WO2024024288A1 - Molten metal filtration device - Google Patents

Molten metal filtration device Download PDF

Info

Publication number
WO2024024288A1
WO2024024288A1 PCT/JP2023/021131 JP2023021131W WO2024024288A1 WO 2024024288 A1 WO2024024288 A1 WO 2024024288A1 JP 2023021131 W JP2023021131 W JP 2023021131W WO 2024024288 A1 WO2024024288 A1 WO 2024024288A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
hearth
molten metal
rotor
horizontal direction
Prior art date
Application number
PCT/JP2023/021131
Other languages
French (fr)
Japanese (ja)
Inventor
健介 中本
英気 堤
俊昭 河野
稔 高岡
健司 藤木
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2024024288A1 publication Critical patent/WO2024024288A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/12Working chambers or casings; Supports therefor
    • F27B3/14Arrangements of linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a molten metal filtration device that filters molten metal such as aluminum.
  • Molten metals such as aluminum used for manufacturing castings usually contain nonmetallic inclusions such as hydrogen and oxides as impurities.
  • dissolved hydrogen in molten metal can form cavities called porosity in castings, and oxides and the like can become inclusions in castings. These cavities and inclusions are undesirable because they can become starting points for fracture of the casting. Therefore, filtration devices have been developed for filtering molten metal and removing inclusions and the like contained in the molten metal.
  • molten metal filtration device molten metal that has been heated and melted at a high temperature is filtered, and the efficiency of filtration is usually affected by the temperature of the molten metal. Therefore, conventional efforts have been made to improve the filtration efficiency by making the temperature of the hot water more uniform within the filtration chamber of a molten metal filtration device, and thereby to improve the filter's clogging prevention performance.
  • Patent Document 1 in a molten metal filtration device that filters by a group of ceramic filtration tubes of a filtration unit arranged in a filtration chamber, the lowest ceramic filtration tube is placed on the bottom wall of the filtration unit at a lower position.
  • a base block is arranged that can be set from approximately the same height as the upper edge of the inlet to slightly higher than the upper edge of the inlet, the filtration unit is placed on the base block, and molten metal is placed near the filtration unit.
  • a molten metal filtration device is disclosed in which an injection nozzle is arranged to cause convection by gas injection.
  • Patent Document 2 discloses a molten metal filtration system having the same configuration as Patent Document 1, in which the injection nozzle is fixed to the lower end of a hollow shaft suspended from the lid, and the hollow shaft is movable up and down.
  • An apparatus is disclosed.
  • Patent Document 1 and Patent Document 2 teach that by providing a molten metal filtration device with these structures, it is possible to improve the filtration efficiency by equalizing the temperature of the hot water and to improve the performance of preventing clogging of the filter. has been done. In this device, gaseous inclusions such as hydrogen are degassed by the gas ejected from the injection nozzle, and the outer surface of the ceramic filtration tube is cleaned to prevent clogging.
  • FIG. 1 A partial vertical cross-sectional schematic diagram of the molten metal filtration device of Patent Document 1 is shown in FIG. 1 (the outline of the molten metal filtration device of Patent Document 2 is similar to this except for the configuration related to the injection nozzle). This diagram corresponds to a simplified/conceptualized diagram of a part of FIG. 2 of Patent Document 1.
  • F is the filtration chamber
  • T is the ceramic filtration tube (multiple aggregates)
  • I is the molten metal inlet
  • U is the filtration unit
  • N is the injection nozzle
  • W is the inner wall surface of the filtration chamber
  • B is the The bottom surface of the filtration chamber (referred to as the hearth)
  • L refers to an imaginary line of the molten metal level (liquid level) when molten metal is supplied to the filtration chamber.
  • the bottom surface B which is called the hearth of the filtration chamber F, is located from the side of the inlet I to the opposite side of the filtration chamber.
  • the injection nozzle N (which may include a rotor driven by a motor) is disposed above a substantially intermediate position of this slope.
  • Such a continuous slope of the hearth of the filtration chamber is provided to allow the molten metal to flow down by gravity from the filtration chamber F and be discharged.
  • the hot water level on the hearth B (the depth from the hot water level to the hearth ) will be different.
  • uneven convection occurs locally, and at the position opposite to the hot water inlet I where the hot water level is high, bubbles of gas ejected from the injection nozzle occur.
  • the degassing performance of gaseous inclusions such as hydrogen and the clogging prevention performance by cleaning the outer surface of the ceramic filtration tube become relatively weak and insufficient.
  • the clogging prevention performance of the ceramic filtration tube due to the ejected gas differs depending on the position on the hearth of the filtration chamber, which results in a difference in the length and shortness of the filtration performance of the ceramic filtration tube. , the operating efficiency of the entire filtration device decreases.
  • the problem to be solved by the present invention is to solve the above-mentioned disadvantages, namely, to improve the stirring performance of molten metal, the degassing performance of gaseous inclusions such as hydrogen, and the performance of ceramics at different positions on the hearth of the filtration chamber.
  • the clogging prevention performance of the filtration tube is made more uniform and further improved, and the life of the filtration performance of the ceramic filtration tube is also made uniform.
  • a molten metal filtration device is provided with a filtration chamber including an inlet and an outlet for molten metal, a filtration chamber including a hearth and an inner wall surface, and a filtration chamber above the hearth inside the filtration chamber.
  • a filtration unit comprised of a plurality of ceramic filtration tubes arranged to filter impurities from the molten metal; (in some cases, adjacent to each filtration unit), it includes a rotor that stirs the molten metal by rotating in a substantially horizontal direction, and it was observed from the horizontal direction with the molten metal filtration device placed on a horizontal plane.
  • the present inventors have realized that by using a molten metal filtration device having such a configuration, molten metal can be stably filtered at different positions on the hearth of the filtration chamber (both near the inlet and on the opposite side). Uniform convection with no local stagnation occurs, improving the performance of degassing gaseous inclusions such as hydrogen and preventing clogging by cleaning the outer surface of the ceramic filtration tube. discovered that by equalizing the clogging prevention performance of ceramic filtration tubes, the difference in the lifespan of filtration performance of ceramic filtration tubes was reduced, and the operating efficiency of the entire filtration device was improved, and the present invention was completed. I let it happen.
  • a typical embodiment of the present invention is as follows.
  • a molten metal filtration device (i) A filtration chamber equipped with an inlet and an outlet for molten metal and including a hearth and an inner wall surface; (ii) a filtration unit arranged above the hearth in the filtration chamber and configured of a plurality of ceramic filtration tubes for filtering impurities from the molten metal; and (iii) the filtration unit. provided that, if there are a plurality of filtration units, it is arranged adjacent to each of the plurality of filtration units, and rotates in a substantially horizontal direction to stir the molten metal.
  • the hearth is located at its lowest point in a horizontal direction, approximately directly below the rotor, except for the location where the drain flow path is installed, so that substantially the entire contact area between the hearth and the inner wall surface is in contact with the rotor. Exists at a position higher than the lowest point almost directly below the Molten metal filtration equipment.
  • the molten metal filtration device is arranged adjacent to the filtration unit, but when there are a plurality of filtration units, the molten metal filtration device is arranged adjacent to each of the plurality of filtration units, and is arranged in a substantially horizontal direction. It includes a rotor that stirs the molten metal by rotating, and when observed from the horizontal direction with the molten metal filtration device placed on a horizontal surface, the hearth, excluding the location where the drain flow path is installed, is: By designing the lowest level approximately directly below the rotor, the molten metal remains stable and stable at different locations on the hearth of the filtration chamber (both near the inlet and on the opposite side).
  • Uniform convection without local stagnation occurs which further improves the degassing performance of gaseous inclusions such as hydrogen and the anti-clogging performance by cleaning the outer surface of the ceramic filtration tube, and also improves the ability to clean the outside of the ceramic filtration tube at different locations on the hearth of the filtration chamber.
  • the structure of the conventional molten metal filtration equipment is such that the clogging prevention performance of the ceramic filtration tubes is made uniform, which in turn reduces the difference in the lifespan of the filtration performance of the ceramic filtration tubes, and improves the operating efficiency of the entire filtration equipment. This provides unforeseeable benefits.
  • FIG. 1 shows a schematic diagram/conceptual diagram of a partial longitudinal cross-sectional side view of a molten metal filtration device disclosed in Patent Document 1: Japanese Unexamined Patent Publication No. 7-4868 (prior art).
  • FIG. 2 shows a schematic diagram/conceptual diagram of a longitudinal side surface of a molten metal filtration device according to an embodiment of the present invention.
  • FIG. 3 shows a vertical cross-sectional side view of a molten metal filtration device according to an embodiment of the present invention.
  • FIG. 4 shows a sectional view taken along line AA of the molten metal filtration device shown in FIG.
  • FIG. 5 shows a BB sectional view of the molten metal filtration device of FIG. 3.
  • FIGS. 6A to 6F are views illustrating various embodiments of the rising portion formed on the bottom surface (hearth) of the filtration chamber of the molten metal filtration apparatus according to the present invention.
  • FIG. 2 is a diagram of a vertical side surface of the molten metal filter device, observed from the horizontal direction, with the device disposed on a horizontal plane.
  • 1 is a molten metal filtration device
  • 2 is a filtration chamber
  • 3 is an inlet
  • 4 is an outlet
  • 5 is a bottom surface of the filtration chamber (hereinafter referred to as the hearth)
  • 6 is an inner wall surface of the filtration chamber
  • 7 8 is a heater
  • 8 is a filtration unit composed of a plurality of ceramic filtration tubes 8a above the hearth
  • 9 is a rotor provided adjacent to the filtration unit 8
  • H is one of the horizontal lines indicating the horizontal direction. It is.
  • the plurality of ceramic filtration tubes 8a are arranged horizontally in the direction of the paper at predetermined intervals.
  • two filtration units are provided as a typical example, but there may be one filtration unit, or there may be three or more filtration units.
  • the matters described below for embodiments in which two filtration units are provided apply to embodiments in which one or more filtration units are provided, unless there are technically unacceptable reasons. may be applied as well.
  • molten metal such as aluminum or aluminum alloy containing non-metallic inclusions is supplied into the filtration chamber 2 from the inlet 3, as shown by the arrow in FIG. Ru.
  • This molten metal is heated by the heater 7, and non-metallic inclusions are filtered by the ceramic filter tube 8a of the filter unit 8.
  • the filtered purified molten metal is discharged from the outlet 4.
  • the molten metal is stirred by rotation of the rotor 9 in a substantially horizontal direction, and the temperature of the molten metal is made uniform.
  • the rotor 9 when charging and filtering molten metal, the rotor 9 is filtered at both the location near the inlet 3 on the hearth 5 of the filtration chamber 2 and the opposite side thereof.
  • the molten metal level above the hearth is relatively lower than that directly below it (the depth from the molten metal surface to the hearth is smaller), and the molten metal remains stable and does not stagnate locally even at a position away from the rotor 9. Uniform convection occurs, which provides the advantage of further improving the degassing performance of gaseous inclusions such as hydrogen and the clogging prevention performance by cleaning the outer surface of the ceramic filtration tube 8a.
  • the metal level is relatively lower both on the hearth 5 of the filtration chamber 2 near the inlet 3 and on the opposite side than almost directly below the rotor 9.
  • FIG. 3 is a diagram of a longitudinal side surface of the molten metal filtering device observed from the horizontal direction, with the device disposed on a horizontal plane.
  • FIG. 4 shows a sectional view taken along line AA of the molten metal filtration apparatus shown in FIG. 3
  • FIG. 5 shows a sectional view taken along line BB of the molten metal filtration apparatus shown in FIG. Note that in FIGS. 3 to 5, the same reference numerals are used for functionally common members as in FIG. 2.
  • 1 is a molten metal filtration device
  • 2 is a filtration chamber
  • 3 is a hot water inlet
  • 4 is a hot water outlet
  • 5 is a flat part 5a near the center of the hearth (substantially directly below the rotor)
  • a rising part 5b is a bottom surface (hearth) of the filtration chamber consisting of a drain channel 5c, 6 an inner wall surface of the filtration chamber, 7 a heater, 8 a plurality of ceramic filtration tubes 8a above the hearth 5, and a wedge member.
  • 8b is a filtration unit; 9 is a rotor consisting of a motor 9a, a rotary rod 9b and a tip member 9c; 10 is a base of the filtration unit 8; 11 is a casing of the filtration chamber that accommodates the filtration chamber 2; This is an imaginary line of the surface of molten metal when it is being poured and filtered.
  • two filtration units are typically provided, but there may be one filtration unit, or there may be three or more filtration units.
  • the plurality of ceramic filtration tubes 8a are arranged horizontally in the direction of the paper at predetermined intervals.
  • the casing 11 of the filtration chamber is generally made entirely of metal, and is also called a can body.
  • molten metal such as aluminum or aluminum alloy containing non-metallic inclusions heated from about 500°C or higher to about 800°C flows from the inlet 3 to the filtration chamber 2 as shown by the arrow in FIG. supplied within.
  • the opening area of the inlet 3 is appropriately designed in accordance with the desired amount of filtration by the molten metal filtration device 1.
  • the inlet 3 is preferably connected to an inclined or substantially vertical flow path so that the supplied molten metal can flow down by gravity.
  • the molten metal entering from the inlet 3 is preferably maintained at its calorific value by a heater 7 provided in the filtration chamber, or is further heated to a high temperature.
  • a heater 7 provided in the filtration chamber, or is further heated to a high temperature.
  • several heaters are installed at approximately equal intervals in the vicinity of the inner wall surface 6 having the hot water inlet 3 in the filtration chamber 2 and in the vicinity of the inner wall surface 6 on the opposite side from the hot water inlet 3 in the figure.
  • a long cylindrical heater is installed vertically.
  • the heater 7 is not limited to the illustrated shape, number, or installation location as long as it can heat the molten metal; for example, the cross-sectional shape may be partially or entirely elliptical or rectangular.
  • the heater 7 may be installed in a single unit or in a plurality (for example, 2 to 20 units) at a predetermined position, or may be installed at a position away from the inner wall surface. .
  • the heater 7 When the heater 7 is installed in the vicinity of the inner wall surface 6 having the hot water inlet 3 in the filtration chamber 2, the molten metal may directly contact the ceramic filtration tube 8a of the filtration unit 8 disposed nearby.
  • the filtration chamber 2 may typically have a hexahedral shape such as a rectangular parallelepiped or a cube on its inner surface.
  • the inner surface of the filtration chamber 2 is formed by a hearth 5 which is the bottom surface thereof, inner wall surfaces 6 of the filtration chamber on all four sides, and a lid body covering above them (the bottom surface of the lid body forms the top surface of the filtration chamber).
  • the inner wall surface 6 forms a substantially vertical wall surface (perpendicular to the horizontal plane).
  • a pedestal 10 is disposed at a predetermined location (usually multiple locations) near the inner wall surface 6 of the hearth 5 of the filtration chamber 2.
  • a filtration unit 8 (two units are shown in the figure, but it may be a single unit or three or more units) is stably installed and fixed.
  • the shape and number of the pedestals 10 of the filtration unit 8 are not particularly limited as long as the filtration unit 8 can be firmly fixed (immovably) substantially horizontally.
  • the filtration unit 8 may be fixed to the inner wall surface 6 via a wedge member 8b, as shown in FIGS. 4 and 5.
  • the shape of the wedge member 8b is configured such that the filtration unit 8 can be fixed to the inner wall surface 6 with good durability, and the number thereof may be one or two or more (in FIG. 5, one A case is illustrated in which three wedge members 8b are provided for one filtration unit 8).
  • Each filtration unit 8 is usually composed of a plurality of ceramic filtration tubes 8a arranged horizontally at approximately equal intervals.
  • the number of ceramic filtration tubes 8a constituting each filtration unit 8 is not particularly limited as long as it is a plurality of pieces, for example, 2 to 50 pieces, 3 to 40 pieces, 4 to 30 pieces, or 5 pieces. The number may be from 1 to 20.
  • the cross-sectional shape of the ceramic filtration tube 8a may normally be approximately circular, but may also be approximately elliptical or rectangular, or a combination thereof.
  • the plurality of ceramic filtration tubes 8a constituting each filtration unit 8 are usually horizontally arranged horizontally and at approximately equal intervals, but at least some of the adjacent ceramic filtration tubes may be in direct contact with each other. .
  • the plurality of rows are also arranged at substantially equal intervals.
  • the rotor 9 usually includes at least a motor 9a, a rotating rod 9b, and a tip member 9c.
  • the rotor 9 is arranged adjacent to the filtration unit 8 (if there are a plurality of filtration units 8, adjacent to each of them).
  • the rotor 9 is normally arranged above the center of the hearth 5 so that the effect of agitation extends throughout the inside of the filtration chamber 2, but the rotor 9 is not limited thereto.
  • the rotor 9 is arranged above a position away from the vicinity of the center of the hearth 5 (for example, at a position approximately midway between the vicinity of the center of the hearth 5 and the inner wall surface 6). Good too.
  • the rotor 9 is arranged at approximately the same distance from each filtration unit.
  • the number of rotors 9 installed is usually one, but a plurality of rotors 9 can also be installed.
  • each rotor is preferably adjacent to the filtration unit 8, and each rotor is spaced approximately equidistantly from the filtration unit (or neighboring filtration unit if multiple rotors are installed).
  • the hearth 5 is located at the lowest position (as seen in the horizontal direction) approximately directly below at least one rotor among the plurality of rotors, excluding the location where the drain passage is installed. (the lowest level).
  • the motor 9a of the rotor 9 is a member that rotates the rotating rod 9b and the tip member 9c at a variable speed.
  • the motor 9a of the rotor 9 may be provided with a speed reduction mechanism, and may also be provided with a heater and a fan for heating the molten metal.
  • the rotating rod 9b of the rotor 9 is not particularly limited, but from the viewpoint of stirring efficiency, its rotation axis is set in a substantially vertical direction (that is, a direction vertically traversing the filtration chamber 2 of the molten metal filtration device 1 arranged on a horizontal plane). It is preferable that there be.
  • the tip member 9c of the rotor 9 has a gas injection function for promoting convection and stirring of the molten metal.
  • the rotating rod 9b may be configured to have a hollow shaft shape, and the gas for injection may be supplied through this hollow shaft.
  • the tip member 9c may be formed with a plurality of gas injection ports.
  • the injection gas is not particularly limited, but is preferably an inert gas such as nitrogen or argon.
  • the tip member 9c of the rotor 9 may also have a blade/impeller shape instead of or in addition to the gas injection mechanism to promote convection and stirring of the molten metal.
  • the tip member 9c of the rotor 9 is configured to be movable up and down together with the rotating rod 9b instead of or in addition to the gas injection mechanism and/or the blade impeller shape. You can leave it there.
  • a vertical movement mechanism for the rotating rod 9b and the tip member 9c may be further provided near the motor 9a of the rotor 9.
  • the molten metal that enters from the inlet 3 is preferably maintained at its calorific value by a heater 7 provided in the filtration chamber, or is further heated to a high temperature, and is passed through a plurality of ceramic filtration tubes 8a while being convected and stirred by a rotor 9. It is subjected to filtration by a filtration unit 8 consisting of: When filtration is performed by the filtration unit 8, the level of the molten metal is set to such a level that the entire filtration unit 8 (all of them if a plurality of filtration units 8 are provided) is immersed in the molten metal. (The imaginary line of the molten metal surface is indicated by M in FIGS. 3 and 4). The filtered molten metal is discharged from the tap 4.
  • the tap 4 may include, but is not particularly limited to, a rising portion as illustrated in FIG. 4 .
  • the hearth 5 consists of a flat portion 5a near the center, a rising portion 5b, and a drain channel 5c.
  • the shape of the hearth 5 there are no particular limitations on the shape of the hearth 5, except that it must be designed to be at its lowest level at a position approximately directly below the rotor 9, excluding the location where the drain channel 5c is installed, when viewed in the horizontal direction. Not done.
  • the hearth 5 is located at the lowest position (as seen in the horizontal direction) approximately directly below at least one rotor among the plurality of rotors, excluding the location where the drain passage is installed. (the lowest level).
  • the area of the flat portion 5a may be 2% or more and 40% or less, preferably 3% or more and 30% or less, of the horizontal area of the entire hearth, from the viewpoint of stirring efficiency, and further Preferably, it may be 5% or more and 20% or less. Further, from the viewpoint of stirring efficiency, the area of the flat portion 5a may be 80% or more and 300% or less, preferably 100% or more and 200% or less, of the horizontal rotation area of the tip member 9c of the rotor 9.
  • the drain flow path 5c is a flow path for draining the remaining molten metal (molten metal containing impurities or precipitated substances, or molten metal discharged during equipment maintenance) under its own weight. Functionally, the drain flow path 5c needs to form a descending portion over substantially the entire length from the hearth to the discharge port, as illustrated in FIG. Therefore, when designing the hearth 5 to have its lowest level at a position substantially directly below the rotor 9 when viewed in the horizontal direction, the level at the location where the drain flow path 5c is installed is excluded from consideration in the design. Although the shape of the drain flow path 5c may be arbitrarily designed, draining the remaining hot metal may be facilitated by making the width of the downstream flow path wider than that of the upstream flow path (see FIG. 5).
  • Such a design further equalizes the anti-clogging performance of the ceramic filtration tubes at different positions on the hearth of the filtration chamber, which in turn reduces the difference in the lifespan of the filtration performance of the ceramic filtration tubes, improving production efficiency. It helps to improve and reduce the cost of the entire production line.
  • the angle ⁇ of a straight line connecting the lowest point approximately directly below the rotor 9 on the hearth 5 (if it has a flat part 5a, its center point) and any contact part of the hearth 5 and the inner wall surface 6 with respect to the horizontal plane is:
  • the temperature may be generally 2 degrees or more and 30 degrees or less, and is preferably may be 3 degrees or more and 25 degrees or less, 4 degrees or more and 20 degrees or less, or 5 degrees or more and 15 degrees or less.
  • the hearth 5 has a flat portion 5a at a position substantially directly below the rotor 9 (near the center in this figure). It is not essential to provide such a flat portion at a position substantially directly below the rotor 9 of the hearth 5, and this position may also form a part of the rising portion.
  • the rising portion 5b of the hearth 5 is illustrated as a cross section of a rising straight line having a constant slope (rising angle), but the rising portion 5b of the hearth 5 is located approximately directly below the rotor 9 of the hearth 5.
  • the rising portion 5b of the hearth 5 may be raised in at least a portion, preferably a majority, of the vertical cross section in a predetermined direction, and may be flat in a portion (single portion or multiple portions) where it is not raised. (a portion forming a substantially horizontal surface).
  • the rising portion 5b of the hearth 5 may include, at least in part, a step portion (consisting of one or more steps that are a combination of a substantially vertical step portion and a substantially horizontal portion).
  • FIGS. 6A to 6F illustrate some non-limiting embodiments of the cross-section of the rising portion formed in the hearth of the filtration chamber of the molten metal filtration device according to the present invention.
  • the hearth of the filtration chamber has, in a vertical section in a predetermined direction, an ascending straight line with a certain slope (rising angle) or a certain step from the lowest point toward the contact area between the hearth and the inner wall surface.
  • the ascending staircase it may include a concave ascending section like S1 and/or a convex ascending section like S2.
  • the hearth of the filtration chamber rises in a straight line with a certain slope (rising angle) or rises with a certain step from the lowest point toward the contact area between the hearth and the inner wall surface.
  • ascending gradients with a flat part (approximately horizontal part) interposed in a part such as S3, and/or a part such as S4 may include an ascending slope with a step part (a combination of a substantially vertical step part and a substantially horizontal part) interposed therebetween.
  • the hearth of the filtration chamber rises in a straight line with a certain slope (rising angle) or rises with a certain step from the lowest point toward the contact area between the hearth and the inner wall surface.
  • an ascending slope with increasing slope i.e. the slope is successively larger
  • S5 an ascending slope
  • S6 an ascending slope with increasing slope
  • It may include a step-like rising portion in which the step height gradually increases (that is, the step height gradually increases).
  • the hearth of the filtration chamber may have an ascending slope with a gradually decreasing slope (i.e., the slope is gradually decreasing) and/or a step-like structure with gradually decreasing steps (i.e., the steps are gradually decreasing) such as S6. May include a rising part.
  • the hearth of the filtration chamber may be formed from a combination of two or more different cross-sectional shapes in a vertical section in any of a plurality of directions from the lowest level toward the contact portion between the hearth and the inner wall surface. Further, the hearth of the filtration chamber may be formed to have substantially the same cross-sectional shape in any two symmetrical directions from the lowest level toward the contact portion between the hearth and the inner wall surface.
  • hearth cross-sectional shapes By allowing such a wide variety of hearth cross-sectional shapes, the degree of freedom in hearth design is greatly increased, allowing for various variable designs such as filtration throughput of molten metal, heating temperature, rotor configuration, etc. It becomes easy to maximize the filtration efficiency and further equalize the life of the filtration performance of the ceramic filtration tube by adapting it to the elements.
  • F Filtration chamber T: Ceramic filtration tube I: Molten metal inlet U: Filtration unit N: Injection nozzle W: Inner wall of the filtration chamber B: Bottom of the filtration chamber/hearth L: Imagination of the surface of the molten metal (The above symbols F to L refer to FIG.

Abstract

Provided is a molten metal filtration device in which agitation performance of molten metal, degassing performance against gas inclusions, and prevention of clogging of a filtration tube are made more uniform/improved. Disclosed is a molten metal filtration device that includes: (i) a filtration chamber provided with a molten metal inlet port and outlet port and including a hearth and an inner wall surface; (ii) a filtration unit that is disposed above the hearth inside the filtration chamber and is constituted from a plurality of ceramic filtration tubes for filtering impurities from the molten metal; and (iii) a rotor that agitates the molten metal by rotating in a substantially horizontal direction, the rotor being installed adjacent to the filtration unit, or, when a plurality of filtration units are present, a rotor being installed adjacent to each of the plurality of filtration units, the hearth constituting the lowest point as viewed in the horizontal direction substantially directly below the rotor, excluding the location where a drain channel is installed, which results in substantially an entire portion of contact between the hearth and the inner wall surface being in a position higher than the lowest point substantially directly below the rotor.

Description

金属溶湯濾過装置Molten metal filtration equipment
 本発明は、アルミニウム等の金属溶湯を濾過する金属溶湯濾過装置に関する。 The present invention relates to a molten metal filtration device that filters molten metal such as aluminum.
 鋳物の製造に用いられるアルミニウムなどの金属溶湯には、通常、不純物として水素や酸化物等の非金属の介在物が含まれる。例えば、金属溶湯中の溶存水素は鋳物中にポロシティーと呼ばれる鋳巣を形成し、また酸化物等は鋳物中の介在物となり得る。これらの鋳巣や介在物は、いずれも鋳物の破壊起点となり得るため好ましくない。そこで、金属溶湯を濾過し、当該金属溶湯に含まれる介在物等を除去するための濾過装置が開発されてきた。金属溶湯濾過装置では、高温に加熱・溶融された状態の金属溶湯が濾過に供されるが、このとき濾過の効率は通常、金属溶湯の湯温に影響される。そのため、従来から、金属溶湯濾過装置の濾過室内で湯温をより均一化することによる濾過効率の向上、ひいては濾過器の詰まり防止性能の向上が指向されてきた。 Molten metals such as aluminum used for manufacturing castings usually contain nonmetallic inclusions such as hydrogen and oxides as impurities. For example, dissolved hydrogen in molten metal can form cavities called porosity in castings, and oxides and the like can become inclusions in castings. These cavities and inclusions are undesirable because they can become starting points for fracture of the casting. Therefore, filtration devices have been developed for filtering molten metal and removing inclusions and the like contained in the molten metal. In a molten metal filtration device, molten metal that has been heated and melted at a high temperature is filtered, and the efficiency of filtration is usually affected by the temperature of the molten metal. Therefore, conventional efforts have been made to improve the filtration efficiency by making the temperature of the hot water more uniform within the filtration chamber of a molten metal filtration device, and thereby to improve the filter's clogging prevention performance.
 そのような目的を達するための金属溶湯濾過装置は、例えば、特許文献1および特許文献2に開示されている。
 すなわち、特許文献1には、濾過室内に配設された濾過ユニットのセラミックス製の濾過チューブ群によって濾過する金属溶湯濾過装置において、濾過ユニットの下方位置の底壁上に最下段のセラミックス製濾過チューブを流入口の上縁と略同一高さから流入口の上縁より若干高くなしうる土台ブロックを配置し、濾過ユニットは土台ブロック上に配置し、かつ、濾過ユニットの近傍位置には金属溶湯をガス噴射によって対流させうるよう噴射ノズルを配置した金属溶湯濾過装置が開示されている。また、特許文献2には、特許文献1と同様の構成を有すると共に、噴射ノズルを蓋体より吊設される中空軸の下端に固定すると共に、中空軸ごと上下動自在に構成した金属溶湯濾過装置が開示されている。
 特許文献1および特許文献2には、金属溶湯濾過装置がこれらの構造を備えることによって、湯温の均一化による濾過効率の向上、濾過器の詰まり防止性能の向上の効果が得られることが教示されている。当該装置では、噴射ノズルからの噴出ガスによって、水素などのガス介在物が脱気され、さらにセラミックス製濾過チューブの外面が洗浄されて目詰まりが防止され得る。
Molten metal filtration devices for achieving such a purpose are disclosed in, for example, Patent Document 1 and Patent Document 2.
That is, in Patent Document 1, in a molten metal filtration device that filters by a group of ceramic filtration tubes of a filtration unit arranged in a filtration chamber, the lowest ceramic filtration tube is placed on the bottom wall of the filtration unit at a lower position. A base block is arranged that can be set from approximately the same height as the upper edge of the inlet to slightly higher than the upper edge of the inlet, the filtration unit is placed on the base block, and molten metal is placed near the filtration unit. A molten metal filtration device is disclosed in which an injection nozzle is arranged to cause convection by gas injection. In addition, Patent Document 2 discloses a molten metal filtration system having the same configuration as Patent Document 1, in which the injection nozzle is fixed to the lower end of a hollow shaft suspended from the lid, and the hollow shaft is movable up and down. An apparatus is disclosed.
Patent Document 1 and Patent Document 2 teach that by providing a molten metal filtration device with these structures, it is possible to improve the filtration efficiency by equalizing the temperature of the hot water and to improve the performance of preventing clogging of the filter. has been done. In this device, gaseous inclusions such as hydrogen are degassed by the gas ejected from the injection nozzle, and the outer surface of the ceramic filtration tube is cleaned to prevent clogging.
特開平7-4868号公報Japanese Patent Application Publication No. 7-4868 特開平7-3348号公報Japanese Patent Application Publication No. 7-3348
 特許文献1の金属溶湯濾過装置の部分的な縦断面概略図を図1に示す(特許文献2の金属溶湯濾過装置の概略も噴射ノズルが関係する構成を除けばこれと同様である)。この図は、特許文献1の図2の一部を簡略化/観念化した図に当たる。本図において、Fは濾過室、Tはセラミックス製濾過チューブ(複数の集合体)、Iは金属溶湯の入湯口、Uは濾過ユニット、Nは噴射ノズル、Wは濾過室の内壁面、Bは濾過室の底面(炉床と称される)、Lは金属溶湯が濾過室に供給された場合の湯面(液面)の想像線を指す。
 当該図によれば、この金属溶湯濾過装置を水平面に配置した状態での水平方向視にて、濾過室Fの炉床と称される底面Bが入湯口Iの側から濾過室の反対側の内壁面Wに向かって連続的に低くなっており、噴射ノズル(モーターによって駆動されるローターを備えていてよい)Nは、この傾斜の略中間位置の上方に配されている。濾過室の炉床のこのような連続的な傾斜は、金属溶湯を濾過室Fから重力で自然流下させて排出するために設けられている。
A partial vertical cross-sectional schematic diagram of the molten metal filtration device of Patent Document 1 is shown in FIG. 1 (the outline of the molten metal filtration device of Patent Document 2 is similar to this except for the configuration related to the injection nozzle). This diagram corresponds to a simplified/conceptualized diagram of a part of FIG. 2 of Patent Document 1. In this figure, F is the filtration chamber, T is the ceramic filtration tube (multiple aggregates), I is the molten metal inlet, U is the filtration unit, N is the injection nozzle, W is the inner wall surface of the filtration chamber, and B is the The bottom surface of the filtration chamber (referred to as the hearth), L refers to an imaginary line of the molten metal level (liquid level) when molten metal is supplied to the filtration chamber.
According to the figure, when viewed in a horizontal direction with this molten metal filtration device placed on a horizontal plane, the bottom surface B, which is called the hearth of the filtration chamber F, is located from the side of the inlet I to the opposite side of the filtration chamber. It is continuously lowered toward the inner wall surface W, and the injection nozzle N (which may include a rotor driven by a motor) is disposed above a substantially intermediate position of this slope. Such a continuous slope of the hearth of the filtration chamber is provided to allow the molten metal to flow down by gravity from the filtration chamber F and be discharged.
 しかし、濾過室Fの炉床Bに傾斜が存在することによって、入湯口Iの側から濾過室Fの反対側の内壁面Wに向かって炉床B上の湯位(湯面から炉床までの深さ)が異なることになる。このように濾過室の炉床上の位置ごとの湯位が異なる結果、部分的に不均一な対流が生じ、入湯口Iの反対側の湯位が高い位置では、噴射ノズルからの噴出ガスの気泡密度がより小さいものになり、水素などのガス介在物の脱気性能およびセラミックス製濾過チューブの外面洗浄による目詰まり防止性能が相対的に弱く、不十分になるという不都合が生じる。
 さらには、濾過室の炉床上の異なる位置ごとに噴出ガスによるセラミックス製濾過チューブの目詰まり防止性能が相違することによって、セラミックス製濾過チューブの濾過性能の寿命にも長短の相違が生じることになり、濾過装置全体の運転効率が低下する。
However, due to the slope of the hearth B of the filtration chamber F, the hot water level on the hearth B (the depth from the hot water level to the hearth ) will be different. As a result of the difference in the hot water level at each position on the hearth of the filtration chamber, uneven convection occurs locally, and at the position opposite to the hot water inlet I where the hot water level is high, bubbles of gas ejected from the injection nozzle occur. As the density becomes smaller, the degassing performance of gaseous inclusions such as hydrogen and the clogging prevention performance by cleaning the outer surface of the ceramic filtration tube become relatively weak and insufficient.
Furthermore, the clogging prevention performance of the ceramic filtration tube due to the ejected gas differs depending on the position on the hearth of the filtration chamber, which results in a difference in the length and shortness of the filtration performance of the ceramic filtration tube. , the operating efficiency of the entire filtration device decreases.
 従って、本発明が解決すべき課題は、上記不都合が解消された、すなわち、濾過室の炉床上の異なる位置にて、金属溶湯の攪拌性能、水素などのガス介在物の脱気性能およびセラミックス製濾過チューブの目詰まり防止性能がより均一化かつ更に向上されており、それによってセラミックス製濾過チューブの濾過性能の寿命も均一化された金属溶湯濾過装置を提供することである。 Therefore, the problem to be solved by the present invention is to solve the above-mentioned disadvantages, namely, to improve the stirring performance of molten metal, the degassing performance of gaseous inclusions such as hydrogen, and the performance of ceramics at different positions on the hearth of the filtration chamber. To provide a molten metal filtration device in which the clogging prevention performance of the filtration tube is made more uniform and further improved, and the life of the filtration performance of the ceramic filtration tube is also made uniform.
 本発明者らは、鋭意研究した結果、金属溶湯濾過装置が、金属溶湯の入湯口および出湯口を備え、炉床および内壁面を含む濾過室と、この濾過室の室内の炉床の上方に配置されて、金属溶湯から不純物を濾過するための複数のセラミックス製濾過チューブから構成された(単数または複数の)濾過ユニットを含み、さらに、濾過ユニットに隣接して(ただし濾過ユニットが複数存在する場合にはそれぞれの濾過ユニットに隣接して)配設され、略水平方向に回転することで金属溶湯を攪拌するローターを含むと共に、金属溶湯濾過装置を水平面に配置した状態で水平方向から観察した際に、その炉床を、ドレイン流路の設置箇所を除いて、ローターの略直下の位置で最も低いレベルになるように設計することによって、上記課題が解決され得ることを見出した。すなわち、本発明者らは、このような構成を有する金属溶湯濾過装置によって、濾過室の炉床上の異なる位置においても(入湯口に近い箇所およびその反対側のいずれにおいても)金属溶湯の安定的かつ部分的なよどみがない均一な対流が生じ、水素などのガス介在物の脱気性能およびセラミックス製濾過チューブの外面洗浄による目詰まり防止性能が向上し、さらに、濾過室の炉床上の異なる位置でセラミックス製濾過チューブの目詰まり防止性能が均一化されることで、セラミックス製濾過チューブの濾過性能の寿命の相違が小さくなり、濾過装置全体の運転効率が向上することを見出し、本発明を完成させた。 As a result of intensive research, the present inventors have discovered that a molten metal filtration device is provided with a filtration chamber including an inlet and an outlet for molten metal, a filtration chamber including a hearth and an inner wall surface, and a filtration chamber above the hearth inside the filtration chamber. a filtration unit (s) comprised of a plurality of ceramic filtration tubes arranged to filter impurities from the molten metal; (in some cases, adjacent to each filtration unit), it includes a rotor that stirs the molten metal by rotating in a substantially horizontal direction, and it was observed from the horizontal direction with the molten metal filtration device placed on a horizontal plane. In this case, it has been found that the above problem can be solved by designing the hearth so that the lowest level is located approximately directly below the rotor, excluding the location where the drain flow path is installed. That is, the present inventors have realized that by using a molten metal filtration device having such a configuration, molten metal can be stably filtered at different positions on the hearth of the filtration chamber (both near the inlet and on the opposite side). Uniform convection with no local stagnation occurs, improving the performance of degassing gaseous inclusions such as hydrogen and preventing clogging by cleaning the outer surface of the ceramic filtration tube. discovered that by equalizing the clogging prevention performance of ceramic filtration tubes, the difference in the lifespan of filtration performance of ceramic filtration tubes was reduced, and the operating efficiency of the entire filtration device was improved, and the present invention was completed. I let it happen.
 このような本発明の典型的な一態様は、以下のとおりである。
 金属溶湯濾過装置であって、
 (i)金属溶湯の入湯口および出湯口を備え、炉床および内壁面を含んでなる濾過室、
 (ii)前記濾過室の室内にて前記炉床の上方に配置され、前記金属溶湯から不純物を濾過するための複数のセラミックス製の濾過チューブから構成された濾過ユニット、ならびに
 (iii)前記濾過ユニットに隣接して配設され、ただし、前記濾過ユニットが複数存在する場合には、この複数の濾過ユニットの各々に隣接して配設され、略水平方向に回転することで前記金属溶湯を攪拌するローターを含み、
 前記炉床は、ドレイン流路の設置箇所を除き、前記ローターの略直下にて水平方向視で最低位をなし、それによって前記炉床と前記内壁面との接触部の略全体が、前記ローターの略直下の最低位より高い位置に存在する、
 金属溶湯濾過装置。
A typical embodiment of the present invention is as follows.
A molten metal filtration device,
(i) A filtration chamber equipped with an inlet and an outlet for molten metal and including a hearth and an inner wall surface;
(ii) a filtration unit arranged above the hearth in the filtration chamber and configured of a plurality of ceramic filtration tubes for filtering impurities from the molten metal; and (iii) the filtration unit. provided that, if there are a plurality of filtration units, it is arranged adjacent to each of the plurality of filtration units, and rotates in a substantially horizontal direction to stir the molten metal. including the rotor,
The hearth is located at its lowest point in a horizontal direction, approximately directly below the rotor, except for the location where the drain flow path is installed, so that substantially the entire contact area between the hearth and the inner wall surface is in contact with the rotor. Exists at a position higher than the lowest point almost directly below the
Molten metal filtration equipment.
 本発明の金属溶湯濾過装置によれば、濾過ユニットに隣接して配設され、ただし濾過ユニットが複数存在する場合には、この複数の濾過ユニットの各々に隣接して配設され、略水平方向に回転することで金属溶湯を攪拌するローターを含み、かつ、金属溶湯濾過装置を水平面に配置した状態で水平方向から観察した際に、その炉床を、ドレイン流路の設置箇所を除いて、ローターの略直下の位置で最も低いレベルになるように設計することによって、濾過室の炉床上の異なる位置においても(入湯口に近い箇所およびその反対側のいずれにおいても)金属溶湯の安定的かつ部分的なよどみがない均一な対流が生じ、ひいては水素などのガス介在物の脱気性能およびセラミックス製濾過チューブの外面洗浄による目詰まり防止性能が更に向上すると共に、濾過室の炉床上の異なる位置でセラミックス製濾過チューブの目詰まり防止性能が均一化され、ひいてはセラミックス製濾過チューブの濾過性能の寿命の相違が小さくなり、濾過装置全体の運転効率が向上するという、従来の金属溶湯濾過装置の構造から予見することができない優れた利点が得られる。 According to the molten metal filtration device of the present invention, the molten metal filtration device is arranged adjacent to the filtration unit, but when there are a plurality of filtration units, the molten metal filtration device is arranged adjacent to each of the plurality of filtration units, and is arranged in a substantially horizontal direction. It includes a rotor that stirs the molten metal by rotating, and when observed from the horizontal direction with the molten metal filtration device placed on a horizontal surface, the hearth, excluding the location where the drain flow path is installed, is: By designing the lowest level approximately directly below the rotor, the molten metal remains stable and stable at different locations on the hearth of the filtration chamber (both near the inlet and on the opposite side). Uniform convection without local stagnation occurs, which further improves the degassing performance of gaseous inclusions such as hydrogen and the anti-clogging performance by cleaning the outer surface of the ceramic filtration tube, and also improves the ability to clean the outside of the ceramic filtration tube at different locations on the hearth of the filtration chamber. The structure of the conventional molten metal filtration equipment is such that the clogging prevention performance of the ceramic filtration tubes is made uniform, which in turn reduces the difference in the lifespan of the filtration performance of the ceramic filtration tubes, and improves the operating efficiency of the entire filtration equipment. This provides unforeseeable benefits.
図1は、特許文献1:特開平7-4868号公報(従来技術)の金属溶湯濾過装置の部分的な縦断側面の概略図・観念図を示す。FIG. 1 shows a schematic diagram/conceptual diagram of a partial longitudinal cross-sectional side view of a molten metal filtration device disclosed in Patent Document 1: Japanese Unexamined Patent Publication No. 7-4868 (prior art). 図2は、本発明の一実施形態に係る金属溶湯濾過装置の縦断側面の概略図・観念図を示す。FIG. 2 shows a schematic diagram/conceptual diagram of a longitudinal side surface of a molten metal filtration device according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る金属溶湯濾過装置の縦断側面図を示す。FIG. 3 shows a vertical cross-sectional side view of a molten metal filtration device according to an embodiment of the present invention. 図4は、図3の金属溶湯濾過装置のA-A断面図を示す。FIG. 4 shows a sectional view taken along line AA of the molten metal filtration device shown in FIG. 図5は、図3の金属溶湯濾過装置のB-B断面図を示す。FIG. 5 shows a BB sectional view of the molten metal filtration device of FIG. 3. 図6の(a)~(f)は、本発明に係る金属溶湯濾過装置の濾過室の底面(炉床)に形成された上昇部の様々な実施形態を例示する図である。FIGS. 6A to 6F are views illustrating various embodiments of the rising portion formed on the bottom surface (hearth) of the filtration chamber of the molten metal filtration apparatus according to the present invention.
 本発明の一実施形態に係る金属溶湯濾過装置を、図2に示された縦断側面の概略図(観念図)を用いて説明する。図2は、金属溶湯濾過装置を水平面に配置した状態で、当該装置の縦断側面を水平方向から観察した図である。 A molten metal filtration device according to an embodiment of the present invention will be explained using a schematic longitudinal side view (conceptual diagram) shown in FIG. 2. FIG. 2 is a diagram of a vertical side surface of the molten metal filter device, observed from the horizontal direction, with the device disposed on a horizontal plane.
 図2において、1は金属溶湯濾過装置、2は濾過室、3は入湯口、4は出湯口、5は濾過室の底面(以降では炉床と称する)、6は濾過室の内壁面、7はヒーター、8は炉床5の上方にて複数のセラミックス製濾過チューブ8aから構成された濾過ユニット、9は濾過ユニット8に隣接して設けられたローター、Hは水平方向を示す水平線の一つである。複数のセラミックス製濾過チューブ8aは、所定の間隔を空けて紙面方向に横設されている。本図では、典型例として2個の濾過ユニットが設けられているが、濾過ユニットは1個であってもよく、また3個以上もあり得る。2個の濾過ユニットが設けられている実施形態について以下に説明される事項は、技術的に許容され得ない事由がない限り、1個または3個以上の濾過ユニットが設けられている実施形態についても同様に適用され得る。 In FIG. 2, 1 is a molten metal filtration device, 2 is a filtration chamber, 3 is an inlet, 4 is an outlet, 5 is a bottom surface of the filtration chamber (hereinafter referred to as the hearth), 6 is an inner wall surface of the filtration chamber, 7 8 is a heater, 8 is a filtration unit composed of a plurality of ceramic filtration tubes 8a above the hearth 5, 9 is a rotor provided adjacent to the filtration unit 8, and H is one of the horizontal lines indicating the horizontal direction. It is. The plurality of ceramic filtration tubes 8a are arranged horizontally in the direction of the paper at predetermined intervals. In this figure, two filtration units are provided as a typical example, but there may be one filtration unit, or there may be three or more filtration units. The matters described below for embodiments in which two filtration units are provided apply to embodiments in which one or more filtration units are provided, unless there are technically unacceptable reasons. may be applied as well.
 金属溶湯の入湯・濾過の際には、図2中で矢印にて示されるように、非金属介在物を含むアルミニウムやアルミニウム合金等の金属溶湯が、入湯口3から濾過室2内に供給される。この金属溶湯は、ヒーター7で加熱されつつ、濾過ユニット8のセラミックス製濾過チューブ8aによって非金属介在物が濾過される。次いで、濾過処理された金属溶湯の精製湯は出湯口4から排出される。濾過室内における濾過処理中には、ローター9の略水平方向の回転によって金属溶湯が攪拌され、湯温の均一化が図られる。 When pouring and filtering molten metal, molten metal such as aluminum or aluminum alloy containing non-metallic inclusions is supplied into the filtration chamber 2 from the inlet 3, as shown by the arrow in FIG. Ru. This molten metal is heated by the heater 7, and non-metallic inclusions are filtered by the ceramic filter tube 8a of the filter unit 8. Next, the filtered purified molten metal is discharged from the outlet 4. During the filtration process in the filtration chamber, the molten metal is stirred by rotation of the rotor 9 in a substantially horizontal direction, and the temperature of the molten metal is made uniform.
 このような構成を有する金属溶湯濾過装置1によって、金属溶湯の入湯・濾過の際に、濾過室2の炉床5上の入湯口3に近い箇所およびその反対側のいずれにおいても、ローター9の略直下よりも相対的に炉床上の湯位が低くなり(湯面から炉床までの深さが小さくなり)、ローター9から離れた位置においても金属溶湯の安定的かつ部分的なよどみがない均一な対流が生じ、それにより水素などのガス介在物の脱気性能およびセラミックス製濾過チューブ8aの外面洗浄による目詰まり防止性能が更に向上するという利点が得られる。
 また、金属溶湯の入湯・濾過の際に、濾過室2の炉床5上の入湯口3に近い箇所およびその反対側のいずれにおいてもローター9の略直下よりも相対的に湯位が低くなり、濾過室2の炉床5上の異なる位置でセラミックス製濾過チューブの目詰まり防止性能がより均一化されることで、セラミックス製濾過チューブ8aの濾過性能の寿命の相違が小さくなる。
With the molten metal filtration device 1 having such a configuration, when charging and filtering molten metal, the rotor 9 is filtered at both the location near the inlet 3 on the hearth 5 of the filtration chamber 2 and the opposite side thereof. The molten metal level above the hearth is relatively lower than that directly below it (the depth from the molten metal surface to the hearth is smaller), and the molten metal remains stable and does not stagnate locally even at a position away from the rotor 9. Uniform convection occurs, which provides the advantage of further improving the degassing performance of gaseous inclusions such as hydrogen and the clogging prevention performance by cleaning the outer surface of the ceramic filtration tube 8a.
Furthermore, when pouring and filtering molten metal, the metal level is relatively lower both on the hearth 5 of the filtration chamber 2 near the inlet 3 and on the opposite side than almost directly below the rotor 9. By making the clogging prevention performance of the ceramic filtration tubes more uniform at different positions on the hearth 5 of the filtration chamber 2, the difference in the lifespan of the filtration performance of the ceramic filtration tubes 8a is reduced.
 さらに本発明の一実施形態に係る金属溶湯濾過装置を、図3~図5を用いて説明する。図3は、金属溶湯濾過装置を水平面に配置した状態で、当該装置の縦断側面を水平方向から観察した図である。図4は図3の金属溶湯濾過装置のA-A断面図を示し、図5は図3の金属溶湯濾過装置のB-B断面図を示す。
 なお、図3~図5において、図2と機能的に共通する部材群については同じ参照符号を用いている。
Furthermore, a molten metal filtration device according to an embodiment of the present invention will be explained using FIGS. 3 to 5. FIG. 3 is a diagram of a longitudinal side surface of the molten metal filtering device observed from the horizontal direction, with the device disposed on a horizontal plane. FIG. 4 shows a sectional view taken along line AA of the molten metal filtration apparatus shown in FIG. 3, and FIG. 5 shows a sectional view taken along line BB of the molten metal filtration apparatus shown in FIG.
Note that in FIGS. 3 to 5, the same reference numerals are used for functionally common members as in FIG. 2.
 図3~図5において、1は金属溶湯濾過装置、2は濾過室、3は入湯口、4は出湯口、5は炉床の中央近傍(ローターの略直下)の平面部5a、上昇部5bおよびドレイン流路5cからなる濾過室の底面(炉床)、6は濾過室の内壁面、7はヒーター、8は炉床5の上方にて複数のセラミックス製濾過チューブ8aから構成され、クサビ部材8bを備える濾過ユニット、9はモーター9a、回転ロッド9bおよび先端部材9cからなるローター、10は濾過ユニット8の台座、11は濾過室2を収容する濾過室の筐体、Mは濾過室2に金属溶湯が入湯されて、濾過を行っている際の金属溶湯の湯面の想像線である。 3 to 5, 1 is a molten metal filtration device, 2 is a filtration chamber, 3 is a hot water inlet, 4 is a hot water outlet, 5 is a flat part 5a near the center of the hearth (substantially directly below the rotor), and a rising part 5b. and a bottom surface (hearth) of the filtration chamber consisting of a drain channel 5c, 6 an inner wall surface of the filtration chamber, 7 a heater, 8 a plurality of ceramic filtration tubes 8a above the hearth 5, and a wedge member. 8b is a filtration unit; 9 is a rotor consisting of a motor 9a, a rotary rod 9b and a tip member 9c; 10 is a base of the filtration unit 8; 11 is a casing of the filtration chamber that accommodates the filtration chamber 2; This is an imaginary line of the surface of molten metal when it is being poured and filtered.
 図3~図5では、典型例として2個の濾過ユニットが設けられているが、濾過ユニットは1つであってもよく、また3個以上もあり得る。複数のセラミックス製濾過チューブ8aは、所定の間隔を空けて紙面方向に横設されている。入湯口3、出湯口4およびローター9のモーター9a近傍を除く濾過室2の略全体は濾過室の筐体11によって収容されている。濾過室の筐体11は通常、略全体が金属で形成されており、缶体とも称される。 In FIGS. 3 to 5, two filtration units are typically provided, but there may be one filtration unit, or there may be three or more filtration units. The plurality of ceramic filtration tubes 8a are arranged horizontally in the direction of the paper at predetermined intervals. Substantially the entirety of the filtration chamber 2, except for the inlet 3, the outlet 4, and the vicinity of the motor 9a of the rotor 9, is housed in a casing 11 of the filtration chamber. The casing 11 of the filtration chamber is generally made entirely of metal, and is also called a can body.
 通常、約500℃以上から約800℃程度までに加熱された非金属介在物を含むアルミニウムやアルミニウム合金等の金属溶湯は、図3中で矢印にて示されるように入湯口3から濾過室2内に供給される。入湯口3の開口面積は、金属溶湯濾過装置1による所望の濾過処理量に合わせて適切に設計される。入湯口3は、供給された金属溶湯が重力によって流下し得るように傾斜しまたは略垂直に形成された流下路に接続されていることが好ましい。 Usually, molten metal such as aluminum or aluminum alloy containing non-metallic inclusions heated from about 500°C or higher to about 800°C flows from the inlet 3 to the filtration chamber 2 as shown by the arrow in FIG. supplied within. The opening area of the inlet 3 is appropriately designed in accordance with the desired amount of filtration by the molten metal filtration device 1. The inlet 3 is preferably connected to an inclined or substantially vertical flow path so that the supplied molten metal can flow down by gravity.
 入湯口3から入った金属溶湯は、好ましくは、濾過室内に設けられたヒーター7によって熱量が保持され、あるいは更に高温に加熱される。ヒーター7として、図中、濾過室2内の入湯口3を有する内壁面6の近傍位置および入湯口3から逆側の内壁面6の近傍位置のそれぞれにて、略等間隔にて数本の長円柱状のヒーターが垂設されている。ヒーター7は、金属溶湯を加熱可能である限りは、図示された形状、本数、設置箇所に限定されず、例えば、その断面形状は一部または全体において楕円もしくは矩形であってもよい。またヒーター7は、所定の位置にて単数個が設置されていても複数個(例えば2~20個)が設置されていてもよく、また、内壁面から離れた位置に設置されていてもよい。ヒーター7が濾過室2内の入湯口3を有する内壁面6の近傍位置に設けられる場合は、金属溶湯が近隣に配された濾過ユニット8のセラミックス製濾過チューブ8aに直接的に接することによる複数のチューブ間の寿命の不均一化や濾過効率の低下を防止するために、当該位置のヒーター7と濾過ユニット8との間に遮壁(図示せず)を設けることは好ましい。 The molten metal entering from the inlet 3 is preferably maintained at its calorific value by a heater 7 provided in the filtration chamber, or is further heated to a high temperature. As the heater 7, several heaters are installed at approximately equal intervals in the vicinity of the inner wall surface 6 having the hot water inlet 3 in the filtration chamber 2 and in the vicinity of the inner wall surface 6 on the opposite side from the hot water inlet 3 in the figure. A long cylindrical heater is installed vertically. The heater 7 is not limited to the illustrated shape, number, or installation location as long as it can heat the molten metal; for example, the cross-sectional shape may be partially or entirely elliptical or rectangular. Further, the heater 7 may be installed in a single unit or in a plurality (for example, 2 to 20 units) at a predetermined position, or may be installed at a position away from the inner wall surface. . When the heater 7 is installed in the vicinity of the inner wall surface 6 having the hot water inlet 3 in the filtration chamber 2, the molten metal may directly contact the ceramic filtration tube 8a of the filtration unit 8 disposed nearby. In order to prevent non-uniform life between the tubes and a decrease in filtration efficiency, it is preferable to provide a shielding wall (not shown) between the heater 7 and the filtration unit 8 at the relevant position.
 濾過室2は、特に限定されないが、その内面において典型的には略直方体または略立方体などの6面体をなしていてよい。濾過室2の内面は、その底面である炉床5、四方の濾過室の内壁面6、およびそれらの上方を覆う蓋体(蓋体の底面が濾過室の頂面をなす)から形成されている。内壁面6は、略鉛直方向(水平面に対して垂直方向)の壁面を形成していることが好ましい。 Although not particularly limited, the filtration chamber 2 may typically have a hexahedral shape such as a rectangular parallelepiped or a cube on its inner surface. The inner surface of the filtration chamber 2 is formed by a hearth 5 which is the bottom surface thereof, inner wall surfaces 6 of the filtration chamber on all four sides, and a lid body covering above them (the bottom surface of the lid body forms the top surface of the filtration chamber). There is. It is preferable that the inner wall surface 6 forms a substantially vertical wall surface (perpendicular to the horizontal plane).
 図3~図5に示されているように、濾過室2の炉床5における内壁面6近傍の所定箇所(通常複数の箇所)には台座10が配設されており、その台座10の上に濾過ユニット8(2個が図示されているが単数個であってもよいし、3個以上であってもよい)が安定して戴置・固定されている。濾過ユニット8(単数または複数個)の台座10の形状および個数は、濾過ユニット8を略水平に強固に(不動であるように)固定可能である限りは、特に限定されない。複数個の台座10が配設される場合には、その近傍の内壁面6の各面に対して互いに対照的な位置に配置されることが望ましい。また、濾過ユニット8は、図4および図5に示されているように、クサビ部材8bを介して内壁面6に固定されていてよい。クサビ部材8bの形状は、濾過ユニット8を内壁面6に耐久性良く固定することができるよう構成され、その数は1つであってもよく2つ以上であってもよい(図5では1つの濾過ユニット8に対してクサビ部材8bが3つ設けられている場合が例示されている)。 As shown in FIGS. 3 to 5, a pedestal 10 is disposed at a predetermined location (usually multiple locations) near the inner wall surface 6 of the hearth 5 of the filtration chamber 2. A filtration unit 8 (two units are shown in the figure, but it may be a single unit or three or more units) is stably installed and fixed. The shape and number of the pedestals 10 of the filtration unit 8 (single or plural) are not particularly limited as long as the filtration unit 8 can be firmly fixed (immovably) substantially horizontally. When a plurality of pedestals 10 are arranged, it is desirable that they be arranged in symmetrical positions with respect to each surface of the inner wall surface 6 in the vicinity thereof. Moreover, the filtration unit 8 may be fixed to the inner wall surface 6 via a wedge member 8b, as shown in FIGS. 4 and 5. The shape of the wedge member 8b is configured such that the filtration unit 8 can be fixed to the inner wall surface 6 with good durability, and the number thereof may be one or two or more (in FIG. 5, one A case is illustrated in which three wedge members 8b are provided for one filtration unit 8).
 各濾過ユニット8は、通常、略等間隔で横設された複数のセラミックス製濾過チューブ8aから構成されている。各濾過ユニット8を構成するセラミックス製濾過チューブ8aの個数は、複数個である限りは特に限定されず、例えば2個~50個、または3個~40個、または4個~30個、または5個~20個であってよい。セラミックス製濾過チューブ8aの断面形状は、通常略円形であってよいが、略楕円形状または略矩形であってもよいし、それらの混成であってもよい。各濾過ユニット8を構成する複数のセラミックス製濾過チューブ8aは、通常、略水平状かつ略等間隔で横設されているが、少なくとも一部において隣接するセラミックス製濾過チューブが直接接していてもよい。濾過ユニット8において、略水平状かつ略等間隔で横設されたセラミックス製濾過チューブ8aが、複数列を形成している場合、それらの複数列も略等間隔で配置されていることが好ましい。 Each filtration unit 8 is usually composed of a plurality of ceramic filtration tubes 8a arranged horizontally at approximately equal intervals. The number of ceramic filtration tubes 8a constituting each filtration unit 8 is not particularly limited as long as it is a plurality of pieces, for example, 2 to 50 pieces, 3 to 40 pieces, 4 to 30 pieces, or 5 pieces. The number may be from 1 to 20. The cross-sectional shape of the ceramic filtration tube 8a may normally be approximately circular, but may also be approximately elliptical or rectangular, or a combination thereof. The plurality of ceramic filtration tubes 8a constituting each filtration unit 8 are usually horizontally arranged horizontally and at approximately equal intervals, but at least some of the adjacent ceramic filtration tubes may be in direct contact with each other. . In the filtration unit 8, when the ceramic filtration tubes 8a arranged horizontally in a substantially horizontal manner and at substantially equal intervals form a plurality of rows, it is preferable that the plurality of rows are also arranged at substantially equal intervals.
 図3~図5に示されているように、ローター9は通常、少なくとも、モーター9a、回転ロッド9bおよび先端部材9cを備えてなる。ローター9は、濾過ユニット8に隣接して(濾過ユニット8が複数存在する場合にはその各々に隣接して)配設される。ローター9は、図示されているとおり、通常、攪拌による効果が濾過室2内の全体に及ぶように炉床5の中央近傍の上方に配置されるが、これに限定されない。濾過ユニット8が1つである場合、ローター9は、炉床5の中央近傍から離れた位置(例えば、炉床5の中央近傍と内壁面6との略中間の位置)の上方に配置されてもよい。濾過ユニット8が2つ以上設置されている場合、ローター9は各濾過ユニットから略等距離を隔てて配設されていることが好ましい。ローター9の設置数は通常1つであるが、複数個を設置することもできる。複数個のローター9が設置される場合、各ローターが濾過ユニット8に隣接していることが好ましく、各ローターが濾過ユニット(複数設置されている場合は近隣の濾過ユニット)から略等距離を隔てて配設されていることも好ましい。また、複数個のローター9が設置される場合、炉床5は、ドレイン流路の設置箇所を除いて、複数個のうちの少なくとも1つのローターの略直下にて、水平方向視で最低位(最低のレベル)をなすように設計される。 As shown in FIGS. 3 to 5, the rotor 9 usually includes at least a motor 9a, a rotating rod 9b, and a tip member 9c. The rotor 9 is arranged adjacent to the filtration unit 8 (if there are a plurality of filtration units 8, adjacent to each of them). As shown in the figure, the rotor 9 is normally arranged above the center of the hearth 5 so that the effect of agitation extends throughout the inside of the filtration chamber 2, but the rotor 9 is not limited thereto. When there is only one filtration unit 8, the rotor 9 is arranged above a position away from the vicinity of the center of the hearth 5 (for example, at a position approximately midway between the vicinity of the center of the hearth 5 and the inner wall surface 6). Good too. When two or more filtration units 8 are installed, it is preferable that the rotor 9 is arranged at approximately the same distance from each filtration unit. The number of rotors 9 installed is usually one, but a plurality of rotors 9 can also be installed. When a plurality of rotors 9 are installed, each rotor is preferably adjacent to the filtration unit 8, and each rotor is spaced approximately equidistantly from the filtration unit (or neighboring filtration unit if multiple rotors are installed). It is also preferable that the In addition, when a plurality of rotors 9 are installed, the hearth 5 is located at the lowest position (as seen in the horizontal direction) approximately directly below at least one rotor among the plurality of rotors, excluding the location where the drain passage is installed. (the lowest level).
 ローター9のモーター9aは、可変速度にて、回転ロッド9bおよび先端部材9cを回転駆動させる部材である。ローター9のモーター9aには、減速機構が併設されていてよく、また金属溶湯の加熱するためのヒーターおよびファンを備えていてもよい。ローター9の回転ロッド9bは、特に限定されないが、攪拌効率の観点から、その回転軸は略鉛直方向(すなわち水平面に配置された金属溶湯濾過装置1の濾過室2を垂直に縦断する方向)であることが好ましい。ローター9の先端部材9cは、金属溶湯の対流・攪拌を促進するためのガス噴射機能を備えていることが好ましい。ローター9の先端部材9cがガス噴射機能を備えている場合、回転ロッド9bは中空軸の形態をなし、この中空軸を通って噴射用のガスが供給されるように構成されてよい。この場合の先端部材9cには、複数のガス噴射口が形成されていてよい。噴射用のガスは、特に限定されないが、窒素やアルゴン等の不活性ガスであることが好ましい。 The motor 9a of the rotor 9 is a member that rotates the rotating rod 9b and the tip member 9c at a variable speed. The motor 9a of the rotor 9 may be provided with a speed reduction mechanism, and may also be provided with a heater and a fan for heating the molten metal. The rotating rod 9b of the rotor 9 is not particularly limited, but from the viewpoint of stirring efficiency, its rotation axis is set in a substantially vertical direction (that is, a direction vertically traversing the filtration chamber 2 of the molten metal filtration device 1 arranged on a horizontal plane). It is preferable that there be. It is preferable that the tip member 9c of the rotor 9 has a gas injection function for promoting convection and stirring of the molten metal. When the tip member 9c of the rotor 9 has a gas injection function, the rotating rod 9b may be configured to have a hollow shaft shape, and the gas for injection may be supplied through this hollow shaft. In this case, the tip member 9c may be formed with a plurality of gas injection ports. The injection gas is not particularly limited, but is preferably an inert gas such as nitrogen or argon.
 ローター9の先端部材9cはまた、金属溶湯の対流・攪拌を促進するため、ガス噴射機構の替わりに、あるいはガス噴射機構に加えてブレード/インペラの形状を有していてよい。ローター9の先端部材9cはまた、金属溶湯の対流・攪拌を促進するため、ガス噴射機構および/またはブレード・インペラ形状の替わりに、あるいはこれに加えて、回転ロッド9bごと上下動自在に構成されていてもよい。この場合、ローター9のモーター9aの近傍には、さらに回転ロッド9bおよび先端部材9cの上下動機構が併設されていてよい。 The tip member 9c of the rotor 9 may also have a blade/impeller shape instead of or in addition to the gas injection mechanism to promote convection and stirring of the molten metal. In order to promote convection and stirring of the molten metal, the tip member 9c of the rotor 9 is configured to be movable up and down together with the rotating rod 9b instead of or in addition to the gas injection mechanism and/or the blade impeller shape. You can leave it there. In this case, a vertical movement mechanism for the rotating rod 9b and the tip member 9c may be further provided near the motor 9a of the rotor 9.
 入湯口3から入った金属溶湯は、好ましくは濾過室内に設けられたヒーター7によって熱量が保持され、あるいは更に高温に加熱され、またローター9によって対流・攪拌されつつ、複数のセラミックス製濾過チューブ8aからなる濾過ユニット8による濾過に供される。濾過ユニット8による濾過が行われる際には、金属溶湯の湯位は濾過ユニット8の全体(複数の濾過ユニット8が設けられている場合はその全て)が金属溶湯に漬かる程度に高い湯位に達していることが好ましい(図3、図4にて金属溶湯の湯面の想像線がMで示されている)。濾過処理された金属溶湯は、出湯口4から排出される。図5にて2つの出湯口4が例示されているが、2つに限定されず、1つであっても3つ以上であってもよい。出湯口4の開口面積は、入湯口3と同様に、金属溶湯濾過装置1による所望の濾過処理量に合わせて適切に設計される。出湯口4は、特に限定されないが、図4に例示されているように上昇部を含んでいてよい。 The molten metal that enters from the inlet 3 is preferably maintained at its calorific value by a heater 7 provided in the filtration chamber, or is further heated to a high temperature, and is passed through a plurality of ceramic filtration tubes 8a while being convected and stirred by a rotor 9. It is subjected to filtration by a filtration unit 8 consisting of: When filtration is performed by the filtration unit 8, the level of the molten metal is set to such a level that the entire filtration unit 8 (all of them if a plurality of filtration units 8 are provided) is immersed in the molten metal. (The imaginary line of the molten metal surface is indicated by M in FIGS. 3 and 4). The filtered molten metal is discharged from the tap 4. Although two tap holes 4 are illustrated in FIG. 5, the number is not limited to two, and the number may be one or three or more. Like the inlet 3, the opening area of the outlet 4 is appropriately designed in accordance with the desired amount of filtration by the molten metal filtration device 1. The tap 4 may include, but is not particularly limited to, a rising portion as illustrated in FIG. 4 .
 図3~図5中にて、炉床5は、中央近傍の平面部5a、上昇部5b、およびドレイン流路5cからなる。炉床5の形状は、水平方向視にて、ドレイン流路5cの設置箇所を除いてローター9の略直下の位置で最も低いレベルになるように設計されている必要がある以外は、特に限定されない。また、複数個のローター9が設置される場合、炉床5は、ドレイン流路の設置箇所を除いて、複数個のうちの少なくとも1つのローターの略直下にて、水平方向視で最低位(最低のレベル)をなすように設計される。 In FIGS. 3 to 5, the hearth 5 consists of a flat portion 5a near the center, a rising portion 5b, and a drain channel 5c. There are no particular limitations on the shape of the hearth 5, except that it must be designed to be at its lowest level at a position approximately directly below the rotor 9, excluding the location where the drain channel 5c is installed, when viewed in the horizontal direction. Not done. In addition, when a plurality of rotors 9 are installed, the hearth 5 is located at the lowest position (as seen in the horizontal direction) approximately directly below at least one rotor among the plurality of rotors, excluding the location where the drain passage is installed. (the lowest level).
 一実施形態において、平面部5aの面積は、攪拌効率の観点から、炉床全体の水平面積の2%以上40%以下であってよく、好ましくは3%以上30%以下であってよく、更に好ましくは5%以上20%以下であってよい。また、平面部5aの面積は、攪拌効率の観点から、ローター9の先端部材9cの水平回転面積の80%以上300%以下、好ましくは100%以上200%以下であってよい。 In one embodiment, the area of the flat portion 5a may be 2% or more and 40% or less, preferably 3% or more and 30% or less, of the horizontal area of the entire hearth, from the viewpoint of stirring efficiency, and further Preferably, it may be 5% or more and 20% or less. Further, from the viewpoint of stirring efficiency, the area of the flat portion 5a may be 80% or more and 300% or less, preferably 100% or more and 200% or less, of the horizontal rotation area of the tip member 9c of the rotor 9.
 ドレイン流路5cは、金属溶湯の残湯(夾雑物または沈降物質を含む金属溶湯の排出湯、あるいは装置メンテナンス時に排出される金属溶湯)を自重にて排出するための流路である。ドレイン流路5cは、機能上、図3に例示されているように、炉床から排出口に至るまでの略全体にて下降部を形成している必要がある。従って、炉床5を水平方向視にてローター9の略直下の位置で最も低いレベルになるように設計するとき、ドレイン流路5cの設置箇所のレベルは当該設計の考慮事項から排除する。ドレイン流路5cの形状は、任意に設計されてよいが、下流の流路幅を上流より広げることによって残湯の排出が容易になり得る(図5参照)。 The drain flow path 5c is a flow path for draining the remaining molten metal (molten metal containing impurities or precipitated substances, or molten metal discharged during equipment maintenance) under its own weight. Functionally, the drain flow path 5c needs to form a descending portion over substantially the entire length from the hearth to the discharge port, as illustrated in FIG. Therefore, when designing the hearth 5 to have its lowest level at a position substantially directly below the rotor 9 when viewed in the horizontal direction, the level at the location where the drain flow path 5c is installed is excluded from consideration in the design. Although the shape of the drain flow path 5c may be arbitrarily designed, draining the remaining hot metal may be facilitated by making the width of the downstream flow path wider than that of the upstream flow path (see FIG. 5).
 このような炉床5の設計によって、炉床5と内壁面6との接触部の略全体がローター9の略直下の最低位より高い位置に存在するため、金属溶湯の入湯・濾過の際に、濾過室2の炉床5上の入湯口3に近い箇所およびその反対側のいずれにおいても、ローター9の略直下よりも相対的に炉床上の湯位が低くなり(湯面から炉床までの深さが小さくなり)、金属溶湯の安定的かつ部分的なよどみがない均一な対流が生じ、ひいては水素などのガス介在物の脱気性能およびセラミックス製濾過チューブの外面洗浄による目詰まり防止性能が更に向上する。このような設計によって、さらには濾過室の炉床上の異なる位置でセラミックス製濾過チューブの目詰まり防止性能が均一化され、ひいてはセラミックス製濾過チューブの濾過性能の寿命の相違が小さくなり、生産効率の向上、製造ライン全体のコスト削減に役立つ。 Due to this design of the hearth 5, almost the entire contact area between the hearth 5 and the inner wall surface 6 is located at a position higher than the lowest point almost directly under the rotor 9, so that when pouring and filtering molten metal, , both on the hearth 5 of the filtration chamber 2 near the hot water inlet 3 and on the opposite side, the hot water level above the hearth is relatively lower than that directly below the rotor 9 (from the hot water surface to the hearth). ), stable and uniform convection of the molten metal without local stagnation occurs, which in turn improves the ability to degas gas inclusions such as hydrogen and prevent clogging by cleaning the outer surface of the ceramic filtration tube. further improves. Such a design further equalizes the anti-clogging performance of the ceramic filtration tubes at different positions on the hearth of the filtration chamber, which in turn reduces the difference in the lifespan of the filtration performance of the ceramic filtration tubes, improving production efficiency. It helps to improve and reduce the cost of the entire production line.
 炉床5上のローター9の略直下の最低位(平面部5aを有する場合はその中心点)と、炉床5および内壁面6の任意の接触部とを結ぶ直線の水平面に対する角度αは、特に限定されないが、上記の望ましい諸効果を得る観点および炉床の高低差が過度に大きいことによる不純物の偏在を防止する観点のバランスから、通常2度以上~30度以下であってよく、好ましくは3度以上~25度以下、4度以上~20度以下、または5度以上~15度以下であってよい。 The angle α of a straight line connecting the lowest point approximately directly below the rotor 9 on the hearth 5 (if it has a flat part 5a, its center point) and any contact part of the hearth 5 and the inner wall surface 6 with respect to the horizontal plane is: Although not particularly limited, from the viewpoint of obtaining the above-mentioned desired effects and preventing the uneven distribution of impurities due to excessively large height difference of the hearth, the temperature may be generally 2 degrees or more and 30 degrees or less, and is preferably may be 3 degrees or more and 25 degrees or less, 4 degrees or more and 20 degrees or less, or 5 degrees or more and 15 degrees or less.
 図3~図5に示されているように、攪拌効率の観点から、炉床5がローター9の略直下の位置(本図では中央近傍)に平面部5aを有することは好ましい。炉床5のローター9の略直下の位置にこのような平面部を設けることは必須ではなく、当該位置も上昇部の一部をなしていてよい。また、図3~図4にて、炉床5の上昇部5bは、一定の勾配(上昇角度)を有する上昇直線の断面として図示されているが、炉床5のローター9の略直下の位置から炉床5と内壁面6との接触部に至るまでの所定方向の全ての部分で連続的な上昇(例えば昇勾配または昇段)を形成している必要はない。炉床5の上昇部5bは、所定方向の垂直断面における少なくとも一部、好ましくは過半部にて上昇をなしていればよく、上昇をなしていない箇所(単数箇所または複数箇所)にて平坦部(略水平面をなす箇所)を有していてよい。炉床5の上昇部5bは、少なくとも一部に、階段部(略鉛直方向の段差部および略水平部の組み合わせである階段の1つまたは複数からなる)を含んでいてよい。 As shown in FIGS. 3 to 5, from the viewpoint of stirring efficiency, it is preferable that the hearth 5 has a flat portion 5a at a position substantially directly below the rotor 9 (near the center in this figure). It is not essential to provide such a flat portion at a position substantially directly below the rotor 9 of the hearth 5, and this position may also form a part of the rising portion. In addition, in FIGS. 3 and 4, the rising portion 5b of the hearth 5 is illustrated as a cross section of a rising straight line having a constant slope (rising angle), but the rising portion 5b of the hearth 5 is located approximately directly below the rotor 9 of the hearth 5. It is not necessary to form a continuous rise (for example, a rising slope or a rising step) in all parts in a predetermined direction from the hearth 5 to the contact portion between the hearth 5 and the inner wall surface 6. The rising portion 5b of the hearth 5 may be raised in at least a portion, preferably a majority, of the vertical cross section in a predetermined direction, and may be flat in a portion (single portion or multiple portions) where it is not raised. (a portion forming a substantially horizontal surface). The rising portion 5b of the hearth 5 may include, at least in part, a step portion (consisting of one or more steps that are a combination of a substantially vertical step portion and a substantially horizontal portion).
 図6の(a)~(f)には、本発明に係る金属溶湯濾過装置の濾過室の炉床に形成される上昇部の断面の非限定的な実施形態のいくつかが例示されている。
 図中、濾過室の炉床は、所定方向の垂直断面において、最低位から炉床と内壁面との接触部に向かって、一定の勾配(上昇角度)を有する上昇直線や一定の段差を有する上昇階段以外に、S1のような凹曲線状の昇勾配断面、および/またはS2のような凸曲線状の昇勾配断面を含んでいてよい。
 また、濾過室の炉床は、所定方向の垂直断面において、最低位から炉床と内壁面との接触部に向かって、一定の勾配(上昇角度)を有する上昇直線や一定の段差を有する上昇階段、S1および/またはS2のような断面形状に替えて、あるいはそれに加えて、S3のような一部に平面部(略水平部)が介在した昇勾配、および/またはS4のような一部に階段部(略鉛直方向の段差部および略水平部の組み合わせ)が介在した昇勾配を含んでいてよい。
 また、濾過室の炉床は、所定方向の垂直断面において、最低位から炉床と内壁面との接触部に向かって、一定の勾配(上昇角度)を有する上昇直線や一定の段差を有する上昇階段、S1、S2、S3およびS4の少なくとも1つに替えて、あるいはそれに加えて、S5のような勾配が漸増する(すなわち勾配が順次大きくなっている)昇勾配、および/またはS6のような段差が漸増する(すなわち段差が順次大きくなっている)階段状の上昇部を含んでいてよい。あるいは、濾過室の炉床は、勾配が漸減する(すなわち勾配が順次小さくなっている)昇勾配、および/またはS6のような段差が漸減する(すなわち段差が順次小さくなっている)階段状の上昇部を含んでいてよい。
 濾過室の炉床は、最低位から炉床と内壁面との接触部に向かういずれかの複数方向の垂直断面において、異なる2種以上の断面形状の組み合わせから形成されていてよい。また濾過室の炉床は、最低位から炉床と内壁面との接触部に向かういずれかの対称2方向において、略同一の断面形状で形成されていてよい。
 このようなバリエーションに富んだ炉床の断面形状が許容されることにより、炉床の設計の自由度が格段に高まり、金属溶湯の濾過処理量、加熱温度、ローターの構成等の様々な可変設計要素に適合させて濾過効率の最大化、セラミックス製濾過チューブの濾過性能の寿命の更なる均一化を達成することが容易になる。
FIGS. 6A to 6F illustrate some non-limiting embodiments of the cross-section of the rising portion formed in the hearth of the filtration chamber of the molten metal filtration device according to the present invention. .
In the figure, the hearth of the filtration chamber has, in a vertical section in a predetermined direction, an ascending straight line with a certain slope (rising angle) or a certain step from the lowest point toward the contact area between the hearth and the inner wall surface. In addition to the ascending staircase, it may include a concave ascending section like S1 and/or a convex ascending section like S2.
In addition, in a vertical section in a predetermined direction, the hearth of the filtration chamber rises in a straight line with a certain slope (rising angle) or rises with a certain step from the lowest point toward the contact area between the hearth and the inner wall surface. In place of or in addition to the cross-sectional shapes such as stairs, S1 and/or S2, ascending gradients with a flat part (approximately horizontal part) interposed in a part such as S3, and/or a part such as S4 may include an ascending slope with a step part (a combination of a substantially vertical step part and a substantially horizontal part) interposed therebetween.
In addition, in a vertical section in a predetermined direction, the hearth of the filtration chamber rises in a straight line with a certain slope (rising angle) or rises with a certain step from the lowest point toward the contact area between the hearth and the inner wall surface. In place of, or in addition to, at least one of the stairs, S1, S2, S3 and S4, an ascending slope with increasing slope (i.e. the slope is successively larger) such as S5 and/or an ascending slope such as S6. It may include a step-like rising portion in which the step height gradually increases (that is, the step height gradually increases). Alternatively, the hearth of the filtration chamber may have an ascending slope with a gradually decreasing slope (i.e., the slope is gradually decreasing) and/or a step-like structure with gradually decreasing steps (i.e., the steps are gradually decreasing) such as S6. May include a rising part.
The hearth of the filtration chamber may be formed from a combination of two or more different cross-sectional shapes in a vertical section in any of a plurality of directions from the lowest level toward the contact portion between the hearth and the inner wall surface. Further, the hearth of the filtration chamber may be formed to have substantially the same cross-sectional shape in any two symmetrical directions from the lowest level toward the contact portion between the hearth and the inner wall surface.
By allowing such a wide variety of hearth cross-sectional shapes, the degree of freedom in hearth design is greatly increased, allowing for various variable designs such as filtration throughput of molten metal, heating temperature, rotor configuration, etc. It becomes easy to maximize the filtration efficiency and further equalize the life of the filtration performance of the ceramic filtration tube by adapting it to the elements.
 F:濾過室
 T:セラミックス製濾過チューブ
 I:金属溶湯の入湯口
 U:濾過ユニット
 N:噴射ノズル
 W:濾過室の内壁面
 B:濾過室の底面/炉床
 L:金属溶湯の湯面の想像線(上記符号F~Lは従来技術を例示する図1に関する。)
 1:金属溶湯濾過装置
 2:濾過室
 3:入湯口
 4:出湯口
 5:炉床(濾過室の底面)
 5a:炉床の中央近傍(ローターの略直下)の平面部
 5b:炉床の上昇部
 5c:炉床に形成されたドレイン流路
 6:内壁面
 7:ヒーター
 8:濾過ユニット
 8a:セラミックス製濾過チューブ
 8b:クサビ部材
 9:ローター
 9a:モーター
 9b:回転ロッド
 9c:先端部材
 10:台座
 11:濾過室の筐体
 S1:炉床に形成された凹曲線状の昇勾配断面
 S2:炉床に形成された凸曲線状の昇勾配断面
 S3:炉床に形成された平面部が介在した昇勾配断面
 S4:炉床に形成された階段部が介在した昇勾配断面
 S5:炉床に形成された勾配が漸増する昇勾配断面
 S6:炉床に形成された段差が漸増する階段状の上昇部断面
F: Filtration chamber T: Ceramic filtration tube I: Molten metal inlet U: Filtration unit N: Injection nozzle W: Inner wall of the filtration chamber B: Bottom of the filtration chamber/hearth L: Imagination of the surface of the molten metal (The above symbols F to L refer to FIG. 1 illustrating the prior art.)
1: Molten metal filtration device 2: Filtration chamber 3: Inlet 4: Outlet 5: Hearth (bottom of filtration chamber)
5a: Plane part near the center of the hearth (substantially directly under the rotor) 5b: Rising part of the hearth 5c: Drain channel formed in the hearth 6: Inner wall surface 7: Heater 8: Filtration unit 8a: Ceramic filtration Tube 8b: Wedge member 9: Rotor 9a: Motor 9b: Rotating rod 9c: Tip member 10: Pedestal 11: Case of filtration chamber S1: Concave curved ascending slope cross section formed on the hearth S2: Formed on the hearth S3: An ascending slope cross section with a flat part formed on the hearth S4: An ascending slope cross section with a stepped part formed on the hearth S5: A slope formed on the hearth S6: A cross-section of a step-like rising part where the steps formed on the hearth gradually increase.

Claims (7)

  1.  金属溶湯濾過装置であって、
     (i)金属溶湯の入湯口および出湯口を備え、炉床および内壁面を含んでなる濾過室、
     (ii)前記濾過室の室内にて前記炉床の上方に配置され、前記金属溶湯から不純物を濾過するための複数のセラミックス製の濾過チューブから構成された濾過ユニット、ならびに
     (iii)前記濾過ユニットに隣接して配設され、ただし、前記濾過ユニットが複数存在する場合には、この複数の濾過ユニットの各々に隣接して配設され、略水平方向に回転することで前記金属溶湯を攪拌するローターを含み、
     前記炉床は、ドレイン流路の設置箇所を除き、前記ローターの略直下にて水平方向視で最低位をなし、それによって前記炉床と前記内壁面との接触部の略全体が、前記ローターの略直下の最低位より高い位置に存在する、
     金属溶湯濾過装置。
    A molten metal filtration device,
    (i) A filtration chamber equipped with an inlet and an outlet for molten metal and including a hearth and an inner wall surface;
    (ii) a filtration unit arranged above the hearth in the filtration chamber and configured of a plurality of ceramic filtration tubes for filtering impurities from the molten metal; and (iii) the filtration unit. provided that, if there are a plurality of filtration units, it is arranged adjacent to each of the plurality of filtration units, and rotates in a substantially horizontal direction to stir the molten metal. including the rotor,
    The hearth is located at its lowest level in a horizontal direction, approximately directly below the rotor, except for the location where the drain passage is installed, so that substantially the entire contact area between the hearth and the inner wall surface is in contact with the rotor. Exists at a position higher than the lowest point approximately directly below the
    Molten metal filtration equipment.
  2.  前記炉床が、前記最低位から前記炉床と前記内壁面との接触部の少なくとも一部に向かって、水平方向に対する昇勾配および/または階段状の上昇部を含む、請求項1に記載の金属溶湯濾過装置。 The hearth according to claim 1, wherein the hearth includes an ascending slope in the horizontal direction and/or a step-like rising part from the lowest level toward at least a part of the contact area between the hearth and the inner wall surface. Molten metal filtration equipment.
  3.  前記炉床における前記水平方向に対する昇勾配が、前記炉床の異なる位置で異なる勾配を有し、かつ/または、前記炉床における前記階段状の上昇部が、前記炉床の異なる位置で異なる段差を有する、請求項2に記載の金属溶湯濾過装置。 The ascending slope of the hearth in the horizontal direction has different slopes at different positions of the hearth, and/or the stepped rising portion of the hearth has different steps at different positions of the hearth. The molten metal filtration device according to claim 2, comprising:
  4.  前記炉床における前記水平方向に対する昇勾配の勾配が、前記最低位から前記炉床と前記内壁面との接触部の少なくとも一部に向かって順次大きくなっている箇所を含み、かつ/または、前記炉床における前記階段状の上昇部の段差が、前記最低位から前記炉床と前記内壁面との接触部の少なくとも一部に向かって順次大きくなっている箇所を含む、請求項3に記載の金属溶湯濾過装置。 The slope of the ascending slope of the hearth in the horizontal direction includes a portion where the gradient gradually increases from the lowest point toward at least a portion of the contact portion between the hearth and the inner wall surface, and/or 4. The step-like rising portion of the hearth includes a portion where the step height gradually increases from the lowest level toward at least a portion of the contact portion between the hearth and the inner wall surface. Molten metal filtration equipment.
  5.  前記炉床における前記水平方向に対する昇勾配が、前記炉床の少なくとも一部に曲面を成す、請求項2に記載の金属溶湯濾過装置。 The molten metal filtration device according to claim 2, wherein the ascending slope of the hearth with respect to the horizontal direction forms a curved surface on at least a portion of the hearth.
  6.  前記濾過ユニットが、略水平方向に略等間隔で並列された複数のセラミックス製の濾過チューブから構成されており、
     前記濾過ユニットが複数存在する場合には、前記ローターが、この複数の濾過ユニットの各々から略等距離を隔てて配設されている、
     請求項1又は請求項2に記載の金属溶湯濾過装置。
    The filtration unit is composed of a plurality of ceramic filtration tubes arranged in parallel at substantially equal intervals in a substantially horizontal direction,
    When there are a plurality of filtration units, the rotor is arranged at approximately the same distance from each of the plurality of filtration units.
    The molten metal filtration device according to claim 1 or 2.
  7.  前記ローターが、前記濾過室の略中央に位置する略鉛直方向に延びた回転軸を有すると共に、金属溶湯の対流を促進するためのガス噴射機構を備える、請求項1又は請求項2に記載の金属溶湯濾過装置。 3. The rotor according to claim 1 or 2, wherein the rotor has a rotating shaft extending in a substantially vertical direction located substantially in the center of the filtration chamber, and includes a gas injection mechanism for promoting convection of molten metal. Molten metal filtration equipment.
PCT/JP2023/021131 2022-07-25 2023-06-07 Molten metal filtration device WO2024024288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-118151 2022-07-25
JP2022118151 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024024288A1 true WO2024024288A1 (en) 2024-02-01

Family

ID=89706138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021131 WO2024024288A1 (en) 2022-07-25 2023-06-07 Molten metal filtration device

Country Status (1)

Country Link
WO (1) WO2024024288A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142104A (en) * 1978-03-31 1979-11-06 Sumitomo Light Metal Ind Method and apparatus for treating molten metal
JPH073348A (en) * 1993-06-18 1995-01-06 Mitsui Mining & Smelting Co Ltd Device for filtering molten metal
JPH073347A (en) * 1993-06-18 1995-01-06 Mitsui Mining & Smelting Co Ltd Device for filtering molten metal
JPH074868A (en) * 1993-06-18 1995-01-10 Mitsui Mining & Smelting Co Ltd Molten metal filtering device
JPH11320083A (en) * 1998-03-13 1999-11-24 Tounetsu:Kk Melting and holding furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142104A (en) * 1978-03-31 1979-11-06 Sumitomo Light Metal Ind Method and apparatus for treating molten metal
JPH073348A (en) * 1993-06-18 1995-01-06 Mitsui Mining & Smelting Co Ltd Device for filtering molten metal
JPH073347A (en) * 1993-06-18 1995-01-06 Mitsui Mining & Smelting Co Ltd Device for filtering molten metal
JPH074868A (en) * 1993-06-18 1995-01-10 Mitsui Mining & Smelting Co Ltd Molten metal filtering device
JPH11320083A (en) * 1998-03-13 1999-11-24 Tounetsu:Kk Melting and holding furnace

Similar Documents

Publication Publication Date Title
EP0183402B1 (en) Rotary device, apparatus and method for treating molten metal
JP4248798B2 (en) In-line degasser
US4673434A (en) Using a rotary device for treating molten metal
US4401295A (en) Apparatus for treating molten metal
US7650764B2 (en) Vacuum degassing apparatus for molten glass
JP5217828B2 (en) Molten metal cleaning equipment
KR970001409B1 (en) Improved gas dispersion apparatus for molten metal
JP2000128548A (en) Glass melting furnace
WO2024024288A1 (en) Molten metal filtration device
CN111482588B (en) Submersed nozzle vortex generator, tundish and application
KR20120024577A (en) Metallurgical melting and treatment unit
KR0144013B1 (en) Improved gas dispersion apparatus for molten aluminum refining
CN116037867A (en) Degassing and filtering device for air brick
US20230212711A1 (en) Degassing launder
US7648674B2 (en) Device for the in-line treatment of liquid metal by means of gas and filtration
JP4243711B2 (en) Crucible furnace
CN116023000A (en) Glass liquid channel for classifying, negative pressure bubble removal, homogenization and clarification
JP2004035395A (en) Apparatus for clarifying glass melt
CN114472872A (en) Filtering type current stabilizer, preparation method thereof and double-current rectangular tundish
KR101044764B1 (en) Apparatus for Minimization of strip defects by stabilized supply of molten steel in twin roll strip casting process
RU1790468C (en) Intermediate ladle of two-strand continuous casting machine
JPH0217733Y2 (en)
JPH11130443A (en) Parallel type reduced pressure deforming apparatus
NO311983B1 (en) Enhanced rotor adapted for injection of molten aluminum in a refining chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846024

Country of ref document: EP

Kind code of ref document: A1