路に電気的に接続された上アームスイッチ(SWH)、及び前記低電位側電気経路に電気的に接続された下アームスイッチ(SWL)を有するインバータ(20)と、
     前記上アームスイッチ及び前記下アームスイッチの接続点に導電部材(23)を介して電気的に接続された電機子巻線(11)を有するモータ(10)と、
     コンピュータ(101)と、
    を備える電力変換装置に適用されるプログラムにおいて、
     前記電力変換装置は、
     前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、
     前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続するバイパススイッチ(51)と、
     前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側とを電気的に接続するモータ側電気経路(25)と、
     前記モータ側電気経路に設けられたモータ側スイッチ(61)と、
    を備え、
     前記コンピュータに、
     前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態、又は前記第1蓄電部の負極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記低電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記バイパススイッチをオフする処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定したことを条件として、前記蓄電部間スイッチをオフするとともに、前記バイパススイッチ及び前記モータ側スイッチをオンする処理と、
    を行わせる、プログラム。
    a high potential side electrical path (22H) electrically connectable to the positive terminal of the first power storage unit (31);
    a low potential side electrical path (22L) electrically connectable to the negative terminal of the second power storage unit (32);
    an inverter (20) having an upper arm switch (SWH) electrically connected to the high potential side electrical path, and a lower arm switch (SWL) electrically connected to the low potential side electrical path;
    a motor (10) having an armature winding (11) electrically connected to a connection point of the upper arm switch and the lower arm switch via a conductive member (23);
    A computer (101) and
    In a program applied to a power conversion device equipped with
    The power conversion device includes:
    an inter-power storage unit switch (40) provided in an inter-power storage unit electrical path (24) that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit;
    a bypass switch (51) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit;
    a motor-side electrical path (25) that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch;
    a motor-side switch (61) provided in the motor-side electrical path;
    Equipped with
    to the computer;
    The first power storage unit and the second power storage unit are connected in series, or the negative terminal of the first power storage unit is connected to the low potential side through the motor side electrical path, the armature winding, and the inverter. A process of determining whether to be in a state connected to an electrical path or a state connected via a motor;
    When it is determined that the first power storage unit and the second power storage unit are connected to each other in the series connection state, turning on the inter-power storage unit switch and turning off the bypass switch;
    On the condition that the connection state of the first power storage unit and the second power storage unit is determined to be the connection state via the motor, the inter-power storage unit switch is turned off, and the bypass switch and the motor side switch are turned on. processing and
    A program that makes you do something.
  25.  第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、
     第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、
     前記高電位側電気経路に電気的に接続された上アームスイッチ(SWH)、及び前記低電位側電気経路に電気的に接続された下アームスイッチ(SWL)を有するインバータ(20)と、
     前記上アームスイッチ及び前記下アームスイッチの接続点に導電部材(23)を介して電気的に接続された電機子巻線(11)を有するモータ(10)と、
     コンピュータ(101)と、
    を備える電力変換装置に適用されるプログラムにおいて、
     前記電力変換装置は、
     前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、
     前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する第1バイパススイッチ(50)と、
     前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する第2バイパススイッチ(80)と、
     前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側とを電気的に接続するモータ側電気経路(25)と、
     前記モータ側電気経路に設けられたモータ側スイッチ(61)と、
    を備え、
     前記コンピュータに、
     前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態、並列接続状態、又は前記第1蓄電部の負極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記低電位側電気経路に接続した状態であるモータ経由接続状態のいずれにするかを判定する処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオフする処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定した場合、第1操作を行う処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記モータ経由接続状態にすると判定した場合、第2操作を行う処理と、
    を行わせ、
     前記第1操作は、前記蓄電部間スイッチ及び前記モータ側スイッチをオフするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオンする操作であり、
     前記第2操作は、前記蓄電部間スイッチ及び前記第1バイパススイッチをオフし、かつ、前記第2バイパススイッチ及び前記モータ側スイッチをオンする操作し、かつ、前記インバータのスイッチ操作を行う操作であり、
     前記インバータのスイッチ操作は、各相の前記上アームスイッチをオフするとともに少なくとも1相の前記下アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記下アームスイッチのオンオフを繰り返す操作である、プログラム。
    a high potential side electrical path (22H) electrically connectable to the positive terminal of the first power storage unit (31);
    a low potential side electrical path (22L) electrically connectable to the negative terminal of the second power storage unit (32);
    an inverter (20) having an upper arm switch (SWH) electrically connected to the high potential side electrical path, and a lower arm switch (SWL) electrically connected to the low potential side electrical path;
    a motor (10) having an armature winding (11) electrically connected to a connection point of the upper arm switch and the lower arm switch via a conductive member (23);
    A computer (101) and
    In a program applied to a power conversion device equipped with
    The power conversion device includes:
    an inter-power storage unit switch (40) provided in an inter-power storage unit electrical path (24) that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit;
    a first bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit;
    a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit;
    a motor-side electrical path (25) that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path from the inter-power storage unit switch;
    a motor-side switch (61) provided in the motor-side electrical path;
    Equipped with
    to the computer;
    The connection state of the first power storage unit and the second power storage unit may be a series connection state, a parallel connection state, or the negative terminal of the first power storage unit may be connected to the motor side electrical path, the armature winding, and the inverter. A process of determining which state is to be selected, which is a state connected to the low potential side electrical path and a state connected via the motor;
    When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the process of turning on the inter-power storage unit switch and turning off the first bypass switch and the second bypass switch; and,
    When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, a process of performing a first operation;
    If it is determined that the connection state of the first power storage unit and the second power storage unit is to be the connection state via the motor, a process of performing a second operation;
    let them do it;
    The first operation is an operation of turning off the inter-power storage unit switch and the motor side switch, and turning on the first bypass switch and the second bypass switch,
    The second operation is an operation of turning off the power storage unit switch and the first bypass switch, turning on the second bypass switch and the motor side switch, and operating a switch of the inverter. can be,
    The switch operation of the inverter is an operation of turning off the upper arm switch of each phase and turning on the lower arm switch of at least one phase, or at least one operation on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. A program that is an operation that repeatedly turns on and off the lower arm switch of the phase.
  26.  第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、
     第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、
     前記高電位側電気経路に電気的に接続された上アームスイッチ(SWH)、及び前記低電位側電気経路に電気的に接続された下アームスイッチ(SWL)を有するインバータ(20)と、
     前記上アームスイッチ及び前記下アームスイッチの接続点に導電部材(23)を介して電気的に接続された電機子巻線(11)を有するモータ(10)と、
     コンピュータ(101)と、
    を備える電力変換装置に適用されるプログラムにおいて、
     前記電力変換装置は、
     前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、
     前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する第1バイパススイッチ(50)と、
     前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する第2バイパススイッチ(80)と、
     前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第2蓄電部側とを電気的に接続する第1モータ側電気経路(26,27)と、
     前記電機子巻線と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側とを電気的に接続する第2モータ側電気経路(26,28)と、
     前記第1モータ側電気経路に設けられた第1モータ側スイッチ(60)と、
     前記第2モータ側電気経路に設けられた第2モータ側スイッチ(61)と、
    を備え、
     前記コンピュータに、
     前記第1蓄電部及び前記第2蓄電部の接続状態を直列接続状態、並列接続状態、前記第2蓄電部の正極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記高電位側電気経路に接続した状態第1モータ経由接続状態、又は前記第1蓄電部の負極端子を前記モータ側電気経路、前記電機子巻線及び前記インバータを介して前記低電位側電気経路に接続した状態である第2モータ経由接続状態のいずれにするかを判定する処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記直列接続状態にすると判定した場合、前記蓄電部間スイッチをオンするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオフする処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記並列接続状態にすると判定した場合、第1操作を行う処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記第1モータ経由接続状態にすると判定した場合、第2操作を行う処理と、
     前記第1蓄電部及び前記第2蓄電部の接続状態を前記第2モータ経由接続状態にすると判定した場合、第3操作を行う処理と、
    を行わせ、
     前記第1操作は、前記第1モータ側スイッチ及び前記第2モータ側スイッチの少なくとも一方と前記蓄電部間スイッチとをオフするとともに、前記第1バイパススイッチ及び前記第2バイパススイッチをオンする操作であり、
     前記第2操作は、前記蓄電部間スイッチ、前記第2バイパススイッチ及び前記第2モータ側スイッチをオフし、かつ、前記第1バイパススイッチ及び前記第1モータ側スイッチをオンし、かつ、前記インバータの第1スイッチ操作を行う操作であり、
     前記第3操作は、前記蓄電部間スイッチ、前記第1バイパススイッチ及び前記第1モータ側スイッチをオフし、かつ、前記第2バイパススイッチ及び前記第2モータ側スイッチをオンし、かつ、前記インバータの第2スイッチ操作を行う操作であり、
     前記インバータの第1スイッチ操作は、各相の前記下アームスイッチをオフするとともに少なくとも1相の前記上アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記上アームスイッチのオンオフを繰り返す操作であり、
     前記インバータの第2スイッチ操作は、各相の前記上アームスイッチをオフするとともに少なくとも1相の前記下アームスイッチをオンする操作、又は同相の前記上,下アームスイッチが同時にオンしないことを条件として少なくとも1相の前記下アームスイッチのオンオフを繰り返す操作である、プログラム。
    a high potential side electrical path (22H) electrically connectable to the positive terminal of the first power storage unit (31);
    a low potential side electrical path (22L) electrically connectable to the negative terminal of the second power storage unit (32);
    an inverter (20) having an upper arm switch (SWH) electrically connected to the high potential side electrical path, and a lower arm switch (SWL) electrically connected to the low potential side electrical path;
    a motor (10) having an armature winding (11) electrically connected to a connection point of the upper arm switch and the lower arm switch via a conductive member (23);
    A computer (101) and
    In a program applied to a power conversion device equipped with
    The power conversion device includes:
    an inter-power storage unit switch (40) provided in an inter-power storage unit electrical path (24) that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit;
    a first bypass switch (50) that electrically connects the negative terminal of the first power storage unit and the negative terminal of the second power storage unit;
    a second bypass switch (80) that electrically connects the positive terminal of the first power storage unit and the positive terminal of the second power storage unit;
    a first motor-side electrical path (26, 27) that electrically connects the armature winding to a side of the second power storage unit of the inter-power storage unit electrical path rather than the inter-power storage unit switch;
    a second motor-side electrical path (26, 28) that electrically connects the armature winding to the first power storage unit side of the inter-power storage unit electrical path rather than the inter-power storage unit switch;
    a first motor side switch (60) provided in the first motor side electrical path;
    a second motor side switch (61) provided in the second motor side electrical path;
    Equipped with
    to the computer;
    The connection state of the first power storage unit and the second power storage unit is a series connection state or a parallel connection state, and the positive terminal of the second power storage unit is connected to the motor side electrical path, the armature winding, and the inverter. A state in which the negative terminal of the first power storage unit is connected to the high potential side electrical path, a state in which it is connected via the first motor, or a negative terminal of the first power storage unit is connected to the low potential side electrical path via the motor side electrical path, the armature winding, and the inverter. A process of determining which of the connected state and the connected state via the second motor should be selected;
    When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the series connection state, the process of turning on the inter-power storage unit switch and turning off the first bypass switch and the second bypass switch; and,
    When it is determined that the connection state of the first power storage unit and the second power storage unit is to be the parallel connection state, a process of performing a first operation;
    If it is determined that the first power storage unit and the second power storage unit are connected to each other via the first motor, a process of performing a second operation;
    If it is determined that the first power storage unit and the second power storage unit are connected to each other via the second motor, performing a third operation;
    let them do it;
    The first operation is an operation of turning off at least one of the first motor-side switch and the second motor-side switch and the inter-power storage unit switch, and turning on the first bypass switch and the second bypass switch. can be,
    The second operation is to turn off the power storage section switch, the second bypass switch, and the second motor side switch, turn on the first bypass switch and the first motor side switch, and turn off the inverter switch. This is the operation of operating the first switch of
    The third operation is to turn off the power storage section switch, the first bypass switch, and the first motor side switch, turn on the second bypass switch and the second motor side switch, and turn off the inverter switch. This is the operation of operating the second switch of
    The first switch operation of the inverter is an operation of turning off the lower arm switch of each phase and turning on the upper arm switch of at least one phase, or on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. It is an operation of repeatedly turning on and off the upper arm switch of at least one phase,
    The second switch operation of the inverter is an operation of turning off the upper arm switch of each phase and turning on the lower arm switch of at least one phase, or on the condition that the upper and lower arm switches of the same phase are not turned on at the same time. A program that is an operation of repeatedly turning on and off the lower arm switch of at least one phase.
PCT/JP2023/024890 2022-07-29 2023-07-05 Power conversion device and program WO2024024425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122116 2022-07-29
JP2022122116 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024425A1 true WO2024024425A1 (en) 2024-02-01

Family

ID=89706144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024890 WO2024024425A1 (en) 2022-07-29 2023-07-05 Power conversion device and program

Country Status (1)

Country Link
WO (1) WO2024024425A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060838A (en) * 2010-09-10 2012-03-22 Toyota Motor Corp Power supply device and vehicle
JP2020150784A (en) * 2018-12-07 2020-09-17 矢崎総業株式会社 Power system
JP2021016267A (en) * 2019-07-12 2021-02-12 株式会社デンソー Power conversion system
JP2022094749A (en) * 2020-12-15 2022-06-27 株式会社Soken Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060838A (en) * 2010-09-10 2012-03-22 Toyota Motor Corp Power supply device and vehicle
JP2020150784A (en) * 2018-12-07 2020-09-17 矢崎総業株式会社 Power system
JP2021016267A (en) * 2019-07-12 2021-02-12 株式会社デンソー Power conversion system
JP2022094749A (en) * 2020-12-15 2022-06-27 株式会社Soken Power conversion device

Similar Documents

Publication Publication Date Title
US10587205B2 (en) Switching power supply device including an inrush current prevention circuit
JP6418252B2 (en) Rotating electrical machine control device
JP6064657B2 (en) Rotating electric machine drive
CN107017673B (en) Voltage breaking structure
WO2015004948A1 (en) Discharge control device
CN102412769A (en) Control apparatus for rotary electric machine
JP7032249B2 (en) Power system
US20200136406A1 (en) Vehicle
JP6289597B1 (en) VEHICLE POWER DEVICE AND CONTROL METHOD FOR VEHICLE POWER DEVICE
JP5939165B2 (en) Rotating electrical machine control device
CN115917959A (en) Control circuit of power converter
WO2021240190A1 (en) Power supply system and method for controlling power supply system
WO2024024425A1 (en) Power conversion device and program
JP7063745B2 (en) Power system
JP6683167B2 (en) Rotating electric machine control device and power supply system
JP6342043B1 (en) Electric motor control apparatus and electric motor control method
WO2024053422A1 (en) Power conversion device and program
JP7354958B2 (en) Power converter control circuit
WO2024053423A1 (en) Power conversion device and program
US20130234647A1 (en) Method for transferring energy between at least two energy storage cells in a controllable energy store
WO2024053424A1 (en) Power conversion apparatus and program
WO2018207829A1 (en) Control device for rotary electric machine apparatus
WO2024053460A1 (en) Electric power conversion device and program
JP7453778B2 (en) drive system
JP2021005944A (en) Charging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846158

Country of ref document: EP

Kind code of ref document: A1