WO2024022501A1 - 制冷设备及其制冷方法 - Google Patents

制冷设备及其制冷方法 Download PDF

Info

Publication number
WO2024022501A1
WO2024022501A1 PCT/CN2023/109884 CN2023109884W WO2024022501A1 WO 2024022501 A1 WO2024022501 A1 WO 2024022501A1 CN 2023109884 W CN2023109884 W CN 2023109884W WO 2024022501 A1 WO2024022501 A1 WO 2024022501A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pump
valve
liquid pipeline
gas
Prior art date
Application number
PCT/CN2023/109884
Other languages
English (en)
French (fr)
Inventor
肖家华
于艳翠
Original Assignee
山前(珠海)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山前(珠海)医疗科技有限公司 filed Critical 山前(珠海)医疗科技有限公司
Publication of WO2024022501A1 publication Critical patent/WO2024022501A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present application relates to the field of ultra-low temperature refrigeration technology, and in particular to a refrigeration equipment and a refrigeration method thereof.
  • liquid nitrogen tanks are generally used for cooling, and the liquid nitrogen absorbs heat and is discharged into the environment.
  • the cooling state of the existing technology is a gas-liquid two-phase state, which has extremely high environmental requirements, affecting the accuracy of the use object and causing an unstable use environment.
  • liquid refrigerants such as liquid nitrogen will interfere with the resolution of cryo-electron microscopes, and pure gaseous refrigerants are more conducive to the normal operation of cryo-electron microscopes; in other application scenarios, , the pure liquid refrigerant is more conducive to the normal operation of low-temperature equipment.
  • the main purpose of this application is to provide a refrigeration equipment and its refrigeration method, aiming to independently select the cooling state according to the different needs of the application, so as to solve the problem of the refrigeration system causing interference to the use environment or causing instability in the use environment. and improve refrigeration applicability.
  • this application proposes a refrigeration equipment, including:
  • the input end of the pump liquid pipeline is suitable for communication with the output end of the device to be cooled
  • the pump liquid pipeline includes a first pump liquid pipeline and is arranged in parallel with the first pump liquid pipeline
  • a refrigerator the input end of the refrigerator is connected to the output end of the pump liquid pipeline, for generating cold energy and performing heat exchange with the secondary refrigerant;
  • Gas-liquid separator the input end of the gas-liquid separator is connected with the output end of the refrigerator, so The output end of the gas-liquid separator is provided with a first cooling pipe and a second cooling pipe connected in parallel.
  • the first cooling pipe and the second cooling pipe are both suitable for connecting with the output of the device to be cooled. The two ends are connected; wherein, the first cooling pipe is provided with a first valve, and the second cooling pipe is provided with a second valve;
  • the gas-liquid separator is used to separate the refrigerant into a gas phase refrigerant and a liquid phase refrigerant, so as to cool the device to be cooled by the gas phase refrigerant or the liquid phase refrigerant. .
  • the first pump liquid pipeline includes a first refrigerant pump, a regenerator, a third valve and a fourth valve, and the cold end input port of the regenerator is adapted to connect with the device to be cooled
  • the output end of the regenerator is connected, the cold end output port of the regenerator is connected with the input end of the first refrigerant pump; the hot end input port of the regenerator is connected with the output end of the first refrigerant pump.
  • the hot end output port of the regenerator is connected to the input end of the refrigerator, and the third valve is located at the connection point between the hot end of the regenerator and the second pump liquid pipeline.
  • the fourth valve is located on the pipeline between the cold end of the regenerator and the connection point of the second pump liquid pipeline;
  • the cold end of the regenerator is used to heat the refrigerant; the hot end of the regenerator is used to pre-cool the refrigerant.
  • the second pump liquid pipeline includes a second brine pump, the input end of the second brine pump is adapted to communicate with the output end of the device to be cooled, and the second brine The output end of the agent pump is connected with the input end of the refrigerator.
  • a temperature sensor is provided on the pipeline between the refrigerator and the gas-liquid separator for detecting the temperature of the secondary refrigerant output from the output end of the refrigerator.
  • the refrigeration equipment further includes an integral heat insulation device, and the gas-liquid separator, the second refrigerant pump, the regenerator, and the cold end of the refrigerator are all arranged on the integral inside the thermal insulation device;
  • the overall heat insulation device is a vacuum heat insulation box or an airgel heat insulation box.
  • this application also proposes a refrigeration method, using the refrigeration equipment as mentioned above, including the following steps:
  • Control the gas-liquid separator to separate the cooled refrigerant into a gas phase refrigerant and a liquid phase refrigerant, and pass the gas phase refrigerant or the liquid phase refrigerant into the device to be cooled, To cool the device to be cooled, and allow the secondary refrigerant to flow back to the first pump liquid pipeline through the device to be cooled;
  • the refrigerator, the first valve or the second valve, and the second pump liquid pipeline are sequentially closed.
  • the first pump liquid pipeline is switched to the second pump liquid pipeline according to the temperature detection value, so that the brine refrigerant flows back to the second pump liquid pipeline through the device to be cooled.
  • the steps of pump liquid pipeline include:
  • the fourth valve is closed.
  • the instruction to start refrigeration includes at least a gas-phase cooling instruction and a liquid-phase cooling instruction.
  • the step of opening the first valve or the second valve when obtaining the instruction to turn on refrigeration specifically includes:
  • the second valve is opened, and the first valve remains closed.
  • the first pump liquid pipeline is also used to pre-cool the brine; the second pump liquid pipeline is also used to pre-cool the brine.
  • the refrigeration equipment includes a pump liquid pipeline, a refrigerator and a gas-liquid separator; the input end of the pump liquid pipeline is adapted to communicate with the output end of the device to be cooled, and the pump liquid pipeline includes a first pump liquid pipeline and a second pump liquid pipeline arranged in parallel with the first pump liquid pipeline; the input end of the refrigerator and the pump The output end of the liquid pipeline is connected to generate cold energy and conduct heat exchange with the refrigerant; the input end of the gas-liquid separator is connected to the output end of the refrigerator, and the output end of the gas-liquid separator is equipped with a parallel connection
  • the first cooling supply pipeline and the second cooling supply pipeline are both suitable for communication with the output end of the device to be cooled; wherein, the first cooling supply pipeline is provided with a first valve, A second valve is provided on the second cooling supply pipeline; a gas-liquid separator is used to separate the refrigerant into a gas phase refrigerant and a liquid phase refrigerant, so as to be cooled by
  • this application realizes the ability to independently select the cooling state according to different needs of the application, so as to solve the problem of the refrigeration system causing interference to the use environment or causing instability in the use environment, and to improve the applicability of refrigeration. Moreover, since the cooling system is a closed cycle, it also solves the problem that the secondary refrigerant used for cooling in the liquid nitrogen tank cannot be recovered and recycled.
  • Figure 1 is a schematic structural diagram of an embodiment of the refrigeration equipment of the present application.
  • Figure 2 is a schematic flow chart of an embodiment of the refrigeration method of the present application.
  • FIG. 3 is a specific flow diagram of an embodiment of the refrigeration method of the present application.
  • Refrigeration equipment 100. Application end; 11. Device to be cooled; 10. Pump liquid pipeline; 20. Refrigerator; 30. Gas-liquid separator; 101. First valve; 102. Second valve; 103. No. Three valves; 104, fourth valve; 111, first refrigerant pump; 112, regenerator; 113, storage tank; 121, second refrigerant pump; 104, temperature sensor; 40, overall heat insulation device.
  • This application proposes a refrigeration equipment that can be used to cyclically supply gaseous refrigerant to devices that need to work in low-temperature environments using gaseous cooling, especially cryogenic electron microscopes; it can also be used to cyclically supply gaseous refrigerants to devices that need to use liquid cooling.
  • Devices working in low-temperature environments circulate and supply liquid refrigerant, which is not limited here.
  • the refrigeration equipment 1 includes a pump liquid pipeline 10 , a refrigerator 20 and a gas-liquid separator 30 .
  • the input end of the pump liquid pipeline 10 is suitable for communication with the output end of the device 11 to be cooled.
  • the pump liquid pipeline 10 includes a first pump liquid pipeline and a second pump liquid pipeline arranged in parallel with the first pump liquid pipeline.
  • the input end of the refrigerator 20 is connected to the output end of the pump liquid pipeline 10 for generating cold energy and performing heat exchange with the brine.
  • the input end of the gas-liquid separator 30 is connected to the output end of the refrigerator 20
  • the output end of the gas-liquid separator 30 is provided with a first cooling pipe and a second cooling pipe in parallel, and both the first cooling pipe and the second cooling pipe are suitable for communication with the output end of the device 11 to be cooled.
  • the first cooling supply pipe is provided with a first valve 101
  • the second cooling supply pipe is provided with a second valve 102.
  • the gas-liquid separator 30 is used to separate the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, so as to cool the device 11 to be cooled through the gas-phase refrigerant or the liquid-phase refrigerant.
  • the application end 100 of the refrigeration equipment 1 can be a test room with a cooling outlet, and a cryogenic electron microscope is placed in the test room waiting for cooling device 11 .
  • the first valve 101 is opened so that the gas-phase refrigerant is introduced into the device 11 to be cooled through the first cooling pipe; if liquid-phase cooling is required, the second valve is opened. 102, so that the liquid phase refrigerant is introduced into the device 11 to be cooled through the second cooling supply pipe.
  • the first pump-liquid pipeline may include a gas-liquid pipeline, a first refrigerant pump 111 disposed on the gas-liquid pipeline, a regenerator 112, a solenoid valve, a manual valve and other components.
  • the second pump liquid pipeline may include a gas-liquid pipeline and a second refrigerant pump 121 provided on the gas-liquid pipeline.
  • the specific structures of the first pump liquid pipeline and the second pump liquid pipeline are not limited.
  • the refrigerator 20 may be a thermoacoustic refrigerator or other low-temperature refrigerator, and the internal circulation medium of the thermoacoustic refrigerator is not limited.
  • the refrigeration temperature of the refrigerator 20 can be below -100°C. Especially when the refrigeration temperature is about -190°C, the gaseous refrigerant is cooled to about -190°C, which can effectively solve the problem of the impact of liquid nitrogen and other liquid refrigerants on low-temperature electronics.
  • the problem of interference caused by the resolution of the microscope can optimize the performance of cryo-electron microscopy.
  • the heat dissipation end of the thermoacoustic refrigerator can be provided with a heat dissipation component.
  • the heat dissipation component can be a fan, a liquid cooling component, or a combination of air cooling and liquid cooling. There are no restrictions anywhere.
  • the input end of the pump liquid pipeline 10 is adapted to be connected with the output end of the device 11 to be cooled.
  • the pump liquid pipeline 10 includes a first pump liquid pipeline and a second pump arranged in parallel with the first pump liquid pipeline. liquid pipeline; the input end of the refrigerator 20 is connected with the output end of the pump liquid pipeline 10 for generating cold energy and performing heat exchange with the secondary refrigerant; the input end of the gas-liquid separator 30 is connected with the refrigerator 20 The output end of the gas-liquid separator 30 is connected with the first cooling pipe and the second cooling pipe in parallel.
  • the first cooling pipe and the second cooling pipe are both suitable for the output of the device 11 to be cooled.
  • the ends are connected; wherein, the first cooling supply pipeline is provided with a first valve 101, and the second cooling supply pipeline is provided with a second valve 102; a gas-liquid separator 30 is used to separate the refrigerant into gas phase refrigerant and liquid phase refrigerant to pass through gas phase refrigerant or liquid phase refrigerant
  • the refrigerant cools the device 11 to be cooled, so that the cooling state can be independently selected according to different needs of the application, so as to solve the problem of the refrigeration system causing interference to the use environment or causing instability in the use environment, and improve the applicability of refrigeration.
  • the cooling system is a closed cycle, it also solves the problem that the secondary refrigerant used for cooling in the liquid nitrogen tank cannot be recovered and recycled.
  • the refrigeration equipment 1 adopts the first pump liquid pipeline and the second pump liquid pipeline arranged in parallel, the transfer of brine refrigerant can be started separately or at the same time.
  • the flow rate of the secondary refrigerant can be greatly increased, thereby improving the refrigeration effect of the refrigeration equipment 1.
  • the other pipeline can still continue to work, reducing the frequency of downtime for repairs.
  • the first pump liquid pipeline includes a first refrigerant pump 111, a regenerator 112, a third valve 103 and a fourth valve 104.
  • the cold end input port of the regenerator 112 is suitable for In communication with the output end of the device 11 to be cooled, the cold end output port of the regenerator 112 is connected with the input end of the first refrigerant pump 111; the hot end input port of the regenerator 112 is connected with the first refrigerant pump 111 The output end of the regenerator 112 is connected to the input end of the refrigerator 20.
  • the third valve 103 is located on the pipe between the hot end of the regenerator 112 and the connection point of the second pump liquid pipeline.
  • the fourth valve 104 is provided on the pipe between the cold end of the regenerator 112 and the connection point of the second pump liquid pipeline; the cold end of the regenerator 112 is used to heat the refrigerant; the heat of the regenerator 112 end for pre-cooling the brine.
  • the first refrigerant pump 111 can be a conventional pump, and the first valve 101, the second valve 102, the third valve 103 and the fourth valve 104 are all solenoid valves and/or manual valves, which are not limited here. .
  • a storage tank 113 may be provided on the input pipeline of the first refrigerant pump 111 for storing the refrigerant, which can stabilize the pressure and effectively ensure the stability of the refrigeration cycle.
  • the second pump liquid pipeline may include a second brine pump 121 , and the input end of the second brine pump 121 is adapted to be connected to the output end of the device 11 to be cooled.
  • the output end of the brine pump 121 is connected to the input end of the refrigerator 20 .
  • the second refrigerant pump 121 may be a cryogenic pump.
  • a cryogenic pump is a vacuum pump that uses a low-temperature surface to condense gas, also known as a condensation pump.
  • Cryogenic pumps can achieve clean vacuum with the largest pumping rate and the lowest ultimate pressure. They are widely used in the research and production of semiconductors and integrated circuits, as well as molecular beam research, vacuum coating equipment, vacuum surface analysis instruments, ion implanters and space simulation devices, etc. aspect.
  • the secondary refrigerant can be transported through the first pump liquid pipeline first.
  • the first pump liquid pipeline is switched to the second secondary cooling medium of the second pump liquid pipeline.
  • Agent pump 121 The brine is transported to accelerate the flow of brine, thereby lowering the cooling temperature to the target temperature at a faster rate and reducing the energy consumption caused by the simultaneous opening of the first pump liquid pipeline and the second pump liquid pipeline. losses, greatly reducing refrigeration efficiency and saving costs.
  • a temperature sensor 104 is provided on the pipeline between the refrigerator 20 and the gas-liquid separator 30 for detecting the output of the refrigerator 20
  • the terminal outputs the temperature of the refrigerant.
  • the refrigeration system can promptly adjust the cooling temperature of the refrigerator 20 according to the cooling temperature detected by the temperature sensor 104 in real time, so that the temperature of the gas phase refrigerant or the liquid phase refrigerant reaches an optimal value to meet the requirements. requirements of different application scenarios.
  • the first cooling pipe can be connected to the upper end of the gas-liquid separator 30
  • the second cooling pipe can be connected to the lower end of the gas-liquid separator 30 . In this way, the gas phase refrigerant and the liquid phase refrigerant can be transported separately, and the two cooling media are prevented from being mixed together and affecting the performance of the device 11 to be cooled.
  • the refrigeration equipment 1 may also include an integral heat insulation device 40 , a gas-liquid separator 30 , a second refrigerant pump 121 , a regenerator 112 , and a cold end of the refrigerator 20 .
  • the overall heat insulation device 40 can be a vacuum heat insulation box or an airgel heat insulation box, etc.
  • the overall heat insulation device 40 By providing the overall heat insulation device 40, the heat insulation effect of the refrigeration equipment 1 is improved, and the heat exchange with the outside world can be minimized.
  • this application also proposes a refrigeration method using the above-mentioned refrigeration equipment 1.
  • the refrigeration method includes the following steps:
  • Step S10 When obtaining the instruction to start refrigeration, open the first valve or the second valve.
  • the instruction to start refrigeration may include at least a gas-phase cooling instruction and a liquid-phase cooling instruction.
  • This step S10 may specifically include:
  • Step S11 When obtaining the gas-phase cooling instruction, open the first valve and maintain the closed state of the second valve;
  • Step S12 When obtaining the liquid phase cooling instruction, open the second valve and maintain the closed state of the first valve.
  • the first valve 101 is opened to allow the gas phase refrigerant to pass through the first cooling pipe to the device 11 to be cooled; if liquid phase cooling is required, the second valve 102 is opened. , so that the liquid phase refrigerant passes through the second cooling supply pipe to the device 11 to be cooled.
  • Step S20 Open the third valve and the fourth valve of the first pump liquid pipeline, and start the first refrigerant pump of the first pump liquid pipeline.
  • the third valve 103, the fourth valve 104 and the above-mentioned first valve 101 and the second valve 102 can all be a battery valve or a combination of a solenoid valve and a manual valve; the first refrigerant pump 111 can be a conventional Pump, not limited here.
  • Step S30 Start the refrigerator to generate cooling capacity and perform heat exchange with the brine to cool the brine to a target temperature.
  • the refrigerator 20 can be a thermoacoustic refrigerator, and the target temperature can be below -100°C, which is not limited here.
  • Step S40 Control the gas-liquid separator to separate the cooled refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, and pass the gas-phase refrigerant or the liquid-phase refrigerant into the station to be treated.
  • a cooling device is used to cool the device to be cooled and allow the brine to flow back to the first pump liquid pipeline through the device to be cooled.
  • the circulation flow direction of the brine is: the cold end cold plate of the refrigerator 20 generates cold energy to exchange heat with the brine. After the brine is cooled, it enters the gas-liquid separator 30, and the gas-liquid separator 30 separates the brine.
  • the gas phase refrigerant or liquid phase refrigerant enters the application environment to cool the corresponding cooling object, and the gas phase refrigerant or liquid phase refrigerant enters the application environment After absorbing heat, it flows back to the regenerator 112, and then absorbs heat through the cold side of the regenerator 112 before entering the first refrigerant pump 111, and is transported to the hot side of the regenerator 112 through the first refrigerant pump 111 to release heat. It is pre-cooled, and then enters the cold plate of the refrigerator 20, and the cycle repeats.
  • Step S50 Detect the temperature of the refrigerant output from the output end of the refrigerator, and generate a temperature signal to calculate a temperature detection value based on the temperature signal.
  • the temperature of the refrigerant is monitored in real time through the temperature sensor 104 and the temperature signal is fed back to the refrigeration system.
  • the refrigeration system determines whether the current temperature reaches the threshold, and then adjusts the temperature according to the situation. Control the operation of the refrigerator 20 or switch the pump liquid pipeline 10, etc.
  • Step S60 Switch the first pump liquid pipeline to the second pump liquid pipeline according to the temperature detection value, so that the brine refrigerant flows back to the second pump liquid pipe through the device to be cooled. road.
  • the circulation flow direction of the brine is: the cold end cold plate of the refrigerator 20 generates cold energy to exchange heat with the brine.
  • the brine After the brine is cooled, it enters the gas-liquid separator 30, and the gas-liquid separator 30 separates the brine. It is separated into a gas phase refrigerant and a liquid phase refrigerant.
  • the gas phase refrigerant or the liquid phase refrigerant enters the application site and cools the corresponding cooling object. Then the refrigerant absorbs heat in the application site and flows back to the second stage.
  • the refrigerant pump 121 then delivers the refrigerant to the cold plate of the refrigerator 20 through the second refrigerant pump 121, and so on.
  • Step S70 When obtaining the refrigeration shutdown instruction, the refrigerator, the first valve or the second valve, and the second pump liquid pipeline are sequentially closed.
  • the refrigeration system receives the user's shutdown command and ends the refrigeration work.
  • first pump liquid pipeline can also be used to pre-cool the brine; the second pump liquid pipeline can also be used to pre-cool the brine. In this way, the cooling efficiency can be further improved.
  • the first pump liquid pipeline is switched to the second pump liquid pipeline according to the temperature detection value, so that the brine passes through the device to be cooled.
  • the step S60 of returning to the second pump liquid pipeline may specifically include:
  • Step S61 When the difference between the temperature detection value and the target temperature is less than or equal to the threshold, open the second refrigerant pump of the second pump liquid pipeline;
  • Step S62 After the first preset time, turn off the first refrigerant pump
  • Step S63 After the second preset time, close the third valve
  • Step S64 After the third preset time, close the fourth valve.
  • the second refrigerant pump may be a cryogenic pump, which is not limited here.
  • the temperature sensor 104 detects the temperature of the refrigerant output from the cold plate of the thermoacoustic refrigerator 20, and the refrigeration system determines whether to switch the second refrigerant pump 121 based on the temperature detection value; if
  • the second refrigerant pump 121 closes the first refrigerant pump 111 after the first preset time t 1 , closes the third valve 103 after the second preset time t 2 , and closes the fourth valve 103 after the third preset time t 3 .
  • T is the temperature detection value
  • T 0 is the target temperature
  • a is the system preset threshold.
  • the first pump liquid pipeline is first used to transport the refrigerant.
  • the first pump liquid pipeline is switched to the second pump liquid pipeline to transport the brine. Transport to accelerate the flow of secondary refrigerant, so that the cooling temperature drops to the target temperature at a faster rate and reduces the
  • the energy consumption loss caused by opening the first pump liquid pipeline and the second pump liquid pipeline at the same time greatly reduces the refrigeration efficiency and saves costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)

Abstract

一种制冷设备(1)及其制冷方法,该制冷设备(1)包括泵液管路(10)、制冷机(20)和气液分离器(30)。泵液管路(10)的输入端与待冷却装置(11)的输出端连通,泵液管路(10)包括第一泵液管路及与第一泵液管路并联设置的第二泵液管路;制冷机(20)的输入端与泵液管路的输出端连通,以用于产生冷量并将其与载冷剂进行热交换;气液分离器(30)的输入端与制冷机(20)的输出端连通;气液分离器(30),用于将载冷剂分离为气相载冷剂和液相载冷剂,通过气相载冷剂或液相载冷剂冷却待冷却装置(11)。

Description

制冷设备及其制冷方法
相关申请的交叉引用
本申请要求在2022年7月29日提交中国专利局、申请号为202210914929.X、发明名称为“制冷设备及其制冷方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及超低温制冷技术领域,尤其涉及一种制冷设备及其制冷方法。
背景技术
现有超低温供冷技术中,一般采用液氮罐供冷,液氮吸热后排入环境中。
然而,现有技术的供冷状态为气液两相态,对环境要求极高的使用场合,影响使用对象的精确度,造成使用环境不稳定。具体而言,在一些应用场景中,液氮等液态载冷剂对低温电子显微镜的分辨率会造成干扰,纯气态的载冷剂更利于低温电子显微镜保持正常工作;而在另一些应用场景中,纯液态的载冷剂又更利于低温设备保持正常工作。
发明内容
本申请的主要目的在于提供一种制冷设备及其制冷方法,旨在实现根据应用场合的不同需求,自主选择供冷状态,以解决制冷系统对使用环境造成干扰或引起使用环境不稳定的问题,并提高制冷适用性。
为实现上述目的,本申请提出一种制冷设备,包括:
泵液管路,所述泵液管路的输入端适于与待冷却装置的输出端连通,所述泵液管路包括第一泵液管路及与所述第一泵液管路并联设置的第二泵液管路;
制冷机,所述制冷机的输入端与所述泵液管路的输出端连通,以用于产生冷量并将其与载冷剂进行热交换;以及
气液分离器,所述气液分离器的输入端与所述制冷机的输出端连通,所 述气液分离器的输出端设有并联的第一供冷管道和第二供冷管道,所述第一供冷管道和所述第二供冷管道均适于与所述待冷却装置的输出端连通;其中,所述第一供冷管道上设有第一阀门,所述第二供冷管道上设有第二阀门;
所述气液分离器,用于将所述载冷剂分离为气相载冷剂和液相载冷剂,以通过所述气相载冷剂或所述液相载冷剂冷却所述待冷却装置。
可选地,所述第一泵液管路包括第一载冷剂泵、回热器、第三阀门和第四阀门,所述回热器的冷端输入口适于与所述待冷却装置的输出端连通,所述回热器的冷端输出口与所述第一载冷剂泵的输入端连通;所述回热器的热端输入口与所述第一载冷剂泵的输出端连通,所述回热器的热端输出口与所述制冷机的输入端连通,所述第三阀门设于所述回热器的热端与所述第二泵液管路连通点之间的管道上,所述第四阀门设于所述回热器的冷端与所述第二泵液管路连通点之间的管道上;
所述回热器的冷端,用于加热所述载冷剂;所述回热器的热端,用于预冷却所述载冷剂。
可选地,所述第二泵液管路包括第二载冷剂泵,所述第二载冷剂泵的输入端适于与所述待冷却装置的输出端连通,所述第二载冷剂泵的输出端与所述制冷机的输入端连通。
可选地,所述制冷机与所述气液分离器之间的管道上设有温度传感器,以用于检测所述制冷机的输出端输出载冷剂的温度。
可选地,所述制冷设备还包括整体隔热装置,所述气液分离器、所述第二载冷剂泵、所述回热器、所述制冷机的冷端均设置于所述整体隔热装置内;
所述整体隔热装置为真空隔热箱或气凝胶隔热箱。
为了实现上述目的,本申请还提出一种制冷方法,使用如上所述的制冷设备,包括以下步骤:
在获取开启制冷指令时,打开第一阀门或第二阀门;
打开第一泵液管路的第三阀门和第四阀门,并启动所述第一泵液管路的第一载冷剂泵;
启动制冷机,以产生冷量并与载冷剂进行热交换而冷却所述载冷剂至目标温度;
控制气液分离器将冷却后的所述载冷剂分离为气相载冷剂和液相载冷剂,并将所述气相载冷剂或所述液相载冷剂通入至待冷却装置,以冷却所述待冷却装置,并使所述载冷剂经所述待冷却装置回流至所述第一泵液管路;
检测所述制冷机的输出端输出载冷剂的温度,并生成温度信号,以根据所述温度信号计算温度检测值;
根据所述温度检测值,将所述第一泵液管路切换至第二泵液管路,以使所述载冷剂经所述待冷却装置回流至所述第二泵液管路;
在获取关闭制冷指令时,依次关闭所述制冷机、所述第一阀门或所述第二阀门、所述第二泵液管路。
可选地,所述根据所述温度检测值,将所述第一泵液管路切换至第二泵液管路,以使所述载冷剂经所述待冷却装置回流至所述第二泵液管路的步骤,具体包括:
在所述温度检测值与所述目标温度之差小于或等于阈值时,打开所述第二泵液管路的第二载冷剂泵;
在第一预设时间后,关闭所述第一载冷剂泵;
在第二预设时间后,关闭所述第三阀门;
在第三预设时间后,关闭所述第四阀门。
可选地,所述开启制冷指令至少包括气相供冷指令和液相供冷指令。
可选地,所述在获取开启制冷指令时,打开第一阀门或第二阀门的步骤,具体包括:
在获取所述气相供冷指令时,打开所述第一阀门,所述第二阀门维持关闭状态;
在获取所述液相供冷指令时,打开所述第二阀门,所述第一阀门维持关闭状态。
可选地,所述第一泵液管路还用于预冷却所述载冷剂;所述第二泵液管路还用于预冷却所述载冷剂。
在本申请的技术方案中,该制冷设备包括泵液管路、制冷机和气液分离器;泵液管路的输入端适于与待冷却装置的输出端连通,泵液管路包括第一泵液管路及与第一泵液管路并联设置的第二泵液管路;制冷机的输入端与泵 液管路的输出端连通,以用于产生冷量并将其与载冷剂进行热交换;气液分离器的输入端与制冷机的输出端连通,气液分离器的输出端设有并联的第一供冷管道和第二供冷管道,第一供冷管道和第二供冷管道均适于与待冷却装置的输出端连通;其中,第一供冷管道上设有第一阀门,第二供冷管道上设有第二阀门;气液分离器,用于将载冷剂分离为气相载冷剂和液相载冷剂,以通过气相载冷剂或液相载冷剂冷却待冷却装置。
若需采用气相供冷,则打开第一阀门,以使气相载冷剂通过第一供冷管道通入至待冷却装置;若需采用液相供冷,则打开第二阀门,以使液相载冷剂通过第二供冷管道通入至待冷却装置。
本申请通过上述方案,实现了可根据应用场合的不同需求,自主选择供冷状态,以解决制冷系统对使用环境造成干扰或引起使用环境不稳定的问题,并提高制冷适用性。并且,由于该供冷系统为封闭式循环,还解决了液氮罐供冷的载冷剂不能回收循环利用的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请制冷设备一实施例的结构示意图;
图2为本申请制冷方法一实施例的流程示意图;
图3为本申请制冷方法一实施例的具体流程示意图。
附图标号说明:
1、制冷设备;100、应用端;11、待冷却装置;10、泵液管路;20、制冷机;30、气液分离器;101、第一阀门;102、第二阀门;103、第三阀门;104、第四阀门;111、第一载冷剂泵;112、回热器;113、储罐;121、第二载冷剂泵;104、温度传感器;40、整体隔热装置。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步 说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,若全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种制冷设备,可适用于对需要在采用气态供冷的低温环境下工作的装置循环供应气态载冷剂,特别是低温电子显微镜;也可适用于对需要在采用液态供冷的低温环境下工作的装置循环供应液态载冷剂,此处不限。
参照图1,在本申请一实施例中,该制冷设备1包括泵液管路10、制冷机20和气液分离器30。泵液管路10的输入端适于与待冷却装置11的输出端连通,泵液管路10包括第一泵液管路及与第一泵液管路并联设置的第二泵液管路。制冷机20的输入端与泵液管路10的输出端连通,以用于产生冷量并将其与载冷剂进行热交换。气液分离器30的输入端与制冷机20的输出端连 通,气液分离器30的输出端设有并联的第一供冷管道和第二供冷管道,第一供冷管道和第二供冷管道均适于与待冷却装置11的输出端连通。其中,第一供冷管道上设有第一阀门101,第二供冷管道上设有第二阀门102。气液分离器30,用于将载冷剂分离为气相载冷剂和液相载冷剂,以通过气相载冷剂或液相载冷剂冷却待冷却装置11。
该制冷设备1的应用端100可为具有供冷口的测试室,测试室内放置有低温电子显微镜等待冷却装置11。
需要说明,若需采用气相供冷,则打开第一阀门101,以使气相载冷剂通过第一供冷管道通入至待冷却装置11;若需采用液相供冷,则打开第二阀门102,以使液相载冷剂通过第二供冷管道通入至待冷却装置11。
本实施例中,第一泵液管路可包括气液管道及设于气液管道上的第一载冷剂泵111、回热器112、电磁阀和手动阀等部件。第二泵液管路可包括气液管道及设于气液管道上的第二载冷剂泵121等。此处,对第一泵液管路和第二泵液管路的具体结构不做限定。
本实施例中,制冷机20可采用热声制冷机或其他低温制冷机等,热声制冷机的内循环介质不限。制冷机20的制冷温度可为-100℃以下,特别是在制冷温度为-190℃左右时,气态载冷剂降温至-190℃左右,可以有效地解决液氮等液态载冷剂对低温电子显微镜的分辨率造成干扰的问题,能够使低温电子显微镜的性能达到较佳状态。
该制冷设备1的制冷机20为热声制冷机时,热声制冷机的散热端可设置散热件,散热件可以是风扇,也可是液冷件,或者是风冷与液冷的组合,此处不做限定。
本申请通过将泵液管路10的输入端适于与待冷却装置11的输出端连通,泵液管路10包括第一泵液管路及与第一泵液管路并联设置的第二泵液管路;制冷机20的输入端与泵液管路10的输出端连通,以用于产生冷量并将其与载冷剂进行热交换;气液分离器30的输入端与制冷机20的输出端连通,气液分离器30的输出端设有并联的第一供冷管道和第二供冷管道,第一供冷管道和第二供冷管道均适于与待冷却装置11的输出端连通;其中,第一供冷管道上设有第一阀门101,第二供冷管道上设有第二阀门102;气液分离器30,用于将载冷剂分离为气相载冷剂和液相载冷剂,以通过气相载冷剂或液相载 冷剂冷却待冷却装置11,从而实现了可根据应用场合的不同需求,自主选择供冷状态,以解决制冷系统对使用环境造成干扰或引起使用环境不稳定的问题,并提高制冷适用性。并且,由于该供冷系统为封闭式循环,还解决了液氮罐供冷的载冷剂不能回收循环利用的问题。
另外,由于该制冷设备1采用并联设置的第一泵液管路和第二泵液管路,可分别开启输送载冷剂,也可同时开启输送载冷剂。在两管路同时开启时可以使载冷剂的流速大幅提升,进而提升该制冷设备1的制冷效果。而且,当其中一个管路出现故障时,另一管路仍然能够继续保持工作,减少停机维修的频率。
参考图1,在一实施例中,第一泵液管路包括第一载冷剂泵111、回热器112、第三阀门103和第四阀门104,回热器112的冷端输入口适于与待冷却装置11的输出端连通,回热器112的冷端输出口与第一载冷剂泵111的输入端连通;回热器112的热端输入口与第一载冷剂泵111的输出端连通,回热器112的热端输出口与制冷机20的输入端连通,第三阀门103设于回热器112的热端与第二泵液管路连通点之间的管道上,第四阀门104设于回热器112的冷端与第二泵液管路连通点之间的管道上;回热器112的冷端,用于加热载冷剂;回热器112的热端,用于预冷却载冷剂。
本实施例中,第一载冷剂泵111可为常规泵,第一阀门101、第二阀门102、第三阀门103和第四阀门104均为电磁阀和/或手动阀,此处不限。
本实施例中,第一载冷剂泵111的输入端管路上可设置储罐113,以用于存储载冷剂,能够稳定压力,有效地保障制冷循环的稳定性。
参考图1,在一实施例中,第二泵液管路可包括第二载冷剂泵121,第二载冷剂泵121的输入端适于与待冷却装置11的输出端连通,第二载冷剂泵121的输出端与制冷机20的输入端连通。
需要说明,第二载冷剂泵121可为低温泵。低温泵是利用低温表面冷凝气体的真空泵,又称冷凝泵。低温泵可以获得抽气速率最大、极限压力最低的清洁真空,广泛应用于半导体和集成电路的研究和生产,以及分子束研究、真空镀膜设备、真空表面分析仪器、离子注入机和空间模拟装置等方面。
本实施例中,可以先通过第一泵液管路进行载冷剂的输送,当供冷温度达到一定温度后,将第一泵液管路切换为第二泵液管路的第二载冷剂泵121 进行载冷剂的输送,以加速载冷剂流动,从而使供冷温度以更快速率下降到目标温度,并减少第一泵液管路与第二泵液管路同时开启而造成的能耗损失,大幅地降低了制冷效率,节省了成本。
为了提升该制冷设备1的制冷精确性,参考图1,在一实施例中,制冷机20与气液分离器30之间的管道上设有温度传感器104,以用于检测制冷机20的输出端输出载冷剂的温度。
本实施例中,制冷系统可根据温度传感器104实时检测的供冷温度,及时地调整制冷机20的制冷温度,以使气相载冷剂或液相载冷剂的温度达到较佳值,以满足不同应用场景的需求。
值得一提的是,由于气相载冷剂的密度小于液相载冷剂的密度,在气液分离器30内,气相载冷剂会上升到气液分离器30的顶部,而液相载冷剂则处于气液分离器30的底部。因此,本实施例中,参考图1,第一供冷管道可与气液分离器30的上端连通,第二供冷管道可与气液分离器30的下端连通。如此,可以方便分别输送气相载冷剂和液相载冷剂,避免两种冷却介质混合在一起而影响待冷却装置11的性能。
参考图1,在一实施例中,该制冷设备1还可包括整体隔热装置40,气液分离器30、第二载冷剂泵121、回热器112、制冷机20的冷端均设置于整体隔热装置40内;整体隔热装置40可为真空隔热箱或气凝胶隔热箱等。
通过设置整体隔热装置40,提高了该制冷设备1的隔热效果,可以使其与外界热交换尽量减小。
为了实现气相供冷和液相供冷,同时使供冷温度以更快速率下降到目标温度,并减少第一泵液管路与第二泵液管路同时开启而造成的能耗损失,大幅地降低制冷效率,节省成本,本申请还提出一种制冷方法,使用上述的制冷设备1,参考图1和图2,该制冷方法包括以下步骤:
步骤S10、在获取开启制冷指令时,打开第一阀门或第二阀门。
本实施例中,开启制冷指令可至少包括气相供冷指令和液相供冷指令。该步骤S10具体可包括:
步骤S11、在获取所述气相供冷指令时,打开所述第一阀门,所述第二阀门维持关闭状态;
步骤S12、在获取所述液相供冷指令时,打开所述第二阀门,所述第一阀门维持关闭状态。
换言之,若需采用气相供冷,则打开第一阀门101,以使气相载冷剂通过第一供冷管道通入至待冷却装置11;若需采用液相供冷,则打开第二阀门102,以使液相载冷剂通过第二供冷管道通入至待冷却装置11。
步骤S20、打开第一泵液管路的第三阀门和第四阀门,并启动所述第一泵液管路的第一载冷剂泵。
本实施例中,第三阀门103、第四阀门104及上述的第一阀门101和第二阀门102均可为电池阀或电磁阀与手动阀的组合;第一载冷剂泵111可为常规泵,此处不限。
与此同时,第二泵液管路保持关闭状态。
步骤S30、启动制冷机,以产生冷量并与载冷剂进行热交换而冷却所述载冷剂至目标温度。
本实施例中,制冷机20可选为热声制冷机,所述目标温度可为-100℃以下,此处不限。
步骤S40、控制气液分离器将冷却后的所述载冷剂分离为气相载冷剂和液相载冷剂,并将所述气相载冷剂或所述液相载冷剂通入至待冷却装置,以冷却所述待冷却装置,并使所述载冷剂经所述待冷却装置回流至所述第一泵液管路。
此时,载冷剂的循环流向为:制冷机20的冷端冷盘产生冷量与载冷剂进行热交换,载冷剂降温后进入气液分离器30,气液分离器30将载冷剂分离为气相载冷剂和液相载冷剂,气相载冷剂或液相载冷剂进入至应用环境中,冷却相应的用冷对象,气相载冷剂或液相载冷剂在应用环境中吸热后回流至回热器112,再经回热器112的冷边吸热后进入第一载冷剂泵111,通过第一载冷剂泵111输送至回热器112的热边放热进行预冷却,之后进入制冷机20的冷盘,如此循环往复。
步骤S50、检测所述制冷机的输出端输出载冷剂的温度,并生成温度信号,以根据所述温度信号计算温度检测值。
本实施例中,通过温度传感器104实时监测载冷剂的温度并反馈温度信号给制冷系统,制冷系统判断当前温度是否处于达到阈值,然后再根据情况 控制制冷机20工作或切换泵液管路10等。
步骤S60、根据所述温度检测值,将所述第一泵液管路切换至第二泵液管路,以使所述载冷剂经所述待冷却装置回流至所述第二泵液管路。
此时,载冷剂的循环流向为:制冷机20的冷端冷盘产生冷量与载冷剂进行热交换,载冷剂降温后进入气液分离器30,气液分离器30将载冷剂分离为气相载冷剂和液相载冷剂,气相载冷剂或液相载冷剂进入应用场合,冷却相应的用冷对象,然后载冷剂在应用场合中吸热后回流至第二载冷剂泵121,再经第二载冷剂泵121输送至制冷机20的冷盘,如此循环往复。
步骤S70、在获取关闭制冷指令时,依次关闭所述制冷机、所述第一阀门或所述第二阀门、所述第二泵液管路。
此时,制冷系统接收用户的关机指令,结束制冷工作。
需要说明,第一泵液管路还可用于预冷却载冷剂;第二泵液管路还可用于预冷却载冷剂。如此,可以进一步地提升制冷效率。
参考图3,在一实施例中,所述根据所述温度检测值,将所述第一泵液管路切换至第二泵液管路,以使所述载冷剂经所述待冷却装置回流至所述第二泵液管路的步骤S60,具体可包括:
步骤S61、在所述温度检测值与所述目标温度之差小于或等于阈值时,打开所述第二泵液管路的第二载冷剂泵;
步骤S62、在第一预设时间后,关闭所述第一载冷剂泵;
步骤S63、在第二预设时间后,关闭所述第三阀门;
步骤S64、在第三预设时间后,关闭所述第四阀门。
其中,第二载冷剂泵可为低温泵,此处不限。
本实施例中,温度传感器104检测热声制冷机20冷盘输出载冷剂的温度,制冷系统根据温度检测值判断是否切换第二载冷剂泵121;若|T-T0|≤a,则启动第二载冷剂泵121,第一预设时间t1后关闭第一载冷剂泵111,第二预设时间t2后关闭第三阀门103,第三预设时间t3后关闭第四阀门104;其中,T为温度检测值,T0为目标温度,a为系统预设的阈值。
本实施例中,通过先利用第一泵液管路进行载冷剂的输送,当供冷温度达到一定温度后,将第一泵液管路切换为第二泵液管路进行载冷剂的输送,以加速载冷剂流动,从而使供冷温度以更快速率下降到目标温度,并减少第 一泵液管路与第二泵液管路同时开启而造成的能耗损失,大幅地降低了制冷效率,节省了成本。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种制冷设备,其特征在于,包括:
    泵液管路,所述泵液管路的输入端适于与待冷却装置的输出端连通,所述泵液管路包括第一泵液管路及与所述第一泵液管路并联设置的第二泵液管路;
    制冷机,所述制冷机的输入端与所述泵液管路的输出端连通,以用于产生冷量并将其与载冷剂进行热交换;以及
    气液分离器,所述气液分离器的输入端与所述制冷机的输出端连通,所述气液分离器的输出端设有并联的第一供冷管道和第二供冷管道,所述第一供冷管道和所述第二供冷管道均适于与所述待冷却装置的输出端连通;其中,所述第一供冷管道上设有第一阀门,所述第二供冷管道上设有第二阀门;
    所述气液分离器,用于将所述载冷剂分离为气相载冷剂和液相载冷剂,以通过所述气相载冷剂或所述液相载冷剂冷却所述待冷却装置。
  2. 如权利要求1所述的制冷设备,其特征在于,所述第一泵液管路包括第一载冷剂泵、回热器、第三阀门和第四阀门,所述回热器的冷端输入口适于与所述待冷却装置的输出端连通,所述回热器的冷端输出口与所述第一载冷剂泵的输入端连通;所述回热器的热端输入口与所述第一载冷剂泵的输出端连通,所述回热器的热端输出口与所述制冷机的输入端连通,所述第三阀门设于所述回热器的热端与所述第二泵液管路连通点之间的管道上,所述第四阀门设于所述回热器的冷端与所述第二泵液管路连通点之间的管道上;
    所述回热器的冷端,用于加热所述载冷剂;所述回热器的热端,用于预冷却所述载冷剂。
  3. 如权利要求2所述的制冷设备,其特征在于,所述第二泵液管路包括第二载冷剂泵,所述第二载冷剂泵的输入端适于与所述待冷却装置的输出端连通,所述第二载冷剂泵的输出端与所述制冷机的输入端连通。
  4. 如权利要求3所述的制冷设备,其特征在于,所述制冷机与所述气液 分离器之间的管道上设有温度传感器,以用于检测所述制冷机的输出端输出载冷剂的温度。
  5. 如权利要求4所述的制冷设备,其特征在于,所述制冷设备还包括整体隔热装置,所述气液分离器、所述第二载冷剂泵、所述回热器、所述制冷机的冷端均设置于所述整体隔热装置内;
    所述整体隔热装置为真空隔热箱或气凝胶隔热箱。
  6. 一种制冷方法,使用如权利要求1~5中任一项所述的制冷设备,其特征在于,包括以下步骤:
    在获取开启制冷指令时,打开第一阀门或第二阀门;
    打开第一泵液管路的第三阀门和第四阀门,并启动所述第一泵液管路的第一载冷剂泵;
    启动制冷机,以产生冷量并与载冷剂进行热交换而冷却所述载冷剂至目标温度;
    控制气液分离器将冷却后的所述载冷剂分离为气相载冷剂和液相载冷剂,并将所述气相载冷剂或所述液相载冷剂通入至待冷却装置,以冷却所述待冷却装置,并使所述载冷剂经所述待冷却装置回流至所述第一泵液管路;
    检测所述制冷机的输出端输出载冷剂的温度,并生成温度信号,以根据所述温度信号计算温度检测值;
    根据所述温度检测值,将所述第一泵液管路切换至第二泵液管路,以使所述载冷剂经所述待冷却装置回流至所述第二泵液管路;
    在获取关闭制冷指令时,依次关闭所述制冷机、所述第一阀门或所述第二阀门、所述第二泵液管路。
  7. 如权利要求6所述的制冷方法,其特征在于,所述根据所述温度检测值,将所述第一泵液管路切换至第二泵液管路,以使所述载冷剂经所述待冷却装置回流至所述第二泵液管路的步骤,具体包括:
    在所述温度检测值与所述目标温度之差小于或等于阈值时,打开所述第二泵液管路的第二载冷剂泵;
    在第一预设时间后,关闭所述第一载冷剂泵;
    在第二预设时间后,关闭所述第三阀门;
    在第三预设时间后,关闭所述第四阀门。
  8. 如权利要求6所述的制冷方法,其特征在于,所述开启制冷指令至少包括气相供冷指令和液相供冷指令。
  9. 如权利要求8所述的制冷方法,其特征在于,所述在获取开启制冷指令时,打开第一阀门或第二阀门的步骤,具体包括:
    在获取所述气相供冷指令时,打开所述第一阀门,所述第二阀门维持关闭状态;
    在获取所述液相供冷指令时,打开所述第二阀门,所述第一阀门维持关闭状态。
  10. 如权利要求6所述的制冷方法,其特征在于,所述第一泵液管路还用于预冷却所述载冷剂;所述第二泵液管路还用于预冷却所述载冷剂。
PCT/CN2023/109884 2022-07-29 2023-07-28 制冷设备及其制冷方法 WO2024022501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210914929.X 2022-07-29
CN202210914929.XA CN117515949A (zh) 2022-07-29 2022-07-29 制冷设备及其制冷方法

Publications (1)

Publication Number Publication Date
WO2024022501A1 true WO2024022501A1 (zh) 2024-02-01

Family

ID=89705525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109884 WO2024022501A1 (zh) 2022-07-29 2023-07-28 制冷设备及其制冷方法

Country Status (2)

Country Link
CN (1) CN117515949A (zh)
WO (1) WO2024022501A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374688A2 (en) * 1988-12-23 1990-06-27 General Electric Company Refrigerator system with dual evaporators for household refrigerators
CN1587841A (zh) * 2004-09-03 2005-03-02 清华大学 一种并联单换热器内融冰蓄冷装置
CN101457964A (zh) * 2009-01-08 2009-06-17 南京大学 具有测试功能的蓄冷空调系统
CN106871472A (zh) * 2016-12-27 2017-06-20 广东技术师范学院 一种获得多个不同温度的新型制冷循环装置
CN113339909A (zh) * 2021-05-31 2021-09-03 青岛海信日立空调系统有限公司 热泵空调系统
CN218495540U (zh) * 2022-07-29 2023-02-17 山前(珠海)医疗科技有限公司 一种超低温存储系统
CN218495405U (zh) * 2022-07-29 2023-02-17 山前(珠海)医疗科技有限公司 制冷设备
CN218864578U (zh) * 2022-07-29 2023-04-14 山前(珠海)医疗科技有限公司 存储设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374688A2 (en) * 1988-12-23 1990-06-27 General Electric Company Refrigerator system with dual evaporators for household refrigerators
CN1587841A (zh) * 2004-09-03 2005-03-02 清华大学 一种并联单换热器内融冰蓄冷装置
CN101457964A (zh) * 2009-01-08 2009-06-17 南京大学 具有测试功能的蓄冷空调系统
CN106871472A (zh) * 2016-12-27 2017-06-20 广东技术师范学院 一种获得多个不同温度的新型制冷循环装置
CN113339909A (zh) * 2021-05-31 2021-09-03 青岛海信日立空调系统有限公司 热泵空调系统
CN218495540U (zh) * 2022-07-29 2023-02-17 山前(珠海)医疗科技有限公司 一种超低温存储系统
CN218495405U (zh) * 2022-07-29 2023-02-17 山前(珠海)医疗科技有限公司 制冷设备
CN218864578U (zh) * 2022-07-29 2023-04-14 山前(珠海)医疗科技有限公司 存储设备

Also Published As

Publication number Publication date
CN117515949A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN218495405U (zh) 制冷设备
CN218864578U (zh) 存储设备
WO2018121425A1 (zh) 串并联双蒸发器制冷系统及其控制方法
CN109945565B (zh) 气-液直接接触式流态冰制备系统
CN110793797A (zh) 一种双冷屏负压低温换热器测试装置
WO2024022501A1 (zh) 制冷设备及其制冷方法
CN213454351U (zh) 一种逆流式闭循环低温冷却系统
CN205860582U (zh) 一种储液调控装置及制冷系统
CN108630377B (zh) 多箱式超导磁体低温容器系统及方法
WO2024022500A1 (zh) 存储设备及其制冷方法
CN209197191U (zh) 一种带有自由冷却的制冷系统
CN218495402U (zh) 制冷设备
WO2022116568A1 (zh) 一种新型供冷制冷一体化装置
CN218495403U (zh) 制冷设备
CN212778071U (zh) 提高提纯效率的冷媒分离提纯系统和空调机组
CN116336704A (zh) 制冷系统以及制冷系统的控制方法
CN111271887B (zh) 一种分液冷凝非共沸压缩喷射式制冷循环及其工作方法
CN212132945U (zh) 一种冰场二氧化碳制冷系统
CN209230137U (zh) 一种自吸式高压组件及冷水机构
CN117515951A (zh) 制冷设备及其制冷方法
CN117515950A (zh) 制冷设备及其制冷方法
KR101820683B1 (ko) 중간 압력제어에 의한 용량제어가 가능한 초저온 냉동시스템
CN219829147U (zh) 液氦闭式循环预冷的大冷量稀释制冷系统
KR20210090355A (ko) 초저온을 구현하는 칠러 장치
CN117515948A (zh) 制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845705

Country of ref document: EP

Kind code of ref document: A1