WO2024022019A1 - 多模块数据采集器的采样控制方法及多模块数据采集器 - Google Patents

多模块数据采集器的采样控制方法及多模块数据采集器 Download PDF

Info

Publication number
WO2024022019A1
WO2024022019A1 PCT/CN2023/104430 CN2023104430W WO2024022019A1 WO 2024022019 A1 WO2024022019 A1 WO 2024022019A1 CN 2023104430 W CN2023104430 W CN 2023104430W WO 2024022019 A1 WO2024022019 A1 WO 2024022019A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal acquisition
module
sampling
dynamic signal
acquisition module
Prior art date
Application number
PCT/CN2023/104430
Other languages
English (en)
French (fr)
Inventor
陈磊
韩捷
王震
李自刚
郭闯
雷文平
王学五
邢玉峰
王丽雅
Original Assignee
郑州恩普特科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州恩普特科技股份有限公司 filed Critical 郑州恩普特科技股份有限公司
Publication of WO2024022019A1 publication Critical patent/WO2024022019A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/05Digital input using the sampling of an analogue quantity at regular intervals of time, input from a/d converter or output to d/a converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods

Definitions

  • the invention belongs to the field of intelligent manufacturing and equipment predictive maintenance, and specifically relates to a sampling control method of a multi-module data collector and a multi-module data collector.
  • the vibration signals generated by rotating mechanical equipment during operation can reflect the operating conditions of the mechanical equipment and provide an important basis for fault diagnosis.
  • phase and amplitude are important objects for field equipment detection.
  • Computers are generally used to perform spectrum analysis on discrete data of a certain length.
  • FFT Fast Fourier transform
  • the analysis accuracy depends on aliasing effects, quantization errors, spectrum leakage, and fence effects.
  • the aliasing effect and quantization error can be controlled within the accuracy range through the aliasing filter and the matching precision analog-to-digital converter; as for the spectrum leakage and fence effect, if the intercepted discrete signal does not meet the full period condition, it will produce Large errors affect the accuracy of vibration analysis and are not conducive to fault diagnosis.
  • the object of the present invention is to provide a sampling control method of a multi-module data collector and a multi-module data collector to achieve full-cycle synchronous sampling among multiple collection modules in digital collection equipment.
  • a sampling control method for a multi-module data collector of the present invention includes the following steps:
  • the key-phase signal acquisition channel of the dynamic signal acquisition module is connected to the same key-phase signal, and the main control module in the collector sends synchronization sampling instructions to each dynamic signal acquisition module that needs to be synchronized.
  • Each dynamic signal acquisition module that needs to be synchronized is based on The received key-phase signal determines the sampling frequency, and according to the synchronous sampling command and the determined sampling frequency, the vibration signal acquisition channels corresponding to each dynamic signal acquisition module are used for synchronous sampling to achieve synchronous full-cycle sampling between each dynamic signal acquisition module.
  • the present invention uses the main control module to uniformly issue synchronization sampling instructions to each dynamic signal acquisition module that needs to be synchronized to ensure that sampling is executed simultaneously between modules, and a unified key is used between each dynamic signal acquisition module.
  • the phase signals are sampled at the same sampling frequency, and each channel in the dynamic signal acquisition module of the present invention is also sampled synchronously, thereby ensuring synchronous full-cycle sampling between modules.
  • the key phase signal is the signal of the key phase sensor installed on the vibration equipment. In actual work, the rotor of the vibration equipment generates a key phase pulse every one rotation. The equipment speed can be calculated based on the time interval of the key phase pulse.
  • the present invention can meet the needs of multi-channel cross comparison during the subsequent signal analysis and fault diagnosis process of the equipment, facilitate multi-channel data fusion analysis, and increase the accuracy of analysis and diagnosis. performance and reliability.
  • each dynamic signal acquisition module that do not need to be synchronized when there is no need for synchronous sampling between dynamic signal acquisition modules and there are key-phase signals, the key-phase signal acquisition channels of each dynamic signal acquisition module that do not need to be synchronized are connected to their respective corresponding key-phase signals; the main control module sends signals to each different key-phase signal.
  • the dynamic signal acquisition module that needs to be synchronized sends a synchronous sampling instruction.
  • Each dynamic signal acquisition module that does not need to be synchronized determines the corresponding sampling frequency based on the key phase signal received by each, and uses its corresponding sampling frequency based on the determined sampling frequency and the respective key phase signal. Multiple vibration signal acquisition channels are sampled simultaneously.
  • the main control module sends synchronous sampling instructions to each dynamic signal acquisition module, and each dynamic signal acquisition module uses multiple corresponding vibration signal acquisitions according to the respective sampling frequencies set by the main control module. Channels are sampled synchronously.
  • the implementation of synchronous sampling of the vibration signal acquisition channels in the dynamic signal acquisition module includes: Including: the counter sets the count value according to the sampling frequency of the vibration signal acquisition channel that needs to be synchronously sampled to trigger each vibration signal acquisition channel to sample at the same time.
  • the sampling holder uses the counter to count and maintain the sampled vibration signal for subsequent processing.
  • the collected vibration signals are converted to analog-to-digital format.
  • the present invention sets the count value according to the sampling frequency and uses the same counter to count to set the sampling pulse.
  • Each channel in the dynamic signal acquisition module samples based on the pulse information sent out by the counter after counting, and then uses The sample holder performs timing maintenance, and the timer is also used during timing maintenance to convert the collected vibration signals into digital signals in sequence according to time, thereby ensuring synchronous sampling of each channel in the acquisition module. Therefore, the present invention satisfies the synchronous sampling of multiple channels within a single acquisition module for subsequent signal analysis and fault diagnosis of the equipment, meets the needs of multi-channel cross comparison, facilitates multi-channel data fusion analysis, and increases the efficiency of analysis and diagnosis. Accuracy and reliability.
  • main control module sends a synchronization sampling instruction to each dynamic signal acquisition module that needs to be synchronized, it also needs to send a synchronization request instruction to each dynamic signal acquisition module that needs to be synchronized.
  • Each dynamic signal acquisition module needs to reply after receiving the synchronization request instruction. Sync ready status.
  • a multi-module data collector of the present invention includes a main control module and an expansion module; the expansion module includes a plurality of dynamic signal collection modules, and the main control module is connected to multiple dynamic signal collection modules; the dynamic signal collection module includes A plurality of vibration signal acquisition channels and key phase signal acquisition channels; the key phase signal acquisition channel is used to collect the key phase signal of the key phase sensor provided on the mechanical equipment; the vibration signal acquisition channel is used to collect the vibration signal of the mechanical equipment;
  • the main control module and multiple dynamic signal acquisition modules adopt a sampling control method of a multi-module data collector of the present invention to perform synchronous sampling.
  • the present invention uses the main control module to uniformly issue synchronization sampling instructions to each dynamic signal acquisition module that needs to be synchronized to ensure that sampling is executed simultaneously between modules, and a unified key is used between each dynamic signal acquisition module.
  • the same sampling frequency is set for the phase signal and the same sampling time is set based on the same key phase signal to ensure synchronous full cycle sampling.
  • the rotor when a key phase sensor and a vibration sensor are installed to measure the dynamic vibration signal of a rotating machine, the rotor generates a key phase pulse for each rotation, and the equipment speed can be calculated based on the time interval of the key phase pulse. according to The rotation speed sets the number of sampling points per cycle to obtain the sampling frequency of the vibration signal.
  • the present invention can satisfy the synchronous whole-cycle sampling between acquisition modules and the synchronous sampling of multiple channels within a single acquisition module, so as to meet the needs of multi-channel cross comparison in the subsequent signal analysis and fault diagnosis process of the equipment. It facilitates multi-channel data fusion analysis and increases the accuracy and reliability of analysis and diagnosis.
  • the expansion module also includes at least one process signal acquisition module and at least one switching module; the process signal acquisition module is used to collect process signals including temperature and/or pressure; and the switching module is used to collect switching signals. and control; the process signal acquisition module and switching module are connected to the main control module.
  • the main control module is connected to the dynamic signal acquisition module through a USB bus interface, and is used to send synchronization request instructions to the dynamic signal acquisition module and receive vibration signals of mechanical equipment collected by the dynamic signal acquisition module;
  • the main control module uses The CAN bus interface is connected to the process signal acquisition module and the switching module, and is used to receive signals collected by the process signal acquisition module and the switching module;
  • the main control module is also connected to the dynamic signal acquisition module through the GPIO interface, and is used to send dynamic signals to the dynamic signal acquisition module.
  • the acquisition module sends synchronous sampling instructions.
  • the GPIO port used to send synchronous sampling instructions is connected to the external interrupt interface of each dynamic signal acquisition module.
  • synchronous sampling of multiple vibration signal acquisition channels in the dynamic signal acquisition module is achieved through a synchronous sampling circuit in the module;
  • the synchronous sampling circuit includes: an analog-to-digital converter, a multi-way switch, a counter, and a dynamic signal acquisition circuit.
  • Each vibration signal acquisition channel of the acquisition module corresponds to the connected sampling holder one by one; the counter is used to set the count value according to the sampling frequency of the vibration signal acquisition channel that needs to be synchronously sampled, so as to trigger each vibration signal acquisition channel to sample at the same time; the sampling The holder is connected to the counter and is used to time and maintain the vibration signal obtained by sampling; all sample holders are connected to the analog-to-digital converter through a multi-way switch, and the multi-way switch enables all sample holders to be connected to the analog-to-digital converter one by one, The vibration signal held by the sampling and holding device is sequentially input to the analog-to-digital converter for analog-to-digital conversion.
  • the present invention sets the count value according to the sampling frequency and uses the same counter and the same sampling starting time for sampling.
  • Each channel in the dynamic signal acquisition module sends out a signal based on the completion of the counter count.
  • the pulse information is sampled, and then a sample and hold device is used for timing and maintenance.
  • the same timer is used for timing and maintenance.
  • the analog-to-digital converter converts the sampled vibration signal into a digital signal in sequence according to the timing time. This achieves synchronous sampling of each channel in the acquisition module.
  • the present invention satisfies the synchronous sampling of multiple channels within a single acquisition module for subsequent signal analysis and fault diagnosis of the equipment, meets the needs of multi-channel cross comparison, facilitates multi-channel data fusion analysis, and increases the efficiency of analysis and diagnosis. Accuracy and reliability.
  • Figure 1 is a schematic diagram of the composition of the modular collector of the present invention.
  • FIG. 2 is a schematic diagram of the electrical connection of the interface between modules of the present invention.
  • Figure 3 is a relationship diagram between the key phase signal and the synchronous sampling vibration signal of the present invention.
  • Figure 4 is a flow chart of synchronous sampling control of the present invention.
  • Figure 5 is a structural block diagram of synchronous sampling and sampling frequency setting inside the acquisition module of the present invention.
  • Figure 6 is a schematic diagram of the synchronous sampling control flow between modules of the present invention.
  • the collector of the present invention adopts a modular structural design, and the collector includes a main control module and an expansion module.
  • the expansion modules include dynamic signal acquisition module, process signal acquisition module and switching module.
  • the dynamic signal acquisition module is used to collect dynamic signals such as vibration of mechanical equipment
  • the process signal acquisition module is used to collect process signals such as temperature and pressure
  • the switching module is used to collect and control switching signals.
  • the main control module mainly completes the sampling control, preprocessing and data communication and forwarding of each dynamic signal acquisition module signal to the server.
  • the connection between the main control module and the expansion module adopts the form of side connection, and the cascade of modules is realized through the plug-in interface.
  • the main control module and each expansion module are connected together through side interfaces and then installed on the guide rail of the chassis or cabinet.
  • the main control module controls the work of each expansion module, collects data from each expansion module, and performs edge computing and Communication forwarding of data to services.
  • the main control module establishes electrical connections with the expansion modules through the USB bus, CAN bus, and GPIO interfaces; the USB bus interface is used to communicate with the dynamic vibration module, and the CAN bus interface is used to communicate with the process module and For communication between switching modules, GPIO is used to set the trigger signal for synchronous sampling between dynamic modules.
  • the synchronous sampling method of the modular collector is mainly aimed at multiple dynamic signal acquisition modules.
  • the interface connecting the main control module and the dynamic signal acquisition module is the USB interface and GPIO port, where USB is used for data transmission and sending synchronization request instructions.
  • the synchronization request instruction is used to notify the dynamic signal acquisition module to enter the synchronization ready state of synchronous sampling.
  • the GPIO is used for sampling trigger control, that is, to send the synchronous sampling instruction.
  • the synchronous sampling instruction is used to notify each dynamic signal acquisition module to sample at the same time.
  • each dynamic signal acquisition module includes a key phase signal acquisition channel.
  • the key phase signal acquisition channel is used to collect the key phase signal of the key phase sensor installed on the vibration equipment; the vibration signal acquisition channel is used to collect the vibration signal of the vibration equipment.
  • a key phase sensor and a vibration sensor are installed on the rotating machinery.
  • the key phase sensor is installed in the radial direction of the outer circumference of the rotating shaft.
  • a key phase pulse signal the key phase sensor is connected to the key phase signal acquisition channel;
  • the vibration sensor is connected to the vibration signal acquisition channel.
  • the rotor When measuring the dynamic vibration signal of rotating machinery, the rotor generates a key phase pulse every time it rotates.
  • the equipment speed can be calculated based on the time interval of the key phase pulse. Set the number of sampling points per cycle according to the rotation speed to obtain the sampling frequency of the vibration signal.
  • the edge of the key phase pulse arrives, the sampling is triggered, and a dynamic vibration waveform of a certain length is continuously collected to achieve synchronous full-cycle sampling.
  • Synchronous sampling control of each vibration signal acquisition channel in the dynamic signal acquisition module The sampling frequency is set by the counting value of the counter.
  • Each vibration signal acquisition channel uses the same sampling clock to ensure the synchronization of acquisition; then through the multi-way switch, the maintained The signal is converted, and the sample and hold circuit of each channel uses the same clock signal to ensure the synchronization of sampling.
  • the dynamic signal acquisition module adopts the synchronous sampling mode by default. Depending on whether there is a key phase signal, set whether the dynamic signal acquisition module adopts the full cycle sampling mode. When there is a key phase signal, the synchronous full cycle mode is used. When there is no key phase signal, only the sampling synchronization of each channel is maintained.
  • Some dynamic signal acquisition modules set whether synchronous sampling is required according to needs. Sometimes some dynamic signal acquisition modules need to synchronously sample, and other parts do not need synchronous sampling; sometimes all dynamic signal acquisition modules need to synchronously sample. For example, if some dynamic signal acquisition modules are set at different measuring points on the same shaft of a rotating machine to measure the vibration signal of the same rotor, these dynamic signal acquisition modules need to be sampled synchronously; while another part of the dynamic signal acquisition modules uses For measuring vibration signals of other equipment, there is no need for synchronous sampling between these two parts of dynamic signal acquisition modules.
  • sampling parameters can be set through software.
  • the sampling parameters include sampling frequency and the sampling frequency is set based on experience.
  • the main control module sends sampling parameters to each dynamic signal acquisition module according to sampling and starts sampling.
  • each dynamic signal acquisition module receives its own independent key phase channel signal.
  • the key phase channels of each dynamic vibration module are connected together, and the same sampling parameters are set according to the key phase pulse for sampling.
  • each module After the task currently being executed by each module is completed, it sends a synchronization ready signal to the main control module and enters the sampling waiting state.
  • the main control module receives all synchronization ready signals, it sends sampling control signals to each dynamic signal acquisition module.
  • Each dynamic signal acquisition module receives the control signal through hardware interrupt and triggers the AD converter in the dynamic signal acquisition module. (analog-to-digital converter) works to achieve synchronous sampling.
  • the main control module requests data from the dynamic signal acquisition module, that is, issues a synchronization request command;
  • each dynamic signal acquisition module After each dynamic signal acquisition module receives the master control instruction, it samples according to the sampling parameters, and the synchronization between modules is not guaranteed;
  • Each dynamic signal acquisition module transmits the sampling result data to the main control respectively.
  • Each dynamic signal acquisition module that needs to be synchronized uses the same key phase signal and triggers sampling externally;
  • the main control requests data from each dynamic signal acquisition module that needs to be synchronized;
  • each dynamic signal acquisition module After receiving the main control sampling request, each dynamic signal acquisition module returns the synchronization ready status to the main control and waits for the start sampling instruction;
  • the main control sends synchronization signals to each module through the IO port, that is, synchronous sampling instructions. After each module receives the synchronization signal, it starts sampling;
  • each dynamic signal acquisition module Through external synchronization pulses and the internal logic of each dynamic signal acquisition module, the sampling synchronization between modules and within modules is ensured.
  • Each module transmits data to the main control module respectively and generates data time tags in groups.
  • Each dynamic signal acquisition module uses its own independent key phase signal and externally triggered sampling;
  • the main control requests data from each dynamic signal acquisition module
  • each dynamic signal acquisition module After each dynamic signal acquisition module receives the main control sampling request, it calculates its respective rotation speed according to the key phase pulse interval, and sets the sampling rate according to the rotation speed;
  • Each dynamic signal acquisition module transmits sampling parameters and sampling data to the main control respectively, and synchronization between modules is not guaranteed.
  • the sampling frequency is obtained by dividing the frequency by a counter.
  • the counter works in a descending mode. When the count value is equal to the set value, it outputs a pulse, resets the counter, and counts again. In this way, the signal output on an IO port controlled by the counter is equal to the sampling frequency. Connect the sampling frequency clock to the sample and hold on the acquisition channel.
  • the vibration signal acquisition channel 1 (vibration signal acquisition channel) corresponds to the sample and hold.
  • vibration signal acquisition channel 2 corresponds to sample and hold 2 (specifically a sample holder)
  • vibration signal acquisition channel N corresponds to sample hold N (specifically a sample holder)
  • the retained signals are converted one by one by the analog-to-digital converter (analog-to-digital conversion in Figure 5) to achieve synchronous data collection of the signal.
  • FIG. 6 shows the synchronous full-cycle sampling control process between various dynamic signal acquisition modules.
  • the main control module sends synchronization request instructions to each module at once through the USB interface; after receiving the instructions, each module enters the waiting synchronization pulse state in turn; after the main control module receives all ready signals, it sends synchronization pulses and synchronization pulse signals through the GPIO port.
  • each dynamic signal acquisition module detects synchronization pulses through edge-triggered IRQ interrupts. If there is a key phase signal at this time, when the next key phase pulse arrives after the dynamic signal acquisition module receives the synchronization pulse, it will send out a sampling pulse and start sampling. If there is no key phase signal at this time, each dynamic signal acquisition module will immediately send out sampling pulses to start sampling to achieve synchronization between modules.
  • the steps of the synchronous sampling control process between specific modules are as follows:
  • the main control module sends synchronous sampling requests to each dynamic signal acquisition module in sequence through the USB interface;
  • each dynamic signal acquisition module After receiving the request instructions in sequence, each dynamic signal acquisition module replies with a ready signal to the main control module and enters a state of waiting for synchronization pulses.
  • the main control module After receiving all ready signals, the main control module sends synchronization pulses through the GPIO port.
  • the synchronization pulse signals are connected to the external interrupt interface of each dynamic signal acquisition module.
  • Each vibration module detects synchronization pulses through edge-triggered IRQ interrupts, and determines whether there is a key phase signal for sampling;
  • each dynamic signal acquisition module will send out a sampling pulse to start sampling when the next key phase pulse arrives.
  • the invention relates to a synchronous sampling control method of a multi-module data collector, belonging to the field of intelligent manufacturing and equipment predictive maintenance.
  • the method includes the following contents: 1) Use the structure of main control + expansion module to design the data collector; 2) Use USB communication between the main control module and the extended dynamic signal acquisition module to realize data interaction; 3) Extended dynamic signal Within the acquisition module, synchronous full-cycle sampling of multiple channels within the module is achieved through circuit design and logic control; 4) Between multiple expanded dynamic signal acquisition modules, synchronous integration between modules is achieved through circuit design and program logic control. Periodic sampling.
  • the circuit and program design of the present invention completes the synchronous sampling of multiple acquisition channels within and between modules, which is of great significance for data fusion and cross-analysis of multi-channel signals and improving the reliability of equipment diagnosis.
  • a sampling control method for a multi-module data collector of the present invention includes the following steps:
  • each dynamic signal acquisition module that need to be synchronized When synchronized sampling is required between the dynamic signal acquisition modules in the collector and there are key-phase signals, the key-phase signal acquisition channels of each dynamic signal acquisition module that need to be synchronized are connected to the same key-phase signal, and the main channel in the collector is
  • the control module sends synchronous sampling instructions to each dynamic signal acquisition module that needs to be synchronized.
  • Each dynamic signal acquisition module that needs to be synchronized determines the sampling frequency based on the received key phase signal, and uses each dynamic signal simultaneously according to the set sampling frequency and synchronous sampling instructions.
  • the vibration signal acquisition channels corresponding to the acquisition module are sampled synchronously to achieve synchronous full-cycle sampling between each dynamic signal acquisition module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种多模块数据采集器的采样控制方法,包括:在采集器中的动态信号采集模块之间需要同步采样且有键相信号时,使各个需要同步的动态信号采集模块的键相信号采集通道连接同一个键相信号,并使采集器中的主控模块向各个需要同步的动态信号采集模块发送同步采样指令,各个需要同步的动态信号采集模块依据接收的键相信号确定采样频率,并依据同步采样指令和确定的采样频率同时使用各个动态信号采集模块对应的振动信号采集通道同步进行采样,以实现各个动态信号采集模块间的同步整周期采样,由此,本发明用以实现多个采集模块间的整周期同步采样。还提供了一种多模块数据采集器。

Description

多模块数据采集器的采样控制方法及多模块数据采集器 技术领域
本发明属于智能制造与设备预测性维护领域,具体涉及一种多模块数据采集器的采样控制方法及多模块数据采集器。
背景技术
旋转机械设备运行时产生的振动信号能够反映机械设备的运行情况,为故障诊断提供重要的依据。其中,相位和振幅是现场设备检测的重要对象,一般采用计算机对一定长度的离散数据进行频谱分析。但是,在利用FFT对信号进行频谱分析时,分析精度取决于混叠效应、量化误差、频谱泄露与栅栏效应。对于混叠效应和量化误差可通过混叠滤波器以及匹配精度的模数转换器控制在精度范围内;而对于频谱泄露和栅栏效应,如果所截取的离散信号不满足整周期条件,则会产生较大的误差,影响振动分析精度,不利于故障诊断。
因此,在进行设备健康管理与故障诊断的过程中,正确的完成数据采集是非常重要的一个环节。在进行信号的频谱分析和故障诊断时,需要采用整周期采样,即按照转子瞬时速度所对应的频率的某种倍数来确定旋转机械振动信号的采样频率,从而减少采集信号的能量泄露。然而,为了使得采集得到的多路信号具有可比较性,以便进行交叉对比分析和数据融合,以识别设备故障,又需要多通道的之间信号的严格同步。这给数字化采集设备,特别是工业设备振动信号的数据采集设备提出了更高的设计要求。
发明内容
本发明的目的在于提供一种多模块数据采集器的采样控制方法及多模块数据采集器,用以实现数字化采集设备中多个采集模块间的整周期同步采样。
为解决上述技术问题,本发明所提供的技术方案以及技术方案对应的有益效果如下:
本发明的一种多模块数据采集器的采样控制方法,包括如下步骤:
在采集器中的动态信号采集模块之间需要同步采样且有键相信号时,使各个需要同步 的动态信号采集模块的键相信号采集通道连接同一个键相信号,并使采集器中的主控模块向各个需要同步的动态信号采集模块发送同步采样指令,各个需要同步的动态信号采集模块依据接收的键相信号确定采样频率,并依据同步采样指令和确定的采样频率同时使用各个动态信号采集模块对应的振动信号采集通道同步进行采样,以实现各个动态信号采集模块间的同步整周期采样。
上述技术方案的有益效果为:本发明使用主控模块向各个需要同步的动态信号采集模块统一下发同步采样指令,以确保模块间同时执行采样,在各个动态信号采集模块间又使用统一的键相信号设定相同的采样频率进行采样,而本发明动态信号采集模块内各个通道也是同步采样的,从而确保模块间的同步整周期采样。具体地,键相信号是安装在振动设备上的键相传感器的信号,实际工作中,振动设备转子每旋转一周产生一个键相脉冲,可以根据键相脉冲的时间间隔计算得到设备转速。根据转速设定每周期采样点数,得到振动信号的采样频率,当键相脉冲的边沿到来时触发采样,连续采集一定长度的动态振动波形,实现同步整周期采样。由此,本发明可以满足采集模块间的同步整周期采样以供后续对设备的信号分析与故障诊断过程中,满足多通道交叉对比的需求,方便进行多通道数据融合分析,增加分析诊断的准确性和可靠性。
进一步地,在动态信号采集模块之间不需要同步采样且有键相信号时,各个不需要同步的动态信号采集模块的键相信号采集通道连接各自对应的键相信号;主控模块向各个不需要同步的动态信号采集模块发送同步采样指令,各个不需要同步的动态信号采集模块依据各自接收的键相信号确定对应的采样频率,并依据确定的采样频率和各自的键相信号使用各自对应的多个振动信号采集通道同步进行采样。
进一步地,在无键相信号时,主控模块向各个动态信号采集模块发送同步采样指令,各个动态信号采集模块依据由主控模块设定的各自的采样频率使用各自对应的多个振动信号采集通道同步进行采样。
进一步地,所述动态信号采集模块内的振动信号采集通道同步进行采样的实现方式包 括:计数器依据需要同步采样的振动信号采集通道的采样频率设置计数值,以触发各个振动信号采集通道同时进行采样,采样保持器使用所述计数器进行计数保持采样得到的振动信号,以供后续将采集得到的振动信号进行模数转换。
上述技术方案的有益效果为:本发明依据采样频率设定计数值且采用同一个计数器进行计数以设定采样脉冲,动态信号采集模块内各个通道依据计数器计数完毕发出的脉冲信息进行采样,然后使用采样保持器进行计时保持,计时保持时也采用该计时器,依据时间依次将采集得到的振动信号转换成数字信号,从而确保采集模块内的各个通道的同步采样。由此,本发明满足单个采集模块内多通道的同步采样,以供后续对设备的信号分析与故障诊断过程中,满足多通道交叉对比的需求,方便进行多通道数据融合分析,增加分析诊断的准确性和可靠性。
进一步地,主控模块向各个需要同步的动态信号采集模块发送同步采样指令之前,还需要向各个需要同步的动态信号采集模块发送同步请求指令,各个动态信号采集模块接收到同步请求指令后需要回复同步就绪状态。
本发明的一种多模块数据采集器,该采集器包括主控模块和扩展模块;扩展模块包括多个动态信号采集模块,主控模块与多个动态信号采集模块均连接;动态信号采集模块包括多个振动信号采集通道和键相信号采集通道;所述键相信号采集通道用于采集设置于机械设备上的键相传感器的键相信号;振动信号采集通道用于采集机械设备的振动信号;所述主控模块和多个动态信号采集模块采用如本发明的一种多模块数据采集器的采样控制方法进行同步采样。
上述技术方案的有益效果为:本发明使用主控模块向各个需要同步的动态信号采集模块统一下发同步采样指令,以确保模块间同时执行采样,在各个动态信号采集模块间又使用统一的键相信号设定相同的采样频率和依据相同的键相信号设定相同的采样时刻,确保同步整周期采样。具体地,当安装键相传感器和振动传感器进行旋转机械的动态振动信号测量时,转子每旋转一周产生一个键相脉冲,可以根据键相脉冲的时间间隔计算得到设备转速。根据 转速设定每周期采样点数,得到振动信号的采样频率,当键相脉冲的边沿到来时触发采样,又由于本发明采集模块内各个通道也是同步采样的,所以连续采集一定长度的动态振动波形,能够实现同步整周期采样。由此,本发明可以满足采集模块间的同步整周期采样也可以满足单个采集模块内多通道的同步采样,以供后续对设备的信号分析与故障诊断过程中,满足多通道交叉对比的需求,方便进行多通道数据融合分析,增加分析诊断的准确性和可靠性。
进一步地,扩展模块还包括至少一个工艺信号采集模块和至少一个开关量模块;工艺信号采集模块用于采集包括温度和/或压力在内的工艺过程信号;开关量模块用于开关量信号的采集和控制;工艺信号采集模块和开关量模块均与主控模块连接。
进一步地,所述主控模块通过USB总线接口与动态信号采集模块连接,用于向动态信号采集模块发送同步请求指令和接收动态信号采集模块采集的机械设备的振动信号;所述主控模块通过CAN总线接口与工艺信号采集模块和开关量模块连接,用于接收工艺信号采集模块和开关量模块采集的信号;所述主控模块还通过GPIO接口与动态信号采集模块连接,用于向动态信号采集模块发送同步采样指令。
进一步地,用于发送同步采样指令的GPIO口与每一个动态信号采集模块的外部中断接口相连接。
进一步地,通过模块内的同步采样电路实现所述动态信号采集模块内多个振动信号采集通道的同步采样;所述同步采样电路包括:模数转换器、多路开关、计数器、以及与动态信号采集模块的各个振动信号采集通道一一对应连接的采样保持器;计数器用于依据需要同步采样的振动信号采集通道的采样频率设置计数值,以触发各个振动信号采集通道同时进行采样;所述采样保持器连接所述计数器,用于计时保持采样得到的振动信号;所有采样保持器通过多路开关与模数转换器连接,所述多路开关使得所有采样保持器逐一与模数转换器连通,以依次将采样保持器所保持的振动信号输入至模数转换器进行模数转换。
上述技术方案的有益效果为:本发明依据采样频率设定计数值且采用同一个计数器,和相同的采样起始时刻进行采样,动态信号采集模块内各个通道依据计数器计数完毕发出的 脉冲信息进行采样,然后使用采样保持器进行计时保持,计时保持时采用同一个计时器,在多路开关的控制下,模数转换器依据计时时间依次将采样得到的振动信号转换为数字信号,从而实现采集模块内的各个通道的同步采样。由此,本发明满足单个采集模块内多通道的同步采样,以供后续对设备的信号分析与故障诊断过程中,满足多通道交叉对比的需求,方便进行多通道数据融合分析,增加分析诊断的准确性和可靠性。
附图说明
图1是本发明的模块化采集器的组成示意图;
图2是本发明的模块之间的接口电气连接示意图;
图3是本发明的键相信号和同步采样振动信号之间的关系图;
图4是本发明的同步采样控制的流程图;
图5是本发明的采集模块内部的同步采样与采样频率设定结构框图;
图6是本发明的模块之间的同步采样控制流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明了,以下结合附图及实施例,对本发明进行进一步详细说明。
一种多模块数据采集器实施例:
如图1所示,本发明采集器采用模块化的结构设计,该采集器包括主控模块和扩展模块。扩展模块包括动态信号采集模块、工艺信号采集模块和开关量模块。其中动态信号采集模块用于机械设备的振动等动态信号的采集,工艺信号采集模块用于温度和压力等工艺过程信号的采集,开关量模块用于开关量信号的采集和控制。
主控模块主要完成各个动态信号采集模块信号的采样控制、预处理和数据向服务器的通信转发。在结构上,主控模块和扩展模块的连接,采用侧方连接的形式,通过对插接口实现模块的级联。主控模块和各个扩展模块通过侧方接口的方式连接在一起后安装在机箱或机柜的导轨上。主控模块控制各个扩展模块工作,采集各个扩展模块数据,并进行边缘计算和 数据向服务的通信转发。具体地,如图2所示,主控模块通过USB总线、CAN总线、GPIO接口与扩展模块建立电气连接;其中USB总线接口用于与动态振动模块的通信,CAN总线接口用于与工艺模块和开关量模块的通信,GPIO用于动态模块之间同步采样的触发信号设定。
模块化采集器的同步采样方法主要针对的是多个动态信号采集模块进行,连接主控模块与动态信号采集模块的接口是USB接口和GPIO口,其中USB用于数据传输以及发送同步请求指令,同步请求指令用于通知动态信号采集模块进入同步采样的同步就绪状态,GPIO用于采样触发控制即发送同步采样指令,同步采样指令用于通知各个动态信号采集模块同时进行采样。
具体工作时,如图2所示,主控模块与动态信号扩展模块之间通过USB接口进行指令的下发和数据传输,主控模块与工艺模块和开关量模块之间通过CAN总线进行指令的下发和数据的传输。当需要多个动态信号采集模块同步采集时,主控模块通过GPIO口向各个动态信号采集模块发送同步脉冲。每个动态信号采集模块上除包括N个(如8个)振动信号采集通道外,都包含一个键相信号采集通道。键相信号采集通道用于采集设置于振动设备上的键相传感器的键相信号;振动信号采集通道用于采集振动设备的振动信号。
如图3所示,在旋转机械上安装键相传感器和振动传感器,键相传感器安装在转轴外周径向方向上,键相块(如图3中的黑色方块)每转过键相传感器时产生一个键相脉冲信号,键相传感器连接键相信号采集通道;振动传感器连接振动信号采集通道。当进行旋转机械的动态振动信号测量时,转子每旋转一周产生一个键相脉冲,可以根据键相脉冲的时间间隔计算得到设备转速。根据转速设定每周期采样点数,得到振动信号的采样频率,当键相脉冲的边沿到来时触发采样,连续采集一定长度的动态振动波形,实现同步整周期采样。
动态信号采集模块内各振动信号采集通道的同步采样控制,采样频率通过计数器的计数值设定,各个振动信号采集通道采用同一个采样时钟,保证采集的同步;然后通过多路开关,依次将保持的信号进行转换,各通道的采样保持电路采用同一个时钟信号,确保采样的同步性。
动态信号采集模块内部默认采用同步采样方式,根据有无键相信号的不同,设置该动态信号采集模块是否采用整周期采样方式,有键相信号时,采用同步整周期的方式。无键相信号时,仅保持各个通道的采样同步。
多个动态信号采集模块根据需要设置是否需要同步采样,有时需要一部分动态信号采集模块同步采样,另一部分不需要同步采样;有时需要全部动态信号采集模块同步采样。比如,一部分动态信号采集模块设置在旋转机械同一个转轴的不同测点处,用于测量同一个转子的振动信号,则这几个动态信号采集模块需要同步采样;而另一部分动态信号采集模块用于测量其他设备的振动信号,则这两部分动态信号采集模块之间不需要同步采样。
如图4所示,为采样控制时的流程图,当没有键相信号时,可以通过软件设定采样参数,采样参数包括采样频率且该采样频率是依据经验设定的。主控模块根据采样向各个动态信号采集模块发送采样参数,启动采样。当有键相信号且不需要各个动态信号采集模块之间同步时,因每个动态信号采集模块上都有独立的键相通道,每个动态信号采集模块接各自独立的键相通道信号。当有键相信号且需要各个动态信号采集模块间进行同步采集时,将各个动态振动模块的键相通道接在一起,并根据键相脉冲设定相同的采样参数进行采样。
当多个模块之间需要同步整周期采样时,将各个键相触发信号接到一起。键相信号的两个脉冲边沿之间的时间差可以用来计算设备转速;根据测量的转速设定每周期采样点数,即可得到采样频率。当键相脉冲边沿到来时,按照设定的采样频率触发采样,实现多个模块之间通道的同步整周期采样。模块间各通道的同步采样控制,当要实现不同振动采集模块之间的各个通道的同步采样时,因为各个动态信号采集模块是由独立的CPU控制的,所以需要采用主从结构的指令形式,主控模块发出同步请求指令,各个动态信号采集模块接收到指令时,触发中断,并在各模块当前正在执行完的任务完成后,向主控模块发出同步就绪信号,并进入采样等待状态。当主控模块收到所有的同步就绪信号后,向各个动态信号采集模块发出采样控制信号,各个动态信号采集模块通过硬件中断的方式,收到控制信号,触发动态信号采集模块内的AD转换器(模数转换器)工作,实现同步采样。
详细的同步采样控制的流程步骤如下:
S1.判断是否有键相信号。
S21.若无键相信号;
S211.则通过软件设定采样频率等参数,该采样频率依据经验设定;
S212.主控模块向动态信号采集模块请求数据,即发出同步请求命令;
S213.各动态信号采集模块收到主控指令后,各自按照采样参数进行采样,不保证模块间的同步性;
S214.各个动态信号采集模块分别将采样结果数据传输至主控。
S22.若有键相信号;
S3.判断模块间是否需要同步。
S31.若模块间需要同步;
S311.各个需要同步的动态信号采集模块采用同一个键相信号,外触发采样;
S312.主控向各个需要同步的动态信号采集模块请求数据;
S313.各个动态信号采集模块接收到主控采样请求后,向主控回复同步就绪状态,等待启动采样指令;
S314.主控通过IO口向各个模块发出同步信号,即同步采样指令。各个模块收到同步信号后,开始采样;
S315.通过外部同步脉冲,和各个动态信号采集模块内部逻辑,保障模块间和模块内的采样同步性。各个模块分别将数据传输至主控模块,并成组生成数据时间标签。
S32.若模块间不需要同步;
S321.各个动态信号采集模块采用各自独立的键相信号,外触发采样;
S322.主控向各个动态信号采集模块请求数据;
S323.各个动态信号采集模块接收到主控采样请求后,根据键相脉冲间隔,计算各自转速,并根据转速设定采样率;
S324.各个动态信号采集模块设置采样率参数后,在下一个键相脉冲到来时,启动采样,保证模块内的数据同步;
S325.各个动态信号采集模块分别将采样参数和采样数据传输至主控,模块间不保证同步性。
如图5实现的同步采样电路,在同一个动态信号采集模块内部多个振动信号采集通道之间的同步采样,采样频率通过计数器分频得到。计数器为递减方式工作,当计数值与设定值相当时,输出一个脉冲,并对计数器复位,重新计数,这样通过计数器控制的一个IO口上输出的信号就等于采样频率,将采样频率时钟与采集通道上的采样保持器接在一起,如图5中振动信号采集通道1(振动信号采集通道)对应采样保持1(具体为采样保持器),振动信号采集通道2对应采样保持2(具体为采样保持器),振动信号采集通道N对应采样保持N(具体为采样保持器),通过多路开关的控制将保持的信号由模数转换器(图5中模数转换)逐个完成转换,实现信号的同步数据采集。
如图6为各个动态信号采集模块之间的同步整周期采样控制流程。主控模块通过USB接口一次向各个模块发送同步请求指令;各个模块收到指令后,依次进入等待同步脉冲状态;主控模块收到全部就绪信号后,通过GPIO口,发出同步脉冲,同步脉冲信号与每一个动态信号采集模块的外部中断接口相连接,各个动态信号采集模块通过边沿触发的IRQ中断,检测到同步脉冲。此时如果有键相信号,则动态信号采集模块收到同步脉冲后的下一个键相脉冲到来时,发出采样脉冲,启动采样。此时若没有键相信号,各个动态信号采集模块立即发出采样脉冲开始采样,实现模块间的同步。具体模块之间的同步采样控制流程步骤如下:
1).主控模块通过USB接口依次向各个动态信号采集模块发出同步采样请求;
2).各个动态信号采集模块依次收到请求指令后,分别向主控模块回复就绪信号,并进入等待同步脉冲状态。
3).主控模块收到全部就绪信号后,通过GPIO口,发出同步脉冲,同步脉冲信号与每一个动态信号采集模块的外部中断接口相连。
4).各个振动模块通过边沿触发的IRQ中断,检测到同步脉冲,判断有无键相信号进行采样;
5).有键相信号,则各动态信号采集模块在下一个键相脉冲到来时,发出采样脉冲,启动采样。
本发明涉及一种多模块数据采集器的同步采样控制方法,属于智能制造与设备预测性维护领域。方法包括以下内容:1)采用主控+扩展模块的结构,设计数据采集器;2)主控模块和扩展的动态信号采集模块之间采用USB通信的方式实现数据交互;3)扩展的动态信号采集模块内部,通过电路设计和逻辑控制实现模块内的多个通道的同步整周期采样;4)扩展的多个动态信号采集模块之间,通过电路设计和程序逻辑控制,实现模块间的同步整周期采样。本发明的电路和程序设计,完成了模块内、模块间多个采集通道的同步采样,对于多通道信号的数据融合和交叉分析,提高设备诊断的可靠性有着重要意义。
一种多模块数据采集器的采样控制方法实施例:
本发明的一种多模块数据采集器的采样控制方法,包括如下步骤:
在采集器中的动态信号采集模块之间需要同步采样且有键相信号时,使各个需要同步的动态信号采集模块的键相信号采集通道连接同一个键相信号,并使采集器中的主控模块向各个需要同步的动态信号采集模块发送同步采样指令,各个需要同步的动态信号采集模块依据接收的键相信号确定采样频率,并依据设定的采样频率和同步采样指令同时使用各个动态信号采集模块对应的振动信号采集通道同步进行采样,以实现各个动态信号采集模块间的同步整周期采样。
本发明的一种多模块数据采集器的采样控制方法由于在本发明的一种多模块数据采集器实施例中已经清楚完整的介绍,故本实施例不再详细进行描述。

Claims (10)

  1. 一种多模块数据采集器的采样控制方法,其特征在于:包括如下步骤:
    在采集器中的动态信号采集模块之间需要同步采样且有键相信号时,使各个需要同步的动态信号采集模块的键相信号采集通道连接同一个键相信号,并使采集器中的主控模块向各个需要同步的动态信号采集模块发送同步采样指令,各个需要同步的动态信号采集模块依据接收的键相信号确定采样频率,并依据同步采样指令和确定的采样频率同时使用各个动态信号采集模块对应的振动信号采集通道同步进行采样,以实现各个动态信号采集模块间的同步整周期采样。
  2. 根据权利要求1所述的多模块数据采集器的采样控制方法,其特征在于:在动态信号采集模块之间不需要同步采样且有键相信号时,各个不需要同步的动态信号采集模块的键相信号采集通道连接各自对应的键相信号;主控模块向各个不需要同步的动态信号采集模块发送同步采样指令,各个不需要同步的动态信号采集模块依据各自接收的键相信号确定对应的采样频率,并依据确定的采样频率和各自的键相信号使用各自对应的多个振动信号采集通道同步进行采样。
  3. 根据权利要求1所述的多模块数据采集器的采样控制方法,其特征在于:在无键相信号时,主控模块向各个动态信号采集模块发送同步采样指令,各个动态信号采集模块依据由主控模块设定的各自的采样频率使用各自对应的多个振动信号采集通道同步进行采样。
  4. 根据权利要求1所述的多模块数据采集器的采样控制方法,其特征在于:所述动态信号采集模块内的振动信号采集通道同步进行采样的实现方式包括:计数器依据需要同步采样的振动信号采集通道的采样频率设置计数值,以触发各个振动信号采集通道同时进行采样,采样保持器使用所述计数器进行计数保持采样得到的振动信号,以供后续将采集得到的振动信号进行模数转换。
  5. 根据权利要求1所述的多模块数据采集器的采样控制方法,其特征在于:主控模块向各个需要同步的动态信号采集模块发送同步采样指令之前,还需要向各个需要同步的动态信号采集模块发送同步请求指令,各个动态信号采集模块接收到同步请求指令后需要回复同步 就绪状态。
  6. 一种多模块数据采集器,其特征在于:该采集器包括主控模块和扩展模块;扩展模块包括多个动态信号采集模块,主控模块与多个动态信号采集模块均连接;动态信号采集模块包括多个振动信号采集通道和键相信号采集通道;所述键相信号采集通道用于采集设置于机械设备上的键相传感器的键相信号;振动信号采集通道用于采集机械设备的振动信号;所述主控模块和多个动态信号采集模块采用如权利要求1-5任一项所述的多模块数据采集器的采样控制方法进行同步采样。
  7. 根据权利要求6所述的多模块数据采集器,其特征在于:扩展模块还包括至少一个工艺信号采集模块和至少一个开关量模块;工艺信号采集模块用于采集包括温度和/或压力在内的工艺过程信号;开关量模块用于开关量信号的采集和控制;工艺信号采集模块和开关量模块均与主控模块连接。
  8. 根据权利要求7所述的多模块数据采集器,其特征在于:所述主控模块通过USB总线接口与动态信号采集模块连接,用于向动态信号采集模块发送同步请求指令和接收动态信号采集模块采集的机械设备的振动信号;所述主控模块通过CAN总线接口与工艺信号采集模块和开关量模块连接,用于接收工艺信号采集模块和开关量模块采集的信号;所述主控模块还通过GPIO接口与动态信号采集模块连接,用于向动态信号采集模块发送同步采样指令。
  9. 根据权利要求8所述的多模块数据采集器,其特征在于:用于发送同步采样指令的GPIO口与每一个动态信号采集模块的外部中断接口相连接。
  10. 根据权利要求6所述的多模块数据采集器,其特征在于:通过模块内的同步采样电路实现所述动态信号采集模块内多个振动信号采集通道的同步采样;所述同步采样电路包括:模数转换器、多路开关、计数器、以及与动态信号采集模块的各个振动信号采集通道一一对应连接的采样保持器;计数器用于依据需要同步采样的振动信号采集通道的采样频率设置计数值,以触发各个振动信号采集通道同时进行采样;所述采样保持器连接所述计数器,用于计时保持采样得到的振动信号;所有采样保持器通过多路开关与模数转换器连接,所述多路 开关使得所有采样保持器逐一与模数转换器连通,以依次将采样保持器所保持的振动信号输入至模数转换器进行模数转换。
PCT/CN2023/104430 2022-07-29 2023-06-30 多模块数据采集器的采样控制方法及多模块数据采集器 WO2024022019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210912031.9 2022-07-29
CN202210912031.9A CN115265982A (zh) 2022-07-29 2022-07-29 多模块数据采集器的采样控制方法及多模块数据采集器

Publications (1)

Publication Number Publication Date
WO2024022019A1 true WO2024022019A1 (zh) 2024-02-01

Family

ID=83746237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104430 WO2024022019A1 (zh) 2022-07-29 2023-06-30 多模块数据采集器的采样控制方法及多模块数据采集器

Country Status (3)

Country Link
CN (1) CN115265982A (zh)
LU (1) LU506699B1 (zh)
WO (1) WO2024022019A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115265982A (zh) * 2022-07-29 2022-11-01 郑州恩普特科技股份有限公司 多模块数据采集器的采样控制方法及多模块数据采集器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426641A (en) * 1980-03-31 1984-01-17 Hitachi, Ltd. Method and apparatus for monitoring the shaft vibration of a rotary machine
CN102116670A (zh) * 2010-01-05 2011-07-06 华北电力科学研究院有限责任公司 振动采集分析仪及振动采集分析方法
CN102155984A (zh) * 2010-12-30 2011-08-17 北京四方继保自动化股份有限公司 一种风机通用振动信号测量系统
CN102735329A (zh) * 2012-06-13 2012-10-17 中国船舶重工集团公司第七0四研究所 一种船用旋转机械轴系振动状态监测装置及方法
JP2013228245A (ja) * 2012-04-25 2013-11-07 Toshiba Corp 振動測定システムおよび振動測定方法
CN107478182A (zh) * 2017-06-23 2017-12-15 江西飞尚科技有限公司 一种多通道同步振弦采集仪
CN110493744A (zh) * 2019-08-20 2019-11-22 郑州大学 一种主从式无线传感器的数据同步采集方法与系统
CN112085930A (zh) * 2020-09-14 2020-12-15 武汉瑞莱保能源技术有限公司 一种发电机组智能监测预警系统及方法
CN113390505A (zh) * 2021-08-17 2021-09-14 北京博华信智科技股份有限公司 一种多通道同步采集的振动保护方法及系统
CN115265982A (zh) * 2022-07-29 2022-11-01 郑州恩普特科技股份有限公司 多模块数据采集器的采样控制方法及多模块数据采集器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426641A (en) * 1980-03-31 1984-01-17 Hitachi, Ltd. Method and apparatus for monitoring the shaft vibration of a rotary machine
CN102116670A (zh) * 2010-01-05 2011-07-06 华北电力科学研究院有限责任公司 振动采集分析仪及振动采集分析方法
CN102155984A (zh) * 2010-12-30 2011-08-17 北京四方继保自动化股份有限公司 一种风机通用振动信号测量系统
JP2013228245A (ja) * 2012-04-25 2013-11-07 Toshiba Corp 振動測定システムおよび振動測定方法
CN102735329A (zh) * 2012-06-13 2012-10-17 中国船舶重工集团公司第七0四研究所 一种船用旋转机械轴系振动状态监测装置及方法
CN107478182A (zh) * 2017-06-23 2017-12-15 江西飞尚科技有限公司 一种多通道同步振弦采集仪
CN110493744A (zh) * 2019-08-20 2019-11-22 郑州大学 一种主从式无线传感器的数据同步采集方法与系统
CN112085930A (zh) * 2020-09-14 2020-12-15 武汉瑞莱保能源技术有限公司 一种发电机组智能监测预警系统及方法
CN113390505A (zh) * 2021-08-17 2021-09-14 北京博华信智科技股份有限公司 一种多通道同步采集的振动保护方法及系统
CN115265982A (zh) * 2022-07-29 2022-11-01 郑州恩普特科技股份有限公司 多模块数据采集器的采样控制方法及多模块数据采集器

Also Published As

Publication number Publication date
LU506699B1 (en) 2024-05-27
CN115265982A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024022019A1 (zh) 多模块数据采集器的采样控制方法及多模块数据采集器
CN101958785B (zh) 基于传递时差的数控系统现场总线时间同步方法及装置
CN102128979B (zh) 等精度测频电路及其测频方法
WO2015070604A1 (zh) 一种面向间隔的智能变电站多功能二次装置及采样平台
CN110907748A (zh) 一种配电线路行波故障采集分析装置及故障定位系统
CN102735331A (zh) 具有片上处理能力的无线传感器网络节点
CN111064536A (zh) 基于时钟同步的配电网监测装置及方法
CN101533052A (zh) Pwm风扇电气性能测试系统及方法
CN107390090A (zh) 一种线路故障检测方法及系统
CN110346668A (zh) 一种电力系统中的检测录波装置及数据监测方法
CN108983036B (zh) 一种基于电子式互感器的行波测距系统
CN109407752A (zh) Rs485通讯中实现时钟同步的gis断路器在线监测系统
CN205404700U (zh) 带时间基准输出的多功能fpga采集单元
CN111413902A (zh) 一种基于Can总线的桥梁监测通信方法及采集系统
CN102063401B (zh) 分布录波装置的tdmow串行总线结构及编码方法
CN111077807A (zh) 一种基于电流分析的数据采集器
CN203720258U (zh) 一种电压电流暂态信号高速同步数据采样装置
CN105527882A (zh) 一种电子设备数据监测采集系统
Feng et al. The implementation of distributed high-speed high-accuracy data acquisition system based on EtherCAT
Lin et al. Design of networked monitoring system of PV grid-connected power plant
CN215910807U (zh) 一种具备cms功能的大型可编程自动化控制器
CN202119834U (zh) 等精度测频电路
Jiang et al. Wireless network performance test in hybrid wired/wireless network system
CN220419830U (zh) 集成残压测频功能的大型可编程自动化控制器
CN207066756U (zh) 一种便携式小水电机组效率测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845232

Country of ref document: EP

Kind code of ref document: A1