WO2024023992A1 - 光伝送システム、及び、光パス設定・輻輳制御方法 - Google Patents

光伝送システム、及び、光パス設定・輻輳制御方法 Download PDF

Info

Publication number
WO2024023992A1
WO2024023992A1 PCT/JP2022/029011 JP2022029011W WO2024023992A1 WO 2024023992 A1 WO2024023992 A1 WO 2024023992A1 JP 2022029011 W JP2022029011 W JP 2022029011W WO 2024023992 A1 WO2024023992 A1 WO 2024023992A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
measuring
measurement
connection
quality
Prior art date
Application number
PCT/JP2022/029011
Other languages
English (en)
French (fr)
Inventor
和也 穴澤
武 井上
秀樹 西沢
暢 間野
和昭 尾花
耕一 高杉
滋 岩科
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/029011 priority Critical patent/WO2024023992A1/ja
Publication of WO2024023992A1 publication Critical patent/WO2024023992A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters

Definitions

  • the present invention relates to an optical transmission system and an optical path setting/congestion control method.
  • Non-Patent Documents 2-4 An example of hardware (transponder) is a white box type optical transmission device in which hardware and software are separated.
  • An example of software is an open NetworkOS that can be installed in a white box type optical transmission device (Non-Patent Documents 2-4). By utilizing open hardware and software, even users other than carriers can prepare optical transmission equipment and construct a transmission network for their own services or in-house services (Non-Patent Document 5).
  • Non-Patent Documents 6 and 7 Due to the simplification, lower cost, and openness of the optical transmission area, in the future users other than carriers (for example, service providers such as data center operators) will be able to prepare their own optical transmission equipment and connect the endpoints between user locations.
  • ⁇ connection light path connection
  • the carrier will need to accommodate the optical path of the user from outside the carrier network and perform ⁇ connection in the optimal transmission mode (Non-Patent Documents 6 and 7).
  • the present invention has been made in view of the above circumstances, and aims to provide a technology that can automatically set optical paths using limited resources.
  • An optical transmission system includes a connection device that connects one or more user terminals to an optical transmission network of a carrier, and a control device that controls the connection device.
  • the device includes a certain number of measurement devices for measuring the quality of the transmission path with the user terminal, a notification device for notifying the user terminal of Busy information, and a connection destination of the user terminal.
  • a measuring device, the notification device, and a switching device for switching to any one of the optical transmission network, the control device includes a control unit that controls the switching device, and the control unit controls the user terminal.
  • the user terminal detects a connection request from, and if the certain number of measuring devices are free, connects the user terminal to the free measuring device, and if there is no free space in the certain number of measuring devices, the user terminal is notified of the above.
  • the user terminal is once connected to a device, and when the measuring device becomes available, it is connected to a vacant measuring device, and after the quality of the transmission path is measured by the connected measuring device, the user terminal is connected to the optical transmission network.
  • An optical path setting/congestion control method includes an optical path setting performed by a connecting device that connects one or more user terminals to a carrier's optical transmission network, and a control device that controls the connecting device.
  • the connection device includes a certain number of measurement devices for measuring the quality of a transmission path with the user terminal, a notification device for notifying the user terminal of Busy information, and a notification device for notifying the user terminal of Busy information; a switching device for switching a connection destination of a user terminal to any one of the measurement device, the notification device, and the optical transmission network;
  • the control device includes a control unit that controls the switching device; The control unit detects a connection request from the user terminal, and if the certain number of measuring devices are free, connects the user terminal to the free measuring device, and connects the user terminal to the free measuring device, and when there is no free space among the certain number of measuring devices.
  • the user terminal is once connected to the notification device, and when the measurement device becomes available, it is connected to a vacant measurement device, and after the quality of the transmission path is measured by the connected measurement device, the user terminal is connected to the notification device. Connect to the transmission network.
  • FIG. 1 is a diagram showing the configuration of an optical transmission system.
  • FIG. 2 is a diagram illustrating an example of network architecture.
  • FIG. 3 is a diagram illustrating an example of network architecture.
  • FIG. 4 is a diagram illustrating an example of network architecture.
  • FIG. 5 is a diagram illustrating an example of network architecture.
  • FIG. 6 is a diagram illustrating an example of network architecture.
  • FIG. 7 is a diagram showing a control sequence of the optical transmission system.
  • FIG. 8 is a diagram showing a processing image of the optical transmission system.
  • FIG. 9 is a diagram showing a processing image of the optical transmission system.
  • FIG. 10 is a diagram showing a processing image of the optical transmission system.
  • FIG. 11 is a diagram showing a processing image of the optical transmission system.
  • FIG. 12 is a diagram showing a processing image of the optical transmission system.
  • FIG. 13 is a diagram showing a processing image of the optical transmission system.
  • FIG. 14 is a diagram showing a processing image of the optical transmission system.
  • FIG. 15 is a diagram showing a processing image of the optical transmission system.
  • FIG. 16 is a diagram showing the first congestion control method.
  • FIG. 17 is a diagram showing the first congestion control method.
  • FIG. 18 is a diagram showing the first congestion control method.
  • FIG. 19 is a diagram showing the second congestion control method.
  • FIG. 20 is a diagram showing the third congestion control method.
  • FIG. 21 is a diagram showing the fourth congestion control method.
  • FIG. 22 is a diagram showing an example of transmission path information.
  • FIG. 23 is a diagram showing the fourth congestion control method.
  • FIG. 22 is a diagram showing an example of transmission path information.
  • FIG. 23 is a diagram showing the fourth congestion control method.
  • FIG. 22 is a diagram showing an example of transmission
  • FIG. 24 is a diagram showing the fifth congestion control method.
  • FIG. 25 is a diagram showing an example of transmission path information.
  • FIG. 26 is a diagram showing the fifth congestion control method.
  • FIG. 27 is a diagram showing a processing image of a specific example.
  • FIG. 28 is a diagram showing a processing image of a specific example.
  • FIG. 29 is a diagram showing a processing image of a specific example.
  • FIG. 30 is a diagram showing a processing image of a specific example.
  • FIG. 31 is a diagram showing a processing image of a specific example.
  • FIG. 32 is a diagram showing a processing image of a specific example.
  • FIG. 33 is a diagram showing the hardware configuration of the control device.
  • the present invention relates to a technology that automatically sets an optimal optical path based on a connection request from one or more user terminals connected to a carrier's optical transmission network (hereinafter referred to as carrier network) via a dark fiber transmission path. It is an invention.
  • carrier network a carrier's optical transmission network
  • the quality of the transmission path between the user terminal and the user terminal is measured, the optimal transmission mode is determined based on the transmission quality, and the process is performed to establish a ⁇ connection with the carrier network using that transmission mode.
  • transmission quality measuring devices are very expensive, and if many measuring devices are used, a huge amount of cost will be incurred.
  • connection device that connects a user terminal to a carrier network, and a control device that controls the connection device.
  • the connection device includes an optical path switching device, a small number of measurement devices, and a notification device that notifies Busy information. If there is no free space in the measuring device, the control device performs congestion control of connection requests based on the priority and urgency of the connection request, temporarily connects the user terminal to the notification device, notifies the notification device of Busy information, and notifies the measuring device. When a space becomes available, connect the connection request to the measurement device that becomes available.
  • FIG. 1 is a diagram showing the configuration of an optical transmission system according to this embodiment.
  • the optical transmission system includes a connection device 1 that connects a user terminal 3 to a carrier network, and a control device 2 that controls the connection device 1.
  • the optical transmission system may be implemented as a single device (connection node) or may be implemented in combination with vendor devices.
  • the user terminal 3 is one or more user base terminals that exist outside the carrier network.
  • the plurality of user terminals 3 are connected to the connection device 1 through respective transmission paths 100, and each of the user terminals 3 includes a transmitting/receiving unit that transmits and receives optical signals to and from the connection device 1 via the respective transmission paths 100.
  • the user terminal 3 is, for example, a communication device such as a data center, and specifically a transceiver or the like.
  • the connection device 1 measures the quality of the transmission path 100 between the user terminal 3 and a switching device 11 for switching the connection destination of the user terminal 3 to one of the measurement device 12, the notification device 13, and the carrier network. and a notification device 13 for notifying the user terminal 3 of Busy information and the like.
  • the connection device 1 is placed within a carrier network, for example.
  • the switching device 11 is a device that terminates the optical signal from the user terminal 3 and connects the user terminal 3 to the measurement device 12 and notification device 13 in order to measure the quality of the transmission section and perform terminal authentication. In addition, after performing these processes, the switching device 11 connects the user terminal 3 to the carrier network if it is possible to connect to the carrier network, and connects the optical signal from the abnormal terminal or the user terminal 3 to which connection is not permitted. This is a device that shuts off the The switching device 11 is, for example, an optical switch.
  • the measuring devices 12 are a certain number of devices that measure the quality of the transmission path 100, which is an area where the transmission quality has not been measured.
  • the fixed number is one or more small numbers considering that the measuring device 12 is expensive.
  • the measurement device 12 is, for example, a coherent transceiver.
  • the notification device 13 is one or more devices that notify Busy/OK/Interruption/Connection Denied information using predefined signals that can be distinguished/identified/judged by the user. It is. For example, the notification device 13 generates and reports Busy information on the main signal without preparing another wavelength like AMCC or OTN-GCC. In addition, the notification device 13 transmits Busy information and the like using a signal in a specific wavelength band, such as an OSC.
  • the control device 2 includes an optical signal control section 21 that controls optical signals, a user terminal authentication section 22 that authenticates the user terminal 3, a user terminal management section 23 that manages information on the user terminal 3, and a device of the measurement device 12.
  • a device characteristic holding unit 24 that holds characteristics
  • a transmission path information estimation unit 25 that measures the quality of the transmission path 100 between the user terminal 3, and a notification control unit 26 that notifies the user terminal 3 of Busy information etc. Equipped with.
  • the control device 2 is placed, for example, in a server device within a carrier network.
  • the optical signal control unit 21 has a function of controlling and monitoring the switching device 11, a function of collecting information from the measuring device 12 and monitoring the measuring device 12, and a function of controlling the notification device 13. Specifically, the optical signal control unit 21 detects a connection request from the user terminal 3, and if a certain number of measuring devices 12 are vacant, connects the user terminal 3 to the vacant measuring devices 12, and If there is no free space in the measuring device 12, the user terminal 3 is connected to the notification device 13, and when the measuring device 12 becomes free, it is connected to the free measuring device 12, and the transmission path by the connected measuring device 12 is After the quality measurement, the user terminal 3 is connected to the carrier network.
  • the user terminal authentication section 22 has a function of referring to the information of the user terminal 3 held in the user terminal management section 23, authenticating the user terminal 3 connecting from outside the carrier network, and determining whether connection to the carrier network is possible. Equipped with.
  • the user terminal management unit 23 has a function of holding user terminal information of the user terminal 3 connected from outside the carrier network.
  • the user terminal information includes, for example, a user name, a registration number assigned by a carrier, a line ID, a terminal ID/model number/serial number/MAC address of the user terminal, and a port number of the switching device 11 to which the user terminal connects.
  • the device characteristic holding unit 24 has a function of holding each actual device characteristic of a certain number of measuring devices 12.
  • the actual device characteristics are data required to estimate the quality of the transmission section from the BER value. For example, it is data representing the relationship between BER and OSNR.
  • the transmission path information estimation unit 25 has an estimation function that estimates and calculates the transmission quality of the transmission section between the user terminal 3 and the carrier network, and a storage function that stores the estimated transmission quality information and the time when the transmission quality was last measured. Equipped with functions and. Note that the estimation function and the holding function may be provided as separate functional units.
  • the notification control unit 26 has a function of controlling and managing the notification device 13.
  • the notification control unit 26 may be placed inside the optical signal control unit 21.
  • Connection configurations on the user terminal side include a configuration in which one user terminal is connected to one transmission path, a configuration in which one or more user terminals are connected to one transmission path and a multiplexer is connected, and two configurations. There are forms in which these are mixed.
  • Types of the switching device 11 include FXC and WXC (wavelength switch including WSS/ROADM).
  • connection form on the user terminal side is one user terminal on one transmission path
  • connection form at the carrier side inlet can be one with a duplexer connected or one without a duplexer.
  • a possible network architecture is that the switching device 11 may be either FXC or WXC.
  • connection form on the user terminal side is one or more user terminals on one transmission path and a multiplexer, and the connection form on the carrier side entrance does not connect a demultiplexer, the switching device 11
  • a network architecture called WXC is also conceivable.
  • connection form on the user terminal side is one or more user terminals on one transmission path and a multiplexer
  • connection form on the carrier side inlet connects a demultiplexer
  • the switching device 11 A network architecture in which either FXC or WXC is acceptable is also conceivable.
  • FIG. 2 shows a network architecture in which one user terminal 3 is connected to one transmission path 100 and FXC is used as the switching device 11.
  • one or more user terminals 3 are connected to one transmission path 100, a multiplexer 4 is arranged on the user terminal side, a demultiplexer 5 is arranged on the carrier side entrance, and an FXC This is a network architecture using
  • FIG. 4 shows a network architecture in which one or more user terminals are connected to one transmission path 100, a multiplexer 4 is arranged on the user terminal side, and WXC is used as the switching device 11.
  • FIG. 5 only one or more user terminals are connected to one transmission path 100, and the multiplexer 4 is placed on the user terminal side to which the one or more user terminals are connected.
  • This is a network architecture in which a duplexer 5 is disposed at the carrier side entrance corresponding to the disposed user terminal side, and WXC is used as the switching device 11.
  • FIG. 6 only one user terminal or one or more user terminals are connected to one transmission path 100, a multiplexer 4 is arranged on the user terminal side to which the one or more user terminals are connected, and the switching device 11 is a WXC This is a network architecture using
  • multiplexer 4 and the demultiplexer 5 are, for example, wavelength multiplexing/demultiplexing devices.
  • FIG. 7 is a diagram showing a control sequence of the optical transmission system.
  • Step S1 the carrier recognizes and detects a connection request from a user. Specifically, the optical signal control unit 21 monitors an optical signal indicating the arrival of a connection request. Further, the user notifies the carrier that the connection request has been sent, using an API dedicated to communication with the carrier.
  • the optical signal control unit 21 activates the function to connect to the Parking-State (default position prepared in advance for unexpected behavior) of the switching device 11/optical signal disconnection function. to block the optical signal from that user.
  • the notification device 13 may notify the user of a connection failure/connection stop command.
  • the user terminal authentication unit 22 authenticates the user terminal 3 that sent the connection request based on the terminal ID and line ID.
  • the user terminal authentication unit 22 may perform one or more types of authentication (two-step authentication, etc.) in one or more layers.
  • the optical signal control unit 21 uses the parking-state connection function/optical signal disconnection function of the switching device 11 to disconnect the optical signal from the user. Cut off.
  • the notification device 13 may notify the user of a connection failure/connection stop command.
  • Step S3 the carrier measures and acquires the user's transmission path information.
  • the transmission path information estimation unit 25 measures the quality of the transmission path 100 between the user terminal 3 that has transmitted the connection request.
  • the transmission path information estimating unit 25 does not measure the quality of the transmission path and uses the past measurement. Results may be reused. Furthermore, if the connection request is from a user terminal 3 that has been connected in the past, the transmission path information estimation unit 25 may reuse past measurement results.
  • the transmission path information estimation unit 25 checks whether the measurement device 12 is free. If there is a vacant space in the measuring device 12, the process advances to step S6, and if there is no vacant space in the measuring device 12, the process advances to step S4.
  • Step S4 If there is no vacant space in the measuring device 12, the carrier notifies the user of Busy information. Specifically, the notification control unit 26 transmits Busy information from the notification device 13 to the user terminal 3. At this time, the carrier interrupts the quality measurement of a user with a lower priority among the users who are measuring the quality of the transmission path, notifies them of the interruption information, and forcibly forces the measuring device 12 that was measuring the quality of the transmission path. It may be left vacant.
  • Step S5 After step 4, the user recognizes that his turn has come and that the measuring device 12 has become available. For example, the notification control unit 26 and the notification device 13 transmit an OK signal to the user terminal 3.
  • periodic connection methods include a method of connecting at predetermined time intervals and a method of reconnecting using existing retransmission timer settings (for example, exponential backoff).
  • the notification device 13 may notify the retry time using a Busy signal, and the user may attempt to reconnect at the retry time.
  • the optical signal control unit 21 may use the ID of the user terminal 3 to schedule the connection time and the assignment of the measuring device 12 for each user terminal 3.
  • the user terminal 3 may put information indicating that the priority is high on the connection request optical signal and instruct the vacancy measuring device 12 to create the connection request preferentially.
  • the carrier may dynamically change the priority of the user terminals 3 according to the behavior of the user terminals 3, and connect user terminals 3 with higher priority preferentially.
  • Step S6 After step 5 or when the measuring device 12 is free, the transmission path is measured. Specifically, the transmission path information estimation unit 25 measures the quality of the transmission path 100 between the user terminal 3 that has transmitted the connection request. The transmission path information estimation unit 25 may record the measurement results together with the measurement completion time.
  • control device 2 determines the optimal transmission mode based on the measured transmission quality, notifies the user of the transmission mode, and establishes a ⁇ connection with the carrier network in that transmission mode. Note that existing methods are used for the transmission mode determination method and notification method.
  • Step S7 (not shown in FIG. 7); Steps S1 to S6 assume a normal connection request.
  • the control device 2 notifies the user who is currently measuring the quality of the transmission path to interruption/Busy information, interrupts the quality measurement of the transmission path, and disconnects the transmission path related to the emergency connection request. Prioritize quality measurements. Thereafter, the control device 2 uses the vacant measuring device to process the interrupted quality measurement as usual.
  • steps S2 to S4 does not matter.
  • user authentication may be performed after determining whether the measurement device 12 is available, and if the measurement device 12 is available and the user authentication is OK, the quality of the transmission path may be measured.
  • step S1 Specific processing of step S1;
  • the user terminal 3a puts the connection request and terminal information on an optical signal, and transmits the optical signal to the carrier side (see FIG. 8). At this time, the user may explicitly notify the carrier that the connection request has been sent.
  • the user terminal 3 may include the priority of the connection request (such as wanting an emergency connection) and the purpose of the connection (such as regular backup of data) in the connection request.
  • the optical signal control unit 21 monitors and detects the optical signal level from the user terminal 3a. When the user notifies the carrier that the connection request has been sent, the optical signal control unit 21 receives the notification contents.
  • step S2 The optical signal control unit 21 checks the availability of the measurement devices 12a to 12n, and if the measurement devices 12a to 12n are available, connects the user terminal 3a to the measurement device 12a that is available (see FIG. 9). If there is no free space in the measurement devices 12a to 12n, congestion control, which will be described later, is performed.
  • the user terminal authentication unit 22 extracts the terminal information carried on the optical signal received by the measuring device 12a, and acquires information about the connected user terminal 3a. Thereafter, the user terminal authentication unit 22 refers to the user terminal management unit 23 and collates the information with the acquired information of the user terminal 3a.
  • the transmission path information estimating unit 25 acquires the actual device characteristics (data representing the relationship between BER and OSNR) of the measuring device 12a to which the connection request has arrived from the device characteristic holding unit 24, and uses the actual device characteristics of the measuring device 12a to The transmission quality of the transmission path 100a, which is the unmeasured section, is estimated (see FIG. 10).
  • the transmission path information estimation unit 25 implements "Takeo Sasai, 5 others, 'Digital Backpropagation for Optical Path Monitoring: Loss Profile and Passband Narrowing Estimation', 2020 European Conference on Optical Communications (ECOC), 2020"
  • transmission path information level diagram, loss, fiber type
  • transmission quality may be estimated based on the transmission path information.
  • the transmission path information estimating unit 25 does not measure the quality of the transmission path if the elapsed time from the previous measurement time is less than or equal to the threshold and there is no information on construction, etc. related to the transmission path. Past measurement results may be reused. Furthermore, if the connection request is from a user terminal 3 that has been connected in the past, the transmission path information estimation unit 25 may reuse past measurement results.
  • step S4 If there is no vacant space in the measurement devices 12a to 12n, the optical signal control unit 21 connects the user terminal 3a to the notification device 13 (see FIG. 11). Thereafter, the notification control unit 26 and the notification device 13 notify the user terminal 3a of the Busy information.
  • the optical signal control unit 21 interrupts the quality measurement of a user with a lower priority among the users who are measuring the quality of the transmission path, and notifies them of the interruption information.
  • the measuring device 12 may be forcibly made vacant.
  • the user's priority is determined based on, for example, information registered in the user terminal management unit 23 and the priority explicitly specified by the user at the time of the connection request.
  • step S5 After the measurement device 12 becomes available, the optical signal control unit 21 connects the notification device 13 to the user terminal 3 (user terminal 3a) for which user authentication and transmission quality estimation have not been completed (see FIG. 12). Thereafter, the notification control unit 26 and the notification device 13 transmit an OK signal to the user terminal 3a of the connection destination.
  • the notification device 13 may notify the user to periodically attempt reconnection until one of the measurement devices 12a to 12n becomes available. Alternatively, the user himself/herself may attempt to reconnect periodically. In addition, the notification device 13 may estimate the time when the measuring devices 12a to 12n become available, notify the estimated time as the retry time, and control the user to attempt reconnection at the retry time.
  • the optical signal control unit 21 may use the information of the user terminal 3 to schedule the connection time and assignment of the measurement device 12 for each user terminal.
  • the user terminal 3 may transmit information indicating that the priority is high in the connection request signal and instruct the creation of a free measuring device so as to connect preferentially.
  • the carrier may dynamically change the priority of the user terminals 3 according to the behavior of the user terminals 3, and connect user terminals 3 with higher priority preferentially.
  • step S6 After the measuring devices 12a to 12n become vacant, the optical signal control unit 21 connects the vacant measuring device 12b to the user terminal 3 (user terminal 3a) for which user authentication and transmission quality estimation have not been completed, Information for connecting to the vacant measuring device 12b (for example, the location of the measuring device, slot number) is notified to the transmission path information estimating unit 25 (see FIG. 13).
  • the transmission path information estimating unit 25 connects to the measuring device 12b notified from the optical signal control unit 21, and measures the transmission quality of the transmission path 100a, which is an unmeasured section of transmission quality. After completing the transmission quality measurement, the transmission path information estimating unit 25 may record the measurement result together with the measurement completion time.
  • the optical signal control unit 21 establishes an optical path path related to the connection request of the user terminal 3a in the carrier network, and then controls the switching device 11 to connect the user terminal 3a to the carrier network (see FIG. 14). ).
  • step S7 When an emergency communication occurs, the optical signal control unit 21 notifies the user terminals 3a to 3c that are currently measuring the quality of the transmission path, interrupting the quality measurement of the transmission path, and responds to the emergency connection request. Priority is given to quality measurement of such transmission paths (see FIG. 15).
  • Congestion control Congestion control will be explained.
  • the five congestion controls described below may be performed individually or in combination with two or more of the five congestion controls.
  • the first congestion control method is a FIFO method in which connection requests are processed in the order of arrival (see FIGS. 16 to 18). Specifically, when a certain number of measuring devices 12 are not available and there are multiple connection requests, the user terminal 3 is connected to the vacant measuring devices 12 in the order in which the connection requests arrive.
  • the connecting device 1 includes three measuring devices 12a to 12c. It is assumed that the three measurement devices 12a to 12c are line-synchronized with the respective user terminals 3a to 3c, and it takes several minutes to complete estimation of transmission quality from BER.
  • step S101 When a connection request signal is received from the user terminal 3m while all three measurement devices 12a to 12c are in use (step S101), the optical signal control unit 21 notifies the user terminal 3m that it is busy. Connect to the device 13 (step S102).
  • the notification control unit 26 and the notification device 13 notify the user terminal 3m of Busy information (step S103). For example, an AMCC/GCC/pilot tone indicating Busy and a signal OSC of a specific wavelength indicating Busy are transmitted.
  • step S104 when a connection request signal is received from the user terminal 3n (step S104), the optical signal control unit 21 connects the user terminal 3n to the notification device 13 in order to notify that it is busy (step S105). Thereafter, the notification control unit 26 and the notification device 13 notify the user terminal 3n of the Busy information in the same manner as described above (step S106).
  • the optical signal control unit 21 repeatedly switches the connection destination of the notification device 13 to the user terminal 3m or the user terminal 3n, and the notification control unit 26 and the notification device 13 periodically send a Busy signal until the measuring devices 12a to 12c become available. is transmitted to the user terminal 3m and the user terminal 3n.
  • the optical signal control unit 21 connects the user terminal 3m to the measurement device 12c that becomes available (step S107), and then connects the user terminal 3n to the measurement device that becomes available. Connect to the device 12b (step S108).
  • the second congestion control method is a preemptive method in which connection requests are processed in order of priority (see FIG. 19). Specifically, when a certain number of measuring devices 12 are not available and there are multiple connection requests including a connection request during transmission path quality measurement, the priority of the new connection request is set to transmission path quality measurement. If the priority is higher than that of the connection request in the middle, the connection destination of the measuring device 12 currently measuring the quality of the transmission path is switched to the user terminal making the new connection request.
  • the optical signal control unit 21 determines that the quality of the connection request with a low priority is being measured.
  • the connection destination of the measurement device 12c is switched from the user terminal 3c to the user terminal 3m (step S202), and the user terminal 3c is connected to the notification device 13 (step S203). Thereafter, the notification control unit 26 and the notification device 13 notify the user terminal 3c of the interruption of transmission path estimation (step S204).
  • the third congestion control method is a control method that gives priority to urgent connection requests (see FIG. 20). Specifically, when the connection request from the user terminal 3 is an urgent connection request, the method is such that the user terminal 3 is connected to a measurement device among the fixed number of measurement devices 12 that is used only in an emergency.
  • One or more of the plurality of measurement devices 12 is prepared for emergency connection.
  • the measuring device 12a for emergency connection is not used in normal times, but only in emergencies.
  • the optical signal control unit 21 connects the user terminal 3m to the emergency connection measuring device 12a (step S302).
  • the fourth congestion control method is a control method that takes into consideration the final estimated time of transmission path quality (see FIGS. 21 to 23). Specifically, when a certain number of measuring devices 12 are not available, the user terminals 3 are connected to the vacant measuring devices 12 in descending order of completion time of the quality measurement of the transmission path in each measuring device.
  • the transmission path information estimation unit 25 holds transmission path information such as measurement completion time of each transmission path 100a to 100c.
  • the optical signal control unit 21 determines that for the transmission section of the transmission path 100c whose transmission path information was recently measured, there is almost no change in the transmission path information of that transmission section. Then, the user terminal 3m is connected to the measuring device 12c in order to yield the quality measurement process to the newly arrived connection request from the user terminal 3m (step S402).
  • the fifth congestion control method is a time-specified control method that takes into consideration the final estimated time of the transmission path (see FIGS. 24 to 26). Specifically, in a case where a certain number of measuring devices 12 are not available, the user terminals 3 are connected to the vacant measuring devices 12 in the order of specified times of reconnection requests.
  • the transmission path information estimation unit 25 holds transmission path information such as how many seconds ago measurement of each transmission path 100a to 100c was started. .
  • the optical signal control unit 21 connects the user terminal 3m to the notification device 13 in order to notify that it is busy (step S502).
  • the notification control unit 26 and the notification device 13 set the measurement completion time of the measurement device 12c, which becomes available earliest among the measurement devices 12a to 12c, as the reconnection time based on the transmission path information of the transmission path information estimation unit 25. , notifies the user terminal 3m of the reconnection time (step S503). For example, request reconnection at XX time 30 seconds later.
  • the optical signal control unit 21 receives a reconnection request signal transmitted from the user terminal 3m at the reconnection time (step S504), and connects the user terminal 3m to the vacant measuring device 12c (step S505). ).
  • users A to C are a group of users who have their own data centers outside the carrier network and can be connected via the carrier network. Since actual communication is performed in both directions, terminal authentication/transmission channel quality estimation is performed in each of section A and section B, but for the sake of simplicity, a specific example of section A will be explained. The same applies to section B. Only one measurement device 12 and one notification device 13 are each arranged in the carrier on the section A side.
  • SLA Service Level Agreement
  • SLA_A Service Level Agreement
  • SLA_B Service Level Agreement
  • Information about each user terminal 3a to 3c (for example, user number, terminal ID, line ID, SLA, and port number of the switching device 11 to which the user terminal connects) is registered in the user terminal management unit 23.
  • each of the users A to C connects their user terminals 3a to 3c to the carrier network and starts data transfer in order to back up their data.
  • the user terminals 3a to 3c transmit connection requests within the carrier network (see FIG. 28).
  • the optical signal control unit 21 detects connection requests from each of the user terminals 3a to 3c, and determines the user terminal 3 to be connected to the measurement device 12. In this embodiment, the optical signal control unit 21 determines the user terminal 3a with the largest SLA as the user terminal to be connected to the measuring device 12 first.
  • the optical signal control unit 21 refers to the user terminal management unit 23, specifies the port number of the switching device 11 to which the user terminal 3a is connected, and connects the user terminal 3a to the measurement device 12.
  • the optical signal control unit 21 controls the switching device 11 and the notification device 13, respectively, to temporarily connect to the notification device 13, and then Notify the Busy signal and retry time.
  • the optical signal control unit 21 acquires the content of the connection request from the user terminal 3a that has arrived at the measurement device 12 and information about the user terminal 3a, and passes the acquired information to the user terminal authentication unit 22.
  • the user terminal authentication unit 22 performs authentication with reference to the user terminal management unit 23 (see FIG. 29).
  • the process moves to transmission path quality estimation processing. If the user terminal is not connectable, the optical signal control unit 21 uses the optical signal disconnection function of the switching device 11 to cut off the optical signal and refuse connection to the carrier network. At this time, the notification device 13 may transmit a connection rejection signal to notify the user terminal that the connection request has been rejected.
  • the transmission path information estimation unit 25 estimates the transmission quality of the transmission path 100a to which the user terminal 3a is connected (see FIG. 30). Specifically, the transmission path information estimation section 25 queries the optical signal control section 21 about the BER recorded in the measurement device 12, acquires the actual device characteristics of the measurement device 12 from the device characteristics holding section 24, and stores this information. is used to estimate the transmission quality of the transmission path 100a in section A that connects the user terminal 3a and the carrier network.
  • the optical signal control unit 21 searches for a route that can be opened within the carrier network or a route that satisfies the user's request for bandwidth, etc., and determines an appropriate route.
  • the optical signal control unit 21 also estimates the transmission quality of the determined route.
  • the optical signal control unit 21 sums up the transmission quality of each transmission section including the carrier network, and calculates the optimal transmission mode based on the summed value. Then, the optical signal control unit 21 sets and notifies the user terminal 3a of the calculated transmission mode.
  • optical signal control unit 21 opens a path for the optical path within the carrier network (see FIG. 31).
  • the optical signal control unit 21 also controls the switching device 11 and provides an optimal optical path between user A's locations.
  • the optical signal control unit 21 performs the same procedure as for user A for users B and C in that order (see FIG. 32).
  • the optical signal control unit 21 of the control device 2 detects a connection request from the user terminal 3 in the connection device 1, and if a certain number of measurement devices 12 are vacant, the optical signal control unit 21 of the control device 2 detects a connection request from the user terminal 3 in the connection device 1, is connected to an empty measuring device 12, and if a certain number of measuring devices 12 are not available, the user terminal 3 is once connected to the notification device 13, and when a measuring device 12 becomes available, an empty measuring device 12 is connected. After measuring the quality of the transmission path 100 using the connected measuring device 12, the user terminal 3 is connected to the optical transmission network. Many optical paths can be automatically set in response to a plurality of connection requests from the user terminal 3.
  • the optical signal control unit 21 of the control device 2 when there is a plurality of connection requests when a certain number of measurement devices 12 are not available, the optical signal control unit 21 of the control device 2 performs the following in order of arrival or priority of the connection requests.
  • a first congestion control method in which a user terminal 3 is connected to a vacant measuring device 12, when a certain number of measuring devices 12 are not vacant, multiple connection requests including a connection request during transmission path quality measurement are received.
  • the priority of the new connection request is higher than the priority of the connection request that is measuring the quality of the transmission path, the connection destination of the measuring device 12 that is measuring the quality of the transmission path is changed to the user terminal 3 of the new connection request.
  • the second congestion control method when the connection request from the user terminal 3 is an urgent connection request, the user terminal 3 is connected to the measurement device 12 that is used only in an emergency among the fixed number of measurement devices 12.
  • the third congestion control method when a certain number of measuring devices 12 are full, the user terminals 3 are connected to the vacant measuring devices 12 in the order of the completion time of the quality measurement of the transmission path in each measuring device 12. 4, or when a certain number of measurement devices 12 are not available, the fifth congestion control method is performed, in which the user terminals 3 are connected to the measurement devices 12 that are free in the order of the specified time of the reconnection request. , it becomes possible to automatically set the optical path appropriately.
  • the control device 2 of this embodiment described above includes, for example, as shown in FIG. 33, a CPU 901, a memory 902, a storage 903, a communication device 904, an input device 905, and an output device 906. It can be realized using a general-purpose computer system. Memory 902 and storage 903 are storage devices. In the computer system, each function of the control device 2 is realized by the CPU 901 executing a predetermined program loaded onto the memory 902.
  • the control device 2 may be implemented by one computer.
  • the control device 2 may be implemented by multiple computers.
  • the control device 2 may be a virtual machine implemented in a computer.
  • the program for the control device 2 can be stored in a computer-readable recording medium such as an HDD, SSD, USB memory, CD, or DVD.
  • the program for the control device 2 can also be distributed via a communication network.
  • Connection device 11 Switching device 12: Measurement device 13: Notification device 2: Control device 21: Optical signal control section 22: User terminal authentication section 23: User terminal management section 24: Device characteristic holding section 25: Transmission path information estimation Section 26: Notification control section 3: User terminal 4: Multiplexer 5: Demultiplexer 100: Transmission line 901: CPU 902: Memory 903: Storage 904: Communication device 905: Input device 906: Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

接続装置1と、制御装置2と、を備えた光伝送システムにおいて、前記接続装置1は、前記ユーザ端末3との間の伝送路の品質を測定するための一定数の測定装置12と、前記ユーザ端末にBusy情報を通知するための通知装置13と、前記ユーザ端末3の接続先を、前記測定装置12、前記通知装置13、前記光伝送網のうちいずれかに切り替えるための切替装置11と、を備え、前記制御装置2は、前記切替装置1を制御する制御部21を備え、前記制御部21は、前記ユーザ端末3からの接続要求を検知し、前記一定数の測定装置12に空きがある場合、当該ユーザ端末3を空きの測定装置12に接続し、前記一定数の測定装置12に空きがない場合、当該ユーザ端末3を前記通知装置13に一旦接続して前記測定装置12に空きがでたときに空きの測定装置12に接続し、接続した測定装置12による伝送路の品質測定後、当該ユーザ端末3を前記光伝送網に接続する。

Description

光伝送システム、及び、光パス設定・輻輳制御方法
 本発明は、光伝送システム、及び、光パス設定・輻輳制御方法に関する。
 近年、デジタルコヒーレント光伝送技術の適用・普及が急速に進行している。光伝送装置へのデジタル技術の適用は、伝送容量・伝送距離の実現だけでなく、伝送路特性の適応補償技術によって伝送路を含むシステム構成のシンプル化・低コスト化も実現している(非特許文献1)。これにより、トランシーバ自体の小型化・低コスト化も進んでおり、キャリア以外のユーザでも手軽に光伝送装置を入手可能になっている。
 また、光伝送領域でのオープン化が進んでおり、オープンなハードウェア・ソフトウェアを利用可能になっている。ハードウェア(トランスポンダ)の例としては、ハードウェアとソフトウェアが分離したホワイトボックス型光伝送装置がある。ソフトウェアの例としては、ホワイトボックス型の光伝送装置に搭載可能なオープンなNetworkOSがある(非特許文献2-4)。オープンなハードウェア・ソフトウェアを活用すれば、キャリア以外のユーザでも光伝送装置を用意し、自社サービス・社内サービス用に伝送網を構築可能である(非特許文献5)。
 こうした光伝送領域のシンプル化・低コスト化とオープン化により、今後、キャリア以外のユーザ(例えば、データセンタ事業者等のサービス事業者)が自前で光伝送装置を用意し、ユーザ拠点間をエンド・ツー・エンドでλ接続(光パス接続)するケースが考えられる。その際、キャリアは、こうしたキャリア網外からのユーザの光パスを収容し、最適な伝送モードでλ接続する必要性が生じることが想定される(非特許文献6、7)。
H. Nishizawa、外7名、"Open whitebox architecture for smart integration of optical networking and data center technology"、Journal of Optical Communications and Networking、Vol.13、No.1、2021年1月、A78-A87 "TAI (Transponder Abstraction Interface)"、Telecominfraproject/oopt-tai、[online]、[2022年6月28日検索]、<URL: https://github.com/Telecominfraproject/oopt-tai> "Goldstone"、Telecominfraproject/oopt-goldstone、[online]、[2022年6月28日検索]、<URL: https://github.com/Telecominfraproject/oopt-goldstone> V. Lopez、外5名、"Enabling fully programmable transponder white boxes"、Journal of Optical Communications and Networking、Vol.12、No.2、2020年2月、A214-p.A223 "自社プロダクトにホワイトボックス型光伝送装置を用いたバックボーンネットワークを構築~低コストでネットワークの安定性と高いカスタマイズ性の両立が可能に~"、MIXI、2019年11月14日、[online]、[2022年6月28日検索]、<URL: https://mixi.co.jp/news/2019/1114/2096/> H. Nishizawa、外5名、"Study on Open All-Photonic Network in IOWN Global Forum"、NTT Technical Review、[online]、[2022年6月28日検索]、<URL: https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr202205fa2.html> "Open All-Photonic Network Functional Architecture"、IOWN GLOBAL FORUM、[online]、[2022年6月28日検索]、<URL: https://iowngf.org/technology/#Open-All-Photonic-Network>
 しかしながら、従来技術には、ユーザ端末からのキャリア網への接続要求をキャリアが終端・収容する際に、限られたリソース(特に、伝送品質の測定装置)を用いて上手く光パスを自動設定する方法がないという課題があった。
 本発明は、上記事情に鑑みてなされたものであり、限られたリソースを用いて光パスを自動設定可能な技術を提供することを目的とする。
 本発明の一態様の光伝送システムは、1つ以上のユーザ端末をキャリアの光伝送網に接続する接続装置と、前記接続装置を制御する制御装置と、を備えた光伝送システムにおいて、前記接続装置は、前記ユーザ端末との間の伝送路の品質を測定するための一定数の測定装置と、前記ユーザ端末にBusy情報を通知するための通知装置と、前記ユーザ端末の接続先を、前記測定装置、前記通知装置、前記光伝送網のうちいずれかに切り替えるための切替装置と、を備え、前記制御装置は、前記切替装置を制御する制御部を備え、前記制御部は、前記ユーザ端末からの接続要求を検知し、前記一定数の測定装置に空きがある場合、当該ユーザ端末を空きの測定装置に接続し、前記一定数の測定装置に空きがない場合、当該ユーザ端末を前記通知装置に一旦接続して前記測定装置に空きがでたときに空きの測定装置に接続し、接続した測定装置による伝送路の品質測定後、当該ユーザ端末を前記光伝送網に接続する。
 本発明の一態様の光パス設定・輻輳制御方法は、1つ以上のユーザ端末をキャリアの光伝送網に接続する接続装置と、前記接続装置を制御する制御装置と、で行う、光パス設定・輻輳制御方法において、前記接続装置は、前記ユーザ端末との間の伝送路の品質を測定するための一定数の測定装置と、前記ユーザ端末にBusy情報を通知するための通知装置と、前記ユーザ端末の接続先を、前記測定装置、前記通知装置、前記光伝送網のうちいずれかに切り替えるための切替装置と、を備え、前記制御装置は、前記切替装置を制御する制御部を備え、前記制御部は、前記ユーザ端末からの接続要求を検知し、前記一定数の測定装置に空きがある場合、当該ユーザ端末を空きの測定装置に接続し、前記一定数の測定装置に空きがない場合、当該ユーザ端末を前記通知装置に一旦接続して前記測定装置に空きがでたときに空きの測定装置に接続し、接続した測定装置による伝送路の品質測定後、当該ユーザ端末を前記光伝送網に接続する。
 本発明によれば、限られたリソースを用いて光パスを自動設定可能な技術を提供できる。
図1は、光伝送システムの構成を示す図である。 図2は、網アーキテクチャの例を示す図である。 図3は、網アーキテクチャの例を示す図である。 図4は、網アーキテクチャの例を示す図である。 図5は、網アーキテクチャの例を示す図である。 図6は、網アーキテクチャの例を示す図である。 図7は、光伝送システムの制御シーケンスを示す図である。 図8は、光伝送システムの処理イメージを示す図である。 図9は、光伝送システムの処理イメージを示す図である。 図10は、光伝送システムの処理イメージを示す図である。 図11は、光伝送システムの処理イメージを示す図である。 図12は、光伝送システムの処理イメージを示す図である。 図13は、光伝送システムの処理イメージを示す図である。 図14は、光伝送システムの処理イメージを示す図である。 図15は、光伝送システムの処理イメージを示す図である。 図16は、第1の輻輳制御方法を示す図である。 図17は、第1の輻輳制御方法を示す図である。 図18は、第1の輻輳制御方法を示す図である。 図19は、第2の輻輳制御方法を示す図である。 図20は、第3の輻輳制御方法を示す図である。 図21は、第4の輻輳制御方法を示す図である。 図22は、伝送路情報の例を示す図である。 図23は、第4の輻輳制御方法を示す図である。 図24は、第5の輻輳制御方法を示す図である。 図25は、伝送路情報の例を示す図である。 図26は、第5の輻輳制御方法を示す図である。 図27は、具体的な実施例の処理イメージを示す図である。 図28は、具体的な実施例の処理イメージを示す図である。 図29は、具体的な実施例の処理イメージを示す図である。 図30は、具体的な実施例の処理イメージを示す図である。 図31は、具体的な実施例の処理イメージを示す図である。 図32は、具体的な実施例の処理イメージを示す図である。 図33は、制御装置のハードウェア構成を示す図である。
 以下、図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。
 [発明の概要]
 本発明は、ダークファイバの伝送路を介してキャリアの光伝送網(以降、キャリア網)に接続された1つ以上のユーザ端末からの接続要求に基づき、最適に光パスを自動設定する技術に関する発明である。
 光パスの設定・確立時には、ユーザ端末との間の伝送路の品質を測定し、その伝送品質を基に最適な伝送モードを決定し、その伝送モードでキャリア網とλ接続する処理が行われる。このとき、伝送品質の測定装置は非常に高価であり、測定装置を多用すると膨大なコストがかかる。一方、少数の測定装置を用意しつつも、複数のユーザ端末からの各接続要求をできる限りブロックせず(待たせず)に収容したい。
 そこで、本発明は、ユーザ端末をキャリア網に接続する接続装置と、その接続装置を制御する制御装置と、を開示する。接続装置は、光パスの切替装置と、少数の測定装置と、Busy情報を通知する通知装置と、を備える。制御装置は、測定装置に空きがない場合、接続要求の優先度や緊急性等に基づき接続要求の輻輳制御を行い、ユーザ端末を通知装置に一旦接続してBusy情報を通知させ、測定装置に空きがでたときに接続要求を空きになった測定装置に接続する。
 これにより、測定装置の数量に上限がある場合であっても、1つ以上のユーザ端末からの複数の接続要求に対して多くの光パスを自動設定可能となる。また、接続要求が輻輳した際には、優先度や緊急性等を考慮して適切に光パスを自動設定可能となる。
 [システム構成]
 図1は、本実施形態に係る光伝送システムの構成を示す図である。光伝送システムは、ユーザ端末3をキャリア網に接続する接続装置1と、接続装置1を制御する制御装置2と、を備える。光伝送システムは、1つの装置(接続用ノード)として実装してもよいし、ベンダの装置と組み合わせる形で実装してもよい。
 ユーザ端末3は、キャリア網外に存在する1つ以上のユーザ拠点端末である。複数のユーザ端末3は、それぞれの伝送路100により接続装置1に接続され、それぞれの伝送路100を介して接続装置1との間で光信号を送受信する送受信部を備える。ユーザ端末3は、例えば、データセンタ等の通信装置であり、具体的にはトランシーバ等である。
 接続装置1は、ユーザ端末3の接続先を測定装置12、通知装置13、キャリア網のうちいずれかに切り替えるための切替装置11と、ユーザ端末3との間の伝送路100の品質を測定するための測定装置12と、ユーザ端末3にBusy情報等を通知するための通知装置13と、を備える。接続装置1は、例えば、キャリア網内に配置される。
 切替装置11は、ユーザ端末3からの光信号を終端し、伝送区間の品質測定や端末認証を行うためにユーザ端末3を測定装置12や通知装置13に接続する装置である。また、切替装置11は、それらの処理を行った後に、キャリア網内に接続可能な場合にはユーザ端末3をキャリア網内に接続し、異常端末や接続が許可されないユーザ端末3からの光信号を遮断する装置である。切替装置11は、例えば、光スイッチである。
 測定装置12は、伝送品質未測定区間である伝送路100の品質を測定する一定数の装置である。一定数とは、測定装置12が高価であることを考慮した1つ以上の少数である。測定装置12は、例えば、コヒーレントトランシーバである。
 通知装置13は、事前に定義された信号であって、ユーザが区別/識別/判断可能な信号を用いて、Busy/OK/中断/接続拒否(Denied)の情報を通知する1つ以上の装置である。例えば、通知装置13は、AMCCやOTN-GCCのようにBusy情報等を別波長を用意することなく主信号上に生成して通知する。その他、通知装置13は、OSCのようにBusy情報等を特定の波長帯の信号で送信する。
 制御装置2は、光信号を制御する光信号制御部21と、ユーザ端末3を認証するユーザ端末認証部22と、ユーザ端末3の情報を管理するユーザ端末管理部23と、測定装置12の装置特性を保持する装置特性保持部24と、ユーザ端末3との間の伝送路100の品質を測定する伝送路情報推定部25と、ユーザ端末3にBusy情報等を通知する通知制御部26と、を備える。制御装置2は、例えば、キャリア網内のサーバ装置に配置される。
 光信号制御部21は、切替装置11を制御・監視する機能、測定装置12から情報収集し測定装置12を監視する機能、通知装置13を制御する機能を備える。具体的には、光信号制御部21は、ユーザ端末3からの接続要求を検知し、一定数の測定装置12に空きがある場合、ユーザ端末3を空きの測定装置12に接続し、一定数の測定装置12に空きがない場合、ユーザ端末3を通知装置13に一旦接続して測定装置12に空きがでたときに空きの測定装置12に接続し、接続した測定装置12による伝送路の品質測定後、ユーザ端末3をキャリア網内に接続する。
 ユーザ端末認証部22は、ユーザ端末管理部23に保持されているユーザ端末3の情報を参照し、キャリア網外から接続するユーザ端末3を認証し、キャリア網内への接続可否を判定する機能を備える。
 ユーザ端末管理部23は、キャリア網外から接続するユーザ端末3のユーザ端末情報を保持する機能を備える。ユーザ端末情報とは、例えば、ユーザ名、キャリアが割り当てた登録番号、回線ID、ユーザ端末の端末ID/型番/シリアル番号/MACアドレス、ユーザ端末が接続する切替装置11のポート番号である。
 装置特性保持部24は、一定数の測定装置12の各実機特性を保持する機能を備える。実機特性とは、BERの値から伝送区間の品質を推定するために必要となるデータである。例えば、BERとOSNRの関係を表すデータである。
 伝送路情報推定部25は、ユーザ端末3とキャリア網との間の伝送区間の伝送品質を推定計算する推定機能と、推定した伝送品質情報と最後に伝送品質を測定した時刻等を保持する保持機能と、を備える。なお、推定機能と保持機能は、別々の機能部としてもよい。
 通知制御部26は、通知装置13を制御・管理する機能を備える。通知制御部26は、光信号制御部21の内部に配置されてもよい。
 [網アーキテクチャ]
 ユーザ端末側の接続形態としては、1つの伝送路に1つのユーザ端末が接続する形態、1つの伝送路に1つ以上のユーザ端末が接続しかつ合波器を接続する形態、それら2つの形態が混在する形態がある。
 一方、キャリア側入口の接続形態としては、分波器を接続する形態、分波器を接続しない形態がある。切替装置11の種類としては、FXC、WXC(WSS/ROADM含む波長スイッチ)がある。
 これらを組み合わせると、例えば、ユーザ端末側の接続形態が1つの伝送路に1つのユーザ端末である場合、キャリア側入口の接続形態は分波器を接続する形態と分波器を接続しない形態のどちらでもよく、切替装置11はFXCとWXCのどちらでもよい、という網アーキテクチャが考えられる。
 その他、例えば、ユーザ端末側の接続形態が1つの伝送路に1つ以上のユーザ端末でありかつ合波器があり、キャリア側入口の接続形態が分波器を接続しない場合、切替装置11はWXCとする、という網アーキテクチャも考えられる。
 その他、例えば、ユーザ端末側の接続形態が1つの伝送路に1つ以上のユーザ端末でありかつ合波器があり、キャリア側入口の接続形態が分波器を接続する場合、切替装置11はFXCとWXCのどちらでもよい、という網アーキテクチャも考えられる。
 勿論、上記以外の組み合わせによる網アーキテクチャも考えられる。
 網アーキテクチャの典型例を図示する。
 図2は、1つの伝送路100に1つのユーザ端末3を接続し、切替装置11としてFXCを用いた網アーキテクチャである。
 図3は、1つの伝送路100に1つ以上のユーザ端末3を接続し、ユーザ端末側に合波器4を配置し、キャリア側入口に分波器5を配置し、切替装置11としてFXCを用いた網アーキテクチャである。
 図4は、1つの伝送路100に1つ以上のユーザ端末を接続し、ユーザ端末側に合波器4を配置し、切替装置11としてWXCを用いた網アーキテクチャである。
 図5は、1つの伝送路100に1つのみ又は1つ以上のユーザ端末を接続し、1つ以上のユーザ端末を接続したユーザ端末側に合波器4を配置し、合波器4を配置したユーザ端末側に対応するキャリア側入口に分波器5を配置し、切替装置11としてWXCを用いた網アーキテクチャである。
 図6は、1つの伝送路100に1つのみ又は1つ以上のユーザ端末を接続し、1つ以上のユーザ端末を接続したユーザ端末側に合波器4を配置し、切替装置11としてWXCを用いた網アーキテクチャである。
 なお、合波器4や分波器5は、例えば、波長多重・分離装置である。
 [システムの全体動作]
 図7は、光伝送システムの制御シーケンスを示す図である。
 ステップS1;
 まず、キャリアがユーザからの接続要求を認識・検知する。具体的には、光信号制御部21が、接続要求の到着を示す光信号を監視する。また、ユーザは、キャリアとの通信専用API等を用いて、接続要求を送信したことをキャリアに通知する。
 このとき、ユーザがキャリアの想定と異なる動作をする場合、光信号制御部21は、切替装置11のParking-State(想定外の動作に予め備えたデフォルト位置)に接続する機能/光信号切断機能を用いて、そのユーザからの光信号を遮断する。ユーザに対して通知装置13から接続不可/接続停止命令を通知してもよい。
 ステップS2;
 次に、ユーザの認証を実施する。具体的には、ユーザ端末認証部22が、接続要求を送信したユーザ端末3を端末IDや回線IDを基に認証する。ユーザ端末認証部22は、1つ以上のレイヤで1つ以上の認証(2段階認証等)を行ってもよい。
 このときも、ユーザがキャリアの想定と異なる動作をする場合、光信号制御部21は、切替装置11のParking-Stateに接続する機能/光信号切断機能を用いて、そのユーザからの光信号を遮断する。ユーザに対して通知装置13から接続不可/接続停止命令を通知してもよい。
 ステップS3;
 次に、キャリアがユーザの伝送路情報を測定・取得する。具体的には、伝送路情報推定部25が、接続要求を送信したユーザ端末3との間の伝送路100の品質を測定する。
 このとき、伝送路情報推定部25は、前回の測定時刻からの経過時間が閾値以下、かつ、伝送路に係る工事等の情報がない場合、伝送路の品質測定を実施せず、過去の測定結果を再利用してもよい。また、伝送路情報推定部25は、過去に接続したことがあるユーザ端末3からの接続要求である場合、過去の測定結果を再利用してもよい。
 その後、伝送路情報推定部25は、過去の測定結果を再利用しない又は再利用できない場合、測定装置12に空きがあるかを確認する。測定装置12に空きがある場合はステップS6へ進み、測定装置12に空きがない場合はステップS4へ進む。
 ステップS4;
 測定装置12に空きがない場合、キャリアはユーザにBusy情報を通知する。具体的には、通知制御部26が、通知装置13からBusy情報をユーザ端末3へ送信する。このとき、キャリアは、伝送路の品質測定中のユーザのうち優先度が低いユーザの品質測定を中断して中断情報を通知し、伝送路の品質測定中であった測定装置12を強制的に空きとしてもよい。
 ステップS5;
 ステップ4の後、ユーザは自分に順番が回ってきたこと、測定装置12に空きができたことを認識する。例えば、通知制御部26と通知装置13は、ユーザ端末3にOK信号を送信する。
 なお、ユーザは、OK信号を受信するまで定期的に再接続を試みてもよい。定期的な接続方法としては、所定の時間間隔毎に接続する方法、既存の再送タイマの設定(例えば、指数バックオフ)を利用して再接続する方法がある。
 その他、通知装置13がBusy信号でリトライ時刻を通知し、そのリトライ時刻にユーザが再接続を試みてもよい。光信号制御部21が、ユーザ端末3のIDを用いて、ユーザ端末3毎に接続時刻や測定装置12の割当をスケジューリングしてもよい。ユーザ端末3が、優先度が高いことを示す情報を接続要求の光信号に乗せ、優先的に接続できるように空き測定装置12を作らせる指示をしてもよい。キャリアは、ユーザ端末3の振舞等に応じて、動的にユーザ端末3の優先度を変更し、優先度が高いユーザ端末3を優先接続してもよい。
 ステップS6;
 ステップ5の後又は測定装置12に空きがあった場合、伝送路の測定実施を行う。具体的には、伝送路情報推定部25が、接続要求を送信したユーザ端末3との間の伝送路100の品質を測定する。伝送路情報推定部25は、測定結果を測定完了時間とともに記録してもよい。
 その後、制御装置2は、測定した伝送品質を基に最適な伝送モードを決定し、その伝送モードをユーザに通知し、その伝送モードでキャリア網とλ接続する。なお、伝送モードの決定方法や通知方法については、既存方法を用いる。
 ステップS7(図7において不図示);
 ステップS1~S6は、通常時の接続要求を想定している。一方、緊急時の接続要求を受ける場合がある。このような緊急通信発生時には、制御装置2は、伝送路の品質測定進行中のユーザに対して中断/Busyの情報を通知して伝送路の品質測定を中断し、緊急接続要求に係る伝送路の品質測定を優先する。その後、制御装置2は、空いた測定装置を用いて中断していた品質測定を通常通り処理する。
 ここまで、光伝送システムの全体動作について説明した。なお、ステップS2~S4は、順番を問わない。例えば、測定装置12の空きを判定した後にユーザ認証を行い、測定装置12に空きがありかつユーザ認証OKであれば伝送路の品質測定を実施してもよい。
 [ステップS1~S7の具体的な処理]
 ステップS1の具体的な処理;
 ユーザ端末3aは、接続要求と端末情報を光信号に乗せ、その光信号をキャリア側に送信する(図8参照)。このとき、ユーザは、接続要求を送信したことを明示的にキャリア側に伝えてもよい。ユーザ端末3は、接続要求内に、接続要求の優先度(緊急接続したい等)や接続の目的(データの定期的なバックアップ等)を含めてもよい。
 光信号制御部21は、ユーザ端末3aからの光信号レベルを監視して検知する。ユーザが接続要求を送信したことをキャリア側に通知した場合には、光信号制御部21は、その通知内容を受信する。
 ステップS2の具体的な処理;
 光信号制御部21は、測定装置12a~12nの空き状況を確認し、測定装置12a~12nに空きがある場合には、ユーザ端末3aを空きの測定装置12aに接続させる(図9参照)。測定装置12a~12nに空きがない場合には、後述の輻輳制御を実施する。
 ユーザ端末認証部22は、測定装置12aで受信した光信号に乗せられた端末情報を取り出し、接続してきたユーザ端末3aの情報を取得する。その後、ユーザ端末認証部22は、ユーザ端末管理部23を参照し、取得したユーザ端末3aの情報と照合する。
 ステップS3の具体的な処理;
 伝送路情報推定部25は、接続要求が到着した測定装置12aの実機特性(BERとOSNRの関係を表すデータ)を装置特性保持部24から取得し、その測定装置12aの実機特性を用いて、伝送品質未測定区間である伝送路100aの伝送品質を推定する(図10参照)。
 このとき、伝送路情報推定部25は、「Takeo Sasai、外5名、‘Digital Backpropagation for Optical Path Monitoring: Loss Profile and Passband Narrowing Estimation’、2020 European Conference on Optical Communications (ECOC)、2020年」を実装し、伝送路情報(レベルダイヤや損失、ファイバ種別)を推定し、その伝送路情報をもとに伝送品質を推定してもよい。
 また、上述したが、伝送路情報推定部25は、前回の測定時刻からの経過時間が閾値以下、かつ、伝送路に係る工事等の情報がない場合、伝送路の品質測定を実施せず、過去の測定結果を再利用してもよい。また、伝送路情報推定部25は、過去に接続したことがあるユーザ端末3からの接続要求である場合、過去の測定結果を再利用してもよい。
 ステップS4の具体的な処理;
 測定装置12a~12nに空きがない場合には、光信号制御部21は、ユーザ端末3aを通知装置13に接続する(図11参照)。その後、通知制御部26と通知装置13は、ユーザ端末3aにBusy情報を通知する。
 このとき、上述したが、光信号制御部21は、伝送路の品質測定中のユーザのうち優先度が低いユーザの品質測定を中断して中断情報を通知し、伝送路の品質測定中であった測定装置12を強制的に空きとしてもよい。ユーザの優先度は、例えば、ユーザ端末管理部23に登録された情報、接続要求時にユーザが明示的に指定した優先度、を基に判定する。
 ステップS5の具体的な処理;
 光信号制御部21は、測定装置12に空きができた後、ユーザ認証と伝送品質推定が完了していないユーザ端末3(ユーザ端末3a)と通知装置13を接続する(図12参照)。その後、通知制御部26と通知装置13は、接続先のユーザ端末3aにOK信号を送信する。
 このとき、通知装置13は、測定装置12a~12nに空きが出るまでユーザに定期的に再接続を試みるよう通知してもよい。また、ユーザ自身が定期的に再接続を試みてもよい。その他、通知装置13は、測定装置12a~12nに空きが出る時刻を推定し、その推定時刻をリトライ時刻として通知し、そのリトライ時刻にユーザが再接続を試みるよう制御してもよい。
 また、光信号制御部21は、ユーザ端末3の情報を用いて、ユーザ端末毎に接続時刻や測定装置12の割当をスケジューリングしてもよい。ユーザ端末3は、優先度が高いことを示す情報を接続要求信号乗せ、優先的に接続できるように空き測定装置を作らせる指示をしてもよい。キャリアは、ユーザ端末3の振舞等に応じて、動的にユーザ端末3の優先度を変更し、優先度が高いユーザ端末3を優先接続してもよい。
 ステップS6の具体的な処理;
 光信号制御部21は、測定装置12a~12nに空きができた後、ユーザ認証と伝送品質推定が完了していないユーザ端末3(ユーザ端末3a)と空きになった測定装置12bを接続し、その空き測定装置12bに接続するための情報(例えば、測定装置の場所、スロット番号)を伝送路情報推定部25に通知する(図13参照)。
 伝送路情報推定部25は、光信号制御部21から通知された測定装置12bに接続し、伝送品質未測定区間である伝送路100aの伝送品質を測定する。伝送品質の測定完了後、伝送路情報推定部25は、その測定結果を測定完了時間とともに記録してもよい。
 その後、光信号制御部21は、ユーザ端末3aの接続要求に係る光パスの経路をキャリア網内に確立後、切替装置11を制御し、ユーザ端末3aをキャリア網内へ接続する(図14参照)。
 ステップS7の具体的な処理;
 緊急通信発生時には、光信号制御部21は、伝送路の品質測定進行中のユーザ端末3a~3cに対して中断/Busyの情報を通知して伝送路の品質測定を中断し、緊急接続要求に係る伝送路の品質測定を優先する(図15参照)。
 [輻輳制御]
 輻輳制御について説明する。後述する5つの輻輳制御は、各輻輳制御を個々に単独で実施してもよいし、5つの輻輳制御のうち2つ以上の輻輳制御を組み合わせて実施してもよい。
 [第1の輻輳制御方法]
 第1の輻輳制御方法は、接続要求の到着順に処理するFIFO方式である(図16~図18参照)。具体的には、一定数の測定装置12に空きがない場合において、複数の接続要求があるとき、接続要求の到着順にユーザ端末3を空きになった測定装置12に接続する方式である。
 接続装置1は、3つの測定装置12a~12cを備えるものとする。3つの測定装置12a~12cは、それぞれ、各ユーザ端末3a~3cとの間でライン同期が取れており、BERから伝送品質の推定を完了するまでに数分かかるものとする。
 3つの測定装置12a~12cが全て使用中の時に、ユーザ端末3mから接続要求信号を着信すると(ステップS101)、光信号制御部21は、Busyであることを通知するため、ユーザ端末3mを通知装置13に接続する(ステップS102)。
 その後、通知制御部26と通知装置13は、Busy情報をユーザ端末3mに通知する(ステップS103)。例えば、Busyを示すAMCC/GCC/パイロットトーン、Busyを示す特定の波長の信号OSCを送信する。
 次に、ユーザ端末3nから接続要求信号を着信すると(ステップS104)、光信号制御部21は、Busyであることを通知するため、ユーザ端末3nを通知装置13に接続する(ステップS105)。その後、通知制御部26と通知装置13は、上記と同様の方法でBusy情報をユーザ端末3nに通知する(ステップS106)。
 光信号制御部21は、通知装置13の接続先をユーザ端末3m又はユーザ端末3nに繰り返し切り替え、通知制御部26と通知装置13は、測定装置12a~12cに空きが出るまで定期的にBusy信号をユーザ端末3mとユーザ端末3nに送信する。
 その後、測定装置12a~12cに空きが出たら、光信号制御部21は、ユーザ端末3mを空きになった測定装置12cに接続し(ステップS107)、その後にユーザ端末3nを空きになった測定装置12bに接続する(ステップS108)。
 [第2の輻輳制御方法]
 第2の輻輳制御方法は、接続要求の優先度順に処理するPreemptive方式である(図19参照)。具体的には、一定数の測定装置12に空きがない場合において、伝送路の品質測定中の接続要求を含む複数の接続要求があるとき、新たな接続要求の優先度が伝送路の品質測定中の接続要求の優先度よりも高ければ、伝送路の品質測定中の測定装置12の接続先を新たな接続要求のユーザ端末に切り替える方式である。
 3つの測定装置12a~12cが全て使用中の時に、ユーザ端末3mから優先度が高い接続要求信号を着信すると(ステップS201)、光信号制御部21は、優先度が低い接続要求について品質測定中の測定装置12cの接続先をユーザ端末3cからユーザ端末3mに切り替え(ステップS202)、ユーザ端末3cを通知装置13に接続する(ステップS203)。その後、通知制御部26と通知装置13は、伝送路推定の中断をユーザ端末3cに通知する(ステップS204)。
 [第3の輻輳制御方法]
 第3の輻輳制御方法は、緊急の接続要求を優先する制御方式である(図20参照)。具体的には、ユーザ端末3からの接続要求が緊急性の接続要求である場合、そのユーザ端末3を一定数の測定装置12のうち緊急時にのみ使用する測定装置に接続する方式である。
 複数の測定装置12の中から1つ以上を緊急接続用として用意する。緊急接続用の測定装置12aは、通常時には使用されず、緊急時にのみ使用される。ユーザ端末3mから緊急の接続要求信号を着信すると(ステップS301)、光信号制御部21は、ユーザ端末3mを緊急接続用の測定装置12aに接続する(ステップS302)。
 [第4の輻輳制御方法]
 第4の輻輳制御方法は、伝送路品質の最終推定時刻を考慮した制御方法である(図21~図23参照)。具体的には、一定数の測定装置12に空きがない場合において、各測定装置における伝送路の品質測定完了時刻の早い順にユーザ端末3を空きになった測定装置12に接続する方式である。
 3つの測定装置12a~12cが全て使用中であり、伝送路情報推定部25には各伝送路100a~100cの測定完了時刻等の伝送路情報が保持されているものとする。ユーザ端末3mから接続要求信号を着信すると(ステップS401)、光信号制御部21は、最近伝送路情報を測定した伝送路100cの伝送区間については、その伝送区間の伝送路情報に変動がほぼないと判定し、新しく到着してきたユーザ端末3mからの接続要求に品質測定処理を譲るため、ユーザ端末3mを測定装置12cに接続する(ステップS402)。
 [第5の輻輳制御方法]
 第5の輻輳制御方法は、伝送路の最終推定時刻を考慮した時刻指定型の制御方法である(図24~図26参照)。具体的には、一定数の測定装置12に空きがない場合において、再接続要求の指定時刻順にユーザ端末3を空きなった測定装置12に接続する方式である。
 3つの測定装置12a~12cが全て使用中であり、伝送路情報推定部25には各伝送路100a~100cを何秒前に測定開始したか等の伝送路情報が保持されているものとする。ユーザ端末3mから接続要求信号を着信すると(ステップS501)、光信号制御部21は、Busyであることを通知するため、ユーザ端末3mを通知装置13に接続する(ステップS502)。
 その後、通知制御部26と通知装置13は、伝送路情報推定部25の伝送路情報を基に、測定装置12a~12cのうち最も早く空きが出る測定装置12cの測定完了時刻を再接続時刻とし、その再接続時刻をユーザ端末3mに通知する(ステップS503)。例えば、30秒後の〇〇時刻に再接続を依頼する。
 その後、光信号制御部21は、再接続時刻にユーザ端末3mから送信される再接続要求信号を着信し(ステップS504)、そのユーザ端末3mを空きになった測定装置12cに接続する(ステップS505)。
 [具体的な実施例(ユースケース)]
 図27に示すように、ユーザA~Cは、キャリア網外に自社データセンタを持ち、キャリア網を経由してλ接続可能なユーザ群である。実際の通信は双方向で行われるため、区間Aと区間Bのそれぞれで端末認証/伝送路品質推定を行うが、簡単のため、区間Aの具体例を説明する。区間Bについても同様となる。測定装置12と通知装置13は、それぞれ、区間A側のキャリア内に1つのみ配置されている。
 各ユーザA~CのSLA(Service Level Agreement)をSLA_A、SLA_B、SLA_Cとし、SLAの優先度が大きければ接続要求の優先度が高いとする。ここでは、SLA_A>SLA_B>SLA_Cとする。
 ユーザ端末管理部23には、各ユーザ端末3a~3cの情報(例えば、ユーザ番号、端末ID、回線ID、SLA、ユーザ端末が接続する切替装置11のポート番号)が登録されている。
 各ユーザA~Cは、直近の災害に備えるため、データのバックアップを取るためにユーザ端末3a~3cをキャリア網に接続してデータ転送を開始する。そのために、ユーザ端末3a~3cは、キャリア網内に接続要求を送信する(図28参照)。
 まず、光信号制御部21は、各ユーザ端末3a~3cからの接続要求をそれぞれ検知し、測定装置12に接続させるユーザ端末3を決定する。本実施例では、光信号制御部21は、SLAが最も大きいユーザ端末3aを最初に測定装置12に接続させるユーザ端末として決定する。
 その後、光信号制御部21は、ユーザ端末管理部23を参照し、ユーザ端末3aが接続する切替装置11のポート番号を特定し、ユーザ端末3aを測定装置12に接続する。測定装置12への接続を得られなかったユーザB、Cについては、光信号制御部21は、切替装置11と通知装置13をそれぞれ制御して、通知装置13に一旦接続し、通知装置13からBusy信号とリトライ時刻を通知させる。
 次に、光信号制御部21は、測定装置12に到着したユーザ端末3aからの接続要求の内容及びユーザ端末3aの情報を取得し、取得した情報をユーザ端末認証部22に渡す。ユーザ端末認証部22は、ユーザ端末管理部23を参照して認証を実施する(図29参照)。
 認証実施後、キャリア網内への接続が許可されたユーザ端末であった場合には、伝送路品質推定処理に移行する。接続不可なユーザ端末であった場合には、光信号制御部21は、切替装置11の光信号切断機能を用いて光信号を遮断してキャリア網内への接続を拒否する。このとき、通知装置13から接続拒否信号を送信し、接続要求が拒否されたことをユーザ端末に通知してもよい。
 次に、伝送路情報推定部25は、ユーザ端末3aが接続してきた伝送路100aの伝送品質を推定する(図30参照)。具体的には、伝送路情報推定部25は、光信号制御部21に測定装置12に記録されたBERを問い合わせ、測定装置12の実機特性を装置特性保持部24から取得し、これらの情報を用いて、ユーザ端末3aとキャリア網とを接続する区間Aの伝送路100aの伝送品質を推定する。
 同様の制御シーケンスを区間Bにおいても実施する。
 次に、光信号制御部21は、キャリア網内で開通可能な経路又はユーザの帯域等要求を満たす経路の探索を行い、適切な経路を決定する。また、光信号制御部21は、決定した経路の伝送品質を推定する。光信号制御部21は、キャリア網を含む各伝送区間の伝送品質を合算し、その合算値を基に最適な伝送モードを算出する。そして、光信号制御部21は、算出した伝送モードをユーザ端末3aに対して設定し通知する。
 最後に、光信号制御部21は、キャリア網内の光パスが通る経路を開通する(図31参照)。また、光信号制御部21は、切替装置11を制御し、ユーザAの拠点間に最適な光パスを提供する。
 その後、ユーザB、Cはリトライ時刻に再接続するので、光信号制御部21は、ユーザB、Cの順でユーザAと同様の手順を実施する(図32参照)。
 [効果]
 本実施形態によれば、制御装置2の光信号制御部21が、接続装置1において、ユーザ端末3からの接続要求を検知し、一定数の測定装置12に空きがある場合、当該ユーザ端末3を空きの測定装置12に接続し、一定数の測定装置12に空きがない場合、当該ユーザ端末3を通知装置13に一旦接続して測定装置12に空きがでたときに空きの測定装置12に接続し、接続した測定装置12による伝送路100の品質測定後、当該ユーザ端末3を光伝送網に接続するので、測定装置12の数量に上限がある場合であっても、1つ以上のユーザ端末3からの複数の接続要求に対して多くの光パスを自動設定可能となる。
 また、本実施形態によれば、制御装置2の光信号制御部21は、一定数の測定装置12に空きがない場合において、複数の接続要求があるとき、接続要求の到着順又は優先度順にユーザ端末3を空きになった測定装置12に接続する第1の輻輳制御方法、一定数の測定装置12に空きがない場合において、伝送路の品質測定中の接続要求を含む複数の接続要求があるとき、新たな接続要求の優先度が伝送路の品質測定中の接続要求の優先度よりも高ければ、伝送路の品質測定中の測定装置12の接続先を新たな接続要求のユーザ端末3に切り替える第2の輻輳制御方法、ユーザ端末3からの接続要求が緊急性の接続要求である場合、当該ユーザ端末3を一定数の測定装置12のうち緊急時にのみ使用する測定装置12に接続する第3の輻輳制御方法、一定数の測定装置12に空きがない場合において、各測定装置12における伝送路の品質測定完了時刻の早い順にユーザ端末3を空きになった測定装置12に接続する第4の輻輳制御方法、又は、一定数の測定装置12に空きがない場合において、再接続要求の指定時刻順にユーザ端末3を空きなった測定装置12に接続する第5の輻輳制御方法を行うので、適切に光パスを自動設定可能となる。
 [その他]
 本発明は、上記実施形態に限定されない。本発明は、本発明の要旨の範囲内で数々の変形が可能である。
 上記説明した本実施形態の制御装置2は、例えば、図33に示すように、CPU901と、メモリ902と、ストレージ903と、通信装置904と、入力装置905と、出力装置906と、を備えた汎用的なコンピュータシステムを用いて実現できる。メモリ902及びストレージ903は、記憶装置である。当該コンピュータシステムにおいて、CPU901がメモリ902上にロードされた所定のプログラムを実行することにより、制御装置2の各機能が実現される。
 制御装置2は、1つのコンピュータで実装されてもよい。制御装置2は、複数のコンピュータで実装されてもよい。制御装置2は、コンピュータに実装される仮想マシンであってもよい。制御装置2用のプログラムは、HDD、SSD、USBメモリ、CD、DVD等のコンピュータ読取り可能な記録媒体に記憶できる。制御装置2用のプログラムは、通信ネットワークを介して配信することもできる。
 1:接続装置
 11:切替装置
 12:測定装置
 13:通知装置
 2:制御装置
 21:光信号制御部
 22:ユーザ端末認証部
 23:ユーザ端末管理部
 24:装置特性保持部
 25:伝送路情報推定部
 26:通知制御部
 3:ユーザ端末
 4:合波器
 5:分波器
 100:伝送路
 901:CPU
 902:メモリ
 903:ストレージ
 904:通信装置
 905:入力装置
 906:出力装置

Claims (8)

  1.  1つ以上のユーザ端末をキャリアの光伝送網に接続する接続装置と、前記接続装置を制御する制御装置と、を備えた光伝送システムにおいて、
     前記接続装置は、
     前記ユーザ端末との間の伝送路の品質を測定するための一定数の測定装置と、
     前記ユーザ端末にBusy情報を通知するための通知装置と、
     前記ユーザ端末の接続先を、前記測定装置、前記通知装置、前記光伝送網のうちいずれかに切り替えるための切替装置と、を備え、
     前記制御装置は、
     前記切替装置を制御する制御部を備え、
     前記制御部は、
     前記ユーザ端末からの接続要求を検知し、前記一定数の測定装置に空きがある場合、当該ユーザ端末を空きの測定装置に接続し、前記一定数の測定装置に空きがない場合、当該ユーザ端末を前記通知装置に一旦接続して前記測定装置に空きがでたときに空きの測定装置に接続し、接続した測定装置による伝送路の品質測定後、当該ユーザ端末を前記光伝送網に接続する光伝送システム。
  2.  前記制御部は、
     前記一定数の測定装置に空きがない場合において、複数の接続要求があるとき、接続要求の到着順又は優先度順にユーザ端末を空きになった測定装置に接続する請求項1に記載の光伝送システム。
  3.  前記制御部は、
     前記一定数の測定装置に空きがない場合において、伝送路の品質測定中の接続要求を含む複数の接続要求があるとき、新たな接続要求の優先度が伝送路の品質測定中の接続要求の優先度よりも高ければ、前記伝送路の品質測定中の測定装置の接続先を前記新たな接続要求のユーザ端末に切り替える請求項1に記載の光伝送システム。
  4.  前記制御部は、
     前記ユーザ端末からの接続要求が緊急性の接続要求である場合、当該ユーザ端末を前記一定数の測定装置のうち緊急時にのみ使用する測定装置に接続する請求項1に記載の光伝送システム。
  5.  前記制御部は、
     前記一定数の測定装置に空きがない場合において、各測定装置における伝送路の品質測定完了時刻の早い順にユーザ端末を空きになった測定装置に接続する請求項1に記載の光伝送システム。
  6.  前記制御部は、
     前記一定数の測定装置に空きがない場合において、再接続要求の指定時刻順にユーザ端末を空きなった測定装置に接続する請求項1に記載の光伝送システム。
  7.  1つ以上のユーザ端末をキャリアの光伝送網に接続する接続装置と、前記接続装置を制御する制御装置と、で行う、光パス設定・輻輳制御方法において、
     前記接続装置は、
     前記ユーザ端末との間の伝送路の品質を測定するための一定数の測定装置と、
     前記ユーザ端末にBusy情報を通知するための通知装置と、
     前記ユーザ端末の接続先を、前記測定装置、前記通知装置、前記光伝送網のうちいずれかに切り替えるための切替装置と、を備え、
     前記制御装置は、
     前記切替装置を制御する制御部を備え、
     前記制御部は、
     前記ユーザ端末からの接続要求を検知し、前記一定数の測定装置に空きがある場合、当該ユーザ端末を空きの測定装置に接続し、前記一定数の測定装置に空きがない場合、当該ユーザ端末を前記通知装置に一旦接続して前記測定装置に空きがでたときに空きの測定装置に接続し、接続した測定装置による伝送路の品質測定後、当該ユーザ端末を前記光伝送網に接続する光パス設定・輻輳制御方法。
  8.  前記制御部は、
     前記一定数の測定装置に空きがない場合において、複数の接続要求があるとき、接続要求の到着順又は優先度順にユーザ端末を空きになった測定装置に接続し、
     前記一定数の測定装置に空きがない場合において、伝送路の品質測定中の接続要求を含む複数の接続要求があるとき、新たな接続要求の優先度が伝送路の品質測定中の接続要求の優先度よりも高ければ、前記伝送路の品質測定中の測定装置の接続先を前記新たな接続要求のユーザ端末に切り替え、
     前記ユーザ端末からの接続要求が緊急性の接続要求である場合、当該ユーザ端末を前記一定数の測定装置のうち緊急時にのみ使用する測定装置に接続し、
     前記一定数の測定装置に空きがない場合において、各測定装置における伝送路の品質測定完了時刻の早い順にユーザ端末を空きになった測定装置に接続し、
     又は、
     前記一定数の測定装置に空きがない場合において、再接続要求の指定時刻順にユーザ端末を空きなった測定装置に接続する請求項7に記載の光パス設定・輻輳制御方法。
PCT/JP2022/029011 2022-07-27 2022-07-27 光伝送システム、及び、光パス設定・輻輳制御方法 WO2024023992A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029011 WO2024023992A1 (ja) 2022-07-27 2022-07-27 光伝送システム、及び、光パス設定・輻輳制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029011 WO2024023992A1 (ja) 2022-07-27 2022-07-27 光伝送システム、及び、光パス設定・輻輳制御方法

Publications (1)

Publication Number Publication Date
WO2024023992A1 true WO2024023992A1 (ja) 2024-02-01

Family

ID=89705685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029011 WO2024023992A1 (ja) 2022-07-27 2022-07-27 光伝送システム、及び、光パス設定・輻輳制御方法

Country Status (1)

Country Link
WO (1) WO2024023992A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468829A (ja) * 1990-07-06 1992-03-04 Nippon Telegr & Teleph Corp <Ntt> 非通話信号伝送装置
JP2015040795A (ja) * 2013-08-22 2015-03-02 住友電工デバイス・イノベーション株式会社 試験装置
CN109039440A (zh) * 2018-09-14 2018-12-18 长飞光纤光缆股份有限公司 一种高效otdr测试系统及方法
JP2019174458A (ja) * 2018-03-13 2019-10-10 テクトロニクス・インコーポレイテッドTektronix,Inc. 試験測定管理デバイス及びシステム並びに試験測定管理システムのための方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468829A (ja) * 1990-07-06 1992-03-04 Nippon Telegr & Teleph Corp <Ntt> 非通話信号伝送装置
JP2015040795A (ja) * 2013-08-22 2015-03-02 住友電工デバイス・イノベーション株式会社 試験装置
JP2019174458A (ja) * 2018-03-13 2019-10-10 テクトロニクス・インコーポレイテッドTektronix,Inc. 試験測定管理デバイス及びシステム並びに試験測定管理システムのための方法
CN109039440A (zh) * 2018-09-14 2018-12-18 长飞光纤光缆股份有限公司 一种高效otdr测试系统及方法

Similar Documents

Publication Publication Date Title
JP3471853B2 (ja) デジタル通信システムのグループファシリティ保護
EP2730096B1 (en) Apparatus and method for protection in a data center
JP4853037B2 (ja) 光ネットワークシステム、ハブ・ノード
US7466917B2 (en) Method and system for establishing transmission priority for optical light-trails
US6757306B1 (en) Method and system for intermediate system level 2 transparency using the SONET LDCC
JP4717068B2 (ja) 分散型波長(lambda)ルーテッド(dlr)ネットワークのための方法及びシステム
US7590353B2 (en) System and method for bandwidth allocation in an optical light-trail
US20020126343A1 (en) System and method for configuring optical circuits
JP3394394B2 (ja) ネットワーク接続品質制御方式
JP2008503143A5 (ja)
CN103731373A (zh) 带宽资源的调整方法、装置及系统
EP2975811A1 (en) Interface switching method and device
CN115914887A (zh) 一种业务数据的传输方法及相关设备
WO2024023992A1 (ja) 光伝送システム、及び、光パス設定・輻輳制御方法
JP3834011B2 (ja) 光クロスコネクトを用いた光通信網及びその処理方法
EP2217001B1 (en) Tap, lrm and resource state control system and method
CN109743112B (zh) Otn组网方法、装置、设备及计算机可读存储介质
WO2019091350A1 (zh) 双上联方法、光网络管理设备以及光传输系统
CN109150747B (zh) 一种变更业务带宽的方法、装置及计算机可读存储介质
JP7541252B2 (ja) 光通信装置、制御方法および光通信システム
CN109120348B (zh) 一种城域网络系统及其网络接入系统
WO2022268040A1 (zh) 光纤连接发现方法、电子设备和计算机可读存储介质
JP3784732B2 (ja) 光経路計算装置および方法
JP2845189B2 (ja) Atm交換網呼受付制御方法とその装置
KR100696203B1 (ko) Wdma 방식을 이용한 광네트워크에서의 광계층 연결서비스를 위한 wdma중앙국 장치, wdma 사용자접속장치 및 그 서비스 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953086

Country of ref document: EP

Kind code of ref document: A1