WO2015070604A1 - 一种面向间隔的智能变电站多功能二次装置及采样平台 - Google Patents

一种面向间隔的智能变电站多功能二次装置及采样平台 Download PDF

Info

Publication number
WO2015070604A1
WO2015070604A1 PCT/CN2014/080166 CN2014080166W WO2015070604A1 WO 2015070604 A1 WO2015070604 A1 WO 2015070604A1 CN 2014080166 W CN2014080166 W CN 2014080166W WO 2015070604 A1 WO2015070604 A1 WO 2015070604A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
frequency
component
sampling
harmonic
Prior art date
Application number
PCT/CN2014/080166
Other languages
English (en)
French (fr)
Inventor
沈健
张敏
周斌
檀永
殷垚
相蓉
Original Assignee
国电南瑞科技股份有限公司
国电南瑞南京控制系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司, 国电南瑞南京控制系统有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2015070604A1 publication Critical patent/WO2015070604A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the invention belongs to the technical field of electric power automation, in particular to a multi-function secondary device and a sampling platform for an intelligent substation facing the interval.
  • the intelligent substation is an important support and guarantee for the unified and strong smart grid.
  • the process layer equipment such as electronic current transformer, voltage transformer and merging unit replaces the analog acquisition components in the traditional spacer device, and the switch device status signal and control signal are connected first.
  • the primary side sampled value and status signal are no longer the analog quantity transmitted by the cable, but the digital quantity transmitted by the communication network.
  • the structure of the traditional relay protection device, the measurement and control device and other spacer devices have undergone great changes, and the acquisition and control operation functions are no longer concentrated in the measurement and control unit, generally by merging.
  • the development of measurement and control technology provides a good substation information sharing and data integration. The basics.
  • the collected data can be divided into steady-state data (measurement of control, anti-missing, power quality, etc.), dynamic data surface, data concentrator and other devices), transient data (completed by the fault recorder) ), measurement data (electricity meter, power management terminal).
  • steady-state data measurement of control, anti-missing, power quality, etc.
  • dynamic data surface data concentrator and other devices
  • transient data completed by the fault recorder
  • measurement data electricality meter, power management terminal.
  • measurement data electricality meter, power management terminal.
  • Each type of data uses independent devices and constitutes various application subsystems, such as: monitoring subsystem, five-proof subsystem, PMU subsystem, fault recording subsystem, power quality monitoring subsystem, and electric energy acquisition subsystem.
  • the present invention analyzes the requirements and technical indicators of the application subsystem in the intelligent substation, and compares the different requirements of the three measurement data collections of steady state telemetry, synchronous phasor and electric energy. Comparing the characteristics of three kinds of electrical parameter measurement in sampling, calculation, etc., three algorithm fusion methods are proposed, which realizes the integration of three measurement algorithms by single processor, and based on this, realizes one of the three functions.
  • a multi-function secondary device for interval intelligent substation comprising an AD interface component, a frequency resampling component, a steady state computing component, a frequency computing component, a phasor computing component and an electrical energy computing component, wherein the AD interface component respectively Heavy
  • the sample sampling component is coupled to the frequency calculation component, wherein the frequency resample component is coupled to the steady state calculation component and the phasor calculation component, and the electrical energy calculation component is coupled to the steady state calculation component.
  • the AD interface component is executed in a 250 ⁇ s interrupt for reading the SV message sample value data of the merging unit, each interrupt reading a sample value data point, and storing the sample value data in different application data buffers respectively.
  • the frequency calculation component is executed in a 10ms interrupt for fast calculation of system frequency tracking, calculating phasor data and line frequency, and the calculated frequency is used for subsequent frequency resampling components;
  • the following frequency resampling component is executed in a 10ms interrupt to adjust the resampling rate, and extract 80 points/cycle data into 64 points/cycle data, and when the system frequency fluctuates, according to the current measured system frequency in real time. Adjusting the interpolation interval to ensure the full cycle sampling of the data; and the frequency resampling component converts the SV message sample value data time domain signal into the frequency domain signal by the FFT algorithm, and provides the 64 point/cycle wave followed sample value data to the sampled value data.
  • the steady state computing component uses frequency domain signal data output by the frequency resampling component to calculate voltage, current rms and power, harmonic steady state telemetry, and each time telemetry After the calculation, it is judged whether the remote measurement changes, and the time scale corresponding to the change moment is recorded;
  • the phasor calculation component is executed in a 10ms interrupt, and the phasor calculation component reads the frequency domain signal data output by the frequency resampling component for the amplitude and phase angle operation, and outputs the phasor data according to the sampling.
  • the serial number records the time stamp of the 10ms starting time;
  • the electrical energy computing component accumulates the instantaneous power calculated by the steady state computing component using a frequency domain calculation to obtain electrical energy.
  • the aforementioned SV message sample value data is 80 points/cycle wave voltage and current sample value data, and each SV message sample value data includes sample value data, quality, pointer, sample sequence number and data time scale.
  • the foregoing frequency calculation component selects the sampled value data of a voltage channel of the AD interface component data buffer to perform fast DFT calculation based on the phasor measurement, and finds one half cycle sample data before the interruption to the buffer of the AD sampling module.
  • the frequency is calculated once, and the real-time phase difference on both sides of the circuit breaker is calculated while calculating the frequency.
  • the phase difference is calculated by the real part and the imaginary part of the voltage fundamental wave calculated by the DFT algorithm of the frequency calculating component.
  • the aforementioned frequency resampling component resamples the sampled value data in the data buffer of the AD interface component according to the frequency calculated by the frequency calculating component, and copies the data points of 80 consecutive sample values of the serial number, and uses a second-order Lagrange interpolation algorithm to 80.
  • the point/cycle data is extracted into 64 points/cycle data.
  • the above-mentioned interpolation operation in the frequency resampling component should take into account the fault-tolerant processing of the sampling buffer loss point, and can judge whether the pixel is lost by the continuity of the sampling sequence number.
  • the second-order Lagrange interpolation algorithm The interpolation point can still be fitted; when multiple consecutive data points are lost, the data buffer is reset, and the buffered sample value data is discarded; if the accumulated consecutive occurrences of more than 5 cycles, the abnormality of the sampled data is lost. Alarm.
  • the foregoing frequency resampling component performs synchronous alignment processing on a plurality of merging unit sample value data received from the AD interface component, and buffers the sampled value data to perform alignment of different merging unit sample value data according to the sampling sequence number and the time stamp. , to achieve sample value data synchronization.
  • the aforementioned steady-state computing component calculates the effective value and power of the voltage and current, and the harmonic steady-state telemetry, and the calculation method is as follows:
  • the Fourier series form of the current and voltage signals of the power system cycle can be expressed as:
  • x(t) c n + cosk ⁇ 3 ⁇ 4j,t +b k sin kt3 ⁇ 4>,t] ( 18 )
  • x(t) represents the current or voltage signal of the power system cycle
  • T is the power system period
  • % is the angle between the voltage and current of the 1 ⁇ th harmonic
  • k is harmonic
  • c Q is the DC component of the current or voltage signal
  • c ta is the current or voltage amplitude of the kth harmonic.
  • the Fourier series expansion result is a discrete Fourier coefficient combination. Expanding or decomposing a periodic function into a Fourier series with a series of harmonics is called harmonic analysis. In order to calculate the Fourier series, it is needed. Numerical integration, that is, using x(t) sampled values to calculate this integral, set a periodic interval sampling, and discretize the integral of equation (20). Description
  • Phase angle ⁇ 3 ⁇ 4 arctg(- ) a grasp>0
  • ⁇ 3 ⁇ 4 k , ⁇ 3 ⁇ 4 are the voltage phase angles of the kth harmonic, the current phase angle, U ta , I to the voltage amplitude of the kth harmonic, respectively, the current amplitude,
  • a digital sampling platform includes a management board and a plurality of digital sampling boards, wherein the management board constructs an AD interface component, a frequency resampling component, a steady state computing component, and a frequency calculation for a multi-function secondary device of the interval intelligent substation
  • the component, the phasor calculation component and the electrical energy calculation component; the management board and the digitization sampling board are both composed of a CPU module and an FPGA module, and the CPU module accesses the FPGA module through a PCIe serial bus; the management board and the FPGA of the digital sampling board
  • the module exchanges information via the LVDS management bus and the LVDS data bus.
  • the aforementioned LVDS management bus is responsible for transmitting configuration information and registration information from the management board to the digitizing sampling board, and detecting whether a new digital sampling board is added or removed in real time for database update management; the LVDS data bus is responsible for digitizing the sampling board
  • the output information is transmitted to the management board in real time, and the information includes sampled value data, voltage, current rms and power, harmonic steady state telemetry, synchronized phasor data, and electrical energy data.
  • each component must contain a constructor for allocating the component object memory, initializing the component's basic variables, and calling the underlying interface function to register the component's input variables, output variables, and parameter variables; Components must have an initialization function for initialization before the component runs; each component contains one or more periodic execution task functions.
  • the multi-function secondary device of the interval-oriented intelligent substation of the invention combines three functions of steady state telemetry, synchronous phasor and electric energy, and realizes three kinds of measurement data acquisition methods respectively by using three independent devices
  • the integration of the equipment is improved, and the device configuration of the substation automation system is simplified.
  • the device fully supports the IEC61850 standard at the station control layer and process layer, and also supports the IEEE1344 protocol, which can meet the various needs of the development and construction of intelligent substation, reduce the construction and maintenance cost of the intelligent substation, and has a broad market space;
  • the high-performance digital sampling platform constructed for inventing the multi-function secondary device described above, the same hardware design of the management board and the digital sampling board, improves the utilization of the CPU, reduces the data transmission delay, and enhances the platform.
  • the integration of the platform's software architecture mainly uses the registration mechanism to manage the digital sampling board through the management board.
  • the number of change intervals can be realized online to meet the intelligent substation measurement and control, protection, merging unit, intelligent terminal, fault recording and so on.
  • the application requirements of the secondary device can greatly improve the development efficiency and development quality of the secondary substation of the intelligent substation. Description of the specification
  • Figure 1 is a partial structural diagram of a secondary system of a smart substation
  • FIG. 2 is a block diagram of an algorithm implementation of the multifunctional secondary device of the present invention.
  • FIG. 3 is a general block diagram of the digital sampling platform of the present invention.
  • FIG. 4 is a schematic diagram of a functional module of a secondary device of the present invention.
  • the process layer merging unit collects the AC quantity of the combined electronic transformer or the conventional transformer output, and encodes according to the IEC61850-9-2 sample value transmission protocol, through the process layer SV.
  • the network is transmitted to the interval layer measurement and control, PMU, electric energy meter and other devices.
  • the measured data calculated by the spacer device is forwarded to each master station system after being aggregated by the station control layer.
  • the gap-oriented intelligent substation multifunctional secondary device of the present invention comprises an AD interface component, a frequency resampling component, a steady state computing component, a frequency computing component, a phasor computing component, and an electrical energy computing component, wherein
  • the AD interface components are respectively coupled to the frequency resampling component and the frequency computing component, and the following frequency resampling component is coupled to the steady state computing component and the phasor computing component, respectively, and the electrical energy computing component is coupled to the steady state computing component.
  • the secondary device of the present invention realizes its function by:
  • the electronic voltage transformer and the electronic current transformer are sent to the interval-oriented multifunctional secondary device by the SV message sample value data converted into the IEC61850-9-2 format by the merging unit (MU).
  • the AD interface component allocation is executed in the 250us interrupt, the SV message sample value data of the merging unit is read, one sample value data point is read for each interrupt, and the sample value data is separately stored in different application data buffers.
  • the SV message sample value data is 80 points/cycle voltage and current sample value data, and each sample value data point includes: sample value data value, quality, pointer, sample sequence number and data time scale.
  • the AD interface component is considered to be compatible with the analog and digital models.
  • the sampled value data and quality are represented by 16 bits respectively.
  • the sampling number is 0-3999
  • the data time stamp is 32-bit century.
  • the time stamps of subsequent applications are taken from the original sampling point. Time stamp, and the format is consistent.
  • the sampling channel is reserved according to 13 data channels per line.
  • the standard configuration of each line is 6PT+7CT.
  • the channel definition is kept digital and analog.
  • the digital model reserves 3 measurements for each line. Current channel, used to meet the needs of three-thirds of the wiring combined current
  • the frequency calculation component is executed in the 10ms interrupt. According to the accuracy requirement of the synchronized phasor data measurement, the system frequency tracking is quickly calculated.
  • the frequency calculation component selects the sample value data of a certain voltage channel of the AD interface component data buffer for phasor measurement.
  • Fast DFT calculations calculate phasor data and line frequency.
  • the algorithm measures the frequency accurate and follow-up speed block, fully meets the requirements of measurement and synchronous phasor data for frequency index, but the algorithm can not completely eliminate the influence of frequency leakage of DFT algorithm on the accuracy of synchronous phasor data, so the synchronization of the output of this device Phasor data is taken into the sampled value data Description
  • the book is recalculated with frequency resampling.
  • the specific calculation method of the frequency calculation component is to find a half-cycle sample value data to calculate a frequency once after each interruption to the AD sampling module buffer, and the calculation method and process are as follows.
  • the synchronous phasor corresponding to the rth data window 3 ⁇ 4r is expressed as:
  • X is the phasor magnitude
  • the frequency difference Af in the data window time range (3 ⁇ 4 is expressed as a fixed value Af
  • the sth sample value of the rth data window (1 can be Expressed as:
  • (r) is the original phasor of the existence frequency leak calculated by DFT; ( ⁇ is the conjugate; c(r) is the frequency of the oscillating form related to the initial phase angle corresponding to the data window of the DFT in the case of fixed interval sampling Leakage item: Instruction manual
  • the synchronized phasor 3 ⁇ 41 can be corrected by the following formula:
  • phase difference is calculated by the real and imaginary parts of the voltage fundamental wave calculated by the DFT algorithm of the frequency calculation component.
  • U alr U alm cos ⁇ 3 ⁇ 4 ; U all -U alm sin3 ⁇ 4 1; U alm for the amplitude of the voltage, to thereby obtain the voltage u a is the fundamental phase angle al:
  • U xli is the imaginary part of voltage 1 ⁇
  • U xll is the real part of the voltage
  • the phase angles of the voltages on both sides are reduced by the phase difference: Instruction ⁇ ( 16)
  • the highest upload frequency required by the PMU is ⁇
  • the resolution of the frequency calculation is higher than 10 ms to meet the data synchronization requirements of the synchronized phasor.
  • the following frequency resampling component is used for adjusting the resampling rate, and the frequency resampling component allocation is performed in a 10 ms interrupt, and the sampled value data in the AD interface component data buffer is resampled according to the frequency calculated by the frequency computing component.
  • the 80 sampled data points with consecutive serial numbers are copied, and the 80-point/cycle data is extracted into 64-point/cycle data by the second-order Lagrange interpolation algorithm.
  • the system frequency fluctuates, it can be quickly adjusted according to the currently measured system frequency.
  • the interval of data extraction not only ensures the sampling of the whole period, but also reduces the measurement error caused by spectrum leakage and fence effect.
  • the resampling should meet the requirements of the PMU calculation data time-scaled, and the frequency-resampled component provides a unified 64-point/cycle-followed sampled value data to the steady-state computing component, the phasor calculation component.
  • the interpolation operation in the frequency resampling component should take into account the fault-tolerant processing of the sampling buffer loss.
  • the continuity of the sampling sequence number can be used to judge whether the data is lost.
  • the second-order Lagrange interpolation algorithm can still The interpolation point is fitted; when a plurality of consecutive data points are lost, the data buffer is reset, and the buffered sample value data is discarded; if the cumulative occurrence of the missing points exceeds 5 cycles, an abnormal alarm of the sampled data data loss point is generated.
  • the quality level of the sampled value should be judged and processed.
  • the quality bits are processed uniformly and output to the steady-state computing component.
  • the phasor computing component judges that the final measured mass and alarm are generated by the above two components. Send it up.
  • the homing resampling component also needs to consider the synchronization alignment process of multiple merging unit sample value data received from the AD interface component.
  • the rated delay of the merging unit will cause the sampling sequence number to be out of sync.
  • the system clock jitter may also cause the data to be sent out by multiple merging units.
  • the scalar resampling component buffers the sampled value data according to the sampling sequence number and time. Mark the alignment of sample data of different merging units.
  • the steady state computing component is used to calculate the telemetry and the tag telemetry change time scale; the steady state computing component uses the frequency domain signal data output by the frequency resampling component to calculate the voltage, the current rms value and the power, and the harmonic steady state telemetry.
  • the calculation method is as follows.
  • the Fourier series expansion result is a discrete Fourier coefficient combination. Expanding or decomposing a periodic function into a Fourier series with a series of harmonics is called harmonic analysis.
  • harmonic analysis In order to calculate the Fourier series, it is necessary to use numerical integration, that is, to calculate the integral with the sampled value of x(t), and set a periodic wave equal interval sampling. Discretize the integral of equation (20)
  • the effective value of the kth harmonic of the voltage and current signals can be calculated. Regardless of the influence of the DC component, the effective value of the AC cycle function is equal to the arithmetic square root of the sum of the squares of the fundamental and the harmonics of the signal. Therefore, the effective values of the voltage and current are:
  • ⁇ 3 ⁇ 4 k , ⁇ 3 ⁇ 4 are the voltage phase angle, the current phase angle, U ta , I ta are the voltage amplitudes of the kth harmonic respectively, the current amplitude, the above equation, and the active power of the kth harmonic
  • the active power and reactive power of the single-phase circuit are the algebraic sum of the active and reactive power of each harmonic, that is,
  • the output of the single-line steady-state calculation component includes the phase voltage, line voltage, synchronous voltage, zero-sequence voltage and current, total power and split-phase power of the standard line, and consider The need for current calculation, reserved side switching current, combined current, total power, and the telemetry quality and voltage and current harmonic calculation corresponding to each measurement channel.
  • the phasor calculation component is executed in a 10ms interrupt, the computational component reads the 10ms time period of the frequency resampling component output
  • the sampled values of the specification are calculated for the amplitude and phase angles, and the output time scale is the phasor data of the 10ms start time.
  • the calculation method of the dynamic phasor calculation for the sampled data quality is judged according to the quality information outputted by the resampling component, and the single cycle of the lost point is sent with the data of one week wave, and if the accumulated consecutive occurrence of multiple cycles of the missing point occurs, the dynamic is generated.
  • the alarm of abnormal data is sent to the virtual remote letter.
  • the electric energy calculation can adopt the time domain integration method or the frequency domain calculation method.
  • the electric energy calculation component uses the frequency domain calculation method to perform energy accumulation, that is, by accumulating the steady state calculation component.
  • the calculated instantaneous power yields electrical energy.
  • the device should be designed to be powered down.
  • the MM is used to keep the electrical metric data from being lost when power is lost.
  • the electrical energy data is also sent through the IEC61850 standard model. When two or more consecutive calculation intervals occur, the instantaneous power quality abnormality calculated by the steady state computing component appears, and the electrical energy calculation component freezes the current electrical energy data, prompting the local monitoring system and measuring Main site.
  • the steady state telemetry, synchronous phasor, and electric energy metering functions of the multifunctional secondary device can be completed.
  • the indicators of the static test of the multifunctional secondary device adopting the algorithm all meet the specification requirements.
  • the dynamic performance of the synchronous phasor of the device is also verified.
  • the step response time is less than 20ms, the amplitude modulation error is less than 0.1%, and the frequency modulation error is less than 0. 002Hz.
  • the result of the dynamic test satisfies the requirements of the synchronous phase specification.
  • the working process of the secondary device of the present invention is: the multifunctional secondary device receives the sampled value data through the merging unit, performs data buffering and abnormal processing; the frequency calculating component selects a certain voltage channel for frequency tracking calculation; the following frequency resampling component is The calculated system frequency resamples the sampled value data; transforms the time domain signal into a frequency domain signal by an FFT algorithm, and provides a unified data interface to the steady state computing component and the phasor calculation component; the measurement data calculation component according to the respective It is required to calculate the steady-state telemetry data, the energy data and the synchronized phasor data separately, and put their respective data time stamps.
  • the IEC61850-9-2 sample value type is a 32-bit integer.
  • the voltage and current are encoded according to 10mV and 1mA respectively.
  • Each sampling channel contains the necessary data quality. Since synchronous phasor measurement requires the highest dynamic performance of data processing, data buffering is performed according to the need of synchronous phasor calculation, and the time stamp of the cached data block is recorded according to the point number of the sampled value data, which satisfies the needs of subsequent data processing. .
  • the mainstream substation automation device platform adopts dual CPU architecture or multi-core architecture, and the dual CPU architecture refers to DSP+A.
  • DSP is only responsible for data acquisition and calculation
  • ARM is responsible for network communication and information processing.
  • this model has many technical barriers in data sharing, device interval expansion, and clock synchronization, which is not conducive to the development of smart substation and the development of relay protection.
  • Multi-core architecture refers to the use of multi-core processors, analog dual-CPU architecture, real-time Explain the isolation between books and non-real-time tasks. This mode is suitable for medium and low voltage protection and monitoring devices. It has low cost and low power consumption.
  • the real-time and processing capability of data sampling is limited, which cannot meet the needs of large-capacity and high-speed data sampling.
  • the present invention proposes a digital sampling platform that solves problems such as high-speed data transmission, large-capacity data sampling, measurement algorithms, and data sampling synchronization.
  • the system structure diagram of the platform is shown in Figure 3. It can be configured with one management board and multiple digital sampling boards to meet the needs of different applications. For the aforementioned gap-oriented multifunctional secondary device, only one management board and one digital sampling board need to be configured.
  • the management board is responsible for external communication, human-machine interface, operation information, recording file, log management, etc.
  • the digital sampling board realizes the AD interface component of the multi-function secondary device, the following frequency resampling component, the steady-state computing component, and the frequency computing component. All functions of the phasor calculation component and the electrical energy calculation component.
  • the system software for both the management board and the digital sampling board uses the Linux operating system. With the promotion of Linux in the embedded field, its real-time performance has been greatly improved. Linux 2. 4 and previous versions of the kernel are not preemptible, but in Linux 2. 6, the kernel can be preempted, high-priority kernel Space processes can preempt the resources of low-priority processes as they do in user space, and real-time performance is enhanced.
  • the hardware of the management board and the digital sampling board is composed of a CPU module and an FPGA module.
  • the CPU module adopts the P1011 processing chip introduced by Freescale.
  • the P1011 is a microprocessor chip widely used in the field of network and communication, and the high-speed PowerPC core. Together with integrated network and communication peripherals, it provides users with a new system solution for building high-end communication systems, which is widely used in practical engineering.
  • the CPU module uses the PCI e serial bus to access the FPGA module.
  • the P1011 handles the chip's external link, a Lane.
  • the bus specification is 1. x, and the rate is 2. 5Gbps. In the network storm test, the performance is superior.
  • the management board and the digital sampling board have two buses for data exchange, one is the management bus, and the other is the data bus.
  • the management bus is responsible for transmitting configuration information and registration information from the management board to the digital sampling board, and detecting whether there is a new digital sampling board in real time. Join or remove for database update management; the data bus is responsible for transmitting the digital sampling board information to the management board in real time.
  • the information includes sampled value data, voltage, current rms and power, harmonic steady-state telemetry, and synchronized phasor. Data and electrical energy data.
  • the LVDS bus is implemented by the FPGA module and is divided into a transmission bus and a receiving bus. It is physically composed of a pair of differential lines to realize point-to-point full-duplex communication with a communication rate of 100 Mbps.
  • the software architecture of the platform mainly adopts the registration mechanism and is managed by the management board.
  • the specific implementation is implemented by packaging components.
  • a set of data and a set of operations defined on the data are encapsulated together, called components.
  • the component performs a specific function with a clear definition of the input and output and the parameter definition.
  • the input is the sampled value data after the frequency-interpolated interpolation output of the frequency re-sampling component.
  • the output is the voltage, the current rms value and the power, the harmonic steady-state telemetry, and the parameter is the weekly wave current.
  • the sampling rate of the voltage, the task function is to complete the steady state calculation Explain the algorithm of the book.
  • the definition of the component structure also contains definitions of input variables, output variables J:, and parameter variables, and can also contain private variables.
  • the data structure of the component is described by a steady-state computing component :
  • Typedef struct short sample / input variable j
  • constructor Each component must be designed with a constructor.
  • the function of the constructor is to allocate the component object memory, initialize the element's basic variables, and call the underlying interface function to register the component's input variables, output variables, and parameter variables.
  • the constructor is as follows:
  • XxComponent dp (XxComponent cal loc (1, sizeof (XxComponent) )
  • ⁇ Register component output can be empty, no registration required
  • Register component parameters can be empty, no registration required
  • ⁇ Registration reference form can be empty, no registration required
  • the initialization function completes the initialization of the component before the task is run.
  • the initialization function format is defined as follows:
  • Each component typically has one or more scheduled tasks. These tasks are added to the task queue in the initialization function.
  • the task function format is defined as follows:
  • the system program first calls its constructor in the first step of device initialization, completes the memory of the allocated component, and defines the registration of input, output, and parameter connection relationships;
  • the system program periodically calls the task function while the device is running.
  • a total of 6 components of the AD interface component, the following frequency resampling component, the steady state computing component, the frequency computing component, the phasor computing component, and the electrical energy computing component are constructed on the management board, and the component registration information is transmitted to the digitizing sampling board through the management bus.
  • the digital sampling board periodically calls the task functions of the six components, and outputs the output variables of the six components through the data bus, that is, the sampled value data, the effective value and power of the voltage and current, the harmonic steady state telemetry,
  • the synchronized phasor data and the electric energy data are transmitted to the management board in real time, and the management board realizes the external communication function, realizing the fusion of the three measurement algorithms of the multifunctional secondary device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种面向间隔的智能变电站多功能二次装置及采样平台,二次装置集成了变电站中稳态遥测测量、同步相量测量、电能量计算三种测量功能,装置包括AD接口元件、跟频重采样元件、稳态计算元件、频率计算元件、相量计算元件和电能量计算元件,数字化采样平台采用PCIe高速总线技术、LVDS背板交换技术,解决了采样大容量及实时数据交换问题,能满足三种测量算法融合的要求。

Description

说 明 书 一种面向间隔的智能变电站多功能二次装置及采样平台
技术领域
本发明属于电力自动化技术领域, 具体地说是一种面向间隔的智能变电站多功能二次装 置及采样平台。
背景技术
智能变电站作为智能电网重要的枢纽节点, 是统一坚强智能电网的重要支撑和保障。 随 着 IEC61850标准在智能变电站中的推广应用, 电子式电流互感器、 电压互感器和合并单元等 过程层设备取代了传统间隔层装置中的模拟量采集部件, 开关设备状态信号和控制信号先接 入智能终端, 然后通过 GOOSE网络接入间隔层装置, 一次侧采样值和状态信号不再是由电缆 传送的模拟量, 而是由通信网络传送的数字量。 因此, 在智能变电站的测控应用中, 传统的 继电保护装置、 测控装置等间隔层装置的结构发生了很大的变化, 其采集和控制操作功能不 再集中在测控单元中完成, 一般由合并单元、 SV采集网络、 数字化测控单元的组合来完成数 据的采集, 由智能终端、 GOOSE网络、 数字化测控单元来完成分合闸控制操作等, 测控技术的 发展为变电站信息共享、 数据综合提供了良好的基础。
在智能变电站中,采集的数据可分为稳态数据(测控、防误闭锁、电能质量等装置完成)、 动态数据麵、 数据集中器等装置完成)、 暂态数据(由故障录波器完成)、 计量数据(电度 表、用电管理终端)。每一类数据采用独立装置并分别构成各种应用子系统,如:监控子系统、 五防子系统、 PMU子系统、 故障录波子系统、 电能质量监测子系统、 电能量采集子系统等。
智能变电站大量新设备的增加使得变电站的建设成本增加, 在当前提倡节能环保的大环 境下, 如何能够在满足新的发展需求的前提下尽量减少设备的数量、 提高设备运行的安全可 靠性成为当前面临的一大难题,为此,考虑到测控同源技术的通用性, 以变电站间隔为对象, 将同一间隔内的测控功能进行有效整合形成一个综合测控装置。
发明内容
为解决现有技术的不足, 本发明在分析了智能变电站中的应用子系统的需求及技术指标 后, 比较了稳态遥测量、 同步相量、 电能量三种量测数据采集的不同需求, 比较了三种电参 量测量在采样、 运算等方面的特点, 提出了三种测量的算法融合方法, 实现了单处理器完成 三种测量算法的集成, 并基于此实现了涵盖三种功能的一种面向间隔的智能变电站多功能二 次装置, 并且为了满足装置的需求, 构建了一种高性能的数字化采样平台。
为实现上述目的, 本发明采用的技术方案为:
一种面向间隔的智能变电站多功能二次装置, 包括 AD接口元件、跟频重采样元件、稳态 计算元件、频率计算元件、相量计算元件和电能量计算元件, 所述 AD接口元件分别与跟频重 说 明 书 采样元件和频率计算元件相连接, 所述跟频重采样元件分别与稳态计算元件和相量计算元件 相连接, 电能量计算元件和稳态计算元件相连接,
所述 AD接口元件在 250μ s中断中执行, 用于读取合并单元的 SV报文采样值数据,每个 中断读取一个采样值数据点, 并将采样值数据分别存入不同的应用数据缓冲区;
所述频率计算元件在 10ms中断中执行, 用于系统频率跟踪的快速计算, 计算出相量数据 及线路频率, 计算出的频率用于后续的跟频重采样元件;
所述跟频重采样元件在 10ms中断中执行, 用于调整重采样率, 将 80点 /周波数据抽取成 64点 /周波数据,同时当系统频率出现波动时,根据当前测得的系统频率实时调整插值间隔, 保证数据的整周期采样;并且跟频重采样元件通过 FFT算法将 SV报文采样值数据时域信号变 换为频域信号, 将 64点 /周波跟频后的采样值数据提供给稳态计算元件和相量计算元件; 所述稳态计算元件采用跟频重采样元件输出的频域信号数据计算电压、 电流的有效值和 功率、 谐波稳态遥测量, 并在每次遥测计算后判断遥测量是否发生变化, 记录下变化时刻所 对应的时标;
所述相量计算元件在 10ms中断中执行, 相量计算元件读取该 10ms时间段跟频重采样元 件输出的频域信号数据进行幅值与相角的运算,输出相量数据,并根据采样序号记录下该 10ms 起始时刻的时标;
所述电能量计算元件采用频域计算法对稳态计算元件计算的瞬时功率进行累加, 得到电 能量。
前述的 SV报文采样值数据为 80点 /周波的电压、 电流采样值数据, 每个 SV报文采样值 数据包括采样值数据、 品质、 指针、 采样序号和数据时标。
前述的频率计算元件选取 AD接口元件数据缓冲区某一电压通道的采样值数据进行基于 相量测量快速的 DFT计算,每次中断后到 AD采样模块缓冲区往前找到 1个半周波的采样数据 计算一次频率, 在计算频率的同时, 计算断路器两侧的实时相位差, 相位差采用频率计算元 件的 DFT算法计算出来的电压基波的实部和虚部计算。
前述的跟频重采样元件根据频率计算元件计算的频率对 AD接口元件数据缓冲区中的采 样值数据进行重采样, 复制出序号连续的 80个采样值数据点, 通过二阶 Lagrange插值算法 将 80点 /周波数据抽取成 64点 /周波数据。
前述的跟频重采样元件中插值运算要考虑采样缓冲区丢点情况的容错处理, 可通过采样 序号的连续性判断是否丢点, 对于只出现丢失 1个数据点的情况, 二阶 Lagrange插值算法仍 能拟合出插值点;当出现连续多个数据点丢失,则复位数据缓冲区,丢弃已缓存采样值数据; 若累计连续出现丢点超过 5个周波, 则产生采样值数据丢点的异常告警。 说 明 书 前述的跟频重采样元件对来自 AD接口元件接收的多个合并单元采样值数据进行同步对 齐处理, 通过对采样值数据进行缓存, 根据采样序号和时标进行不同合并单元采样值数据的 对齐, 实现采样值数据同步。
前述的稳态计算元件计算电压、电流的有效值和功率、谐波稳态遥测量,计算方法如下: 电力系统周期的电流、 电压信号的傅立叶级数形式可表示为:
X(t) = C0 +∑Ctan COS t +
k=l 即 x(t) = c。+ (cos ¾ cos k^t - sin φ sin ka t) ( 17 )
k=l
也可以写成: x(t) = cn + cosk<¾j,t +bk sin kt¾>,t] ( 18 )
Figure imgf000005_0001
式中 x(t) 表示电力系统周期的电流或者电压信号, T 为电力系统周期, 为周期函数 的角频率, , %为1^次谐波的电压和电流之间的夹角, k为谐波次数, cQ是电流或者电 压信号中的直流分量, cta为 k次谐波的电流或者电压幅值, 比较式 (17 ) 和式 (18), 对 k次谐波可得下列关系: tg<¾ ( 19 ) a 利用
bk =
Figure imgf000005_0002
从上面分析可知, 傅立叶级数展开结果是离散的傅氏系数组合, 把一个周期函数展开或 分解为具有一系列谐波的傅立叶级数称为谐波分析, 为了计算傅立叶级数, 需要用到数值积分, 即用 x(t)的采样值来计算这个积分,设一个周 波等间隔采样 , 将式 (20 ) 积分离散化后得 说 明 书
Figure imgf000006_0001
由此可以计算出信号第 k次谐波幅值、 相角、 有效值:
相角 <¾ =arctg(- ) a„>0
a. 或 =arctg(―" -) + π aK<0
1 II
有效值 ct (ak 2 +bk 2) (22)
2 V2
利用式(22), 计算电压、 电流信号 k次谐波的有效值, 不考虑直流分量的影响, 交流周 期函数的有效值等于信号中基波和各次谐波的有效值的平方和的算术平方根, 因此电压 U、 电流 I的有效值分别为:
Figure imgf000006_0002
其中 Uk, Ik分别为 k次谐波的电压有效值和电流有效值, M为需要计及的最高次谐波, 要求 M <-N
2
第 k次谐波的有功功率- pk =UkIk cos(¾k -¾) = -U^I^ (cos φΛ cos ¾ + sin <puk sin <pik)
(23)
k, <¾分别为 k次谐波的电压相角, 电流相角, Uta, Ito分别为 k次谐波的电压幅值, 电流幅值,
将式 (19)代入上式, 得第 k次谐波的有功功率 pk = ^(auk¾ +bukbik)
同理, 第 k次谐波的无功功率:
Qk =UkIk sin(uk) = ^(aukblk -bukalk) 由于各次谐波互相正交, 即不同谐波的电压、 电流互相不做功, 单相电路的有功功率、 说 明 书
无功功率即为各次谐波有功、 无功功率的代数和, 即 P = ^∑(a uAk + ukblk) ,
k=l I
1 M J
Q = -∑(aukb 1k -bukaik)
丄 k=l auk =Uta COSbuk =— Uta Sin %k, ¾ = Ι!αη∞δ ¾ ' b lk =—工^ Sin ¾。 一种数字化采样平台, 包括管理板和若干片数字化采样板, 所述管理板上构建面向间隔 的智能变电站多功能二次装置的 AD接口元件、跟频重采样元件、稳态计算元件、频率计算元 件、相量计算元件和电能量计算元件; 所述管理板和数字化采样板均由 CPU模块和 FPGA模块 组成, CPU模块通过 PCIe串行总线访问 FPGA模块; 所述管理板和数字化采样板的 FPGA模块 通过 LVDS管理总线和 LVDS数据总线进行信息交换。
前述的 LVDS管理总线负责从管理板传送配置信息和注册信息给数字化采样板,同时实时 检测是否有新数字化采样板加入或移除, 以备数据库更新管理; 所述 LVDS数据总线负责将数 字化采样板的输出信息实时传送给管理板, 信息包括采样值数据、 电压、 电流的有效值和功 率、 谐波稳态遥测量、 同步相量数据和电能量数据。
前述的管理板上构建的元件, 每个元件必须含一个构造函数用于分配元件对象内存, 初 始化元件的基本变量, 并调用底层接口函数注册该元件的输入变量、 输出变量和参数变量; 每个元件必须含一个初始化函数用于元件运行前的初始化; 每个元件含一个或多个定期执行 任务函数。
本发明所达到的有益效果为:
1 )本发明的面向间隔的智能变电站多功能二次装置, 融合了稳态遥测量、 同步相量、 电 能量三种功能, 与传统采用三套独立装置分别实现三种量测数据采集的方法相比, 在保证原 有测量精度等各项技术指标的前提下, 提高了设备的集成度, 简化了变电站自动化系统的装 置配置。 同时, 该装置在站控层、 过程层全面支持 IEC61850标准, 同时还支持 IEEE1344规 约, 可满足智能变电站发展建设的各项需求, 可降低智能变电站的建设与维护成本, 具有广 阔的市场空间;
2 )为发明本所述多功能二次装置而构建的高性能的数字化采样平台, 管理板和数字化采 样板同样的硬件设计, 提高了 CPU的利用率, 减少了数据传输延时, 增强了平台的集成化; 该平台的软件架构主要采用注册机制, 通过管理板统一管理数字化采样板, 可在线实现更改 间隔数量, 满足智能变电站测控、 保护、 合并单元、 智能终端、 故障录波等各种二次装置的 应用需求, 可大大提高智能变电站二次装置的开发效率和开发质量。 说 明 书 附图说明
图 1 为智能变电站二次系统局部结构图;
图 2 为本发明多功能二次装置算法实现框图;
图 3 为本发明数字化采样平台总体框图;
图 4为本发明的二次装置功能模块示意图。
具体实施方式
下面结合附图与具体实施方式对本发明进行进一步详细说明。
目前智能变电站二次系统局部结构如图 1所示, 过程层合并单元采集合并电子式互感器 或常规互感器输出的交流量, 根据 IEC61850-9-2采样值传输协议进行编码, 通过过程层 SV 网传输给间隔层测控、 PMU、 电能表等装置。 间隔层装置计算后的量测数据, 在站控层汇集后 转发至各主站系统。
如图 4所示,本发明的面向间隔的智能变电站多功能二次装置包括 AD接口元件、跟频重 采样元件、 稳态计算元件、 频率计算元件、 相量计算元件和电能量计算元件, 其中, AD接口 元件分别与跟频重采样元件和频率计算元件相连接, 跟频重采样元件分别与稳态计算元件和 相量计算元件相连接, 电能量计算元件和稳态计算元件相连接。
如图 2所示, 本发明的二次装置是通过如下方式实现其功能的:
在智能变电站中, 电子式电压互感器、 电子式电流互感器通过合并单元 ( MU) 转换为 IEC61850-9-2格式的 SV报文采样值数据发送给面向间隔的的多功能二次装置。
AD接口元件分配在 250us中断中执行, 读取合并单元的 SV报文采样值数据, 每个中断 读取一个采样值数据点, 并将采样值数据分别存入不同的应用数据缓冲区。 SV报文采样值数 据为 80点 /周波的电压、 电流采样值数据, 每个采样值数据点包含: 采样值数据值、 品质、 指针、 采样序号和数据时标。 AD接口元件考虑模拟与数字化型号兼容, 采样值数据和品质分 别采用 16位表示, 采样序号为 0-3999编号, 数据时标为 32位世纪秒, 后续应用的时标均取 自原始采样点的时标, 且格式保持一致, 采样通道统一按照每条线 13个数据通道预留, 每条 线 6PT+7CT的标准配置, 通道定义保持数字化与模拟统一, 数字化型号每条线预留 3个测量 电流通道, 用于满足二分之三接线时合电流计算的需要。
频率计算元件在 10ms中断中执行, 按照同步相量数据测量的精度要求, 实现系统频率跟 踪的快速计算,频率计算元件选取 AD接口元件数据缓冲区某一电压通道的采样值数据进行基 于相量测量快速的 DFT计算, 计算出相量数据及线路频率。 该算法测量频率准确、 跟频速度 块, 完全满足测量及同步相量数据对频率指标的要求, 但是该算法无法完全消除 DFT算法的 频率泄漏对同步相量数据精度影响, 因此本装置输出的同步相量数据是采用将采样值数据进 说 明 书 行跟频重采样重新计算得到的。
频率计算元件具体计算方法为,每次中断后到 AD采样模块缓冲区往前找到 1个半周波的 采样值数据计算一次频率, 其计算方法和过程如下描述。
设第 r个数据窗的采样时刻为 t=t ^+Τ,, ···, tr+kT1;…,其中, 采样间隔 L=l/(Nf。), f„ 为系统工频, N为每周期的采样点数。 与第 r个数据窗对应的同步相量 ¾r)表示为:
x(r) = Xe^ (1) 表示相量的相位角, X为相量幅值,
电力系统中,频率在 1个周期时间内的变化很小,因此,将数据窗时间范围内的频差 Af(¾ 表示为固定值 Af, 第 r个数据窗的第 s个采样值 (1 可表示为:
xr(k) =V2Xcos[2n (ΐ+^)^ + φΓ+^] (2) 相对额定频率旋转坐标系的旋转相量 为:
Figure imgf000009_0001
将式 (2)表示为指数形式并代入式 (3), 化简得
8(Γ) = ±[6ίφΓ6 )
Figure imgf000009_0002
(4) 又因为
γΝ-l j6 s _ sin 9 N/2 pj9 (N-l)/2
^k=0 e - c 、 (5) swin(n9 /2)
2π Af
(6) f0
式 (4) 可变换为: ^ =1 f ίω. sin e N/2 i9 m-1V2 , -ίω. sin 9 N/2
(7) J N sin(9 /2) sin [(Θ +¾/2)]
将式 (1)代入式 (7), 得
Figure imgf000009_0003
式中-
,、 、》 , Θ (N-l)
sin Θ N/2
C(r) = X(r) ,4π、 (9)
Nsin [(Θ +^)/2)]
(r)是 DFT计算所得的存在频率泄漏的原始相量; (ιΤ是 的共轭; c(r)是 DFT在定 间隔采样情况下与数据窗对应的初相角相关的呈振荡形式的频率泄漏项: 说 明 书
;e (N-i) f。为系统工频, sin(e N/2)/[Nsin(6 /2)]是因频率泄漏导致的相量幅值衰减系数: 是 频率偏差产生的比例相移。
要修正频率泄漏的影像, 只要解算出 c(r)和 Θ, 即可由 r)得到精确的同步相量 (r), 因
U u
此, 可利用连续 3点 2(r)的表达式联立方程组求解。
设每 m次采样计算一次同步相量 ¾r), 采用 3个等间隔相量 r), x(r - m), x(r - 2m)联 立方程组, 可解得: e-je m = f(r _ 2m) + (r _ 2m))2 - e-1"1 (10) x(r-m)-x(r)e"i9 m
c(r) = (11) m _e~j (Q +^")n
式中:
x(r— 2 m) e
f(r - 2m) = - R +— (12)
2 x(r— m) x(r
同步相量¾1")可按下式校正得到:
sinB /2 i9 (N_1)/2
x(r) = [x(r) - c(r)] ■e (13) sin(9 N/2)
在计算频率的同时, 计算断路器两侧的实时相位差, 相位差采用频率计算元件的 DFT算 法计算出来的电压基波的实部和虚部计算。
电压基波的实部 UalF和虚部 Uali的表达式为:
Ualr =Ualmcos<¾; Uall -Ualmsin¾1; Ualm为电压 的幅值, 由此得电压 ua的基波相位角 al为: U
<¾ = arctg
U
(14) 假定断路器另一侧为同期电压 ux, 其基波频率为 fx。 如果忽略两侧电压的频率差, 认为 f « , 电压 ^的基波相位角为:
¾ arctg (15)
Uxli为电压 1^的虚部, Uxll为电压 的实部, 将两侧电压相位角相减得相位差 为: 说 明 书 δα ( 16) 为了避免采样频率与信号频率不同步而产生的误差, 需要实时跟踪被测信号频率并调整 重采样率, 以确保每个被测信号的采样值数据窗都能反映一个完整周期。 目前 PMU要求的最 高上送频率为 ΙΟΟΗζ, 频率计算的分辨率要高于 10ms才能够满足同步相量的数据同步要求。 本发明的跟频重采样元件用于调整重采样率,跟频重采样元件分配在 10ms中断中执行,根据 频率计算元件计算的频率对 AD接口元件数据缓冲区中的采样值数据进行重采样,复制出序号 连续的 80个采样值数据点, 通过二阶 Lagrange插值算法将 80点 /周波数据抽取成 64点 /周 波数据;同时当系统频率出现波动时,能根据当前测得的系统频率迅速调整数据抽取的间隔, 既保证了整周期采样, 又减小了频谱泄露和栅栏效应引起的测量误差。 重采样应满足 PMU计 算数据打时标的要求, 跟频重采样元件提供统一的 64点 /周波跟频后的采样值数据给稳态计 算元件, 相量计算元件。
跟频重采样元件中插值运算要考虑采样缓冲区丢点情况的容错处理, 可通过采样序号的 连续性判断是否丢点,对于只出现丢失 1个数据点的情况, 二阶 Lagrange插值算法仍能拟合 出插值点; 当出现连续多个数据点丢失, 则复位数据缓冲区, 丢弃已缓存采样值数据; 若累 计连续出现丢点超过 5个周波, 则产生采样值数据丢点的异常告警。 同时还应判断采样值自 身带过来的品质位的判断和处理, 将品质位统一处理后输出给稳态计算元件, 相量计算元件 判断, 最终的测量量品质及告警由上述两种元件产生并上送。
跟频重采样元件还需考虑来自 AD接口元件接收的多个合并单元采样值数据的同步对齐 处理。 合并单元的额定延时不同会造成采样序号的不同步, 系统时钟抖动也有可能引起多个 合并单元上送数据的不同步, 跟频重采样元件通过对采样值数据进行缓存, 根据采样序号和 时标进行不同合并单元采样值数据的对齐。
稳态计算元件用于计算遥测和标记遥测量变化时标; 稳态计算元件采用跟频重采样元件 输出的频域信号数据计算电压、 电流的有效值和功率、 谐波稳态遥测量, 其计算方法如下所 述。
电力系统周期的电流、 电压信号的傅立叶级数形式可表示为: x(t) = c0 cos(k<2¾t + ¾)
k=l 艮卩 x(t) = c。 + ^ ckm(cos k cosk<2¾t— sin k sinkii^t) ( 17 )
k=l
也可以写成: 说 明 书
Figure imgf000012_0001
式中 x(t) 表示电力系统周期的电流或者电压信号, T 为周期, ^¾为周期函数的角频率, ω{ =― , k次谐波的电压和电流之间的夹角, k为谐波次数, 是电流或者电压信号中的直流 分量, cta为 k次谐波的电流或者电压幅值。 比较式 (17) 和式 (18), 对 k次谐波可得下列关系: ak ( 19)
Figure imgf000012_0002
利用三角函数的正交性, 可得
ak = bk =
Figure imgf000012_0003
从上面分析可知, 傅立叶级数展开结果是离散的傅氏系数组合。 把一个周期函数展开或 分解为具有一系列谐波的傅立叶级数称为谐波分析。 为了计算傅立叶级数, 需要用到数值积分, 即用 x(t)的采样值来计算这个积分,设一个周 波等间隔采样 。 将式 (20) 积分离散化后得
Figure imgf000012_0004
由此可以计算出信号第 k次谐波幅值、 相角、 有效值:
相角 %=arctg(-2) 或 ¾ =arctg(―" -) + π ak<0
a,. 说 明 书 有效值 ck (22)
Figure imgf000013_0001
利用式(22), 可以计算电压、 电流信号 k次谐波的有效值。 不考虑直流分量的影响, 交 流周期函数的有效值等于信号中基波和各次谐波的有效值的平方和的算术平方根,因此电压、 电流的有效值分别为:
Figure imgf000013_0002
其中 Uk, Ik分别为 k次谐波的电压有效值和电流有效值, M为需要计及的最高次谐波, 要求 M <-N
2
第 k次谐波的有功功率:
Pk =UkIk cos(<¾k -φ- ) = ^U^I^, (cos φΛ cos <¾ + sin tpuk sin <¾)
2 (23)
k, <¾分别为电压相角, 电流相角, Uta, Ita分别为 k次谐波的电压幅值, 电流幅值, 入上式, 得第 k次谐波的有功功率
Figure imgf000013_0003
同理, 第 k次谐波的无功功率-
Qk =UkIk sin(H ) = < -buk½)
由于各次谐波互相正交, 即不同谐波的电压、 电流互相不做功, 单相电路的有功功率、 无功功率即为各次谐波有功、 无功功率的代数和, 即
1
P = ∑(a Uka lk+b ukblk)
L k:l
1
Q = -∑(a Ukb 1k -bukaik)
厶 k=l auk =Ubn cos¾ ' b„k = -Utasin^uk , a lk =I tacos , bik=— Itasin 。 在每次遥测计算后判该元件断遥测量是否发生变化, 记录下变化时刻所对应的时标; 单 条线路稳态计算元件的输出包含标准线路的相电压、 线电压、 同期电压、 零序电压和电流、 总功率和分相功率, 同时考虑合电流运算的需要, 预留边开关电流、 合电流、 总功率, 以及 各测量通道对应的遥测品质和电压电流谐波计算量。
相量计算元件在 10ms中断中执行, 该计算元件读取该 10ms时间段跟频重采样元件输出 说 明 书 的采样值进行幅值与相角的运算, 输出时标为该 10ms起始时刻的相量数据, 相量数据的计算 方法与稳态计算元件描述的一致, 只是由于相量数据只反映基波及 3次谐波的幅值与相角, 因此在进行前述式 (21 )计算时, 只需要计算 k=l和 k=3两种情况, 并根据采样序号记录下 该 10ms起始时刻的时标。动态相量计算对于采样值数据品质的处理方法为, 根据重采样元件 输出的品质信息判断, 单个周波的丢点则送上一周波的数据, 若累计连续出现多个周波的丢 点则产生动态数据异常的告警虚遥信上送。
电能量计算可以采用时域积分法也可以采用频域计算法, 为了抑制直流分量和谐波对计 算精度的影响, 电能量计算元件采用频域计算法进行电能累加, 即通过累加稳态计算元件计 算出的瞬时功率得到电能量。在计算间隔能够保证是均匀 10ms情况下, 可以达到很高的电能 计算精度, 还需要考虑电度量的掉电保持, 装置应设计掉电 MM用于在掉电时保持电度量数 据不丢失。 电能量数据也通过 IEC61850标准模型上送, 当连续两个以上的计算间隔出现稳态 计算元件计算出的瞬时功率品质异常, 电能量计算元件就冻结当前的电能量数据, 提示当地 监控系统及计量主站。
通过上述 5个装置程序元件, 可完成多功能二次装置的稳态遥测、 同步相量、 电能量计量 功能。 采用该算法的多功能二次装置的静态测试的各项指标均满足规范要求。 装置的同步相 量的动态性能也进行了验证, 阶跃响应时间小于 20ms, 幅值调制误差小于 0. 1%, 频率调制误 差小于 0. 002Hz , 动态试验的结果满足同步相技术规范的要求。
本发明的二次装置的工作流程为: 多功能二次装置通过合并单元接收采样值数据, 进行 数据缓存和异常处理; 频率计算元件选取某个电压通道进行频率跟踪计算; 跟频重采样元件 根据计算的系统频率对采样值数据进行重采样; 通过 FFT算法将时域信号变换为频域信号, 并 提供统一的数据接口给稳态计算元件和相量计算元件; 量测数据计算元件根据各自的要求分 别计算出稳态遥测数据、 电能数据和同步相量数据, 并打上各自的数据时标。 IEC61850-9-2 采样值类型为 32位整数, 电压、 电流分别按照 10mV和 1mA进行数据编码, 每个采样通道包含必 须的数据品质。 由于同步相量测量对于数据处理的动态性能要求最高, 因此统一按照同步相 量计算的需要进行数据缓存, 并根据采样值数据的点序号记录下缓存数据块的时标, 满足后 续数据处理的需要。
随着新一代智能变电站的大力推进, 变电站自动化装置的数字化、 集成化的趋势日益明 显,对装置类产品性能的要求越来越高。主流的变电站自动化装置平台多采用双 CPU架构或多 核架构, 双 CPU架构是指 DSP+A履。 DSP 只负责数据采集、 计算, ARM负责网络通讯及信息处 理。 但这种模式在数据共享、 设备间隔扩展、 时钟同步上存在很多技术壁垒, 不利于智能变 电站的推进和继电保护的发展。 多核架构是指采用多核处理器, 模拟双 CPU架构, 实现实时任 说 明 书 务和非实时任务之间的隔离。 这种模式适合于中低压保护测控装置, 成本低、 功耗少, 但数 据采样的实时性和处理能力有限, 无法满足大容量、 高速数据采样的需求。
因此为满足本发明的多功能二次装置的需求, 本发明提出了一种数字化采样平台, 解决 高速数据传输、 大容量数据采样、 测量算法和数据采样同步等问题。
该平台的系统结构图如图 3所示, 可配置 1块管理板和多块数字化采样板, 满足不同应用 的需求。 对于前述的面向间隔的多功能二次装置只需要配置 1块管理板和 1块数字化采样板。 管理板负责对外通讯、 人机接口、 运行信息、 录波文件、 日志管理等功能, 数字化采样板实 现多功能二次装置的 AD接口元件、 跟频重采样元件、 稳态计算元件、 频率计算元件、 相量计 算元件和电能量计算元件的所有功能。
管理板和数字化采样板的系统软件均使用 Linux操作系统。 随着 Linux在嵌入式领域应用 的推广, 其实时性已得到很大提高, Linux 2. 4及以前版本的内核是不可抢占的, 但 Linux 2. 6 中, 内核已经可以抢占, 高优先级内核空间进程可以像用户空间内那样抢占低优先级进程的 资源, 因而实时性得到了加强。
管理板和数字化采样板的硬件由 CPU模块和 FPGA模块组成, CPU模块采用 Freescale公司推 出的 P1011处理芯片, P1011是目前在网络与通信领域应用非常广泛的一款微处理器芯片, 高 速的 PowerPC内核, 连同集成的网络与通信外围设备, 为用户提供了一个建立高端通信系统的 全新系统解决方案, 被广泛应用于实际工程中。 CPU模块采用 PCI e串行总线访问 FPGA模块, P1011处理芯片外接链路一个 Lane, 总线规范 1. x, 速率 2. 5Gbps, 在网络风暴测试中, 性能体 现优越。
管理板和数字化采样板共有两条总线进行数据交换, 一为管理总线, 一为数据总线, 管 理总线负责从管理板传送配置信息和注册信息给数字化采样板, 同时实时检测是否有新数字 化采样板加入或移除, 以备数据库更新管理; 数据总线负责将数字化采样板信息实时传送给 管理板, 信息包括采样值数据、 电压、 电流的有效值和功率、 谐波稳态遥测量、 同步相量数 据和电能量数据。
管理总线和数据总线均采用 LVDS总线技术实现, LVDS总线由 FPGA模块实现, 分为发送总 线和接收总线, 物理上都由一对差分线构成, 实现点对点全双工通信, 通信速率为 100Mbps。
平台的软件架构主要采用注册机制, 通过管理板统一管理, 其具体实现通过封装元件来 实现。 根据面向对象的思想, 将一组数据及定义在数据上的一组操作封装在一起, 称之为元 件。 元件完成一个特定的功能, 有比较明确的输入输出定义和参数定义。 以稳态计算元件为 例, 输入是跟频重采样元件输出的经过跟频插值后的采样值数据, 输出是电压、 电流的有效 值和功率、 谐波稳态遥测量, 参数是每周波电流电压的采样率, 任务函数就是完成稳态计算 说 明 书 的算法。
元件结构的定义还包含有输入变量、 输出变 J :、 和参数变量的定义, 还可以包含私有变 量。 以一个稳态计算元件来说明元件的数据结构:
typedef struct short sample /输入变 j
char sampler ate
short current 〃输出变量
short voltage /输出变量
short power 〃输出变 i
short harmonic [13] 〃输出变
float i2n /私有变量
} Steady— State— Cal;
每个元件必须设计一个构造函数。 构造函数的作用是分配元件对象内存, 初始化元件的 基本变量, 并调用底层接口函数注册该元件的输入变量、 输出变量和参数变量。 构造函数形 式如下:
XxComponent ^NewXxComponent (Component ^parent? const char ^name)
〃分配元件对象内存
XxComponent dp = (XxComponent cal loc (1, sizeof (XxComponent) )
if (dp==NULL) return NULL ; dp_>parent parent
dp->name=name
dp->typename=" XxComponent "
dp->InitComponent= initXxComponent
//注册元件自身
def ineComponent (dp)
//注册元件输入, 可为空, 不需注册
def ineSignal ln ( (Component dp, (void &dp_>current— samp 说 明 书
"current— samp type f (void =!= (void *) ) cal lback— f unci (void dp) ;
〃注册元件输出, 可为空, 不需注册
def ineSiginalOut ( (Component
dp (void*) &dp_>over— current "over— current type=c default=100 )
〃注册元件参数, 可为空, 不需注册
def ineParameter ( (Component dp (void &dp_>threshold threshold type=f min=-100. 0 max=1000. 0 default=500. (T NULL, NULL)
〃注册引用表, 可为空, 不需注册
def ineParameter ( (Component *) dp (void & (dp -〉 ref— para) ^ref para type=s (void callback— func2 (void dp)
return dp ; 每个元件必须设计一个初始化函数。 初始化函数完成元件的任务运行前的初始化工作。 初始化函数格式定义如下:
int initXxComponent (XxComponent * dp)
〃…变量初始化等
addTask (dp->lvl, runXxComponent, dp)
return 0 每个元件一般有一或多个定期执行任务。 这些任务在初始化函数中添加到任务队列中。 任务函数格式定义如下:
void runtXxComponentl (XxComponent dp)
〃…完成元件相关的任务 元件的构造、 初始化、 任务函数均有系统程序自动调用, 其执行顺序为:
1、 系统程序在装置初始化第一步时首先调用其构造函数, 完成分配元件的内存, 输入、 输出、 参数连接关系定义注册等工作;
2、 系统程序在装置初始化第 N步时, 调用元件的初始化函数, 完成元件数据初始化、 任 务注册; 说 明 书
3、 系统程序在装置运行时, 周期性的调用任务函数。
管理板上构建了 AD接口元件、 跟频重采样元件、 稳态计算元件、 频率计算元件、 相量计 算元件和电能量计算元件共 6个元件, 并通过管理总线传送元件注册信息给数字化采样板, 数 字化采样板周期性的调用这 6个元件的任务函数, 并通过数据总线把这 6个元件的输出变量, 即采样值数据、 电压、 电流的有效值和功率、 谐波稳态遥测量、 同步相量数据和电能量数据 实时传送给管理板, 由管理板实现对外的通信功能, 实现了多功能二次装置三种测量算法的 融合。

Claims

权 利 要 求 书
1、一种面向间隔的智能变电站多功能二次装置,其特征在于,包括 AD接口元件、 跟频重采样元件、稳态计算元件、频率计算元件、相量计算元件和电能量计算元 件, 所述 AD接口元件分别与跟频重采样元件和频率计算元件相连接, 所述跟频 重采样元件分别与稳态计算元件和相量计算元件相连接,电能量计算元件和稳态 计算元件相连接,
所述 AD接口元件在 250μ s中断中执行, 用于读取合并单元的 SV报文采样值数 据,每个中断读取一个采样值数据点,并将采样值数据分别存入不同的应用数据 缓冲区;
所述频率计算元件在 10ms中断中执行, 用于系统频率跟踪的快速计算, 计算出 相量数据及线路频率, 计算出的频率用于后续的跟频重采样元件;
所述跟频重采样元件在 10ms中断中执行, 用于调整重采样率, 将 80点 /周波数 据抽取成 64点 /周波数据, 同时当系统频率出现波动时,根据当前测得的系统频 率实时调整插值间隔, 保证数据的整周期采样; 并且跟频重采样元件通过 FFT 算法将 SV报文采样值数据时域信号变换为频域信号, 将 64点 /周波跟频后的采 样值数据提供给稳态计算元件和相量计算元件;
所述稳态计算元件采用跟频重采样元件输出的频域信号数据计算电压、电流的有 效值和功率、 谐波稳态遥测量, 并在每次遥测计算后判断遥测量是否发生变化, 记录下变化时刻所对应的时标;
所述相量计算元件在 10ms中断中执行,相量计算元件读取该 10ms时间段跟频重 采样元件输出的频域信号数据进行幅值与相角的运算,输出相量数据,并根据采 样序号记录下该 10ms起始时刻的时标;
所述电能量计算元件采用频域计算法对稳态计算元件计算的瞬时功率进行累加, 得到电能量。
2、 根据权利要求 1所述的一种面向间隔的智能变电站多功能二次装置, 其特征 在于, 所述 SV报文采样值数据为 80点 /周波的电压、 电流采样值数据, 每个 SV 报文采样值数据包括采样值数据、 品质、 指针、 采样序号和数据时标。
3、 根据权利要求 1所述的一种面向间隔的智能变电站多功能二次装置, 其特征 在于, 所述频率计算元件选取 AD接口元件数据缓冲区某一电压通道的采样值数 据进行基于相量测量快速的 DFT计算, 每次中断后到 AD采样模块缓冲区往前找 权 利 要 求 书
到 1个半周波的采样数据计算一次频率,在计算频率的同时,计算断路器两侧的 实时相位差,相位差采用频率计算元件的 DFT算法计算出来的电压基波的实部和 虚部计算。
4、 根据权利要求 1所述的一种面向间隔的智能变电站多功能二次装置, 其特征 在于, 所述跟频重采样元件根据频率计算元件计算的频率对 AD接口元件数据缓 冲区中的采样值数据进行重采样, 复制出序号连续的 80个采样值数据点, 通过 二阶 Lagrange插值算法将 80点 /周波数据抽取成 64点 /周波数据。
5、 根据权利要求 1或 4所述的一种面向间隔的智能变电站多功能二次装置, 其 特征在于,所述跟频重采样元件中插值运算要考虑采样缓冲区丢点情况的容错处 理,可通过采样序号的连续性判断是否丢点,对于只出现丢失 1个数据点的情况, 二阶 Lagrange插值算法仍能拟合出插值点; 当出现连续多个数据点丢失, 则复 位数据缓冲区, 丢弃己缓存采样值数据; 若累计连续出现丢点超过 5个周波, 则 产生采样值数据丢点的异常告警。
6、 根据权利要求 1或 4所述的一种面向间隔的智能变电站多功能二次装置, 其 特征在于, 所述跟频重采样元件对来自 AD接口元件接收的多个合并单元采样值 数据进行同步对齐处理,通过对采样值数据进行缓存,根据采样序号和时标进行 不同合并单元采样值数据的对齐, 实现采样值数据同步。
7、 根据权利要求 1所述的一种面向间隔的智能变电站多功能二次装置, 其特征 在于, 所述稳态计算元件计算电压、 电流的有效值和功率、 谐波稳态遥测量, 计 算方法如下- 电力系统周期的电流、 电压信号的傅立叶级数形式可表示为: x(t) = co +∑cta cos t + cpk )
k=l 即 x(t) = c。 + "l jcltm(cos k coskft)1t— sin k sink^t) ( 17 ) k=l
也可以写成: x(t) = c。 + [ak coski¾t + bk sink t] ( 18 ) k:l 式中 x(t) 表示电力系统周期的电流或者电压信号, T 为电力系统周期, 权 禾 "J 要 求 书 为周期函数的角频率, β¾ =^, %为 k次谐波的电压和电流之间的夹角, k为谐 波次数, e。是电流或者电压信号中的直流分量, £^«为](次谐波的电流或者电压幅 值,
比较式 (17) 和式 (18), 对 k次谐波可得下列关系- ak (19)
Figure imgf000021_0001
利用三角函数的正交性, 可得
Figure imgf000021_0002
从上面分析可知,傅立叶级数展开结果是离散的傅氏系数组合,把一个周期 函数展开或分解为具有一系列谐波的傅立叶级数称为谐波分析,
为了计算傅立叶级数, 需要用到数值积分, 即用 x(t)的采样值来计算这个积 分,设一个周波等间隔采样 N点, 将式 (20) 积分离散化后得 a. = ( 21 )
Figure imgf000021_0003
由此可以计算出信号第 k次谐波幅值、 相角、 有效值 : 幅值 c
Figure imgf000021_0004
相角 <¾ =arctg (-丄) a,>0
a. 或 %=arctg(―" -) + π ak<0
a. 有效值 (22)
Figure imgf000021_0005
权 利 要 求 书
利用式 (22), 计算电压、 电流信号 k次谐波的有效值, 不考虑直流分量的 影响,交流周期函数的有效值等于信号中基波和各次谐波的有效值的平方和的算 术平方根, 因此 I的有效
Figure imgf000022_0001
其中 Uk, Ik分别为 k次谐波的电压有效值和电流有效值, M为需要计及的 最高次谐波, 要求 M<^N
2
第 k次谐波的有功功率 Pk: pk =UkIkcos(%k -φ ) = ^U^I^icos φΛ cos φ±. + sin sin φ. ) φΛ, «¾分别为 k次谐波的电压相角, 电流相角, Uta, Ita分别为 k次谐波 的电压幅值, 电流幅值,
将式 (19)代入上式, 得第 k次谐波的有功功率 Pk
Pk =-(aukalk+bukbik) 同理, 第 k次谐波的无功功率 :
Qk =UkIk sin(<¾k _<¾) = ^(aukbik -bukaik) 由于各次谐波互相正交, 即不同谐波的电压、 电流互相不做功, 单相电路的 有功功率、 无功功率即为各次谐波有功、 无功功率的代数和, 即
P =^∑(a uAk+bukblk)
bik = - Ita sin 。
Figure imgf000022_0002
8、 一种数字化采样平台, 其特征在于, 包括管理板和若干片数字化采样板, 所 述管理板上构建面向间隔的智能变电站多功能二次装置的 AD接口元件、 跟频重 采样元件、稳态计算元件、频率计算元件、 相量计算元件和电能量计算元件; 所 权 利 要 求 书
述管理板和数字化采样板均由 CPU模块和 FPGA模块组成, CPU模块通过 PCIe串 行总线访问 FPGA模块; 所述管理板和数字化采样板的 FPGA模块通过 LVDS管理 总线和 LVDS数据总线进行信息交换。
9、根据权利要求 8所述的一种数字化采样平台, 其特征在于, 所述 LVDS管理总 线负责从管理板传送配置信息和注册信息给数字化采样板,同时实时检测是否有 新数字化采样板加入或移除, 以备数据库更新管理; 所述 LVDS数据总线负责将 数字化采样板的输出信息实时传送给管理板, 信息包括采样值数据、 电压、 电流 的有效值和功率、 谐波稳态遥测量、 同步相量数据和电能量数据。
10、根据权利要求 8所述的一种数字化采样平台, 其特征在于, 所述管理板上构 建的元件,每个元件必须含一个构造函数用于分配元件对象内存,初始化元件的 基本变量, 并调用底层接口函数注册该元件的输入变量、 输出变量和参数变量; 每个元件必须含一个初始化函数用于元件运行前的初始化;每个元件含一个或多 个定期执行任务函数。
PCT/CN2014/080166 2013-11-12 2014-06-18 一种面向间隔的智能变电站多功能二次装置及采样平台 WO2015070604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310559465.6 2013-11-12
CN201310559465.6A CN103675522B (zh) 2013-11-12 2013-11-12 一种面向间隔的智能变电站多功能二次装置

Publications (1)

Publication Number Publication Date
WO2015070604A1 true WO2015070604A1 (zh) 2015-05-21

Family

ID=50313684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080166 WO2015070604A1 (zh) 2013-11-12 2014-06-18 一种面向间隔的智能变电站多功能二次装置及采样平台

Country Status (2)

Country Link
CN (1) CN103675522B (zh)
WO (1) WO2015070604A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253484A (zh) * 2016-09-18 2016-12-21 国网河南伊川县供电公司 一种用于电力变电站二次供电系统同步监测装置及方法
CN107390023A (zh) * 2017-06-02 2017-11-24 中国电力科学研究院 一种电网电气量宽带多频测量装置及其实现方法
CN107992019A (zh) * 2017-10-31 2018-05-04 中国电力科学研究院有限公司 一种主子站一体化防误系统闭环测试方法和系统
CN108957170A (zh) * 2018-05-24 2018-12-07 上海铁大电信科技股份有限公司 25hz室外轨道电路电气数据采集系统
CN110210053A (zh) * 2019-04-24 2019-09-06 天津大学 一种基于fpga的实时数字解算器的通信接口设计方法
CN110320448A (zh) * 2019-08-05 2019-10-11 国家电网有限公司 一种分布式馈线故障录波装置
CN111144705A (zh) * 2019-12-05 2020-05-12 国网辽宁省电力有限公司锦州供电公司 一种基于带时标信息采集的全网同断面数据处理方法
CN111308202A (zh) * 2019-11-05 2020-06-19 云南电网有限责任公司 一种基于谐波自适应检测方法的广谱同步相量采集系统
CN112051444A (zh) * 2020-08-18 2020-12-08 许继集团有限公司 一种基于抛物线插值迭代的抗谐波频率校准方法及装置
CN113010532A (zh) * 2021-02-26 2021-06-22 许继集团有限公司 一种继电保护装置及sv直采的重采样方法
CN113791304A (zh) * 2021-08-23 2021-12-14 珠海许继芝电网自动化有限公司 故障类型及故障区段识别方法
CN113889983A (zh) * 2021-09-16 2022-01-04 科大智能电气技术有限公司 适用5g差动保护的数据传输和保护系统、方法及存储设备
CN114039714A (zh) * 2021-10-29 2022-02-11 许昌许继软件技术有限公司 一种多时钟源协同对时系统及其对时方法
CN114089038A (zh) * 2021-11-16 2022-02-25 许昌许继软件技术有限公司 同步相量测量装置动态数据的时标秒位跳变处理方法及系统
CN114172628A (zh) * 2021-12-14 2022-03-11 上海乐耘电气技术有限公司 一种不依赖对时的过程层网络采样数据的同步采集方法
CN114252836A (zh) * 2021-11-23 2022-03-29 国网浙江省电力有限公司营销服务中心 一种电流互感器采样和状态检测电路的检测方法
CN114268081A (zh) * 2021-11-03 2022-04-01 国网宁夏电力有限公司检修公司 一种一次系统运行模式的识别方法、介质及系统
CN114264890A (zh) * 2021-12-22 2022-04-01 成都高斯电子技术有限公司 一种运行电力设备非接触式电参数量测核验装置及方法
CN114646823A (zh) * 2022-02-28 2022-06-21 南京国电南自电网自动化有限公司 一种暂态同源波形分析方法
CN114900414A (zh) * 2022-05-11 2022-08-12 瑞斯康达科技发展股份有限公司 一种基站侧上行波形选择方法和基站
CN115098436A (zh) * 2022-08-24 2022-09-23 北京智芯微电子科技有限公司 一种多核SoC、继电保护方法及系统
CN117269843A (zh) * 2023-11-21 2023-12-22 云南电网有限责任公司 一种二次电流回路中性线运行状态在线监测方法及系统
CN118137674A (zh) * 2024-04-30 2024-06-04 广东南超电气有限公司 一种高低压配电柜安全监测方法及系统

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675522B (zh) * 2013-11-12 2016-05-04 国电南瑞科技股份有限公司 一种面向间隔的智能变电站多功能二次装置
CN104614625B (zh) * 2015-02-15 2017-10-03 广州供电局有限公司 电力系统带电负荷测试方法与系统
CN105119676B (zh) * 2015-09-08 2017-12-19 南京国电南自轨道交通工程有限公司 可扩展的数字化采样值品质的处理方法
CN105224811B (zh) * 2015-10-21 2018-01-26 中国科学院光电技术研究所 一种基于反馈迭代式频率跟踪的pmu动态数据处理方法
CN106302005A (zh) * 2016-08-04 2017-01-04 国电南瑞科技股份有限公司 合并单元装置动态监测iec61850‑9‑2网络风暴的方法
CN106597095B (zh) * 2016-12-22 2019-09-10 南京因泰莱电器股份有限公司 一种双cpu等间隔采样的频率跟踪实现方法
CN107255758B (zh) * 2017-06-02 2021-03-23 中国电力科学研究院 一种宽带多频电气量统一测量分析系统及实现方法
CN107834697B (zh) * 2017-10-23 2020-12-29 广东电网有限责任公司肇庆供电局 提升电网故障时调度自动化系统遥测数据响应速度的方法
CN107942168A (zh) * 2017-11-24 2018-04-20 南京易司拓电力科技股份有限公司 一种可替换数字式和模拟式电能质量监测装置及方法
CN108336826A (zh) * 2018-04-09 2018-07-27 厦门远通电子技术有限公司 一种配电网综合配电终端
JP2019191070A (ja) * 2018-04-27 2019-10-31 セイコーエプソン株式会社 リサンプリング回路、物理量センサーユニット、慣性計測装置及び構造物監視装置
CN109298670B (zh) * 2018-11-13 2020-09-01 北京四方继保自动化股份有限公司 多源数据融合采集装置及系统
CN110988469B (zh) * 2019-11-14 2021-03-16 中国矿业大学 一种快速谐波检测方法
CN111190042B (zh) * 2019-12-30 2022-06-21 中国电力科学研究院有限公司 一种智能传感终端及对电网信号全频段测量的方法
CN111447253B (zh) * 2020-02-28 2021-06-25 清华大学 缓冲区管理方法、系统、设备及存储介质
CN111736108A (zh) * 2020-06-19 2020-10-02 国网河南省电力公司鹤壁供电公司 快速测量电流互感器极性的装置
CN112448481A (zh) * 2020-12-14 2021-03-05 南方电网科学研究院有限责任公司 一种基于多重构架配电自动化终端的时标处理方法及系统
CN113448308A (zh) * 2021-04-14 2021-09-28 南方电网科学研究院有限责任公司 一种稳控系统的远程闭环测试系统及方法
CN113341228A (zh) * 2021-04-25 2021-09-03 广东电网有限责任公司广州供电局 电压的相位差处理方法、装置、电子设备和存储介质
CN112986744B (zh) * 2021-04-26 2021-08-06 湖南大学 一种电力系统暂态故障情况下的频率容错检测方法及系统
CN113671245A (zh) * 2021-08-18 2021-11-19 国网陕西省电力公司电力科学研究院 内置时域积分功能的数字接口及时域下一次电压采集方法
CN114172262A (zh) * 2021-09-10 2022-03-11 国网上海市电力公司 智能变电站采样数据质量综合评估方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350518A (zh) * 2008-09-05 2009-01-21 国电南瑞科技股份有限公司 数字化保护测控装置采样值处理方法
EP2019467A1 (en) * 2007-07-23 2009-01-28 K.N. Toosi University of Technology Automated Load Balancing for distribution substation feeders
CN101895385A (zh) * 2010-07-26 2010-11-24 国电南瑞科技股份有限公司 用于实现时钟切换的合并单元的对时时钟系统
CN102565542A (zh) * 2012-02-10 2012-07-11 国电南瑞科技股份有限公司 基于iec61850-9-2标准的容性设备介质损耗在线监测方法
CN103675522A (zh) * 2013-11-12 2014-03-26 国电南瑞科技股份有限公司 一种面向间隔的智能变电站多功能二次装置及采样平台

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180301B1 (en) * 2005-11-30 2007-02-20 The Untied States Of America As Represented By The Secretary Of The Army Power monitor-glitch trap system
CN101334439B (zh) * 2008-07-08 2011-04-27 国电南瑞科技股份有限公司 一种电参量三态数据综合采集装置
CN101707629B (zh) * 2009-11-13 2012-11-14 国网电力科学研究院 电网安全稳定控制装置信息自组织的镜像同步通讯方法
CN102231568B (zh) * 2011-07-05 2014-01-29 国电南瑞科技股份有限公司 一种多功能的智能化数据采集装置
CN202583354U (zh) * 2012-04-28 2012-12-05 国电南瑞(北京)控制系统有限公司 网络式电能质量在线监测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019467A1 (en) * 2007-07-23 2009-01-28 K.N. Toosi University of Technology Automated Load Balancing for distribution substation feeders
CN101350518A (zh) * 2008-09-05 2009-01-21 国电南瑞科技股份有限公司 数字化保护测控装置采样值处理方法
CN101895385A (zh) * 2010-07-26 2010-11-24 国电南瑞科技股份有限公司 用于实现时钟切换的合并单元的对时时钟系统
CN102565542A (zh) * 2012-02-10 2012-07-11 国电南瑞科技股份有限公司 基于iec61850-9-2标准的容性设备介质损耗在线监测方法
CN103675522A (zh) * 2013-11-12 2014-03-26 国电南瑞科技股份有限公司 一种面向间隔的智能变电站多功能二次装置及采样平台

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253484A (zh) * 2016-09-18 2016-12-21 国网河南伊川县供电公司 一种用于电力变电站二次供电系统同步监测装置及方法
CN107390023A (zh) * 2017-06-02 2017-11-24 中国电力科学研究院 一种电网电气量宽带多频测量装置及其实现方法
CN107992019B (zh) * 2017-10-31 2023-07-18 中国电力科学研究院有限公司 一种主子站一体化防误系统闭环测试方法和系统
CN107992019A (zh) * 2017-10-31 2018-05-04 中国电力科学研究院有限公司 一种主子站一体化防误系统闭环测试方法和系统
CN108957170A (zh) * 2018-05-24 2018-12-07 上海铁大电信科技股份有限公司 25hz室外轨道电路电气数据采集系统
CN110210053A (zh) * 2019-04-24 2019-09-06 天津大学 一种基于fpga的实时数字解算器的通信接口设计方法
CN110320448A (zh) * 2019-08-05 2019-10-11 国家电网有限公司 一种分布式馈线故障录波装置
CN111308202A (zh) * 2019-11-05 2020-06-19 云南电网有限责任公司 一种基于谐波自适应检测方法的广谱同步相量采集系统
CN111308202B (zh) * 2019-11-05 2022-02-22 云南电网有限责任公司 一种基于谐波自适应检测方法的广谱同步相量采集系统
CN111144705A (zh) * 2019-12-05 2020-05-12 国网辽宁省电力有限公司锦州供电公司 一种基于带时标信息采集的全网同断面数据处理方法
CN111144705B (zh) * 2019-12-05 2023-04-18 国网辽宁省电力有限公司锦州供电公司 一种基于带时标信息采集的全网同断面数据处理方法
CN112051444A (zh) * 2020-08-18 2020-12-08 许继集团有限公司 一种基于抛物线插值迭代的抗谐波频率校准方法及装置
CN112051444B (zh) * 2020-08-18 2023-02-10 许继集团有限公司 一种基于抛物线插值迭代的抗谐波频率校准方法及装置
CN113010532B (zh) * 2021-02-26 2024-02-13 许继集团有限公司 一种继电保护装置及sv直采的重采样方法
CN113010532A (zh) * 2021-02-26 2021-06-22 许继集团有限公司 一种继电保护装置及sv直采的重采样方法
CN113791304B (zh) * 2021-08-23 2024-04-09 珠海许继芝电网自动化有限公司 故障类型及故障区段识别方法
CN113791304A (zh) * 2021-08-23 2021-12-14 珠海许继芝电网自动化有限公司 故障类型及故障区段识别方法
CN113889983B (zh) * 2021-09-16 2024-02-02 科大智能电气技术有限公司 适用5g差动保护的数据传输和保护系统、方法及存储设备
CN113889983A (zh) * 2021-09-16 2022-01-04 科大智能电气技术有限公司 适用5g差动保护的数据传输和保护系统、方法及存储设备
CN114039714B (zh) * 2021-10-29 2024-05-10 许昌许继软件技术有限公司 一种多时钟源协同对时系统及其对时方法
CN114039714A (zh) * 2021-10-29 2022-02-11 许昌许继软件技术有限公司 一种多时钟源协同对时系统及其对时方法
CN114268081A (zh) * 2021-11-03 2022-04-01 国网宁夏电力有限公司检修公司 一种一次系统运行模式的识别方法、介质及系统
CN114268081B (zh) * 2021-11-03 2023-09-12 国网宁夏电力有限公司检修公司 一种一次系统运行模式的识别方法、介质及系统
CN114089038B (zh) * 2021-11-16 2024-04-16 许昌许继软件技术有限公司 同步相量测量装置动态数据的时标秒位跳变处理方法及系统
CN114089038A (zh) * 2021-11-16 2022-02-25 许昌许继软件技术有限公司 同步相量测量装置动态数据的时标秒位跳变处理方法及系统
CN114252836A (zh) * 2021-11-23 2022-03-29 国网浙江省电力有限公司营销服务中心 一种电流互感器采样和状态检测电路的检测方法
CN114172628A (zh) * 2021-12-14 2022-03-11 上海乐耘电气技术有限公司 一种不依赖对时的过程层网络采样数据的同步采集方法
CN114172628B (zh) * 2021-12-14 2024-04-09 上海乐耘电气技术有限公司 一种不依赖对时的过程层网络采样数据的同步采集方法
CN114264890A (zh) * 2021-12-22 2022-04-01 成都高斯电子技术有限公司 一种运行电力设备非接触式电参数量测核验装置及方法
CN114264890B (zh) * 2021-12-22 2024-05-10 成都高斯电子技术有限公司 一种运行电力设备非接触式电参数量测核验装置及方法
CN114646823A (zh) * 2022-02-28 2022-06-21 南京国电南自电网自动化有限公司 一种暂态同源波形分析方法
CN114900414B (zh) * 2022-05-11 2023-06-30 瑞斯康达科技发展股份有限公司 一种基站侧上行波形选择方法和基站
CN114900414A (zh) * 2022-05-11 2022-08-12 瑞斯康达科技发展股份有限公司 一种基站侧上行波形选择方法和基站
CN115098436A (zh) * 2022-08-24 2022-09-23 北京智芯微电子科技有限公司 一种多核SoC、继电保护方法及系统
CN117269843A (zh) * 2023-11-21 2023-12-22 云南电网有限责任公司 一种二次电流回路中性线运行状态在线监测方法及系统
CN117269843B (zh) * 2023-11-21 2024-04-19 云南电网有限责任公司 一种二次电流回路中性线运行状态在线监测方法及系统
CN118137674A (zh) * 2024-04-30 2024-06-04 广东南超电气有限公司 一种高低压配电柜安全监测方法及系统

Also Published As

Publication number Publication date
CN103675522A (zh) 2014-03-26
CN103675522B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2015070604A1 (zh) 一种面向间隔的智能变电站多功能二次装置及采样平台
CN101515015B (zh) 一种电力系统电能质量监测与记录装置
CN101498757B (zh) 一种电力系统实时动态监测与记录装置
CN101566641B (zh) 一种电力系统输电线路参数同步测量与记录装置
CN102401871B (zh) 基于fpga和arm硬件平台的故障信息综合装置
CN201327515Y (zh) 基于双cpu的分布式电能质量在线监测仪
CN103187735B (zh) 一种用于分布式新能源并网的双向智能网关装置
CN101692104A (zh) 一种电力系统电能质量监测与同步相量监测装置
CN201368905Y (zh) 一种电力系统电能质量监测与记录装置
CN106501626B (zh) 一种基于同步相量测量的广域核相系统
CN108336826A (zh) 一种配电网综合配电终端
CN108469545B (zh) 一种变电站宽频测量装置
CN201569691U (zh) 一种电力系统电能质量监测与同步相量监测装置
CN101881790A (zh) 智能电力参数测试仪
CN104076321A (zh) 一种数字式电能表在线监测与评估系统及方法
CN102169646A (zh) 一种基于动态数据的在线负荷建模系统
CN102539916A (zh) 船舶电力系统同步相量测量装置
CN105676041A (zh) 基于dsp与arm的双cpu电能质量监测装置
CN104280636A (zh) 三层架构的可配回路全数字式电能质量监测装置及方法
CN103513105A (zh) 一种220v用户侧同步相量测量装置
CN103529327B (zh) 一种适于智能化变电站的全站电能质量监测装置和监测方法
CN208445349U (zh) 一种配电网综合配电终端
CN202372607U (zh) 基于fpga和arm硬件平台的故障信息综合装置
CN114384836A (zh) 一种基于国产芯片的测控装置算法及数据处理方法
CN103135488B (zh) 基于FlexRay的车载综合开发平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861224

Country of ref document: EP

Kind code of ref document: A1