WO2024022535A1 - 一种电镀件及其制备方法和制备用夹具、设备 - Google Patents

一种电镀件及其制备方法和制备用夹具、设备 Download PDF

Info

Publication number
WO2024022535A1
WO2024022535A1 PCT/CN2023/110250 CN2023110250W WO2024022535A1 WO 2024022535 A1 WO2024022535 A1 WO 2024022535A1 CN 2023110250 W CN2023110250 W CN 2023110250W WO 2024022535 A1 WO2024022535 A1 WO 2024022535A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroplated
electroplating
layer
anode
thickness
Prior art date
Application number
PCT/CN2023/110250
Other languages
English (en)
French (fr)
Inventor
刘自强
张德元
张贵
Original Assignee
元心科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元心科技(深圳)有限公司 filed Critical 元心科技(深圳)有限公司
Publication of WO2024022535A1 publication Critical patent/WO2024022535A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • C25D17/08Supporting racks, i.e. not for suspending
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated

Definitions

  • the invention belongs to the field of electroplating technology, and specifically relates to an electroplated part and its preparation method and preparation fixtures and equipment. More specifically, it relates to an electroplated part for medical devices and its preparation method and preparation fixture and equipment.
  • electroplating is widely used in industry.
  • electroplating mainly includes rack plating and barrel plating.
  • Rack plating fixes the workpieces with customized fixtures and places the plated parts in the plating solution for electroplating. This method is more suitable for larger workpieces; while barrel plating puts a large number of small workpieces into a drum and electroplates them.
  • the power supply outputs a certain current for plating and the coating of the expected thickness can be obtained in a corresponding time. It is currently mainly used for electroplating of small-sized workpieces. The operation is relatively simple and it is easier to produce on a large scale.
  • the present invention provides an electroplated part for medical devices suitable for application to the human body.
  • the electroplated part strictly controls the type and content of components in the electroplated layer to avoid After implantation into the human body, cell or tissue toxicity occurs, causing severe inflammatory reactions and other adverse reactions. That is to say, the present invention provides an electroplated part with high biological safety.
  • the technical solution of the present invention provides an electroplated part, which includes a base body and an electroplating layer.
  • the electroplating layer covers the base body, and the content of organic residues in the electroplating layer is less than 0.2%.
  • a variety of substances are added to the electroplating solution, especially some organic functional substances. These substances can significantly improve the efficiency of electroplating and the quality of electroplated parts, including uniformity, brightness, etc.
  • these organic functional substances will have certain functional groups, and these groups will also carry or adsorb certain charges in the solution. Therefore, they can easily be deposited on the electroplating layer during the electroplating process as the electroplating layer is formed.
  • the content of organic residues in the electroplating layer provided by the present invention is less than 0.1%; further, the content of organic residues in the electroplating layer is less than 0.05%; further, the content of organic residues in the electroplating layer The content of organic residues in the electroplating layer is less than 0.019%; further, the content of organic residues in the electroplating layer is less than 0.01%. Furthermore, the electroplated layer of the present invention contains almost no organic residues.
  • the uniformity of the thickness of various parts of the electroplating layer of medical devices not only has a great impact on the corrosion rate, corrosion cycle, device breakage time and effective support time of the substrate, but also the uneven thickness of the electroplating layer may cause fibrin deposition near the device. And some tissues have hyperplasia. If cell proliferation occurs in the narrow part of the lumen, it will further cause the lumen to be narrowed again. Therefore, it is very necessary to control the uniformity of the thickness of the electroplating layer on the surface of the device in various parts of the base to ensure that the device meets the requirements. In addition to the corrosion rate, corrosion cycle, and effective support time of the device, it can avoid cell proliferation and re-narrowing of the lumen, thereby improving the safety and effectiveness of the device in the body.
  • the ratio of the thickness of the thickest part and the thickness of the thinnest part of the electroplated layer on the substrate is controlled to (1-30]:1; further, the electroplated layer on the substrate is The ratio of the thickness of the thickest part to the thickness of the thinnest part is (1-20]:1; further, the thickness of the thickest part of the electroplating layer on the substrate is equal to the thickness of the thinnest part.
  • the ratio of the thickness at the base is (1-15]:1; further, the ratio of the thickness at the thickest place and the thinnest place of the electroplating layer on the substrate is (1-12]:1; further, the The ratio of the thickness of the thickest part of the electroplated layer on the substrate to the thickness of the thinnest part is (1-8]:1. Further, the ratio of the thickness of the thickest part of the electroplated layer on the substrate to the thickness of the thinnest part (1-5]:1 Further, the ratio of the thickness of the thickest part to the thickness of the thinnest part of the electroplating layer on the substrate is [2-5]:1.
  • the thickness of the thickest part of the electroplated layer on the substrate is (1,7.5] times the average thickness; further, the thickness of the thickest part of the electroplated layer on the substrate is average (1, 5] times the thickness.
  • the average thickness of the electroplated layer is determined, the closer the ratio of the thickness of the thickest part of the electroplated layer on the substrate to the average thickness is to 1, the more uniform the electroplated layer will be.
  • the thickness of the thinnest part of the electroplated layer on the substrate is [0.25, 1) times the average thickness.
  • the average thickness of the electroplated layer is determined, the closer the ratio of the thickness of the thinnest part of the electroplated layer on the substrate to the average thickness is to 1, the more uniform the electroplated layer will be.
  • the present invention controls the ratio of the thickness of the thickest part of the electroplating layer on the substrate to the thickness of the thinnest part, the ratio of the thickness of the thickest part of the electroplating layer to the average thickness of the electroplating layer, and the thickness of the thinnest part of the electroplating layer to the average thickness of the electroplating layer.
  • the ratio of thickness to control the uniformity of the plating layer. Try to avoid being too thick in some areas of the electroplating layer and too thin in some areas. If some areas are too thin, it will easily cause the electroplating layer in that area to degrade prematurely, which will result in the electroplating layer not being able to complete the corresponding functions well, such as regulating the substrate. Corrodes or promotes endothelialization.
  • the present invention controls the uniformity of the plating layer by controlling the above-mentioned ratios of the electroplating layer to ensure that the plating layer can satisfy its functions without causing other negative defects. Good reaction.
  • the average thickness of the electroplated layer is 0.5-5 ⁇ m; further, the average thickness of the electroplated layer is 0.5-4 ⁇ m.
  • the electroplating layer usually plays a very important role in devices, such as preventing matrix corrosion, ensuring that the matrix meets early mechanical properties, or promoting endothelialization. However, if the thickness of the plating layer is too small, it will not be able to meet the corresponding needs.
  • the thickness of the coating is too large, it will cause other negative effects, such as causing the device to be too large and difficult to transport in the body; the overall mechanical properties of the device will deteriorate; after all, the coating is a foreign body to the human body, and too high a content will also cause damage to the human body. Putting more burden on the human body will inevitably cause a series of adverse reactions. If the content of the zinc layer on the iron-based stent is too little, and the average thickness of the zinc layer is too small, it will easily lead to premature corrosion of the iron base.
  • the galvanized layer on the iron-based stent is too thick, and the profile of the stent after being pressed is too large, making it difficult to transport after implantation in the human body.
  • the accumulation of a large amount of zinc ions near the device can easily cause cytotoxicity. , leading to cell proliferation and vascular restenosis.
  • the "average thickness D of the electroplated layer" mentioned in the present invention is calculated based on the total mass Mtotal and density ⁇ of the electroplated layer, and the sum of the areas Stotal of all electroplatable surfaces of the electroplated parts according to the following formula. of:
  • the present invention strictly controls the thickness of the thickest part and the thinnest part of the electroplating layer respectively, further ensuring the uniformity of the electroplating layer, and ensuring that the electroplating layer can well meet the corresponding functional requirements while also ensuring that the electroplating layer can meet the corresponding functional requirements. Possible without causing a negative reaction in the human body.
  • the thickness of the electroplating layer at the thinnest part on the substrate is 0.25 ⁇ m-4.25 ⁇ m; further, the thickness of the electroplating layer at the thinnest part on the substrate is 0.375 ⁇ m-3.2 ⁇ m; further , the thickness of the electroplating layer at the thinnest part is 0.6 ⁇ m-3.2 ⁇ m; further, the thickness of the electroplating layer at the thinnest part is 0.6 ⁇ m-2.5 ⁇ m.
  • the thickness of the electroplating layer at the thickest part on the substrate is 1.1 ⁇ m-15 ⁇ m; further, the thickness of the electroplating layer at the thickest part on the substrate is 1.1-9.75 ⁇ m; further , the thickness of the electroplating layer at the thickest part on the substrate is 1.1-7.5 ⁇ m; further, the thickness of the electroplating layer at the thickest part on the substrate is 1.2-5 ⁇ m.
  • the electroplated layer covers more than 99% of the surface of the substrate.
  • the electroplated parts cover more than 99.5% of the surface of the substrate; further, the electroplated parts cover more than 99.9% of the surface of the substrate.
  • the electroplated layer is a pure metal layer or an alloy layer.
  • the electroplating layer may be degradable or non-degradable; further, the electroplating layer may be degradable.
  • the electroplated layer is a pure zinc layer; in some embodiments of the present invention, the electroplated layer is a zinc-iron alloy layer; in other embodiments of the present invention, the electroplated layer is a pure zinc layer.
  • the electroplated layer is a pure zinc layer or a zinc alloy layer. Further, the zinc content in the electroplated layer is more than 50%; further, the zinc content in the electroplated layer is more than 99%.
  • the device is a vascular stent, a non-vascular intraluminal stent, an occluder, an orthopedic implant, a heart valve, a gasket, an artificial blood vessel, a dental implant device, a vascular clamp, a tooth Medical implants, respiratory implants, gynecological implants, andrological implants, sutures or bolts.
  • the device is a degradable medical device, which can be gradually degraded in the body and absorbed by the human body.
  • the matrix described in the present invention is a degradable metal or a degradable non-metallic material; further, the matrix described in the present invention is a degradable pure metal or a metal alloy; further, the matrix described in the present invention includes pure iron. , at least one of iron alloy, pure zinc, zinc alloy, pure magnesium and magnesium alloy.
  • the electroplated part in the above technical solution of the present invention is a tubular hollow medical device.
  • the electroplated parts described in the above technical solutions of the present invention are stents, or other derivatives with stent structures, such as heart valves, etc.
  • the stent in the present invention includes vascular stents and non-vascular stents.
  • the mass-volume ratio of the electroplated parts is 0.001-10g/cm 3 ; further, the mass-volume ratio of the electroplated parts is 0.001-5g/cm 3 ; further, the mass-volume ratio of the electroplated parts is 0.001-5g/cm 3
  • the mass-to-volume ratio of the electroplated parts is 0.001-0.4g/cm 3 ; further, the mass-to-volume ratio of the electroplated parts is 0.005-0.3g/cm 3 ; further, the mass-to-volume ratio of the electroplated parts is 0.01-0.01-0.3g/cm 3 0.2g/cm 3 .
  • the smaller the mass-to-volume ratio of the electroplated parts the more complex the structure of the electroplated parts, and the higher the difficulty of electroplating.
  • the “mass-to-volume ratio of the electroplated part” mentioned in the present invention refers to the mass M of the electroplated part divided by the total volume covered by its outer contour.
  • the volume of the electroplated part V 2 ⁇ R ⁇ d, where R is the outer diameter of the stent and d is the length of the stent. Therefore, the mass-to-volume ratio of electroplated parts
  • the matrix is a degradable metal or a degradable non-metal material; further, the matrix includes at least one of pure iron, iron alloy, pure zinc, zinc alloy, pure magnesium, and magnesium alloy.
  • the iron alloy includes at least one of low alloy steel or an iron-based alloy with a carbon content not higher than 2.5wt.%.
  • Electroplated parts for medical devices are mainly used inside the human body. They are often accompanied by certain functionality. They have complex shapes and precise structures. They have high requirements for the uniformity of the electroplating layer, the coverage of the coating, and the precision of the coating quality.
  • the present invention provides a method that does not introduce a large amount of organic residues into the electroplated layer of the electroplated part, and at the same time ensures that the electroplated layer has good uniformity.
  • the present invention provides an electroplating method suitable for electroplated parts that require relatively high uniformity and safety of the electroplated layer.
  • the method can significantly improve the in vivo safety of the electroplated parts and will not cause obvious inflammatory reactions and lead to contact with the electroplated parts.
  • the occurrence of pustules and other phenomena in the tissue will ensure the uniformity of the coating thickness in various parts, so that the various uniformity indicators of the electroplated parts can be optimized, thereby greatly improving the uniformity of the electroplated parts.
  • the technical solution of the present invention provides an electroplating method for electroplated parts.
  • the electroplated parts are placed in the electroplating solution and move with the clamp relative to the anode at a certain amplitude and frequency.
  • the electroplated parts move relative to the anode during the electroplating process.
  • the length of the movement trajectory is 2-980 times the width of the anode; and/or the electroplated part is connected to an auxiliary cathode.
  • the present invention improves the uniformity of electroplating in various parts of the electroplated part by increasing the ratio of the length of the electroplated part relative to the anode movement trajectory during the electroplating process and the width of the anode, and on the other hand, by connecting the auxiliary cathode to the electroplated part. Improve the uniformity of plating in various parts of electroplated parts.
  • the thickness of the electroplated layer at each part of the electroplated part will also be.
  • higher requirements are put forward for the size of the electroplating tank, the amount of electrolyte, and the amount of electricity.
  • the ratio of the length of the electroplated part relative to the anode movement trajectory and the width of the anode during the electroplating process is small, such as less than 2, the thickness uniformity of each part of the electroplated part will be significantly reduced, resulting in the thickness of the thinnest part of the instrument being less than 0.2 ⁇ m, making the devices produced less effective after being implanted in the body.
  • the present invention improves the uniformity of electroplating in various parts of the electroplated part by connecting an auxiliary cathode to the electroplated part.
  • the thickness of the electroplating layer will be thicker towards the two ends, and the thickness of the electroplating layer will be thicker towards the outer layer; while the thickness of the electroplating layer will be thinner towards the middle, and towards the inner layer, the thickness of the electroplating layer will be thicker.
  • the thickness is also thinner; in addition, electroplating also has the advantage of the tip. The closer to the tip, the thicker the thickness of the electroplating layer, and the farther away from the tip, the thinner the thickness of the electroplating layer.
  • the thickness of the electroplated parts will be thicker at both ends, while the thickness in the middle will be relatively uniform. Therefore, this application improves the uniformity of the plating layer in each part of the electroplated part by adding an auxiliary cathode at both ends of the electroplated part during the electroplating process.
  • the electroplated parts in the present invention are connected to the electroplating equipment through a clamp, and can move relative to the anode under the driving of the clamp, or the clamp can fix it and not move, and the anode moves under the drive of the driver; that is, in the present invention
  • the "electroplated parts move relative to the anode during the electroplating process” can either mean that the anode does not move and the electroplated parts move relative to the anode, or it can mean that the electroplated parts do not move and the anode moves relative to the electroplated parts.
  • the movement trajectory of the electroplated parts in the present invention relative to the anode during the electroplating process can be a straight line, a curve, or a circle, a cone, a regular or an irregular polygon.
  • the electroplated part is driven by the clamp to make a curved motion relative to the anode; in some embodiments of the invention, the electroplated part is driven by the clamp to make linear motion relative to the anode; In some other embodiments of the invention, the electroplated parts are driven by the clamp to make regular polygonal movements relative to the anode; in other embodiments of the invention, the electroplated parts are driven by the clamp relative to the anode. Make irregular polygonal movements; in some embodiments of the present invention, the electroplated parts make circular motions relative to the anode driven by the clamp.
  • the length of the movement trajectory of the electroplated part relative to the anode during the electroplating process is 2-540 times the width of the anode; further, the length of the movement trajectory of the electroplating part relative to the anode during the electroplating process is 2 times the width of the anode. -400 times; further, the length of the movement trajectory of the electroplated part relative to the anode during the electroplating process is 2-240 times the width of the anode; further, the length of the movement trajectory of the electroplated part relative to the anode during the electroplating process is 2-150 times the width of the anode.
  • the present invention by reducing the ratio of the length of the electroplated part relative to the anode movement trajectory during the electroplating process and the width of the anode, it is possible to avoid waste of resources and control costs while ensuring that the uniformity of the coating on the surface of the electroplated part meets the demand. Reduce the discharge of waste liquid.
  • the length of the trajectory of the electroplated part relative to the anode during the electroplating process is 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80 times the width of the anode. , 90, 100, 120, 140, 150, 180, 190, 200, 220 times; in some embodiments of the invention, the length of the trajectory of the electroplated part relative to the anode during the electroplating process is 65 times the width of the anode , 75, 85, 25, 35, 45, 55, 95, 105, 125, 160, 170, 195 times.
  • the "length of the trajectory of the electroplated part moving relative to the anode during the electroplating process" mentioned in the present invention refers to the length of the trajectory of the electroplated part moving relative to the anode during the electroplating process; and the anode width refers to The width of an anode.
  • the uniformity of the electroplated layer in each part of the electroplated part can be greatly improved.
  • the length of the movement trajectory of the electroplated parts relative to the anode during the electroplating process is controlled within the range of 2-240 times the width of the anode, the uniformity of the electroplated layer is greatly improved, thereby ensuring that the instrument meets the corrosion rate, It can prevent cell proliferation and re-narrowing of the lumen while reducing the corrosion cycle and effective support time of the device.
  • the present invention increases the movement trajectory of the electroplated part relative to the anode during the electroplating process by reducing the width of the anode, and/or increasing the length of the cathode, or increasing the swing amplitude of the clamp, and controlling the effective swing length of the clamp.
  • Each parameter can be adjusted simultaneously or a certain parameter can be adjusted individually to achieve the corresponding purpose, that is, to improve the uniformity of the plating layer of the electroplated parts.
  • the width of the anode is ⁇ 0.1cm. In some embodiments of the present invention, the width of the anode may be 0.1cm; in other embodiments of the present invention, the width of the anode may be 5cm; in other embodiments of the present invention, the width of the anode may be 10cm ; In some embodiments, the width of the anode may even be 20 cm or higher. Although there is no further limit on the width of the anode in the present invention, when the length of the electroplated part relative to the movement trajectory of the anode is constant during the electroplating process, the smaller the width of the anode, the higher the uniformity of the thickness of each part of the electroplated part. .
  • the present invention further regulates the relative position of the electroplated parts relative to the anode.
  • the swing amplitude is used to control the uniformity of the electroplated layer; the swing amplitude of the electroplated parts relative to the anode is controlled within the range of 0°-180°; further, the present invention further controls the uniformity of the electroplated layer by regulating the swing amplitude of the electroplated parts relative to the anode. ; Control the swing amplitude of the electroplated parts relative to the anode within the range of 0°-160°.
  • the amplitude of the swing of the electroplated part relative to the anode is (0°, 160°]; when the electroplated part moves in a circular, regular or irregular polygonal shape relative to the anode When, the amplitude of the swing of the electroplated part relative to the anode is 0°.
  • the amplitude of the swing of the electroplated part relative to the anode is further (0°, 150° ] or (0°, 145°]; in some embodiments of the invention, the amplitude of the swing of the electroplated part relative to the anode is 0.5°, 0.8°, 1°, 2°, 5°, 8°, 10° , 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55° or 60°; in other embodiments of the invention, the electroplating part swings relative to the anode The amplitude is 70°, 80°, 90°, 100°, 110°, 120°, 130°, 135°; in other embodiments of the present invention, the amplitude of the swing of the electroplated part relative to the anode is 138°, 140°, 145°, 148°, 150°, 155° or 158°.
  • the "amplitude of the swing of the electroplated part relative to the anode” mentioned in the present invention refers to the highest point at the two relative positions of the movement trajectory of the electroplated part relative to the anode and the fixed point/rotation point that drives the movement of the electroplated part or the intersection thereof.
  • the trajectory of the electroplated part relative to the anode is a curve or a straight line
  • auxiliary cathodes are connected to both ends of the electroplated part in the long axis direction or in the direction parallel to the anode surface.
  • the area of the auxiliary cathode accounts for 30%-70% of the cathode area.
  • the length of the auxiliary cathode is 0.5mm-20mm.
  • the length of the auxiliary cathode is 0.5mm-10mm; preferably, the length of the auxiliary cathode is 1mm-10mm.
  • the cathode area in "the area of the auxiliary cathode accounts for 30%-70% of the cathode area" mentioned in the present invention includes the surface area of the bracket, the exposed area of the clamp and the area of the auxiliary cathode.
  • the auxiliary cathode has any shape. Further, the auxiliary cathode includes at least one of a linear type, annular type, a circle type, a prism type, a pyramid type, a spiral type, a wheel type, a cylindrical type, and a corrugated type.
  • the auxiliary cathode is one of the above shapes; in other embodiments, the auxiliary cathode is a combination/connection of at least two of the above shapes; in other implementations, the auxiliary cathode is The auxiliary cathode is composed of any one of the above shapes; in other embodiments, the auxiliary cathode is composed of a plurality of the above shapes; in some embodiments, the above various shapes can be in the short axis direction of the instrument. are combined/connected together to form an auxiliary cathode; in other embodiments, the above-mentioned auxiliary cathodes of various shapes may be combined/connected together in the long axis direction of the instrument.
  • the “prism type, pyramid type, spiral type, wheel-shaped type, and cylindrical type” in the present invention may be solid, hollow, or hollow.
  • the cross-sectional area of the auxiliary cathode in the direction perpendicular to the anode surface or the long axis of the electroplated part is larger than the cross-sectional area of the short axis of the electroplated part. That is, the auxiliary cathode completely covers the interface of the device at the distal end, that is, the projection of the auxiliary cathode on an interface perpendicular to the long axis of the device is greater than the projection of the device on the interface.
  • auxiliary cathode and the electroplating part are connected through connecting rods or points.
  • multiple auxiliary cathodes of linear structures are connected to each other through points at a certain point at the distal end of the instrument to form an umbrella-shaped structure that radiates outward; in other embodiments of the present invention, Multiple auxiliary cathodes in annular structures are connected layer by layer through connecting rods along the long axis of the instrument.
  • the connecting rod is fixedly connected or detachably connected to the plating part, clamp and auxiliary cathode.
  • the above-mentioned shaped auxiliary cathode, the plating part, the clamp and the auxiliary cathode may all be detachably connected, or part of them may be detachably connected.
  • the rest may be detachably connected. Fixed connection.
  • the connecting rod is either linear or non-linear; the connecting rod is at least one of linear, S-shaped, ⁇ -shaped or ⁇ -shaped.
  • the auxiliary cathode is a hollow cylindrical
  • the connecting rod is detachably connected or fixedly connected to at least one of the electroplating part, the clamp and the auxiliary cathode.
  • the connecting rod is of ⁇ type or ⁇ type
  • the auxiliary cathode is a hollow circle. Cylindrical, the auxiliary cathode is fixedly connected to the instrument through a connecting rod.
  • the present invention further controls the quality of the coating, such as uniformity, etc., by regulating the frequency of the movement of the electroplated parts relative to the anode, and controls the frequency of the movement of the electroplated parts relative to the anode to 0.1-20s/cycle. ; Further, the frequency of the movement of the electroplated parts relative to the anode is controlled to 0.2-18s/cycle; further, the frequency of the movement of the electroplated parts relative to the anode is controlled to 0.2-15s/cycle.
  • the frequency of movement of the electroplated parts relative to the anode is 0.3s/week, 0.8s/week, 1s/week, 2s/week, 3s/week, 4s/week, 5s/week, 7s/week, 8s/week, 9s/week, 10s/week or 11s/week; in other embodiments of the invention, the frequency of movement of the electroplated parts relative to the anode is 12s/week, 13s/week, 14s /week, 15s/week, 16s/week, 17s/week, 18s/week, 19s/week.
  • brackets For the light-weight, hollow-shaped electroplated parts described in the present invention, such as brackets, due to the buoyancy of the electroplating solution in the electroplating solution and the small mass of the electroplating parts, a gap is formed between the bracket and the clamp. The interaction force is small.
  • electroplated parts require relatively high coverage of the plating layer, that is, the contact area between the fixture and the electroplated parts needs to be very small. Try to ensure that all surfaces of the bracket are basically exposed to the plating solution. At this time, when the current density is relatively high, it is easy for "ignition" to occur and the bracket rod to break down, causing part of the bracket rod to be burned or even broken.
  • the present invention improves the shape of the clamp,
  • the interaction between the clamp and the bracket is used to control the interaction force and contact area between the clamp and the bracket.
  • “hitting” can be avoided due to the interaction force between the clamp and the bracket being too small.
  • “Fire” and bracket burns, fractures and other phenomena can be avoided, and the interaction force between the fixture and the bracket can be avoided to cause the bracket rod to deform, further improving the yield of the bracket in the electroplating process and reducing the scrap rate. Therefore, the technical solution of the present invention uses the clamp to control the force of the clamp on the electroplated parts during the electroplating process to overcome the burn and breakage of the bracket rod.
  • the size of the force is 1 ⁇ 10 -3 -0.5N; further , the force exerted by the fixture on the electroplated parts during the electroplating process is 1 ⁇ 10 -3 -0.35N; further, the force exerted by the fixture on the electroplated parts during the electroplating process is 1 ⁇ 10 -3 -0.28N.
  • the force exerted by the clamp is simply referred to as the clamping force.
  • the force exerted by the clamp on the electroplated parts during the electroplating process has a great relationship with the electroplated parts themselves.
  • the force exerted by the clamps on the electroplated parts will The range of the force will also change.
  • the bracket when the force of the clamp is within the range of 0.005-0.05N, the bracket will neither deform nor burn; For large brackets, the optimal force range will exceed 0.05N, or even reach 0.5N; for orthopedic and other instruments that are significantly heavier than the bracket, the appropriate maximum force will be larger; and for For stents or medical devices that are smaller than the 30018 stent, the minimum force and maximum force of the appropriate clamp will be smaller than that of the 30018 stent.
  • the force exerted by the clamp on the electroplated parts during the electroplating process is a squeezing force.
  • the contact area between the electroplated part and the clamp is not greater than 0.1mm 2 .
  • the shape of the clamp is controlled so that the contact between the clamp and the electroplated parts is point-to-point contact or point-to-surface contact rather than surface-to-surface contact. Therefore, the contact area between the clamp and the electroplated parts is very small, less than 0.1mm2 , and the entire contact The area accounts for only less than 0.1% of the entire surface area of the stent.
  • the present invention fully increases the exposed area of the electroplated parts in the electroplating solution by controlling the contact area between the electroplated parts and the clamp, so that 99% or even more than 99.9% of the bracket surface can be directly in contact with the electroplating solution, that is, 99% Even more than 99.9% of the surface of the bracket can be covered with the electroplating layer.
  • the coverage rate of the electroplating layer is very high, which effectively prevents problems such as corrosion and safety caused by insufficient coverage of the plating layer on the bracket surface.
  • the exposed area of the electroplated parts in the electroplating solution refers to the area of all electroplated parts that can directly contact the electroplating solution.
  • the area of the electroplated part includes the area of each surface of the stent rod, that is, the sum of the areas of all surfaces of the stent that can be in direct contact with the solution.
  • the temperature of the electroplating solution during the electroplating process of the electroplated parts is 10-50°C; the electroplating current density is 1-20A ⁇ dm 2 .
  • the current density of electroplating must be matched with the speed of electroplating on the one hand, and at the same time, it must be combined with the contact area and force between the electroplated parts and the fixture to be comprehensively controlled.
  • the electroplating time of the electroplated parts during the electroplating process is 10-300s; further, the electroplating time of the electroplated parts during the electroplating process is 10-95s; in the present invention, the current , current density and plating time are combined to control the average thickness of the plating layer.
  • the electroplating method provided by the invention is suitable for zinc plating, nickel plating, copper plating, silver plating, gold plating and various alloy plating, such as zinc-copper alloy, etc.; the electroplated parts in the invention are made of degradable materials, both It is suitable for electroplating on pure iron or iron alloy, and is also suitable for electroplating on zinc, zinc alloy and other metals. It is suitable for electroplating of stents and other non-stent devices.
  • the anode material can be adjusted according to the composition of the coating.
  • the anode is zinc.
  • the anode is silver.
  • the anode in the present invention can be zinc or nickel. , at least one of copper, nickel-copper alloy, nickel-zinc alloy, gold, and copper-gold alloy.
  • the electroplating method provided by the present invention also involves the components of the electroplating solution.
  • the electroplated part in the present invention is a medical device, it has very high requirements on the components of the electroplating solution. It cannot be introduced into the electroplating solution that is harmful to the human body. Therefore, the present invention provides a safe electroplating solution formula that does not contain any organic functional agents and therefore does not introduce any organic compounds with poor biocompatibility into the electroplated layer of the final electroplated part. The residue will not cause serious adverse reactions to the human tissue at the implantation site, thus greatly improving the safety of the medical device and the effectiveness of the implantation.
  • each component in the electrolyte solution provided in the present invention is an inorganic component, that is, there is no organic additive in the electrolyte solution.
  • the electroplating solution when the plating layer contains zinc, includes 3.4-4.5wt.% zinc-containing components and 2.1-3.1wt.% pH adjuster; or the electroplating solution includes 1.5-3.0wt .% zinc-containing component and 6.5-8.8wt.% pH adjuster;
  • the zinc-containing component is at least one of zinc chloride, zinc sulfate, and zinc oxide;
  • the pH adjuster is at least one of boric acid, sodium borate, potassium borate, calcium borate, sodium hydroxide, and potassium hydroxide.
  • the electroplating solution also includes 15.5-19.5wt.% chloride salt, and the chloride salt is at least one of sodium chloride, potassium chloride, and ammonium chloride. .
  • the electroplating solution when the plating layer contains zinc, includes 3.4-4.5wt.% zinc-containing components and 2.1-3.1wt.% pH adjuster; or the electroplating solution includes 1.5-3.0wt .% zinc-containing component and 6.5-8.8wt.% pH adjuster;
  • the zinc-containing component is at least one of zinc chloride, zinc sulfate, and zinc oxide;
  • the pH adjuster is at least one of boric acid, sodium borate, potassium borate, calcium borate, sodium hydroxide, and potassium hydroxide.
  • the electroplating solution also includes 15.5-19.5 wt.% of chloride salt, and the chloride salt is at least one of sodium chloride, potassium chloride, and ammonium chloride.
  • the technical solution of the present invention further provides a clamp for the above-mentioned electroplating method.
  • the clamp fixes the electroplated parts in the electroplating tank and drives the electroplated parts to move relative to the anode.
  • the clamp includes a connecting part and a clamping part perpendicularly connected to the connecting part, the clamping part is parallel to the long axis direction of the electroplated part, and the connecting part has at least 2 connections at one end close to the electroplated part.
  • Rod In the present invention, two or more clamping parts and connecting rods work together to "clamp" the electroplated parts, so that the electroplated parts can maintain a relatively stable state during the electroplating process, and at the same time, burns and breaks will not occur. Phenomenon. In some embodiments of the present invention, there are two connecting rods and clamping parts. In other embodiments, there are three connecting rods and clamping parts. In still other embodiments, the number of connecting rods and clamping parts is three. The number of clamping parts and connecting rods is 4, 5, 6, or 8 or even more.
  • the distance between two connecting rods is smaller than the distance between the contact points corresponding to the electroplated parts and the connecting rods; further, the distance between the two connecting rods is the distance between the electroplated parts and the connecting rods.
  • the distance between the two connecting rods is [0.6, 0.95] times the distance between the contact points corresponding to the electroplated parts and the connecting rods times; further, the distance between two connecting rods is [0.7, 0.95] times the distance between the contact points corresponding to the electroplated parts and the connecting rods; further, the distance between two connecting rods is [0.8, 0.95] times the distance between the contact points corresponding to the electroplated parts and the connecting rod.
  • the distance between the two connecting rods is is the width of the clamp, and the distance between the corresponding contact points of the electroplated part and the connecting rod is the length of the electroplated part.
  • the connecting rod and clamping portion of the clamp in the present invention are not only clamped from the length direction of the electroplated part, but can also be clamped from the thickness and width directions of the electroplated part, especially when the electroplated part also has For other special structures, it can also be clamped from the middle or any other part.
  • the connecting rod and clamping part of the clamp can be clamped from any two bracket rods of the bracket.
  • the clamp in the present invention controls the force exerted by the clamp on the electroplated parts by controlling the distance between two connecting rods to be the ratio of the distance between the electroplated parts and the corresponding contact points of the connecting rods.
  • the clamp contacts the electroplated parts in a point-to-point or point-to-surface manner, and the clamping portion can be cylindrical or cubic, and can be regular or irregular.
  • the ratio of the distance between a straight line formed by connecting any two points on the cross section perpendicular to the length direction of the electroplated part to the inner diameter of the electroplated part is 1:1-1:20.
  • the distance between the straight line formed by connecting any two points on the cross section of the clamping part perpendicular to the length direction of the electroplated part is smaller relative to the inner diameter of the electroplated part, and the smaller the contact area with the instrument is, which is more conducive to all-round electroplating on the surface of the instrument.
  • the contact area between the electroplated part and the clamp described in the present invention is not greater than 0.1mm 2 .
  • the length of the clamping portion is 0.16-7mm.
  • the length of the clamping end will not only affect the weight of the final coating on the electroplated parts, but also affect the interaction force between the clamp and the electroplated parts.
  • the clamping end When the length of the clamping end is too long, the clamping end will also be coated during the electroplating process. The actual quality of the coating on the electroplated parts will be significantly lower because more coatings are applied on the electroplated parts.
  • the length of the clamping end is too short, the electroplated parts cannot be clamped well, and the electroplated parts are prone to slipping during the electroplating process.
  • the clamp provided by the above technical solution, ⁇ 95% of the surface area of the clamp is covered with an insulating layer; or more than 25% of the surface of the clamp is covered with an insulating layer.
  • the surface of the part of the fixture exposed to the electroplating solution is covered with an insulating layer as much as possible to reduce the plating of the plating solution on the fixture, thereby making the plating layer covered on the electroplated part less
  • the weight is controllable and has high precision.
  • the insulating layer covers the entire surface of the connecting portion; in some embodiments of the present invention, the insulating layer covers most of the surface of the connecting portion; in other embodiments of the present invention, The insulating layer covers the surfaces of the connecting part and the fixing part; in some embodiments of the present invention, the insulating layer covers the surfaces of the connecting part, the fixing part and part of the clamping part.
  • the auxiliary cathode is fixedly connected to the clamp, and at this time, more than 25% of the surface of the clamp is covered with an insulating layer.
  • the insulating layer is a polymer material, which can be one of PVC, PET, polyolefin, and polyresin; the material of the clamp body is conductive stainless steel, iron, copper, titanium, etc. Metal.
  • one end of the connecting part away from the electroplating part is also connected to a fixing part; the clamp is connected/fixed to the electroplating equipment through the fixing part.
  • the technical solution of the present invention also provides an electroplating equipment including the above-mentioned clamp.
  • the electroplating equipment further includes a power supply, an electrolytic tank and an anode.
  • the clamp is connected to the electroplating equipment through a support rod.
  • the number of the anodes is greater than or equal to 2; in some embodiments of the invention, the number of the anodes is 2; in other embodiments of the invention, the anodes The number of anodes is 3, 4, 6 or 8; in some other embodiments of the present invention, the number of anodes is 10 or more.
  • the center positions of the plurality of anodes coincide with the center positions of the movement trajectories of the electroplated parts.
  • the arrangement of the anode in the present invention ensures that the current density received by each part of the electroplated part in the electroplating solution is consistent as much as possible, thereby ensuring better uniformity of the thickness of the coating in each part of the electroplated part.
  • the width of the anode is ⁇ 0.1cm.
  • the electroplating equipment further includes a component that controls and drives the relative movement of the clamp and the anode; in some embodiments of the present invention, the component controls and drives the movement of the clamp; in some other embodiments, the component controls and drives the movement of the anode; in still other embodiments, the controller simultaneously controls the relative movement of the electroplated part and the anode.
  • the component described in the present invention can control the length of the trajectory of the clamp relative to the anode to be 2-980 times or even 2-240 times the width of the anode.
  • the electroplating equipment further includes a display screen.
  • the power supply is a DC power supply or a DC pulse power supply.
  • the shape of the anode is a regular or irregular shape; the shape or projected shape of the anode can be regular such as square, rectangle, triangle, ellipse, circle, heart shape, etc.
  • the shape can also be an irregular shape.
  • the shape of the electrolytic tank is not limited and can be circular, square or rectangular; the size of the electrolytic tank is not limited either and can be controlled by The size of the electroplated parts relative to the movement trajectory of the anode can match the corresponding anode width.
  • the method provided in the present invention can, on the one hand, improve the thickness uniformity of the galvanized layer to a great extent, so that the ratio between the thickest part and the thinnest part of the electroplated part can be reduced by several to dozens of times, and as much as possible approaches 1; on the other hand, the method provided by the present invention can reduce the defective rate of electroplated parts during the electroplating process as much as possible, and improve the qualification rate and safety performance of the product; thirdly, the method provided by the present invention, So that between various electroplated parts With high precision, multiple electroplated parts of continuous electroplating have a high degree of uniformity and stability in terms of thickness and quality of the coating.
  • the RSD between multiple electroplated parts of continuous electroplating can be controlled at 1%. Within.
  • the clamp provided by the present invention has good elasticity and durability, and can be used repeatedly without loss.
  • the clamp can have a very small contact area with the electroplated parts, and can also apply a just right temperature to the electroplated parts. The force prevents the electroplated parts from being burned during the electroplating process and does not cause the bracket to deform.
  • the electroplating method, electroplating fixture and electroplating equipment in the present invention are suitable for plating any coating on all metal substrates, where the metal substrate can be pure iron, iron alloy, pure zinc, zinc alloy, pure magnesium, magnesium alloy and others. Some pure metals or metal alloys; the coating can be pure zinc layer, zinc alloy layer, pure nickel layer, nickel alloy layer, pure copper layer, copper alloy layer, pure silver layer, silver alloy layer, pure gold layer, gold
  • the alloy layer, pure platinum layer or platinum alloy layer can also be any other metal coating; the method and fixture in the present invention are suitable for the electroplating of small and lightweight electroplated parts.
  • the electroplated parts can be brackets or other Any small, lightweight electroplated parts that require relatively high electroplating layers can be non-instrument types, especially equipment types.
  • the present invention only takes the bracket as an example, which does not mean that the method and equipment in the present invention are only suitable for the electroplating of brackets.
  • the present invention takes galvanizing as an example, which does not mean that the method and equipment in the present invention are only suitable for galvanizing. .
  • the value of the interval range involved in the present invention is not limited to the provided interval range, but should be the value of a new interval composed of any two values in the interval or any one of the intervals. Any specific value can be taken.
  • the current density of electroplating is 1-20A ⁇ dm 2
  • the content value of the current density agent is not limited to the value range of 1-20A ⁇ dm 2
  • each parameter can take any value within its value range, and the values of multiple parameters can be matched arbitrarily.
  • Figure 1 is an example diagram of the electroplating equipment used in the embodiments and comparative examples of the present invention, where: 1-positive electrode, 2-negative electrode, 3-DC power supply, 4-anode, 5-plating tank, 6-clamp (cathode) , 7-electroplated parts, 8-transmission mechanism;
  • FIGS 2 to 8 are illustrations of clamps used in the embodiments and comparative examples of the present invention, in which: 1-fixing piece, 2-connection part, 3, clamping part, D-distance between connecting rods, also That is, the width of the connection part, 9-auxiliary cathode.
  • the X-ray fluorescence coating thickness gauge method is used to measure the thickness of the electroplating layer: first, the equipment needs to be calibrated using a standard block of corresponding elements. After the calibration is completed, the bracket sample for testing the thickness of the electroplating layer is fixed to the sample stage. Put in the X-ray fluorescence coating thickness gauge, set the coating and base metal types, set the measurement time to 10 to 15 seconds, the thickness unit ⁇ m and other parameters. Click OK to test the thickness of each part of the electroplated part and determine the thickness of the thickest and thinnest places.
  • the carbon content in a certain detection object when the carbon content in a certain detection object cannot be measured using this method, it can be considered that the carbon content in the detection object is less than 0.005%, and further it can be considered that The mass percentage of organic residues in the test object is lower than 0.019%, or even lower than 0.0125% (based on the conversion result of the carbon content in glucose).
  • the width of the anode is 20mm
  • the movement trajectory of the bracket is 50mm
  • the movement period is 1s
  • the swing angle is 60°.
  • the 30018 stent is used for electroplating
  • the solution temperature is 10°C
  • the stent area is 0.009dm 2
  • the mass to lumen volume ratio is 0.012g/cm 3
  • the stent is 18mm long
  • the clamp width d is 16mm
  • the clamp width and the length of the electroplated part The ratio is 0.89
  • the contact area between the clamp and the bracket is 0.1mm 2
  • the clamping force is 0.005N.
  • the No. 1 stent was removed after 3 months.
  • the stent structure was intact.
  • the measured radial support strength was 74kPa, which met the mechanical performance requirements for the early 3 months of implantation.
  • the No. 2 stent was removed after 6 months. After taking it out, there was no cell proliferation and no stent rod breakage.
  • the width of the anode is 20mm
  • the movement trajectory of the bracket is 80mm
  • the movement period is 2s
  • the swing angle is 90°.
  • the 30018 stent is used for electroplating
  • the solution temperature is 20°C
  • the stent area is 0.009dm 2
  • the mass to lumen volume ratio is 0.012g/cm 3
  • the stent is 18mm long
  • the clamp width d is 16mm
  • the clamp width and the length of the electroplated part The ratio is 0.89
  • the contact area between the clamp and the bracket is 0.1mm 2
  • the clamping force is 0.005N.
  • the average thickness of the zinc layer is 1 ⁇ m
  • the maximum thickness at the head end of the outer wall of the stent is 3.0 ⁇ m
  • the minimum thickness in the middle of the inner wall is 0.76 ⁇ m.
  • the ratio of the maximum thickness to the minimum thickness is 3.94.
  • Five brackets were electroplated continuously, and the RSD of the electroplated layer quality was 0.34%.
  • the stent showed no burns or breaks. No carbon content was detected, and the content of organic residues in the electroplated layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplated layer was less than 0.019%.
  • the No. 1 stent was removed after 3 months.
  • the stent structure was intact.
  • the measured radial support strength was 76kPa, which met the mechanical performance requirements for the early 3 months of implantation.
  • the No. 2 stent was removed after 6 months. After taking it out, there was no cell proliferation and no stent rod breakage.
  • the width of the anode is 20mm
  • the movement trajectory of the bracket is 120mm
  • the movement period is 3s
  • the opening angle is 120°.
  • the 30018 bracket is used for electroplating.
  • the solution temperature is 30°C
  • the stent area is 0.009dm 2
  • the mass to lumen volume ratio is 0.012g/cm 3
  • the stent is 18mm long
  • the clamp width d is 16mm
  • the ratio of the clamp width to the length of the electroplated part is 0.89
  • the clamp and the stent are The contact area is 0.1mm 2 and the clamping force is 0.005N.
  • the average thickness of the zinc layer is 1 ⁇ m
  • the maximum thickness at the head end of the outer wall of the stent is 2.8 ⁇ m
  • the minimum thickness in the middle of the inner wall is 0.77 ⁇ m.
  • the ratio of the maximum thickness to the minimum thickness is 3.63.
  • Five brackets were continuously electroplated, and the RSD of the electroplated layer quality was 0.33%.
  • the stent showed no burns or breaks. No carbon content was detected, and the content of organic residues in the electroplating layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplating layer was less than 0.019%.
  • the stent was implanted into the rabbit's abdominal aorta.
  • the No. 1 stent was removed after 3 months.
  • the stent structure was intact.
  • the measured radial support strength was 78kPa, which met the mechanical performance requirements for the early 3 months of implantation.
  • the No. 2 stent was removed after 6 months. Cell proliferation, no scaffold rod breakage.
  • the width of the anode is 20mm
  • the movement trajectory of the bracket is 160mm
  • the movement period is 4s
  • the opening angle is 135°.
  • the 30018 bracket is used for electroplating.
  • the solution temperature is 40°C
  • the stent area is 0.009dm 2
  • the mass to lumen volume ratio is 0.012g/cm 3
  • the stent is 18mm long
  • the clamp width d is 16mm
  • the ratio of the clamp width to the length of the electroplated part is 0.89
  • the clamp and the stent are The contact area is 0.1mm 2 and the clamping force is 0.005N.
  • the average thickness of the zinc layer is 1 ⁇ m
  • the maximum thickness at the head end of the outer wall of the stent is 2.6 ⁇ m
  • the minimum thickness in the middle of the inner wall is 0.78 ⁇ m.
  • the ratio of the maximum thickness to the minimum thickness is 3.33.
  • Five brackets were electroplated continuously, and the RSD of the electroplated layer quality was 0.32%.
  • the stent showed no burns or breaks. No carbon content was detected, and the content of organic residues in the electroplating layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplating layer was less than 0.019%.
  • the No. 1 stent was removed after 3 months.
  • the stent structure was intact.
  • the measured radial support strength was 81kPa, which met the mechanical performance requirements for the early 3 months of implantation.
  • the No. 2 stent was removed after 6 months. After taking it out, there was no cell proliferation and no stent rod breakage.
  • the width of the anode is 20mm
  • the movement trajectory of the bracket is 800mm
  • the movement period is 5s
  • the swing angle is 150°.
  • a galvanizing solution containing 50g/L zinc chloride, 25g/L boric acid, and 200g/L potassium chloride use 80023 stent for electroplating, the solution temperature is 50°C, the stent area is 0.025dm2, the mass to lumen volume ratio is 0.033g/cm 3 , the stent is 23mm long, as shown in Figure 2, the clamp width d is 18.5mm, the clamp width and the length of the electroplated part are The ratio is 0.8, the contact area between the clamp and the bracket is 0.1mm 2 , and the clamping force is 0.05N.
  • the average thickness of the zinc layer is 1 ⁇ m
  • the maximum thickness at the head end of the outer wall of the stent is 2.2 ⁇ m
  • the minimum thickness in the middle of the inner wall is 0.79 ⁇ m.
  • the ratio of the maximum thickness to the minimum thickness is 3.09.
  • Five brackets were electroplated continuously, and the RSD of the electroplated layer weight was 0.31%.
  • the stent showed no burns or breaks. No carbon content was detected, and the content of organic residues in the electroplating layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplating layer was less than 0.019%.
  • the No. 1 stent was removed after 3 months.
  • the structure of the stent was intact and the radial branches were measured.
  • the strut strength was 83kPa, which met the mechanical performance requirements in the early 3 months of implantation; the No. 2 stent was removed after 6 months, with no cell proliferation and no stent rod breakage.
  • the width of the anode is 200mm
  • the movement trajectory of the bracket is 200mm
  • the movement period is 1s
  • the swing angle is 60°.
  • the 30018 stent is used for electroplating
  • the solution temperature is 25°C
  • the stent area is 0.009dm 2
  • the mass to lumen volume ratio is 0.012g/cm 3
  • the stent is 18mm long
  • the clamp width d is 16mm
  • the clamp width and the length of the electroplated part The ratio is 0.89
  • the contact area between the clamp and the bracket is 0.1mm 2
  • the clamping force is 0.005N.
  • the average thickness of the zinc layer is 0.5 ⁇ m
  • the maximum thickness of the head end of the outer wall of the stent is 2.5 ⁇ m
  • the minimum thickness of the middle part of the inner wall is 0.375 ⁇ m.
  • the ratio of the highest thickness to the lowest thickness is 4.67.
  • Five brackets were electroplated continuously, and the RSD of the electroplated layer quality was 0.25%.
  • the stent showed no burns or breaks. No carbon content was detected, and the content of organic residues in the electroplating layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplating layer was less than 0.019%.
  • the No. 1 stent was removed after 3 months.
  • the stent structure was intact.
  • the measured radial support strength was 50kPa, which met the mechanical performance requirements for the early 3 months of implantation.
  • the No. 2 stent was removed after 6 months. When it was taken out, there was no cell proliferation and some of the stent rods were broken.
  • the width of the anode is 200mm
  • the movement trajectory of the bracket is 400mm
  • the movement period is 1s
  • the swing angle is 60°.
  • a galvanizing solution containing 50g/L zinc chloride, 25g/L boric acid, and 200g/L potassium chloride use 30018 stent for electroplating, the solution temperature is 25°C, the stent area is 0.009dm 2 , the mass to lumen volume ratio is 0.012g/cm 3 , the stent is 18mm long, as shown in Figure 7, the clamp width d is 16mm, the clamp width and the length of the electroplated part The ratio is 0.89, the contact area between the clamp and the bracket is 0.1mm 2 , and the clamping force is 0.005N.
  • the width of the anode is 200mm
  • the movement trajectory of the bracket is 400mm
  • the movement period is 1s
  • the swing angle is 60°.
  • a galvanizing solution containing 50g/L zinc chloride, 25g/L boric acid, and 200g/L potassium chloride use 30018 stent for electroplating, the solution temperature is 25°C, the stent area is 0.009dm 2 , the mass to lumen volume ratio is 0.012g/cm 3 , the stent is 18mm long, as shown in Figure 8, the clamp width d is 16mm, the clamp width and the length of the electroplated part The ratio is 0.89, the contact area between the clamp and the bracket is 0.1mm 2 , and the clamping force is 0.005N.
  • the average thickness of the zinc layer is 4 ⁇ m
  • the maximum thickness at the head end of the outer wall of the stent is 12.8 ⁇ m
  • the minimum thickness in the middle of the inner wall is 3.2 ⁇ m.
  • the ratio of the highest thickness to the lowest thickness is 4.
  • Five brackets were electroplated continuously, and the RSD of the electroplated layer quality was 0.35%.
  • the stent showed no burns or breaks. No carbon content was detected, and the content of organic residues in the electroplating layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplating layer was less than 0.019%.
  • the No. 1 stent was removed after 3 months.
  • the stent structure was intact.
  • the measured radial support strength was 94kPa, which met the mechanical performance requirements for the early 3 months of implantation.
  • the No. 2 stent was removed after 6 months. After taking it out, there was slight cell proliferation in some locations, the vascular stenosis rate reached 30%, and there was no stent rod breakage.
  • the width of the anode is 20mm
  • the movement trajectory of the bracket is 400mm
  • the movement period is 1s
  • the swing angle is 60°.
  • a galvanizing solution containing 50g/L zinc chloride, 25g/L boric acid, and 200g/L potassium chloride use 30018 stent for electroplating, the solution temperature is 25°C, the stent area is 0.009dm 2 , the mass to lumen volume ratio is 0.012g/cm 3 , the stent is 18mm long, as shown in Figure 6, the clamp width d is 16mm, the clamp width and the length of the electroplated part The ratio is 0.89, the contact area between the clamp and the bracket is 0.1mm 2 , and the clamping force is 0.010N.
  • the average thickness of the zinc layer is 5 ⁇ m
  • the maximum thickness at the head end of the outer wall of the stent is 15 ⁇ m
  • the minimum thickness in the middle of the inner wall is 4.25 ⁇ m.
  • the ratio of the maximum thickness to the minimum thickness is 3.53.
  • Five brackets were electroplated continuously, and the RSD of the electroplated layer quality was 0.35%.
  • the stent showed no burns or breaks. No carbon content was detected, and the content of organic residues in the electroplating layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplating layer was less than 0.019%.
  • the No. 1 stent was removed after 3 months.
  • the structure of the stent was intact and the radial branches were measured.
  • the strut strength was 98kPa, which met the mechanical performance requirements in the early 3 months of implantation.
  • the No. 2 stent was removed after 6 months. There was a certain amount of cell proliferation in some locations, the vascular stenosis rate reached 35%, and there was no stent rod breakage.
  • the width of the anode is 200mm
  • the movement trajectory of the bracket is 400mm
  • the movement period is 1s
  • the swing angle is 60°.
  • a galvanizing solution containing 50g/L zinc chloride, 25g/L boric acid, and 200g/L potassium chloride two sections of electroplating are added to each end of the 30018 stent, the solution temperature is 25°C
  • the stent area is 0.012dm 2
  • the mass to lumen volume ratio is 0.012g/cm 3
  • the stent is 22mm long
  • the clamp width d is 20mm
  • the clamp The ratio of the width to the length of the electroplated parts is 0.91
  • the contact area between the clamp and the bracket is 0.1mm 2
  • the clamping force is 0.005N.
  • the mass percentage of organic residues in the electroplating layer was less than 0.019%.
  • Two stents were implanted into the abdominal aorta of rabbits.
  • the No. 1 stent was removed after 3 months.
  • the stent structure was intact.
  • the measured radial support strength was 76kPa, which met the mechanical performance requirements for the early 3 months of implantation.
  • the No. 2 stent was removed after 6 months. After taking it out, there was no cell proliferation and no stent rod breakage.
  • the anode is 200mm wide
  • the magnesium bone nail has a movement trajectory of 400mm, a movement period of 1s, and a swing angle of 60°. It contains 90g/L zinc chloride, 10g/L ferrous sulfate, and 200g/L potassium chloride.
  • the electroplating solution magnesium bone nails are electroplated, the solution temperature is 25°C, the bone nail surface area is 0.009dm 2 , and the bone nail length is 18mm.
  • the clamp width d is 16mm.
  • the ratio of the clamp width to the bone nail length is 0.89.
  • the clamp and bone nail length The contact area is 0.1mm 2 and the clamping force is 0.28N.
  • a zinc-iron alloy layer with an average thickness of 1 ⁇ m was obtained, containing 99.5% zinc and 0.5% iron.
  • the highest thickness at the head end of the bone nail is 2.4 ⁇ m
  • the lowest thickness at the middle is 0.8 ⁇ m
  • the ratio of the highest thickness to the lowest thickness is 3.0.
  • Five bone nails are electroplated continuously, and the RSD of the electroplated layer quality is 0.25%. There were no burns or breaks on the bone nails. No carbon content was detected, and the content of organic residues in the electroplated layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplated layer was less than 0.019%.
  • the No. 1 bone nail was removed after 3 months, and the structure of the bone nail was intact.
  • the No. 2 stent was removed after 6 months, and there was no cell proliferation, and the bone nail matrix was basically corrosion-free.
  • the anode is 200mm wide
  • the iron-manganese occluder has a movement trajectory of 100mm, a movement period of 1s, and a swing angle of 60°. It contains 50g/L zinc chloride, 25g/L boric acid, and 200g/L potassium chloride. Electroplating in a galvanizing solution, the solution temperature is 25°C, the surface area of the plugger is 0.09dm 2 , and the diameter is 18mm.
  • the clamp width d is 16mm
  • the ratio of the clamp width to the plugger diameter is 0.89
  • the contact area between the clamp and the plugger is is 0.1mm 2 and the clamping force is 0.35N.
  • a zinc layer with an average thickness of 1 ⁇ m was obtained.
  • the maximum thickness around the circumference of the occluder is 7.5 ⁇ m
  • the minimum thickness inside the middle part is 0.25 ⁇ m
  • the ratio of the maximum thickness to the minimum thickness is 30.
  • Five bone nails are electroplated continuously, and the RSD of the electroplated layer quality is 0.25%.
  • the occluder did not appear burned or broken.
  • Two occluders were implanted into the interatrial septum of rabbits. The No. 1 occluder was removed in the middle part but was not endothelialized after 1 month.
  • the middle part was still not endothelialized after being taken out in 2 months.
  • the end of the outer wall was completely endothelialized.
  • the No. 2 occluder was occluded.
  • the device was taken out 6 months later, and the cell proliferation at the end was severe.
  • the width of the anode is 120mm
  • the movement trajectory of the bracket is 120mm
  • the movement period is 3s
  • the opening angle is 120°.
  • the 30018 bracket is used for electroplating.
  • the solution temperature is 30°C
  • the stent area is 0.009dm 2
  • the mass to lumen volume ratio is 0.012g/cm 3
  • the stent is 18mm long
  • the clamp width d is 16mm
  • the ratio of the clamp width to the length of the electroplated part is 0.89
  • the clamp and the stent are The contact area is 0.1mm 2 and the clamping force is 0.005N.
  • a zinc layer with an average thickness of 1 ⁇ m was obtained.
  • the highest thickness at the head end of the outer wall of the stent was 5.0 ⁇ m, and the lowest thickness in the middle of the inner wall was 0.6 ⁇ m.
  • the ratio of the highest thickness to the lowest thickness is 8.33.
  • Five brackets were electroplated continuously, and the RSD of the electroplated layer quality was 0.3%.
  • the stent showed no burns or breaks. No carbon content was detected, and the content of organic residues in the electroplating layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplating layer was less than 0.019%.
  • the No. 1 stent was removed after 3 months.
  • the stent structure was intact.
  • the measured radial support strength was 65kPa, which met the mechanical performance requirements for the early 3 months of implantation.
  • the No. 2 stent was removed after 6 months. After taking it out, there was no cell proliferation and no stent rod breakage.
  • Figure 1 The width of the anode is 20mm, the movement trajectory of the bracket is 50mm, the movement period is 1s, and the opening angle is 60°.
  • a galvanizing solution containing 50g/L zinc chloride, 25g/L boric acid, and 200g/L potassium chloride, a 30018 stent was used for electroplating.
  • the solution temperature was 10°C, the stent area was 0.009dm 2 , and the mass to lumen volume ratio was 0.012.
  • the bracket is 18mm long, as shown in Figure 2, the clamp width d is 17.5mm, the ratio of the clamp width to the length of the electroplated part is 0.97, the contact area between the clamp and the bracket is 0.1mm 2 , and the clamping force is 0.0005N.
  • a current of 0.09A a current density of 10A/ dm2 , and a plating time of 19s, a zinc layer with an average thickness of 1 ⁇ m was obtained.
  • the highest thickness at the head end of the outer wall of the stent was 3.6 ⁇ m, and the lowest thickness in the middle of the inner wall was 0.76 ⁇ m.
  • the ratio of the highest thickness to the lowest thickness is 4.73.
  • the width of the anode is 20mm
  • the movement trajectory of the bracket is 80mm
  • the movement period is 2s
  • the opening angle is 90°
  • a galvanizing solution containing 50g/L zinc chloride, 25g/L boric acid, and 200g/L potassium chloride.
  • electroplated with a 30018 stent the solution temperature is 20°C
  • the stent area is 0.009dm 2
  • the mass to lumen volume ratio is 0.012g/cm 3
  • the stent is 18mm long
  • the clamp width d is 12mm
  • the clamp width is the length of the electroplated part.
  • the ratio is 0.67, the contact area between the clamp and the bracket is 0.1mm 2 , and the clamping force is 0.8N.
  • a current of 0.09A With a current of 0.09A, a current density of 10A/ dm2 , and a plating time of 19s, a zinc layer with an average thickness of 1 ⁇ m was obtained, and the entire bracket was distorted and deformed, which was unqualified.
  • Five brackets were electroplated continuously, and the RSD of the electroplated layer quality was 0.4%. No carbon content was detected, and the content of organic residues in the electroplating layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplating layer was less than 0.019%.
  • the width of the anode is 200mm
  • the movement trajectory of the bracket is 200mm
  • the movement period is 1s
  • the swing angle is 60°.
  • It contains 50g/L zinc chloride, 25g/L boric acid, 200g/L potassium chloride, 0.1g/
  • a zinc plating solution of L benzylidene acetone, 0.6g/L fatty alcohol polyoxyethylene ether O-20, and 0.2g/L sodium benzenesulfonate use a 30018 bracket for electroplating.
  • the solution temperature is 25°C
  • the bracket area is 0.009dm 2
  • the mass The volume ratio to the lumen is 0.012g/cm 3
  • the stent is 18mm long, as shown in Figure 2
  • the clamp width d is 16mm
  • the ratio of the clamp width to the length of the electroplated part is 0.89
  • the contact area between the clamp and the stent is 0.1mm 2
  • the clamping force is 0.005 N.
  • the average thickness of the zinc layer is 1 ⁇ m
  • the maximum thickness at the head end of the outer wall of the stent is 2.4 ⁇ m
  • the minimum thickness in the middle of the inner wall is 0.8 ⁇ m.
  • the ratio of the maximum thickness to the minimum thickness is 3.
  • Five stents were electroplated continuously, and the RSD of the plating layer quality was 0.25%. The stents did not suffer burns or breaks. The mass percentage of organic residues in the electroplated layer is 0.8%. Implant the stent Two weeks after it was inserted into the rabbit's abdominal aorta, it was taken out. There was a lot of inflammation and pus cells in the blood vessels.
  • the anode is 600mm wide, the bracket movement trajectory is 50mm, the movement period is 4s, and the opening angle is 35°.
  • the 30018 bracket is used for electroplating.
  • the solution temperature is 40°C
  • the total area of the stent is 0.009dm 2
  • the mass to lumen volume ratio is 0.012g/cm 3
  • the stent is 18mm long
  • the width d of a single clamp is 16mm
  • the ratio of the clamp width to the length of the electroplated part is 0.87
  • the clamp is in contact with the stent
  • the total area is 1mm 2 and the individual clamping force is 0.005N.
  • the average thickness of a single stent is 5 ⁇ m zinc layer
  • the maximum thickness of the head end of the outer wall of the stent is 18 ⁇ m
  • the minimum thickness of the middle part of the inner wall is 0.34 ⁇ m.
  • the ratio of the highest thickness to the lowest thickness is 52.9. 5 consecutive platings, the RSD of the plating layer quality is 0.5%.
  • the stent showed no burns or breaks. No carbon content was detected, and the content of organic residues in the electroplated layer was below the detection limit. Therefore, the mass percentage of organic residues in the electroplated layer was less than 0.019%.
  • the No. 1 stent was removed after 3 months, and the structure of the stent was intact.
  • the No. 2 stent was removed after 6 months, and cell hyperplasia occurred. Cell proliferation was obvious in most locations and caused the blood vessel re-stenosis rate to reach 70%. %, part of the bracket rod is broken.

Abstract

一种电镀件,该电镀件上几乎不含有机残留物,且电镀件的电镀层均匀,同时提供了一种制备该电镀件的电镀方法,该电镀方法通过控制电镀件在电镀过程中相对于阳极运动的轨迹的长度与阳极宽度的比值,以及在电镀件上增加辅助阴极来提高电镀件各个部位电镀层厚度的均匀性。提供了实现该电镀方法的夹具和电镀设备。通过该电镀方法所制备的电镀件的电镀层厚度相对比较均匀,覆盖率高,电镀件在电镀过程中几乎未出现过烧伤、断裂等问题,电镀件的良率高,报废率低,同时各个电镀件之间镀层重量的精度可达到99%以上。

Description

一种电镀件及其制备方法和制备用夹具、设备 技术领域
本发明属于电镀技术领域,具体涉及一种电镀件及其制备方法和制备用夹具、设备,更具体的涉及一种医疗器械用电镀件及其制备方法和制备用夹具、设备。
背景技术
由于医疗器械最终会植入人体并与人体组织长期作用,所以需要具备较高的安全性、较好的生物相容性和有效性。因此,对器械上各组分的组成及含量均提出了较高的要求,既要各个组分通过了相应的安全性验证,同时又需要各个组分在体内降解过程中所释放的降解产物在器械周围所积累的量对人体不会产生负面的或消极的影响。根据相关研究表明,器械电镀层中即使有微量的有机残留物,也会引起很明显的安全性反应,如引起炎症和脓包等不良反应。因此非常有必要控制器械表面电镀层中各个组分的种类、有害组分的含量等,从而确保电镀件在人体内具有较好的生物相容性,进而提高器械在体内的安全性和有效性。
目前,电镀在工业上应用极其广泛,一般在工业电镀中,电镀主要包括挂镀和滚镀两种方式。挂镀是通过定制的夹具将工件进行固定,并将镀件置于电镀液中进行电镀,该方式比较适用于尺寸较大的工件;而滚镀是将大量的小工件放入滚筒中,电镀电源输出一定电流施镀相应时间就能得到预期厚度的镀层,目前主要应用于小尺寸工件的电镀,操作相对比较简单,也比较容易规模化生产。
然而,目前工业电镀中所用的电镀液多添加有各种有机添加剂。由于有各种有机添加剂的存在,工业电镀件的均匀度、电镀的精度等都较高,而对于医疗器械来说,这些有机添加剂或多或少的都会与电镀层一起沉积在器械基体表面,从而在电镀层上有一定的残留,而即使有极其微量的有机物残留也会在器械植入部位引起非常严重的负面反应,从而引起安全性等问题。因此,急需开发一种适用于医疗器械的电镀方法。
发明内容
为了克服上述现有技术中存在的缺陷,本发明提供了一种适用于应用到人体的医疗器械用电镀件,该电镀件通过严格的控制电镀层中的组分种类及组分含量,避免在植入人体后,出现细胞或组织毒性,从而引起严重的炎症反应及其他不良反应。也即本发明提供了一种具有较高生物安全性的电镀件。
本发明的技术方案提供了一种电镀件,包括基体和电镀层,所述电镀层覆盖在所述基体上,所述电镀层中有机残留物的含量低于0.2%。由于在电镀件的制备过程中,电镀液中会添加多种物质,尤其会添加一些有机功能性物质,这些物质可以明显的提高电镀的效率以及电镀件的质量,包括均匀度、光亮度等,然而这些有机功能性物质会存在一定的官能基团,这些基团在溶液中也会带或吸附一定的电荷,从而在电镀过程中也很容易随着电镀层的形成而沉积到电镀层上,而这些沉积到电镀层上的微量有机残留物在电镀件或成品医疗器械植入到人体后,随着电镀层的降解逐渐释放到人体血液中,从而容易引起生物毒性进而引起一系列不良反应,因此,需要严格的控制医疗器械用电镀件的电镀层中的各个组分,避免因为微量的组分引起器械的严重安全性问题。
进一步的,本发明所提供的电镀层中的有机残留物的含量低于0.1%;进一步的,所述电镀层中有机残留物的含量低于0.05%;进一步的,所述电镀层中有机残留物的含量低于0.019%;更进一步的,所述电镀层中有机残留物的含量低于0.01%。更进一步的,本发明的电镀层中几乎不含任何有机残留物。
医疗器械电镀层各个部位厚度的均匀程度不仅对基体的腐蚀速度、腐蚀周期、器械断裂时间及有效支撑时间等有较大的影响,同时电镀层的厚度不均匀还可能引起器械附近出现纤维蛋白沉积以及部分组织出现增生,如果细胞增生发生在管腔狭窄处,还将进一步的引起管腔再度狭窄等,因此非常有必要控制器械表面电镀层在基体各个部位厚度的均匀性,从而确保器械在满足腐蚀速度、腐蚀周期、器械有效支撑时间的同时,能够避免细胞增生以及管腔再度狭窄等,进而提高器械在体内的安全性和有效性。
本发明所提供的上述技术方案中,所述电镀层在基体上最厚处的厚度与最薄处的厚度的比值控制为(1-30]:1;进一步的,所述电镀层在基体上最厚处的厚度与最薄处的厚度比值为(1-20]:1;进一步的,所述电镀层在基体上最厚处的厚度与最薄 处的厚度的比值为(1-15]:1;进一步的,所述电镀层在基体上最厚处的厚度与最薄处的厚度的比值为(1-12]:1;进一步的,所述电镀层在基体上最厚处的厚度与最薄处的厚度的比值为(1-8]:1进一步的,所述电镀层在基体上最厚处的厚度与最薄处的厚度的比值为(1-5]:1更进一步的,所述电镀层在基体上最厚处的厚度与最薄处的厚度的比值为[2-5]:1。
根据上述技术方案所提供的电镀件,所述电镀层在基体上最厚处的厚度为平均厚度的(1,7.5]倍;进一步的,所述电镀层在基体上最厚处的厚度为平均厚度的(1,5]倍。当电镀层的平均厚度确定后,电镀层在基体上最厚处的厚度与平均厚度的比值越接近于1,电镀层越均匀。
根据上述技术方案所提供的电镀件,所述电镀层在基体上最薄处的厚度为平均厚度的[0.25,1)倍。当电镀层的平均厚度确定后,电镀层在基体上最薄处的厚度与平均厚度的比值越接近于1,电镀层越均匀。
本发明通过控制电镀层在基体上最厚处的厚度与最薄处的厚度的比值、电镀层最厚处的厚度与电镀层平均厚度的比值,以及电镀层最薄处的厚度与电镀层平均厚度的比值来控制电镀层的均匀度。尽量的避免电镀层部分区域太厚,部分区域太薄,如果部分区域太薄,容易引起该区域的电镀层过早降解完,进而导致该电镀层不能很好的完成相应的功能,如调控基体腐蚀或促进内皮化。而电镀层部分区域太厚,在其附近薄的电镀层降解完后,由于电势等原因,容易导致镀层厚的部分区域后续降解速度加快,从而在短期内释放大量的镀层组分的降解产物,进而容易导致镀层的降解产物在短期内积累太多而引起一定的细胞或组织毒性反应。如在铁基器械上电镀含锌层来控制铁基早期的腐蚀速率和力学性能时,部分区域镀锌层太少,容易引起该部分区域锌层过早降解完并暴露出铁基,进而导致该部分区域的铁基过早腐蚀,进而引起铁基过早的断裂,此外,在有些应用场景下,部分区域镀锌层太少,也非常不利于器械的内皮化;而部分区域镀锌层太厚时,在附近的锌层腐蚀降解完后,唯有该部分区域留存有大量的锌层,在电势的影响下,该部分锌层的释放速率大幅提升进而使得该部分区域短期内积累大量锌离子,从而引起细胞毒性,并最终引起纤维蛋白沉积和细胞增生等问题。因此,本发明通过控制电镀层上述各比值来控制镀层的均匀度,确保镀层既能在满足其功能的情况下,还不引起其他负面的不 良反应。
根据上述技术方案所提供的电镀件,所述电镀层的平均厚度为0.5-5μm;进一步的,所述电镀层的平均厚度为0.5-4μm。电镀层在器械中通常都扮演着非常重要的角色,如防止基体腐蚀、确保基体满足早期力学性能或促进内皮化等作用,而镀层的厚度太小,会导致其并不能满足相应的需求,而镀层厚度太大,又会引起其他的负面影响,如导致器械尺寸过大,在体内不好输送;器械的整体机械性能变差;镀层对于人体毕竟为外来异物,过高的含量,也会对人体产生更多的负担,也必然会引起一系列的不良反应。如铁基支架上镀锌层含量太少,镀锌层的平均厚度太小,容易导致铁基过早的腐蚀,不能确保铁基在植入6个月内不腐蚀或少腐蚀,从而导致器械过早的断裂等;而铁基支架上的镀锌层太厚,支架在压握之后的profile过大,在植入人体后不好输送,同时器械附近大量锌离子的积累,容易引起细胞毒性,导致细胞增生和血管再狭窄。
需要说明的是,本发明中所述的“电镀层的平均厚度D”是根据电镀层的总质量M、密度ρ,电镀件所有可电镀表面的面积之和S根据以下公式计算得出的:
进一步的,本发明严格的分别控制电镀层中最厚处和最薄处的厚度,进一步的确保电镀层镀层的均匀性,并确保电镀层能很好的满足相应的功能需求的同时还能尽可能的不对人体产生负面反应。
本发明所提供的上述技术方案中,所述电镀层在基体上最薄处的厚度为0.25μm-4.25μm;进一步的,电镀层在基体上最薄处的厚度为0.375μm-3.2μm;进一步的,所述电镀层在最薄处的厚度为0.6μm-3.2μm;进一步的,所述电镀层在最薄处的厚度为0.6μm-2.5μm。
本发明所提供的上述技术方案中,所述电镀层在基体上最厚处的厚度为1.1μm-15μm;进一步的,所述电镀层在基体上最厚处的厚度为1.1-9.75μm;进一步的,所述电镀层在基体上最厚处的厚度为1.1-7.5μm;进一步的,所述电镀层在基体上最厚处的厚度为1.2-5μm。
根据上述技术方案所提供的电镀件,所述电镀层覆盖基体99%以上的表面,进 一步的,所述电镀件覆盖所述基体99.5%以上的表面;更进一步的,所述电镀件覆盖所述基体99.9%以上的表面。
根据上述技术方案所提供的电镀件,所述电镀层为纯金属层或合金层。根据需要,所述电镀层可以是可降解的,也可以是不可降解的;进一步的,所述电镀层为可降解的。在本发明的一些实施例中,电镀层为纯锌层;在本发明的一些实施例中,所述电镀层为锌铁合金层;在本发明的另一些实施例中,所述电镀层为纯铁镀层;在本发明的还有一些实施例中,所述电镀层为纯镁层;在本发明的还有一些实施例中,所述电镀层为镁合金层。
根据上述技术方案所提供的电镀件,所述电镀层为纯锌层或锌合金层。进一步的,所述电镀层中锌的含量在50%以上;更进一步的,所述电镀层中锌的含量在99%以上。
根据上述技术方案所提供的技术方案,所述器械为血管支架、非血管腔内支架、封堵器、骨科植入物、心脏瓣膜、垫片、人工血管、牙科植入器械、血管夹、齿科植入物、呼吸科植入物、妇科植入物、男科植入物、缝合线或螺栓。
根据上述技术方案所提供的技术方案,所述器械为可降解医疗器械,在体内可以逐渐降解并被人体吸收。进一步的,本发明中所述基体为可降解金属或可降解非金属材料;进一步的,本发明中所述基体为可降解纯金属或金属合金;更进一步的,本发明所述基体包括纯铁、铁合金、纯锌、锌合金、纯镁、镁合金中的至少一种。
进一步的,本发明中上述技术方案中的电镀件为管状镂空的医疗器械。更进一步的,本发明上述技术方案中所述的电镀件为支架,或带有支架结构的其他衍生品,如心脏瓣膜等。本发明中所述支架包括血管支架和非血管支架。
根据本发明所提供的上述技术方案,所述电镀件的质量体积比为0.001-10g/cm3;进一步的,所述电镀件的质量体积比为0.001-5g/cm3;进一步的,所述电镀件的质量体积比为0.001-0.4g/cm3;进一步的,所述电镀件的质量体积比为0.005-0.3g/cm3;更进一步的,所述电镀件的质量体积比为0.01-0.2g/cm3。本发明中电镀件的质量体积比越小,电镀件的结构越复杂,电镀难度越高。
本发明中所述的“电镀件的质量体积比”是指电镀件的质量M除以其外部轮廓线所覆盖的总的体积。如当电镀件为镂空的管状支架时,所述电镀件的体积 V=2πR×d,其中R为支架的外径,d为支架的长度。因此,电镀件的质量体积比
根据上述技术方案所提供的技术方案,所述基体为可降解金属或可降解非金属材料;进一步的,所述基体包括纯铁、铁合金、纯锌、锌合金、纯镁、镁合金中的至少一种;更进一步的,所述铁合金包括低合金钢或碳含量不高于2.5wt.%的铁基合金中的至少一种。
为了确保本发明中所述电镀件的安全性,本发明的电镀件在制备过程中严格的控制电镀液的组分,尽量确保沉积在镀层上的组分均具有较好的生物相容性,不会引起严重的不良反应等,而由于电镀液中所添加组分的限制,势必会影响到电镀层均匀度等指标。而医疗器械用电镀件主要应用于人体内部,多伴随着一定的功能性,其形状复杂,结构精密,对于电镀层的均匀度、镀层的覆盖率、镀层质量的精密度等都有较高的要求,而直接使用常规的电镀方式进行电镀,容易出现电镀件电镀层的覆盖率不高、出现烧伤甚至导致器械部分部件断裂、良率低等问题,进而导致电镀件的质量不达标,合格率低,不满足相应的质量和安全性要求等。
基于此,本发明提供了一种既不会在电镀件的电镀层中引入大量的有机残留物,同时又可以确保电镀层具有较好的均匀度的方法。
本发明提供了一种适合对电镀层均匀度及安全性要求比较高的电镀件的电镀方法,该方法一方面可以明显提高电镀件的体内安全性,不会引起明显的炎症反应和导致所接触组织出现脓包等现象,又会确保各个部位镀层厚度的均匀度,使电镀件的各个均匀性指标得到优化,从而使得电镀件的均匀度得到大幅的提升。
本发明的技术方案提供了一种电镀件的电镀方法,所述电镀件置于电镀液中,并随夹具呈一定的幅度和频率相对于阳极运动,所述电镀件在电镀过程中相对于阳极运动轨迹的长度为阳极宽度的2-980倍;和/或所述电镀件上连接有辅助阴极。
本发明中一方面通过提高电镀件在电镀过程中相对于阳极运动轨迹的长度与阳极宽度的比值来提高电镀件各个部位电镀的均匀度,另一方面通过在电镀件上连接辅助阴极的方式来提高电镀件各个部位电镀的均匀度。当电镀件在电镀过程中相对于阳极运动轨迹的长度与阳极宽度的比值越大,电镀件各个部位电镀层的厚度也将 越均匀,但随着电镀件在电镀过程中相对于阳极运动轨迹的长度与阳极宽度的比值的增大,对电镀槽的尺寸、电解液的用量、电量等都提出了更高的要求,当电镀件在电镀过程中相对于阳极运动轨迹的长度与阳极宽度的比值越大,电镀槽的尺寸需要增加,从而也会导致电解液的用量以及电量的消耗量都相应的增加,进而导致资源浪费,甚至也会增加排放量等。当电镀件在电镀过程中相对于阳极运动轨迹的长度与阳极宽度的比值较小,如小于2时,电镀件各个部位的厚度均匀度明显会降低,并导致器械最薄处的厚度低于0.2μm,使得所生产的器械在植入体内后的有效性比较差。本发明另一方面通过在电镀件上连接辅助阴极的方式来提高电镀件各个部位电镀的均匀度。在器械电镀过程中,越到两端电镀层的厚度会越厚,越到外层电镀层的厚度也会越厚;而越到中间电镀层的厚度会越薄,越到内层,电镀层的厚度也越薄;此外,电镀还具有尖端优势,离尖端越近,电镀层厚度越厚,越是远离尖端,电镀层的厚度越薄。因此,在电镀过程中,电镀件两端的厚度会较厚,而中间的厚度会相对比较均匀。所以本申请通过电镀过程中在电镀件的两端各增加一段辅助阴极从而来提高电镀件各个部位电镀层的均匀度。
本发明中的电镀件通过夹具与电镀设备连接,可以通过在夹具的带动下相对于阳极运动,也可以是夹具将其固定并不动,而阳极在驱动器驱动下发生运动;也即本发明中所述的“电镀件在电镀过程中相对于阳极运动”,既可以是指阳极不动,电镀件相对于阳极运动,也可以是指电镀件不动,阳极相对于电镀件运动。
本发明中所述电镀件在电镀过程中相对于阳极运动的轨迹可以呈直线,也可以呈曲线,还可以呈圆周、圆锥、规则的或不规则的多边形。在本发明的一些实施例中,所述电镀件在夹具的带动下相对于阳极做曲线运动;在本发明的一些实施例中,所述电镀件在夹具的带动下相对于阳极做直线运动;在本发明的其他一些实施例中,所述电镀件在夹具的带动下相对于阳极做规则的多边形运动;在本发明的另外一些实施例中,所述电镀件在夹具的带动下相对于阳极做不规则的多边形运动;在本发明的还有一些实施例中,所述电镀件在夹具的带动下相对于阳极做圆周运动。
进一步的,所述电镀件在电镀过程中相对于阳极运动轨迹的长度为阳极宽度的2-540倍;进一步的,所述电镀件在电镀过程中相对于阳极运动轨迹的长度为阳极宽度的2-400倍;进一步的,所述电镀件在电镀过程中相对于阳极运动轨迹的长度 为阳极宽度的2-240倍;更进一步的,所述电镀件在电镀过程中相对于阳极运动轨迹的长度为阳极宽度的2-150倍。本发明中通过缩小电镀件在电镀过程中相对于阳极运动轨迹的长度与阳极宽度的比值,在确保电镀件表面镀层的均匀度满足需求的同时,尽可能的避免资源的浪费,控制成本,并减少废液的排放量。
在本发明的一些实施例中,所述电镀件在电镀过程中相对于阳极运动的轨迹的长度为阳极宽度的3、5、10、15、20、30、40、50、60、70、80、90、100、120、140、150、180、190、200、220倍;在本发明的一些实施例中,所述电镀件在电镀过程中相对于阳极运动的轨迹的长度为阳极宽度的65、75、85、25、35、45、55、95、105、125、160、170、195倍。
需要特别说明的是,本发明中所述“电镀件在电镀过程中相对于阳极运动的轨迹的长度”是指电镀件在电镀过程中相对于阳极运动一周的轨迹的长度;而阳极宽度是指一个阳极的宽度。
本发明中通过控制电镀件相对于阳极运动的轨迹的长度与阳极宽度的相对大小关系,可以大幅的提升电镀件各个部位电镀层的均匀性。当将电镀件在电镀过程中相对于阳极运动的轨迹的长度控制在阳极的宽度的2-240倍的范围内时,电镀层的均匀性大幅的得到了提升,从而确保器械在满足腐蚀速度、腐蚀周期、器械有效支撑时间的同时,能够避免细胞增生以及管腔再度狭窄等,
进一步的,本发明通过减小阳极的宽度,和/或增加阴极的长度或加大夹具摆动的幅度,以及控制夹具的有效摆动长度来增大所述电镀件在电镀过程中相对于阳极运动轨迹的长度与阳极宽度的比值。各个参数可以同时调控也可以单独调控某一个参数来实现相应的目的,也即提高电镀件镀层的均匀度。
进一步的,所述阳极的宽度≥0.1cm。在本发明的一些实施例中,阳极的宽度可以为0.1cm;在本发明的其他一些实施例中,阳极的宽度可以为5cm;在本发明的另一些实施例中,阳极的宽度可以为10cm;在还有一些实施例中,阳极的宽度甚至可以为20cm或者更高。本发明中虽然对阳极的宽度没有更进一步的限定,但是当电镀件在电镀过程中相对于阳极运动轨迹的长度一定时,阳极的宽度越小,电镀件各个部位厚度的均匀度是越高的。
根据本发明所提供的上述技术方案,本发明进一步通过调控电镀件相对于阳极 摆动幅度来控制电镀层的均匀度;将电镀件相对于阳极摆动幅度控制在0°-180°范围内;进一步的,本发明进一步通过调控电镀件相对于阳极摆动幅度来控制电镀层的均匀度;将电镀件相对于阳极摆动幅度控制在0°-160°范围内。当电镀件相对于阳极做曲线、直线或圆锥运动时,所述电镀件相对于阳极摆动的幅度为(0°,160°];当电镀件相对于阳极做圆周、规则或不规则的多边形运动时,所述电镀件相对于阳极摆动的幅度为0°。当电镀件相对于阳极做曲线、直线或圆锥运动时,所述电镀件相对于阳极摆动的幅度进一步的为(0°,150°]或(0°,145°];在本发明的一些实施例中,所述电镀件相对于阳极摆动的幅度为0.5°、0.8°、1°、2°、5°、8°、10°、15°、20°、25°、30°、35°、40°、45°、50°、55°或60°;在本发明的其他一些实施例中,所述电镀件相对于阳极摆动的幅度为70°、80°、90°、100°、110°、120°、130°、135°;在本发明的另外一些实施例中,所述电镀件相对于阳极摆动的幅度为138°、140°、145°、148°、150°、155°或158°。
本发明中所述的“电镀件相对于阳极摆动的幅度”是指电镀件相对于阳极运动的轨迹的两个相对位置处最高点分别与带动电镀件运动的固定点/旋转点或其的交点所形成的两条连线之间的夹角的大小。如当电镀件相对于阳极运动的轨迹为曲线或者直线时,取曲线或直线轨迹两端的最高点分别与带动电镀件运动的夹具的固定点/旋转点之间的连线所形成的夹角,当固定点或者旋转点为两个时,即为曲线或直线轨迹两端的最高点分别与带动电镀件运动的夹具的两个固定点/旋转点的交点之间的连线所形成的夹角。
进一步的,本发明中所述电镀件长轴方向或平行于阳极面方向的两端连有辅助阴极。通过在所述电镀件长轴方向或平行于阳极面方向的两端连接辅助阴极,在器械电镀完成后再去掉辅助阴极,可以明显的提升器械部分各个部位厚度的均匀度。
进一步的,所述辅助阴极的面积占阴极面积的30%-70%。更进一步的,所述辅助阴极的长度为0.5mm-20mm。优选的,所述辅助阴极的长度为0.5mm-10mm;优选的;所述辅助阴极的长度为1mm-10mm。通过合理的调控所述辅助阴极相对于整个阴极的面积占比以及和/或辅助阴极的长度,可以在确保器械电镀层厚度均匀性提升的同时,保持较高的重现性,或者精度,进而确保器械电镀环节具有较高的合格率。
本发明中所述的“所述辅助阴极的面积占阴极面积的30%-70%”中的阴极面积包括支架的表面积、夹具裸露面积和辅助阴极的面积。
进一步的,所述辅助阴极为任意形状。进一步的,所述辅助阴极包括线型、环型、圈状型、棱柱型、椎体型、螺旋型、轮状型、圆柱型、波纹型中的至少一种。在一些实施例中,所述辅助阴极为上述形状中的一种;在另外一些实施例中,所述辅助阴极为上述形状中的至少两种组合/连接而成;在其他一些实施中,所述辅助阴极由一个上述任意一种形状构成;在其他一些实施例中,所述辅助阴极由多个上述形状组成构成;在一些实施例中,上述各种形状可以是在器械的短轴方向上组合/连接在一起形成辅助阴极;在另一些实施例中,上述各种形状的辅助阴极可以是在器械的长轴方向上组合/连接在一起。
需要说明的是,本发明中的“棱柱型、椎体型、螺旋型、轮状型、圆柱型”可以是实体的,也可以是镂空的,还可以是中空的。
进一步的,所述辅助阴极在垂直于阳极面或电镀件长轴方向的截面面积大于电镀件短轴的截面面积。即所述辅助阴极在远端处完全覆盖住器械的界面,也即辅助阴极在垂直于器械长轴方向的某一个界面上的投影大于器械在该界面上的投影。
进一步的,所述辅助阴极与所述电镀件通过连杆或点连接。在本发明的一些实施例中,多根线状结构的辅助阴极彼此在器械远端的某点处通过点连接形成向外辐射的伞骨状的结构;在本发明的另外一些实施例中,多个环形结构的辅助阴极沿器械长轴方向通过连杆层层连接在一起。
进一步的,所述连杆与电镀件、夹具和辅助阴极固定连接或可拆卸式连接。在本发明的一些实施例中,上述形状的辅助阴极与电镀件、夹具和辅助阴极可以全部为可拆卸式的连接,也可部分可拆卸式连接,当部分可拆卸式连接时,余下的为固定连接。
进一步的,所述连杆为直线或非直线的一种;所述连杆为直线型、S型、ω型或Ω型中的至少一种。如在本发明的一些实施例中,所述辅助阴极为镂空的圆柱形的
进一步的,所述连杆与电镀件、夹具和辅助阴极中的至少一个可拆卸式连接或固定连接。在一些实施例中,所述连杆为ω型或Ω型,而所述辅助阴极为镂空的圆 柱形,所述辅助阴极通过连杆与器械固定连接。
根据本发明所提供的上述技术方案,本发明进一步的通过调控电镀件相对于阳极运动的频率来控制镀层的质量如均匀度等,将电镀件相对于阳极运动的频率控制为0.1-20s/周;进一步的,将电镀件相对于阳极运动的频率控制为0.2-18s/周;更进一步的,将电镀件相对于阳极运动的频率控制为0.2-15s/周。在本发明的一些实施例中,所述电镀件相对于阳极运动的频率为0.3s/周、0.8s/周、1s/周、2s/周、3s/周、4s/周、5s/周、7s/周、8s/周、9s/周、10s/周或11s/周;在本发明的其他一些实施例中,所述电镀件相对于阳极运动的频率为12s/周、13s/周、14s/周、15s/周、16s/周、17s/周、18s/周、19s/周。本发明通过调控电镀件相对于阳极运动的频率一方面可以避免因频率太低导致镀层的质量太差,另一方面可以防止频率太高出现火花、支架变形等问题。
对于本发明中所述的质量较轻的、镂空状的电镀件,如支架,在电镀液中由于受到电镀液的浮力的作用,以及其本身质量又很小,导致支架与夹具之间所形成的相互作用力较小,此外,由于电镀件对镀层的覆盖率要求比较高,也即夹具与电镀件之间的接触面积需要非常小,尽量确保支架的所有表面都基本暴露在电镀液中,此时,当在电流密度又相对比较高时,很容易出现“打火”的现象,并将支架杆击穿,从而使得部分支架杆被烧伤甚至出现断裂,因此本发明通过改进夹具的形状、夹具与支架之间的相互作用关系来控制夹具与支架之间的相互作用力和接触面积,通过控制该作用力的大小既可以避免因夹具跟支架之间的相互作用力太小而出现“打火”以及支架烧伤、断裂等现象,又可以避免夹具跟支架之间的相互作用力太大使得支架杆变形,进一步的提升支架在电镀工序中的良率,降低报废率。因此,本发明的技术方案通过夹具控制电镀件在电镀过程中所受到夹具的作用力来克服支架杆出现烧伤和断裂的情况,该作用力的大小为1×10-3-0.5N;进一步的,所述电镀件在电镀过程中所受到夹具的作用力的大小为1×10-3-0.35N;更进一步的,所述电镀件在电镀过程中会受到夹具的作用力的大小为1×10-3-0.28N。
在本发明的实施例中,将夹具对作用力简称为夹持力。
需要特别说明的是,本发明中电镀件在电镀过程中受到夹具作用力的大小跟电镀件本身有很大的关系,当电镀件的质量,形状等发生变化时,其所受到的夹具的 作用力的范围也会发生变化,如对于30018支架,其所受到的夹具的作用力在0.005-0.05N范围内时,支架既不会变形也不会出现烧伤的情形;对于比30018支架型号更大的支架来说,其最优的作用力的范围会超过0.05N,甚至达到0.5N;而对于重量明显大于支架的骨科等器械来说,其合适的最大作用力会更大一些;而对于比30018支架的型号更小的支架或者医疗器械来说,其合适的夹具的最小作用力和最大作用力都会比30018支架的小。
根据本发明所提供的上述技术方案,本发明中电镀件在电镀过程中受到夹具的作用力为挤压作用力。
根据本发明所提供的上述技术方案,所述电镀件与夹具之间的接触面积不大于0.1mm2。本发明中通过控制夹具的形状,使得夹具与电镀件的接触方式为点点接触或者点面接触,而非面面接触,因此夹具与电镀件的接触面积非常小,在0.1mm2以下,整个接触面积在支架整个表面积中的占比也仅不到0.1%。本发明通过对电镀件与夹具间的接触面积的控制充分的提升了电镀件在电镀液中的暴露面积,使得99%甚至99.9%以上的支架表面均可直接与电镀液接触,也即99%甚至99.9%以上的支架表面均可以覆盖到电镀层,电镀层的覆盖率非常高,有效的防止支架表面因为未充分覆盖到镀层而出现不满足腐蚀和安全性等问题。
本发明中由于电镀件与夹具之间的接触面积不大于0.1mm2,整个接触面积在支架整个表面积中的占比也仅不到0.1%,因此所述的电镀件在电镀液中的暴露面积,相当于电镀件的面积,是指所有可以直接与电镀液接触的电镀件的面积。当电镀件为支架时,电镀件的面积包括支架杆各个表面的面积,也即所有支架可以与溶液直接接触的表面的面积之和。
根据本发明所提供的上述技术方案,所述电镀件在电镀过程中电镀液的温度为10-50℃;电镀的电流密度为1-20A·dm2。本发明中电镀的电流密度一方面要跟电镀的速度等匹配起来,同时也得与上述的电镀件与夹具之间的接触面积和作用力结合起来,综合的进行调控。
根据本发明所提供的上述技术方案,所述电镀件在电镀过程中电镀的时间为10-300s;进一步的,所述电镀件在电镀过程中电镀的时间为10-95s;本发明中通过电流、电流密度和电镀时间综合来控制电镀层的平均厚度。
本发明所提供的电镀方法既适合于镀锌、也适合于镀镍、镀铜、镀银、镀金以及镀各种合金,如锌铜合金等;本发明中的电镀件为可降解材质,既适用于在纯铁或者铁合金上电镀,也适用于在锌、锌合金及其他一些金属上电镀;既适用于支架的电镀,也适用于其他非支架器械类的电镀。
本发明中根据镀层的组分,可以对阳极材料进行调控,当镀层含锌时,阳极为锌,当镀层为银时,阳极为银,以此类推,本发明中的阳极可以为锌、镍、铜、镍铜合金、镍锌合金、金、铜金合金中的至少一种。
本发明所提供的电镀方法中,还涉及电镀液的组分,当本发明中的电镀件为医疗器械时,其对电镀液的成分有非常高的要求,不能在电镀液中引入对人体不利的组分,因此本发明提供了一种安全的电镀液配方,该配方中无任何有机功能剂,因此不会在最终所制备的电镀件的电镀层中引入任何生物相容性不好的有机残留物,不会使植入部位的人体组织产生严重的不良反应,从而也大幅的提高了医疗器械的安全性和植入的有效性。
进一步的,本发明中所提供的电解液中各组分均为无机组分,也即电解液中无有机添加剂。
进一步的,当镀层中含锌时,所述电镀液中包括3.4-4.5wt.%的含锌组分和2.1-3.1wt.%的pH调节剂;或所述电镀液中包括1.5-3.0wt.%的含锌组分和6.5-8.8wt.%的pH调节剂;
所述含锌组分为氯化锌、硫酸锌、氧化锌中的至少一种;
所述pH调节剂为硼酸、硼酸钠、硼酸钾、硼酸钙、氢氧化钠、氢氧化钾中的至少一种。
根据本发明所提供的上述技术方案,所述电镀液中还包括15.5-19.5wt.%的氯化盐,所述氯化盐为氯化钠、氯化钾、氯化铵中的至少一种。
进一步的,当镀层中含锌时,所述电镀液中包括3.4-4.5wt.%的含锌组分和2.1-3.1wt.%的pH调节剂;或所述电镀液中包括1.5-3.0wt.%的含锌组分和6.5-8.8wt.%的pH调节剂;
所述含锌组分为氯化锌、硫酸锌、氧化锌中的至少一种;
所述pH调节剂为硼酸、硼酸钠、硼酸钾、硼酸钙、氢氧化钠、氢氧化钾中的至少一种。
所述电镀液中还包括15.5-19.5wt.%的氯化盐,所述氯化盐为氯化钠、氯化钾、氯化铵中的至少一种。
本发明的技术方案进一步的提供了上述电镀方法用夹具,所述夹具将电镀件固定在电镀槽内并带动电镀件相对于阳极运动。
进一步的,所述夹具包括连接部和与连接部垂直连接的夹持部,所述夹持部平行于所述电镀件的长轴方向,所述连接部靠近电镀件的一端具有至少2个连接杆。本发明中通过2个或多个夹持部和连接杆一起协同将电镀件进行“夹持”,使电镀件在电镀过程中既能保持相对比较稳定的状态,同时不会发生烧伤和断裂等现象。在本发明的一些实施例中,所述连接杆和夹持部均为2个,在另外一些实施例中,所述连接杆和夹持部为3个,在还有一些实施例中所述夹持部和连接杆为4个、5个、6个、或者8个甚至更多。
根据上述技术方案所提供的夹具,所述连接杆两两之间的距离小于电镀件与连接杆对应的接触点之间的距离;进一步的,所述连接杆两两之间的距离为电镀件与连接杆对应的接触点之间距离的[06,0.98]倍;进一步的,所述连接杆两两之间的距离为电镀件与连接杆对应的接触点之间距离的[0.6,0.95]倍;进一步的,所述连接杆两两之间的距离为电镀件与连接杆对应的接触点之间距离的[0.7,0.95]倍;进一步的,所述连接杆两两之间的距离为电镀件与连接杆对应的接触点之间距离的[0.8,0.95]倍。当连接杆和夹持部均为2个时,夹具的两个连接杆和两个夹持部一起刚好夹持住电镀件长度方向的两端,此时,连接杆两两之间的距离即为夹具的宽度,而电镀件与连接杆对应的接触点之间距离即为电镀件长的长度。但需要注意的是,本发明中的夹具的连接杆和夹持部并非仅仅从电镀件的长度方向进行夹持,也可以从电镀件的厚度、宽度方向来夹持,尤其当电镀件还有其他特殊结构时,还可以从其中部或其他任意部位夹持。如当电镀件为支架时,夹具的连接杆和夹持部可以从支架的任意两个支架杆上进行夹持。本发明中的夹具通过控制连接杆两两之间距离为电镀件与连接杆对应的接触点之间距离的比值来控制夹具施加给电镀件的力度的大小。
根据上述技术方案所提供的夹具,所述夹具与电镀件以点点或者点面的方式接触,所述夹持部可以为圆柱形或立方体形,可以是规则的,也可以是不规则的。
根据上述技术方案所提供的夹具,所述夹持部垂直于电镀件长度方向的横截面上任意两点相连形成的直线的距离与电镀件内径值的比例为1:1-1:20。夹持部垂直于电镀件长度方向的横截面上任意两点相连形成的直线的距离,相对于电镀件内径越小,其与器械的接触面积越小,越有利于器械表面全方位的电镀。本发明中所述电镀件与夹具之间的接触面积不大于0.1mm2
根据上述技术方案所提供的夹具,所述夹具夹持部的长度为0.16-7mm。所述夹持端的长度既会影响电镀件上最终镀层的重量,又会影响夹具对电镀件之间的相互作用力,当夹持端的长度过长,在电镀过程中夹持端上也会覆上更多的镀层,从而使得电镀件上镀层的实际质量明显偏低;当夹持端的长度过短,不能很好的夹持电镀件,电镀件容易在电镀过程中滑落。
根据上述技术方案所提供的夹具,所述夹具≥95%的表面积上均覆盖有绝缘层;或所述夹具25%以上的表面上均覆盖有绝缘层。在本发明的一些技术方案中,尽可能的使夹具暴露在电镀液中的部分的表面都覆盖有绝缘层,减小镀液在夹具上的镀覆,从而使得电镀件上所覆盖的镀层的重量可控,且具有较高的精密度。在本发明的一些实施例中,绝缘层覆盖在连接部整体的表面;在本发明的一些实施例中,绝缘层覆盖在绝大部分连接部的表面;在本发明的其他一些实施例中,绝缘层覆盖在连接部和固定部的表面;在本发明的还有一些实施例中,绝缘层覆盖在连接部、固定部和部分夹持部的表面。在本发明的另外一些方案中,所述辅助阴极与所述夹具固定连接,此时,所述夹具25%以上的表面上均覆盖有绝缘层。
根据上述技术方案所提供的夹具,所述绝缘层为高分子材料,可以为PVC、PET、聚烯烃、聚树脂中的一种;所述夹具主体的材质为不锈钢、铁、铜、钛等导电金属。
根据上述技术方案所提供的夹具,所述连接部的远离电镀件的一端还连接有固定件;所述夹具通过所述固定件连接/固定在电镀设备上。
本发明的技术方案还提供了一种包括上述夹具的电镀设备,所述电镀设备还包括电源、电解槽和阳极,所述夹具通过支撑杆与电镀设备连接。
根据上述技术方案所提供的电镀设备,所述阳极的数量大于等于2;在本发明的一些实施例中,所述阳极的数量为2个;在本发明的另外一些实施例中,所述阳极的数量为3个、4个、6个或8个;在本发明的其他一些实施例中,所述阳极的数量为10个或者更多。
根据上述技术方案所提供的电镀设备,所述多个阳极的中心位置与电镀件运动轨迹的中心位置重合。本发明中阳极的设置尽可能的确保电镀件各个部位在电镀液中所受到的电流密度的大小一致,从而确保电镀件各个部位的镀层厚薄的均匀度更好。
根据上述技术方案所提供的电镀设备,所述阳极的宽度≥0.1cm。
根据上述技术方案所提供的电镀设备,所述电镀设备还包括控制和驱动所述夹具与阳极发生相对运动的部件;在本发明的一些实施例中,所述部件控制和驱动夹具发生运动;在另外一些实施例中,所述部件控制和驱动阳极发生运动;在还有一些实施例中,所述控制器同时控制电镀件和阳极发生相对运动。本发明中所述的部件可控制所述夹具相对于阳极运动的轨迹的长度为阳极宽度的2-980倍甚至2-240倍。
根据上述技术方案所提供的电镀设备,所述电镀设备还包括显示屏。
根据上述技术方案所提供的电镀设备,所述电源为直流电源或直流脉冲电源。
根据上述技术方案所提供的电镀设备,所述阳极的形状为规则或非规则的形状;所述阳极的形状或投影形状可以为正方形、长方形、三角形、椭圆形、圆形、心形等规则的形状,也可以为非规则的形状。
根据上述技术方案所提供的电镀设备,所述电解槽的形状不限,可以是圆形的,也可以是正方形的还可以是长方形的;所述电解槽的尺寸大小也不限,可以通过控制电镀件相对于阳极运动轨迹大小来匹配相应的阳极宽度即可。
本发明中所提供的方法,一方面可以在很大程度上提高镀锌层的厚薄均匀度,使得电镀件的最厚处和最薄处的比值可以降低数倍到数十倍,且尽可能的趋近于1;另一方面,本发明所提供的方法可以尽可能的降低电镀件在电镀过程中的不良率,提高产品的合格率和安全性能;其三,本发明所提供的方法,使得各个电镀件之间 具有较高的精密度,连续电镀的多个电镀件在镀层的厚薄、镀层的质量等方面都具有高度的统一性、稳定性,连续电镀的多个电镀件之间的RSD可以控制在1%以内。
本发明所提供的夹具,具有较好的弹性和耐用性,可以无损耗的重复使用,所述夹具既可以与电镀件之间具有非常小的接触面积,又可以给电镀件施加一个刚好合适的力使得电镀件在电镀过程中不会出现烧伤的现象,也不会导致支架变形。
需特别说明的是,本发明中仅以镀锌为示例进行说明,并不代表本发明中所公开的技术方案仅适用于镀锌。本发明中的电镀方法、电镀用夹具和电镀设备适合于所有金属基材上镀上任何涂层,其中金属基材可以为纯铁、铁合金、纯锌、锌合金、纯镁、镁合金及其他一些纯金属或金属合金;所述涂层可以为纯锌层、锌合金层、纯镍层、镍合金层、纯铜层、铜合金层、纯银层、银合金层、纯金层、金合金层、纯铂层或者铂合金层,还可以为其他的任何金属涂层;本发明中的方法、夹具均适合于小型、轻巧的电镀件的电镀,电镀件可以为支架,也可以为其他的任何对电镀层要求比较高的小型、轻巧的电镀件,可以是非器械类,尤其为器械类。本发明中仅以支架作为示例,并不代表本发明中的方法和设备仅适用于支架的电镀,本发明中以镀锌为示例,并不代表本发明中的方法和设备仅只适用于镀锌。
需要特别说明的是,本发明中的电镀设备的图仅为其中一种呈现方式,在能实现相同功能,具有相同部件或结构的情况下,各部件之间的相对位置关系可以随机变动。
本发明中所涉及的区间范围的取值,并不仅仅局限于所提供的区间范围,而应该是所述区间中任意两个取值所组成的新区间的值或者所述区间中的任意一个具体的取值均可以,如本发明中“电镀的电流密度为1-20A·dm2”,其中电流密度性剂的含量值并不仅仅局限于1-20A·dm2这一个取值范围区间,可以是1-20A·dm2之间的无数个取值中任意两个取值所组成的新的区间,如可以是1.5-18A·dm2、是2-15A·dm2、1-10A·dm2,也可以是1-8A·dm2等等。另外,当有多个数值组合时,每一项参数可以在其取值范围内任意取值,且多个参数的值可以任意搭配。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包 含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。文中描述的方法步骤、过程、以及操作不解释为必须要求它们以所描述或说明的特定顺序执行,除非明确指出执行顺序。还应当理解,可以使用另外或者替代的步骤。
附图说明
通过阅读下文优选实施方式的详细描述,各种其它的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的附图标记表示相同的部件。其中:
图1为本发明实施例和对比例中所采用的电镀设备的示例图,其中:1-正极,2-负极,3-直流电源,4-阳极,5-电镀槽,6-夹具(阴极),7-电镀件,8-传动机构;
图2-图8为本发明实施例和对比例中所采用的夹具的示例图,其中:1-固定件,2-连接部,3,夹持部,D-连接杆之间的距离,也即连接部的宽度,9-辅助阴极。
具体实施方式
以下所述的仅为本发明的优选实施方式,本发明所保护的不限于以下优选实施方式,如实施例中均以支架或某一个型号的支架为示例进行说明,但并不代表本发明的技术方案仅适用于支架或某一个型号的支架。应当指出,对于本领域的技术人员来说在此发明创造构思的基础上,做出的若干变形和改进,都属于本发明的保护范围。所用试剂或仪器未注明生产商者,均为可以通过市购获得的常规产品。
测试方法
1.电镀层厚度的测定
本发明中采用X射线荧光镀层测厚仪法测定电镀层的厚度:首先将需要使用对应元素的标准块对设备进行校准,校准完成后,将测试电镀层厚度的支架样品固定到样品台上,放入X射线荧光镀层测厚仪,设置涂层和基底金属类型,设置测量时间为10~15s,厚度单位μm等参数。点击确定即可测试电镀件上各个部位镀层的厚度,并确定出最厚处和最薄处的厚度。
2.镀层中有机残留物的测定
根据国家标准《GB/T 2013-2006/ISO 15350:2000钢铁总碳硫量的测定高频感应炉燃烧后红外吸收法》中记载的方法分别检测出电镀件基体和电镀件中碳的含量C1和C2,从而确定出电镀层中碳的含量C=C1-C2
根据对各类有机物中碳原子的百分含量进行统计,含碳量最低的为甲酸,其百分含量为26.1%,而含碳量最高的为苯和乙炔,其碳含量为92.3%,由此可以认为有机物中碳含量一般在26.1%-92.3%之间,因此,有机残留物的含量为碳含量的1.083-3.831倍之间。因此本申请中采用根据上述国家标准测定出的碳含量乘以3.831所得出的结果为本申请中有机残留物的百分含量。
需要说明的是,由于本发明中所采用的国家标准《GB/T 2013-2006/ISO 15350:2000钢铁总碳硫量的测定高频感应炉燃烧后红外吸收法》中记载的方法来测定电镀件中的碳含量,而在该标准的“1范围”的第2段中明确记载“方法适用于质量分数为0.005%-4.3%的碳含量的测定。因此,对于电镀层中的有机残留物低的质量分数为0.019%-16.47。因此,本发明中当采用该方法无法测出某一检测对象中的碳含量时,可以认为该检测对象中碳的含量是低于0.005%,进而可以认为该检测对象中有机残留物的质量百分含量低于0.019%,甚至低于0.0125%(根据葡萄糖中的碳含量换算的结果)。
实施例1
如图1阳极宽20mm,支架运动一周轨迹为50mm,运动周期为1s,摆动张角为60°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,用30018支架电镀,溶液温度10℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图2夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.09A,10A/dm2电流密度,电镀时间19s,得到平均厚度为1μm锌层、支架外壁头端最高厚度为3.5μm,内壁中部最低厚度为0.75μm,最高厚度与最低厚度之比为4.67。连续电镀5个支架,电镀层质量的RSD为0.35%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残 留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支撑强度为74kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,无细胞增生,无支架杆断裂。
实施例2
如图1阳极宽20mm,支架运动一周轨迹为80mm,运动周期为2s,摆动张角为90°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,用30018支架电镀,溶液温度20℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图2夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.09A,10A/dm2电流密度,电镀时间19s,得到平均厚度为1μm锌层、支架外壁头端最高厚度为3.0μm,内壁中部最低厚度为0.76μm,最高厚度与最低厚度之比为3.94。连续电镀5个支架,电镀层质量的RSD为0.34%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支撑强度为76kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,无细胞增生,无支架杆断裂。
实施例3
如图1阳极宽20mm,支架运动一周轨迹为120mm,运动周期为3s,张角为120°,在含15g/L氧化锌、120g/L氢氧化钠的镀锌液中,用30018支架电镀,溶液温度30℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图5夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.09A,10A/dm2电流密度,电镀时间19s,得到平均厚度为1μm锌层、支架外壁头端最高厚度为2.8μm,内壁中部最低厚度为0.77μm,最高厚度与最低厚度之比为3.63。连续电镀5个支架,电镀层质量的RSD为0.33%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个 支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支撑强度为78kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,无细胞增生,无支架杆断裂。
实施例4
如图1阳极宽20mm,支架运动一周轨迹为160mm,运动周期为4s,张角为135°,在含15g/L氧化锌、120g/L氢氧化钠的镀锌液中,用30018支架电镀,溶液温度40℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图4夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.09A,10A/dm2电流密度,电镀时间19s,得到平均厚度为1μm锌层、支架外壁头端最高厚度为2.6μm,内壁中部最低厚度为0.78μm,最高厚度与最低厚度之比为3.33。连续电镀5个支架,电镀层质量的RSD为0.32%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支撑强度为81kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,无细胞增生,无支架杆断裂。
实施例5
如图1阳极宽20mm,支架运动一周轨迹为800mm,运动周期为5s,摆动张角为150°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,用80023支架电镀,溶液温度50℃、支架面积0.025dm2,质量与管腔体积比为0.033g/cm3,支架长23mm,如图2夹具宽d为18.5mm,夹具宽与电镀件长之比0.8,夹具与支架接触面积为0.1mm2,夹持力为0.05N。以电流0.25A,10A/dm2电流密度,电镀时间19s,得到平均厚度为1μm锌层、支架外壁头端最高厚度为2.2μm,内壁中部最低厚度为0.79μm,最高厚度与最低厚度之比为3.09。连续电镀5个支架,电镀层重量的RSD为0.31%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支 撑强度为83kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,无细胞增生,无支架杆断裂。
实施例6
如图1阳极宽200mm,支架运动一周轨迹为200mm,运动周期为1s,摆动张角为60°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,用30018支架电镀,溶液温度25℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图3夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.06A,5A/dm2电流密度,电镀时间19s,得到平均厚度为0.5μm锌层、支架外壁头端最大厚度为2.5μm,内壁中部最低厚度为0.375μm,最高厚度与最低厚度之比为4.67。连续电镀5个支架,电镀层质量的RSD为0.25%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支撑强度为50kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,无细胞增生,部分支架杆断裂。
实施例7
如图1阳极宽200mm,支架运动一周轨迹为400mm,运动周期为1s,摆动张角为60°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,用30018支架电镀,溶液温度25℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图7夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.15A,10A/dm2电流密度,电镀时间57s,得到平均厚度为3μm锌层、支架外壁头端最高厚度为9.75μm,内壁中部最低厚度为2.34μm,最高厚度与最低厚度之比为4.17。连续电镀5个支架,电镀层质量的RSD为0.30%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取 出,支架结构完整,测得径向支撑强度为90kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,有轻微的细胞增生,血管狭窄率为27%,无支架杆断裂。
实施例8
如图1阳极宽200mm,支架运动一周轨迹为400mm,运动周期为1s,摆动张角为60°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,用30018支架电镀,溶液温度25℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图8夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.27A,15A/dm2电流密度,电镀时间50.7s,得到平均厚度为4μm锌层、支架外壁头端最高厚度为12.8μm,内壁中部最低厚度为3.2μm,最高厚度与最低厚度之比为4。连续电镀5个支架,电镀层质量的RSD为0.35%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支撑强度为94kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,部分位置有轻微的细胞增生,血管狭窄率达到30%,无支架杆断裂。
实施例9
如图1阳极宽20mm,支架运动一周轨迹为400mm,运动周期为1s,摆动张角为60°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,用30018支架电镀,溶液温度25℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图6夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.010N。以电流0.36A,20A/dm2电流密度,电镀时间47.5s,得到平均厚度为5μm锌层、支架外壁头端最高厚度为15μm,内壁中部最低厚度为4.25μm,最高厚度与最低厚度之比为3.53。连续电镀5个支架,电镀层质量的RSD为0.35%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支 撑强度为98kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,部分位置有一定的细胞增生,血管狭窄率达到35%,无支架杆断裂。
实施例10
如图1阳极宽200mm,支架运动一周轨迹为400mm,运动周期为1s,摆动张角为60°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,30018支架两端各增加两节电镀,溶液温度25℃、支架面积0.012dm2,质量与管腔体积比为0.012g/cm3,支架长22mm,如图2夹具宽d为20mm,夹具宽与电镀件长之比0.91,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.06A,5A/dm2电流密度,电镀时间38s,得到平均厚度为1μm锌层,将支架端部两节各去掉2mm,支架外壁头端最高厚度为2.48μm,内壁中部最低厚度为0.6μm,最高厚度与最低厚度之比为4.13。连续电镀5个支架,电镀层质量的RSD为0.35%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支撑强度为76kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,无细胞增生,无支架杆断裂。
实施例11
如图1阳极宽200mm,镁骨钉运动一周轨迹为400mm,运动周期为1s,摆动张角为60°,在含90g/L氯化锌、10g/L硫酸亚铁、200g/L氯化钾的电镀液中,镁骨钉电镀,溶液温度25℃、骨钉表面积0.009dm2,骨钉长18mm,如图3夹具宽d为16mm,夹具宽与骨钉长之比0.89,夹具与骨钉接触面积为0.1mm2,夹持力为0.28N。以电流0.018A,2A/dm2电流密度,电镀时间95s,得到平均厚度为1μm锌铁合金层,其中含锌99.5%,含铁0.5%。骨钉头端最高厚度为2.4μm,中部最低厚度为0.8μm,最高厚度与最低厚度之比为3.0。连续电镀5个骨钉,电镀层质量的RSD为0.25%。骨钉未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个骨钉植入兔子踝关节,1号骨钉3个月取出,骨钉结构完整;2号支架6个月取出,无细胞增生,骨钉基体基本无腐蚀。
实施例12
如图1阳极宽200mm,铁锰封堵器运动一周轨迹为100mm,运动周期为1s,摆动张角为60°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中电镀,溶液温度25℃、封堵器表面积0.09dm2,直径18mm,如图2夹具宽d为16mm,夹具宽与封堵器直径之比0.89,夹具与封堵器接触面积为0.1mm2,夹持力为0.35N。以电流0.72A,8A/dm2电流密度,电镀时间23.8s,得到平均厚度为1μm锌层。封堵器圆周最高厚度为7.5μm,中部内部最低厚度为0.25μm,最高厚度与最低厚度之比为30。连续电镀5个骨钉,电镀层质量的RSD为0.25%。封堵器未出现烧伤或断裂的情况。将2个封堵器植入兔子房间隔,1号封堵器1个月取出中间部位未内皮化,2个月取出中间位置仍未内皮化,外壁端部已完全内皮化,2号封堵器6个月取出,端部细胞增生严重。
实施例13
如图1阳极宽120mm,支架运动一周轨迹为120mm,运动周期为3s,张角为120°,在含15g/L氧化锌、120g/L氢氧化钠的镀锌液中,用30018支架电镀,溶液温度30℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图2夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.09A,10A/dm2电流密度,电镀时间19s,得到平均厚度为1μm锌层、支架外壁头端最高厚度为5.0μm,内壁中部最低厚度为0.6μm,最高厚度与最低厚度之比为8.33。连续电镀5个支架,电镀层质量的RSD为0.3%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整,测得径向支撑强度为65kPa,满足植入早期3个月的力学性能要求;2号支架6个月取出,无细胞增生,无支架杆断裂。
对比例1
图1阳极宽20mm,支架运动一周轨迹为50mm,运动周期为1s,张角为60°, 在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,用30018支架电镀,溶液温度10℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图2夹具宽d为17.5mm,夹具宽与电镀件长之比0.97,夹具与支架接触面积为0.1mm2,夹持力为0.0005N。以电流0.09A,10A/dm2电流密度,电镀时间19s,得到平均厚度为1μm锌层,支架外壁头端最高厚度为3.6μm,内壁中部最低厚度为0.76μm,最高厚度与最低厚度之比为4.73。支架两端烧蚀,并与夹具熔在一起,不合格。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。
对比例2
如图1阳极宽20mm,支架运动一周轨迹为80mm,运动周期为2s,张角为90°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾的镀锌液中,用30018支架电镀,溶液温度20℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图2夹具宽d为12mm,夹具宽与电镀件长之比0.67,夹具与支架接触面积为0.1mm2,夹持力为0.8N。以电流0.09A,10A/dm2电流密度,电镀时间19s,得到平均厚度为1μm锌层、支架整体扭曲变形,不合格。连续电镀5个支架,电镀层质量的RSD为0.4%。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。
对比例3
如图1阳极宽200mm,支架运动一周轨迹为200mm,运动周期为1s,摆动张角为60°,在含50g/L氯化锌、25g/L硼酸、200g/L氯化钾、0.1g/L苄叉丙酮、0.6g/L脂肪醇聚氧乙烯醚O-20、0.2g/L苯磺酸钠的镀锌液中,用30018支架电镀,溶液温度25℃、支架面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,如图2夹具宽d为16mm,夹具宽与电镀件长之比0.89,夹具与支架接触面积为0.1mm2,夹持力为0.005N。以电流0.09A,10A/dm2电流密度,电镀时间19s,得到平均厚度为1μm锌层、支架外壁头端最高厚度为2.4μm,内壁中部最低厚度为0.8μm,最高厚度与最低厚度之比为3。连续电镀5个支架,电镀层质量的RSD为0.25%,支架未出现烧伤或断裂的情况。电镀层中有机残留物的质量百分含量为0.8%。将支架植 入兔子腹主动脉两周后取出,血管大量炎症及脓胞。
对比例4
如图1阳极宽600mm,支架运动一周轨迹为50mm,运动周期为4s,张角为35°,在含15g/L氧化锌、120g/L氢氧化钠的镀锌液中,用30018支架电镀,溶液温度40℃、支架总面积0.009dm2,质量与管腔体积比为0.012g/cm3,支架长18mm,单个夹具宽d为16mm,夹具宽与电镀件长之比0.87,夹具与支架接触总面积为1mm2,单个夹持力为0.005N。以电流0.09A,10A/dm2电流密度,电镀时间95s,单个支架平均厚度为5μm锌层,支架外壁头端最高厚度为18μm,内壁中部最低厚度为0.34μm,最高厚度与最低厚度之比为52.9。连续电镀5个,电镀层质量的RSD为0.5%。支架未出现烧伤或断裂的情况。未检出碳含量,电镀层中有机残留物的含量低于检测限,因此,电镀层中有机残留物的质量百分含量低于0.019%。将2个支架植入兔子腹主动脉,1号支架3个月取出,支架结构完整;2号支架6个月取出,出现细胞增生,大部分位置明显出现细胞增生并引起血管再度狭窄率达到70%,支架有部分支架杆断裂。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (32)

  1. 一种电镀件,包括基体和电镀层,所述电镀层覆盖在所述基体上,其特征在于,所述电镀层中有机残留物的含量低于0.2%。
  2. 根据权利要求1所述的电镀件,其特征在于,所述电镀层中有机残留物的含量低于0.1%;所述电镀层中有机残留物的含量低于0.05%;所述电镀层中有机残留物的含量低于0.019%。
  3. 根据权利要求1所述的电镀件,其特征在于,所述电镀层在基体上最厚处的厚度与最薄处的厚度的比值为(1-30]:1;所述电镀层在基体上最厚处的厚度与最薄处的厚度比值为(1-20]:1;所述电镀层在基体上最厚处的厚度与最薄处的厚度的比值为(1-15]:1;所述电镀层在基体上最厚处的厚度与最薄处的厚度的比值为(1-12]:1。
  4. 根据权利要求1所述的电镀件,其特征在于,所述电镀层的平均厚度为0.5-5μm;所述电镀层在基体上最厚处的厚度为平均厚度的(1,7.5]倍;所述电镀层在基体上最薄处的厚度为平均厚度的[0.25,1)倍。
  5. 根据权利要求1所述的电镀件,其特征在于,所述电镀层在基体上最薄处的厚度为0.25μm-4.25μm;电镀层在基体上最薄处的厚度为0.375μm-3.2μm;所述电镀层在最薄处的厚度为0.6μm-3.2μm;所述电镀层在最薄处的厚度为0.6μm-2.5μm。
  6. 根据权利要求1所述的电镀件,其特征在于,所述电镀层在基体上最厚处的厚度为1.1μm-15μm;所述电镀层在基体上最厚处的厚度为1.1-9.75μm;所述电镀层在基体上最厚处的厚度为1.1-7.5μm;所述电镀层在基体上最厚处的厚度为1.2-5μm。
  7. 根据权利要求1所述的电镀件,其特征在于,所述电镀层覆盖基体99%以上的表面;所述电镀层为纯金属层或合金层;所述电镀层中锌的含量不低于50%;所述电镀层中锌的含量在99%以上。
  8. 根据权利要求1所述的电镀件,其特征在于,所述医疗器械包括血管支架、非血管腔内支架、封堵器、骨科植入物、心脏瓣膜、垫片、人工血管、牙科植入器械、血管夹、齿科植入物、呼吸科植入物、妇科植入物、男科植入物、缝合线和螺栓;所述基体为可降解金属或可降解非金属材料;所述基体包括纯铁、铁合金、纯锌、锌合金、纯镁、镁合金中的至少一种。
  9. 根据权利要求1所述的电镀件,其特征在于,所述电镀件的质量体积比为0.001-10g/cm3;所述电镀件的质量体积比为0.001-5g/cm3;所述电镀件的质量体积比为0.001-0.4g/cm3;所述铁合金包括低合金钢或碳含量不高于2.5wt.%的铁基合金中的至少一种。
  10. 一种权利要求1-9所述电镀件的制备方法,所述电镀件置于电镀液中,并随夹具呈一定的幅度和频率相对于阳极运动,其特征在于,所述电镀件在电镀过程中相对于阳极运动轨迹的长度为阳极宽度的2-980倍;和/或所述电镀件上连接有辅助阴极。
  11. 根据权利要求10所述的制备方法,其特征在于,所述电镀件在电镀过程中相对于阳极运动轨迹的长度为阳极宽度的2-540倍;所述电镀件在电镀过程中相对于阳极运动轨迹的长度为阳极宽度的2-400倍;所述电镀件在电镀过程中相对于阳极运动轨迹的长度为阳极宽度的2-240倍;所述电镀件在电镀过程中相对于阳极运动轨迹的长度为阳极宽度的2-150倍。
  12. 根据权利要求10或11所述的制备方法,其特征在于,所述阳极的宽度≥0.1cm;所述电镀件相对于阳极摆动的幅度为0°-180°;所述电镀件长轴方向或平行于阳极面方向的两端连有辅助阴极。
  13. 根据权利要求10所述的制备方法,其特征在于,所述电镀件相对于阳极摆动的幅度为0°-160°;所述电镀件相对于阳极运动的频率为0.1s-20s/周。
  14. 根据权利要求10所述的制备方法,其特征在于,所述辅助阴极的面积占阴极面积的30%-70%;所述辅助阴极的长度为0.5mm-20mm;所述辅助阴极的长度为0.5mm-10mm;所述辅助阴极为任意形状;所述辅助阴极包括线型、环型、圈状型、棱柱型、椎体型、螺旋型、轮状型、圆柱型、波纹型中的至少一种。
  15. 根据权利要求10所述的制备方法,其特征在于,所述辅助阴极在垂直于阳极面或电镀件长轴方向的截面面积大于电镀件短轴的截面面积;所述辅助阴极与所述电镀件通过连杆或点连接。
  16. 根据权利要求15所述的制备方法,其特征在于,所述连杆为直线或非直线的一种;所述连杆为直线型、S型、ω型或Ω型中的至少一种;所述连杆与电镀件、夹具和辅助阴极固定连接或可拆卸式连接。
  17. 根据权利要求10所述的制备方法,其特征在于,所述电镀件在电镀过程中会受到夹具的作用力;所述电镀件在电镀过程中受到夹具的作用力的大小为1×10-3N-0.5N。
  18. 根据权利要求10所述的制备方法,其特征在于,所述电镀件与夹具之间的接触面积不大于0.1mm2
  19. 根据权利要求10所述的制备方法,其特征在于,所述电镀件在电镀过程中电镀液的温度为10℃-50℃;所述电镀件在电镀过程中电流密度为1A·dm2-20A·dm2;所述电镀件在电镀过程中电镀的时间为10-300s。
  20. 根据权利要求10所述的制备方法,其特征在于,所述电镀液中的各组分均为无机物。
  21. 根据权利要求10所述的制备方法,其特征在于,当镀层中含锌时,所述电镀液中包括3.4-4.5wt.%的含锌组分和2.1-3.1wt.%的pH调节剂;或所述电镀液中包括1.5-3.0wt.%的含锌组分和6.5-8.8wt.%的pH调节剂;
    所述含锌组分为氯化锌、硫酸锌、氧化锌中的至少一种;
    所述pH调节剂为硼酸、硼酸钠、硼酸钾、硼酸钙、氢氧化钠、氢氧化钾中的至少一种。
  22. 根据权利要求21所述的制备方法,其特征在于,所述电镀液中还包括15.5-19.5wt.%的氯化盐;所述氯化盐为氯化钠、氯化钾、氯化铵中的至少一种。
  23. 一种夹具,其特征在于,所述夹具将电镀件固定在电镀槽内并带动电镀件相对于阳极运动。
  24. 根据权利要求23所述的夹具,其特征在于,所述夹具包括连接部和与连接部垂直连接的夹持部,所述夹持部平行于所述电镀件的长轴方向,所述连接部靠近电镀件的一端具有至少2个连接杆,所述每个连接杆上连接有至少一个夹持部。
  25. 根据权利要求24所述的夹具,其特征在于,所述连接杆两两之间的距离为电镀件与连接杆对应的接触点之间距离的[0.6,0.98]倍。
  26. 根据权利要求24所述的夹具,其特征在于,所述夹持部垂直于电镀件长度方向的横截面上任意两点相连形成的直线的距离与电镀件内径的比值为1:1-1:20;所述夹持部的长度为0.16mm-7mm。
  27. 根据权利要求24所述的夹具,其特征在于,所述夹具95%以上的表面上均覆盖有绝缘层;或所述夹具25%以上的表面上均覆盖有绝缘层。
  28. 根据权利要求24所述的夹具,其特征在于,所述连接部远离电镀件的一端还连接有固定件。
  29. 一种电镀设备,包括权利要求23-28中所述的夹具,所述电镀设备还包括电源、电解槽和阳极,其特征在于,所述夹具通过支撑杆与电镀设备连接。
  30. 根据权利要求29所述的电镀设备,其特征在于,所述阳极的数量大于或等于2;所述2个或多个阳极的中心位置与电镀件运动轨迹的中心位置重合。
  31. 根据权利要求29所述的电镀设备,所述阳极的宽度≥0.1cm;所述电镀设备还包括控制和驱动夹具与阳极发生相对运动的部件。
  32. 根据权利要求29所述的电镀设备,其特征在于,所述电镀设备还包括显示屏。
PCT/CN2023/110250 2022-07-29 2023-07-31 一种电镀件及其制备方法和制备用夹具、设备 WO2024022535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210910511.1 2022-07-29
CN202210910511 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024022535A1 true WO2024022535A1 (zh) 2024-02-01

Family

ID=89631932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110250 WO2024022535A1 (zh) 2022-07-29 2023-07-31 一种电镀件及其制备方法和制备用夹具、设备

Country Status (2)

Country Link
CN (1) CN117468057A (zh)
WO (1) WO2024022535A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587487A (zh) * 2024-01-18 2024-02-23 南京海创表面处理技术有限公司 一种高精度镁合金工件表面电镀设备及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633329A1 (en) * 1993-07-06 1995-01-11 Sumitomo Chemical Company, Limited Composite zinc-plated metal sheet and method for the production thereof
JPH07108644A (ja) * 1993-10-09 1995-04-25 Sumitomo Metal Ind Ltd 樹脂積層金属板
JP2001040498A (ja) * 1999-07-27 2001-02-13 Ne Chemcat Corp 錫−銅合金めっき皮膜で被覆された電子部品
KR20150087502A (ko) * 2014-01-22 2015-07-30 대덕전자 주식회사 도금장치 및 방법
CN210458402U (zh) * 2019-07-02 2020-05-05 深圳市立威塑胶五金制品有限公司 一种多工位电镀夹治具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633329A1 (en) * 1993-07-06 1995-01-11 Sumitomo Chemical Company, Limited Composite zinc-plated metal sheet and method for the production thereof
JPH07108644A (ja) * 1993-10-09 1995-04-25 Sumitomo Metal Ind Ltd 樹脂積層金属板
JP2001040498A (ja) * 1999-07-27 2001-02-13 Ne Chemcat Corp 錫−銅合金めっき皮膜で被覆された電子部品
KR20150087502A (ko) * 2014-01-22 2015-07-30 대덕전자 주식회사 도금장치 및 방법
CN210458402U (zh) * 2019-07-02 2020-05-05 深圳市立威塑胶五金制品有限公司 一种多工位电镀夹治具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587487A (zh) * 2024-01-18 2024-02-23 南京海创表面处理技术有限公司 一种高精度镁合金工件表面电镀设备及控制方法

Also Published As

Publication number Publication date
CN117468057A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2024022535A1 (zh) 一种电镀件及其制备方法和制备用夹具、设备
CN110234366B (zh) 高功能生物可吸收支架
WO2017152878A1 (zh) 一种可降解的锌基合金植入材料及其制备方法与应用
US8337936B2 (en) Implant and method for manufacturing same
EP2555811B1 (en) Endoprosthesis
US9259516B2 (en) Implant and method for manufacturing
US20060121180A1 (en) Metallic structures incorporating bioactive materials and methods for creating the same
EP1261297A2 (en) Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
CN102605390B (zh) 电铸制备血管支架用可降解Fe-Zn合金管材的方法
WO2008051680A2 (en) Medical device hydrogen surface treatment by electrochemical reduction
CN114159197B (zh) 一种可降解生物医用镁合金药物洗脱血管支架及制备方法
CN112584876A (zh) 用于可植入医疗器械的铁基生物可降解金属
Chu et al. Surface modification of biomedical magnesium alloy wires by micro-arc oxidation
Strasky et al. Electric discharge machining of Ti-6Al-4V alloy for biomedical use
Hua et al. Microstructure and degradation properties of C-containing composite coatings on magnesium alloy wires treated with micro-arc oxidation
JP2011500111A (ja) リン酸カルシウムをコーティングした、コバルト−クロム合金を含むステント
US20080033535A1 (en) Stent having a structure made of a biocorrodible metallic material
CN108815589A (zh) 一种医用可降解锌基合金血管支架制品
WO2021135054A1 (zh) 可吸收铁基器械
EP3900749B1 (en) Absorbable implantable device
WO2017118101A1 (zh) 一种提高医用镁及镁合金耐蚀性和生物相容性的涂层及其制备方法
CN101607097B (zh) 一种生物多肽医疗装置及其制备方法
DE10325410B4 (de) Verfahren zur Herstellung einer nickelarmen Oberfläche auf Nitinol
US10028847B2 (en) Bioresorbable medical devices and method of manufacturing the same
CN210096010U (zh) 一种骨组织工程支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845739

Country of ref document: EP

Kind code of ref document: A1