JPH026292B2 - - Google Patents

Info

Publication number
JPH026292B2
JPH026292B2 JP57203223A JP20322382A JPH026292B2 JP H026292 B2 JPH026292 B2 JP H026292B2 JP 57203223 A JP57203223 A JP 57203223A JP 20322382 A JP20322382 A JP 20322382A JP H026292 B2 JPH026292 B2 JP H026292B2
Authority
JP
Japan
Prior art keywords
inverter
load
grid
power
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57203223A
Other languages
Japanese (ja)
Other versions
JPS5992778A (en
Inventor
Koreyuki Takeya
Itaru Asai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57203223A priority Critical patent/JPS5992778A/en
Publication of JPS5992778A publication Critical patent/JPS5992778A/en
Publication of JPH026292B2 publication Critical patent/JPH026292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Protection Of Static Devices (AREA)

Description

【発明の詳細な説明】 本発明は、交流配電系統と交流出力端子を接続
し、系統と連系運転及び独立運転の双方を行うイ
ンバータの接地保護回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ground protection circuit for an inverter that connects an AC power distribution system and an AC output terminal, and performs both interconnected operation and independent operation with the system.

例えば第1図に示すように、柱上変圧器1(2
次側のみ表示)にACスイツチ2aを介してイン
バータ3aと負荷4aとが、ACスイツチ2bを
介してインバータ3bと負荷4bとが接続され、
これらインバータ3a,3bは図示しない太陽電
池等の発電機器に接続されて、交流系統が健全な
時には系統と連系運転を行つて系統に電力を送り
出したり、やや特殊な場合は系統から電力を取込
みインバータの直流側に設けた蓄電池の充電を行
つたりし、一方、系統が停電した時には、インバ
ータは出力端と系統の間の接続を切離し系統と独
立運転をして単独で負荷に電力を供給するような
システムが考えられる。
For example, as shown in FIG.
The inverter 3a and the load 4a are connected via the AC switch 2a, and the inverter 3b and the load 4b are connected via the AC switch 2b.
These inverters 3a and 3b are connected to power generation equipment such as solar cells (not shown), and when the AC system is healthy, they perform interconnected operation with the grid and send out power to the grid, or in somewhat special cases, they take in power from the grid. It charges the storage battery installed on the DC side of the inverter, and when there is a power outage in the grid, the inverter disconnects the output end from the grid and operates independently from the grid, supplying power to the load independently. A system that does this is conceivable.

このようなシステムに用いるインバータは前記
の2つの運転モードのいずれにおいても、負荷に
おける漏電などの地絡事故から保護することが要
求される。
The inverter used in such a system is required to be protected from ground faults such as electrical leakage in the load in either of the two operating modes described above.

ところで、かかる発電システム用のインバータ
は現在研究開発の段階にあり、接地保護技術に関
しても確立されたものは未だ存在しない。
Incidentally, such an inverter for a power generation system is currently in the research and development stage, and there is no established grounding protection technology yet.

また、発電システムではなく定電圧定周波数電
源としてインバータを用い、通常はインバータを
順変換運転とし蓄電池を浮動充電し、停電時には
系統と切離して逆変換運転を行い負荷に電力を供
給するシステムもあるが、このシステムでも接地
保護技術として確立されたものはない。
In addition, there are systems that use an inverter as a constant voltage, constant frequency power source rather than a power generation system, and normally operate the inverter in forward conversion operation and float charge the storage battery, and in the event of a power outage, disconnect from the grid and perform reverse conversion operation to supply power to the load. However, even with this system, there is no established grounding protection technology.

本発明の目的は上述のごとく系統と連系運転、
独立運転の2つのモードで運転されるインバータ
の運転モードの如何に関らず負荷での地絡事故を
確実に検出できるインバータの接地保護回路を提
供することにある。
As mentioned above, the purpose of the present invention is to provide grid and grid-connected operation,
An object of the present invention is to provide a ground protection circuit for an inverter that can reliably detect a ground fault in a load regardless of the operating mode of an inverter operated in two modes of independent operation.

この目的は本発明によれば、交流配電系統と連
系運転を行つたり、系統と解列して負荷に電力を
供給するインバータにおいて、負荷とインバータ
の分岐点より交流配電系統側とインバータ側とに
差電流検出により作動する電流遮断手段を設け、
さらに該インバータ側の電流遮断手段のさらにイ
ンバータ側の一線を接地し、かつインバータの系
統と連系運転中にはその接地配線を遮断するスイ
ツチを設けることにより達成される。
According to the present invention, in an inverter that performs interconnected operation with an AC distribution system or disconnects from the grid to supply power to a load, the AC distribution system side and the inverter side from the branch point between the load and the inverter A current interrupting means operated by differential current detection is provided,
Furthermore, this can be achieved by grounding a line on the inverter side of the current interrupting means on the inverter side, and providing a switch that interrupts the grounding wire during operation connected to the inverter system.

以下、図面について本発明の実施例を詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明方式の実施例を示す回路図で、
図中11は交流配電系統、14はこの交流配電系
統11と負荷15とに交流出力端子を接続したイ
ンバータで、該インバータ14は直流入力側を例
えば太陽電池等の発電機器に接続され、系統正常
時には交流配電系統11と連系運転を行い負荷1
5に電力を供給するものである。
FIG. 2 is a circuit diagram showing an embodiment of the method of the present invention,
In the figure, 11 is an AC power distribution system, and 14 is an inverter whose AC output terminal is connected to the AC power distribution system 11 and the load 15. At times, the load 1 is operated in connection with the AC distribution system 11.
5.

負荷15とインバータ14の分岐点より交流配
電系統11側に、差電流検出により作動する第1
の電流遮断手段として差動CTを用いた漏電遮断
器(ELB)12aを設け、同じく交流配電系統
11側に系統11の停電時にインバータ14で動
作されインバータ14と系統11間を解列するス
イツチ接点13aと系統電圧検出用のPT(変成
器)16とを設ける。
On the side of the AC distribution system 11 from the branch point between the load 15 and the inverter 14, there is a first
An earth leakage breaker (ELB) 12a using a differential CT is provided as a current interrupting means, and a switch contact is also provided on the AC power distribution system 11 side to disconnect the inverter 14 and the system 11, which is operated by the inverter 14 when the system 11 is out of power. 13a and a PT (transformer) 16 for detecting system voltage.

また、負荷15とインバータ14の分岐点より
インバータ14側に差電流検出により作動する第
2の電流遮断手段として差動CTを用いた漏電遮
断器(ELB)12bを設け、その更にインバー
タ14側の一線を接地し、この接地への配線途中
にインバータ14の系統11との連系運転中には
遮断する働をなすスイツチ接点13bを設けた。
In addition, an earth leakage breaker (ELB) 12b using a differential CT is provided as a second current interrupting means operated by differential current detection on the inverter 14 side from the branch point between the load 15 and the inverter 14, and further on the inverter 14 side. A line is grounded, and a switch contact 13b is provided in the middle of the wiring to the ground, which serves to cut off the connection of the inverter 14 with the system 11 during operation.

なお、接点13a及び13bはACスイツチ1
3の接点として図示のごとくコンタクタなど連動
する機械式接点を用いるのが開路時の漏れ電流、
事故電流に対する強度などの点で有利であるが、
開閉器であること及び13aと13bとが同時的
な動作が可能であるという条件が満されれば他の
機器を用いてもよい。
Note that contacts 13a and 13b are AC switch 1
3. As shown in the figure, interlocking mechanical contacts such as contactors are used to reduce the leakage current when the circuit is opened.
Although it is advantageous in terms of strength against fault current, etc.
Other equipment may be used as long as the conditions that it is a switch and that 13a and 13b can operate simultaneously are met.

また、漏電遮断器12a,12bの代りに漏電
保護リレーと遮断器の組合せを用いてもよく、そ
の場合1次導体として双方の導体を一括して貫通
穴に挿入すれば保護リレーの節約となり、さらに
双方の遮断器も多種の遮断器を使用し一括して遮
断することが事故の性格上望ましい。
Further, a combination of an earth leakage protection relay and a circuit breaker may be used instead of the earth leakage breakers 12a and 12b. In that case, if both conductors are inserted into the through hole as the primary conductor, the protective relay can be saved. Furthermore, considering the nature of the accident, it is desirable to use various types of circuit breakers for both circuit breakers and to shut them off all at once.

次に動作について説明すると、系統正常時には
インバータ14は交流配電系統11と連系運転を
行つているが、この時需要家の受電端には漏電遮
断器12aが設けられているので需要家内での感
電、漏電などの地絡事故に対してはこの漏電遮断
器12aがトリツプして事故電流の供給を遮断す
る。
Next, to explain the operation, when the system is normal, the inverter 14 is connected to the AC power distribution system 11, but at this time, since the earth leakage breaker 12a is installed at the receiving end of the consumer, In the event of a ground fault such as electric shock or leakage, the earth leakage circuit breaker 12a trips to cut off the supply of fault current.

また、系統11の停電時にはインバータ14は
系統電圧検出用のPT16から電圧、周波数など
の異常を検出し、ACスイツチ13を動作させて
接点13aを開いて系統11との間を解列し、ほ
ぼ同時に接点13bを閉じてインバータ14の交
流端子の1つを接地する。このようにすれば、負
荷15など交流充電部(非接地側)における地絡
事故が起つた時には漏電遮断器12bがトリツプ
し事故電流の供給は遮断される。
In addition, in the event of a power outage in the grid 11, the inverter 14 detects an abnormality in voltage, frequency, etc. from the grid voltage detection PT 16, operates the AC switch 13, opens the contact 13a, disconnects the grid 11, and almost At the same time, contact 13b is closed to ground one of the AC terminals of inverter 14. In this way, when a ground fault occurs in an AC charging part (non-grounded side) such as the load 15, the earth leakage breaker 12b trips and the supply of the fault current is cut off.

なお、インバータ14が仮に系統11との連系
運転時に接地回路がつながつたままであるとする
と、例えば負荷15において感電事故があつたと
しても事故電流は最悪の場合漏電遮断器12aと
12bの事故検出電流の和となり接地のない場合
より増加してしまう。従つて、特に漏電遮断器1
2bがない時は危険である。
Assuming that the ground circuit of the inverter 14 remains connected when the inverter 14 is connected to the grid 11, for example, even if an electric shock occurs in the load 15, the fault current will in the worst case result from a fault in the earth leakage circuit breakers 12a and 12b. This becomes the sum of the detected currents and increases compared to the case without grounding. Therefore, especially the earth leakage breaker 1
It is dangerous when 2b is not present.

前記実施例は単相インバータを用いた例を示し
たが、3相インバータにおいても同様に接地回路
を切り換えることで負荷機器などにおける地絡事
故が検出できる。この場合、3相200Vの配電線
の接地は、1相接地、中性点接地、2相の中点接
地などが考えられ、各々地絡時に故障部に印圧さ
れる電圧などは多少異なるが、地絡検出の可能な
ことと、接地回路の切替の必要なことは変りがな
い。
Although the above-mentioned embodiment shows an example using a single-phase inverter, a ground fault in a load device or the like can be detected in a three-phase inverter by similarly switching the grounding circuit. In this case, the grounding of the 3-phase 200V distribution line can be 1-phase grounding, neutral point grounding, 2-phase center point grounding, etc., and the voltage applied to the faulty part in each case is slightly different. However, it is still possible to detect ground faults and it is still necessary to switch the ground circuit.

以上述べたように本発明のインバータの接地保
護回路は、太陽電池や燃料電池などを用いる発電
システムやいわゆる無停電電源装置のうち系統正
常時はインバータの順変換運転により蓄電池を充
電するシステムで、交流配電系統と交流出力端子
を接続し、系統と連系運転を行つたり、系統と解
列して負荷に電力を供給するインバータにおい
て、負荷と電力の供給源の間には必ず不平衡電流
を検出して動作する遮断手段があり、また電力の
供給源の一線もしくは相の中間電位が接地されて
いるために負荷もしくはそれに電力を供給する配
線において地絡事故が発生した時には必ずこれを
検出し、遮断することができるものである。
As described above, the inverter grounding protection circuit of the present invention is applicable to power generation systems using solar cells, fuel cells, etc. and so-called uninterruptible power supplies that charge storage batteries by forward conversion operation of the inverter when the system is normal. When an inverter connects the AC output terminal to the AC distribution system and performs interconnected operation with the grid, or disconnects from the grid and supplies power to the load, there is always an unbalanced current between the load and the power supply source. There is a cut-off means that detects and operates, and because the intermediate potential of one line or phase of the power supply source is grounded, it will always detect when a ground fault occurs in the load or the wiring that supplies power to it. and can be blocked.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽光発電システムの一例を示す回路
図、第2図は本発明の接地保護回路の実施例を示
す回路図である。 1……柱上変圧器、2a,2b……ACスイツ
チ、3a,3b……インバータ、4a,4b……
負荷、11……交流配電系統、12a,12b…
…漏電遮断器、13……ACスイツチ、13a,
13b……スイツチ接点、14……インバータ、
15……負荷、16……系統電圧検出用PT。
FIG. 1 is a circuit diagram showing an example of a solar power generation system, and FIG. 2 is a circuit diagram showing an embodiment of the ground protection circuit of the present invention. 1...Pole transformer, 2a, 2b...AC switch, 3a, 3b...Inverter, 4a, 4b...
Load, 11...AC distribution system, 12a, 12b...
...Earth leakage breaker, 13...AC switch, 13a,
13b...Switch contact, 14...Inverter,
15...Load, 16...PT for grid voltage detection.

Claims (1)

【特許請求の範囲】[Claims] 1 交流配電系統と連系運転を行つたり、系統と
解列して負荷に電力を供給するインバータにおい
て、負荷とインバータの分岐点より交流配電系統
側とインバータ側とに差電流検出により作動する
電流遮断手段を設け、さらに該インバータ側の電
流遮断手段のさらにインバータ側の一線を接地
し、かつインバータの系統と連系運転中にはその
接地配線を遮断するスイツチを設けたことを特徴
とするインバータの接地保護回路。
1 In an inverter that is connected to the AC power distribution system or disconnected from the system to supply power to the load, it operates by detecting a difference in current between the AC power distribution system side and the inverter side from the branch point between the load and the inverter. A current interrupting means is provided, and a switch is further provided to ground a line of the current interrupting means on the inverter side and further on the inverter side, and to interrupt the grounding wiring when the inverter is connected to the grid. Inverter ground protection circuit.
JP57203223A 1982-11-18 1982-11-18 Ground protecting circuit for inverter Granted JPS5992778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57203223A JPS5992778A (en) 1982-11-18 1982-11-18 Ground protecting circuit for inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203223A JPS5992778A (en) 1982-11-18 1982-11-18 Ground protecting circuit for inverter

Publications (2)

Publication Number Publication Date
JPS5992778A JPS5992778A (en) 1984-05-29
JPH026292B2 true JPH026292B2 (en) 1990-02-08

Family

ID=16470490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203223A Granted JPS5992778A (en) 1982-11-18 1982-11-18 Ground protecting circuit for inverter

Country Status (1)

Country Link
JP (1) JPS5992778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178968A (en) * 2011-01-31 2012-09-13 Kyocera Corp Solar power generation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161240A (en) * 1990-10-26 1992-11-03 Johnson Ken C Electric wall switch with ground fault protection
ES2748178T3 (en) * 2015-03-10 2020-03-13 Abb Schweiz Ag DC / AC converter apparatus configurable as grid-connected or independent and power generation and conversion system comprising said DC / AC converter apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178968A (en) * 2011-01-31 2012-09-13 Kyocera Corp Solar power generation system

Also Published As

Publication number Publication date
JPS5992778A (en) 1984-05-29

Similar Documents

Publication Publication Date Title
Nikkhajoei et al. Microgrid protection
CA2806013C (en) Systems and methods for providing arc fault and/or ground fault protection for distributed generation sources
US8970169B2 (en) Charging device for a high-voltage battery of a motor vehicle, charging system and method of operating a charging system
US20070179720A1 (en) Method for converting direct voltage into three-phase alternating voltage
MXPA96005115A (en) Method and apparatus for transfer between sources of electrical energy that block adaptative transfer until the voltage of charge achieves a secure value
Prommetta et al. Protection coordination of ac/dc intersystem faults in hybrid transmission grids
JP2001124814A (en) Insulation deterioration detection device in inverter device, and solar power generating system, and electric vehicle using it
CN105075048A (en) Grid protection apparatus, electrical circuit switching apparatus, and electric power supply system
JP3319264B2 (en) Solar power system
JPH0919066A (en) Dispersion type power supply
US20230133091A1 (en) Patch panel for programming a split bus electrical panel for partial or full backup with pv and battery systems
JPH026292B2 (en)
JP2951141B2 (en) Method of improving unbalance in single-phase three-wire line and power supply device used therefor
JPH0150168B2 (en)
EP4283828A1 (en) Methods and systems for safely transferring electrical power
US5293110A (en) Bridge capacitor bank installation
EP4290736A1 (en) Devices and methods for disconnecting a grid power source from an electrical distribution system
Danninger et al. Case Studies on Ground-Fault Protection of Microgrid Power Systems With Diverse Power Sources
US20230318352A1 (en) Split-bus electrical panel in parallel configuration to maximize pv/battery inverter back-feed power
WO2024024214A1 (en) Distributed electric power source electric power distribution system and method for controlling distributed electric power source electric power distribution system
Theron et al. Case study: transformer differential incorrect operation due to system grounding
JP2705198B2 (en) Ground fault detector
JP2000032670A (en) Spot network receiving facility
JPS6343703Y2 (en)
JPH01163809A (en) Photovoltaic power generation system