WO2024024310A1 - 亜鉛系めっき鋼板およびその製造方法 - Google Patents

亜鉛系めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2024024310A1
WO2024024310A1 PCT/JP2023/021996 JP2023021996W WO2024024310A1 WO 2024024310 A1 WO2024024310 A1 WO 2024024310A1 JP 2023021996 W JP2023021996 W JP 2023021996W WO 2024024310 A1 WO2024024310 A1 WO 2024024310A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
zinc
plated steel
based plated
less
Prior art date
Application number
PCT/JP2023/021996
Other languages
English (en)
French (fr)
Inventor
真一 古谷
武士 松田
翔太 日下
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023568215A priority Critical patent/JPWO2024024310A1/ja
Publication of WO2024024310A1 publication Critical patent/WO2024024310A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a galvanized steel sheet with excellent sliding properties in press forming and a method for manufacturing the same.
  • the present invention relates to a galvanized steel sheet with a lubricating film that exhibits excellent formability even during severe drawing processing, and a method for producing the same.
  • Zinc-based plated steel sheets are widely used in a wide range of fields, mainly in automobile body applications.
  • the material is generally press-molded.
  • zinc-based plated steel sheets have the disadvantage of inferior press formability compared to cold-rolled steel sheets. This is because the sliding resistance of the galvanized steel sheet in the press die is greater than that of the cold-rolled steel sheet. That is, during drawing forming, the zinc-based plated steel sheet, which has a large sliding resistance with the bead, is difficult to flow into the press die side, and the steel sheet is likely to break. Even during stretch forming, if the sliding resistance with the mold is large, strain becomes localized and the steel plate is likely to break.
  • a method of applying high viscosity lubricating oil is widely used as a method of improving press formability when using zinc-based plated steel sheets.
  • the lubricating oil is highly viscous, coating defects may occur due to insufficient degreasing during the coating process.
  • press performance becomes unstable due to lack of oil during pressing.
  • another method for improving press formability includes surface treatment of the mold. Surface treatment of a mold is a widely used method, but with this method, the mold cannot be adjusted after surface treatment. Another problem is that the cost is high. Therefore, there is a need to improve the press formability of galvanized steel sheets themselves without relying on high viscosity lubricating oil or surface treatment of molds.
  • Patent Document 1 describes a technique for forming a lubricating film on a zinc-based plated steel sheet, which is an acrylic resin film containing synthetic resin powder.
  • Patent Document 2 describes a metal plate coated with a lubricating film in which a solid lubricant protrudes by 0.01 to 1.5 ⁇ m from the surface of the resin film.
  • Patent Document 3 describes a lubricated surface-treated metal product that has excellent press formability and is coated with a film of polyurethane resin containing a lubricant to a thickness of 0.5 to 5 ⁇ m.
  • Patent Document 4 describes a technique for forming an alkali-soluble organic film on a steel plate by adding a lubricant to an epoxy resin.
  • Patent Documents 1 to 4 although lubricity is achieved due to the lubricating effect of the lubricant contained, press formability is not necessarily sufficient for complex molding.
  • the present invention has been made in view of the above circumstances, and uses zinc-based plated steel sheets that have low sliding resistance during press forming and excellent press formability in galvanized steel sheets that are difficult to press form.
  • the purpose of the present invention is to provide a galvanized steel sheet and a method for manufacturing the same.
  • a zinc-based plated steel sheet when used for an automobile body, it is required to have excellent adhesiveness and weldability during the assembly process. Furthermore, it is also required to have sufficient film removability in the alkaline degreasing step in the painting process.
  • the zinc-based plated steel sheet is a steel sheet on which a plating film mainly composed of zinc is formed.
  • Plating films mainly composed of zinc do not contain intentionally added components other than zinc, and include zinc plating consisting of zinc and unavoidable impurities. Examples include zinc plating to which compounds such as alumina and silica are added.
  • the amount of zinc-based plating deposited on the zinc-based plated steel sheet is not particularly limited, but 3 to 120 g/m 2 per side is preferably used.
  • Tg or higher and 145°C or lower and an organic resin film containing 5% by mass or more of polyolefin wax with an average particle size of 3.0 ⁇ m or less, with a coating amount W of 0.2 g/m 2 or higher and 2.5 g/m 2 or lower per side.
  • Tg glass transition point
  • R acid value (mg-KOH/g)/Tg (°C) is 1.50 or more, and the wax is a polyolefin wax with a melting point of 100°C or more and 145°C or less and an average particle size of 3.0 ⁇ m or less,
  • [3] The zinc-based plated steel sheet according to [1] or [2], wherein the ratio R between the acid value and the glass transition point of the acrylic resin is 2.05 or less.
  • [4] The zinc-based plated steel sheet according to any one of [1] to [3], wherein the coating contains 30% by mass or more of the acrylic resin and the proportion of the wax is 50% by mass or less.
  • [5] The zinc-based plated steel sheet according to any one of [1] to [4], wherein the acrylic resin has a mass average molecular weight of 5,000 or more and 30,000 or less.
  • [6] The zinc-based plated steel sheet according to any one of [1] to [5], wherein the acrylic resin is a styrene acrylic resin.
  • [7] The zinc-based plated steel sheet according to any one of [1] to [6], wherein the arithmetic mean roughness Ra of the surface steel sheet of the zinc-based plated steel sheet before film formation is 0.4 ⁇ m or more and 2.5 ⁇ m or less.
  • the rust preventive agent is at least one selected from the group consisting of aluminum salts of phosphoric acids, zinc salts, and zinc oxide.
  • a method for manufacturing a zinc-based coated steel sheet which comprises applying the coating to at least one side of the zinc-based coated steel sheet and drying it.
  • a zinc-based plated steel sheet can be obtained which has a significantly reduced coefficient of friction with a mold and the like and has excellent press formability. Therefore, it has stable and excellent press formability for galvanized steel sheets that are subjected to complicated forming. Furthermore, it has excellent weldability.
  • the adhesion and removability of zinc-plated steel sheets with a suitable film are good, so adhesives can be used in the same way as conventional zinc-plated steel sheets, and the film can be removed by alkaline degreasing. Because it has excellent properties, it does not interfere with the painting process.
  • FIG. 1 is a schematic front view showing a friction coefficient measuring device.
  • FIG. 2 is a schematic perspective view showing the shape and dimensions of the bead in FIG. 1.
  • the following polyolefin waxes are used, the proportion of wax in the film is 5% by mass or more, and the amount W of the film adhered to one side is 0.2 g/m 2 or more and 2.5 g/m 2 or less.
  • the reason why the glass transition point of the acrylic resin in the film of the present invention is set to 100°C or higher is to obtain good lubricity. If the glass transition point is less than 100°C, the resin will soften during sliding, reducing the wax holding power and reducing the ability to prevent direct contact between the zinc-plated steel sheet and the mold, resulting in poor sliding performance. Mobility cannot be obtained.
  • the glass transition point is preferably 110°C or higher and 150°C or lower. If the glass transition point exceeds 150° C., on the contrary, the resin becomes hard and brittle during sliding, and excellent lubricity may not be obtained.
  • the glass transition temperature is an intermediate glass transition temperature measured based on JIS K 7121 "Method for measuring transition temperature of plastics”.
  • the sliding properties are poor due to the lack of carboxyl groups.
  • R is preferably 1.80 or more.
  • the upper limit of R is not particularly limited, but is preferably 2.05 or less. The reason for this is that when R exceeds 2.05, rust prevention may deteriorate.
  • the acid value of the acrylic resin is preferably 180 mg-KOH/g or more and 350 mg-KOH/g or less. If it is less than 180 mg-KOH/g, the film removability by alkali may be poor, and sufficient adhesive strength may not be obtained by the adhesive. If it exceeds 350 mg-KOH/g, rust prevention may deteriorate.
  • the acid value refers to the number of mg of potassium hydroxide required to neutralize the carboxyl groups contained in 1 g of resin, and is based on JIS K 0070 "Acid value, saponification value, ester value of chemical products, Measured based on the iodine value, hydroxyl value and unsaponifiables test method.
  • the unit is expressed as mg-KOH/g.
  • the wax used in the present invention may be a polyolefin wax having a melting point of 100° C. or more and 145° C. or less and an average particle size of 3.0 ⁇ m or less.
  • polyolefin wax is used as the wax is that it has low surface energy and self-lubricating properties, so that good lubricity can be obtained. Further, it is relatively easy to adjust the melting point of polyolefin to 100°C or more and 145°C or less by controlling the density and molecular weight.
  • the melting point of the polyolefin wax is 100°C or higher and 145°C or lower, in addition to the self-lubricating properties of the polyolefin wax itself, the polyolefin wax becomes semi-molten due to sliding during press molding, and the lubrication caused by the mixture with the acrylic resin increases.
  • a coating component can coat the mold surface. Thereby, an excellent lubrication effect can be obtained by suppressing direct contact between the mold and the zinc-based plated steel sheet. If the melting point of the polyolefin wax is less than 100°C, it will completely melt due to the frictional heat caused by sliding during press molding, and the polyolefin wax itself will not have a sufficient lubricating effect and will not have the above-mentioned mold coating effect.
  • the melting point of the polyolefin wax exceeds 145° C., the polyolefin wax will not melt during sliding, failing to provide a sufficient lubricating effect and failing to provide a mold coating effect. Further, the melting point of the polyolefin wax is preferably 120°C or more and 140°C or less.
  • the melting point of the polyolefin wax is the melting temperature measured based on JIS K 7121 "Method for measuring transition temperature of plastics”.
  • the average particle size of the polyolefin wax is preferably 0.5 ⁇ m or less, even more preferably 0.3 ⁇ m or less.
  • the average particle size of the polyolefin wax is preferably 0.01 ⁇ m or more. If the average particle size of the polyolefin wax is less than 0.01 ⁇ m, it will easily dissolve in lubricating oil during sliding, and may not be able to sufficiently improve lubricity, and will tend to aggregate even in the paint used to form a film, making it difficult to stabilize the paint. The sex is also low.
  • the average particle size of the polyolefin wax is more preferably 0.03 ⁇ m or more. Considering the miscibility with the acrylic resin, the average particle size of the polyolefin wax is preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the average particle diameter is the median diameter of the volume average diameter, and is determined by a laser diffraction/scattering method. For example, it can be determined by measuring a sample diluted with pure water using a laser diffraction/scattering particle size distribution measuring device partica (registered trademark) LA-960V2 (manufactured by Horiba, Ltd.).
  • polyethylene waxes it is preferable to use polyethylene wax because it provides the best lubricating effect.
  • the mass proportion of polyolefin wax in the film is 5% by mass or more. If the mass proportion of the polyolefin wax in the film is less than 5% by mass, a sufficient lubricating effect cannot be obtained. Particularly good lubricating effects can be obtained if the mass proportion of the polyolefin wax in the film is 10% by mass or more. Further, the mass proportion of the polyolefin wax in the film is preferably 50% by mass or less. If the mass proportion of polyolefin wax in the film exceeds 50% by mass, the polyolefin wax tends to fall off due to lack of base resin components, has poor adhesion to the steel plate, and cannot exist stably as a film, resulting in poor adhesion. There are cases.
  • the mass proportion of the polyolefin wax in the film is more preferably 30% by mass or less.
  • the mass ratio of the polyolefin wax in the film is the ratio of the mass of the solid content of the polyolefin wax to the mass of the total solid content in the paint.
  • the film of the present invention preferably contains 30% by mass or more of the acrylic resin.
  • the mass proportion of the acrylic resin in the film is 30% by mass or more, the physical properties of the acrylic resin component such as the lubricity improvement effect, film removability, and adhesiveness due to transfer to the mold during sliding are reduced. Affecting properties are fully obtained.
  • the mass proportion of the acrylic resin in the film is less than 30% by mass, the influence of other components becomes large, and the targeted performance may not be obtained.
  • the weight average molecular weight of the acrylic resin is preferably 5,000 or more and 30,000 or less. If the weight average molecular weight of the acrylic resin is less than 5,000, the rust prevention properties may be poor, and if it exceeds 30,000, the adhesiveness may deteriorate.
  • the mass average molecular weight is the mass average molecular weight measured based on JIS K 7252 "Method of determining average molecular weight and molecular weight distribution of polymers by plastic size exclusion chromatography".
  • the acrylic resin is preferably a styrene acrylic resin. Containing styrene in the resin monomer improves water resistance, resulting in good rust prevention. Furthermore, it also exhibits the effect of providing better sliding properties than when it does not contain styrene.
  • the film of the present invention preferably contains 1% by mass or more and 30% by mass or less of a rust preventive agent in the film. Even if a product does not contain a rust preventive agent, rust or discoloration will not occur under normal storage conditions, but if the rust preventive agent content is less than 1% by mass, rust may occur under unfavorable storage conditions. . In particular, when steel strips are stacked in a coiled state and stored in a humid environment, they may absorb moisture and cause discoloration. If the ratio of the rust preventive agent exceeds 30% by mass, the adhesiveness may deteriorate, and the rust preventive agent may precipitate in the paint state, resulting in deterioration of paint stability.
  • the rust preventive agent it is preferable to use at least one member selected from the group consisting of aluminum salts of phosphoric acids, zinc salts, and zinc oxide.
  • the phosphoric acids include orthophosphoric acid as well as condensed phosphoric acids such as pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid, and metaphosphoric acid.
  • the film of the present invention preferably contains 1% by mass or more and 10% by mass or less of silica in the film. Containing silica increases the water repellency of the film and improves rust prevention. In addition, by containing silica, precipitation of the rust preventive agent can be suppressed, and paint stability is improved. Furthermore, if the content is less than 1% by mass, it is difficult to obtain the above-mentioned effects, and if the content exceeds 10% by mass, the adhesiveness may deteriorate. When the film of the present invention contains silica, it is preferable to use colloidal silica with a particle diameter of 5 nm or more and 200 nm or less.
  • components other than the acrylic resin, wax, rust preventive, and silica may include surface conditioners, antifoaming agents, dispersants, etc. that are generally added to paints.
  • the surface roughness of the zinc-based plated steel sheet used in the present invention before film formation is preferably 0.4 ⁇ m or more and 2.5 ⁇ m or less in terms of arithmetic mean roughness Ra. If Ra is 2.5 ⁇ m or less, the lubricating effect of the film can be stably obtained. If Ra is smaller than 0.4 ⁇ m, fine scratches that may occur during press molding may be easily noticeable, and mold galling may occur during press molding. If Ra exceeds 2.5 ⁇ m, the unevenness of the steel plate becomes large, making it difficult for the film in the recesses to act effectively during sliding, and the lubricating effect of the film may be reduced.
  • the arithmetic mean roughness Ra ( ⁇ m) of a steel plate can be measured according to JIS B 0633:2001 (ISO 4288:1996). For example, when Ra is greater than 0.1 and less than or equal to 2, the cutoff value and reference length are set to 0.8 mm, the evaluation length is set to 4 mm, and the roughness is determined from the measured roughness curve. When Ra exceeds 2 and is 10 or less, the cutoff value and reference length are set to 2.5 mm, and the evaluation length is set to 12.5 mm, and the roughness is determined from the measured roughness curve.
  • the coating is formed so that the amount of film deposited on one side of the zinc-based plated steel sheet is 0.2 g/m 2 or more and 2.5 g/m 2 or less in terms of dry mass. If it is less than 0.2 g/m 2 , sufficient slidability may not be obtained, and if it exceeds 2.5 g/m 2 , weldability by alkali, film removability, and adhesiveness may deteriorate.
  • Tg glass transition point
  • Ratio of acid value and glass transition point R 5% by mass of an acrylic resin with an acid value/Tg of 1.50 or more and a polyolefin wax with a melting point of 100°C or more and 145°C or less and an average particle size of 3.0 ⁇ m or less
  • Zinc-based plating treatment is applied to steel sheets such as cold-rolled steel sheets or hot-rolled steel sheets.
  • the method of zinc-based plating treatment is not particularly limited, and it can be formed by applying zinc-based plating on a steel plate by various manufacturing methods such as hot-dip plating, electroplating, vapor deposition plating, and thermal spraying.
  • an alloyed hot-dip galvanized steel sheet that is subjected to an alloying treatment after galvanizing treatment can also be used.
  • zinc-based plating containing a metal other than zinc such as zinc-aluminum alloy plating, zinc-aluminum-magnesium alloy plating, or zinc-nickel alloy plating, may be applied.
  • a method for forming an acrylic resin film will be explained.
  • a paint obtained by adding wax to an acrylic resin solution or emulsion in which an acrylic resin is dissolved or dispersed in a solvent is applied to at least one side of a galvanized steel sheet and dried.
  • water or an organic solvent can be used as the solvent for the paint, it is preferable to use water.
  • the concentration of total solids in the paint is preferably 1% by mass or more and 30% by mass or less. If the concentration of total solids in the paint is less than 1% by mass or more than 30% by mass, uneven coating may occur.
  • the coating method is not particularly limited, but examples include methods using a roll coater or bar coater, and coating methods using spraying, dipping, and brushing.
  • the steel plate after coating can be dried by a general method.
  • the maximum temperature of the zinc-plated steel sheet during drying is preferably 60° C. or higher and lower than the melting point of the wax used. If the maximum temperature of the zinc-based plated steel sheet is less than 60° C., it takes a long time to dry and the rust prevention properties may be poor. If the maximum temperature of the zinc-based plated steel sheet exceeds the melting point of the wax, the wax may melt and coalesce, and the particle size may become coarser, resulting in deterioration of lubricity.
  • the coating is formed so that the amount of film deposited on one side of the zinc-based plated steel sheet is 0.2 g/m 2 or more and 2.5 g/m 2 or less in terms of dry mass.
  • the amount of film deposited can be determined by dividing the weight difference between the zinc-plated steel sheet before and after the film is applied by the area, or by completely removing the film on the zinc-plated steel sheet after the film has been applied with an alkaline aqueous solution or organic solvent with a pH of 10 to 13. , can be determined by dividing the weight difference between the zinc-based plated steel sheet before and after film removal by the area.
  • the steel plates A to G are all zinc-plated steel plates in which zinc-based plating is applied to SPCD (JIS G 3141) substrates having a tensile strength of 270 MPa class.
  • SPCD JIS G 3141
  • colloidal silica having a volume average particle diameter of 9 nm was used as the silica.
  • concentration of total solids in the paint used was 3% to 25%.
  • the amount of film deposited was determined by removing the film on the zinc-based plated steel sheet after the film was applied with a sodium hydroxide aqueous solution of pH 12, and dividing the difference in mass between the zinc-based plated steel sheet before and after film removal by the area.
  • FIG. 1 is a schematic front view showing a friction coefficient measuring device.
  • a sample 1 for friction coefficient measurement taken from a test material is fixed to a sample stand 2, and the sample stand 2 is fixed to the upper surface of a horizontally movable slide table 3.
  • a vertically movable slide table support 5 having rollers 4 in contact with the lower surface of the slide table 3 is provided, and by pushing this up, the pressing load N applied to the sample 1 for friction coefficient measurement by the beads 6 is reduced.
  • a first load cell 7 for measuring is attached to the slide table support 5.
  • a second load cell 8 is attached to one end of the slide table 3 for measuring the sliding resistance force F for horizontally moving the slide table 3 while the pressing force is applied.
  • the test was conducted by applying Pleton (registered trademark) R352L, a press cleaning oil manufactured by Sugimura Chemical Industry Co., Ltd., to the surface of Sample 1 as a lubricating oil.
  • FIG. 2 is a schematic perspective view showing the shape and dimensions of the beads used.
  • the lower surface of the bead 6 slides while being pressed against the surface of the sample 1.
  • the shape of the bead 6 shown in Fig. 2 is 10 mm in width, 59 mm in length in the sliding direction of the sample, the lower part of both ends in the sliding direction is composed of a curved surface with a curvature of 4.5 mm, and the lower surface of the bead against which the sample is pressed has a width of 10 mm and a length in the sliding direction. It has a plane with a direction length of 50 mm.
  • the friction coefficient measurement test was conducted using the bead shown in FIG. 2 with a pressing load N of 400 kgf and a sample pull-out speed (horizontal movement speed of the slide table 3) of 20 cm/min.
  • each test piece was first degreased with Fine Cleaner (registered trademark) E6403 (manufactured by Nippon Parkerizing Co., Ltd.), an alkaline degreaser.
  • the degreasing treatment was performed by immersing the test piece in a degreasing solution with a degreasing agent concentration of 20 g/L and a temperature of 40° C. for a predetermined period of time, and washing with tap water.
  • the surface carbon strength of the test piece after degreasing was measured using a fluorescent X-ray analyzer, and the measured value was compared with the previously measured surface carbon strength before degreasing and the surface carbon strength of the untreated metal plate.
  • the film peeling rate was calculated using the following formula.
  • Film peeling rate (%) [(carbon strength before degreasing - carbon strength after degreasing) / (carbon strength before degreasing - carbon strength of untreated steel sheet)] x 100
  • the film removability of the film is evaluated according to the criteria shown below by the immersion time in an alkaline degreasing solution at which the film peeling rate is 98% or more, and if it is within 120 seconds, it is considered to be good film removability. If the time exceeded 120 seconds, it was judged as insufficient film removability and was evaluated as ⁇ .
  • Rust prevention is evaluated by checking the inner surfaces of the overlaid surfaces every 7 days and evaluating the number of days until discoloration occurs.If it is 56 days or more, it is considered particularly good rust prevention. ⁇ , or 35 days or more. A case of less than 35 days was evaluated as good rust prevention and ⁇ , and a case of less than 35 days was evaluated as insufficient rust prevention.
  • Adhesion evaluation method Each test piece of the test material was processed into a size of 100 x 25.4 mm, immersed in anti-rust oil and then stood vertically for 24 hours to remove excess oil. Two pieces were used. After uniformly applying epoxy adhesive to a thickness of 0.2 mm on a 25.4 mm x 13 mm area, the adhesive was overlapped and sandwiched with clips, and baked at 180° C. for 20 minutes to dry and harden. After cooling, a shear tensile test was performed using an autograph tester to measure the shear adhesive strength. Adhesiveness was evaluated as ⁇ with an adhesive strength of 20 MPa or more as good adhesiveness, and ⁇ as insufficient adhesiveness with an adhesive strength of less than 20 MPa.
  • the zinc-based plated steel sheets of the examples of the present invention all have excellent press formability and weldability.
  • all of the comparative galvanized steel sheets that do not have the technical features of the present invention have poor press formability.
  • the zinc-based plated steel sheet of the present invention can have good film removability, rust prevention, and adhesiveness by selecting a suitable technical range.
  • the zinc-based plated steel sheet of the present invention has excellent sliding properties and weldability during press forming.
  • it is possible to have good film removability, rust prevention, and adhesion.Because it has these excellent properties, it is widely used mainly in automobile body applications. It can be applied in various fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

プレス成形が困難な複雑な成形を施される亜鉛系めっき鋼板において、プレス成形時の割れ危険部位での摺動抵抗が小さく、面圧が高く型カジリの発生が想定される部位において優れたプレス成形性を有する潤滑皮膜を有する亜鉛系めっき鋼板を提供することを目的とする。 ガラス転移点(Tg)が100℃以上、酸価の比率R=酸価(mg-KOH/g)/Tg(℃)が1.50以上であるアクリル系樹脂と、融点が100℃以上145℃以下、平均粒径が3.0μm以下のポリオレフィンワックスを5質量%以上含有する皮膜を片面当たりの付着量が0.2g/m以上2.5g/m以下の範囲で亜鉛系めっき鋼板表面に形成する。

Description

亜鉛系めっき鋼板およびその製造方法
 本発明は、プレス成形における摺動性に優れた亜鉛系めっき鋼板およびその製造方法に関するものである。特に厳しい絞り加工時でも成形性に優れる潤滑皮膜を備えた亜鉛系めっき鋼板およびその製造方法に関する。
 亜鉛系めっき鋼板は自動車車体用途を中心に広範な分野で広く利用される。そのような用途では、一般にプレス成形を施されて使用に供される。しかし、亜鉛系めっき鋼板は冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での亜鉛系めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、絞り成形時には、ビードとの摺動抵抗が大きい亜鉛系めっき鋼板がプレス金型側に流入しにくくなり、鋼板の破断が起こりやすい。張出し成形時においても金型との摺動抵抗が大きい場合にはひずみが局在化して鋼板の破断が起こりやすい。
 そのため、亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法として、高粘度の潤滑油を塗布する方法が広く用いられる。しかし、この方法では潤滑油が高粘性であるため、塗装工程で脱脂不良による塗装欠陥が発生する場合がある。また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。また、その他にプレス成形性を向上させる方法として、金型への表面処理が挙げられる。金型への表面処理は、広く用いられる方法ではあるが、この方法では、表面処理を施した後、金型の調整を行えない。また、コストが高いという問題もある。したがって、高粘度の潤滑油や金型の表面処理に頼らない、亜鉛系めっき鋼板自身のプレス成形性の改善が要求されている。
 そこで、上記の問題を解決する方法として、各種潤滑表面処理鋼板が検討されている。
 特許文献1には、アクリル樹脂皮膜に合成樹脂粉末を含有させた潤滑皮膜を亜鉛系めっき鋼板上に形成させる技術が記載されている。
 特許文献2には、樹脂皮膜表面から固体潤滑剤を0.01~1.5μm突出させた潤滑皮膜を被覆した金属板が記載されている。
 特許文献3には、ポリウレタン樹脂に潤滑剤を含有させた皮膜を0.5~5μm被覆したプレス成形性に優れた潤滑表面処理金属製品が記載されている。
 特許文献4には、エポキシ樹脂中に潤滑剤を添加したアルカリ可溶型有機皮膜を鋼板上に形成させる技術が記載されている。
特開平9-170059号公報 特開平10-52881号公報 特開2000-309747号公報 特開2000-167981号公報
 しかしながら、特許文献1~4では、含有する潤滑剤等による潤滑効果で潤滑性は発現するものの、複雑な成形において必ずしもプレス成形性が十分なものではなかった。
 本発明は、かかる事情に鑑みてなされたものであって、プレス成形が困難な成形を施される亜鉛系めっき鋼板において、プレス成形時の摺動抵抗が小さく、優れたプレス成形性を有する亜鉛系めっき鋼板およびその製造方法を提供することを目的とする。
 また、亜鉛系めっき鋼板が自動車車体として用いられる場合には、組立工程における接着性、溶接性に優れることが必要とされる。更に、塗装工程の中のアルカリ脱脂工程において十分な脱膜性を有することも必要とされる。
 ここで、亜鉛系めっき鋼板とは鋼板上に亜鉛を主体とするめっき皮膜を形成させた鋼板である。亜鉛を主体とするめっき皮膜には、意図的に亜鉛以外の成分を添加せず、亜鉛と不可避的不純物からなる亜鉛めっきや、亜鉛を主体とし、鉄、ニッケル、アルミニウム、マグネシウム等の合金元素やアルミナ、シリカ等の化合物を添加した亜鉛めっき等が挙げられる。亜鉛系めっき鋼板の亜鉛系めっきの付着量は特に限定されないが、片面当たり3~120g/mが好適に用いられる。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、ガラス転移点(Tg)が100℃以上であり、酸価の比率R=酸価(mg-KOH/g)/Tg(℃)が1.50以上であるアクリル系樹脂と融点が100℃以上145℃以下、かつ平均粒径が3.0μm以下のポリオレフィンワックスを5質量%以上含有する有機樹脂皮膜を片面当たりの付着量Wが0.2g/m以上2.5g/m以下の範囲で亜鉛系めっき鋼板表面に形成することで上記課題を解決できることを見出した。
 本発明は、以上の知見に基づき完成されたものであり、その要旨は以下の通りである。
[1]少なくとも片面にアクリル系樹脂およびワックスを含む皮膜が形成された亜鉛系めっき鋼板であって、前記アクリル系樹脂はガラス転移点(Tg)が100℃以上、酸価とガラス転移点の比率R=酸価(mg-KOH/g)/Tg(℃)が1.50以上であり、前記ワックスは融点が100℃以上145℃以下、平均粒径が3.0μm以下のポリオレフィンワックスであり、前記皮膜中のワックスの割合が5質量%以上であり、前記皮膜の片面当たりの付着量Wが0.2g/m以上2.5g/m以下である亜鉛系めっき鋼板。
[2]前記アクリル系樹脂の酸価が180mg-KOH/g以上350mg-KOH/g以下である[1]に記載の亜鉛系めっき鋼板。
[3]前記アクリル系樹脂の酸価とガラス転移点の比率Rが2.05以下である[1]または[2]に記載の亜鉛系めっき鋼板。
[4]前記皮膜は、前記アクリル系樹脂を30質量%以上含み、前記ワックスの割合が50質量%以下である[1]~[3]のいずれかに記載の亜鉛系めっき鋼板。
[5]前記アクリル系樹脂の質量平均分子量が5000以上30000以下である[1]~[4]のいずれかに記載の亜鉛系めっき鋼板。
[6]前記アクリル系樹脂がスチレンアクリル樹脂である[1]~[5]のいずれかに記載の亜鉛系めっき鋼板。
[7]前記皮膜形成前の亜鉛系めっき鋼板表面鋼板の算術平均粗さRaが0.4μm以上2.5μm以下である[1]~[6]のいずれかに記載の亜鉛系めっき鋼板。
[8]前記皮膜中に防錆剤を1質量%以上30質量%以下含有する[1]~[7]のいずれかに記載の亜鉛系めっき鋼板。
[9]前記防錆剤がリン酸類のアルミニウム塩、亜鉛塩および酸化亜鉛からなる群より選ばれる少なくとも1種である[8]に記載の亜鉛系めっき鋼板。
[10]前記ワックスの平均粒径が0.01μm以上0.5μm以下である[1]~[9]のいずれかに記載の亜鉛系めっき鋼板。
[11]前記皮膜中にシリカを1質量%以上10質量%以下含有する[1]~[10]のいずれかに記載の亜鉛系めっき鋼板。
[12][1]~[11]のいずれかに記載の亜鉛系めっき鋼板の製造方法であって、[1]~[11]のいずれかに記載のアクリル系樹脂およびワックスが含まれる塗料を亜鉛系めっき鋼板の少なくとも片面に塗布し乾燥する亜鉛系めっき鋼板の製造方法。
[13]前記乾燥時の亜鉛系めっき鋼板の最高到達温度が60℃以上かつ前記ワックスの融点以下である[12]に記載の亜鉛系めっき鋼板の製造方法。
[14]前記塗料における全固形分の割合が1質量%以上30質量%以下である[12]または[13]に記載の亜鉛系めっき鋼板の製造方法。
 本発明によれば、金型等との摩擦係数が顕著に低下してプレス成形性に優れた亜鉛系めっき鋼板が得られる。このため、複雑な成形を施される亜鉛系めっき鋼板に対して、安定的に優れたプレス成形性を有することになる。更に、溶接性にも優れる。
また、好適な皮膜を付与した亜鉛系めっき鋼板の接着性と脱膜性も良好なため、従来の亜鉛系めっき鋼板と同様の方法で接着剤の使用が可能であり、アルカリ脱脂による脱膜性に優れるため塗装工程を阻害することもない。
図1は、摩擦係数測定装置を示す概略正面図である。 図2は、図1中のビード形状・寸法を示す概略斜視図である。
 以下、本発明の実施形態について説明する。
 本発明の亜鉛系めっき鋼板は、少なくとも片面にアクリル系樹脂およびワックスを含む皮膜が形成された亜鉛系めっき鋼板であって、前記アクリル系樹脂はガラス転移点(Tg)が100℃以上で、酸価とガラス転移点の比率R=酸価(mg-KOH/g)/Tg(℃)が1.50以上であり、前記ワックスは融点が100℃以上145℃以下、平均粒径が3.0μm以下のポリオレフィンワックスであり、前記皮膜中のワックスの割合が5質量%以上であり、前記皮膜を片面当たりの付着量Wが0.2g/m以上2.5g/m以下であることを特徴とする。
 以下、酸価とガラス転移点の比率R=酸価(mg-KOH/g)/Tg(℃)をR=酸価/Tgと表記する。
 本発明の皮膜のアクリル系樹脂のガラス転移点を100℃以上とするのは、良好な潤滑性を得るためである。ガラス転移点が100℃未満の場合には、摺動時に樹脂が軟化してしまいワックスの保持力が低下するとともに亜鉛系めっき鋼板と金型の直接接触を防止する能力が低下するため良好な摺動性が得られない。ガラス転移点は、好ましくは110℃以上150℃以下である。ガラス転移点が150℃を超えた場合には、逆に摺動時に樹脂の硬度が高くもろくなりやすく優れた潤滑性が得られない場合がある。
 ここで、ガラス転移点とは、JIS K 7121「プラスチックの転移温度測定方法」に基づき測定される中間ガラス転移温度である。
 アクリル系樹脂の酸価とガラス転移点の比率R=酸価/Tgは1.50以上とする。ガラス転移点が100℃以上であっても酸価が低い場合(R<1.50)には優れた潤滑性が得られない。この原因は明確ではないが、アクリル系樹脂中のカルボキシ基は金型との親和性が高く、摺動時に皮膜中のポリオレフィンワックスを金型に移着させる効果が得られると考えられる。摺動時にポリオレフィンワックスを含んだアクリル系樹脂成分が金型に移着することで金型表面がポリオレフィンワックスで保護され、亜鉛系めっき鋼板との直接接触を防止する効果が高まり摺動性が向上する。従って、酸価が低い場合(R<1.50)にはカルボキシ基が不足するため摺動性が劣る。アクリル系樹脂のガラス転移点が上昇した場合には摺動により樹脂が軟化しにくくなるため金型に移着しにくくなる。そのためガラス転移点が上昇した場合に優れた摺動性を得るには、酸価も上昇させる必要がある。すなわち酸価とガラス転移点の比率R=酸価/Tgを1.50以上とする必要がある。Rは、好ましくは1.80以上である。なお、Rの上限は特に限定されるものではないが、2.05以下とすることが好ましい。この理由は、Rが2.05を超えると防錆性が劣化する場合があるからである。
 また、アクリル系樹脂の酸価は180mg-KOH/g以上350mg-KOH/g以下であることが好ましい。180mg-KOH/g未満の場合はアルカリによる脱膜性が劣る場合があり、また接着剤による接着強度が十分得られない場合がある。350mg-KOH/gを超える場合には防錆性が劣化する場合がある。
 ここで、酸価とは樹脂1g中に含まれるカルボキシ基を中和するのに必要な水酸化カリウムのmg数のことであり、JIS K 0070「化学製品の酸価,けん化価,エステル価,よう素価,水酸基価及び不けん化物の試験方法」に基づき測定される。本発明では単位をmg-KOH/gとして示した。
 本発明に用いるワックスは融点が100℃以上145℃以下かつ平均粒径が3.0μm以下のポリオレフィンワックスであればよい。
 ワックスとしてポリオレフィンワックスを用いるのは、表面エネルギーが低く、自己潤滑性を有するため、良好な潤滑性が得られるためである。また、ポリオレフィンは密度や分子量を制御することで融点を100℃以上145℃以下に調整することも比較的容易である。
 ポリオレフィンワックスの融点が100℃以上145℃以下の場合には、ポリオレフィンワックス自身の自己潤滑性に加え、プレス成形時の摺動によりポリオレフィンワックスが半溶融状態となることでアクリル系樹脂と混合した潤滑皮膜成分が金型表面を被覆することが可能である。これにより、金型と亜鉛系めっき鋼板の直接の接触を抑制することで優れた潤滑効果が得られる。ポリオレフィンワックスの融点が100℃未満の場合には、プレス成形時の摺動による摩擦熱で完全に溶融しポリオレフィンワックス自身の十分な潤滑効果が得られない上に前述した金型の被覆効果も得られない。また、ポリオレフィンワックスの融点が145℃を超えると、摺動時にポリオレフィンワックスが溶融せず十分な潤滑効果が得られず、金型の被覆効果も得られない。さらに、ポリオレフィンワックスの融点は120℃以上140℃以下であることが好ましい。
 ここで、ポリオレフィンワックスの融点とは、JIS K 7121「プラスチックの転移温度測定方法」に基づき測定される融解温度である。
 ポリオレフィンワックスの平均粒径が3.0μmを超えると、摺動時にアクリル系樹脂と混合しにくくなり、前述した金型の被覆効果が得られず十分な潤滑性が得られない。ポリオレフィンワックスの平均粒径は好ましくは0.5μm以下、さらにより好ましくは0.3μm以下である。
 ポリオレフィンワックスの平均粒径は0.01μm以上であることが好ましい。ポリオレフィンワックスの平均粒径が0.01μm未満では摺動時に潤滑油に溶解しやすくなり、十分な潤滑性向上効果が発揮されない場合があり、皮膜を形成させるための塗料中でも凝集しやすいため塗料安定性も低い。ポリオレフィンワックスの平均粒径は、さらに好ましくは0.03μm以上である。上記アクリル系樹脂との混合性も考慮すると、ポリオレフィンワックスの平均粒径は0.01μm以上、0.5μm以下であることが好ましい。
 前記平均粒径とは体積平均径のメジアン径であり、レーザー回折/散乱法により求められる。例えば、レーザー回折/散乱式粒子径分布測定装置partica(登録商標) LA-960V2(株式会社堀場製作所製)を用いて、純水で希釈した試料を測定することにより求めることが出来る。
 ポリオレフィンワックスの中でもポリエチレンワックスを用いた場合に最も潤滑効果が得られるため、ポリエチレンワックスを用いることが好ましい。
 皮膜中のポリオレフィンワックスの質量割合は5質量%以上とする。皮膜中のポリオレフィンワックスの質量割合が5質量%未満の場合には十分な潤滑効果が得られない。皮膜中のポリオレフィンワックスの質量割合が10質量%以上であれば、特に良好な潤滑効果が得られる。また、皮膜中のポリオレフィンワックスの質量割合は50質量%以下であることが好ましい。皮膜中のポリオレフィンワックスの質量割合が50質量%を超える場合には、ベース樹脂成分の不足によりポリオレフィンワックスが脱落しやすく、鋼板への密着性が劣り、皮膜として安定に存在できず接着性に劣る場合がある。また、自動車車体として用いられる場合に塗装工程の中のアルカリ脱脂工程において十分な脱脂性が得られない場合があり、アルカリ脱脂工程で十分に脱膜せず皮膜が残存し、塗装性を劣化させる場合がある。皮膜中のポリオレフィンワックスの質量割合は、さらに好ましくは30質量%以下である。
 ここで、皮膜中のポリオレフィンワックスの質量割合とは、塗料中の全固形分の質量に対するポリオレフィンワックスの固形分の質量の割合である。
 本発明の皮膜は、前記アクリル系樹脂を30質量%以上含むことが好ましい。皮膜中のアクリル系樹脂の質量割合が30質量%以上の場合には、摺動時の金型への移着による潤滑性向上効果や脱膜性、接着性などのアクリル系樹脂成分の物性が影響する特性が十分に得られる。皮膜中のアクリル系樹脂の質量割合が30質量%未満の場合には他の成分の影響が大きくなり、目標とする性能が得られない場合がある。
 前記アクリル系樹脂の質量平均分子量は5000以上30000以下であることが好ましい。アクリル系樹脂の質量平均分子量が5000未満の場合には防錆性が劣る場合があり、30000を超えると接着性が劣化する場合がある。
 ここで、質量平均分子量とは、JIS K 7252「プラスチック-サイズ排除クロマトグラフィーによる高分子の平均分子量及び分子量分布の求め方」に基づき測定される質量平均分子量である。
 さらに前記アクリル系樹脂はスチレンアクリル樹脂であることが好ましい。樹脂のモノマーにスチレンを含有することで耐水性が向上するため防錆性が良好となる。さらにはスチレンを含有しない場合に比べて良好な摺動性が得られる効果も発現する。
 本発明の皮膜は、皮膜中に防錆剤を1質量%以上30質量%以下含有することが好ましい。防錆剤を含有しない場合でも通常の保管環境では錆や変色が発生することはないが、防錆剤の含有率が1質量%未満では、良好でない保管環境下で錆が発生する場合がある。特に鋼帯をコイル状に重ね合わせた状態で湿度が高い環境で保管した場合に吸湿して変色が発生する場合がある。防錆剤の比率が30質量%を超えると接着性が劣化する場合があり、また、塗料の状態において防錆剤が沈殿し、塗料安定性が劣化する場合がある。防錆剤としてはリン酸類のアルミニウム塩、亜鉛塩および酸化亜鉛からなる群より選ばれる少なくとも1種を用いることが好ましい。ここで、リン酸類とはオルトリン酸の他、ピロリン酸、トリポリリン酸、テトラポリリン酸、メタリン酸などの縮合リン酸を含む。これらの防錆剤を用いることで十分な防錆効果を発揮することができ、さらには塗料安定性の劣化も小さい。
 さらに、本発明の皮膜は皮膜中にシリカを1質量%以上10質量%以下含有することが好ましい。シリカを含有することで皮膜の撥水性が高まり、防錆性が向上する。また、シリカを含有することで防錆剤の沈殿を抑制することが可能となり塗料安定性が向上する。また、含有量が1質量%未満の場合は前述の効果が得られにくく、10質量%を超えると接着性が劣化する場合がある。本発明の被膜にシリカを含有する場合は、粒子径5nm以上200nm以下のコロイダルシリカを用いることが用いることが好ましい。
 本発明においてアクリル系樹脂、ワックス、防錆剤、シリカ以外の成分として、一般的に塗料に添加される表面調整剤や消泡剤、分散剤などを含んでもよい。
 本発明に用いる亜鉛系めっき鋼板の皮膜形成前の表面粗さは、算術平均粗さRaで0.4μm以上2.5μm以下であることが好ましい。Raが2.5μm以下であれば皮膜による潤滑効果が安定的に得られる。Raが0.4μmより小さい場合にはプレス成形時に起こりうる微細な傷が目立ちやすい場合がある上に、プレス成形時に型カジリが発生する場合がある。Raが2.5μmを超えると鋼板の凹凸が大きくなるため凹部の皮膜が摺動時に有効に作用しにくくなり、皮膜による潤滑効果が小さくなる場合がある。鋼板の算術平均粗さRa(μm)はJIS B 0633:2001(ISO 4288:1996)に従い測定することが出来る。例えば、Raが0.1より大きく2以下の場合には、カットオフ値および基準長さを0.8mm、評価長さを4mmとして、測定した粗さ曲線から求める。Raが2を超え、10以下の場合にはカットオフ値および基準長さを2.5mm、評価長さを12.5mmとして、測定した粗さ曲線から求める。
亜鉛系めっき鋼板の片面当たりの皮膜付着量が乾燥質量で0.2g/m以上2.5g/m以下となるように形成する。0.2g/m未満では十分な摺動性が得られない場合があり、2.5g/mを超えるとアルカリによる溶接性や脱膜性、接着性が劣化する場合がある。
 次に、本発明の亜鉛系めっき鋼板の製造方法について説明する。
 本発明の亜鉛系めっき鋼板の製造方法とは、少なくとも片面にアクリル系樹脂およびワックスを含む皮膜が形成された鋼板であって、アクリル系樹脂はガラス転移点(Tg)が100℃以上であり、酸価とガラス転移点の比率R=酸価/Tgが1.50以上であるアクリル系樹脂と融点が100℃以上145℃以下、かつ平均粒径が3.0μm以下のポリオレフィンワックスを5質量%以上含有するアクリル系樹脂皮膜を有する亜鉛系めっき鋼板の製造方法である。
まず、本発明の亜鉛系めっき鋼板の製造方法について説明する。冷延鋼板または熱延鋼板などの鋼板に亜鉛系めっき処理を施す。亜鉛系めっき処理の方法は特に限定されず、例えば溶融めっき法、電気めっき法、蒸着めっき法、溶射法などの各種の製造方法により鋼板上に亜鉛系めっきを施すことにより形成することが出来る。また、亜鉛めっき処理後に合金化処理を施す合金化溶融亜鉛めっき鋼板を用いることもできる。さらに、亜鉛-アルミニウム合金めっき、亜鉛-アルミニウム-マグネシウム合金めっき、亜鉛-ニッケル合金めっきなど亜鉛以外の金属が含まれる亜鉛系めっきを施してもよい。
次に、アクリル系樹脂皮膜の形成方法について説明する。溶媒にアクリル系樹脂を溶解または分散したアクリル系樹脂溶液またはエマルションにワックスを添加した塗料を亜鉛系めっき鋼板の少なくとも片面に塗布して乾燥する。塗料の溶媒としては水または有機溶剤を用いることが出来るが、水を用いることが好ましい。塗料中の全固形分の濃度は1質量%以上30質量%以下であることが好ましい。塗料中の全固形分の濃度が1質量%未満や30質量%超えでは塗装ムラが発生する場合がある。塗布方法は特に制限されないが、例としてロールコーターやバーコーターを使用する方法や、スプレー、浸漬、刷毛による塗布方法が挙げられる。塗布後の鋼板の乾燥方法は一般的な方法で行うことができる。例えば、熱風による乾燥や、IHヒーターによる乾燥、赤外加熱による方法が挙げられる。乾燥時の亜鉛系めっき鋼板の最高到達温度は60℃以上かつ使用したワックスの融点以下であることが好ましい。亜鉛系めっき鋼板の最高到達温度が60℃未満では乾燥に時間がかかる上に、防錆性が劣る場合がある。亜鉛系めっき鋼板の最高到達温度がワックスの融点を超える場合はワックスが溶融、合体し、粒径が粗大化することで潤滑性が劣化する場合がある。また亜鉛系めっき鋼板の片面当たりの皮膜付着量が乾燥質量で0.2g/m以上2.5g/m以下となるように形成する。皮膜付着量は、皮膜塗布前後の亜鉛系めっき鋼板の重量差を面積で除する方法や、皮膜塗布後の亜鉛系めっき鋼板の皮膜をpH10以上13以下のアルカリ水溶液や有機溶剤により完全に除去し、皮膜除去前後の亜鉛系めっき鋼板の重量差を面積で除する方法により、求めることが出来る。
 以下、本発明を実施例により説明する。なお、本発明は以下の実施例に限定されない。
表1に示す算術平均粗さRaを有する板厚0.8mmの合金化溶融亜鉛めっき鋼板(GA)、電気亜鉛めっき鋼板(EG)、溶融亜鉛めっき鋼板(GI)を用い、表2に示す組成の塗料をバーコーターで塗布し、鋼板の最高到達温度が80℃となるようIHヒーターで乾燥することで本発明の亜鉛系めっき鋼板を作成して供試材とした。なお、A~Gの鋼板はいずれも270MPa級の引張強度を有するSPCD(JIS G 3141)基板に亜鉛系めっきを施した亜鉛系めっき鋼板である。なお、シリカとしては体積平均粒子径9nmのコロイダルシリカを用いた。また、使用した塗料中の全固形分の濃度は3%から25%であった。
 皮膜付着量は、皮膜塗布後の亜鉛系めっき鋼板の皮膜をpH12の水酸化ナトリウム水溶液で除去し、皮膜除去前後の亜鉛系めっき鋼板の質量差を面積で除して求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
  (1)プレス成形性(摺動特性)の評価方法
 プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
 図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学工業(株)製のプレス用洗浄油プレトン(登録商標)R352Lを試料1の表面に塗布して試験を行った。
 図2は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ59mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ50mmの平面を有する。
 摩擦係数測定試験は、図2に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):20cm/minとし行った。供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
 摺動特性の評価は、摩擦係数が0.119以下の場合を特に優れた摺動性であるとして◎、0.119を超え0.130以下を良好な摺動性であるとして〇、0.130を超える場合は不十分として×と評価した。
 (2)溶接性の評価方法
 各試験片について、使用電極:DR型Cr-Cu電極、加圧力:150kgf、通電時間:10サイクル/60Hz、溶接電流:7.5kAの条件で連続打点性の溶接試験を行い、連続打点数で評価した。連続打点数がアクリル系皮膜のない亜鉛系めっき鋼板に比べて90%以上の場合は溶接性良好であるとして○、90%未満の場合は溶接性不十分として×と評価した。
 (3)脱膜性の評価方法
 本発明に係る鋼板が、自動車用途で使用される場合を想定して、脱脂時の脱膜性を評価した。皮膜の脱膜性を求めるために、まず、各試験片をアルカリ脱脂剤のファインクリーナー(登録商標)E6403(日本パーカライジング(株)製)で脱脂処理した。脱脂処理は、試験片を、脱脂剤濃度20g/L、温度40℃の脱脂液に所定の時間浸漬し、水道水で洗浄することにより行った。脱脂処理後の試験片に対し、蛍光X線分析装置を用いて表面炭素強度を測定し、測定値と予め測定しておいた脱脂前表面炭素強度および無処理金属板の表面炭素強度の測定値を用いて、以下の式により皮膜剥離率を算出した。
 皮膜剥離率(%)=[(脱脂前炭素強度-脱脂後炭素強度)/(脱脂前炭素強度-無処理鋼板の炭素強度)]×100
 皮膜の脱膜性は、皮膜剥離率が98%以上となるアルカリ脱脂液への浸漬時間により、以下に示す基準で評価し、120秒以内である場合を良好な脱膜性であるとして〇、120秒超えの場合は不十分な脱膜性であるとして△と評価した。
 (4)防錆性の評価方法
 本発明に係る亜鉛系めっき鋼板が、鋼帯としてコイル状態で保管した場合を想定して、重ね合わせ状態での防錆性を評価した。供試材の各試験片を150mm×70mmのサイズに加工し、防錆油を片面当たり1.0g/mとなるよう両面に塗布し、2枚の試験片を重ね合わせ、面圧0.02kgf/mmとなるように荷重をかけた状態で温度50℃、湿度95%RHの環境で試験を行った。防錆性の評価は7日ごとに重ね合わせた内側の面を確認し、変色が発生するまでの日数を評価し、56日以上である場合を特に良好な防錆性として◎、35日以上である場合を良好な防錆性として○、35日未満の場合を不十分な防錆性として△と評価した。
 (5)接着性の評価方法
 供試材の各試験片を100×25.4mmのサイズに加工し、防錆油に浸漬後24時間垂直に立て掛けて余分な油を除去したものを2枚使用し、25.4mm×13mmの部分にエポキシ系接着剤を0.2mm厚に均一に塗布後、クリップで重ね合わせて挟み、180℃で20分焼付けし、乾燥・硬化させた。冷却後、オートグラフ試験機によりせん断引張試験を行い、せん断接着力を測定した。接着性は接着力20MPa以上を良好な接着性として○、20MPa未満を不十分な接着性として△と評価した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3-1乃至表3-3によれば、本発明例の亜鉛系めっき鋼板は、いずれも優れたプレス成形性と溶接性を有している。これに対し、本発明の技術的特徴を有さない比較例の亜鉛系めっき鋼板はいずれもプレス成形性に劣っている。また、本発明例の亜鉛系めっき鋼板は、好適な技術範囲を選択することで、良好な脱膜性、防錆性、接着性を具備することが可能である。
 本発明の亜鉛系めっき鋼板はプレス成形時の摺動性、溶接性に優れる。また、好適な技術範囲を選択することで、良好な脱膜性、防錆性、接着性を具備することが可能であり、これらの優れた特性を有することから、自動車車体用途を中心に広範な分野で適用できる。
1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール

Claims (14)

  1.  少なくとも片面にアクリル系樹脂およびワックスを含む皮膜が形成された亜鉛系めっき鋼板であって、前記アクリル系樹脂はガラス転移点(Tg)が100℃以上、酸価とガラス転移点の比率R=酸価(mg-KOH/g)/Tg(℃)が1.50以上であり、前記ワックスは融点が100℃以上145℃以下、平均粒径が3.0μm以下のポリオレフィンワックスであり、前記皮膜中のワックスの割合が5質量%以上であり、前記皮膜の片面当たりの付着量Wが0.2g/m以上2.5g/m以下である亜鉛系めっき鋼板。
  2.  前記アクリル系樹脂の酸価が180mg-KOH/g以上350mg-KOH/g以下である請求項1に記載の亜鉛系めっき鋼板。
  3.  前記アクリル系樹脂の酸価とガラス転移点の比率Rが2.05以下である請求項1または2に記載の亜鉛系めっき鋼板。
  4.  前記皮膜は、前記アクリル系樹脂を30質量%以上含み、前記ワックスの割合が50質量%以下である請求項1~3のいずれかに記載の亜鉛系めっき鋼板。
  5.  前記アクリル系樹脂の質量平均分子量が5000以上30000以下である請求項1~4のいずれかに記載の亜鉛系めっき鋼板。
  6.  前記アクリル系樹脂がスチレンアクリル樹脂である請求項1~5のいずれかに記載の亜鉛系めっき鋼板。
  7.  前記皮膜形成前の亜鉛系めっき鋼板表面の算術平均粗さRaが0.4μm以上2.5μm以下である請求項1~6のいずれかに記載の亜鉛系めっき鋼板。
  8.  前記皮膜中に防錆剤を1質量%以上30質量%以下含有する請求項1~7のいずれかに記載の亜鉛系めっき鋼板。
  9.  前記防錆剤がリン酸類のアルミニウム塩、亜鉛塩および酸化亜鉛からなる群より選ばれる少なくとも1種である請求項8に記載の亜鉛系めっき鋼板。
  10.  前記ワックスの平均粒径が0.01μm以上0.5μm以下である請求項1~9のいずれかに記載の亜鉛系めっき鋼板。
  11.  前記皮膜中にシリカを1質量%以上10質量%以下含有する請求項1~10のいずれかに記載の亜鉛系めっき鋼板。
  12.  請求項1~11のいずれかに記載の亜鉛系めっき鋼板の製造方法であって、請求項1~11のいずれかに記載のアクリル系樹脂およびワックスが含まれる塗料を亜鉛系めっき鋼板の少なくとも片面に塗布し乾燥する亜鉛系めっき鋼板の製造方法。
  13.  前記乾燥時の亜鉛系めっき鋼板の最高到達温度が60℃以上かつ前記ワックスの融点以下である請求項12に記載の亜鉛系めっき鋼板の製造方法。
  14.  前記塗料における全固形分の割合が1質量%以上30質量%以下である請求項12または13に記載の亜鉛系めっき鋼板の製造方法。
PCT/JP2023/021996 2022-07-26 2023-06-14 亜鉛系めっき鋼板およびその製造方法 WO2024024310A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023568215A JPWO2024024310A1 (ja) 2022-07-26 2023-06-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-118426 2022-07-26
JP2022118426 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024024310A1 true WO2024024310A1 (ja) 2024-02-01

Family

ID=89706177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021996 WO2024024310A1 (ja) 2022-07-26 2023-06-14 亜鉛系めっき鋼板およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2024024310A1 (ja)
WO (1) WO2024024310A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083000A1 (fr) * 2002-04-01 2003-10-09 Jfe Steel Corporation Matiere de revetement et plaque metallique a surface traitee
WO2011161968A1 (ja) * 2010-06-24 2011-12-29 Jfeスチール株式会社 亜鉛系めっき鋼板用の表面処理液ならびに亜鉛系めっき鋼板およびその製造方法
WO2020162562A1 (ja) * 2019-02-06 2020-08-13 日本製鉄株式会社 溶融亜鉛めっき鋼板およびその製造方法
WO2022123930A1 (ja) * 2020-12-09 2022-06-16 Jfeスチール株式会社 鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083000A1 (fr) * 2002-04-01 2003-10-09 Jfe Steel Corporation Matiere de revetement et plaque metallique a surface traitee
WO2011161968A1 (ja) * 2010-06-24 2011-12-29 Jfeスチール株式会社 亜鉛系めっき鋼板用の表面処理液ならびに亜鉛系めっき鋼板およびその製造方法
WO2020162562A1 (ja) * 2019-02-06 2020-08-13 日本製鉄株式会社 溶融亜鉛めっき鋼板およびその製造方法
WO2022123930A1 (ja) * 2020-12-09 2022-06-16 Jfeスチール株式会社 鋼板およびその製造方法

Also Published As

Publication number Publication date
JPWO2024024310A1 (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
JP7164063B1 (ja) 鋼板およびその製造方法
JP5782198B2 (ja) アルカリ可溶型潤滑皮膜を有する鋼板、その製造方法および組成物
WO2024024310A1 (ja) 亜鉛系めっき鋼板およびその製造方法
WO2022123930A1 (ja) 鋼板およびその製造方法
JP7567841B2 (ja) 金属板塗布用塗料
WO2023062874A1 (ja) 金属板塗布用塗料
WO2023132106A1 (ja) 潤滑皮膜被覆亜鉛系めっき鋼板およびその製造方法
JP2024103849A (ja) ステンレス鋼板およびその製造方法
JPH0243040A (ja) 耐食性に優れた潤滑樹脂処理鋼板
JPH0316726A (ja) 成型性の優れた潤滑樹脂処理鋼板
WO2023182114A1 (ja) 鋼板およびその製造方法
JP7552576B2 (ja) 鋼板およびその製造方法
WO2023089995A1 (ja) 冷間圧延鋼板
JP7380963B1 (ja) 被覆鋼板およびその製造方法
JPH01301332A (ja) 成形性に優れた潤滑樹脂処理鋼板
JP7380964B1 (ja) 被覆鋼板およびその製造方法
WO2023238611A1 (ja) 被覆鋼板およびその製造方法
WO2023238612A1 (ja) 被覆鋼板およびその製造方法
WO2023238610A1 (ja) 被覆鋼板およびその製造方法
CN118076703A (zh) 金属板涂布用涂料
WO2023171173A1 (ja) 有機樹脂被覆鋼板
WO2023188745A1 (ja) 鋼板およびその製造方法
KR20240154021A (ko) 강판 및 그 제조 방법
JP3060943B2 (ja) 皮膜形成用の表面処理液と表面処理金属板
JPH01301333A (ja) 成形性、耐食性に優れた潤滑樹脂処理鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023568215

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846045

Country of ref document: EP

Kind code of ref document: A1