WO2024022219A1 - 自锁电路 - Google Patents
自锁电路 Download PDFInfo
- Publication number
- WO2024022219A1 WO2024022219A1 PCT/CN2023/108390 CN2023108390W WO2024022219A1 WO 2024022219 A1 WO2024022219 A1 WO 2024022219A1 CN 2023108390 W CN2023108390 W CN 2023108390W WO 2024022219 A1 WO2024022219 A1 WO 2024022219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching element
- connection end
- resistor
- self
- charging
- Prior art date
Links
- 101150030566 CCS1 gene Proteins 0.000 claims description 5
- 101100332461 Coffea arabica DXMT2 gene Proteins 0.000 claims description 5
- 101100341123 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) IRA2 gene Proteins 0.000 claims description 5
- 101150104736 ccsB gene Proteins 0.000 claims description 5
- 238000005265 energy consumption Methods 0.000 abstract description 7
- 238000013461 design Methods 0.000 abstract description 6
- 230000007774 longterm Effects 0.000 abstract description 3
- 230000005059 dormancy Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000011895 specific detection Methods 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0036—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
Definitions
- the present invention relates to the technical field of electric vehicle charging, and in particular to a self-locking circuit.
- ChaoJi charging technology refers to the ChaoJi charging technology described in the "White Paper on ChaoJi Conductive Charging Technology for Electric Vehicles" issued by the State Grid.
- ChaoJi technology solves a series of defects and problems existing in existing charging systems in the world, and provides the world with a unified, safe, reliable, and low-cost charging system solution.
- the ChaoJi charging system can provide high-power charging solutions to increase charging speed, improve user experience, and reduce range anxiety, especially to solve the problem of long-range vehicles, buses, operating vehicles, special vehicles, and passenger cars in big cities and highways. charging requirements.
- the ChaoJi charging system has technical difficulties that need to be solved urgently.
- the ChaoJi charging system clearly stipulates the working scenario of scheduled charging. That is, after inserting the charging gun, the car controller can enter a sleep state to save the power consumption of the entire machine. When the scheduled time is up, a signal switch on the side of the charging pile is closed.
- the circuit in the charging pile works together with the charging signal receiving circuit installed on the vehicle.
- the controller is in a dormant state, all output signals are low, and the switches are off. state, so there is no loop closure in the charging signal receiving circuit.
- the controller inside the vehicle cannot judge whether the external circuit has changed. That is to say, during the charging
- the signal receiving circuit cannot find an effective wake-up measurement point that can make the controller enter the working state from the sleep state. The controller cannot be awakened and subsequent charging cannot be performed.
- the present invention provides a self-locking circuit to solve the problem existing in the prior art that a specific normally open switch needs to be closed under specific working conditions but at the same time energy consumption and/or implementation cost must be considered.
- the present invention provides a self-locking circuit, which includes a first switching element and a second switching element.
- the first switching element is configured such that: when the control end of the first switching element is at a high level, the connection end of the first switching element closes the circuit on both sides; the control end of the first switching element is When the level is low, the connection end of the first switching element disconnects the circuits on both sides.
- the second switching element is configured such that: when the control end of the second switching element is low level, the connection end of the second switching element closes the circuit on both sides; the control end of the second switching element is high level. Normally, the connection end of the second switching element disconnects the circuits on both sides.
- the control end of the first switching element is used to obtain a closing control signal; the first connection end of the first switching element is used to connect to power, and the second connection end of the first switching element is used to ground; the The control end of the second switching element is connected to the first connection end of the first switching element, the first connection end of the second switching element is used to connect to the power supply, and the second connection end of the second switching element is connected to The control terminal of the first switching element is connected.
- the self-locking circuit further includes a third switching element, and the working logic of the third switching element is the same as that of the first switching element.
- control end of the third switching element is used to obtain a disconnection control signal
- first connection end of the third switching element is connected to the second connection end of the second switching element
- third switching element The second connection is for grounding.
- the self-locking circuit further includes an execution switch element, and the working logic of the execution switch element is the same as that of the first switch element.
- control end of the execution switch element is connected to the second connection end of the second switch element, and the connection end of the execution switch element is used to connect to external components.
- the self-locking circuit also includes a first resistor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a sixth resistor, a seventh resistor, an eighth resistor and a ninth resistor.
- the control end of the first switching element is used to obtain the closing control signal through the first resistor, and one end of the first resistor connected to the first switching element is also used to ground through the fifth resistor;
- the first connection end of the first switching element is used to connect the power supply through the second resistor.
- the second connection end of the second switching element is connected to the first connection end of the third switching element through the ninth resistor, and the second connection end of the second switching element is connected through the ninth resistor and the first connection end of the third switching element.
- the third resistor is connected to the control terminal of the first switching element.
- the control end of the third switching element is used to obtain the disconnection control signal through the fourth resistor; the second connection end of the third switching element is also connected to its own control end through the seventh resistor.
- connection end of the second switching element is also connected to the control end of the execution switch element through the eighth resistor, and a connection end of the execution switch element for grounding is also connected to itself through the sixth resistor. control terminal connection.
- the self-locking circuit further includes a diode connected between the first resistor and the first switching element.
- the self-locking circuit further includes an execution switch element, and the working logic of the execution switch element is the same as that of the first switch element.
- control end of the execution switch element is connected to the second connection end of the second switch element, and the connection end of the execution switch element is used to connect to external components.
- the execution switch element is applied to the charging signal receiving circuit of ChaoJi mode.
- the charging signal receiving circuit includes a first working loop and a second working loop.
- the first working loop is used to work with the charging signal output circuit of ChaoJi mode
- the second working loop is used to work with non-ChaoJi mode.
- the charging signal output circuit of the charging mode operates, and the execution switch element is used to switch on and off the first working circuit.
- the technical form of the non-ChaoJi mode charging signal output circuit includes at least one of CHAdeMO mode, GB/T mode, CCS1 mode and CCS2 mode.
- the self-locking circuit operates in response to the control signal of the controller, and the charging signal receiving circuit at least operates under normal charging conditions, power-off conditions and charging reservation conditions; under the normal charging conditions, The controller is in a wake-up state, and in the power-off condition and the charging reservation condition, the controller is in a sleep state.
- the execution switch element is turned off; under the charging reservation condition, the execution switch element is closed.
- the self-locking circuit includes a first switching element and a second switching element.
- the control end of the first switching element is used to obtain a closing control signal; the first connection end of the first switching element is used to connect to power, and the second connection end of the first switching element is used for grounding;
- the control end of the two switching elements is connected to the first connection end of the first switching element, the first connection end of the second switching element is used to connect to the power supply, and the second connection end of the second switching element is connected to the first connection end of the first switching element.
- the control terminal of the first switching element is connected.
- the first switching element and the second switching element can maintain a long-term closed state without the need for external control signals to limit it. Based on the above structure, it can Further controlling a specific normally open switch to remain closed without a control signal satisfies the design requirements of the controller for sleeping and reducing energy consumption and/or cost, and solves problems existing in the existing technology.
- FIG. 1 is a schematic diagram of a charging signal receiving circuit in ChaoJi mode according to an embodiment of the present invention
- Figure 2 is a schematic circuit diagram of an embodiment of the present invention.
- first”, “second” and “third” may explicitly or implicitly include one or at least two of these features, “one end” and “other end” and “proximal end” and “Remote” usually refers to the two corresponding parts, which not only includes the endpoints.
- installation”, “connection” and “connection” should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection, or Integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
- one element is arranged on another element, usually only means that there is a connection, coupling, cooperation or transmission relationship between the two elements, and the connection, coupling, cooperation between the two elements can be direct or indirect through an intermediate element or transmission, and cannot be understood as indicating or implying the spatial positional relationship between the two elements, that is, one element can be in any position inside, outside, above, below or to one side of the other element, unless the content clearly indicates otherwise.
- the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
- the core idea of the present invention is to provide a self-locking circuit to solve the problem in the prior art that a specific normally open switch needs to be closed under specific working conditions but at the same time energy consumption and/or implementation cost must be considered.
- the invention provides a self-locking circuit, which is applied to a charging signal receiving circuit in ChaoJi mode.
- the specific form of the charging signal receiving circuit can be set according to the relevant technical requirements of the ChaoJi mode or understood with reference to Figure 1.
- the circuit numbered 10 that is, the charging signal receiving circuit, is specifically divided into a vehicle side circuit 11 and a vehicle socket side circuit 12 for ease of understanding.
- the components represented by U1, R1, R1', S1, Rc, RE, D1, Rv', Rv, Sv', Sv, U2, R4, R4c, R4c', S2, R4' in the figure and their setting purposes are related to this The application is not very relevant and can be understood based on the "Electric Vehicle ChaoJi Conductive Charging Technology White Paper", which will not be explained here.
- the embodiments can also be applied to other circuits with the same design requirements, and are not limited to only charging signal receiving circuits in ChaoJi mode.
- the self-locking circuit works in response to the control signal of the controller, and the charging signal receiving circuit works at least under normal charging conditions, power-off conditions and charging reservation conditions; under the normal charging conditions, the controller In the wake-up state, the controller is in the sleep state under the power-off condition and the charging reservation condition.
- the expected operating result is: under the power-off condition, the execution switch element (marked with S2' in Figure 1, marked with M3 in Figure 2) is disconnected; under the charging reservation condition down, the execution switch element is closed.
- the self-locking circuit includes a first switching element M1 and a second switching element M4.
- the first switching element M1 is configured such that: when the control end of the first switching element M1 is at a high level, the connection end of the first switching element M1 closes the circuit on both sides; the first switching element M1 When the control terminal of is low level, the connection terminal of the first switching element M1 disconnects the circuits on both sides.
- the first switching element M1 may be, for example, an Nmos tube.
- the second switching element M4 is configured such that: when the control end of the second switching element M4 is low, the connection end of the second switching element M4 closes the circuit on both sides; the control of the second switching element M4 When the terminal is at a high level, the connection terminal of the second switching element M4 disconnects the circuits on both sides.
- the second switching element M4 may be, for example, a Pmos tube.
- the control end of the first switching element M1 is used to obtain a closing control signal (the closing control signal, that is, the S2'_LOCK port is high level); the first connection end of the first switching element M1 is used to connect to the power supply.
- the second connection end of the first switching element M1 is used for grounding; the control end of the second switching element M4 is connected to the first connection end of the first switching element M1, and the first connection end of the second switching element M4
- the terminal is used to connect the power supply Battery, and the second connection terminal of the second switch element M4 is connected to the control terminal of the first switch M1 element.
- M1 in the initial state, M1 is in the off state, and M4 is also in the off state.
- M1 receives the closing control signal
- M1 is closed
- M4 is also closed
- M4 continues to be controlled by M1 through the power supply Battery.
- the terminal provides a high level.
- M1 and M4 can still remain closed to achieve the self-locking function.
- peripheral components can be set accordingly to further control a specific normally open switch to remain closed without a control signal.
- the controller can send the closing control signal before entering sleep and then enter sleep.
- the unlocking mode of the self-locking circuit can be set according to actual needs.
- the self-locking circuit also includes a third switching element M2, the working logic of the third switching element M2 and the first switching element M1 same.
- the third switching element M2 may be, for example, an Nmos tube.
- control end of the third switching element M2 is used to obtain a disconnection control signal (the disconnection control signal, that is, the S2'_UNLOCK port is high level), and the first connection end of the third switching element M2 is connected to the first connection end of the third switching element M2.
- the second connection end of the second switching element M4 is connected, and the second connection end of the third switching element M2 is connected to The terminal is used for grounding.
- Such a configuration can facilitate the controller to unlock the self-locking circuit when necessary after waking up to implement other functions.
- the self-locking circuit further includes an execution switch element M3, and the working logic of the execution switch element M3 is the same as that of the first switch element M1.
- the execution switch element M3 may be, for example, an Nmos tube.
- M1, M2, M3 and M4 are MOS transistors
- the specific circuit connection method can be understood based on common electrical common sense or the content of Figure 2, and will not be described in detail here.
- control end of the execution switch element M3 is connected to the second connection end of the second switch element M4, and the connection end of the execution switch element M3 is used to connect external components.
- the execution switch element M3 is the aforementioned specific normally open switch. Its specific opening and closing state is the same as that of the second switch element M4. Its own opening and closing state is switched by the self-locking and unlocking of the self-locking circuit. , to achieve design expectations.
- the self-locking circuit also includes a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, an eighth resistor R7. resistor R8 and ninth resistor R9.
- the control end of the first switching element M1 is used to obtain the closing control signal through the first resistor R1, and one end of the first resistor R1 connected to the first switching element M1 is also used to pass the first resistor R1.
- the five resistors R5 are grounded; the first connection end of the first switching element M1 is used to connect the power supply through the second resistor R2.
- the second connection end of the second switching element M4 is connected to the first connection end of the third switching element M2 through the ninth resistor R9, and the second connection end of the second switching element M4 is connected through the third resistance R9.
- the ninth resistor R9 and the third resistor R3 are connected to the control terminal of the first switching element M1.
- the control end of the third switching element M2 is used to obtain the disconnection control signal through the fourth resistor R4; the second connection end of the third switching element M2 is also connected to the self-contained circuit through the seventh resistor R7. your own console connection.
- the second connection end of the second switching element M4 is also connected to the control end of the execution switching element M3 through the eighth resistor R8, and a connection end for grounding of the execution switching element M3 is also connected through the third resistor R8.
- Six resistors R6 are connected to their own control terminals.
- the above-mentioned resistors are used to achieve circuit stability and prevent short circuits in some branches. In other embodiments, based on the working characteristics of different components, some of the above-mentioned resistors may not be provided.
- the self-locking circuit further includes a diode D0, which is connected between the first resistor R1 and the first switching element M1.
- the specific connection direction can be understood with reference to Figure 2.
- the diode D0 is used to shield the signal influence between the circuits on both sides.
- the execution switch element M3 is used in the charging signal receiving circuit, and the charging signal receiving circuit supports at least the technical form of ChaoJi mode.
- D1, CC1, and R4' are all part of the charging signal receiving circuit and can be understood in conjunction with Figure 1. The specific functions of the above components have little relevance to this application and will not be described in detail here.
- the charging signal receiving circuit includes a first working loop 13 and a second working loop 14.
- the first working loop 13 works in conjunction with the ChaoJi mode charging signal output circuit 20.
- the ChaoJi mode charging signal output circuit 20 includes a vehicle plug side circuit 15 and a charger side circuit 16 .
- the second working circuit 14 is used to work with the charging signal output circuit in non-ChaoJi mode.
- the execution switch element M3 is used to switch on and off the first working circuit 13 . With this configuration, it can be used in conjunction with the charging pile in the ChaoJi mode in the scheduled charging state, thereby fully realizing the scheduled charging process in the ChaoJi mode.
- the technical form of the non-ChaoJi mode charging signal output circuit includes at least one of CHAdeMO mode, GB/T mode, CCS1 mode and CCS2 mode.
- the specific working principles and related standards of CHAdeMO mode, GB/T mode, CCS1 mode and CCS2 mode can be understood with reference to common knowledge in the field, and will not be described in detail here. With this configuration, the charging signal receiving circuit has better applicability.
- the charging signal receiving circuit works according to the following process.
- Step1 In the initial state, the output signals S2'_LOCK and S2'_UNCLOCK of the MCU are both low, and M1, M2, M3 and M4 are all in the cut-off state, which is equivalent to a specific normally open switch (i.e. M3) open.
- Step2 When the controller receives the command to reserve charging, S2'_LOCK outputs high. At this time, the gate of M1 is high level, and M1 is closed, causing the gate of M4 to become low level, and M4 is closed, causing the Battery to go up. The voltage reaches the gate of M3 through M4, R9 and R3, making the gate of M3 high and M3 closed, which is equivalent to the closing of a specific normally open switch.
- Step3 Then, control the power off and enter the sleep mode.
- the output signals S2'_LOCK and S2'_UNCLOCK of the MCU are both low, but the voltage on the Battery can still reach the gate of M1 through M4, R9 and R3, making M1 The gate is still high, M1 is closed, realizing self-locking, independent of the output state of the MCU, maintaining the closed state of the specific normally open switch.
- Step4 When the scheduled time is up, a signal switch on the charging pile side is closed. Since M3 is in a closed state, a loop is formed, so the voltage of the specific detection point in the charging signal receiving circuit changes, causing the controller to enter the working mode, and then Control the vehicle for charging.
- the specific logic of the voltage change at a specific detection point caused by the closing of a signal switch on the charging pile side has little relevance to this application and will not be described in detail here.
- Step5 After charging, the S2'_UNCLOCK output switches to high, the gate of M2 is high, M2 is closed, the low level is transmitted from M2 and R3 to the gate of M1, and M1 is disconnected, making the gate of M4 high. M4 is turned off, which in turn causes the gate of M3 to be at a low level and M3 is turned off (that is, the specific normally open switch is turned off).
- Step6 S2’_UNCLOCK output switches to low, the gate of M2 is low, M2 is disconnected, and the status of M1, M3, and M4 will not change.
- the output signals S2'_LOCK and S2'_UNCLOCK of the MCU are both low, M1, M2, M3 and M4 are all in the cut-off state, and the charging signal receiving circuit has returned to the initial state before charging. At this time, it can respond to new charging operation instructions.
- the self-locking circuit includes a first switching element and a second switching element.
- the control end of the first switching element is used to obtain a closing control signal; the first connection end of the first switching element is used to connect to power, and the second connection end of the first switching element is used for grounding;
- the control end of the two switching elements is connected to the first connection end of the first switching element, the first connection end of the second switching element is used to connect to the power supply, and the second connection end of the second switching element is connected to The control terminal of the first switching element is connected.
- This embodiment Based on the above structure, it can Further controlling a specific normally open switch to remain closed without a control signal satisfies the design requirements of the controller for sleeping and reducing energy consumption and/or cost, and solves problems existing in the existing technology.
- This embodiment also has the beneficial effects of simple structure, complete functions, and low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种自锁电路,该自锁电路包括第一开关元件和第二开关元件。第一开关元件的控制端用于获取闭合控制信号;第二开关元件的控制端与第一开关元件的第一连接端连接,第二开关元件的第一连接端用于连接电源,第二开关元件的第二连接端与第一开关元件的控制端连接。如此配置,当第一开关元件获取闭合控制信号之后,第一开关元件和第二开关元件可以保持长期闭合状态而不再需要外部控制信号进行限制,可以进一步控制特定的常开开关在没有控制信号的前提下保持闭合,满足了控制器休眠和降低能耗和/或成本的设计需求,解决了现有技术中存在的问题。
Description
本发明涉及电动车辆充电技术领域,特别涉及一种自锁电路。
2016年起,中国电力企业联合会、国家电网有限公司联合国内外电动汽车、动力电池、充电设备及充电连接器等产业链上下游企业,通过多年的调研和研究,提出了新一代的ChaoJi充电技术路线发端于电动汽车大功率充电需求,但并不简单指大功率充电接口,而是一套完整的电动汽车直流充电系统解决方案。在本文中,ChaoJi充电技术指的是由国家电网发布的《电动汽车ChaoJi传导充电技术白皮书》中进行描述的ChaoJi充电技术。
ChaoJi技术解决了国际上现有充电系统存在的一系列缺陷和问题,为世界提供一个统一的、安全的、可靠的、低成本充电系统解决方案。第一,ChaoJi充电系统可以提供大功率充电方案,提升充电速度、改善用户体验、减少里程焦虑,特别解决一些长续航里程车辆、公交、运营车辆、特种车辆以及乘用车在大城市、高速公路的充电要求。第二,在产业发展初期,国际上出现了CHAdeMO、GB/T、CCS1、CCS2等四种主流直流接口技术形式。这些技术各有特点和优势,但也逐步暴露出一些技术问题和安全隐患。世界电动汽车产业迫切需要一个统一的、安全的、兼容的充电接口。第三,随着电动汽车的普及,广大用户对于快速充电、充电安全、充电体验、充电成本等都提出了更高的要求。因此带来的大功率充电、即插即充、充放电一体化、小功率直流化等新技术需要一套完整的充电接口技术进行支撑。未来,ChaoJi充电系统将成为我国主流的汽车充电系统。
但ChaoJi充电系统有一亟待解决的技术难点。ChaoJi充电系统明确规定了预约充电这一工作场景,即插入充电枪后,汽车控制器可以进入休眠状态以节省整机功耗,预约时间到时,闭合充电桩侧一信号开关。
充电桩中的电路和设置于车辆上的充电信号接收电路配合工作,一般而言,预约阶段控制器处于休眠状态,所有输出信号均为低,开关都为断开状
态,所以所述充电信号接收电路中未出现回路闭环。即使充电桩中的电路发生了变化,所述充电信号接收电路中的任意检测点的电压没有任何变化,车辆内部的控制器无法判断外部的电路是否发生了变化,也就是说,在所述充电信号接收电路中无法找到一个可以使控制器从休眠状态进入工作状态的有效的唤醒测量点,控制器无法被唤醒,也就无法进行后续的充电。
目前现有的解决方式有两种:
1.使用一个单独的常供电的低性能处理器,专门用于控制一特定的常开开关,以使所述充电信号接收电路中形成回路,当检测汽车处于预约阶段,则控制该开关保持关闭,如果不是,则打开。这样的解决方案存在额外的处理器的购买成本和设置成本。
2.使MCU始终处于工作模式下,控制该开关的状态,但这大大增加了控制器的静态功耗。
但是这两种解决方案都仍不理想,综上,现有技术中存在特定工况下一特定的常开开关需要闭合但同时还要考虑能耗和/或实现成本的问题
发明内容
本发明提供了一种自锁电路,以解决现有技术中存在的特定工况下一特定的常开开关需要闭合但同时还要考虑能耗和/或实现成本的问题。
为了解决上述技术问题,本发明提供了一种自锁电路,所述自锁电路包括第一开关元件和第二开关元件。
其中,所述第一开关元件被配置为:所述第一开关元件的控制端为高电平时,所述第一开关元件的连接端闭合两侧电路;所述第一开关元件的控制端为低电平时,所述第一开关元件的连接端断开两侧电路。
所述第二开关元件被配置为:所述第二开关元件的控制端为低电平时,所述第二开关元件的连接端闭合两侧电路;所述第二开关元件的控制端为高电平时,所述第二开关元件的连接端断开两侧电路。
所述第一开关元件的控制端用于获取闭合控制信号;所述第一开关元件的第一连接端用于连接电源,所述第一开关元件的第二连接端用于接地;所
述第二开关元件的控制端与所述第一开关元件的第一连接端连接,所述第二开关元件的第一连接端用于连接电源,所述第二开关元件的第二连接端与所述第一开关元件的控制端连接。
可选的,所述自锁电路还包括第三开关元件,所述第三开关元件的工作逻辑和所述第一开关元件相同。
其中,所述第三开关元件的控制端用于获取断开控制信号,所述第三开关元件的第一连接端与所述第二开关元件的第二连接端连接,所述第三开关元件的第二连接端用于接地。
可选的,所述自锁电路还包括执行开关元件,所述执行开关元件的工作逻辑和所述第一开关元件相同。
其中,所述执行开关元件的控制端与所述第二开关元件的第二连接端连接,所述执行开关元件的连接端用于连接外部元件。
所述自锁电路还包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻和第九电阻。
所述第一开关元件的控制端用于通过所述第一电阻获取所述闭合控制信号,所述第一电阻与所述第一开关元件连接的一端还用于通过所述第五电阻接地;所述第一开关元件的第一连接端用于通过所述第二电阻连接电源。
所述第二开关元件的第二连接端通过所述第九电阻与所述第三开关元件的第一连接端连接,所述第二开关元件的第二连接端通过所述第九电阻和所述第三电阻与所述第一开关元件的控制端连接。
所述第三开关元件的控制端用于通过所述第四电阻获取所述断开控制信号;所述第三开关元件的第二连接端还通过所述第七电阻与自身的控制端连接。
所述第二开关元件的第二连接端还通过所述第八电阻连接所述执行开关元件的控制端,所述执行开关元件的用于接地的一连接端还通过所述第六电阻与自身的控制端连接。
可选的,所述自锁电路还包括二极管,所述二极管连接于所述第一电阻和所述第一开关元件之间。
可选的,所述自锁电路还包括执行开关元件,所述执行开关元件的工作逻辑和所述第一开关元件相同。
其中,所述执行开关元件的控制端与所述第二开关元件的第二连接端连接,所述执行开关元件的连接端用于连接外部元件。
可选的,所述执行开关元件应用于ChaoJi模式的充电信号接收电路。
可选的,所述充电信号接收电路包括第一工作回路和第二工作回路,所述第一工作回路用于配合ChaoJi模式的充电信号输出电路工作,所述第二工作回路用于配合非ChaoJi模式的充电信号输出电路工作,所述执行开关元件用于通断所述第一工作回路。
可选的,所述非ChaoJi模式的充电信号输出电路的技术形式包括CHAdeMO模式、GB/T模式、CCS1模式和CCS2模式中的至少一者。
可选的,所述自锁电路响应控制器的控制信号工作,所述充电信号接收电路至少工作于正常充电工况、断电工况和充电预约工况;在所述正常充电工况下,所述控制器处于唤醒状态,在所述断电工况和所述充电预约工况下,所述控制器处于休眠状态。
可选的,在所述断电工况下,所述执行开关元件断开;在所述充电预约工况下,所述执行开关元件闭合。
与现有技术相比,本发明提供的自锁电路中,所述自锁电路包括第一开关元件和第二开关元件。所述第一开关元件的控制端用于获取闭合控制信号;所述第一开关元件的第一连接端用于连接电源,所述第一开关元件的第二连接端用于接地;所述第二开关元件的控制端与所述第一开关元件的第一连接端连接,所述第二开关元件的第一连接端用于连接电源,所述第二开关元件的第二连接端与所述第一开关元件的控制端连接。如此配置,当所述第一开关元件获取所述闭合控制信号之后,所述第一开关元件和所述第二开关元件可以保持长期闭合状态而不再需要外部控制信号进行限制,基于上述结构可以进一步控制特定的常开开关在没有控制信号的前提下保持闭合,满足了控制器休眠和降低能耗和/或成本的设计需求,解决了现有技术中存在的问题。
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明一实施例的ChaoJi模式的充电信号接收电路的示意图;
图2是本发明一实施例的电路示意图。
附图中:
10-充电信号接收电路;11-车辆侧电路;12-车辆插座侧电路;13-第一工作回路;14-第二工作回路;15-车辆插头侧电路;16-充电机侧电路;20-ChaoJi模式的充电信号输出电路20。
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。此外,如在本发明
中所使用的,一元件设置于另一元件,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的核心思想在于提供一种自锁电路,以解决现有技术中存在的特定工况下一特定的常开开关需要闭合但同时还要考虑能耗和/或实现成本的问题。
以下参考附图进行描述。
本发明提供了一种自锁电路,所述自锁电路应用于ChaoJi模式的充电信号接收电路。所述充电信号接收电路的具体形式可以根据ChaoJi模式的相关技术要求进行设置或者参考图1进行理解。
图1中,标号为10的电路即所述充电信号接收电路,为了便于理解,又具体划分为车辆侧电路11和车辆插座侧电路12。图中U1、R1、R1’、S1、Rc、RE、D1、Rv’、Rv、Sv’、Sv、U2、R4、R4c、R4c’、S2、R4’所代表的元件及设置目的,和本申请的关联性不强,可根据《电动汽车ChaoJi传导充电技术白皮书》进行理解,在此不进行展开说明。
当然,基于本发明的思想,所述实施例也可以应用于具有相同设计需求的其他电路中,并不局限于仅应用于ChaoJi模式的充电信号接收电路。
所述自锁电路响应控制器的控制信号工作,所述充电信号接收电路至少工作于正常充电工况、断电工况和充电预约工况;在所述正常充电工况下,所述控制器处于唤醒状态,在所述断电工况和所述充电预约工况下,所述控制器处于休眠状态。期望的运行结果是:在所述断电工况下,执行开关元件(在图1中,用S2’进行标记,在图2中,用M3进行标记)断开;在所述充电预约工况下,所述执行开关元件闭合。
为了解决控制器休眠时,特定的常开开关需要闭合的问题,所述自锁电路包括第一开关元件M1和第二开关元件M4。
其中,所述第一开关元件M1被配置为:所述第一开关元件M1的控制端为高电平时,所述第一开关元件M1的连接端闭合两侧电路;所述第一开关元件M1的控制端为低电平时,所述第一开关元件M1的连接端断开两侧电路。所述第一开关元件M1可以例如是Nmos管。
所述第二开关元件M4被配置为:所述第二开关元件M4的控制端为低电平时,所述第二开关元件M4的连接端闭合两侧电路;所述第二开关元件M4的控制端为高电平时,所述第二开关元件M4的连接端断开两侧电路。所述第二开关元件M4可以例如是Pmos管。
所述第一开关元件M1的控制端用于获取闭合控制信号(闭合控制信号即S2’_LOCK端口为高电平);所述第一开关元件M1的第一连接端用于连接电源,所述第一开关元件M1的第二连接端用于接地;所述第二开关元件M4的控制端与所述第一开关元件M1的第一连接端连接,所述第二开关元件M4的第一连接端用于连接电源Battery,所述第二开关元件M4的第二连接端与所述第一开关M1元件的控制端连接。
如此配置,初始状态下,M1处于断开状态,M4也处于断开状态,当M1接收到所述闭合控制信号时,M1闭合,M4也闭合,M4通过所述电源Battery持续地为M1的控制端提供高电平,此时,即使所述闭合控制信号消失(即S2’_LOCK端口为低电平),M1和M4仍然能够保持闭合状态,实现自锁功能。基于上述核心结构可以相应地设置外围元件,从而进一步控制特定的常开开关在没有控制信号的前提下保持闭合,控制器可以在进入休眠之前发送所述闭合控制信号然后进入休眠。如此配置,满足了控制器休眠和降低能耗和/或成本的设计需求,解决了现有技术中存在的问题。
所述自锁电路的解锁方式可以根据实际需要进行设置,较优地,所述自锁电路还包括第三开关元件M2,所述第三开关元件M2的工作逻辑和所述第一开关元件M1相同。所述第三开关元件M2可以例如是Nmos管。
其中,所述第三开关元件M2的控制端用于获取断开控制信号(断开控制信号即S2’_UNLOCK端口为高电平),所述第三开关元件M2的第一连接端与所述第二开关元件M4的第二连接端连接,所述第三开关元件M2的第二连
接端用于接地。
当M1和M4处于闭合状态时,若M2的控制端为高电平,则M2闭合,M1的控制端电压因为M2的导通而降低,从而M1断开,M4也进而断开,实现了解锁功能。
如此配置,可以方便控制器在唤醒之后,在必要状态下解锁所述自锁电路以实现其他功能。
进一步地,所述自锁电路还包括执行开关元件M3,所述执行开关元件M3的工作逻辑和所述第一开关元件M1相同。所述执行开关元件M3可以例如是Nmos管。
当上述的M1、M2、M3和M4为MOS管时,具体的电路连接方式可以根据电气学公知常识或者图2的内容进行理解,在此不进行展开描述。
其中,所述执行开关元件M3的控制端与所述第二开关元件M4的第二连接端连接,所述执行开关元件M3的连接端用于连接外部元件。
所述执行开关元件M3即前述的特定的常开开关,其具体的开闭状态和所述第二开关元件M4的状态相同,通过所述自锁电路的自锁和解锁切换自身的开闭状态,实现设计预期。
请继续参考图2,所述自锁电路还包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8和第九电阻R9。
所述第一开关元件M1的控制端用于通过所述第一电阻R1获取所述闭合控制信号,所述第一电阻R1与所述第一开关元件M1连接的一端还用于通过所述第五电阻R5接地;所述第一开关元件M1的第一连接端用于通过所述第二电阻R2连接电源。
所述第二开关元件M4的第二连接端通过所述第九电阻R9与所述第三开关元件M2的第一连接端连接,所述第二开关元件M4的第二连接端通过所述第九电阻R9和所述第三电阻R3与所述第一开关元件M1的控制端连接。
所述第三开关元件M2的控制端用于通过所述第四电阻R4获取所述断开控制信号;所述第三开关元件M2的第二连接端还通过所述第七电阻R7与自
身的控制端连接。
所述第二开关元件M4的第二连接端还通过所述第八电阻R8连接所述执行开关元件M3的控制端,所述执行开关元件M3的用于接地的一连接端还通过所述第六电阻R6与自身的控制端连接。
上述的电阻用于实现电路稳定,防止部分支路的短路,在其他的实施例中,基于不同的元件的工作特性,上述的电阻中的一部分也可以不设置。
所述自锁电路还包括二极管D0,所述二极管D0连接于所述第一电阻R1和所述第一开关元件M1之间。具体连接方向可以参考图2进行理解。所述二极管D0用于屏蔽两侧电路间的信号影响。
正如前文介绍,所述执行开关元件M3应用于充电信号接收电路,所述充电信号接收电路至少支持ChaoJi模式的技术形式。图2中,D1,CC1,R4’均为所述充电信号接收电路的一部分,可结合图1进行理解,上述元件的具体功能与本申请关联不大,在此不进行展开描述。
较优地,所述充电信号接收电路包括第一工作回路13和第二工作回路14,所述第一工作回路13配合ChaoJi模式的充电信号输出电路20工作,所述ChaoJi模式的充电信号输出电路20包括车辆插头侧电路15和充电机侧电路16。所述第二工作回路14用于配合非ChaoJi模式的充电信号输出电路工作。所述执行开关元件M3用于通断所述第一工作回路13。如此配置,预约充电状态下可与所述ChaoJi模式的充电桩配合使用,从而完整实现所述ChaoJi模式的预约充电流程。
所述非ChaoJi模式的充电信号输出电路的技术形式包括CHAdeMO模式、GB/T模式、CCS1模式和CCS2模式中的至少一者。CHAdeMO模式、GB/T模式、CCS1模式和CCS2模式的具体工作原理和相关标准,可参考本领域公知常识进行理解,在此不进行展开描述。如此配置,所述充电信号接收电路的适用性更佳。
本发明一实施例的所述充电信号接收电路按照如下流程进行工作。
Step1:初始状态时,MCU的输出信号S2’_LOCK和S2’_UNCLOCK都为低,M1、M2、M3和M4均为截止状态,此时相当于特定的常开开关(即
M3)打开.
Step2:当控制器接到预约充电的指令后,S2’_LOCK输出高,此时M1的栅极为高电平,M1闭合,使得M4的栅极变为低电平,M4闭合,进而使得Battery上的电压,通过M4、R9和R3到达M3的栅极,使得M3的栅极为高电平,M3闭合,相当于特定的常开开关闭合。
Step3:随后,控制下电,进入休眠模式,MCU的输出信号S2’_LOCK和S2’_UNCLOCK输出均为低,但Battery上的电压,仍可通过M4、R9和R3到达M1的栅极,使得M1的栅极仍为高电平,M1闭合,实现自锁,不依赖MCU的输出状态,维持住特定的常开开关的闭合状态。
Step4:预约时间到时,充电桩侧一信号开关闭合,由于M3处于闭合状态,形成了回路,因此所述充电信号接收电路中特定的检测点的电压发生变化,使控制器进入工作模式,进而控制车辆进行充电。充电桩侧一信号开关闭合导致特定的检测点的电压变化的具体逻辑和本申请关联不大,在此不进行展开描述。
Step5:充电结束后,S2’_UNCLOCK输出切换为高,M2的栅极为高,M2闭合,低电平由M2、R3传至M1的栅极,M1断开,使得M4的栅极为高电平,M4断开,进而使得M3的栅极为低电平,M3断开(即特定的常开开关断开)。
Step6:S2’_UNCLOCK输出切换为低,M2的栅极为低,M2断开,M1、M3、M4的状态不会发生改变。此时,MCU的输出信号S2’_LOCK和S2’_UNCLOCK输出都为低,M1、M2、M3和M4均为截止状态,所述充电信号接收电路又恢复到了充电前的初始状态。此时可以响应新的充电操作指令。
综上所述,本实施例提供的所述自锁电路包括第一开关元件和第二开关元件。所述第一开关元件的控制端用于获取闭合控制信号;所述第一开关元件的第一连接端用于连接电源,所述第一开关元件的第二连接端用于接地;所述第二开关元件的控制端与所述第一开关元件的第一连接端连接,所述第二开关元件的第一连接端用于连接电源,所述第二开关元件的第二连接端与
所述第一开关元件的控制端连接。如此配置,当所述第一开关元件获取所述闭合控制信号之后,所述第一开关元件和所述第二开关元件可以保持长期闭合状态而不再需要外部控制信号进行限制,基于上述结构可以进一步控制特定的常开开关在没有控制信号的前提下保持闭合,满足了控制器休眠和降低能耗和/或成本的设计需求,解决了现有技术中存在的问题。本实施例还具有结构简单、功能完整、成本低的有益效果。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本发明技术方案的保护范围。
Claims (10)
- 一种自锁电路,其特征在于,所述自锁电路包括第一开关元件和第二开关元件,其中,所述第一开关元件被配置为:所述第一开关元件的控制端为高电平时,所述第一开关元件的连接端闭合两侧电路;所述第一开关元件的控制端为低电平时,所述第一开关元件的连接端断开两侧电路;所述第二开关元件被配置为:所述第二开关元件的控制端为低电平时,所述第二开关元件的连接端闭合两侧电路;所述第二开关元件的控制端为高电平时,所述第二开关元件的连接端断开两侧电路;所述第一开关元件的控制端用于获取闭合控制信号;所述第一开关元件的第一连接端用于连接电源,所述第一开关元件的第二连接端用于接地;所述第二开关元件的控制端与所述第一开关元件的第一连接端连接,所述第二开关元件的第一连接端用于连接电源,所述第二开关元件的第二连接端与所述第一开关元件的控制端连接。
- 根据权利要求1所述的自锁电路,其特征在于,所述自锁电路还包括第三开关元件,所述第三开关元件的工作逻辑和所述第一开关元件相同;其中,所述第三开关元件的控制端用于获取断开控制信号,所述第三开关元件的第一连接端与所述第二开关元件的第二连接端连接,所述第三开关元件的第二连接端用于接地。
- 根据权利要求2所述的自锁电路,其特征在于,所述自锁电路还包括执行开关元件,所述执行开关元件的工作逻辑和所述第一开关元件相同;其中,所述执行开关元件的控制端与所述第二开关元件的第二连接端连接,所述执行开关元件的连接端用于连接外部元件;所述自锁电路还包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻和第九电阻;所述第一开关元件的控制端用于通过所述第一电阻获取所述闭合控制信 号,所述第一电阻与所述第一开关元件连接的一端还用于通过所述第五电阻接地;所述第一开关元件的第一连接端用于通过所述第二电阻连接电源;所述第二开关元件的第二连接端通过所述第九电阻与所述第三开关元件的第一连接端连接,所述第二开关元件的第二连接端通过所述第九电阻和所述第三电阻与所述第一开关元件的控制端连接;所述第三开关元件的控制端用于通过所述第四电阻获取所述断开控制信号;所述第三开关元件的第二连接端还通过所述第七电阻与自身的控制端连接;所述第二开关元件的第二连接端还通过所述第八电阻连接所述执行开关元件的控制端,所述执行开关元件的用于接地的一连接端还通过所述第六电阻与自身的控制端连接。
- 根据权利要求3所述的自锁电路,其特征在于,所述自锁电路还包括二极管,所述二极管连接于所述第一电阻和所述第一开关元件之间。
- 根据权利要求1所述的自锁电路,其特征在于,所述自锁电路还包括执行开关元件,所述执行开关元件的工作逻辑和所述第一开关元件相同;其中,所述执行开关元件的控制端与所述第二开关元件的第二连接端连接,所述执行开关元件的连接端用于连接外部元件。
- 根据权利要求5所述的自锁电路,其特征在于,所述执行开关元件应用于ChaoJi模式的充电信号接收电路。
- 根据权利要求6所述的自锁电路,其特征在于,所述充电信号接收电路包括第一工作回路和第二工作回路,所述第一工作回路用于配合ChaoJi模式的充电信号输出电路工作,所述第二工作回路用于配合非ChaoJi模式的充电信号输出电路工作,所述执行开关元件用于通断所述第一工作回路。
- 根据权利要求6所述的自锁电路,其特征在于,所述非ChaoJi模式的充电信号输出电路的技术形式包括CHAdeMO模式、GB/T模式、CCS1模式和CCS2模式中的至少一者。
- 根据权利要求6所述的自锁电路,其特征在于,所述自锁电路响应控 制器的控制信号工作,所述充电信号接收电路至少工作于正常充电工况、断电工况和充电预约工况;在所述正常充电工况下,所述控制器处于唤醒状态,在所述断电工况和所述充电预约工况下,所述控制器处于休眠状态。
- 根据权利要求9所述的自锁电路,其特征在于,在所述断电工况下,所述执行开关元件断开;在所述充电预约工况下,所述执行开关元件闭合。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210891590.6 | 2022-07-27 | ||
CN202210891590.6A CN115102261A (zh) | 2022-07-27 | 2022-07-27 | 自锁电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024022219A1 true WO2024022219A1 (zh) | 2024-02-01 |
Family
ID=83298361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/108390 WO2024022219A1 (zh) | 2022-07-27 | 2023-07-20 | 自锁电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115102261A (zh) |
WO (1) | WO2024022219A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12103406B2 (en) | 2022-09-28 | 2024-10-01 | Delphi Technologies Ip Limited | Systems and methods for integrated gate driver for inverter for electric vehicle |
US12122251B2 (en) | 2022-11-22 | 2024-10-22 | BorgWarner US Technologies LLC | Systems and methods for bidirectional message architecture for inverter for electric vehicle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115102261A (zh) * | 2022-07-27 | 2022-09-23 | 联合汽车电子有限公司 | 自锁电路 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009247091A (ja) * | 2008-03-31 | 2009-10-22 | Ricoh Co Ltd | 充放電制御装置および充放電制御方法 |
EP2230755A1 (en) * | 2009-03-19 | 2010-09-22 | Dialog Semiconductor GmbH | Charge current reduction for current limited switched power supply |
CN111883081A (zh) * | 2020-07-28 | 2020-11-03 | 重庆惠科金渝光电科技有限公司 | 显示驱动电路及显示面板 |
CN114006439A (zh) * | 2021-11-23 | 2022-02-01 | 北京云迹科技有限公司 | 一种应用于多种充电设备的充电桩 |
CN216851360U (zh) * | 2022-01-07 | 2022-06-28 | 深圳市朗科智能电气股份有限公司 | 一种锂电池充电钳位自锁电路 |
CN115102261A (zh) * | 2022-07-27 | 2022-09-23 | 联合汽车电子有限公司 | 自锁电路 |
-
2022
- 2022-07-27 CN CN202210891590.6A patent/CN115102261A/zh active Pending
-
2023
- 2023-07-20 WO PCT/CN2023/108390 patent/WO2024022219A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009247091A (ja) * | 2008-03-31 | 2009-10-22 | Ricoh Co Ltd | 充放電制御装置および充放電制御方法 |
EP2230755A1 (en) * | 2009-03-19 | 2010-09-22 | Dialog Semiconductor GmbH | Charge current reduction for current limited switched power supply |
CN111883081A (zh) * | 2020-07-28 | 2020-11-03 | 重庆惠科金渝光电科技有限公司 | 显示驱动电路及显示面板 |
CN114006439A (zh) * | 2021-11-23 | 2022-02-01 | 北京云迹科技有限公司 | 一种应用于多种充电设备的充电桩 |
CN216851360U (zh) * | 2022-01-07 | 2022-06-28 | 深圳市朗科智能电气股份有限公司 | 一种锂电池充电钳位自锁电路 |
CN115102261A (zh) * | 2022-07-27 | 2022-09-23 | 联合汽车电子有限公司 | 自锁电路 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12103406B2 (en) | 2022-09-28 | 2024-10-01 | Delphi Technologies Ip Limited | Systems and methods for integrated gate driver for inverter for electric vehicle |
US12122251B2 (en) | 2022-11-22 | 2024-10-22 | BorgWarner US Technologies LLC | Systems and methods for bidirectional message architecture for inverter for electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN115102261A (zh) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024022219A1 (zh) | 自锁电路 | |
CN104132420B (zh) | 低功耗待机电路装置和空调器及空调器的控制方法 | |
KR20230022914A (ko) | 전기자동차 충전 제어 장치 및 방법 | |
CN110336354A (zh) | 电池管理系统的电源控制电路 | |
CN105774751A (zh) | 一种智能信息化系统及智能信息化控制方法 | |
CN114701398A (zh) | 一种电动汽车交流充电cp信号唤醒和休眠电路 | |
CN206574958U (zh) | 带有定位功能的智能电源驳接插座 | |
US20210365101A1 (en) | Control system for controlling intelligent system to reduce power consumption based on bluetooth device | |
CN206922634U (zh) | 电源转换器及适用于该电源转换器的用电设备 | |
CN112706628B (zh) | 充电电路的唤醒系统 | |
CN104137023B (zh) | 电源供应器及其控制电路与省电方法 | |
CN203520299U (zh) | 一种定时开机控制电路 | |
TW200947197A (en) | An interactive auto-power-saving switch assembly | |
CN202737533U (zh) | 车用蓄电池放电管理电路结构 | |
CN115158046A (zh) | 控制方法、可读存储介质及电动车辆 | |
CN112564474A (zh) | 一种车载辅助电源休眠及延时断电电路及系统 | |
CN109510257B (zh) | 从off状态唤醒电力系统 | |
CN206461639U (zh) | 一种can收发模块 | |
CN207164696U (zh) | 一种低功耗电源 | |
CN212709048U (zh) | 一种交流充电cp信号的唤醒和休眠电路 | |
CN111332152A (zh) | 一种应用于电动自行车bms的激活休眠电路和方法 | |
CN112564473B (zh) | 一种车载辅助电源电路及系统 | |
CN203224835U (zh) | 一种实现电脑零功耗待机的智能控制装置 | |
CN201663307U (zh) | 延时关闭电源电路 | |
CN103580514B (zh) | 电源供应系统及其电源控制电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23845430 Country of ref document: EP Kind code of ref document: A1 |