WO2024022268A1 - 超声换能器的动态支路电流的控制方法及超声波手术系统 - Google Patents

超声换能器的动态支路电流的控制方法及超声波手术系统 Download PDF

Info

Publication number
WO2024022268A1
WO2024022268A1 PCT/CN2023/108797 CN2023108797W WO2024022268A1 WO 2024022268 A1 WO2024022268 A1 WO 2024022268A1 CN 2023108797 W CN2023108797 W CN 2023108797W WO 2024022268 A1 WO2024022268 A1 WO 2024022268A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
ultrasonic transducer
current
phase difference
frequency
Prior art date
Application number
PCT/CN2023/108797
Other languages
English (en)
French (fr)
Inventor
翁俊
潘家勇
Original Assignee
上海逸思医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海逸思医疗科技股份有限公司 filed Critical 上海逸思医疗科技股份有限公司
Publication of WO2024022268A1 publication Critical patent/WO2024022268A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods
    • H02N2/008Means for controlling vibration frequency or phase, e.g. for resonance tracking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320082Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue

Definitions

  • the present application relates to the technical field of surgical medical instruments, and in particular to a method and device for controlling the dynamic branch current of an ultrasonic transducer, an ultrasonic surgical system, computer equipment and a storage medium.
  • ultrasonic surgical devices such as ultrasonic cutting hemostatic knives, convert electrical energy into high-frequency mechanical vibration through ultrasonic transducers to complete the cutting of soft tissues and at the same time achieve hemostasis or coagulation during the operation.
  • ultrasonic transducers Compared with traditional electrosurgery, ultrasonic transducers have It has the advantages of low temperature, less eschar, low thermal damage, no direct electrical connection, and no leakage, so it is widely used in surgical operations.
  • the ultrasonic surgical system mainly consists of a handle with an ultrasonic transducer, an instrument with an end effector to cut and seal tissue, an energy generator (host), and a foot-operated excitation switch.
  • the equivalent circuit model of the ultrasonic transducer can include a first branch with static capacitance, and a second branch with capacitance, inductance, and resistance connected in series.
  • the second branch has electromechanical characteristics and
  • the second branch may also be called a "dynamic branch".
  • the first branch and the second branch are connected in parallel on the circuit.
  • Current energy generators may include a matching inductor, the function of which is to achieve, at the series resonant frequency of the second leg of the ultrasonic transducer, the static capacitance of the first leg and the matching inductance within the energy generator. Parallel resonance causes all the output current of the energy generator to flow into the second branch.
  • the matching inductor of the energy generator needs to achieve parallel resonance with the static capacitance of the first branch at the series resonance frequency of the second branch.
  • the series resonance frequency of the second branch is For dynamic changes, the maximum range of change may be 2kHz; and for the static capacitance of the first branch, its capacitance value is not fixed due to temperature changes and the effects of repeated use and aging.
  • the inductance error range in actual engineering is ⁇ 5%; the above three changing factors will cause the matching inductors to fail to achieve true parallel resonance at the resonant frequency in actual use.
  • the current amplitude of the dynamic branch is smaller than the current amplitude of the control output of the energy generator, and the deviation of the current amplitude is not fixed and cannot be predicted and compensated; clinically, the ultrasonic surgical system The cutting becomes slow and the tissue cannot be separated normally or the coagulation effect is poor, affecting the surgical effect.
  • a method for controlling the dynamic branch current of an ultrasonic transducer including: obtaining a first drive signal input to the ultrasonic transducer, where the first drive signal includes a first drive current, a first drive voltage, and a first drive frequency; Obtain the static capacitance of the ultrasonic transducer; adjust the first driving signal according to the first driving current, the first driving voltage, the first driving frequency and the static capacitance, so as to adjust the dynamic branch current by adjusting the first driving signal. control.
  • the step of adjusting the first driving signal according to the first driving current and the first driving voltage, the first driving frequency and the static capacitance includes: obtaining a first value of the first driving current and the first driving voltage. Phase difference; obtain the estimated second phase difference of the ultrasonic transducer, and the estimated second phase difference is determined by the first driving current, the first driving voltage, the first driving frequency and the static capacitance; based on The first phase difference and the estimated second phase difference adjust the first driving signal.
  • the step of obtaining the estimated second phase difference of the ultrasonic transducer includes: obtaining the first product of the first driving voltage, the first driving frequency and the static capacitance; obtaining the first product and the first The ratio of the driving current; obtain the estimated second phase difference based on the ratio.
  • the step of adjusting the first driving signal based on the first phase difference and the estimated second phase difference includes: obtaining the set amplitude of the dynamic branch; obtaining the current amplitude of the dynamic branch , the current amplitude is determined by the first drive current and the estimated second phase difference; the first drive signal is adjusted according to the first phase difference, the estimated second phase difference, the set amplitude, and the current amplitude.
  • the step of obtaining the current amplitude of the dynamic branch includes: obtaining the cosine value of the estimated second phase difference; obtaining the second product of the cosine value and the first driving current, and the second product is the dynamic The current amplitude of the branch.
  • the step of adjusting the first driving signal according to the first phase difference, the estimated second phase difference, the set amplitude, and the current amplitude includes: according to the first phase difference and the estimated second phase difference.
  • the second phase difference determines the first error value; adjusts the frequency of the first driving signal according to the first error value; determines the second error value according to the current amplitude and the set amplitude; adjusts the amplitude of the first driving signal according to the second error value value.
  • the step further includes: adjusting the proportional resonance controller.
  • the first drive signal is used to perform waveform distortion compensation control; wherein, the transfer function of the proportional resonance controller is based on the resonance frequency and cutoff frequency settings of the ultrasonic transducer.
  • the step of obtaining the static capacitance of the ultrasonic transducer includes: obtaining the second driving current and the second driving voltage output by the ultrasonic transducer when the second driving signal is input to the ultrasonic transducer, wherein, The second driving frequency of the second driving signal is smaller than or larger than the resonant frequency of the ultrasonic transducer; the static capacitance is determined according to the second driving current, the second driving voltage and the second driving frequency.
  • the step of obtaining the second driving current and the second driving voltage output by the ultrasonic transducer when the second driving signal is input to the ultrasonic transducer includes: inputting the first driving signal to the ultrasonic transducer. Before, the second driving signal is input to the ultrasonic transducer to obtain the second driving current and the second driving voltage output by the ultrasonic transducer; or the second driving signal and the first driving signal are input to the ultrasonic transducer to obtain the ultrasonic transducer. The output signal of the transducer; the second driving current and the second driving voltage are decomposed from the output signal.
  • the step of obtaining the static capacitance of the ultrasonic transducer includes: obtaining the test results of the frequency sweep test obtained when the third driving signal is input to the ultrasonic transducer; obtaining the admittance circle based on the test results; The admittance circle obtains the maximum susceptance value and the minimum susceptance value, and obtains the first frequency corresponding to the maximum susceptance value and the second frequency corresponding to the minimum susceptance value; according to the maximum susceptance value, the first frequency, and the minimum susceptance value and the second frequency to obtain the static capacitance.
  • a control device for dynamic branch current of an ultrasonic transducer including: a first acquisition module for acquiring a first drive signal input to the ultrasonic transducer, where the first drive signal includes a first drive current and a first drive signal. voltage, first driving frequency; a second acquisition module, used to obtain the static capacitance of the ultrasonic transducer; an adjustment module, used to adjust the first driving voltage according to the first driving current, the first driving voltage, the first driving frequency and the static capacitance. The signal is adjusted to control the dynamic branch current by adjusting the first drive signal.
  • An ultrasonic surgical system characterized in that the ultrasonic surgical system includes a host, an ultrasonic transducer and an ultrasonic surgical instrument; the host is used to obtain a first drive signal input to the ultrasonic transducer, and the first drive signal includes a first drive current and the first driving voltage, the first driving frequency, obtain the static capacitance of the ultrasonic transducer, and adjust the first driving signal according to the first driving current, the first driving voltage, the first driving frequency and the static capacitance; the host is also used to Output the adjusted first drive signal to the ultrasonic transducer to control the dynamic branch current of the ultrasonic transducer through the adjusted first drive signal; the ultrasonic transducer is used to convert the adjusted first drive signal into Electrical energy is converted into mechanical energy, and the mechanical energy is output to the ultrasonic surgical instrument.
  • a computer device includes a memory, a processor, and computer-readable instructions stored in the memory and executable on the processor.
  • the processor executes the computer-readable instructions, the steps of the method of any of the above embodiments are implemented.
  • a computer-readable storage medium has computer-readable instructions stored thereon. When the computer-readable instructions are executed by a processor, the steps of the method of any of the above embodiments are implemented.
  • the above-mentioned control method, device, ultrasonic surgical system, computer equipment and storage medium for the dynamic branch current of the ultrasonic transducer obtains a first driving signal input to the ultrasonic transducer.
  • the first driving signal includes a first driving current and a third A driving voltage and a first driving frequency are obtained. Taking the static capacitance of the ultrasonic transducer, adjusting the first driving signal according to the first driving current, the first driving voltage, the first driving frequency and the static capacitance, so as to adjust the dynamic branch current by adjusting the first driving signal. control.
  • the first driving signal can be adjusted based on the first driving current and the first driving voltage, the first driving frequency and the static capacitance of the ultrasonic transducer, thereby controlling the dynamic branch current of the ultrasonic transducer, and the implementation process does not require
  • precise control of the dynamic branch current of the ultrasound transducer can be achieved, which improves the consistency and stability of surgical results in ultrasonic surgical systems containing ultrasound transducers.
  • Figure 1 is an application environment diagram of a method for controlling dynamic branch current of an ultrasonic transducer in one embodiment
  • Figure 2 is a schematic flow chart of a method for controlling dynamic branch current of an ultrasonic transducer in one embodiment
  • Figure 3 is a schematic diagram of an admittance circle in an embodiment
  • Figure 4 is a block diagram of an implementation of real-time detection of static capacitance in one embodiment
  • Figure 5 is a schematic flow chart of real-time detection of static capacitance in one embodiment
  • Figure 6 is a schematic diagram of an equivalent circuit model of an ultrasonic transducer in one embodiment
  • Figure 7 is a block diagram of the current phase difference control implementation of the dynamic branch in one embodiment
  • Figure 8 is a vector diagram of I m and I g1 and I 0 in one embodiment
  • Figure 9 is a block diagram of the current amplitude control implementation of the dynamic branch in one embodiment
  • Figure 10 is a Bode plot of a quasi-PR controller in an embodiment
  • Figure 11 is a block diagram of the output current waveform control of the ultrasonic transducer in one embodiment
  • Figure 12 is a structural block diagram of an ultrasonic surgical system in one embodiment
  • Figure 13 is a schematic diagram of each module in the system function of the host 11 in one embodiment
  • Figure 14 is a structural block diagram of a dynamic branch current control device of an ultrasonic transducer in one embodiment
  • Figure 15 is an internal structure diagram of the host in one embodiment.
  • This application provides a method for controlling the dynamic branch current of an ultrasonic transducer, which can be applied in the application environment as shown in Figure 1.
  • the host computer 11 is connected to the ultrasonic transducer 12 .
  • the host 11 outputs a first driving signal to the ultrasonic transducer 12 to drive the ultrasonic transducer 12 to vibrate.
  • the ultrasonic transducer 12 converts the electrical energy of the first driving signal output by the host 11 into mechanical energy of vibration, and transmits the mechanical energy of vibration to the ultrasonic surgical instrument 13 .
  • the host 11 is used to implement a dynamic branch current control method of an ultrasonic transducer in this application.
  • the host 11 obtains the first driving signal input to the ultrasonic transducer 12, the first driving signal includes the first driving current, the first driving voltage, the first driving frequency, and obtains the static capacitance of the ultrasonic transducer, according to The first driving current, the first driving voltage, the first driving frequency and the static capacitance adjust the first driving signal, and output the adjusted first driving signal to the ultrasonic transducer 12 to adjust the first driving signal.
  • the dynamic branch current of the ultrasonic transducer 12 is controlled.
  • the ultrasonic transducer 12 converts the adjusted electrical energy of the first driving signal into vibrational mechanical energy, and transmits the vibrational mechanical energy to the ultrasonic surgical instrument 13 . Therefore, the host computer 11 realizes control of the dynamic branch current input to the ultrasonic transducer 12 .
  • a method for controlling the dynamic branch current of an ultrasonic transducer is provided. This method is explained by taking the method applied to the host 11 in Figure 1 as an example, and includes the following steps:
  • the first driving signal includes the first driving current, the first driving voltage, and the first driving frequency.
  • the first driving signal is used to drive the ultrasonic transducer, so that the ultrasonic transducer converts the electrical energy of the first driving signal into mechanical energy of vibration, and transmits the mechanical energy of vibration to the ultrasonic surgical instrument.
  • the first drive signal includes a first drive current, a first drive operating voltage and first driving frequency.
  • the static capacitance of the ultrasonic transducer is collected in advance.
  • the static capacitance can be obtained through any one of the first detection method and the second detection method.
  • the first detection method is: detecting the static capacitance based on the admittance circle of the scanning frequency of the ultrasonic transducer.
  • the second detection method is to input a detection signal to the ultrasonic transducer that is much lower or much higher than the resonant frequency of the ultrasonic transducer, and obtain the static capacitance through the output voltage and current.
  • the static capacitance of an ultrasound transducer can be determined in either of these two ways. The following describes the first detection method and the second detection method respectively:
  • the first detection method is used to obtain the static capacitance of the ultrasonic transducer, that is, the above-mentioned acquisition of the static capacitance of the ultrasonic transducer includes: obtaining the test results of the frequency sweep test obtained when the third driving signal is input to the ultrasonic transducer, based on The test result is an admittance circle. From the admittance circle, the maximum susceptance value and the minimum susceptance value are obtained, and the first frequency corresponding to the maximum susceptance value and the second frequency corresponding to the minimum susceptance value are obtained. According to the maximum susceptance value, The first frequency, minimum susceptance value, and second frequency are used to obtain the static capacitance.
  • a third driving signal is input to the ultrasonic transducer to perform frequency scanning on the ultrasonic transducer to obtain test results of the frequency sweep test.
  • the admittance circle shown in Figure 3 is obtained. It can be seen from the characteristics of the admittance circle that the calculation formula of the resonant angular frequency ⁇ p is as follows:
  • the diameter D of the admittance circle has the following relationship with the susceptance values of points A and B:
  • point A and point B correspond to frequency f 1 and frequency f 2 and susceptance value B A and susceptance value B B respectively.
  • f 1 and f 2 and B A and B B are obtained, and the value of the static capacitance C 0 is calculated based on these parameters.
  • B A represents the above-mentioned maximum susceptance value
  • f 1 represents the above-mentioned first frequency
  • B B represents the above-mentioned minimum susceptance value
  • f 2 represents the above-mentioned second frequency.
  • the ultrasonic transducer Before inputting the first driving signal to the ultrasonic transducer, that is, before using the ultrasonic transducer to drive the ultrasonic surgical instrument to implement ultrasonic surgery, the ultrasonic transducer is frequency scanned, and the ultrasonic transducer is calculated based on the test results of the frequency sweep test. Calculate the static capacitance of the ultrasonic transducer in real-time by calculating the static capacitance of the ultrasonic transducer in real-time, avoiding the impact of changes in the capacitance value of the static capacitance caused by temperature changes or aging of the ultrasonic transducer due to repeated use.
  • Using the second detection method to obtain the static capacitance of the ultrasonic transducer includes: obtaining the second driving current output by the ultrasonic transducer when the second driving signal is input to the ultrasonic transducer. and the second driving voltage, which , the second driving frequency of the second driving signal is less than or greater than the resonant frequency of the ultrasonic transducer; the static capacitance is determined according to the second driving current, the second driving voltage and the second driving frequency of the second driving signal.
  • the electrical characteristics of the ultrasonic transducer are equivalent to a capacitor, and this capacitor is approximately a static capacitance C 0 .
  • the static capacitance C 0 is mainly determined by the geometric size of the sensor material and the electrode area, and is approximately a constant. According to this electrical characteristic, a detection signal with a current amplitude far lower than the resonant frequency is applied to the ultrasonic transducer. By detecting the output voltage and output current, the static capacitance C 0 can be calculated. The calculation method is as follows:
  • the second driving frequency of the above-mentioned second driving signal may be much lower than the resonant frequency of the ultrasonic transducer or much higher than the resonant frequency of the ultrasonic transducer, and the second driving signal may be a certain current amplitude. detection signal.
  • the second driving current is the output current I g2 in the above formula
  • the second driving voltage is the output voltage V g2 in the above formula
  • the angular frequency corresponding to the second driving frequency is ⁇ 2 in the above formula.
  • the ultrasonic transducer Before inputting the first driving signal to the ultrasonic transducer, that is, before using the ultrasonic transducer to drive ultrasonic surgical instruments to implement ultrasonic surgery, a certain current amplitude far lower than the resonant frequency is applied to the ultrasonic transducer. Detect the signal and calculate the static capacitance by detecting the output voltage and output current to realize the calculation of the static capacitance of the ultrasonic transducer in real-time use, avoiding changes in the capacitance value of the static capacitance caused by temperature changes or repeated use of the ultrasonic transducer. to influence.
  • the second detection method is relatively simple to operate, the processing flow is relatively simple, and the capacitance value of the static capacitor can be quickly obtained.
  • the above-described acquisition of the second driving current and the second driving voltage output by the ultrasonic transducer when the second driving signal is input to the ultrasonic transducer includes: before inputting the first driving signal to the ultrasonic transducer, The ultrasonic transducer inputs the second driving signal to obtain the second driving current and the second driving voltage output by the ultrasonic transducer; or, the second driving signal and the first driving signal are input to the ultrasonic transducer to obtain the ultrasonic transducer. the output signal; decompose the second driving current and the second driving voltage from the output signal.
  • the second driving current and the second driving voltage are obtained through any one of two detection mechanisms.
  • the first detection mechanism is time-sharing detection, that is, the second driving signal is separately applied to the ultrasonic transducer as the detection signal, and after the detection is completed, the second driving current and the second driving voltage output by the ultrasonic transducer are obtained.
  • the first driving signal is input to the ultrasonic transducer to drive the ultrasonic transducer to work.
  • the detection signal is I g2 and the first driving signal is I g1 . Apply Ig2 alone to the ultrasonic transducer, and at the end of the detection, the second driving current and the second driving voltage output by the ultrasonic transducer are obtained. Stop the static capacitance detection of the ultrasonic transducer and input I g1 to the ultrasonic transducer.
  • the second detection mechanism is real-time detection, that is, during normal operation, the first driving signal and the second driving signal are input at the same time, the output signal of the ultrasonic transducer is obtained, and the second driving current and the second driving voltage are decomposed from the output signal.
  • the detection signal is I g2 and the first driving signal is I g1 .
  • I g2 and I g1 are superimposed and then input into the ultrasonic transducer.
  • the implementation process is shown in Figure 4.
  • DDS stands for direct digital frequency synthesizer.
  • DDS1 represents one of the DDS
  • DDS2 represents the other DDS.
  • the host 11 is provided with an FPGA chip 402, and the FPGA chip 402 is provided with DDS1 and DDS2.
  • DDS1 generates the I g1 signal
  • DDS2 generates the I g2 signal.
  • the FPGA chip 402 accumulates the I g1 signal and the I g2 signal through an accumulator, and then inputs the AMP (power amplifier) 406 through the DAC (digital-to-analog converter) 404, and then The amplified signal is input to the ultrasonic transducer, the analog signal is output through the Output module 408, and converted through the ADC (analog-to-digital converter) 410 to obtain the output signal of the ultrasonic transducer. Furthermore, the second driving current and the second driving voltage are decomposed from the output signal through the fast Fourier transform (FFT) module in the FPGA chip 402 .
  • FFT fast Fourier transform
  • the static capacitance can be obtained by any one of the above-mentioned first detection method and the second detection method. Because the static capacitance C 0 changes dynamically during actual operation, the second detection method has good real-time performance and does not affect the normal cutting work of the ultrasound to surgical device.
  • S206 Adjust the first driving signal according to the first driving current, the first driving voltage, the first driving frequency and the static capacitance, so as to control the dynamic branch current by adjusting the first driving signal.
  • the first drive signal is adjusted based on the first drive current, the first drive voltage, the first drive frequency, and the static capacitance to obtain an adjusted first drive signal. Furthermore, the adjusted first driving signal is input to the ultrasonic transducer.
  • the circuit module 106 shown in Figure 6 is an equivalent circuit model of the ultrasonic transducer.
  • the circuit module 106 is an equivalent circuit module of the ultrasonic transducer 12 .
  • C 0 in the circuit module 106 is a static capacitor, and the current flowing through it is I 0 .
  • Resistor R1, capacitor C1, and inductor L1 form the dynamic branch of the ultrasonic transducer, and the current flowing through it is Im . It can be seen from this that the first driving voltage of the first driving signal is V g1 and the first driving current is I g1 .
  • I m and I g1 There is a correlation between I m and I g1 , that is:
  • the dynamic branch current I m is decoupled and controlled. Based on the relationship between the first driving current I g1 and the dynamic branch current I m , the dynamic branch current of the ultrasonic transducer is controlled by controlling the first driving signal. path current.
  • the first phase difference refers to the phase difference between the first driving current and the first driving voltage in the first driving signal.
  • the estimated second phase difference is determined through an estimation method, specifically based on the first driving current, the first driving voltage, the first driving frequency and the static capacitance. The estimate is confirmed.
  • the first driving signal can be adjusted. It may be that the frequency of the first driving signal is adjusted based on the first phase difference and the estimated second phase difference, and then the adjusted first driving signal is input into the ultrasonic transducer, by adjusting the first driving signal. Control of dynamic branch currents in ultrasound transducers.
  • the above-mentioned obtaining the estimated second phase difference of the ultrasonic transducer includes: obtaining the first product of the first driving voltage, the first driving frequency and the static capacitance; obtaining the first product and the first driving current. Ratio; obtain the estimated second phase difference based on the ratio.
  • the first driving current is I g1 and the first driving voltage is V g1 .
  • the first driving frequency is ⁇
  • the static capacitance is Co.
  • the estimated second phase difference is ⁇ .
  • is determined by I g1 , V g1 , ⁇ and Co as follows:
  • Vg1
  • Ig1
  • the current phase difference control implementation block diagram of the dynamic branch is shown.
  • the voltage V g1 and current I g1 of the Output module 110 are transmitted to the ADC module 113 to implement analog-to-digital sampling conversion, and then calculate ⁇ * and ⁇ .
  • ⁇ * is the phase difference between the feedback voltage V g1 and the current I g1 , that is, the above-mentioned first phase difference.
  • the error result is output to the PID controller 122.
  • the PID controller 122 outputs the frequency adjustment signal to the DDS module 116.
  • the DDS module 116 generates the adjusted first driving signal, and finally outputs it to the AMP module 103 through the DAC module 120 to achieve output amplification. Then output, thereby realizing the phase difference closed-loop control of the dynamic branch of the ultrasonic transducer.
  • the above-mentioned adjustment of the driving signal based on the first phase difference and the estimated second phase difference includes: obtaining the set amplitude of the dynamic branch; obtaining the current amplitude of the dynamic branch, the current amplitude It is determined by the first driving current and the estimated second phase difference; the first driving signal is adjusted according to the first phase difference, the estimated second phase difference, the set amplitude and the current amplitude.
  • the set amplitude of the dynamic branch of the ultrasonic transducer is pre-configured, and the current amplitude of the dynamic branch is determined in real time based on the first driving current and the estimated second phase difference. Furthermore, the first driving signal is adjusted according to the first phase difference, the estimated second phase difference, the set amplitude, and the current amplitude. It may be that the frequency of the first driving signal is adjusted based on the first phase difference and the estimated second phase difference, and the current amplitude of the first driving signal is adjusted based on the set amplitude of the dynamic branch and the current amplitude of the dynamic branch. . Therefore, the frequency and amplitude of the first driving signal can be adjusted simultaneously, thereby improving the accuracy of dynamic branch current adjustment.
  • obtaining the current amplitude of the dynamic branch includes: obtaining the cosine value of the estimated second phase difference; obtaining the second product of the cosine value and the first driving current, and the second product is the cosine value of the dynamic branch. current amplitude.
  • the above-mentioned adjustment of the first driving signal based on the first phase difference, the estimated second phase difference, the set amplitude, and the current amplitude includes: based on the first phase difference and the estimated second phase difference.
  • the phase difference determines the first error value; the frequency of the first driving signal is adjusted according to the first error value; the second error value is determined according to the current amplitude and the set amplitude; and the amplitude of the first driving signal is adjusted according to the second error value.
  • the first error value is ⁇ * - ⁇ .
  • the second error value is determined according to the current amplitude and the set amplitude.
  • the current amplitude is Im_f
  • the set amplitude is Im_set
  • the second error value is the difference between Im_set and Im_f.
  • Adjusting the amplitude of the first driving signal according to the second error value may be: adjusting the amplitude of the first driving signal to control the difference between Im_set and Im_f to tend to zero.
  • the current amplitude control implementation block diagram of the dynamic branch is shown.
  • the voltage V g1 and current I g1 of the Output (output) module 110 are converted from analog to digital sampling through the ADC module 113 , and ⁇ * and ⁇ are calculated in the control module 124 .
  • the current feedback value Im_f of the dynamic branch is obtained, and the error value between the set amplitude Im_set and the current feedback value Im_f is calculated.
  • the error value is fed back to PID controller 122.
  • the amplitude adjustment signal is output.
  • the amplitude adjustment signal is used to instruct the DDS module 116 to adjust the amplitude of the first driving signal, output the adjusted first driving signal to the AMP module 103 for amplification, and then input it into the ultrasonic transducer.
  • the step further includes: adjusting the first drive signal through a proportional resonance controller.
  • the first drive signal is used to perform waveform distortion compensation control; wherein, the transfer function of the proportional resonance controller is based on the resonance frequency and cutoff frequency settings of the ultrasonic transducer.
  • Waveform distortion compensation control can solve the problems of output current distortion caused by multiple factors in the power amplifier circuit, which can lead to high-frequency abnormal noise of the ultrasonic transducer, reduced frequency locking ability, and instability of output energy control.
  • the proportional resonance controller in this embodiment can be a more adaptable PR (proportional resonance) controller proposed on the basis of the traditional proportional resonance controller, that is, a quasi-PR controller.
  • the quasi-PR controller can realize ultrasonic It outputs a high gain with a certain frequency (for example, 55kHz) as the center frequency and a certain frequency bandwidth, while attenuating other signals far away from the center frequency. As shown in Figure 10, the Bode plot of the quasi-PR controller.
  • the transfer function of the quasi-PR controller is:
  • K p is the proportional coefficient of the quasi-PR controller
  • K r is the integral coefficient of the quasi-PR controller
  • ⁇ 0 corresponds to the resonant frequency
  • ⁇ c corresponds to the cut-off frequency
  • the output current waveform control block diagram is shown in Figure 11.
  • the DDS IP module 1102 generates the resonant frequency, the sine wave I_ref corresponding to the resonant frequency, and the sine wave I_ref is used as the reference current setting.
  • the DDS IP module 1102 is generated by the FPGA internal IP core or the internal RAM table lookup, or it can be generated by external DDS hardware Chip implementation.
  • the ADC module 113 collects the current waveform of the Output module 110 and converts it into a digital signal of the output current Ig_s; the error signal of the sine wave I_ref and the output current Ig_s is output to the quasi-PR (proportional resonance controller) 1108, and then implemented by the DAC module 120
  • the driving signal is output to the AMP (power amplifier) module 103 to form a closed-loop adjustment process for real-time control of the output current waveform.
  • a quasi-PR proportional resonant controller is used to achieve real-time current waveform control.
  • the ultrasonic surgical system includes a host 11, an ultrasonic transducer 12 and an ultrasonic surgical instrument 13; the host 11 is used to obtain the first driving signal input to the ultrasonic transducer 12, and the first The driving signal includes the first driving current, the first driving voltage, and the first driving frequency.
  • the static capacitance of the ultrasonic transducer 12 is obtained.
  • the first driving signal is determined according to the first driving current, the first driving voltage, the first driving frequency, and the static capacitance.
  • the signal is adjusted; the host 11 is also used to output an adjusted first drive signal to the ultrasonic transducer 12, so as to control the dynamic branch current of the ultrasonic transducer 12 through the adjusted first drive signal; ultrasonic transducer
  • the device 12 is used to convert the adjusted electrical energy of the first driving signal into mechanical energy, and output the mechanical energy to the ultrasonic surgical instrument 13 .
  • the host 11 mainly includes an AC input (AC Line) module 100, an AC/DC (alternating current to direct current power supply) module 101, a DC/DC (direct current converter) module 102, an AMP (power amplifier) module 103, a transformer 104, and an output voltage and current It is composed of sampling network 105 and control system 121.
  • AC input AC Line
  • AC/DC alternating current to direct current power supply
  • DC/DC direct current converter
  • AMP power amplifier
  • the AC/DC module 101 outputs a DC voltage to provide system operation, and at the same time generates an auxiliary power supply for system operation through the auxiliary power supply 107 .
  • the DSP module 111 controls the DC/DC module 102 to output the required voltage value by sampling the voltage feedback value of the AMP module 103; the topology of the DC/DC module 102 can be buck (buck DC-DC definition "buck” or "buck" Traditional DC/DC converters such as "voltage type” switch-mode voltage regulator (the output voltage is lower than the input voltage), full-bridge, push-pull, etc.
  • the DSP module 111 may be a DSP or a microcontroller such as an AMR or MCU.
  • the DSP module 111 and the UI module generate human-computer interaction to complete mode or parameter settings.
  • the FPGA module 112 controls the LS-DAC (Low Speed Autonomous Access Control) module 108 to generate and output a set current amplitude, and generate and output a bias voltage for the AMP module 103 to operate.
  • the FPGA module 111 controls the HS-DAC (High Speed Autonomous Access Control) module 109 to generate a driving signal with an ultrasonic vibration frequency (for example, 55kHZ).
  • the FPGA module 112 may be a programmable logic device, such as a CPLD or FPGA. After the AMP module 103 performs power amplification, it outputs the amplified power to the transformer 104 to achieve voltage change and electrical isolation.
  • the output voltage and current are isolated and transmitted through the first isolation transmission 114 and the second isolation transmission 115 respectively, thereby realizing isolated signal transmission on the patient side during the operation process.
  • the isolated transmission module can be a transformer or an isolated operational amplifier chip.
  • the isolated output voltage signal and current signal are input to the high-speed ADC module 113, and the FPGA module 112 completes the digital sampling conversion of the output voltage signal and current signal.
  • the ultrasonic surgery system and the dynamic branch current control method of the ultrasonic transducer of the present application do not need to set up a matching inductor, and adopt a decoupling control method of the dynamic branch current to realize the dynamic branch current.
  • Precise control greatly improves the consistency and stability of surgical results; at the same time, the distortion compensation control of the output current waveform allows the ultrasonic transducer to work under approximately pure sinusoidal excitation, improving the working efficiency of the ultrasonic transducer and ensuring output Energy stability.
  • steps in the flowchart are shown in sequence as indicated by arrows, these steps are not necessarily executed in the order indicated by arrows. Unless explicitly stated in this article, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in the flow chart may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. The execution of these sub-steps or stages The sequence is not necessarily sequential, but may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of the stages.
  • a device for controlling dynamic branch current of an ultrasonic transducer including: a first acquisition module 1402, a second acquisition module 1404, and an adjustment module 1406.
  • the first acquisition module 1402 is used to acquire the first drive signal input to the ultrasonic transducer.
  • the first drive signal includes the first drive current, the first drive voltage, and the first drive frequency;
  • the second acquisition module 1404 is used to acquire The static capacitance of the ultrasonic transducer;
  • the adjustment module 1406 is used to adjust the first driving signal according to the first driving current and the first driving voltage, the first driving frequency and the static capacitance, so as to adjust the first driving signal by adjusting the first driving signal.
  • Dynamic branch current control is used to adjust the first driving signal according to the first driving current and the first driving voltage, the first driving frequency and the static capacitance
  • adjusting the first driving signal according to the first driving current and the first driving voltage, the first driving frequency and the static capacitance includes: obtaining a first phase difference between the first driving current and the first driving voltage. ; Obtain the estimated second phase difference of the ultrasonic transducer, the estimated second phase difference is determined by the first driving current, the first driving voltage, the first driving frequency and the static capacitance; Based on the first phase difference and the estimated The second phase difference adjusts the first driving signal.
  • obtaining the estimated second phase difference of the ultrasonic transducer includes: obtaining the first product of the first driving voltage, the first driving frequency and the static capacitance; obtaining the first product and the first driving current The ratio of; obtain the estimated second phase difference based on the ratio.
  • adjusting the first driving signal based on the first phase difference and the estimated second phase difference includes: obtaining the set amplitude of the dynamic branch: obtaining the current amplitude of the dynamic branch, the current The amplitude is determined by the first drive current and the estimated second phase difference; the first drive signal is adjusted according to the first phase difference, the estimated second phase difference, the set amplitude and the current amplitude.
  • obtaining the current amplitude of the dynamic branch includes: obtaining the cosine value of the estimated second phase difference; obtaining the second product of the cosine value and the first driving current, and the second product is the dynamic branch the current amplitude.
  • adjusting the first driving signal according to the first phase difference, the estimated second phase difference, the set amplitude, and the current amplitude includes: adjusting the first phase difference and the estimated second phase difference according to the first phase difference and the estimated second phase difference.
  • the phase difference determines the first error value; the frequency of the first driving signal is adjusted according to the first error value; the second error value is determined according to the current amplitude and the set amplitude; and the amplitude of the first driving signal is adjusted according to the second error value.
  • the first driving signal is modified according to the first phase difference, the estimated second phase difference, the set amplitude, and the current amplitude.
  • the adjustment step also includes: performing waveform distortion compensation control on the adjusted first drive signal through a proportional resonance controller; wherein the transfer function of the proportional resonance controller is based on the resonance frequency and cutoff frequency setting of the ultrasonic transducer. .
  • obtaining the static capacitance of the ultrasonic transducer includes: obtaining the second driving current and the second driving voltage output by the ultrasonic transducer when the second driving signal is input to the ultrasonic transducer, wherein the second The second driving frequency of the driving signal is smaller than or larger than the resonant frequency of the ultrasonic transducer; the static capacitance is determined according to the second driving current, the second driving voltage and the second driving frequency.
  • obtaining the second driving current and the second driving voltage output by the ultrasonic transducer when the second driving signal is input to the ultrasonic transducer includes: before inputting the first driving signal to the ultrasonic transducer, Input the second driving signal to the ultrasonic transducer to obtain the second driving current and the second driving voltage output by the ultrasonic transducer; or input the second driving signal and the first driving signal to the ultrasonic transducer to obtain the ultrasonic transducer The output signal of the device; decompose the second driving current and the second driving voltage from the output signal.
  • obtaining the static capacitance of the ultrasonic transducer includes: obtaining the test results of the frequency sweep test obtained when the third driving signal is input to the ultrasonic transducer; obtaining the admittance circle based on the test results; The circle obtains the maximum susceptance value and the minimum susceptance value, and obtains the first frequency corresponding to the maximum susceptance value and the second frequency corresponding to the minimum susceptance value; according to the maximum susceptance value, the first frequency, the minimum susceptance value and the Get the static capacitance at the second frequency.
  • Each module in the above-mentioned dynamic branch current control device of an ultrasonic transducer can be implemented in whole or in part by software, hardware, and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a computer device which may be a host of an ultrasound surgical system.
  • the host is provided with a processor, a non-volatile storage medium, an internal memory, a network interface and an input device.
  • the computer-readable instructions in the computer-readable storage medium of the non-volatile storage medium are executed by the processor, the host implements a method of controlling the dynamic branch current of the ultrasonic transducer of the present application.
  • Figure 15 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied.
  • Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • a computer device including a memory, a processor, and computer-readable instructions stored in the memory and executable on the processor.
  • the processor executes the computer-readable instructions, it implements the following steps: Obtaining input The first driving signal to the ultrasonic transducer, the first driving signal includes the first driving current, the first driving voltage, and the first driving frequency; obtaining the static capacitance of the ultrasonic transducer; according to the first driving current and the first driving voltage , the first driving frequency and the static capacitance are used to adjust the first driving signal to control the dynamic branch current by adjusting the first driving signal.
  • the processor executes computer-readable instructions to implement the above steps of adjusting the first driving signal according to the first driving current, the first driving voltage, the first driving frequency, and the static capacitance
  • the following steps are specifically implemented: : Obtain the first phase difference between the first driving current and the first driving voltage; obtain the estimated second phase difference of the ultrasonic transducer, and the estimated second phase difference is determined by the first driving current, the first driving voltage, and the first driving voltage. A driving frequency and static capacitance are determined; the first driving signal is adjusted based on the first phase difference and the estimated second phase difference.
  • the processor executes computer-readable instructions to implement the above-mentioned step of obtaining the estimated second phase difference of the ultrasonic transducer
  • the following steps are specifically implemented: obtaining the first driving voltage, the first driving frequency, and The first product of the static capacitance; obtain the ratio of the first product to the first driving current; obtain the estimated second phase difference based on the ratio.
  • the processor executes computer-readable instructions to implement the above-mentioned step of adjusting the first driving signal based on the first phase difference and the estimated second phase difference
  • the following steps are specifically implemented: Obtaining the dynamic branch
  • the current amplitude is determined by the first drive current and the estimated second phase difference; the first drive signal is calculated according to the first phase difference, the estimated second phase difference, the set amplitude and the current amplitude. Make adjustments.
  • the processor when the processor executes computer-readable instructions to implement the above step of obtaining the current amplitude of the dynamic branch, the following steps are specifically implemented: obtain the cosine value of the estimated second phase difference; obtain the cosine value and The second product of the first drive current, the second product being the current amplitude of the dynamic branch.
  • the processor executes computer-readable instructions to implement the above-mentioned steps of adjusting the first driving signal according to the first phase difference, the estimated second phase difference, the set amplitude, and the current amplitude
  • the following steps are implemented: determine the first error value based on the first phase difference and the estimated second phase difference; adjust the frequency of the first driving signal based on the first error value; determine the second error based on the current amplitude and the set amplitude. value; adjust the amplitude of the first driving signal according to the second error value.
  • the processor when the processor executes the computer-readable instructions, the following steps are also implemented: using the proportional resonance controller to perform waveform distortion compensation control on the adjusted first driving signal; wherein the transfer function of the proportional resonance controller is based on Resonant frequency and cutoff frequency settings of the ultrasonic transducer.
  • the processor executes computer-readable instructions to implement the above-mentioned step of obtaining the static capacitance of the ultrasonic transducer
  • the following steps are specifically implemented: obtaining the ultrasonic transducer when the second driving signal is input to the ultrasonic transducer.
  • the specific implementation is The following steps: before inputting the first driving signal to the ultrasonic transducer, input the second driving signal to the ultrasonic transducer to obtain the second driving current and the second driving voltage output by the ultrasonic transducer; or, convert the second driving signal to the ultrasonic transducer.
  • the signal and the first driving signal are input into the ultrasonic transducer to obtain the output signal of the ultrasonic transducer; the second driving current and the second driving voltage are decomposed from the output signal.
  • the processor executes computer-readable instructions to implement the above-mentioned step of obtaining the static capacitance of the ultrasonic transducer
  • the following steps are specifically implemented: obtaining the frequency sweep obtained when the third driving signal is input to the ultrasonic transducer.
  • the test results of the test the admittance circle is obtained based on the test results; the maximum susceptance value and the minimum susceptance value are obtained from the admittance circle, and the first frequency corresponding to the maximum susceptance value and the second frequency corresponding to the minimum susceptance value are obtained;
  • a computer-readable storage medium is provided with computer-readable instructions stored thereon.
  • the computer-readable instructions When executed by a processor, the computer-readable instructions implement the following steps: obtaining a first driving signal input to an ultrasonic transducer.
  • the first driving signal includes the first driving current, the first driving voltage, and the first driving frequency; obtaining the static capacitance of the ultrasonic transducer; and calculating the first driving current, the first driving voltage, the first driving frequency, and the static capacitance.
  • a driving signal is adjusted to control the dynamic branch current by adjusting the first driving signal.
  • the following steps are specifically implemented: obtaining the first driving voltage and the first driving frequency. and the first product of the static capacitance; obtain the ratio of the first product to the first driving current; obtain the estimated second phase difference according to the ratio.
  • the following steps are specifically implemented: Obtain the dynamic support
  • the current amplitude of the circuit is determined by the first drive current and the estimated second phase difference; the first drive current is determined based on the first phase difference, the estimated second phase difference, the set amplitude, and the current amplitude.
  • the signal is adjusted.
  • the following steps are specifically implemented: obtain the cosine value of the estimated second phase difference; obtain the cosine value and the second product of the first drive current, the second product is the current amplitude of the dynamic branch.
  • the computer readable instructions when executed by the processor to implement the above steps of adjusting the first driving signal according to the first phase difference, the estimated second phase difference, the set amplitude, and the current amplitude. , specifically implement the following steps: determine the first error value based on the first phase difference and the estimated second phase difference; adjust the frequency of the first driving signal based on the first error value; determine the second error value based on the current amplitude and the set amplitude. Error value; adjust the amplitude of the first driving signal according to the second error value.
  • the following steps are also implemented: performing waveform distortion compensation control on the adjusted first driving signal through a proportional resonance controller; wherein, the transfer function of the proportional resonance controller Based on the resonant frequency and cutoff frequency settings of the ultrasonic transducer.
  • the following steps are specifically implemented: obtaining the ultrasonic transduction when the second driving signal is input to the ultrasonic transducer.
  • the computer readable instructions when executed by the processor to implement the above steps of obtaining the second driving current and the second driving voltage output by the ultrasonic transducer when the second driving signal is input to the ultrasonic transducer, specifically Implement the following steps: before inputting the first driving signal to the ultrasonic transducer, input the second driving signal to the ultrasonic transducer to obtain the second driving current and the second driving voltage output by the ultrasonic transducer; or, convert the second driving signal to the ultrasonic transducer.
  • the driving signal and the first driving signal are input into the ultrasonic transducer to obtain the output signal of the ultrasonic transducer; the second driving current and the second driving voltage are decomposed from the output signal.
  • the following steps are specifically implemented: obtaining the scan obtained when the third driving signal is input to the ultrasonic transducer.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Dentistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

本申请涉及一种超声换能器的动态支路电流的控制方法、装置、超声波手术系统、计算机设备和存储介质,所述方法包括:获取输入到超声换能器的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率;获取超声换能器的静态电容;根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,以通过调整第一驱动信号的方式对动态支路电流进行控制。上述方法无需使用匹配电感器即可实现超声换能器的动态支路电流的精确控制,提高了应用包含超声换能器的超声波手术系统的手术效果一致性和稳定性。

Description

超声换能器的动态支路电流的控制方法及超声波手术系统
相关申请的交叉引用
本申请要求于2022年07月25日提交中国专利局,申请号为202210875076.3,申请名称为“超声换能器的动态支路电流的控制方法及超声波手术系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及外科医疗器械技术领域,特别是涉及一种超声换能器的动态支路电流的控制方法、装置、超声波手术系统、计算机设备和存储介质。
背景技术
当前超声外科装置,如超声切割止血刀,通过超声换能器将电能转换为高频机械振动,完成软组织的切割,同时实现手术过程中的止血或凝固,对比传统电外科,超声换能器具有温度低、焦痂少、热损伤低并且无电气直接连接、无漏电等优点,因而被广泛使用在外科手术中。
超声外科系统主要是由带超声换能器的手柄、具有端部执行器完成切割和密封组织的器械、能量发生器(主机)以及脚踏激发开关等构成。其中超声换能器的等效电路模型,可以包括带有静态电容的第一支路,以及具有电容、电感、电阻三者相串联的第二支路,该第二支路具有电机械特性且第二支路也可称为“动态支路”。超声换能器的等效电路模型中,第一支路和第二支路在电路上为并联关系。目前的能量发生器可包括匹配电感器,该电感器的作用是,使得在超声换能器第二支路的串联谐振频率下,第一支路的静态电容和能量发生器内的匹配电感实现并联谐振,从而使得能量发生器的输出电流全部流入到第二支路。
目前能量发生器的匹配电感器需要在第二支路的串联谐振频率下实现与第一支路的静态电容实现并联谐振,但超声换能器实际工作时,第二支路的串联谐振频率是在动态变化的,其变化范围最大可能是2kHz;而第一支路的静态电容,因为温度的变化以及反复使用老化的影响,其电容值也不是固定的。此外,匹配电感器,在实际工程中电感误差范围是±5%;这样如上三个变化的因素,会导致匹配电感器在实际使用中,在谐振频率下无法达到真正的并联谐振。其带来的结果是:动态支路的电流幅值小于能量发生器的控制输出的电流幅值,并且该电流幅值的偏差不是固定的,无法预测和补偿;临床表现上是,超声外科系统切割变慢无法正常分离组织或者凝闭效果不佳,影响手术效果。
发明内容
基于此,有必要针对上述技术问题,提供一种超声换能器的动态支路电流的控制方法、装置、超声波手术系统、计算机设备和存储介质,无需使用匹配电感器即可实现超声换能器的动态支路电流的精确控制,提高了应用包含超声换能器的超声波手术系统的手术效果一致性和稳定性。
一种超声换能器的动态支路电流的控制方法,包括:获取输入到超声换能器的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率;获取超声换能器的静态电容;根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,以通过调整第一驱动信号的方式对动态支路电流进行控制。
在其中一个实施例中,根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整的步骤,包括:获取第一驱动电流和第一驱动电压的第一相位差;获取超声换能器的预估的第二相位差,预估的第二相位差通过第一驱动电流、第一驱动电压、第一驱动频率以及静态电容确定;基于 第一相位差和预估的第二相位差对第一驱动信号进行调整。
在其中一个实施例中,获取超声换能器的预估的第二相位差的步骤,包括:获取第一驱动电压、第一驱动频率以及静态电容的第一乘积;获取第一乘积与第一驱动电流的比值;根据比值获取预估的第二相位差。
在其中一个实施例中,基于第一相位差和预估的第二相位差对第一驱动信号进行调整的步骤,包括:获取动态支路的设定幅值;获取动态支路的电流幅值,电流幅值通过第一驱动电流和预估的第二相位差确定;根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整。
在其中一个实施例中,获取动态支路的电流幅值的步骤,包括:获取预估的第二相位差的余弦值;获取余弦值与第一驱动电流的第二乘积,第二乘积为动态支路的电流幅值。
在其中一个实施例中,根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整的步骤,包括:根据第一相位差和预估的第二相位差确定第一误差值;根据第一误差值调整第一驱动信号的频率;根据电流幅值和设定幅值确定第二误差值;根据第二误差值调整第一驱动信号的幅值。
在其中一个实施例中,根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整的步骤之后,还包括:通过比例谐振控制器对调整后的第一驱动信号进行波形的失真补偿控制;其中,比例谐振控制器的传递函数基于超声换能器的谐振频率以及截止频率设置。
在其中一个实施例中,获取超声换能器的静态电容的步骤,包括:获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压,其中,第二驱动信号的第二驱动频率小于或大于超声换能器的谐振频率;根据第二驱动电流、第二驱动电压和第二驱动频率确定静态电容。
在其中一个实施例中,获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压的步骤,包括:在向超声换能器输入第一驱动信号之前,向超声换能器输入第二驱动信号,获取超声换能器输出的第二驱动电流和第二驱动电压;或,将第二驱动信号和第一驱动信号输入超声换能器,获取超声换能器的输出信号;从输出信号中分解出第二驱动电流和第二驱动电压。
在其中一个实施例中,获取超声换能器的静态电容的步骤,包括:获取输入第三驱动信号到超声换能器时得到的扫频测试的测试结果;基于测试结果得到导纳圆;从导纳圆获取最大电纳值以及最小电纳值,并获取最大电纳值对应的第一频率以及最小电纳值对应的第二频率;根据最大电纳值、第一频率、最小电纳值以及第二频率获取静态电容。
一种超声换能器的动态支路电流的控制装置,包括:第一获取模块,用于获取输入到超声换能器的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率;第二获取模块,用于获取超声换能器的静态电容;调整模块,用于根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,以通过调整第一驱动信号的方式对动态支路电流进行控制。
一种超声波手术系统,其特征在于,超声波手术系统包括主机、超声换能器和超声手术器械;主机用于获取输入到超声换能器的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率,获取超声换能器的静态电容,根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整;主机还用于向超声换能器输出调整后的第一驱动信号,以通过调整后的第一驱动信号对超声换能器的动态支路电流进行控制;超声换能器用于将调整后的第一驱动信号的电能转换为机械能,并向超声手术器械输出机械能。
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机可读指令,处理器执行计算机可读指令时实现上述任一实施例方法的步骤。
一种计算机可读存储介质,其上存储有计算机可读指令,计算机可读指令被处理器执行时实现上述任一实施例方法的步骤。
上述超声换能器的动态支路电流的控制方法、装置、超声波手术系统、计算机设备和存储介质,获取输入到超声换能器的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率,获 取超声换能器的静态电容,根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,以通过调整第一驱动信号的方式对动态支路电流进行控制。因此,能够基于第一驱动电流和第一驱动电压、第一驱动频率以及超声换能器的静态电容对第一驱动信号进行调整,从而控制超声换能器的动态支路电流,实现的过程无需使用匹配电感器,即可实现超声换能器的动态支路电流的精确控制,提高了应用包含超声换能器的超声波手术系统的手术效果一致性和稳定性。
附图说明
图1为一个实施例中一种超声换能器的动态支路电流的控制方法的应用环境图;
图2为一个实施例中一种超声换能器的动态支路电流的控制方法的流程示意图;
图3为一个实施例中导纳圆的示意图;
图4为一个实施例中静态电容的实时检测的实现框图;
图5为一个实施例中静态电容的实时检测的流程示意图;
图6为一个实施例中超声换能器的等效电路模型的示意图;
图7为一个实施例中动态支路的电流相位差控制实现框图;
图8为一个实施例中Im和Ig1以及I0的向量图;
图9为一个实施例中动态支路的电流幅值控制实现框图;
图10为一个实施例中准PR控制器的波特图;
图11为一个实施例中超声换能器的输出电流波形控制框图;
图12为一个实施例中超声波手术系统的结构框图;
图13为一个实施例中主机11的系统功能中各个模块的示意图;
图14为一个实施例中一种超声换能器的动态支路电流的控制装置的结构框图;
图15为一个实施例中主机的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的一种超声换能器的动态支路电流的控制方法,可以应用于如图1所示的应用环境中。如图1所示,主机11与超声换能器12连接。主机11向超声换能器12输出第一驱动信号,以驱动超声换能器12振动。超声换能器12将主机11输出的第一驱动信号的电能转换成振动的机械能,并将振动的机械能传递到超声手术器械13。其中,主机11用于实现本申请的一种超声换能器的动态支路电流的控制方法。具体地,主机11获取输入到超声换能器12的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率,并且获取超声换能器的静态电容,根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,向超声换能器12输出调整后的第一驱动信号,以通过调整第一驱动信号的方式对超声换能器12的动态支路电流进行控制。此外,超声换能器12将调整后的第一驱动信号的电能转换成振动的机械能,并将振动的机械能传递到超声手术器械13。因此,主机11实现了对输入到超声换能器12的动态支路电流进行控制。
在一个实施例中,如图2所示,提供了一种超声换能器的动态支路电流的控制方法,以该方法应用于图1中的主机11为例进行说明,包括以下步骤:
S202,获取输入到超声换能器的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率。
本实施例中,第一驱动信号用于驱动超声换能器,以使得超声换能器将第一驱动信号的电能转换为振动的机械能,并将振动的机械能传递到超声手术器械。具体地,第一驱动信号包括第一驱动电流、第一驱 动电压和第一驱动频率。当超声换能器输入第一驱动信号时,超声换能器的动态支路发生谐振,获得振动的机械能,从而将振动的机械能传递到超声手术器械。
S204,获取超声换能器的静态电容。
本实施例中,预先采集得到超声换能器的静态电容,具体可以通过第一种检测方法和第二种检测方法的任一种检测方法获得静态电容。其中,第一种检测方法为:基于超声换能器的扫描频率的导纳圆检测得到静态电容。第二种检测方法为:向超声换能器输入远低于或远高于超声换能器的谐振频率的探测信号,通过输出的电压和电流获得静态电容。可以通过这两种方式中的任一种确定超声换能器的静态电容。以下分别对第一种检测方法和第二种检测方法进行说明:
采用第一种检测方法获得超声换能器的静态电容,即上述获取超声换能器的静态电容,包括:获取输入第三驱动信号到超声换能器时得到的扫频测试的测试结果,基于测试结果得到导纳圆,从导纳圆获取最大电纳值以及最小电纳值,并获取最大电纳值对应的第一频率以及最小电纳值对应的第二频率,根据最大电纳值、第一频率、最小电纳值以及第二频率获取静态电容。
具体地,向超声换能器输入第三驱动信号,以对超声换能器进行频率扫描,得到扫频测试的测试结果。基于扫频测试的测试结果,得到如图3所示的导纳圆。由导纳圆特性可知,谐振角频率ωp的计算公式如下:
其中,如图3所示,导纳圆的直径D与A点、B点的电纳值存在如下关系:
静态电容C0与A点、B点的参数关系如下:

本超声切割止血刀系统中,如图3所示,A点和B点分别对应的频率f1和频率f2及电纳值BA和电纳值BB。通过对手柄进行扫频测试得到f1和f2以及BA和BB,根据这些参数计算出静态电容C0的值。其中,BA表示上述最大电纳值,f1表示上述第一频率,BB表示上述最小电纳值,f2表示上述第二频率。
在输入第一驱动信号到超声换能器之前,即在采用超声换能器驱动超声手术器械以实现超声外科手术之前,对超声换能器进行频率扫描,基于扫频测试的测试结果计算超声换能器的静态电容,实现了实时使用时计算超声换能器的静态电容,避免了因为温度变化或反复使用超声换能器老化引起的静态电容的电容值的改变带来影响。采用第二种检测方法获得超声换能器的静态电容,即上述获取超声换能器的静态电容,包括:获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压,其 中,第二驱动信号的第二驱动频率小于或大于超声换能器的谐振频率;根据第二驱动电流、第二驱动电压和第二驱动信号的第二驱动频率确定静态电容。
具体地,当超声波换能器以远低于或高于内部固有的谐振频率工作时,超声换能器的电学特性相当于一个电容器,此电容器近似为静态电容C0。静态电容C0主要决定于传感器材料的几何尺寸和电极面积,近似为常数。根据这一电学特性,对超声换能器施加一远低于谐振频率的某一电流幅值的探测信号,通过检测输出电压和输出电流,即可计算静态电容C0,计算方式如下:
也即是,可以是,上述第二驱动信号的第二驱动频率为远低于超声换能器的谐振频率或远高于超声换能器的谐振频率,第二驱动信号为某一电流幅值的探测信号。第二驱动电流为上述公式中的输出电流Ig2,第二驱动电压为上述公式中的输出电压Vg2,第二驱动频率对应的角频率为上述公式中ω2
在输入第一驱动信号到超声换能器之前,即在采用超声换能器驱动超声手术器械以实现超声外科手术之前,对超声换能器施加一远低于谐振频率的某一电流幅值的探测信号,通过检测输出电压和输出电流计算静态电容实现了实时使用时计算超声换能器的静态电容,避免了因为温度变化或反复使用超声换能器老化引起的静态电容的电容值的改变带来影响。此外,与第一种检测方法相比,第二种检测方法操作相对简单,处理流程相对简易,能够快速获得静态电容的电容值。
在一示例中,上述获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压,包括:在向超声换能器输入第一驱动信号之前,向超声换能器输入第二驱动信号,获取超声换能器输出的第二驱动电流和第二驱动电压;或,将第二驱动信号和第一驱动信号输入超声换能器,获取超声换能器的输出信号;从输出信号中分解出第二驱动电流和第二驱动电压。
具体地,通过两种探测机制中的任一种方式获取第二驱动电流和第二驱动电压。其中,探测机制一为分时检测,即:将第二驱动信号作为探测信号单独施加到超声换能器上,检测结束后获取超声换能器输出的第二驱动电流和第二驱动电压。进而,再向超声换能器输入第一驱动信号,以驱动超声换能器工作。例如,参照上述公式,探测信号为Ig2,第一驱动信号为Ig1。将Ig2单独施加在超声换能器上,检测结束时,获得超声换能器输出的第二驱动电流和第二驱动电压。停止超声换能器的静态电容检测,向超声换能器输入Ig1
探测机制二为实时检测,即:在正常工作时,同时输入第一驱动信号和第二驱动信号,获取超声换能器的输出信号,从输出信号中分解出第二驱动电流和第二驱动电压。例如,参照上述公式,探测信号为Ig2,第一驱动信号为Ig1。将Ig2与Ig1进行叠加后输入超声换能器,其实现过程如图4所示。
如图4所示,DDS表示直接数字式频率合成器。DDS1表示其中一个DDS,DDS2表示另外一个DDS。主机11中设置有FPGA芯片402,FPGA芯片402中设置DDS1和DDS2。DDS1产生Ig1信号,DDS2产生Ig2信号,FPGA芯片402中通过累加器对Ig1信号和Ig2信号进行累加,通过DAC(数模转换器)404后输入AMP(功率放大器)406,进而将放大后的信号输入超声换能器,通过Output(输出)模块408输出模拟信号,通过ADC(模数转换器)410转换得到上述超声换能器的输出信号。进而,通过FPGA芯片402中的快速傅立叶变换(FFT)模块从输出信号中分解出第二驱动电流和第二驱动电压。具体的实时检测流程参见图5所示。其中,图5中,Ig1信号和Ig2信号累加后得到的混叠信号,混叠信号的电压为Vg,混叠信号的电流为Ig
因此,通过上述第一种检测方法和第二种检测方法中的任一种检测方法均可获得静态电容。因为实际工作时,静态电容C0是动态变化的,第二种检测方法具有实时性好,不影响超声到手术装置正常的切割工作。
S206,根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,以通过调整第一驱动信号的方式对动态支路电流进行控制。
本实施例中,基于第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,得到调整后的第一驱动信号。进而,向超声换能器输入调整后的第一驱动信号。
如图6所示的电路模块106是超声换能器的等效电路模型。其中,电路模块106为超声换能器12的等效电路模块。电路模块106中C0是静态电容,其流过的电流是I0。电阻R1、电容C1、电感L1组成超声换能器的动态支路,其流过的电流是Im。由此可知,第一驱动信号的第一驱动电压为Vg1,第一驱动电流为Ig1。Im和Ig1存在关联关系,即:
Im=|Ig1|cosθ。
因此,对动态支路电流Im进行解耦控制,基于第一驱动电流为Ig1与动态支路电流Im的关联关系,通过控制第一驱动信号的方式,控制超声换能器的动态支路电流。
在一个实施例中,上述步骤S206,根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,包括:获取第一驱动电流和第一驱动电压的第一相位差;获取超声换能器的预估的第二相位差,预估的第二相位差通过第一驱动电流、第一驱动电压、第一驱动频率以及静态电容确定;基于第一相位差和预估的第二相位差对第一驱动信号进行调整。
该实施例中,第一相位差指的是第一驱动信号中第一驱动电流和第一驱动电压的相位差。预估的第二相位差则是通过预估的方式确定,具体通过第一驱动电流、第一驱动电压、第一驱动频率以及静态电容预 估确定。通过比对第一相位差和预估的第二相位差,可对第一驱动信号进行调整。可以是,基于第一相位差和预估的第二相位差调整第一驱动信号的频率,进而将调整后的第一驱动信号输入到超声换能器中,以通过调整第一驱动信号的方式对超声换能器中的动态支路电流进行控制。
在一个示例中,上述获取超声换能器的预估的第二相位差,包括:获取第一驱动电压、第一驱动频率以及静态电容的第一乘积;获取第一乘积与第一驱动电流的比值;根据比值获取预估的第二相位差。
具体地,第一驱动电流为Ig1,第一驱动电压为Vg1。第一驱动频率为ω,静态电容为Co。预估的第二相位差为θ。其中,θ通过Ig1、Vg1、ω以及Co确定的方式如下:
假设输入到超声换能器中的Ig1和Vg1的相位差为θ,则;
Vg1=|Vg1|∠00
Ig1=|Ig1|∠θ=|Ig1|cosθ+j*|Ig1|sinθ;
结合图6可知,由Vg1以及Co可以得出:
由KCL可以得出:
Im=|Ig1|-I0=|Ig1|cosθ+j*(|Ig1|sinθ-|Vg1*ωCo|);
当动态支路谐振时,Im和Vg1相位相同,那么Im的虚部也必须为0;因此有:
|Ig1|sinθ-|Vg1*ωCo|=0;
由此可得:
如图7所示,动态支路的电流相位差控制实现框图。具体实现过程:Output(输出)模块110的电压Vg1、电流Ig1,传输到ADC模块113,实现模拟到数字的采样转换,进而计算出θ*和θ。其中,θ*是反馈的电压Vg1和电流Ig1的相位差,即上述第一相位差。在确定出误差结果,即θ*与θ的差值,再对θ*-θ进行闭环控制,使得θ*-θ=0。将误差结果输出到PID控制器122,PID控制器122输出频率调节信号到DDS模块116,通过DDS模块116产生调整后的第一驱动信号,最终通过DAC模块120输出到AMP模块103实现输出放大后再输出,进而实现超声换能器的动态支路的相位差闭环控制。
在一个实施例中,上述基于第一相位差和预估的第二相位差对驱动信号进行调整,包括:获取动态支路的设定幅值;获取动态支路的电流幅值,电流幅值通过第一驱动电流和预估的第二相位差确定;根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整。
该实施例中,超声换能器的动态支路的设定幅值预先配置,动态支路的电流幅值为基于第一驱动电流和预估的第二相位差实时确定。进而,根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整。可以是,基于第一相位差和预估的第二相位差调整第一驱动信号的频率,基于动态支路的设定幅值以及动态支路的电流幅值调整第一驱动信号的电流幅值。因此,能够同时对第一驱动信号的频率和幅值进行调整,进而提高对动态支路电流调整的准确度。
在一个示例中,上述获取动态支路的电流幅值,包括:获取预估的第二相位差的余弦值;获取余弦值与第一驱动电流的第二乘积,第二乘积为动态支路的电流幅值。
此时,Im和Ig1以及I0的向量图,如图8所示。命名θ*为实际反馈的电压Vg1和电流Ig1的相位差,及上述预估的第二相位差。则有θ*-θ=0时,动态支路实现谐振,此时动态支路的电流幅值为:
Im=|Ig1|cosθ。
在一个实施例中,上述根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整,包括:根据第一相位差和预估的第二相位差确定第一误差值;根据第一误差值调整第一驱动信号的频率;根据电流幅值和设定幅值确定第二误差值;根据第二误差值调整第一驱动信号的幅值。
该实施例中,如上实施例所述,第一误差值为θ*-θ。根据第一误差值调整第一驱动信号的频率可以是:对θ*-θ进行闭环控制,调整第一驱动信号的频率,使得θ*-θ=0,具体动态支路的电流相位差控制的实现框图如图7所示以及上述图7的解释说明。
其中,根据电流幅值和设定幅值确定第二误差值。如电流幅值为Im_f,设定幅值为Im_set,第二误差值为Im_set与Im_f的差值。根据第二误差值调整第一驱动信号的幅值可以是:调整第一驱动信号的幅值,以控制Im_set与Im_f的差值趋向于零。
具体地,如图9所示,动态支路的电流幅值控制实现框图。Output(输出)模块110的电压Vg1、电流Ig1,通过ADC模块113,实现模拟到数字的采样转换,在控制模块124内计算θ*和θ。进而根据上述公式得到动态支路的电流反馈值Im_f,计算设定幅值Im_set与电流反馈值Im_f的误差值。将误差值反馈到PID控制器122。经过PID控制器122运算后,输出幅值调节信号。幅值调节信号用于指示DDS模块116对第一驱动信号进行幅值调整,输出调整后的第一驱动信号到AMP模块103进行放大后,再输入超声换能器。
因此,通过对第一驱动信号的频率和电流幅值的调整,基于第一驱动信号与超声换能器中动态支路的 电流信号的关系,实现对动态支路电流的实时动态精准控制。
在一个实施例中,上述根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整的步骤之后,还包括:通过比例谐振控制器对调整后的第一驱动信号进行波形的失真补偿控制;其中,比例谐振控制器的传递函数基于超声换能器的谐振频率以及截止频率设置。
该实施例中,根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整之后,通过比例谐振控制器对调整后的第一驱动信号进行波形的失真补偿控制,从而解决由于功率放大电路多因素造成的输出电流畸变失真,以导致超声换能器高频异响以及锁频能力下降和输出能量控制不稳定性问题。
该实施例中的比例谐振控制器可以是在传统比例谐振控制器的基础上提出的一种适应性更好的PR(比例谐振)控制器,即准PR控制器,准PR控制器可以实现超声输出一定频率(例如55kHz)为中心频率且一定频率带宽的高增益,而对其他远离中心频率的信号有很大衰减。如图10所示,准PR控制器的波特图。
准PR控制器的传递函数为:
上式中,Kp为准PR控制器的比例系数,Kr为准PR控制器的积分系数,ω0对应谐振频率,ωc对应截止频率。
如图11所示的输出电流波形控制框图。DDS IP模块1102产生谐振频率,谐振频率对应的正弦波I_ref,正弦波I_ref作为参考电流设定,其中的DDS IP模块1102由FPGA内部IP核或者内部RAM查表产生,也可以由外部的DDS硬件芯片实现。ADC模块113,采集Output模块110的电流波形,转换为输出电流Ig_s的数字信号;正弦波I_ref和输出电流Ig_s的误差信号,输出到准PR(比例谐振控制器)1108,再由DAC模块120实现输出驱动信号到AMP(功率放大器)模块103,构成一个对输出电流波形,实时控制的闭环调节过程。
因此,实现对超声换能器的动态支路输出电流波形控制,采用准PR比例谐振控制器实现实时电流波形控制。
本申请还提供一种超声波手术系统。在一个实施例中,如图12所示,超声波手术系统包括主机11、超声换能器12和超声手术器械13;主机11用于获取输入到超声换能器12的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率,获取超声换能器12的静态电容,根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整;主机11还用于向超声换能器12输出调整后的第一驱动信号,以通过调整后的第一驱动信号对超声换能器12的动态支路电流进行控制;超声换能器12用于将调整后的第一驱动信号的电能转换为机械能,并向超声手术器械13输出机械能。
其中,主机11的系统功能如图13所示。主机11主要包括交流输入(AC Line)模块100、AC/DC(交流转直流电源)模块101、DC/DC(直流变换器)模块102、AMP(功率放大器)模块103、变压器104、输出电压电流采样网络105以及控制系统121组成。
AC/DC模块101输出提供系统工作的直流电压,同时通过辅助电源107产生系统工作的辅助电源。由DSP模块111,通过采样AMP模块103的电压反馈值,控制DC/DC模块102输出所需的电压值;DC/DC模块102其拓扑可以是buck(buck DC-DC定义“buck”或“降压型”开关模式电压调节器,输出电压低于输入电压)、全桥、推挽等传统DC/DC变换器。DSP模块111可以是DSP或者AMR、MCU等微控制器。DSP模块111和UI模块产生人机交互,完成模式或者参数设置。FPGA模块112控制LS-DAC(低速自主访问控制)模块108产生并输出设定的电流幅值,以及产生并输出AMP模块103工作的偏置电压。FPGA模块111控制HS-DAC(高速自主访问控制)模块109产生超声振动频率(例如55kHZ)的驱动信号。FPGA模块112可以是可编程逻辑类器件,例如CPLD或者FPGA等。AMP模块103进行功率放大后,将放大的功率输出到变压器104,实现电压变化以及电气隔离。其中,输出的电压和电流分别经过第一隔离传输114以及第二隔离传输115进行隔离传输,实现手术过程患者侧的信号隔离传输。该隔离传输模块可以是变压器或者是隔离运放等芯片。经过隔离后的输出电压信号以及电流信号,输入到高速ADC模块113,由FPGA模块112完成对输出电压信号以及电流信号的数字化采样转换。
综上,本申请的一种超声波手术系统以及一种超声换能器的动态支路电流的控制方法,无需设置匹配电感,采用将动态支路电流解耦控制的方式,实现动态支路电流的精确控制,大大提高了手术效果一致性和稳定性;同时对输出电流波形的畸变失真补偿控制,使得超声换能器在近似纯正弦激励下工作,提高了超声换能器的工作效率并且保证输出能量的稳定性。
应该理解的是,虽然流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图14所示,提供了一种超声换能器的动态支路电流的控制装置,包括:第一获取模块1402、第二获取模块1404以及调整模块1406。第一获取模块1402,用于获取输入到超声换能器的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率;第二获取模块1404,用于获取超声换能器的静态电容;调整模块1406,用于根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,以通过调整第一驱动信号的方式对动态支路电流进行控制。
在其中一个实施例中,根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,包括:获取第一驱动电流和第一驱动电压的第一相位差;获取超声换能器的预估的第二相位差,预估的第二相位差通过第一驱动电流、第一驱动电压、第一驱动频率以及静态电容确定;基于第一相位差和预估的第二相位差对第一驱动信号进行调整。
在其中一个实施例中,获取超声换能器的预估的第二相位差,包括:获取第一驱动电压、第一驱动频率以及静态电容的第一乘积;获取第一乘积与第一驱动电流的比值;根据比值获取预估的第二相位差。
在其中一个实施例中,基于第一相位差和预估的第二相位差对第一驱动信号进行调整,包括:获取动态支路的设定幅值:获取动态支路的电流幅值,电流幅值通过第一驱动电流和预估的第二相位差确定;根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整。
在其中一个实施例中,获取动态支路的电流幅值,包括:获取预估的第二相位差的余弦值;获取余弦值与第一驱动电流的第二乘积,第二乘积为动态支路的电流幅值。
在其中一个实施例中,根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整,包括:根据第一相位差和预估的第二相位差确定第一误差值;根据第一误差值调整第一驱动信号的频率;根据电流幅值和设定幅值确定第二误差值;根据第二误差值调整第一驱动信号的幅值。
在其中一个实施例中,根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号 进行调整的步骤之后,还包括:通过比例谐振控制器对调整后的第一驱动信号进行波形的失真补偿控制;其中,比例谐振控制器的传递函数基于超声换能器的谐振频率以及截止频率设置。
在其中一个实施例中,获取超声换能器的静态电容,包括:获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压,其中,第二驱动信号的第二驱动频率小于或大于超声换能器的谐振频率;根据第二驱动电流、第二驱动电压和第二驱动频率确定静态电容。
在其中一个实施例中,获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压,包括:在向超声换能器输入第一驱动信号之前,向超声换能器输入第二驱动信号,获取超声换能器输出的第二驱动电流和第二驱动电压;或,将第二驱动信号和第一驱动信号输入超声换能器,获取超声换能器的输出信号;从输出信号中分解出第二驱动电流和第二驱动电压。
在其中一个实施例中,获取超声换能器的静态电容,包括:获取输入第三驱动信号到超声换能器时得到的扫频测试的测试结果;基于测试结果得到导纳圆;从导纳圆获取最大电纳值以及最小电纳值,并获取最大电纳值对应的第一频率以及最小电纳值对应的第二频率;根据最大电纳值、第一频率、最小电纳值以及第二频率获取静态电容。
关于一种超声换能器的动态支路电流的控制装置的具体限定可以参见上文中对于一种超声换能器的动态支路电流的控制方法的限定,在此不再赘述。上述一种超声换能器的动态支路电流的控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是超声手术系统的主机。如图15所示,主机内设置有处理器、非易失性存储介质、内存储器、网络接口以及输入装置。当非易失性存储介质的计算机可读存储介质中的计算机可读指令被处理器执行时,主机实现本申请的一种超声换能器的动态支路电流的控制方法。
本领域技术人员可以理解,图15中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机可读指令,处理器执行计算机可读指令时实现以下步骤:获取输入到超声换能器的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率;获取超声换能器的静态电容;根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,以通过调整第一驱动信号的方式对动态支路电流进行控制。
在其中一个实施例中,处理器执行计算机可读指令实现上述的根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整的步骤时,具体实现以下步骤:获取第一驱动电流和第一驱动电压的第一相位差;获取超声换能器的预估的第二相位差,预估的第二相位差通过第一驱动电流、第一驱动电压、第一驱动频率以及静态电容确定;基于第一相位差和预估的第二相位差对第一驱动信号进行调整。
在其中一个实施例中,处理器执行计算机可读指令实现上述的获取超声换能器的预估的第二相位差的步骤时,具体实现以下步骤:获取第一驱动电压、第一驱动频率以及静态电容的第一乘积;获取第一乘积与第一驱动电流的比值;根据比值获取预估的第二相位差。
在其中一个实施例中,处理器执行计算机可读指令实现上述的基于第一相位差和预估的第二相位差对第一驱动信号进行调整的步骤时,具体实现以下步骤:获取动态支路的电流幅值,电流幅值通过第一驱动电流和预估的第二相位差确定;根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整。
在其中一个实施例中,处理器执行计算机可读指令实现上述的获取动态支路的电流幅值的步骤时,具体实现以下步骤:获取预估的第二相位差的余弦值;获取余弦值与第一驱动电流的第二乘积,第二乘积为动态支路的电流幅值。
在其中一个实施例中,处理器执行计算机可读指令实现上述的根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整的步骤时,具体实现以下步骤:根据第一相位差和预估的第二相位差确定第一误差值;根据第一误差值调整第一驱动信号的频率;根据电流幅值和设定幅值确定第二误差值;根据第二误差值调整第一驱动信号的幅值。
在其中一个实施例中,处理器执行计算机可读指令时还实现以下步骤:通过比例谐振控制器对调整后的第一驱动信号进行波形的失真补偿控制;其中,比例谐振控制器的传递函数基于超声换能器的谐振频率以及截止频率设置。
在其中一个实施例中,处理器执行计算机可读指令实现上述的获取超声换能器的静态电容的步骤时,具体实现以下步骤:获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压,其中,第二驱动信号的第二驱动频率小于或大于超声换能器的谐振频率;根据第二驱动电流、第二驱动电压和第二驱动频率确定静态电容。
在其中一个实施例中,处理器执行计算机可读指令实现上述的获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压的步骤时,具体实现以下步骤:在向超声换能器输入第一驱动信号之前,向超声换能器输入第二驱动信号,获取超声换能器输出的第二驱动电流和第二驱动电压;或,将第二驱动信号和第一驱动信号输入超声换能器,获取超声换能器的输出信号;从输出信号中分解出第二驱动电流和第二驱动电压。
在其中一个实施例中,处理器执行计算机可读指令实现上述的获取超声换能器的静态电容的步骤时,具体实现以下步骤:获取输入第三驱动信号到超声换能器时得到的扫频测试的测试结果;基于测试结果得到导纳圆;从导纳圆获取最大电纳值以及最小电纳值,并获取最大电纳值对应的第一频率以及最小电纳值对应的第二频率;根据最大电纳值、第一频率、最小电纳值以及第二频率获取静态电容。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机可读指令,计算机可读指令被处理器执行时实现以下步骤:获取输入到超声换能器的第一驱动信号,第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率;获取超声换能器的静态电容;根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整,以通过调整第一驱动信号的方式对动态支路电流进行控制。
在其中一个实施例中,计算机可读指令被处理器执行实现上述的根据第一驱动电流和第一驱动电压、第一驱动频率以及静态电容对第一驱动信号进行调整的步骤时,具体实现以下步骤:获取第一驱动电流和第一驱动电压的第一相位差;获取超声换能器的预估的第二相位差,预估的第二相位差通过第一驱动电流、第一驱动电压、第一驱动频率以及静态电容确定;基于第一相位差和预估的第二相位差对第一驱动信号进行调整。
在其中一个实施例中,计算机可读指令被处理器执行实现上述的获取超声换能器的预估的第二相位差的步骤时,具体实现以下步骤:获取第一驱动电压、第一驱动频率以及静态电容的第一乘积;获取第一乘积与第一驱动电流的比值;根据比值获取预估的第二相位差。
在其中一个实施例中,计算机可读指令被处理器执行实现上述的基于第一相位差和预估的第二相位差对第一驱动信号进行调整的步骤时,具体实现以下步骤:获取动态支路的电流幅值,电流幅值通过第一驱动电流和预估的第二相位差确定;根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整。
在其中一个实施例中,计算机可读指令被处理器执行实现上述的获取动态支路的电流幅值的步骤时,具体实现以下步骤:获取预估的第二相位差的余弦值;获取余弦值与第一驱动电流的第二乘积,第二乘积 为动态支路的电流幅值。
在其中一个实施例中,计算机可读指令被处理器执行实现上述的根据第一相位差、预估的第二相位差以及设定幅值、电流幅值对第一驱动信号进行调整的步骤时,具体实现以下步骤:根据第一相位差和预估的第二相位差确定第一误差值;根据第一误差值调整第一驱动信号的频率;根据电流幅值和设定幅值确定第二误差值;根据第二误差值调整第一驱动信号的幅值。
在其中一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:通过比例谐振控制器对调整后的第一驱动信号进行波形的失真补偿控制;其中,比例谐振控制器的传递函数基于超声换能器的谐振频率以及截止频率设置。
在其中一个实施例中,计算机可读指令被处理器执行实现上述的获取超声换能器的静态电容的步骤时,具体实现以下步骤:获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压,其中,第二驱动信号的第二驱动频率小于或大于超声换能器的谐振频率;根据第二驱动电流、第二驱动电压和第二驱动频率确定静态电容。
在其中一个实施例中,计算机可读指令被处理器执行实现上述的获取输入第二驱动信号到超声换能器时超声换能器输出的第二驱动电流和第二驱动电压的步骤时,具体实现以下步骤:在向超声换能器输入第一驱动信号之前,向超声换能器输入第二驱动信号,获取超声换能器输出的第二驱动电流和第二驱动电压;或,将第二驱动信号和第一驱动信号输入超声换能器,获取超声换能器的输出信号;从输出信号中分解出第二驱动电流和第二驱动电压。
在其中一个实施例中,计算机可读指令被处理器执行实现上述的获取超声换能器的静态电容的步骤时,具体实现以下步骤:获取输入第三驱动信号到超声换能器时得到的扫频测试的测试结果;基于测试结果得到导纳圆;从导纳圆获取最大电纳值以及最小电纳值,并获取最大电纳值对应的第一频率以及最小电纳值对应的第二频率;根据最大电纳值、第一频率、最小电纳值以及第二频率获取静态电容。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种超声换能器的动态支路电流的控制方法,所述方法包括:
    获取输入到所述超声换能器的第一驱动信号,所述第一驱动信号包括第一驱动电流、第一驱动电压和第一驱动频率;
    获取所述超声换能器的静态电容;和
    根据所述第一驱动电流、所述第一驱动电压、所述第一驱动频率以及所述静态电容对所述第一驱动信号进行调整,以通过调整所述第一驱动信号的方式对所述动态支路电流进行控制。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一驱动电流、所述第一驱动电压、所述第一驱动频率以及所述静态电容对所述第一驱动信号进行调整的步骤,包括:
    获取所述第一驱动电流和所述第一驱动电压的第一相位差;
    获取所述超声换能器的预估的第二相位差,所述预估的第二相位差通过所述第一驱动电流、所述第一驱动电压、所述第一驱动频率以及所述静态电容确定;和
    基于所述第一相位差和所述预估的第二相位差对所述第一驱动信号进行调整。
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述超声换能器的预估的第二相位差的步骤,包括:
    获取所述第一驱动电压、所述第一驱动频率以及所述静态电容的第一乘积;
    获取所述第一乘积与所述第一驱动电流的比值;和
    根据所述比值获取所述预估的第二相位差。
  4. 根据权利要求2所述的方法,其特征在于,所述基于所述第一相位差和所述预估的第二相位差对所述第一驱动信号进行调整的步骤,包括:
    获取所述动态支路的设定幅值;
    获取所述动态支路的电流幅值,所述电流幅值通过所述第一驱动电流和所述预估的第二相位差确定;和
    根据所述第一相位差、所述预估的第二相位差以及所述设定幅值、所述电流幅值对所述第一驱动信号进行调整。
  5. 根据权利要求4所述的方法,其特征在于,所述获取所述动态支路的电流幅值的步骤,包括:
    获取所述预估的第二相位差的余弦值;和
    获取所述余弦值与所述第一驱动电流的第二乘积,所述第二乘积为所述动态支路的电流幅值。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述第一相位差、所述预估的第二相位差以及所述设定幅值、所述电流幅值对所述第一驱动信号进行调整的步骤,包括:
    根据所述第一相位差和所述预估的第二相位差确定第一误差值;
    根据所述第一误差值调整所述第一驱动信号的频率;
    根据所述电流幅值和所述设定幅值确定第二误差值;和
    根据所述第二误差值调整所述第一驱动信号的幅值。
  7. 根据权利要求4所述的方法,其特征在于,所述根据所述第一相位差、所述预估的第二相位差以及所述设定幅值、所述电流幅值对所述第一驱动信号进行调整的步骤之后,还包括:
    通过比例谐振控制器对调整后的第一驱动信号进行波形的失真补偿控制;
    其中,所述比例谐振控制器的传递函数基于所述超声换能器的谐振频率以及截止频率设置。
  8. 根据权利要求1所述的方法,其特征在于,所述获取所述超声换能器的静态电容的步骤,包括:
    获取输入第二驱动信号到所述超声换能器时所述超声换能器输出的第二驱动电流和第二驱动电压,其中,所述第二驱动信号的第二驱动频率小于或大于所述超声换能器的谐振频率;和
    根据所述第二驱动电流、所述第二驱动电压和所述第二驱动频率确定所述静态电容。
  9. 根据权利要求8所述的方法,其特征在于,所述获取输入第二驱动信号到所述超声换能器时所述超声换能器输出的第二驱动电流和第二驱动电压的步骤,包括:
    在向所述超声换能器输入所述第一驱动信号之前,向所述超声换能器输入所述第二驱动信号,获取所述超声换能器输出的第二驱动电流和第二驱动电压;
    或,
    将所述第二驱动信号和所述第一驱动信号输入所述超声换能器,获取所述超声换能器的输出信号;和
    从所述输出信号中分解出所述第二驱动电流和所述第二驱动电压。
  10. 根据权利要求1所述的方法,其特征在于,所述获取所述超声换能器的静态电容的步骤,包括:
    获取输入第三驱动信号到所述超声换能器时得到的扫频测试的测试结果;
    基于所述测试结果得到导纳圆;
    从所述导纳圆获取最大电纳值以及最小电纳值,并获取所述最大电纳值对应的第一频率以及所述最小电纳值对应的第二频率;和
    根据所述最大电纳值、所述第一频率、所述最小电纳值以及所述第二频率获取所述静态电容。
  11. 一种超声换能器的动态支路电流的控制装置,其特征在于,所述装置包括:
    第一获取模块,用于获取输入到所述超声换能器的第一驱动信号,所述第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率;
    第二获取模块,用于获取所述超声换能器的静态电容;和
    调整模块,用于根据所述第一驱动电流和所述第一驱动电压、所述第一驱动频率以及所述静态电容对所述第一驱动信号进行调整,以通过调整所述第一驱动信号的方式对所述动态支路电流进行控制。
  12. 一种超声波手术系统,其特征在于,所述超声波手术系统包括主机、超声换能器和超声手术器械;
    所述主机用于获取输入到所述超声换能器的第一驱动信号,所述第一驱动信号包括第一驱动电流和第一驱动电压、第一驱动频率,获取所述超声换能器的静态电容,根据所述第一驱动电流和所述第一驱动电压、所述第一驱动频率以及所述静态电容对所述第一驱动信号进行调整;
    所述主机还用于向所述超声换能器输出调整后的所述第一驱动信号,以通过调整后的所述第一驱动信号对所述超声换能器的动态支路电流进行控制;和
    所述超声换能器用于将所述调整后的所述第一驱动信号的电能转换为机械能,并向所述超声手术器械输出所述机械能。
  13. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机可读指令,其特征在于,所述处理器执行所述计算机可读指令时实现权利要求1至10中任一项所述方法的步骤。
  14. 一种计算机可读存储介质,其上存储有计算机可读指令,其特征在于,所述计算机可读指令被处理器执行时实现权利要求1至10中任一项所述方法的步骤。
PCT/CN2023/108797 2022-07-25 2023-07-24 超声换能器的动态支路电流的控制方法及超声波手术系统 WO2024022268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210875076.3A CN115102425B (zh) 2022-07-25 2022-07-25 超声换能器的动态支路电流的控制方法及超声波手术系统
CN202210875076.3 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024022268A1 true WO2024022268A1 (zh) 2024-02-01

Family

ID=83299353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108797 WO2024022268A1 (zh) 2022-07-25 2023-07-24 超声换能器的动态支路电流的控制方法及超声波手术系统

Country Status (2)

Country Link
CN (1) CN115102425B (zh)
WO (1) WO2024022268A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102425B (zh) * 2022-07-25 2022-12-02 上海逸思医疗科技股份有限公司 超声换能器的动态支路电流的控制方法及超声波手术系统
CN115795230A (zh) * 2022-10-20 2023-03-14 广东工业大学 一种压电换能器的全状态频率跟踪方法及系统
CN117982202B (zh) * 2024-04-02 2024-08-16 北京速迈医疗科技有限公司 频率跟踪方法、计算机设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113116A (en) * 1989-10-05 1992-05-12 Firma J. Eberspacher Circuit arrangement for accurately and effectively driving an ultrasonic transducer
CN110702971A (zh) * 2019-09-10 2020-01-17 天津大学 自动跟踪换能器串联谐振频率的超声驱动电源
CN114264882A (zh) * 2021-12-24 2022-04-01 深圳市泰达智能装备有限公司 超声波换能器的等效参数测量方法、装置和控制器
CN114305599A (zh) * 2022-03-15 2022-04-12 厚凯(北京)医疗科技有限公司 超声换能器的控制方法、控制装置、手术设备及存储介质
CN115102425A (zh) * 2022-07-25 2022-09-23 上海逸思医疗科技股份有限公司 超声换能器的动态支路电流的控制方法及超声波手术系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612408B2 (en) * 2017-12-28 2023-03-28 Cilag Gmbh International Determining tissue composition via an ultrasonic system
EP3536269B1 (en) * 2018-03-08 2022-12-14 Ethicon LLC In-the-jaw classifier based on a model
EP3536263B1 (en) * 2018-03-08 2021-03-03 Ethicon LLC Control circuit for generator for ultrasonic surgical instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113116A (en) * 1989-10-05 1992-05-12 Firma J. Eberspacher Circuit arrangement for accurately and effectively driving an ultrasonic transducer
CN110702971A (zh) * 2019-09-10 2020-01-17 天津大学 自动跟踪换能器串联谐振频率的超声驱动电源
CN114264882A (zh) * 2021-12-24 2022-04-01 深圳市泰达智能装备有限公司 超声波换能器的等效参数测量方法、装置和控制器
CN114305599A (zh) * 2022-03-15 2022-04-12 厚凯(北京)医疗科技有限公司 超声换能器的控制方法、控制装置、手术设备及存储介质
CN115102425A (zh) * 2022-07-25 2022-09-23 上海逸思医疗科技股份有限公司 超声换能器的动态支路电流的控制方法及超声波手术系统

Also Published As

Publication number Publication date
CN115102425A (zh) 2022-09-23
CN115102425B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024022268A1 (zh) 超声换能器的动态支路电流的控制方法及超声波手术系统
US11986233B2 (en) Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device
US11839396B2 (en) Fine dissection mode for tissue classification
JP6415881B2 (ja) マルチステージ電力コンバーターを用いて電気外科用エネルギーを発生させるシステムおよび方法
WO2023174135A1 (zh) 超声换能器的控制方法、控制装置、手术设备及存储介质
WO2015094748A1 (en) Medical device
CN104300826B (zh) 电外科生成器
WO2021128722A1 (zh) 超声换能器的谐振频率跟踪方法、装置及相关设备
CN110537958A (zh) 一种基于频率及功率跟踪的超声手术刀系统及其控制方法
CN210990592U (zh) 一种超声刀主机及超声刀系统
WO2023174136A1 (zh) 超声手术器械的控制方法及装置、手术设备及存储介质
WO2023104203A1 (zh) 向外科器械输出驱动信号的设备及外科手术系统
WO2019024637A1 (zh) 一种超声手术工具的频率控制方法及系统
CN114515184B (zh) 一种超声刀系统及其功率驱动方法、装置和主机
WO2023221379A1 (zh) 超声手术工具、其频率跟踪方法、其目标相位差确定方法及超声波换能器等效电路
CN114371646B (zh) 一种高频电压幅值与频率自动调节系统及方法
CN116037442A (zh) 一种恒振幅控制方法、装置及超声换能器系统
CN221448308U (zh) 一种恒流调整电路及一种超声刀手术器械
WO2023040252A1 (zh) 超声刀系统锁相方法及超声刀系统
CN109938803B (zh) 基于有功功率调谐的超声手术设备及确定谐振频率的方法
CN115177326A (zh) 一种超声刀系统及其恒流驱动方法、装置和主机
CN116154801A (zh) 一种电声换能器自适应宽带匹配控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845478

Country of ref document: EP

Kind code of ref document: A1