WO2024024214A1 - Distributed electric power source electric power distribution system and method for controlling distributed electric power source electric power distribution system - Google Patents

Distributed electric power source electric power distribution system and method for controlling distributed electric power source electric power distribution system Download PDF

Info

Publication number
WO2024024214A1
WO2024024214A1 PCT/JP2023/017998 JP2023017998W WO2024024214A1 WO 2024024214 A1 WO2024024214 A1 WO 2024024214A1 JP 2023017998 W JP2023017998 W JP 2023017998W WO 2024024214 A1 WO2024024214 A1 WO 2024024214A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric power
power source
distribution system
distributed power
distributed
Prior art date
Application number
PCT/JP2023/017998
Other languages
French (fr)
Japanese (ja)
Inventor
隆 佐藤
修 友部
将士 山本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024024214A1 publication Critical patent/WO2024024214A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a distributed power distribution system and a method for controlling a distributed power distribution system for estimating a fault point when a power outage occurs in a power distribution system to which distributed power generation sites are connected.
  • a conventional method for detecting fault points in power distribution systems is timed transmission.
  • this system temporarily shuts off the distribution line by shutting off the sending circuit breaker at the distribution substation. Then, open all automatic switches on the distribution lines.
  • the sending circuit breakers at the distribution substations are turned on, and then the automatic switches that separate the distribution lines in order of distance from the distribution substations are turned on.
  • the distribution line breakers are turned on again, and then the automatic switches are turned on in order of distance from the distribution substation.
  • the automatic switch in front of the accident zone is locked open, so it will not close.
  • Patent Document 1 As a distributed power distribution system for improving this, there is one described in Patent Document 1, for example.
  • power is restored to the normal outage area by reverse power flowing from the power source at the distributed power generation site to the normal outage area.
  • the present invention provides a distributed power distribution system and a method for controlling the distributed power distribution system that cooperates with an islanding prevention device and can suppress overvoltage when a ground fault occurs multiple times during reverse power flow from a distributed power source.
  • the purpose is to
  • the present invention is configured as follows.
  • a distribution system that supplies power to a power demand unit via an automatic switch, a power supply, an islanding prevention device, and an output signal of the islanding prevention device connected to the high voltage distribution line.
  • a disconnection circuit breaker that opens and closes based on the voltage, a suppressing switch for the islanding prevention device, a second grounding instrument transformer, and a high-resistance grounding switch;
  • a distributed power source site that is connected via a distribution line and supplies power to loads, and in the event of a ground fault, when reverse power is caused to flow from the power source of the distributed power source site to the distribution system as a starting point, temporarily
  • the second grounded potential transformer is used to ground the neutral point of the distributed power site via the high resistance ground switch.
  • a distributed power supply system comprising a power distribution system that supplies power to the power demand section via an automatic switch, and a distributed power supply site that is connected to the power distribution system by a high-voltage distribution line and supplies power to the load.
  • a second ground voltage instrument transformer is temporarily used as a neutral point of the distributed power source site. is grounded via a high resistance grounding switch.
  • a distributed power distribution system and a method for controlling the distributed power distribution system that cooperates with an islanding prevention device and can suppress overvoltage when a ground fault occurs multiple times during reverse power flow from a distributed power source. can do.
  • FIG. 1 is a schematic configuration diagram of a distributed power distribution system according to a first embodiment
  • FIG. 1 is a high-voltage distribution line voltage waveform of Example 1. It is a high-voltage distribution line voltage waveform of an example different from the present invention.
  • FIG. 2 is a schematic configuration diagram of main parts of a distributed power distribution system according to a second embodiment.
  • FIG. 3 is a schematic configuration diagram of a distributed power distribution system according to a third embodiment.
  • FIG. 3 is a schematic configuration diagram of a distributed power distribution system according to a fourth embodiment.
  • Example 1 Example 1 will be described using FIGS. 1, 2A, and 2B.
  • FIG. 1 is a diagram showing a schematic configuration of a distributed power distribution system 100 according to the first embodiment.
  • a distributed power distribution system 100 includes a power distribution system 200, a distributed power source site 21, and a high voltage distribution line 5.
  • the power distribution system 200 includes a power distribution substation 1 and automatic switches 9a to 9h.
  • the high voltage distribution line 5 connects the distribution substation 1, the high voltage consumers 10a, 10b, and 10c, and the distributed power source site 21.
  • the high voltage consumer 10a is supplied with power via the automatic switches 9a to 9g, and the high voltage consumer 10b is supplied with power via the automatic switches 9a to 9e and 9h. Further, in normal times, the high voltage consumer 10c is supplied with electric power via the automatic switches 9a, 9b, and 9c.
  • the distribution substation 1 includes, as power sending equipment, a first grounded instrument transformer 3a, a sending circuit breaker 8a, a first zero-phase current transformer 4, and a power source 7a.
  • the power distribution system includes automatic switches 9a to 9h.
  • the distributed power source site 21 includes, as power receiving equipment, a second zero-phase current transformer 2a arranged on the high-voltage distribution line 5 within the distributed power source site 21, a capacitor type ground fault detection device 11, and a disconnecting circuit breaker 8b. Equipped with. Further, the distributed power source site 21 includes an islanding prevention device 18, a power source 7b, a switching protection device 14, a load 22, and a power reception control device 15, and supplies power to the load 22.
  • the islanding prevention device 18 detects a power outage on the power distribution system 200 side and shuts off the parallel disconnection circuit breaker 8b.
  • a third zero-phase current transformer 2b is provided on the connection conductor from the power source 7b to the premises busbar, and when a fault current flows due to a failure of the load 22, the third zero-phase current transformer 2b detects it. Then, according to the detection signal from the third zero-phase current transformer 2b, the switching protection device 14 interrupts the protective circuit breaker 8c to protect the power supply 7b.
  • the power reception control device 15 interrupts the disconnection circuit breaker 8b based on the output from a zero-sequence current sensor (not shown).
  • a suppressing switch 17a of the islanding prevention device 18 is provided on the control line connecting the islanding prevention device 18 and the parallel disconnection circuit breaker 8b.
  • a second grounding instrument transformer 3b and a high resistance grounding switch 17b are provided to ground the neutral point of the on-premise power distribution system with high resistance only when a reverse power flow starts from the distributed power source site 21.
  • the distribution substation 1 when the distribution substation 1, the high voltage consumers 10a, 10b, 10c, and the distributed power source site 21 are operating in parallel, if a single line ground fault 30a occurs, the distribution substation 1
  • the first zero-phase current transformer 4 detects the fault current and interrupts the sending circuit breaker 8a.
  • the automatic switches 9a to 9h open when detecting a power outage.
  • the islanding prevention device 18 of the distributed power supply site 21 detects islanding and shuts off the parallel disconnection circuit breaker 8b. Within the distributed power source site 21, autonomous operation continues.
  • the sending circuit breaker 8a in the distribution substation 1 is turned on, and the automatic switches 9a to 9h are turned on in the order of proximity to the distribution substation 1.
  • the sending circuit breaker 8a in the distribution substation 1 is turned on, and then the automatic switch 9a is turned on to complete power restoration. Since the automatic switch 9b is locked open, it is not turned on.
  • the output of the islanding prevention device 18 is suppressed by the suppression switch 17a in the distributed power supply site 21, which suppresses the islanding prevention device. Furthermore, by turning on the high resistance grounding switch 17b, the neutral point of the on-site power distribution system of the distributed power supply site 21 is grounded with high resistance by the second grounding instrument transformer 3b.
  • the automatic switch 9f is locked open.
  • the automatic switch 9d is also opened once.
  • the disconnection circuit breaker 8b of the distributed power source site 21 is turned on again, and the automatic switches 9d, 9e, and 9h are turned on in sequence, the high-voltage consumers 10c and 10b are restored by the reverse power flow from the distributed power source site 21. Powered up.
  • the presence or absence of an accident in a healthy power outage section is detected. If the power capacity of the distributed power source site 21 is insufficient, power restoration may be stopped and power restored only to a range commensurate with the power capacity of the distributed power source site 21.
  • FIGS. 2A and 2B show the system voltage when a single-line ground fault occurs during time-sequential transmission in the reverse direction starting from the distributed power source site 21 in FIG. 1.
  • FIG. 2A is an example according to the first embodiment of the present invention, and shows the system voltage when the neutral point of the on-site power distribution system is grounded with high resistance by the second ground voltage instrument transformer 3b in the distributed power supply site 21.
  • FIG. 2B is an example different from the present invention, and shows the system voltage in the case where the neutral point of the on-premise power distribution system is not grounded to high resistance by the second ground voltage instrument transformer 3b within the distributed power supply site 21.
  • the neutral point of the on-site power distribution system is connected to the second ground voltage instrument transformer 3b by the high resistance grounding switch 17b. By providing high resistance grounding, this overvoltage can be avoided.
  • the ground fault current detection sensitivity at the distribution substation 1 decreases, so the neutral point of the distribution system within the distributed power source site 21 is High resistance grounding using the second grounding instrument transformer 3b is not performed.
  • Embodiment 1 of the present invention when a ground fault occurs in the distributed power distribution system 100, power flows backward from the distributed power source site 21 to the normal power outage section, so that timed sequential transmission starting from the distributed power source site 21 is performed. (backward timed forwarding) detects the presence or absence of a fault section in a healthy power outage section, and the high resistance second grounded instrument transformer 3b placed at the neutral point detects the reverse timed forwarding process. This makes it possible to prevent overvoltage in the power distribution line when multiple ground faults occur, and it becomes possible to safely implement reverse timed transmission.
  • a distributed power distribution system 100 and a method for controlling the distributed power distribution system that can cooperate with the islanding prevention device 18 and suppress overvoltage when a ground fault occurs multiple times during reverse power flow from the distributed power source site 21. can do.
  • Example 2 Next, Example 2 of the present invention will be described.
  • FIG. 3 is a schematic configuration diagram of the distributed power source site 21 of the distributed power distribution system 100 according to the second embodiment.
  • the configuration of the distributed power distribution system 100 other than the distributed power source site 21 is the same as that of the first embodiment shown in FIG. 1, so illustration and detailed description will be omitted.
  • a protection transformer 23 is provided within the distributed power source site 21.
  • One end of the protection transformer 23 is connected to the load 22 and the high resistance grounding switch 17b, and the other end of the protection transformer 23 is connected to the power supply 7b via the protection circuit breaker 8c.
  • a third ground voltage instrument transformer 3c is connected to the connection point (neutral point) between the other end of the protection transformer 23 and the protection circuit breaker 8c.
  • the neutral point of the connection line from the protection transformer 23 to the power supply 7b is always configured to be grounded with high resistance by the third grounding instrument transformer 3c, and earth fault protection is possible. be. Further, reverse time-sequential transmission starting from the distributed power source site 21 is possible, and in that case, the same effect as in the first embodiment can be obtained by turning on the high resistance grounding switch 17b.
  • the second embodiment in addition to being able to obtain the same effects as the first embodiment, it is also possible to improve the ground fault protection performance of the distributed power source site 21.
  • Example 3 of the present invention will be described.
  • FIG. 4 is a schematic configuration diagram of a distributed power distribution system 100 according to the third embodiment.
  • the suppression switch 17a as the islanding prevention device suppression switch in the distributed power source site 21, the high resistance grounding switch 17b, and the disconnection circuit breaker 8b are installed in the power distribution automation system of the central power dispatch center. It is operated by commands from the system (power distribution automation section) 24.
  • the power distribution automation system 24 of the central power dispatch center controls the opening/closing operations of the suppression switch 17a, the high resistance grounding switch 17b, and the disconnection circuit breaker 8b based on the output signal from the islanding prevention device 18.
  • the power distribution automation system 24 controls the opening and closing operations of the sending circuit breaker 8a and automatic switches 9a and 9b.
  • the third embodiment in addition to being able to obtain the same effects as in the first embodiment, it is also possible to perform cooperative control with the power distribution automation system 24 of the central power dispatch center, thereby further improving reliability and safety. Can be done.
  • Example 4 of the present invention will be described.
  • FIG. 5 is a schematic configuration diagram of a distributed power distribution system 100 according to the fourth embodiment.
  • the power reception control device 15 was configured to shut off the protective circuit breaker 8c based on the output from the zero-phase current sensor (not shown), but in the fourth embodiment
  • the second zero-phase current transformer 2a and the capacitor type ground fault detection device 11 are shared by the power reception control device 15 and the islanding prevention device 18 in the power receiving control device.
  • the islanding prevention device 18 and the power receiving control device 15 are supplied with the output signal of the second zero-phase current transformer 2a and the output signal of the capacitor type ground fault detector 11, and the output signal of the second zero-phase current transformer 2a is supplied.
  • the parallel disconnecting circuit breaker 8b is opened and closed according to the output signal or the output signal of the capacitor type ground fault detector 11.
  • the above-mentioned zero-phase current sensor can be omitted.
  • the zero-phase current sensor in addition to obtaining the same effects as the first embodiment, can be omitted, and the number of parts can be reduced.
  • Embodiment 4 can also be applied to Embodiment 2 and Embodiment 3 described above.
  • SYMBOLS 1 Distribution substation, 2a... 2nd zero-phase current transformer, 2b... 3rd zero-phase current transformer, 4... 1st zero-phase current transformer, 3a... th 1 Grounding plane instrument transformer, 3b... Second grounding plane instrument transformer, 3c... Third grounding plane instrument transformer, 5... High voltage distribution line, 7a, 7b... Power supply, 8a... Sending circuit breaker, 8b... Line breaking circuit breaker, 8c... Protective circuit breaker, 9a to 9h... Automatic switch, 10a, 10b, 10c... High voltage consumer (electric power demand section), 11... Capacitor type ground fault detection device, 14... Switching protection device, 15... Power receiving control device, 17a... Suppression switch, 17b...
  • High resistance grounding switch 18... ... Islanding prevention device, 21 ... Distributed power supply site, 22 ... Load, 23 ... Protective transformer, 24 ... Power distribution automation system (power distribution automation department), 30a, 30b ... Line Ground fault accident, 100... Distributed power distribution system, 200... Power distribution system

Abstract

Provided is a distributed electric power source electric power distribution system that cooperates with an anti-islanding device and is able to suppress over-voltages that occur when a ground fault has occurred multiple times during a reverse electric power flow from a distributed electric power source. In the present invention, a distributed electric power source electric power distribution system 100 comprises: an electric power distribution grid 200 that supplies electric power to electric power-demanding units 10a–10c via automatic switches 9a–9h; and a distributed electric power source site 21 that has an electric power source 7b, an anti-islanding device 18, a parallel-off breaker 8b that is connected to a high-voltage electric power distribution line 5 and is opened and closed on the basis of an output signal from the anti-islanding device 18, a switch 17a for controlling the anti-islanding device 18, a second transformer 3b for a grounded measuring instrument, and a high-resistance grounding switch 17b, the distributed electric power source site 21 being connected to the electric power distribution grid 200 via the high-voltage electric power distribution line 5 and supplying electric power to a load 22. When, at the time of a ground fault accident, a reverse electric power flow to the electric power distribution grid 200 that originates from the electric power source 7b of the distributed electric power source site 21 is caused, a neutral point of the distributed electric power source site 21 is grounded via the high-resistance grounding switch 17b, using the second transformer 3b for a grounded measuring instrument temporarily.

Description

分散電源配電システムおよび分散電源配電システムの制御方法Distributed power distribution system and control method for distributed power distribution system
 本発明は、分散電源サイトが接続されている配電系統で、停電時が発生したときに、事故点を推定するための分散電源配電システムおよび分散電源配電システムの制御方法に関する。 The present invention relates to a distributed power distribution system and a method for controlling a distributed power distribution system for estimating a fault point when a power outage occurs in a power distribution system to which distributed power generation sites are connected.
 従来の配電系統の事故点を検出する方法としては、時限順送がある。これは、配電線で事故が発生した時に、配電用変電所の送り出し用遮断器を遮断することで、一旦、配電線を停電させる。その後、配電線の自動開閉器をすべて開放する。次に、配電用変電所の送り出し用遮断器を投入し、その後、配電用変電所から近い順に、配電線を区分する自動開閉器を投入して行く。 A conventional method for detecting fault points in power distribution systems is timed transmission. When an accident occurs on a distribution line, this system temporarily shuts off the distribution line by shutting off the sending circuit breaker at the distribution substation. Then, open all automatic switches on the distribution lines. Next, the sending circuit breakers at the distribution substations are turned on, and then the automatic switches that separate the distribution lines in order of distance from the distribution substations are turned on.
 自動開閉器を投入する結果、事故区間に通電されると、配電線には事故電流が流れる。この事故電流を配電用変電所で検出し、送り出し遮断器を遮断する。その後、配電線の自動開閉器を開放する。この時、事故区間の直前の自動開閉器は再投入されないように開放ロックされる。 As a result of turning on the automatic switch, when the fault section is energized, fault current flows through the distribution line. This fault current is detected at the distribution substation and the sending circuit breaker is shut off. Then, open the automatic switch on the distribution line. At this time, the automatic switch just before the accident section is locked open to prevent it from being turned on again.
 続いて、再び、配電線の送り出し遮断器を投入し、その後、配電用変電所から近い順に、自動開閉器を投入して行く。事故区間の手前の自動開閉器は開放ロックされているため、投入されない。以上の手続きにより、事故区間を検出し、且つ、配電用変電所から事故区間の手前の区間までの復電が完了する。 Next, the distribution line breakers are turned on again, and then the automatic switches are turned on in order of distance from the distribution substation. The automatic switch in front of the accident zone is locked open, so it will not close. Through the above procedure, the accident section is detected and power restoration from the distribution substation to the section before the accident section is completed.
 上記、時限順送では、配電用変電所から直近の事故区間の間に事故点が無いことを検出できるが、事故区間の先の区間(健全停電区間)内の事故点は検出できず、また、事故区間で遮られてしまうため、健全停電区間を復電させることができなかった。 In the timed sequential transmission described above, it is possible to detect that there is no fault point between the distribution substation and the most recent fault section, but it is not possible to detect a fault point in the section beyond the fault section (healthy power outage section). , it was not possible to restore power to the normal outage section because it was blocked by the accident section.
 これを改善するための分散電源配電システムとして、例えば特許文献1に記載のものがある。そのシステムでは、分散電源サイトの電源より、健全停電区間に逆潮流させることで、健全停電区間を復電している。 As a distributed power distribution system for improving this, there is one described in Patent Document 1, for example. In this system, power is restored to the normal outage area by reverse power flowing from the power source at the distributed power generation site to the normal outage area.
特開2009-148098号公報Japanese Patent Application Publication No. 2009-148098
 特許文献1に記載の分散電源配電システムでは、配電系統事故を検出して、分散電源の予備力を考慮した事故復旧を行うことが示されているが、分散電源からの逆潮流をふせぐための単独運転防止装置との協調動作については、考慮されていない。 In the distributed power distribution system described in Patent Document 1, it is shown that a distribution system fault is detected and accident recovery is performed taking into account the reserve power of the distributed power sources. Cooperative operation with the islanding prevention device is not considered.
 また、分散電源からの逆潮流時に地絡が複数回発生した時の配電線中性点の電位変化と過電圧発生を抑制することについても考慮されていない。 Additionally, no consideration is given to suppressing potential changes and overvoltage generation at the distribution line neutral point when ground faults occur multiple times during reverse power flow from distributed power sources.
 そこで、本発明は、単独運転防止装置と協調し、また、分散電源からの逆潮流時に地絡が複数回発生した時の過電圧を抑制できる分散電源配電システムおよび分散電源配電システムの制御方法を提供することを目的とする。 Therefore, the present invention provides a distributed power distribution system and a method for controlling the distributed power distribution system that cooperates with an islanding prevention device and can suppress overvoltage when a ground fault occurs multiple times during reverse power flow from a distributed power source. The purpose is to
 上記の目的を達成するため、本発明は次の様に構成される。 In order to achieve the above object, the present invention is configured as follows.
 分散電源配電システムにおいて、電力需要部に、自動開閉器を介して電力を供給する配電系統と、電源と、単独運転防止装置と、前記高圧配電線に接続され、前記単独運転防止装置の出力信号に基づいて開閉される解列用遮断器と、前記単独運転防止装置の抑制用スイッチと、第2接地形計器用変圧器と、高抵抗接地スイッチと、を有し、前記配電系統に前記高圧配電線を介して接続され、負荷に電力を供給する分散電源サイトと、を備え、地絡事故時に、前記分散電源サイトの前記電源を起点として、前記配電系統に逆潮流させる時に、一時的に前記第2接地形計器用変圧器を用いて前記分散電源サイトの中性点を、前記高抵抗接地スイッチを介して接地させる。 In a distributed power distribution system, a distribution system that supplies power to a power demand unit via an automatic switch, a power supply, an islanding prevention device, and an output signal of the islanding prevention device connected to the high voltage distribution line. a disconnection circuit breaker that opens and closes based on the voltage, a suppressing switch for the islanding prevention device, a second grounding instrument transformer, and a high-resistance grounding switch; a distributed power source site that is connected via a distribution line and supplies power to loads, and in the event of a ground fault, when reverse power is caused to flow from the power source of the distributed power source site to the distribution system as a starting point, temporarily The second grounded potential transformer is used to ground the neutral point of the distributed power site via the high resistance ground switch.
 また、電力需要部に、自動開閉器を介して電力を供給する配電系統と、高圧配電線により、前記配電系統とに接続され、負荷に電力を供給する分散電源サイトとを備える分散電源システムの制御方法において、地絡事故時に、前記分散電源サイトの電源を起点として、前記配電系統に逆潮流させる時に、一時的に第2接地形計器用変圧器を用いて前記分散電源サイトの中性点を、高抵抗接地スイッチを介して接地する。 Further, a distributed power supply system comprising a power distribution system that supplies power to the power demand section via an automatic switch, and a distributed power supply site that is connected to the power distribution system by a high-voltage distribution line and supplies power to the load. In the control method, in the event of a ground fault, when reverse power flow is caused from the power source at the distributed power source site to the distribution system, a second ground voltage instrument transformer is temporarily used as a neutral point of the distributed power source site. is grounded via a high resistance grounding switch.
 本発明によれば、単独運転防止装置と協調し、また、分散電源からの逆潮流時に地絡が複数回発生した時の過電圧を抑制できる分散電源配電システムおよび分散電源配電システムの制御方法を提供することができる。 According to the present invention, there is provided a distributed power distribution system and a method for controlling the distributed power distribution system that cooperates with an islanding prevention device and can suppress overvoltage when a ground fault occurs multiple times during reverse power flow from a distributed power source. can do.
実施例1の分散電源配電システムの概略構成図である。1 is a schematic configuration diagram of a distributed power distribution system according to a first embodiment; FIG. 実施例1の高圧配電線電圧波形である。1 is a high-voltage distribution line voltage waveform of Example 1. 本発明とは異なる例の高圧配電線電圧波形である。It is a high-voltage distribution line voltage waveform of an example different from the present invention. 実施例2の分散電源配電システムの要部概略構成図である。FIG. 2 is a schematic configuration diagram of main parts of a distributed power distribution system according to a second embodiment. 実施例3の分散電源配電システムの概略構成図である。FIG. 3 is a schematic configuration diagram of a distributed power distribution system according to a third embodiment. 実施例4の分散電源配電システムの概略構成図である。FIG. 3 is a schematic configuration diagram of a distributed power distribution system according to a fourth embodiment.
 以下、本発明を実施する上で好適となる実施例について図面を用いて説明する。なお、以下の説明は、あくまでも実施例に過ぎず、発明の内容が下記具体的態様に限定されるものではない。本発明は、下記態様を含めて種々の態様に変形することが無論可能である。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. Note that the following description is merely an example, and the content of the invention is not limited to the specific embodiments below. It goes without saying that the present invention can be modified into various embodiments including the following embodiments.
 (実施例1)
 実施例1について図1、図2A及び図2Bを用いて説明する。
(Example 1)
Example 1 will be described using FIGS. 1, 2A, and 2B.
 図1は実施例1の分散電源配電システム100の概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of a distributed power distribution system 100 according to the first embodiment.
 図1において、分散電源配電システム100は、配電系統200と、分散電源サイト21と、高圧配電線5とを備える。配電系統200は、配電用変電所1、自動開閉器9a~9hを備える。 In FIG. 1, a distributed power distribution system 100 includes a power distribution system 200, a distributed power source site 21, and a high voltage distribution line 5. The power distribution system 200 includes a power distribution substation 1 and automatic switches 9a to 9h.
 高圧配電線5は、配電用変電所1、高圧需要家10a、10b及び10cと分散電源サイト21とを接続する。 The high voltage distribution line 5 connects the distribution substation 1, the high voltage consumers 10a, 10b, and 10c, and the distributed power source site 21.
 通常時には、高圧需要家10aは、自動開閉器9a~9gを介して電力が供給され、高圧需要家10bは、自動開閉器9a~9e、及び9hを介して電力が供給される。また、通常時には、高圧需要家10cは、自動開閉器9a、9b及び9cを介して電力が供給される。 In normal times, the high voltage consumer 10a is supplied with power via the automatic switches 9a to 9g, and the high voltage consumer 10b is supplied with power via the automatic switches 9a to 9e and 9h. Further, in normal times, the high voltage consumer 10c is supplied with electric power via the automatic switches 9a, 9b, and 9c.
 配電用変電所1は、電力送り出し設備として、第1接地形計器用変圧器3aと、送り出し遮断器8aと、第1零相変流器4と、電源7aとを備える。 The distribution substation 1 includes, as power sending equipment, a first grounded instrument transformer 3a, a sending circuit breaker 8a, a first zero-phase current transformer 4, and a power source 7a.
 また、配電系統は、自動開閉器9a~9hを備える。 Additionally, the power distribution system includes automatic switches 9a to 9h.
 分散電源サイト21は、受電設備として、分散電源サイト21内の高圧配電線5に配置される第2零相変流器2aと、コンデンサ形地絡検出装置11と、解列用遮断器8bとを備える。また、分散電源サイト21は、単独運転防止装置18と、電源7bと、開閉保護装置14と、負荷22と、受電制御装置15を備え、負荷22に電力を供給する。 The distributed power source site 21 includes, as power receiving equipment, a second zero-phase current transformer 2a arranged on the high-voltage distribution line 5 within the distributed power source site 21, a capacitor type ground fault detection device 11, and a disconnecting circuit breaker 8b. Equipped with. Further, the distributed power source site 21 includes an islanding prevention device 18, a power source 7b, a switching protection device 14, a load 22, and a power reception control device 15, and supplies power to the load 22.
 単独運転防止装置18は、電源7bと配電系統200が並列運転している場合に、配電系統200側の停電を検出して、解列用遮断器8bを遮断する。電源7bから構内母線への接続導体には第3零相変流器2bが設けられ、負荷22が故障するなどで事故電流が流れると第3零相変流器2bがそれを検出する。そして、第3零相変流器2bからの検出信号に従って、開閉保護装置14が保護用遮断器8cを遮断して電源7bを保護する。 When the power supply 7b and the power distribution system 200 are operating in parallel, the islanding prevention device 18 detects a power outage on the power distribution system 200 side and shuts off the parallel disconnection circuit breaker 8b. A third zero-phase current transformer 2b is provided on the connection conductor from the power source 7b to the premises busbar, and when a fault current flows due to a failure of the load 22, the third zero-phase current transformer 2b detects it. Then, according to the detection signal from the third zero-phase current transformer 2b, the switching protection device 14 interrupts the protective circuit breaker 8c to protect the power supply 7b.
 受電制御装置15は、図示しない零相電流センサからの出力に基づいて、解列用遮断器8bを遮断する。 The power reception control device 15 interrupts the disconnection circuit breaker 8b based on the output from a zero-sequence current sensor (not shown).
 実施例1では、単独運転防止装置18と解列用遮断器8bとを接続する制御線に単独運転防止装置18の抑制用スイッチ17aを設ける。また、分散電源サイト21を起点とする逆潮流時のみに、構内配電系の中性点を高抵抗接地する第2接地形計器用変圧器3bと高抵抗接地スイッチ17bを設ける。 In the first embodiment, a suppressing switch 17a of the islanding prevention device 18 is provided on the control line connecting the islanding prevention device 18 and the parallel disconnection circuit breaker 8b. In addition, a second grounding instrument transformer 3b and a high resistance grounding switch 17b are provided to ground the neutral point of the on-premise power distribution system with high resistance only when a reverse power flow starts from the distributed power source site 21.
 この分散電源配電システム100で、配電用変電所1、高圧需要家10a、10b、10cおよび分散電源サイト21が並列運転している時に、一線地絡事故30aが発生すると、配電用変電所1の第1零相変流器4が、事故電流を検出し、送り出し遮断器8aを遮断する。自動開閉器9a~9hは、停電を検出して開放する。 In this distributed power distribution system 100, when the distribution substation 1, the high voltage consumers 10a, 10b, 10c, and the distributed power source site 21 are operating in parallel, if a single line ground fault 30a occurs, the distribution substation 1 The first zero-phase current transformer 4 detects the fault current and interrupts the sending circuit breaker 8a. The automatic switches 9a to 9h open when detecting a power outage.
 また、分散電源サイト21の単独運転防止装置18は、単独運転を検出して、解列用遮断器8bを遮断する。分散電源サイト21内では、自立運転が継続される。 Furthermore, the islanding prevention device 18 of the distributed power supply site 21 detects islanding and shuts off the parallel disconnection circuit breaker 8b. Within the distributed power source site 21, autonomous operation continues.
 復電時には、配電用変電所1内の送り出し遮断器8aを投入し、配電用変電所1に近い順に自動開閉器9a~9hを投入して行く。 When power is restored, the sending circuit breaker 8a in the distribution substation 1 is turned on, and the automatic switches 9a to 9h are turned on in the order of proximity to the distribution substation 1.
 自動開閉器9aを投入してから一定時間後に、自動開閉器9bを投入すると、一線地絡事故30aに対して事故電流が流れる。その事故電流を配電用変電所1で検出し、送り出し遮断器8aを遮断する。自動開閉器9a、9bは開放されるが、自動開閉器9bは投入後に無電圧になる時間が短いため、開放ロックされる。 When the automatic switch 9b is turned on after a certain period of time after the automatic switch 9a is turned on, a fault current flows to the single line ground fault fault 30a. The fault current is detected at the distribution substation 1, and the sending circuit breaker 8a is shut off. The automatic switches 9a and 9b are opened, but the automatic switch 9b is locked open because the time when there is no voltage after turning on is short.
 一定時間後に、配電用変電所1内の送り出し遮断器8aを投入し、次に自動開閉器9aを投入して復電が完了する。自動開閉器9bは開放ロックされているため、投入されない。 After a certain period of time, the sending circuit breaker 8a in the distribution substation 1 is turned on, and then the automatic switch 9a is turned on to complete power restoration. Since the automatic switch 9b is locked open, it is not turned on.
 自動開閉器9bと9cとの間には一線地絡事故30aが存在するが、自動開閉器9c以遠(9c~9h)に事故が存在するか否かは、配電用変電所1を起点とする時限順送では検出できない。 Although there is a single-line ground fault 30a between automatic switches 9b and 9c, whether there is an accident beyond automatic switch 9c (9c to 9h) is determined from the distribution substation 1. It cannot be detected by timed sequential transmission.
 本発明の実施例1では、逆潮流を発生する場合には、分散電源サイト21内の単独運転防止装置抑制としての抑制用スイッチ17aで単独運転防止装置18の出力を抑制する。また、高抵抗接地スイッチ17bを投入することで、分散電源サイト21の構内配電系の中性点を第2接地形計器用変圧器3bで高抵抗接地する。 In the first embodiment of the present invention, when a reverse power flow is generated, the output of the islanding prevention device 18 is suppressed by the suppression switch 17a in the distributed power supply site 21, which suppresses the islanding prevention device. Furthermore, by turning on the high resistance grounding switch 17b, the neutral point of the on-site power distribution system of the distributed power supply site 21 is grounded with high resistance by the second grounding instrument transformer 3b.
 この状態で、解列用遮断器8bを投入すると逆潮流が発生し、分散電源サイト21を起点とする逆方向の時限順送が可能になる。 In this state, when the parallel disconnection circuit breaker 8b is turned on, a reverse power flow occurs, and time-limited sequential transmission in the reverse direction starting from the distributed power source site 21 becomes possible.
 具体的には、自動開閉器9d、9cを順次投入すると事故電流が流れるため、解列用遮断器8bを遮断する。自動開閉器9cは開放ロックされ、次の復電時には投入されず、自動開閉器9cの手前まで復電される。次に、自動開閉器9e、9fを投入すると事故電流が流れるため、分散電源サイト21の解列用遮断器8bを遮断する。 Specifically, when the automatic switches 9d and 9c are sequentially turned on, a fault current flows, so the disconnection circuit breaker 8b is cut off. The automatic switch 9c is locked open, and the power is not turned on at the next power restoration, but the power is restored to just before the automatic switch 9c. Next, when the automatic switches 9e and 9f are turned on, a fault current flows, so the disconnection circuit breaker 8b of the distributed power supply site 21 is shut off.
 同様に、自動開閉器9fは開放ロックされる。自動開閉器9dも一旦開放される。次に、再度、分散電源サイト21の解列用遮断器8bを投入し、自動開閉器9d、9e、9hを順次投入すると、高圧需要家10c、10bは分散電源サイト21からの逆潮流で復電される。 Similarly, the automatic switch 9f is locked open. The automatic switch 9d is also opened once. Next, when the disconnection circuit breaker 8b of the distributed power source site 21 is turned on again, and the automatic switches 9d, 9e, and 9h are turned on in sequence, the high-voltage consumers 10c and 10b are restored by the reverse power flow from the distributed power source site 21. Powered up.
 以上の手続きにより、健全停電区間の事故の有無が検出される。分散電源サイト21の電源容量が不足する場合には、復電を中止し、分散電源サイト21の電源容量に見合った範囲のみを再度復電してもよい。 Through the above procedure, the presence or absence of an accident in a healthy power outage section is detected. If the power capacity of the distributed power source site 21 is insufficient, power restoration may be stopped and power restored only to a range commensurate with the power capacity of the distributed power source site 21.
 図2A及び図2Bは、図1の分散電源サイト21を起点とする逆方向の時限順送時に、一線地絡が発生した場合の系統電圧を示す。 FIGS. 2A and 2B show the system voltage when a single-line ground fault occurs during time-sequential transmission in the reverse direction starting from the distributed power source site 21 in FIG. 1.
 図2Aは、本発明の実施例1による例であり、分散電源サイト21内で、構内配電系の中性点を第2接地形計器用変圧器3bで高抵抗接地する場合の系統電圧を示し、図2Bは、本発明とは異なる例であり、分散電源サイト21内で、構内配電系の中性点を第2接地形計器用変圧器3bで高抵抗接地しない場合の系統電圧を示す。 FIG. 2A is an example according to the first embodiment of the present invention, and shows the system voltage when the neutral point of the on-site power distribution system is grounded with high resistance by the second ground voltage instrument transformer 3b in the distributed power supply site 21. , FIG. 2B is an example different from the present invention, and shows the system voltage in the case where the neutral point of the on-premise power distribution system is not grounded to high resistance by the second ground voltage instrument transformer 3b within the distributed power supply site 21.
 図2Aでは一線地絡が収束すると、系統の中性点電位が減衰し、ゼロに漸近する。その後、0.55秒近辺で一線地絡が発生しても、過電圧は発生しない。 In FIG. 2A, when the single-line ground fault converges, the neutral point potential of the system attenuates and approaches zero. After that, even if a single line ground fault occurs around 0.55 seconds, no overvoltage occurs.
 他方、図2Bでは一線地絡が収束後、系統の中性点電位が減衰せずに直流分が残留する。その状態で、0.55秒近辺で一線地絡が発生すると、シフトした中性点電圧の分だけ過渡的な電位振動の振幅が大きくなるため、大きな過電圧が発生する。 On the other hand, in FIG. 2B, after the one-line ground fault is resolved, the neutral point potential of the system is not attenuated and a DC component remains. In this state, if a single line ground fault occurs in the vicinity of 0.55 seconds, the amplitude of the transient potential oscillation increases by the shifted neutral point voltage, resulting in a large overvoltage.
 分散電源サイト21を起点とする逆方向の時限順送時のみに、分散電源サイト21内で、構内配電系の中性点を、高抵抗接地スイッチ17bにより第2接地形計器用変圧器3bで高抵抗接地することで、その過電圧発生を回避できる。 Only during timed forwarding in the reverse direction starting from the distributed power source site 21, within the distributed power source site 21, the neutral point of the on-site power distribution system is connected to the second ground voltage instrument transformer 3b by the high resistance grounding switch 17b. By providing high resistance grounding, this overvoltage can be avoided.
 分散電源サイト21を起点とする逆方向の時限順送以外の状態では、配電用変電所1での地絡電流検出感度が低下するため、分散電源サイト21内での配電系の中性点の第2接地形計器用変圧器3bを用いた高抵抗接地は行わない。 In conditions other than time-sequential transmission in the reverse direction starting from the distributed power source site 21, the ground fault current detection sensitivity at the distribution substation 1 decreases, so the neutral point of the distribution system within the distributed power source site 21 is High resistance grounding using the second grounding instrument transformer 3b is not performed.
 本発明の実施例1によれば、分散電源配電システム100に地絡事故が発生した場合、分散電源サイト21から健全停電区間に逆潮流することで、分散電源サイト21を起点とする時限順送(逆方向時限順送)によって、健全停電区間の事故区間の有無を検出するとともに、中性点に配置された高抵抗の第2接地形計器用変圧器3bにより、逆方向時限順送の過程で、複数回の地絡が発生した時の配電線の過電圧を防止することができ、安全に逆時限順送を実施することが可能になる。 According to Embodiment 1 of the present invention, when a ground fault occurs in the distributed power distribution system 100, power flows backward from the distributed power source site 21 to the normal power outage section, so that timed sequential transmission starting from the distributed power source site 21 is performed. (backward timed forwarding) detects the presence or absence of a fault section in a healthy power outage section, and the high resistance second grounded instrument transformer 3b placed at the neutral point detects the reverse timed forwarding process. This makes it possible to prevent overvoltage in the power distribution line when multiple ground faults occur, and it becomes possible to safely implement reverse timed transmission.
 よって、単独運転防止装置18と協調し、また、分散電源サイト21からの逆潮流時に地絡が複数回発生した時の過電圧を抑制できる分散電源配電システム100および分散電源配電システムの制御方法を提供することができる。 Therefore, we provide a distributed power distribution system 100 and a method for controlling the distributed power distribution system that can cooperate with the islanding prevention device 18 and suppress overvoltage when a ground fault occurs multiple times during reverse power flow from the distributed power source site 21. can do.
 (実施例2)
 次に、本発明の実施例2について説明する。
(Example 2)
Next, Example 2 of the present invention will be described.
 図3は、実施例2による分散電源配電システム100の分散電源サイト21の概略構成図である。 FIG. 3 is a schematic configuration diagram of the distributed power source site 21 of the distributed power distribution system 100 according to the second embodiment.
 分散電源サイト21以外の分散電源配電システム100の構成は図1に示した実施例1と同様であるので、図示及び詳細な説明は省略する。 The configuration of the distributed power distribution system 100 other than the distributed power source site 21 is the same as that of the first embodiment shown in FIG. 1, so illustration and detailed description will be omitted.
 本実施例2では、分散電源サイト21内に保護用変圧器23が設けられている。保護用変圧器23の一方端が、負荷22と高抵抗接地スイッチ17bとに接続され、保護用変圧器23の他方端は、保護用遮断器8cを介して電源7bに接続されている。 In the second embodiment, a protection transformer 23 is provided within the distributed power source site 21. One end of the protection transformer 23 is connected to the load 22 and the high resistance grounding switch 17b, and the other end of the protection transformer 23 is connected to the power supply 7b via the protection circuit breaker 8c.
 また、保護用変圧器23の他方端と保護用遮断器8cとの接続点(中性点)には、第3接地形計器用変圧器3cが接続されている。 Further, a third ground voltage instrument transformer 3c is connected to the connection point (neutral point) between the other end of the protection transformer 23 and the protection circuit breaker 8c.
 実施例2においては、保護用変圧器23から電源7bに到る接続線の中性点は常時、第3接地形計器用変圧器3cによって高抵抗接地可能に構成され、地絡保護が可能である。また、分散電源サイト21起点の逆時限順送は可能であり、その際は、高抵抗接地スイッチ17bを投入することで、実施例1と同様の効果を得ることができる。 In the second embodiment, the neutral point of the connection line from the protection transformer 23 to the power supply 7b is always configured to be grounded with high resistance by the third grounding instrument transformer 3c, and earth fault protection is possible. be. Further, reverse time-sequential transmission starting from the distributed power source site 21 is possible, and in that case, the same effect as in the first embodiment can be obtained by turning on the high resistance grounding switch 17b.
 実施例2によれば、実施例1と同様な効果を得ることができる他、分散電源サイト21の地絡保護性能を向上することができる。 According to the second embodiment, in addition to being able to obtain the same effects as the first embodiment, it is also possible to improve the ground fault protection performance of the distributed power source site 21.
 (実施例3)
 次に、本発明の実施例3について説明する。
(Example 3)
Next, Example 3 of the present invention will be described.
 図4は、実施例3による分散電源配電システム100の概略構成図である。 FIG. 4 is a schematic configuration diagram of a distributed power distribution system 100 according to the third embodiment.
 図4において、本実施例3では、分散電源サイト21内の単独運転防止装置抑制スイッチとしての抑制用スイッチ17a、高抵抗接地スイッチ17b、解列用遮断器8bを、中央給電指令所の配電自動化システム(配電自動化部)24からの指令で操作する。中央給電指令所の配電自動化システム24は、単独運転防止装置18からの出力信号に基づいて、抑制用スイッチ17a、高抵抗接地スイッチ17bおよび解列用遮断器8bの開閉動作を制御する。 In FIG. 4, in the third embodiment, the suppression switch 17a as the islanding prevention device suppression switch in the distributed power source site 21, the high resistance grounding switch 17b, and the disconnection circuit breaker 8b are installed in the power distribution automation system of the central power dispatch center. It is operated by commands from the system (power distribution automation section) 24. The power distribution automation system 24 of the central power dispatch center controls the opening/closing operations of the suppression switch 17a, the high resistance grounding switch 17b, and the disconnection circuit breaker 8b based on the output signal from the islanding prevention device 18.
 また、配電自動化システム24は、送り出し遮断器8a、自動開閉器9a、9bの開閉動作を制御する。 Additionally, the power distribution automation system 24 controls the opening and closing operations of the sending circuit breaker 8a and automatic switches 9a and 9b.
 本実施例3によれば、実施例1と同様な効果を得ることができる他、中央給電指令所の配電自動化システム24との協調制御が可能となり、信頼性及び安全性を、より向上することができる。 According to the third embodiment, in addition to being able to obtain the same effects as in the first embodiment, it is also possible to perform cooperative control with the power distribution automation system 24 of the central power dispatch center, thereby further improving reliability and safety. Can be done.
 (実施例4)
 次に、本発明の実施例4について説明する。
(Example 4)
Next, Example 4 of the present invention will be described.
 図5は、実施例4による分散電源配電システム100の概略構成図である。 FIG. 5 is a schematic configuration diagram of a distributed power distribution system 100 according to the fourth embodiment.
 実施例4について図5を用いて説明する。 Example 4 will be explained using FIG. 5.
 実施例1においては、受電制御装置15は、図示しない零相電流センサからの出力に基づいて、保護用遮断器8cを遮断する構成となっていたが、本実施例4では、分散電源サイト21内の受電制御装置15と単独運転防止装置18で、第2零相変流器2aとコンデンサ形地絡検出装置11を共用する。 In the first embodiment, the power reception control device 15 was configured to shut off the protective circuit breaker 8c based on the output from the zero-phase current sensor (not shown), but in the fourth embodiment The second zero-phase current transformer 2a and the capacitor type ground fault detection device 11 are shared by the power reception control device 15 and the islanding prevention device 18 in the power receiving control device.
 つまり、単独運転防止装置18および受電制御装置15には、第2零相変流器2aの出力信号およびコンデンサ形地絡検出器11の出力信号が供給され、第2零相変流器2aの出力信号またはコンデンサ形地絡検出器11の出力信号に従って解列用遮断器8bを開閉する。 In other words, the islanding prevention device 18 and the power receiving control device 15 are supplied with the output signal of the second zero-phase current transformer 2a and the output signal of the capacitor type ground fault detector 11, and the output signal of the second zero-phase current transformer 2a is supplied. The parallel disconnecting circuit breaker 8b is opened and closed according to the output signal or the output signal of the capacitor type ground fault detector 11.
 これにより、上記零相電流センサを省略することができる。 Thereby, the above-mentioned zero-phase current sensor can be omitted.
 実施例4によれば、実施例1と同様な効果を得ることができる他、上記零相電流センサを省略することができ、部品点数を削減することができる。 According to the fourth embodiment, in addition to obtaining the same effects as the first embodiment, the zero-phase current sensor can be omitted, and the number of parts can be reduced.
 なお、実施例4は、上述した実施例2や実施例3に適用することも可能である。 Note that Embodiment 4 can also be applied to Embodiment 2 and Embodiment 3 described above.
 1・・・配電用変電所、2a・・・第2零相変流器、2b・・・第3零相変流器、4・・・第1零相変流器、3a・・・第1接地形計器用変圧器、3b・・・第2接地形計器用変圧器、3c・・・第3接地形計器用変圧器、5・・・高圧配電線、7a、7b・・・電源、8a・・・送り出し遮断器、8b・・・解列用遮断器、8c・・・保護用遮断器、9a~9h・・・自動開閉器、10a、10b、10c・・・高圧需要家(電力需要部)、11・・・コンデンサ形地絡検出装置、14・・・開閉保護装置、15・・・受電制御装置、17a・・・抑制用スイッチ、17b・・・高抵抗接地スイッチ、18・・・単独運転防止装置、21・・・分散電源サイト、22・・・負荷、23・・・保護用変圧器、24・・・配電自動化システム(配電自動化部)、30a、30b・・・一線地絡事故、100・・・分散電源配電システム、200・・・配電系統 DESCRIPTION OF SYMBOLS 1... Distribution substation, 2a... 2nd zero-phase current transformer, 2b... 3rd zero-phase current transformer, 4... 1st zero-phase current transformer, 3a... th 1 Grounding plane instrument transformer, 3b... Second grounding plane instrument transformer, 3c... Third grounding plane instrument transformer, 5... High voltage distribution line, 7a, 7b... Power supply, 8a... Sending circuit breaker, 8b... Line breaking circuit breaker, 8c... Protective circuit breaker, 9a to 9h... Automatic switch, 10a, 10b, 10c... High voltage consumer (electric power demand section), 11... Capacitor type ground fault detection device, 14... Switching protection device, 15... Power receiving control device, 17a... Suppression switch, 17b... High resistance grounding switch, 18... ... Islanding prevention device, 21 ... Distributed power supply site, 22 ... Load, 23 ... Protective transformer, 24 ... Power distribution automation system (power distribution automation department), 30a, 30b ... Line Ground fault accident, 100... Distributed power distribution system, 200... Power distribution system

Claims (6)

  1.  電力需要部に、自動開閉器を介して電力を供給する配電系統と、
     電源と、単独運転防止装置と、高圧配電線に接続され、前記単独運転防止装置の出力信号に基づいて開閉される解列用遮断器と、前記単独運転防止装置の抑制用スイッチと、第2接地形計器用変圧器と、高抵抗接地スイッチと、を有し、前記配電系統に前記高圧配電線を介して接続され、負荷に電力を供給する分散電源サイトと、
     を備え、
     地絡事故時に、前記分散電源サイトの前記電源を起点として、前記配電系統に逆潮流させる逆潮流時に、一時的に前記第2接地形計器用変圧器を用いて前記分散電源サイトの中性点を、前記高抵抗接地スイッチを介して接地されることを特徴とする分散電源配電システム。
    A power distribution system that supplies power to the power demand section via an automatic switch;
    a power supply, an islanding prevention device, a parallel disconnection circuit breaker connected to a high-voltage distribution line and opened and closed based on an output signal of the islanding prevention device, a suppressing switch for the islanding prevention device, and a second a distributed power source site that has a grounded instrument transformer and a high resistance ground switch, is connected to the power distribution system via the high voltage distribution line, and supplies power to a load;
    Equipped with
    In the event of a ground fault, when reverse power flows from the power source of the distributed power source site to the distribution system, the second ground voltage instrument transformer is temporarily used to temporarily connect the neutral point of the distributed power source site to the power distribution system. is grounded via the high resistance grounding switch.
  2.  請求項1に記載の分散電源配電システムにおいて、
     前記分散電源サイトは、保護用変圧器と、第3零相変流器と、第3接地形計器用変圧器と、保護用遮断器と、 開閉保護装置と、を備え、
     前記電源は、前記保護用遮断器、前記第3零相変流器および前記保護用変圧器を介して前記分散電源サイトの前記中性点および前記負荷に接続され、前記第3零相変流器が事故電流を検出すると、前記開閉保護装置は、前記保護用遮断器を遮断することを特徴とする分散電源配電システム。 
    The distributed power distribution system according to claim 1,
    The distributed power source site includes a protection transformer, a third zero-phase current transformer, a third ground voltage instrument transformer, a protection circuit breaker, and a switching protection device,
    The power source is connected to the neutral point and the load of the distributed power source site via the protective circuit breaker, the third zero-phase current transformer, and the protective transformer, and the third zero-phase current transformer 1. A distributed power supply distribution system, wherein the switching protection device interrupts the protective circuit breaker when the circuit breaker detects a fault current.
  3.  請求項1に記載の分散電源配電システムにおいて、
     前記分散電源サイトの前記解列用遮断器、前記抑制用スイッチおよび前記高抵抗接地スイッチの開閉動作を、前記単独運転防止装置からの出力信号に基づいて制御することを特徴とする分散電源配電システム。
    The distributed power distribution system according to claim 1,
    A distributed power supply distribution system characterized in that opening and closing operations of the parallel disconnection circuit breaker, the suppression switch, and the high resistance grounding switch of the distributed power supply site are controlled based on an output signal from the islanding prevention device. .
  4.  請求項1に記載の分散電源配電システムにおいて、
     前記分散電源サイトは、前記分散電源サイト内の前記高圧配電線に配置される第2零相変流器と、コンデンサ形地絡検出器と、受電制御装置と、を備え、
     前記単独運転防止装置および前記受電制御装置は、前記第2零相変流器の出力信号および前記コンデンサ形地絡検出器の出力信号が供給され、前記第2零相変流器の出力信号または前記コンデンサ形地絡検出器の出力信号に従って前記解列用遮断器を開閉することを特徴とする分散電源配電システム。
    The distributed power distribution system according to claim 1,
    The distributed power source site includes a second zero-phase current transformer disposed on the high voltage distribution line in the distributed power source site, a capacitor type ground fault detector, and a power reception control device,
    The islanding prevention device and the power reception control device are supplied with the output signal of the second zero-phase current transformer and the output signal of the capacitor-type ground fault detector, and the output signal of the second zero-phase current transformer or A distributed power supply distribution system characterized in that the parallel disconnection circuit breaker is opened and closed according to the output signal of the capacitor type ground fault detector.
  5.  電力需要部に、自動開閉器を介して電力を供給する配電系統と、高圧配電線により、前記配電系統とに接続され、負荷に電力を供給する分散電源サイトとを備える分散電源システムの制御方法において、
     地絡事故時に、前記分散電源サイトの電源を起点として、前記配電系統に逆潮流させる逆潮流時に、一時的に第2接地形計器用変圧器を用いて前記分散電源サイトの中性点を、高抵抗接地スイッチを介して接地することを特徴とする分散電源配電システムの制御方法。
    A method for controlling a distributed power supply system comprising a power distribution system that supplies power to a power demand unit via an automatic switch, and a distributed power supply site that is connected to the power distribution system through a high-voltage distribution line and supplies power to a load. In,
    In the event of a ground fault, when reverse power flows from the power source at the distributed power source site to the distribution system, the neutral point of the distributed power source site is temporarily connected to the neutral point of the distributed power source site using a second ground voltage instrument transformer. A method for controlling a distributed power distribution system characterized by grounding through a high resistance grounding switch.
  6.  請求項5に記載の分散電源配電システムの制御方法において、
     前記電源は、保護用遮断器、第3零相変流器および保護用変圧器を介して前記分散電源サイトの前記中性点および前記負荷に接続されており、前記第3零相変流器が事故電流を検出すると、前記保護用遮断器を遮断することを特徴とする分散電源配電システムの制御方法。
    The method for controlling a distributed power distribution system according to claim 5,
    The power source is connected to the neutral point and the load of the distributed power source site via a protective circuit breaker, a third zero-phase current transformer, and a protective transformer, and the third zero-phase current transformer 1. A method for controlling a distributed power distribution system, comprising: cutting off the protective circuit breaker when the protection circuit breaker detects a fault current.
PCT/JP2023/017998 2022-07-25 2023-05-12 Distributed electric power source electric power distribution system and method for controlling distributed electric power source electric power distribution system WO2024024214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022117821A JP2024015626A (en) 2022-07-25 2022-07-25 Distributed power distribution system and control method for distributed power distribution system
JP2022-117821 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024024214A1 true WO2024024214A1 (en) 2024-02-01

Family

ID=89705990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017998 WO2024024214A1 (en) 2022-07-25 2023-05-12 Distributed electric power source electric power distribution system and method for controlling distributed electric power source electric power distribution system

Country Status (2)

Country Link
JP (1) JP2024015626A (en)
WO (1) WO2024024214A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148098A (en) * 2007-12-14 2009-07-02 Toshiba Corp System, method, and program for performing distribution line automatic control
JP2011155795A (en) * 2010-01-28 2011-08-11 Toshiba Corp Photovoltaic generation operation system
JP2014082851A (en) * 2012-10-15 2014-05-08 Chuden Gijutsu Consultant Kk Power supply system and power supply method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148098A (en) * 2007-12-14 2009-07-02 Toshiba Corp System, method, and program for performing distribution line automatic control
JP2011155795A (en) * 2010-01-28 2011-08-11 Toshiba Corp Photovoltaic generation operation system
JP2014082851A (en) * 2012-10-15 2014-05-08 Chuden Gijutsu Consultant Kk Power supply system and power supply method

Also Published As

Publication number Publication date
JP2024015626A (en) 2024-02-06

Similar Documents

Publication Publication Date Title
Nikkhajoei et al. Microgrid protection
US8837097B2 (en) Protection, monitoring or indication apparatus for a direct current electrical generating apparatus or a plurality of strings
JP3184459B2 (en) Power receiving protection device
US20100103577A1 (en) Apparatus and method for preventing reverse power flow of over current relay
JP2001124814A (en) Insulation deterioration detection device in inverter device, and solar power generating system, and electric vehicle using it
JP7218497B2 (en) Ground fault protection relay system
WO2024024214A1 (en) Distributed electric power source electric power distribution system and method for controlling distributed electric power source electric power distribution system
JP2728398B2 (en) Spot network power receiving substation protection device
JP7347952B2 (en) protection device
JP6797073B2 (en) Operation control device and power generation equipment
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP4072961B2 (en) Control device with system interconnection protection function of SOG switch
JP4149962B2 (en) Isolated operation prevention device
CN214755490U (en) Neutral point protection device for non-effective grounding diesel generator set
JPH0150168B2 (en)
Brewis et al. Theory and practical performance of interlocked overcurrent busbar zone protection in distribution substations
JP2620916B2 (en) Grid connection protection device
JP2005094897A (en) Single operation prevention device
JP2581553B2 (en) Distribution system protection system
JP2691692B2 (en) Grid connection protection device
JPH06343231A (en) System-interconnection protecting apparatus
JPH01114332A (en) Protective device for power receiving substation facility
JPH026292B2 (en)
JPS605727A (en) Defect current breaking system
JP2623933B2 (en) Gas switchgear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845953

Country of ref document: EP

Kind code of ref document: A1