WO2024021909A1 - 车辆电功率确定方法、装置、电子设备及存储介质 - Google Patents

车辆电功率确定方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2024021909A1
WO2024021909A1 PCT/CN2023/099461 CN2023099461W WO2024021909A1 WO 2024021909 A1 WO2024021909 A1 WO 2024021909A1 CN 2023099461 W CN2023099461 W CN 2023099461W WO 2024021909 A1 WO2024021909 A1 WO 2024021909A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
target vehicle
motor
driving
peak
Prior art date
Application number
PCT/CN2023/099461
Other languages
English (en)
French (fr)
Inventor
伍庆龙
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024021909A1 publication Critical patent/WO2024021909A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This application relates to the field of automotive technology, for example, to a vehicle electric power determination method, device, electronic equipment and storage medium.
  • the motor power includes motor driving power and motor recovery power, and motor driving power and motor recovery power are important parameters that affect the power and economy of the entire vehicle.
  • This application provides a vehicle electric power determination method, device, electronic equipment and storage medium.
  • embodiments of the present application provide a method for determining vehicle electric power, including:
  • the motor peak driving torque and motor peak recovery torque of the target vehicle respectively determine the reference driving power and the reference recovery power corresponding to the target vehicle;
  • the working conditions to be used include at least one of the maximum climbing condition, the preset slope condition, the driving condition corresponding to the preset vehicle speed, and the preset power mode condition;
  • the test conditions include system test conditions, and at least one of the test conditions corresponding to the engine of the target vehicle overcoming friction;
  • the target vehicle is driven based on the motor peak driving power and the motor peak recovery power.
  • embodiments of the present application also provide a vehicle electric power determination device, including:
  • a power determination module configured to respectively determine the reference driving power and the reference recovery power corresponding to the target vehicle according to the motor peak driving torque and the motor peak recovery torque of the target vehicle;
  • a peak driving power determination module configured to determine the driving power to be compared of the target vehicle in at least one working condition to be used, and based on the reference driving power to be compared and at least one driving power to be compared, Determine the peak driving power of the motor corresponding to the target vehicle; wherein the working conditions to be used include maximum climbing conditions, preset slope conditions, driving conditions corresponding to the preset vehicle speed, and preset power At least one of the mode conditions;
  • a peak recovery power determination module configured to determine the recovery power to be compared of the target vehicle under at least one test condition, and based on the recovery power to be compared and at least one recovery power to be compared, determine the recovery power to be compared with the target.
  • a vehicle driving module is configured to drive the target vehicle based on the motor peak driving power and the motor peak recovery power.
  • embodiments of the present application further provide an electronic device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores information that can be processed by the at least one processor.
  • the computer program is executed by the processor, and the computer program is executed by the at least one processor, so that the at least one processor can execute the vehicle electric power determination method described in any embodiment of the present application.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer instructions, and the computer instructions are used to implement any of the embodiments of the present application when executed by a processor.
  • Figure 1 is a flow chart of a vehicle electric power determination method provided according to Embodiment 1 of the present application.
  • Figure 2 is a schematic structural diagram of a power system provided according to Embodiment 2 of the present application.
  • Figure 3 is a flow chart of a method for determining the peak driving power of a motor provided according to Embodiment 2 of the present application;
  • Figure 4 is a schematic structural diagram of a vehicle electric power determination device provided according to Embodiment 3 of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic device that implements the vehicle electric power determination method according to the embodiment of the present application.
  • the method of determining the motor power of the vehicle can be improved.
  • embodiments of the present application provide a method, device, electronic device, and storage medium for determining vehicle electric power.
  • FIG 1 is a flow chart of a vehicle electric power determination method provided in Embodiment 1 of the present application. This embodiment can accurately calculate the motor power of the vehicle.
  • the method can be executed by a vehicle electric power determination device.
  • the vehicle electric power determination device can Implemented in the form of hardware and/or software, the vehicle electric power determination device can be configured in a computing device that can execute the vehicle electric power determination method.
  • the method includes:
  • the target vehicle can be understood as a vehicle for which vehicle electric power calculation needs to be performed.
  • the target vehicle is subject to a variety of different resistances during driving, such as rolling resistance, air resistance, slope resistance, acceleration resistance, etc.
  • the power system of the target vehicle needs to provide a certain driving force to the target vehicle to generate corresponding
  • the driving torque is transmitted to the wheels through the transmission system of the target vehicle, thereby driving the target vehicle.
  • the driving force provided by the power system to the target vehicle is equal to the sum of all resistance forces.
  • the peak driving torque of the motor can be understood as the corresponding maximum torque that the motor needs to provide to the transmission system when the power system provides a certain driving force to the target vehicle.
  • the peak recovery torque of the motor can be understood as the maximum torque that the motor can recover when converting kinetic energy into electrical energy during the braking process of the target vehicle.
  • the driving power to be referenced can be understood as the driving power determined based on the peak driving torque of the motor, and the recuperated power to be referenced can be understood as the recuperated power determined based on the peak regenerating torque of the motor.
  • the peak driving torque of the motor and the peak recuperation torque of the motor corresponding to the target vehicle obtain the peak driving torque of the motor and the peak recuperation torque of the motor corresponding to the target vehicle, and based on the corresponding calculation method, determine the reference driving power corresponding to the peak driving torque of the motor and the peak recuperation driving torque of the motor respectively.
  • the recovery power to be referenced obtain the peak driving torque of the motor and the peak recuperation torque of the motor corresponding to the target vehicle, and based on the corresponding calculation method, determine the reference driving power corresponding to the peak driving torque of the motor and the peak recuperation driving torque of the motor respectively.
  • the recovery power to be referenced determine the recovery power corresponding to the peak driving torque of the motor and the peak recuperation driving torque of the motor respectively.
  • determining the driving power to be referenced and the recovery power to be referenced corresponding to the target vehicle respectively includes: based on the peak driving torque of the motor corresponding to the target vehicle, the preset motor speed and the first preset constant, determining the power corresponding to the target vehicle.
  • Corresponding driving power to be referenced; based on the motor peak recovery torque corresponding to the target vehicle, the preset motor efficiency and the second preset constant, the recovery power to be referenced corresponding to the target vehicle is determined.
  • the preset motor speed can be understood as the preset motor speed of the target vehicle, and the preset motor speed can be determined according to the actual situation.
  • the preset motor efficiency can be understood as the preset motor efficiency of the target vehicle.
  • the first preset constant can be understood as a fixed value used when calculating the driving power to be referenced.
  • the second preset constant can be understood as a fixed value used when calculating the recovery power to be referenced. It should be noted that the first preset constant and the second preset constant may be equal or unequal, and are set according to the actual situation.
  • the peak driving torque of the motor corresponding to the motor of the target vehicle is obtained, the peak driving torque of the motor is multiplied by the preset motor speed, and the ratio of the obtained product result to the first preset constant is , determined as the driving power to be referenced corresponding to the motor of the target vehicle.
  • the reference recovery power obtain the motor peak recovery torque corresponding to the motor of the target vehicle, multiply the motor peak recovery torque and the motor speed to obtain the first product result of the two, and combine the motor efficiency of the target vehicle with the motor speed.
  • the product of the second preset constant is used to obtain a second product result, and the ratio of the first product result and the second product result is determined as the to-be-referenced recovered power corresponding to the motor of the target vehicle.
  • the method before determining the reference driving power and the reference recovery power corresponding to the target vehicle according to the motor peak driving torque and the motor peak recovery torque of the target vehicle, the method includes: based on the vehicle dynamics function, determining where the target vehicle is At least one motor driving torque under the working condition to be used; from each motor driving torque, determine the maximum motor driving torque as the motor peak driving torque; determine the motor peak recovery torque according to the braking system characteristics corresponding to the target vehicle .
  • the working conditions to be used include maximum climbing conditions, preset slope conditions and driving conditions corresponding to the preset vehicle speed. Different working conditions to be used correspond to different motor driving torques.
  • the motor peak driving torque and the motor peak recovery torque corresponding to the motor of the target vehicle are first determined. For example, when determining the peak driving power of the motor, it can be determined based on the vehicle dynamics function, and the vehicle dynamics function can be transformed accordingly under different working conditions to be used, so as to better apply the vehicle dynamics function to determine the peak value of the motor. in the process of driving power.
  • the target vehicle's motor can be determined according to the maximum climbing degree of the target vehicle and the initial speed of the target vehicle.
  • first drive torque under normal conditions.
  • the working condition to be used is a preset slope condition
  • the second drive of the motor of the target vehicle under the preset slope condition can be determined based on the starting torque of the engine overcome when the target vehicle starts at the preset slope. torque.
  • the working conditions to be used are the driving conditions corresponding to the preset vehicle speed
  • the target vehicle can be calculated based on the starting torque of the engine at the preset vehicle speed and the motor of the target vehicle under the driving conditions corresponding to the preset vehicle speed.
  • the third driving torque is determined by the starting torque of the engine when the target vehicle is traveling at 60km/h. From the first driving torque, the second driving torque, and the third driving torque, the largest driving torque is selected as the motor peak driving torque corresponding to the target vehicle.
  • the peak recuperation torque of the motor corresponding to the target vehicle may be calculated based on the maximum braking recuperation of the braking system of the target vehicle.
  • S120 Determine the driving power to be compared of the target vehicle under at least one working condition to be used, and determine the peak driving power of the motor corresponding to the target vehicle based on the reference driving power to be compared and each driving power to be compared.
  • the driving power to be compared can be understood as the motor driving power determined based on different working conditions to be used, so as to determine the peak driving power of the motor corresponding to the motor of the target vehicle based on the driving power to be compared and the reference driving power.
  • the conditions to be used include at least one of the maximum climbing condition, the preset slope condition, the driving condition corresponding to the preset vehicle speed, and the preset power mode condition.
  • the corresponding driving power to be compared is different, and the driving power is determined in different ways.
  • the motor driving power of the target vehicle in different working conditions to be used is distinguished, for example, it will be compared with the maximum climbing working condition.
  • the corresponding driving power to be compared is used as the first driving power to be compared; the driving power to be compared corresponding to the preset slope condition is used as the second driving power to be compared; the driving power corresponding to the preset vehicle speed is The driving power to be compared corresponding to the driving condition is regarded as the third driving power to be compared; the driving power to be compared corresponding to the preset power mode working condition is regarded as the fourth driving power to be compared. After obtaining the driving power to be compared corresponding to the motor of the target vehicle under each working condition to be used, the peak driving power of the motor is determined.
  • determine the driving power of the target vehicle to be compared under at least one working condition to be used and based on The driving power to be referenced and the driving power to be compared are determined to determine the peak driving power of the motor corresponding to the target vehicle, including: obtaining the related parameters to be used under each working condition to be used of the target vehicle; based on the corresponding working conditions to be used.
  • the corresponding driving power determination function processes the related parameters to be used in the corresponding working conditions to be used, and obtains the driving power to be compared under the corresponding working conditions to be used; from the reference driving power to be compared and the driving power to be compared, The maximum driving power is determined to be the peak driving power of the motor.
  • the vehicle parameters associated with different working conditions to be used are different, and the associated parameters to be used can be It is understood that when calculating the driving power to be compared under the corresponding working condition to be used, the vehicle parameters associated with the working condition to be used are used.
  • the driving power determination function can be understood as a function used to calculate the driving power to be compared based on the parameters to be used.
  • the driving power determination functions used in different working conditions to be used are also different.
  • the working condition to be used is a preset power mode working condition
  • the preset power mode working condition includes a hybrid driving mode working condition and an engine driving mode working condition.
  • the related parameters to be used of the corresponding working condition to be used are processed to obtain the corresponding
  • the drive power to be compared under the working conditions to be used includes: determining the hybrid drive power of the target vehicle in the hybrid drive mode; where the hybrid drive mode includes the motor drive mode and the engine drive mode; determining the target vehicle's hybrid drive power in the engine drive mode. engine driving power; based on the difference between the hybrid driving power and the engine driving power, determine the driving power to be used corresponding to the maximum speed of the target vehicle.
  • the operating conditions to be used may include preset power mode operating conditions, where the preset power mode operating conditions include hybrid driving mode operating conditions, that is, the target vehicle simultaneously adopts the motor driving mode and the engine driving mode to control the target Vehicle driving also includes engine driving mode conditions, that is, the target vehicle only uses the engine driving mode to control the driving of the target vehicle.
  • the motor drive power corresponding to the target vehicle in the hybrid drive mode is the hybrid drive power
  • the motor drive power of the target vehicle in the engine drive mode is the engine drive power.
  • the hybrid driving power of the target vehicle can be determined based on the target vehicle's maximum speed, transmission coefficient, air resistance coefficient, windward area, rolling resistance coefficient, etc. For example, the following formula can be used to determine the hybrid driving power of the target vehicle:
  • P hybrid represents the hybrid driving power of the target vehicle
  • eta T represents the transmission coefficient
  • m represents the weight of the target vehicle
  • g represents the gravity
  • f represents the rolling resistance coefficient
  • v h represents the maximum speed of the target vehicle in the hybrid drive mode
  • C D represents the air resistance coefficient
  • A represents the windward area corresponding to the target vehicle.
  • the engine driving power of the target vehicle can be determined based on the target vehicle's maximum speed, transmission coefficient, air resistance coefficient, windward area, rolling resistance coefficient, etc. when driving stably.
  • the following formula can be used to determine the engine driving power of the target vehicle:
  • P engine represents the engine driving power of the target vehicle
  • eta T represents the transmission coefficient
  • m represents the weight of the target vehicle
  • g represents the gravity
  • f represents the rolling resistance coefficient
  • v eng represents the maximum speed of the target vehicle in the engine drive mode
  • C D represents the air resistance coefficient
  • A represents the windward area corresponding to the target vehicle.
  • the driving power to be used corresponding to the maximum speed of the target vehicle can be obtained.
  • S130 Determine the recovery power to be compared of the target vehicle under at least one test condition, and determine the peak recovery power of the motor corresponding to the target vehicle based on the reference recovery power to be compared and the recovery power to be compared.
  • the recovered power to be compared can be understood as the motor recovered power of the target vehicle under different test conditions.
  • the test conditions include system test conditions and at least one of the test conditions corresponding to the engine of the target vehicle overcoming friction.
  • the system test conditions can be understood as the test conditions corresponding to the braking system of the target vehicle.
  • the motor recovery power corresponding to the system test conditions is the real-time recovery power of the motor. That is to say, based on the vehicle intelligence
  • the network connection system can obtain the real-time recovery power of the motor corresponding to the target vehicle.
  • the target vehicle under different test conditions, the target vehicle has different driving powers to be compared, and the methods used to determine the motor recovery power are also different.
  • the motor recovery power of the target vehicle under different working conditions to be used is distinguished. For example, it will correspond to the system test working condition.
  • the recovery power to be compared is In order to recover the power of the motor in real time, the motor recovery power corresponding to the test working condition corresponding to the target vehicle's engine overcoming the friction force is used as the recovery power to be used. That is to say, the target vehicle's recovery power to be compared includes the motor's real-time recovery power and the recovery power to be used. Based on the target vehicle's reference recovery power and each recovery power to be compared, the peak recovery power of the motor corresponding to the target vehicle is determined. .
  • the recovered power to be compared includes the real-time recovered power of the motor and the recovered power to be used, the recovered power to be compared is determined for the target vehicle under at least one test condition, and based on the reference recovered power to be compared and the recovered power to be compared, Determine the motor peak recuperation power corresponding to the target vehicle, including: based on the motor recuperation torque and the motor speed of the target vehicle, determine the real-time motor recuperation power of the target vehicle under system test conditions; based on the braking recuperation corresponding to the target vehicle power, determine the recovery power to be used under the test conditions corresponding to the engine of the target vehicle overcoming friction; determine the maximum recovery power among the reference recovery power to be used, the real-time recovery power of the motor and the recovery power to be used, as the same as the target vehicle Corresponding motor peak recovery power.
  • the first to-be-used product is obtained.
  • the preset constant is multiplied by the motor efficiency of the target vehicle to obtain the second to-be-used product.
  • the ratio of the second product to be used determines the real-time recovery power of the motor corresponding to the target vehicle.
  • the braking recuperation power and recyclable energy of the target vehicle during deceleration are obtained, and the recuperation power to be used of the target vehicle can be calculated. From the to-be-referenced recuperated power, the motor's real-time recuperated power and the to-be-used recuperated power, determine the maximum recuperated power as the motor's peak regenerated power of the target vehicle.
  • S140 Drive the target vehicle based on the peak driving power of the motor and the peak recovery power of the motor.
  • the motor peak driving power and motor peak recovery power are sent to the control system of the target vehicle, so that the control system calls the corresponding vehicle processing method and drives the target vehicle based on the vehicle processing method.
  • the vehicle processing method can be understood as the method based on the vehicle control system to control the driving of the target vehicle.
  • the vehicle processing method can be adjusted accordingly according to the peak driving power of the motor and the peak recovery power of the motor.
  • the reference driving power and the reference recovery power corresponding to the target vehicle are respectively determined, and different working conditions to be used are determined based on the vehicle dynamics function.
  • the motor driving torque corresponding to the motor of the target vehicle is determined, and the maximum motor driving torque is determined as the motor peak driving torque to determine the motor peak driving power based on the motor peak driving torque.
  • the motor peak driving power is determined based on the braking system characteristics of the target vehicle.
  • the motor peak recuperation torque corresponding to the motor of the target vehicle is used to determine the motor peak recuperation power based on the motor peak recuperation torque.
  • the target vehicle is driven based on the motor peak driving power and the motor peak recovery power. This avoids inaccurate determination of the vehicle's motor power and achieves the effect of accurately calculating the vehicle's motor power.
  • the power system structure of the target vehicle in this embodiment is shown in Figure 2.
  • the power system mainly consists of an engine, a motor, a power battery, a gearbox, a clutch, a drive shaft, etc.
  • One side of the motor is connected to the engine through a clutch, and the other side of the motor is connected to the gearbox.
  • Each component is controlled by its corresponding controller.
  • the controllers involved include engine control system (EMS, Engine Management System), vehicle controller (HCU, Hybrid Control Unit), motor controller (MCU, Motor Control Unit), and battery management system (BMS, Battery Management System) , Transmission Control Unit (TCU, Transmission Control Unit), Intelligent Network System (INS, Intelligent Network System), etc.
  • Different controllers communicate through the Controller Area Network (Controller Area Network, CAN) network.
  • this embodiment can be used to determine the electric power of the target vehicle.
  • the resistance it receives includes rolling resistance F f , air resistance F w , slope resistance F i and acceleration resistance F j , etc.
  • the driving force F t of the target vehicle is equal to the sum of the above various resistances. Different from traditional cars, the driving force F t of new energy hybrid vehicles is that all the torque T AL generated by the power source (combined engine and motor) is transmitted to the wheels through the transmission mechanism, thereby driving the target vehicle.
  • F t represents the driving force of the target vehicle
  • F f represents the rolling resistance of the target vehicle
  • F w represents The air resistance of the target vehicle
  • F i represents the slope resistance of the target vehicle on a sloped road
  • F j represents the acceleration resistance of the target vehicle when accelerating.
  • i g represents the gearbox speed ratio of the target vehicle
  • i 0 represents the main reducer speed ratio of the target vehicle
  • eta T represents the drive train efficiency of the target vehicle
  • r represents the wheel radius of the target vehicle
  • m represents the weight of the target vehicle
  • g represents gravity
  • f represents the rolling resistance coefficient of the target vehicle
  • C D represents the air resistance coefficient of the target vehicle
  • A represents the windward area corresponding to the target vehicle
  • represents the road gradient of the road where the target vehicle is located
  • represents the rotational mass of the target vehicle.
  • v represents the current speed of the target vehicle.
  • T AL is the sum of the torque generated by the hybrid vehicle power source including the engine and the motor, and is used to represent the driving torque of the vehicle.
  • the hybrid vehicle power balance equation can be obtained, as shown below:
  • eta T represents the drive train efficiency of the target vehicle
  • m represents the weight of the target vehicle
  • g represents gravity
  • f represents the rolling resistance coefficient of the target vehicle
  • v represents the current speed of the target vehicle
  • represents the road gradient of the road where the target vehicle is located
  • C D represents the air resistance coefficient of the target vehicle
  • A represents the windward area corresponding to the target vehicle
  • represents the rotational mass conversion coefficient of the target vehicle.
  • P AL is the sum of the power generated by the hybrid vehicle power source including the engine and the motor, and is used to represent the driving power of the vehicle.
  • this embodiment is used to determine the electric power of the target vehicle. For example, when determining the electric power of the target vehicle, it is determined based on the motor peak driving power and motor peak recovery power of the target vehicle.
  • the method of determining the motor peak drive power and motor peak recuperation power is as follows.
  • the constants in all formulas are preset constants and can be adjusted according to actual conditions. There is no limit to the constants.
  • the preset constants in this embodiment are only used as examples.
  • the motor peak driving torque can be determined based on the motor driving torque of the target vehicle under different road conditions, see Figure 3.
  • the first motor driving torque T mDrv1 of the target vehicle can be determined based on the following formula:
  • T mDrv1 represents the first motor driving torque of the target vehicle
  • r represents the wheel radius of the target vehicle
  • i g represents the gearbox speed ratio of the target vehicle
  • i 0 represents the main reducer speed ratio of the target vehicle
  • eta T represents the target vehicle
  • m represents the weight of the target vehicle
  • g represents the gravity
  • f represents the rolling resistance coefficient of the target vehicle
  • ⁇ max represents the maximum gradeability of the target vehicle.
  • the second motor driving torque of the target vehicle when starting the vehicle under a preset slope condition.
  • the preset slope may be a 30% slope (corresponding to a slope of 16.5 degrees), based on the following formula
  • T mDrv2 represents the second motor driving torque of the target vehicle
  • T ⁇ 1 represents the vehicle starting motor driving torque under the preset slope condition of the target vehicle
  • T engST represents the engine driving torque of the target vehicle.
  • the target vehicle can be determined based on the following formula
  • the third motor driving torque T mDrv3 T v1 +T engST
  • T mDrv3 represents the third driving torque of the target vehicle
  • T v1 represents the motor driving torque of the target vehicle in the pure motor drive mode at the preset speed
  • T engST represents the engine starting torque of the target vehicle.
  • T mDrv4 max (T mDrv1 , T mDrv2 , T mDrv3 )
  • T mDrv4 represents the motor peak driving torque of the target vehicle
  • T mDrv1 represents the first motor driving torque of the target vehicle
  • T mDrv2 represents the second motor driving torque of the target vehicle
  • T mDrv3 represents the third driving torque of the target vehicle
  • max represents Get the maximum value in the function.
  • the largest motor driving torque is selected as the motor peak driving torque of the target vehicle from the first motor driving torque, the second motor driving torque, and the third motor driving torque.
  • the reference driving power P mDrv of the target vehicle is determined according to the peak driving torque of the motor, where the reference driving power can be determined according to the following formula:
  • P mDrv represents the reference driving power of the target vehicle
  • N m represents the preset motor speed of the target vehicle
  • T mDrv4 represents the peak driving torque of the motor of the target vehicle.
  • the first preset constant may be set to 9550.
  • the target vehicle overcomes the back drag friction torque of the engine (ie, the torque demand when the engine starts).
  • the engine reverse drag friction torque i.e., the engine starting torque T engST mentioned above
  • the engine back drag friction torque in the cold engine state is higher than that in the warm engine state.
  • the engine back drag torque in the cold engine state is 70Nm
  • the engine back drag torque in the warm engine state is 55Nm.
  • others can be tested and calibrated based on the actual engine operating status.
  • the first driving power P 1 of the target vehicle to be used by the target vehicle it can be determined by the formula:
  • P 1 represents the first driving power to be used of the target vehicle
  • I eng represents the moment of inertia of the engine rotating parts of the target vehicle
  • represents the angular speed of the target vehicle's engine flywheel rotation
  • ⁇ t represents the target vehicle's starting engine when it reaches the target speed. of duration.
  • the moment of inertia I eng of the engine rotating part of the target vehicle can be determined based on the following formula:
  • T eng1 is the torque generated by the gas pressure during engine combustion
  • T engST represents the engine starting torque of the target vehicle
  • I eng represents the moment of inertia of the engine rotating parts of the target vehicle.
  • T eng1 0 can be considered, and it can be deduced:
  • T engST represents the engine starting torque of the target vehicle
  • I eng represents the rotational inertia of the engine rotating parts of the target vehicle.
  • the first driving power P 2 of the target vehicle to be compared can be determined according to the pure electric driving mode of the vehicle.
  • P 2 represents the first driving power of the target vehicle to be compared
  • eta T represents the drive train efficiency of the target vehicle
  • m represents the weight of the target vehicle
  • g represents gravity
  • f represents the rolling resistance coefficient of the target vehicle
  • v represents the target vehicle.
  • ⁇ max represents the maximum grade of the target vehicle.
  • the second driving power of the target vehicle to be compared under the preset slope condition can be determined based on the following formula :
  • P 3 represents the second driving power of the target vehicle to be compared
  • eta T represents the drive train efficiency of the target vehicle
  • m represents the weight of the target vehicle
  • g represents gravity
  • f represents the rolling resistance coefficient of the target vehicle
  • v represents the target vehicle.
  • the current vehicle speed of , ⁇ 1 represents the slope of the road where the target vehicle is located, and P 1 represents the first driving power to be used of the target vehicle.
  • the slope is 0, and considering the power consumed when starting the engine, determine the third driving power P 4 of the target vehicle to be compared:
  • P 4 represents the third driving power of the target vehicle to be compared
  • eta T represents the drive train efficiency of the target vehicle
  • m represents the weight of the target vehicle
  • g represents gravity
  • f represents the rolling resistance coefficient of the target vehicle
  • v1 represents the target vehicle.
  • C D represents the air resistance coefficient of the target vehicle
  • A represents the windward area corresponding to the target vehicle
  • P 1 represents the first driving power to be used of the target vehicle.
  • the maximum motor driving power is selected as the motor peak driving power P 5 of the target vehicle.
  • P 5 represents the motor peak drive power of the target vehicle
  • P mDrv represents the target vehicle’s reference drive power
  • P 2 represents the target vehicle’s first drive power to be compared
  • P 3 represents the target vehicle’s second drive power to be compared
  • Power represents the third driving power of the target vehicle to be compared
  • max represents the maximum value in the function.
  • the target vehicle is in hybrid drive mode, it is also necessary to consider the impact of the target vehicle's drive mode on the motor drive power. In other words, when the target vehicle is driving in hybrid drive mode, P 5 is not the final peak drive power of the motor. , it is also necessary to determine the larger motor drive power P 8 from the motor drive power P hybrid in hybrid drive mode and the motor drive power P engine in engine drive mode, and determine the motor peak drive based on P 5 and P 8 power.
  • the maximum output power of the vehicle P engine is calculated by the following formula.
  • the P engine of the target vehicle can be determined based on the following formula:
  • P engine represents the engine driving power of the target vehicle
  • eta T represents the transmission coefficient
  • m represents the weight of the target vehicle
  • g represents the gravity
  • f represents the rolling resistance coefficient
  • v eng represents the maximum speed of the target vehicle in the engine drive mode
  • C D represents the air resistance coefficient
  • A represents the windward area corresponding to the target vehicle.
  • the vehicle's maximum speed can be calculated based on the vehicle's maximum speed in hybrid combined drive mode.
  • the maximum output power P hybrid of the vehicle is calculated by the following formula.
  • the P hybrid of the target vehicle can be determined based on the following formula:
  • P hybrid represents the hybrid driving power of the target vehicle
  • eta T represents the transmission coefficient
  • m represents the weight of the target vehicle
  • g represents the gravity
  • f represents the rolling resistance coefficient
  • v h represents the maximum speed of the target vehicle in the hybrid drive mode
  • C D represents the air resistance coefficient
  • A represents the windward area corresponding to the target vehicle.
  • P hybrid represents the hybrid driving power of the target vehicle
  • P engine represents the engine driving power of the target vehicle
  • P 8 represents the motor driving power of the target vehicle in the motor driving mode.
  • P 9 represents the peak driving power of the motor
  • max represents the maximum value of the function
  • P 5 represents the motor driving power of the target vehicle to be compared
  • P 8 represents the motor driving power of the target vehicle in the motor driving mode.
  • the peak regenerative torque of the motor can be calculated based on the maximum braking recuperation deceleration a r of the vehicle braking system (such as 2m/s 2 , which can be obtained or calibrated according to the characteristics of the braking system).
  • a r of the vehicle braking system such as 2m/s 2 , which can be obtained or calibrated according to the characteristics of the braking system.
  • T r1 represents the motor peak recuperation torque of the target vehicle
  • m represents the weight of the target vehicle
  • a r represents the maximum braking recuperation deceleration of the target vehicle's braking system
  • r represents the wheel radius of the target vehicle
  • ⁇ T represents the target vehicle's Driveline efficiency
  • i g represents the gearbox speed ratio of the target vehicle
  • i 0 represents the main reducer speed ratio of the target vehicle.
  • P r1 represents the target vehicle's recuperation power to be referenced
  • N m represents the preset speed of the motor of the target vehicle
  • eta m represents the preset motor efficiency of the target vehicle
  • T r1 represents the motor peak recovery torque
  • 9549 in the above formula represents the second preset constant.
  • the intelligent network connection system terminal equipment can collect and store the motor recovery torque and speed during the vehicle's driving for a period of time, upload it to the cloud server, and then retrieve or receive the intelligent network connection sent
  • the maximum recovery power of the motor that is, the real-time recovery power of the motor
  • let the real-time recovery power of the motor be P r2 .
  • test condition is the relationship between vehicle speed and time.
  • the maximum braking recuperation power is the maximum braking recuperation power.
  • the recuperable power is set to P r3 .
  • the calculation formula of the braking regeneration power P r3 and the vehicle speed v is:
  • P r3 represents the braking recovery power of the target vehicle
  • represents the rotational mass conversion coefficient of the target vehicle
  • m represents the weight of the target vehicle
  • v represents the current speed of the target vehicle
  • f represents the rolling resistance coefficient of the target vehicle
  • g represents gravity
  • C D represents the air resistance coefficient of the target vehicle
  • A represents the windward area corresponding to the target vehicle.
  • the recovered power P r4 to be used is calculated by the following formula:
  • P r4 represents the recuperation power to be used of the target vehicle
  • P r3 represents the braking recuperation power of the target vehicle
  • T 1 represents the length of time for the target vehicle to overcome the engine friction torque
  • n represents the engine speed of the target vehicle.
  • n in the above formula can be determined according to the following formula:
  • n represents the engine speed of the target vehicle
  • v represents the current speed of the target vehicle
  • i g represents the gearbox speed ratio of the target vehicle
  • i 0 represents the main reducer speed ratio of the target vehicle
  • r represents the wheel radius of the target vehicle.
  • P r5 represents the peak motor recovery power of the target vehicle
  • P r1 represents the target vehicle's recovery power to be referenced
  • P r2 represents the target vehicle's motor real-time recovery power
  • P r4 represents the target vehicle's recovery power to be used
  • max represents the function. the maximum value in .
  • the motor peak driving power and motor peak recovery power are sent to the control system of the target vehicle to drive the target vehicle based on the control system of the target vehicle.
  • the reference driving power and the reference recovery power corresponding to the target vehicle are respectively determined according to the motor peak driving torque and the motor peak recovery torque of the target vehicle; it is determined that the target vehicle is in at least one working condition to be used.
  • the recovery power to be compared under the condition, and based on the reference recovery power to be compared and the recovery power to be compared determine the peak recovery power of the motor corresponding to the target vehicle; based on the peak drive power of the motor and the recovery power of the motor
  • the peak recovered power is used to drive the target vehicle. This avoids inaccurate determination of the vehicle's motor power and achieves the effect of accurately calculating the vehicle's motor power.
  • FIG 4 is a schematic structural diagram of a vehicle electric power determination device provided in Embodiment 3 of the present application. As shown in Figure 4, the device includes: a power determination module 210, a peak driving power determination module 220, Peak recuperated power determination module 230 and vehicle drive module 240 .
  • the power determination module 210 is configured to respectively determine the reference driving power and the reference recovery power corresponding to the target vehicle according to the motor peak driving torque and the motor peak recovery torque of the target vehicle;
  • the peak driving power determination module 220 is configured to determine the driving power to be compared of the target vehicle under at least one working condition to be used, and determine the motor corresponding to the target vehicle based on the reference driving power and each driving power to be compared. Peak driving power; wherein, the working conditions to be used include at least one of the maximum climbing condition, the preset slope condition, the driving condition corresponding to the preset vehicle speed, and the preset power mode condition;
  • the peak recovery power determination module 230 is configured to determine the recovery power to be compared of the target vehicle under at least one test condition, and determine the peak value of the motor corresponding to the target vehicle based on the recovery power to be referenced and the recovery power to be compared. Recovery power; wherein, the test conditions include at least one of the system test conditions and the test conditions corresponding to the engine of the target vehicle overcoming friction;
  • the vehicle driving module 240 is configured to drive the target vehicle based on the motor peak driving power and the motor peak recovery power.
  • the reference driving power and the reference recovery power corresponding to the target vehicle are respectively determined according to the motor peak driving torque and the motor peak recovery torque of the target vehicle; it is determined that the target vehicle is in at least one working condition to be used.
  • the recovery power to be compared under the condition, and based on the reference recovery power to be compared and the recovery power to be compared determine the peak recovery power of the motor corresponding to the target vehicle; based on the peak drive power of the motor and the recovery power of the motor
  • the peak recovered power is used to drive the target vehicle. This avoids inaccurate determination of the vehicle's motor power and achieves the effect of accurately calculating the vehicle's motor power.
  • the vehicle electric power determination device further includes: a motor drive torque determination module configured to respectively determine the reference drive corresponding to the target vehicle according to the motor peak drive torque and the motor peak recovery torque of the target vehicle. Before power and to-be-referenced recovered power, based on the vehicle dynamics function, determine the motor driving torque of the target vehicle under at least one working condition to be used;
  • the motor peak driving torque determination module is configured to determine the maximum motor driving torque as the motor peak driving torque from the driving torques of each motor;
  • the motor peak recovery torque determination module is configured to determine the motor peak recovery torque according to the braking system characteristics corresponding to the target vehicle.
  • the power determination module includes: a to-be-referenced driving power determination unit configured to determine the driving power corresponding to the target vehicle based on the peak driving torque of the motor corresponding to the target vehicle, the preset motor speed, and the first preset constant. Driving power to be referenced;
  • the recuperated power to be referenced determination unit is configured to determine the recuperated power to be referenced corresponding to the target vehicle based on the motor peak recuperated torque corresponding to the target vehicle, the preset motor efficiency and the second preset constant.
  • the peak driving power determination module includes: a to-be-used correlation parameter acquisition unit, configured to obtain the to-be-used correlation parameters under each to-be-used working condition of the target vehicle;
  • the driving power determination unit to be compared is configured to process the associated parameters to be used of the corresponding working conditions to be used based on the driving power determination function corresponding to the working conditions to be used, and obtain the driving power to be compared under the corresponding working conditions to be used. For driving power;
  • the motor peak drive power determination unit is configured to determine the maximum drive power as the motor peak drive power from the reference drive power to be compared and the drive powers to be compared.
  • the peak driving power determination module includes: a hybrid driving power determination subunit configured to determine the hybrid driving power of the target vehicle in a hybrid driving mode; wherein the hybrid driving mode includes a motor driving mode and an engine driving mode;
  • an engine driving power determination subunit configured to determine the engine driving power of the target vehicle in the engine driving mode
  • the driving power to be used determining subunit is configured to determine the driving power to be used corresponding to the target maximum vehicle speed based on the difference between the hybrid driving power and the engine driving power.
  • the peak recovery power determination module includes: a motor real-time recovery power determination unit configured to determine the motor real-time recovery power of the target vehicle under preset test conditions based on the motor recovery torque and the engine speed of the target vehicle;
  • the recuperated power to be used determining unit is configured to determine the recuperated power to be used under the test conditions corresponding to the engine of the target vehicle overcoming friction based on the braking recuperated power corresponding to the target vehicle;
  • the motor peak recovery power determination unit is configured to determine the maximum recovery power among the reference recovery power, the motor real-time recovery power and the recovery power to be used, as the peak recovery power of the motor corresponding to the target vehicle.
  • the vehicle drive module is configured to send the motor peak driving power and motor peak recovery power to the control system of the target vehicle, so that the control system calls the corresponding vehicle processing method and drives the target based on the target vehicle processing method. vehicle.
  • the vehicle electric power determination device provided by the embodiments of this application can execute the vehicle electric power determination method provided by any embodiment of this application, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 5 shows a schematic structural diagram of the electronic device 10 according to the embodiment of the present application.
  • Electronic devices are intended to refer to various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital assistants, cellular phones, smart phones, wearable devices (eg, helmets, glasses, watches, etc.), and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are examples only and are not intended to limit the implementation of the present application as described and/or claimed herein.
  • the electronic device 10 includes at least one processor 11, and a memory communicatively connected to the at least one processor 11, such as a read-only memory (Read-Only Memory, ROM) 12, a random access memory (Random Access Memory, RAM) 13, etc., wherein the memory stores a computer program that can be executed by at least one processor, and the processor 11 can be loaded into the random access memory (RAM) according to the computer program stored in the read-only memory (ROM) 12 or from the storage unit 18.
  • a computer program in RAM) 13 to perform various appropriate actions and processes.
  • various programs and data required for the operation of the electronic device 10 can also be stored.
  • the processor 11, the ROM 12 and the RAM 13 are connected to each other via the bus 14.
  • An input/output (I/O) interface 15 is also connected to the bus 14 .
  • the I/O interface 15 Multiple components in the electronic device 10 are connected to the I/O interface 15, including: an input unit 16, such as a keyboard, a mouse, etc.; an output unit 17, such as various types of displays, speakers, etc.; a storage unit 18, such as a magnetic disk, an optical disk, etc. etc.; and communication unit 19, such as network card, modem, wireless communication transceiver, etc.
  • the communication unit 19 allows the electronic device 10 to exchange information/data with other devices through computer networks such as the Internet and/or various telecommunications networks.
  • Processor 11 may be a variety of general and/or special purpose processing components having processing and computing capabilities. Some examples of the processor 11 include, but are not limited to, a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphics Processing Unit, GPU), various dedicated artificial intelligence (Artificial Intelligence, AI) computing chips, various running Machine learning model algorithm processor, digital signal processor (Digital Signal Processor, DSP), and any appropriate processor, controller, microcontroller, etc.
  • the processor 11 performs various methods and processes described above, such as the vehicle electric power determination method.
  • the vehicle electric power determination method may be implemented as a computer program, which is Formally contained in a computer-readable storage medium, such as storage unit 18.
  • part or all of the computer program may be loaded and/or installed onto the electronic device 10 via the ROM 12 and/or the communication unit 19 .
  • the processor 11 may be configured to perform the vehicle electric power determination method in any other suitable manner (eg, by means of firmware).
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSP Application Specific Standard Product
  • SOC System on Chip
  • CPLD Complex Programmable Logic Device
  • These various embodiments may include implementation in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor
  • the processor which may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • the computer program used to implement the vehicle electric power determination method of the present application may be written using any combination of one or more programming languages. These computer programs may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, such that the computer program, when executed by the processor, causes the functions/operations specified in the flowcharts and/or block diagrams to be implemented. A computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the storage medium may be a non-transitory storage medium.
  • a computer-readable storage medium may be a tangible medium that may contain or store a computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer-readable storage media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be a machine-readable signal medium.
  • machine-readable storage media examples include one or more wire-based electrical connections, portable computer disks, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (Erasable Programmable Read-Only Memory, EPROM) Or flash memory, optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the systems and techniques described herein may be implemented on an electronic device having a display device (e.g., a cathode ray tube (CRT) or liquid crystal) for displaying information to the user.
  • a display device e.g., a cathode ray tube (CRT) or liquid crystal
  • a display Liquid Crystal Display, LCD monitor
  • a keyboard and pointing device e.g., a mouse or a trackball
  • Other kinds of devices may also be used to provide interaction with the user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and may be provided in any form, including Acoustic input, voice input or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN), blockchain network, and the Internet.
  • Computing systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.
  • the server can be a cloud server, also known as cloud computing server or cloud host. It is a host product in the cloud computing service system to solve the problems that exist in traditional physical host and virtual private server (VPS) services. It has the disadvantages of difficult management and weak business scalability.
  • VPN virtual private server

Abstract

本申请公开了一种车辆电功率确定方法、装置、电子设备及存储介质,其中,该方法包括:根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与目标车辆相对应的待参考驱动功率和待参考回收功率;确定目标车辆在至少一种待使用工况下的待比对驱动功率,并基于待参考驱动功率和至少一个待比对驱动功率,确定与目标车辆相对应的电机峰值驱动功率;确定目标车辆在至少一种测试工况下的待比对回收功率,并基于待参考回收功率和至少一个待比对回收功率,确定与目标车辆相对应的电机峰值回收功率;基于电机峰值驱动功率和电机峰值回收功率,驱动目标车辆行驶。

Description

车辆电功率确定方法、装置、电子设备及存储介质
本申请要求在2022年07月28日提交中国专利局、申请号为202210900079.8的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车技术领域,例如涉及一种车辆电功率确定方法、装置、电子设备及存储介质。
背景技术
对于混合动力汽车而言,电机功率中包括电机驱动功率和电机回收功率,而电机驱动功率和电机回收功率是影响整车动力性和经济性的重要参数。
发明内容
本申请提供了一种车辆电功率确定方法、装置、电子设备及存储介质。
第一方面,本申请实施例提供了一种车辆电功率确定方法,包括:
根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率;
确定所述目标车辆在至少一种待使用工况下的待比对驱动功率,并基于所述待参考驱动功率和至少一个待比对驱动功率,确定与所述目标车辆相对应的电机峰值驱动功率;其中,所述待使用工况包括最大爬坡工况、预设坡路工况、预设车速所对应的行驶工况,以及预设动力模式工况中的至少一种;
确定所述目标车辆在至少一种测试工况下的待比对回收功率,并基于所述待参考回收功率和至少一个待比对回收功率,确定与所述目标车辆相对应的电机峰值回收功率;其中,所述测试工况包括系统测试工况,以及所述目标车辆的发动机克服摩擦力所对应的测试工况中的至少一种;
基于所述电机峰值驱动功率和所述电机峰值回收功率,驱动所述目标车辆行驶。
第二方面,本申请实施例还提供了一种车辆电功率确定装置,包括:
功率确定模块,设置为根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率;
峰值驱动功率确定模块,设置为确定所述目标车辆在至少一种待使用工况下的待比对驱动功率,并基于所述待参考驱动功率和至少一个待比对驱动功率, 确定与所述目标车辆相对应的电机峰值驱动功率;其中,所述待使用工况包括最大爬坡工况、预设坡路工况、预设车速所对应的行驶工况,以及预设动力模式工况中的至少一种;
峰值回收功率确定模块,设置为确定所述目标车辆在至少一种测试工况下的待比对回收功率,并基于所述待参考回收功率和至少一个待比对回收功率,确定与所述目标车辆相对应的电机峰值回收功率;其中,所述测试工况包括系统测试工况,以及所述目标车辆的发动机克服摩擦力所对应的测试工况中的至少一种;
车辆驱动模块,设置为基于所述电机峰值驱动功率和所述电机峰值回收功率,驱动所述目标车辆行驶。
第三方面,本申请实施例还提供了一种电子设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请任一实施例所述的车辆电功率确定方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本申请任一实施例所述的车辆电功率确定方法。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例一提供的一种车辆电功率确定方法的流程图;
图2是根据本申请实施例二提供的一种动力系统的结构示意图;
图3是根据本申请实施例二提供的一种电机峰值驱动功率确定方法的流程图;
图4是根据本申请实施例三提供的一种车辆电功率确定装置的结构示意图;
图5是实现本申请实施例的车辆电功率确定方法的电子设备的结构示意图。
具体实施方式
不同的混合动力汽车具有不同的动力系统构型方案,在确定与车辆相对应的电机功率时,通常是根据电机主体的一些固有参数进行计算,但是这样的计算方式得到的电机功率不够准确,从而影响车辆的整体动力性和经济性。
为了准确的计算混合动力汽车的电机功率,可以对车辆的电机功率的确定方式进行改进。
考虑到上述情况,本申请实施例提供了一种车辆电功率确定方法、装置、电子设备及存储介质。
下面将结合本申请实施例中的附图,对本申请实施例进行清楚、完整地描述。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
实施例一
图1为本申请实施例一提供了一种车辆电功率确定方法的流程图,本实施例可以对车辆的电机功率进行准确计算,该方法可以由车辆电功率确定装置来执行,该车辆电功率确定装置可以采用硬件和/或软件的形式实现,该车辆电功率确定装置可配置于可执行车辆电功率确定方法的计算设备中。
如图1所示,该方法包括:
S110、根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与目标车辆相对应的待参考驱动功率和待参考回收功率。
其中,目标车辆可以理解为需要进行车辆电功率计算的车辆。目标车辆在行驶过程中受到多种不同的阻力,如滚动阻力、空气阻力、坡度阻力以及加速阻力等,为了克服这些阻力,需要目标车辆的动力系统向目标车辆提供一定的驱动力,以产生相应的驱动扭矩,经目标车辆的传动系统传递到车轮,从而驱动目标车辆行驶。其中,动力系统向目标车辆提供的驱动力等于所有阻力之和。电机峰值驱动扭矩可以理解为动力系统在向目标车辆提供的一定的驱动力时,电机需要向传动系统提供的相对应的最大扭矩。电机峰值回收扭矩可以理解为在目标车辆制动过程中,将动能转换为电能时涉及电机所能回收的最大扭矩。 待参考驱动功率可以理解为基于电机峰值驱动扭矩确定的驱动功率,待参考回收功率可以理解为基于电机峰值回收扭矩确定的回收功率。
例如,获取与目标车辆相对应的电机峰值驱动扭矩以及电机峰值回收扭矩,并基于相应的计算方式,分别确定与电机峰值驱动扭矩相对应的待参考驱动功率,以及与电机峰值回收驱动扭矩相对应的待参考回收功率。
例如,分别确定与目标车辆相对应的待参考驱动功率和待参考回收功率,包括:基于与目标车辆相对应的电机峰值驱动扭矩、预设电机转速以及第一预设常量,确定与目标车辆相对应的待参考驱动功率;基于与目标车辆相对应的电机峰值回收扭矩、预设电机效率以及第二预设常量,确定与目标车辆相对应的待参考回收功率。
其中,预设电机转速可以理解为预先设置的目标车辆的电机转速,预设电机转速可以根据实际情况确定。预设电机效率可以理解为预先设置的目标车辆的电机效率。第一预设常量可以理解为在计算待参考驱动功率时所使用的固定的数值。第二预设常量可以理解为在计算待参考回收功率时所使用的固定的数值。需要说明的是,第一预设常量和第二预设常量可以为相等,也可以为不相等,根据实际情况进行设定。
例如,在确定待参考驱动功率时,获取与目标车辆的电机相对应的电机峰值驱动扭矩,将电机峰值驱动扭矩与预设电机转速相乘,将得到的乘积结果与第一预设常量的比值,确定为与目标车辆的电机相对应的待参考驱动功率。在确定待参考回收功率时,获取与目标车辆的电机相对应的电机峰值回收扭矩,将电机峰值回收扭矩与电机转速相乘,得到两者的第一乘积结果,同时将目标车辆的电机效率与第二预设常量的乘积,得到第二乘积结果,将第一乘积结果与第二乘积结果的比值,确定为与目标车辆的电机相对应的待参考回收功率。
例如,在根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率之前,包括:基于车辆动力学函数,确定目标车辆在至少一个待使用工况下的电机驱动扭矩;从各电机驱动扭矩中,确定出最大的电机驱动扭矩为电机峰值驱动扭矩;根据与目标车辆的相对应的制动系统特性,确定电机峰值回收扭矩。
其中,待使用工况包括最大爬坡工况、预设坡路工况以及预设车速所对应的行驶工况,不同的待使用工况所对应电机驱动扭矩不同。
在本实施例中,在确定电机峰值驱动功率和电机峰值回收功率之前,先确定与目标车辆的电机相对应的电机峰值驱动扭矩和电机峰值回收扭矩。例如, 在确定电机峰值驱动功率时,可以根据车辆动力学函数进行确定,并在不同的待使用工况下对车辆动力学函数进行相应的变形,以更好的将车辆动力学函数应用到确定电机峰值驱动功率的过程中。
示例性地,在计算电机峰值驱动扭矩时,若待使用工况为最大爬坡工况,则可以根据目标车辆的最大爬坡度,以及目标车辆的初始车速确定目标车辆的电机在最大爬坡工况下的第一驱动扭矩。若待使用工况为预设坡路工况时,则可以根据目标车辆在预设坡度下起步时克服发动机的起机扭矩,确定目标车辆的电机在预设坡路工况下的第二驱动扭矩。若待使用工况为预设车速所对应的行驶工况,则可以计算目标车辆在预设车速下,基于发动机的起机扭矩确定与目标车辆的电机在预设车速所对应的行驶工况下的第三驱动扭矩,如目标车辆以60km/h行驶时,发动机的起机扭矩确定第三驱动扭矩。从第一驱动扭矩、第二驱动扭矩和第三驱动扭矩中,选择最大的驱动扭矩作为与目标车辆相对应的电机峰值驱动扭矩。
示例性地,在计算电机峰值回收扭矩时,可以根据目标车辆的制动系统最大制动回收,计算与目标车辆相对应的电机峰值回收扭矩。
S120、确定目标车辆在至少一种待使用工况下的待比对驱动功率,并基于待参考驱动功率和各待比对驱动功率,确定与目标车辆相对应的电机峰值驱动功率。
其中,待比对驱动功率可以理解为基于不同的待使用工况确定的电机驱动功率,以基于待比对驱动功率与待参考驱动功率确定与目标车辆的电机相对应的电机峰值驱动功率。待使用工况包括最大爬坡工况、预设坡路工况、预设车速所对应的行驶工况,以及预设动力模式工况中的至少一种。
例如,目标车辆在不同的待使用工况下,所对应的待比对驱动功率不同,所采用的驱动功率的确定方式也不同。为了方便对不同待使用工况的待比对驱动功率进行区分,在本实施例中,将目标车辆在不同的待使用工况下的电机驱动功率进行区分,如,将与最大爬坡工况所对应的待比对驱动功率作为第一待比对驱动功率;将与预设坡路工况相对应的待比对驱动功率作为第二待比对驱动功率;将与预设车速所对应的行驶工况相对应的待比对驱动功率作为第三待比对驱动功率;将与预设动力模式工况相对应的待比对驱动功率作为第四待比对驱动功率。在得到各待使用工况下目标车辆的电机所对应的待比对驱动功率后,确定电机峰值驱动功率。
例如,确定目标车辆在至少一种待使用工况下的待比对驱动功率,并基于 待参考驱动功率和各待比对驱动功率,确定与目标车辆相对应的电机峰值驱动功率,包括:获取目标车辆的各待使用工况下的待使用关联参数;基于与各待使用工况相对应的驱动功率确定函数,对相应的待使用工况的待使用关联参数进行处理,得到相应待使用工况下的待比对驱动功率;从待参考驱动功率和各待比对驱动功率中,确定出最大驱动功率为电机峰值驱动功率。
其中,在对不同的待使用工况所对应的待比对驱动功率计算时,需要采用不同的车辆参数,也就是说,不同的待使用工况所关联的车辆参数不同,待使用关联参数可以理解为计算相应待使用工况下的待比对驱动功率时,采用的与该待使用工况所关联的车辆参数。驱动功率确定函数可以理解为用于基于待使用参数计算待比对驱动功率的函数,相应的,不同的待使用工况所采用的驱动功率确定函数也是不同的。
例如,确定与各待使用工况相对应的待使用关联参数和驱动功率确定函数,并基于驱动功率确定函数对相应的待使用关联参数进行驱动功率计算,得到相应的待使用工况下的待比对驱动功率。从各待比对驱动功率中,选择最大的驱动功率作为电机峰值驱动功率。
例如,待使用工况为预设动力模式工况,预设动力模式工况包括混合驱动模式工况和发动机驱动模式工况,对相应的待使用工况的待使用关联参数进行处理,得到相应待使用工况下的待比对驱动功率,包括:确定目标车辆在混合动力驱动模式下的混合驱动功率;其中,混合驱动模式包括电机驱动模式和发动机驱动模式;确定目标车辆在发动机驱动模式下的发动机驱动功率;基于混合驱动功率和发动机驱动功率的差值,确定与目标车辆最高车速所对应的待使用驱动功率。
在本实施例中,待使用工况可以包括预设动力模式工况,其中,预设动力模式工况中包括混合驱动模式工况,即,目标车辆同时采用电机驱动模式和发动机驱动模式控制目标车辆驱动,还包括发动机驱动模式工况,即,目标车辆仅采用发动机驱动模式控制目标车辆行驶。相应的,目标车辆在混动驱动模式下所对应的电机驱动功率为混合驱动功率,目标车辆在发动机驱动模式下的电机驱动功率为发动机驱动功率。
示例性地,当目标车辆处于混合驱动模式工况模式下时,可以根据目标车辆的最高车速、传动系数、空气阻力系数、迎风面积以及滚动阻力系数等,确定目标车辆的混合驱动功率。例如,可以采用以下公式,确定目标车辆的混合驱动功率:
其中,P混动表示目标车辆的混合驱动功率,ηT表示传动系数,m表示目标车辆重量,g表示重力,f表示滚动阻力系数,vh表示目标车辆在混合驱动模式下的最高车速,CD表示空气阻力系数,A表示目标车辆所对应的迎风面积。
示例性地,当目标车辆处于发动机驱动模式工况时,可以根据目标车辆的稳定行驶时的最高车速、传动系数、空气阻力系数、迎风面积以及滚动阻力系数等,确定目标车辆的发动机驱动功率。例如,可以采用以下公式,确定目标车辆的发动机驱动功率:
其中,P发动机表示目标车辆的发动机驱动功率,ηT表示传动系数,m表示目标车辆重量,g表示重力,f表示滚动阻力系数,veng表示目标车辆在发动机驱动模式下的最高车速,CD表示空气阻力系数,A表示目标车辆所对应的迎风面积。
例如,根据混合驱动功率和发动机驱动功率的差值,可以得到与目标车辆在最高车速时所对应的待使用驱动功率。
S130、确定目标车辆在至少一种测试工况下的待比对回收功率,并基于待参考回收功率和各待比对回收功率,确定与目标车辆相对应的电机峰值回收功率。
其中,待比对回收功率可以理解为目标车辆在不同测试工况下的电机回收功率。测试工况包括系统测试工况,以及目标车辆的发动机克服摩擦力所对应的测试工况中的至少一种。
需要说明的是,系统测试工况可以理解为目标车辆的制动系统相对应的测试工况,与系统测试工况相对应的电机回收功率为电机实时回收功率,也就是说,基于整车智能网联系统可以获取与目标车辆相对应的电机实时回收功率。
例如,目标车辆在不同的测试工况下,所对应的待比对驱动功率不同,所采用的电机回收功率的确定方式也不同。为了方便对不同测试工况的待比对驱动功率进行区分,在本实施例中,将目标车辆在不同的待使用工况下的电机回收功率进行区分,如,将与系统测试工况相对应的待比对回收功率作 为电机实时回收功率,将与目标车辆的发动机克服摩擦力所对应的测试工况所对应的电机回收功率作为待使用回收功率。也就是说,目标车辆的待比对回收功率包括电机实时回收功率和待使用回收功率,基于目标车辆的待参考回收功率和各待比对回收功率,确定与目标车辆相对应的电机峰值回收功率。
例如,待比对回收功率包括电机实时回收功率和待使用回收功率,确定目标车辆在至少一种测试工况下的待比对回收功率,并基于待参考回收功率和各待比对回收功率,确定与目标车辆相对应的电机峰值回收功率,包括:基于电机回收扭矩和目标车辆的电机转速,确定与目标车辆在系统测试工况下的电机实时回收功率;根据目标车辆所对应的制动回收功率,确定在目标车辆的发动机克服摩擦力所对应的测试工况下的待使用回收功率;将待参考回收功率、电机实时回收功率和待使用回收功率中的最大回收功率,确定为与目标车辆相对应的电机峰值回收功率。
例如,在获取电机回收扭矩与目标车辆的电机转速相乘,得到第一待使用乘积,将预设常量与目标车辆的电机效率相乘,得到第二待使用乘积,基于第一待使用乘积和第二待使用乘积的比值,确定与目标车辆相对应的电机实时回收功率。同时,获取目标车辆在减速过程中的制动回收功率和可回收能量,可以计算得到目标车辆的待使用回收功率。从待参考回收功率、电机实时回收功率和待使用回收功率中,确定最大回收功率作为目标车辆的电机峰值回收功率。
S140、基于电机峰值驱动功率和电机峰值回收功率,驱动目标车辆行驶。
例如,将电机峰值驱动功率和电机峰值回收功率,发送至目标车辆的控制系统,以使控制系统调用相应的车辆处理方式,并基于车辆处理方式驱动目标车辆。
其中,车辆处理方式可以理解为基于车辆的控制系统控制目标车辆行驶的方式,通常,车辆处理方式可以根据电机峰值驱动功率和电机峰值回收功率进行相应的调节。
本实施例,根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率,基于车辆动力学函数确定不同的待使用工况下,目标车辆的电机所对应的电机驱动扭矩,并将最大的电机驱动扭矩确定为电机峰值驱动扭矩,以基于电机峰值驱动扭矩确定电机峰值驱动功率,同时,基于目标车辆的制动系统特性确定与目标车辆的电机相对应的电机峰值回收扭矩,以基于电机峰值回收扭矩确定电机峰值回收功率。确定所述目标车辆在至少一种待使用工况下的待比对驱动功率,并基 于所述待参考驱动功率和各待比对驱动功率,确定与所述目标车辆相对应的电机峰值驱动功率,通过与待使用工况相关联的待使用关联参数以及相应的驱动功率确定函数,确定各相应待使用工况下与目标车辆的电机相对应的电机驱动功率,并将最大的电机驱动功率确定为电机峰值驱动功率。确定所述目标车辆在至少一种测试工况下的待比对回收功率,并基于所述待参考回收功率和各待比对回收功率,确定与所述目标车辆相对应的电机峰值回收功率,对不同测试工况下的待比对回收功率和待参考回收功率中的最大回收功率确定为电机峰值回收功率。基于所述电机峰值驱动功率和所述电机峰值回收功率,驱动所述目标车辆行驶。避免了车辆的电机功率确定不准确的情况,取到了准确计算车辆的电机功率的效果。
实施例二
在一个例子中,本实施例中的目标车辆的动力系统结构如图2所示,动力系统主要是由发动机、电机、动力电池、变速箱、离合器、驱动轴等组成。电机一侧与发动机之间通过离合器相连,电机另一侧与变速箱相连,各零部件分别由其对应的控制器进行控制。涉及到的控制器有发动机控制系统(EMS,Engine Management System)、整车控制器(HCU,Hybrid Control Unit)、电机控制器(MCU,Motor Control Unit)、电池管理系统(BMS,Battery Management System)、变速箱控制器(TCU,Transmission Control Unit)、智能网联系统(INS,Intelligent Network System)等,不同的控制器之间是通过控制器局域网络(Controller Area Network,CAN)网络进行通信的。
在上述动力系统的结构基础上,可以采用本实施例确定目标车辆的电功率。在车辆行驶过程中,受到的阻力包括滚动阻力Ff、空气阻力Fw、坡度阻力Fi和加速阻力Fj等,目标车辆的驱动力Ft等于上述各种阻力之和。与传统汽车不同的是,新能源混合动力汽车的驱动力Ft是由动力源(综合发动机和电机)产生的全部扭矩TAL经过传动机构传递到车轮,从而驱动目标车辆行驶。
其中,车辆的动力学方程可以用以下公式表示:
Ft=Ff+Fw+Fi+Fi
其中,Ft表示目标车辆的驱动力,Ff表示目标车辆的滚动阻力,Fw表示 目标车辆的空气阻力,Fi表示目标车辆在坡度道路上的坡度阻力,Fj表示目标车辆在加速时的加速阻力。
基于上述公式,可以推导得到:
其中,ig表示目标车辆的变速箱速比,i0表示目标车辆的主减速器速比,ηT表示目标车辆的传动系效率,r表示目标车辆的车轮半径,m表示目标车辆的重量,g表示重力,f表示目标车辆的滚动阻力系数,CD表示目标车辆的空气阻力系数,A表示目标车辆所对应的迎风面积,α表示目标车辆所在道路的道路坡度,δ表示目标车辆的旋转质量转换系数,v表示目标车辆的当前车速。
其中,TAL是混动车辆动力源包括发动机和电机所产生的扭矩之和,用于表示车辆行驶的驱动扭矩。
以目标车辆为混合动力车辆为例,将上述公式的两边乘上混合动力模式下的车速v,经过单位换算整理,可以得到混合动力车辆功率平衡方程,如下所示:
其中,ηT表示目标车辆的传动系效率,m表示目标车辆的重量,g表示重力,f表示目标车辆的滚动阻力系数,v表示目标车辆的当前车速,α表示目标车辆所在道路的道路坡度,CD表示目标车辆的空气阻力系数,A表示目标车辆所对应的迎风面积,δ表示目标车辆的旋转质量转换系数。
其中,PAL是混动车辆动力源包括发动机和电机所产生的功率之和,用于表示车辆行驶的驱动功率。
基于上述公式,采用本实施例确定目标车辆的电功率。例如,在确定目标车辆的电功率时,根据目标车辆的电机峰值驱动功率和电机峰值回收功率确定。确定电机峰驱动功率和电机峰值回收功率的方法如下所述。
需要说明的是,在本实施例中,所有公式中的常量为预设常量,可以根据实际情况进行调整,对常量不做限制,本实施例中的预设常量仅作为举例示意。
(1)确定目标车辆的电机峰值驱动功率
在确定目标车辆的电机峰值驱动功率时,需要先确定目标车辆的电机峰值驱动扭矩。例如,可以根据目标车辆在不同路况下的电机驱动扭矩确定电机峰值驱动扭矩,参见图3。
示例性地,设目标车辆的最大爬坡度αmax,初始速度为v=0,基于以下公式可以确定目标车辆的第一电机驱动扭矩TmDrv1
其中,TmDrv1表示目标车辆的第一电机驱动扭矩,r表示目标车辆的车轮半径,ig表示目标车辆的变速箱速比,i0表示目标车辆的主减速器速比,ηT表示目标车辆的传动系效率,m表示目标车辆的重量,g表示重力,f表示目标车辆的滚动阻力系数,αmax表示目标车辆的最大爬坡度。
示例性地,确定目标车辆在预设坡路工况下的车辆起步时的第二电机驱动扭矩,如,预设坡路可以为30%坡路(对应坡度为16.5度),基于下述公式可以确定目标车辆的第二电机驱动扭矩TmDrv2
TmDrv2=Tα1+TengST
其中,TmDrv2表示目标车辆的第二电机驱动扭矩,Tα1表示目标车辆预设坡路工况下的车辆启动电机驱动扭矩,TengST表示目标车辆的发动机驱动扭矩。
示例性地,确定目标车速在预设车速下的第三电机驱动扭矩,如预设车速为60km/h(同时,考虑目标车辆行驶过程中克服发动机起机扭矩),基于以下公式可以确定目标车辆的第三电机驱动扭矩TmDrv3
TmDrv3=Tv1+TengST
其中,TmDrv3表示目标车辆的第三驱动扭矩,Tv1表示目标车辆在预设车速下在纯电机驱动模式下的电机驱动扭矩;TengST表示目标车辆的发动机起机扭矩。
在得到第一电机驱动扭矩、第二电机驱动扭矩和第三电机驱动扭矩后,基于以下公式,确定目标车辆的电机峰值驱动扭矩TmDrv4
TmDrv4=max(TmDrv1,TmDrv2,TmDrv3)
其中,TmDrv4表示目标车辆的电机峰值驱动扭矩,TmDrv1表示目标车辆的第一电机驱动扭矩,TmDrv2表示目标车辆的第二电机驱动扭矩,TmDrv3表示目标车辆的第三驱动扭矩,max表示取函数中的最大值。
即,从第一电机驱动扭矩、第二电机驱动扭矩和第三电机驱动扭矩中,选择最大的电机驱动扭矩为目标车辆的电机峰值驱动扭矩。
示例性地,根据电机峰值驱动扭矩确定目标车辆的待参考驱动功率PmDrv,其中,待参考驱动功率可以根据以下公式确定:
其中,PmDrv表示目标车辆的待参考驱动功率,Nm表示目标车辆的预设电机转速,TmDrv4表示目标车辆的电机峰值驱动扭矩。
在本实施例中,第一预设常量可以设置为9550。
示例性地,在确定目标车辆的电机驱动功率时,还需要考虑发动机快速启动的情况,即目标车辆克服发动机的倒拖摩擦力矩(即发动机起机时的扭矩需求)。其中,发动机倒拖摩擦力矩(即上述提到的发动机起机扭矩TengST)可以通过在台架试验(或实车转毂试验)上进行测试得到。可以理解的是,在冷机状态下的发动机倒拖摩擦力矩比在热机状态下的数值要高一些,如,在冷机状态下发动机倒拖力矩为70Nm,热机状态下发动机倒拖力矩为55Nm,其他的可根据实际的发动机运行状态测试及标定得。例如,目标车辆在确定目标车辆的第一待使用驱动功率P1可以通过以公式确定:
其中,P1表示目标车辆的第一待使用驱动功率,Ieng表示目标车辆的发动机旋转部件的转动惯量,ω表示目标车辆的发动机飞轮转动的角速度,Δt表示目标车辆的启动发动机达到目标转速时的时长。
其中,目标车辆的发动机旋转部件的转动惯量Ieng可以基于以下公式确定:
其中,Teng1为发动机燃烧时气体压力产生的扭矩,TengST表示目标车辆的发动机起机扭矩,Ieng表示目标车辆的发动机旋转部件的转动惯量。
需要说明的是,在车辆停机时,由于不发生燃烧,可以认为Teng1=0,推导得出:
其中,TengST表示目标车辆的发动机起机扭矩,Ieng表示目标车辆的发动机旋转部件的转动惯量。
示例性地,目标车辆处于最大爬坡工况时,最大爬坡度为αmax,则可以根据车辆在纯电动驱动模式下,确定目标车辆的第一待比对驱动功率P2
其中,P2表示目标车辆的第一待比对驱动功率,ηT表示目标车辆的传动系效率,m表示目标车辆的重量,g表示重力,f表示目标车辆的滚动阻力系数,v表示目标车辆的当前车速,αmax表示目标车辆的最大爬坡度。
示例性地,设车辆以爬坡度α1(如30%坡度,对应α1=16.5度)起步,则可以基于以下公式确定目标车辆在预设坡路工况下的第二待比对驱动功率:
其中,P3表示目标车辆的第二待比对驱动功率,ηT表示目标车辆的传动系效率,m表示目标车辆的重量,g表示重力,f表示目标车辆的滚动阻力系数,v表示目标车辆的当前车速,α1表示目标车辆所在道路的坡度,P1表示目标车辆的第一待使用驱动功率。
示例性地,设目标车辆在预设车速60km/h以纯电动行驶,即当目标车辆以车速v1在平路上行驶时,即v=v1=60km/h,此时坡度为0,同时考虑发动机起动时所需要消耗的功率,确定目标车辆的第三待比对驱动功率P4
其中,P4表示目标车辆的第三待比对驱动功率,ηT表示目标车辆的传动系效率,m表示目标车辆的重量,g表示重力,f表示目标车辆的滚动阻力系数,v1表示目标车辆的预设车速,CD表示目标车辆的空气阻力系数,A表示目标车辆所对应的迎风面积,P1表示目标车辆的第一待使用驱动功率。
从PmDrv、P2、P3和P4中,选择最大的电机驱动功率作为目标车辆的电机峰值驱动功率P5。如,可以基于以下公式确定电机峰值驱动功率P5
P5=max(PmDrv,P2,P3,P4)
其中,P5表示目标车辆的电机峰值驱动功率,PmDrv表示目标车辆的待参考驱动功率,P2表示目标车辆的第一待比对驱动功率,P3表示目标车辆的第二待比对驱动功率,P4表示目标车辆的第三待比对驱动功率,max表示取函数中的最大值。
此外,若目标车辆为混动驱动模式,还需要考虑目标车辆的驱动模式对电机驱动功率的影响,也就是说,目标车辆在混动驱动模式下行驶时,P5不是最终的电机峰值驱动功率,还需要从混动驱动模式下的电机驱动功率P混动和发动机驱动模式下的电机驱动功率P发动机中确定出较大的电机驱动功率P8,基于P5和P8共同确定电机峰值驱动功率。
例如,目标车辆在发动机单独驱动模式下,设最高车速为veng(如170km/h,该值为已知),则可以根据车辆在发动机单独驱动模式下的最高车速计算车辆最大输出功率P发动机,即当车辆在发动机单独驱动模式下,以最高车速v=veng稳定行驶,此时且此时道路无坡度,α=0,通过下式计算得到车辆最大输出功率P发动机,目标车辆的P发动机可以基于以下公式确定:
其中,P发动机表示目标车辆的发动机驱动功率,ηT表示传动系数,m表示目标车辆重量,g表示重力,f表示滚动阻力系数,veng表示目标车辆在发动机驱动模式下的最高车速,CD表示空气阻力系数,A表示目标车辆所对应的迎风面积。
示例性地,目标车辆在混合动力联合驱动模式下,设最高车速为vh(如200km/h,该值为已知),则可以根据车辆在混合动力联合驱动模式下的最高车速计算车辆最大输出功率P混动,即当车辆在联合驱动模式下(电机和发动机联合驱动),以最高车速v=vh稳定行驶,此时且此时道路无坡度,α=0,通过下式计算得到车辆最大输出功率P混动,目标车辆的P混动可以基于以下公式确定:
其中,P混动表示目标车辆的混合驱动功率,ηT表示传动系数,m表示目标车辆重量,g表示重力,f表示滚动阻力系数,vh表示目标车辆在混合驱动模式下的最高车速,CD表示空气阻力系数,A表示目标车辆所对应的迎风面积。
通过P混动和P发动机两者之间的差值,计算出满足最高车速所需的电机驱动功率P8
P8=P混动-P发动机
其中,P混动表示目标车辆的混合驱动功率,P发动机表示目标车辆的发动机驱动功率,P8表示目标车辆在电机驱动模式下的电机驱动功率。
通过下式对P5和P8两者取大值计算,得到最终的电机峰值驱动功率P9
P9=max(P5,P8)
其中,P9表示电机峰值驱动功率,max表示取函数最大值,P5表示目标车辆的待比对的电机驱动功率,P8表示目标车辆在电机驱动模式下的电机驱动功率。
(2)确定目标车辆的电机峰值回收功率
在计算目标车辆的电机峰值回收功率时,根据车辆制动系统最大制动回收减速度ar(如2m/s2,根据制动系统特性可获取或标定得到),可以计算出电机峰值回收扭矩Tr1
Tr1=(m×ar×r×ηT)/igi0
其中,Tr1表示目标车辆的电机峰值回收扭矩,m表示目标车辆的重量,ar表示目标车辆的制动系统最大制动回收减速度,r表示目标车辆的车轮半径,ηT表示目标车辆的传动系效率,ig表示目标车辆的变速箱速比,i0表示目标车辆的主减速器速比。
将Tr1乘以电机转速Nm,除以电机效率ηm,再除以第二预设常量,得到电机输入端回收功率,即,待参考回收功率Pr1,可以根据以下公式确定:
其中,Pr1表示目标车辆的待参考回收功率,Nm表示目标车辆的电机的预设转速,ηm表示目标车辆的预设电机效率,Tr1表示电机峰值回收扭矩。
其中,上述公式中的9549表示第二预设常量。
根据整车智能网联系统大数据分析,智能网联系统终端设备可以把车辆行驶一段时间内的电机回收扭矩和转速进行采集和存储,并上传至云端服务器,然后调取或者接收智能网联发送的电机最大回收功率(即,电机实时回收功率),设该电机实时回收功率为Pr2
针对标准测试工况,测试工况是车速与时间的关系工况。
对车辆在平直路面或者转毂台架上进行测试,可以算出在世界轻型汽车测试循环工况(World Light Vehicle Test Cycle,WLTC)和新欧洲驾驶循环周期(New European Driving Cycle,NEDC)工况下最大的制动回收功率,在汽车减速过程中可回收功率设为Pr3,制动回收功率Pr3和车速v的计算公式为
其中,Pr3表示目标车辆的制动回收功率,δ表示目标车辆的旋转质量转换系数,m表示目标车辆的重量,v表示目标车辆的当前车速,f表示目标车辆的滚动阻力系数,g表示重力,CD表示目标车辆的空气阻力系数,A表示目标车辆所对应的迎风面积。
在制动能量回收过程中,除了可回收能量功率之外,还要克服发动机摩擦力矩做功,通过下述式子计算得到待使用回收功率Pr4
其中,Pr4表示目标车辆的待使用回收功率,Pr3表示目标车辆的制动回收功率,T1表示目标车辆克服发动机摩擦力矩做工的时长,n表示目标车辆的发动机转速。
需要说明的是,上述公式中的n可以根据以下公式确定:
其中,n表示目标车辆的发动机转速,v表示目标车辆的当前车速,ig表示目标车辆的变速箱速比,i0表示目标车辆的主减速器速比,r表示目标车辆的车轮半径。
基于以下公式从Pr1、Pr2和Pr4中,确定电机峰值回收功率Pr5
Pr5=max(Pr1,Pr2,Pr4)
其中,Pr5表示目标车辆的电机峰值回收功率,Pr1表示目标车辆的待参考回收功率,Pr2表示目标车辆的电机实时回收功率,Pr4表示目标车辆的待使用回收功率,max表示取函数中的最大值。
在得到电机峰值驱动功率和电机峰值回收功率后,将电机峰值驱动功率和电机峰值回收功率发送至目标车辆的控制系统,以基于目标车辆的控制系统驱动目标车辆行驶。
本实施例,根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率;确定所述目标车辆在至少一种待使用工况下的待比对驱动功率,并基于所述待参考驱动功率和各待比对驱动功率,确定与所述目标车辆相对应的电机峰值驱动功率;确定所述目标车辆在至少一种测试工况下的待比对回收功率,并基于所述待参考回收功率和各待比对回收功率,确定与所述目标车辆相对应的电机峰值回收功率;基于所述电机峰值驱动功率和所述电机峰值回收功率,驱动所述目标车辆行驶。避免了车辆的电机功率确定不准确的情况,取得了准确计算车辆的电机功率的效果。
实施例三
图4为本申请实施例三提供的一种车辆电功率确定装置的结构示意图。如图4所示,该装置包括:功率确定模块210、峰值驱动功率确定模块220、 峰值回收功率确定模块230和车辆驱动模块240。
功率确定模块210,设置为根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与目标车辆相对应的待参考驱动功率和待参考回收功率;
峰值驱动功率确定模块220,设置为确定目标车辆在至少一种待使用工况下的待比对驱动功率,并基于待参考驱动功率和各待比对驱动功率,确定与目标车辆相对应的电机峰值驱动功率;其中,待使用工况包括最大爬坡工况、预设坡路工况、预设车速所对应的行驶工况,以及预设动力模式工况中的至少一种;
峰值回收功率确定模块230,设置为确定目标车辆在至少一种测试工况下的待比对回收功率,并基于待参考回收功率和各待比对回收功率,确定与目标车辆相对应的电机峰值回收功率;其中,测试工况包括系统测试工况,以及目标车辆的发动机克服摩擦力所对应的测试工况中的至少一种;
车辆驱动模块240,设置为基于电机峰值驱动功率和电机峰值回收功率,驱动目标车辆行驶。
本实施例,根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率;确定所述目标车辆在至少一种待使用工况下的待比对驱动功率,并基于所述待参考驱动功率和各待比对驱动功率,确定与所述目标车辆相对应的电机峰值驱动功率;确定所述目标车辆在至少一种测试工况下的待比对回收功率,并基于所述待参考回收功率和各待比对回收功率,确定与所述目标车辆相对应的电机峰值回收功率;基于所述电机峰值驱动功率和所述电机峰值回收功率,驱动所述目标车辆行驶。避免了车辆的电机功率确定不准确的情况,取得了准确计算车辆的电机功率的效果。
在一实施例中,车辆电功率确定装置,还包括:电机驱动扭矩确定模块,设置为在根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率之前,基于车辆动力学函数,确定目标车辆在至少一个待使用工况下的电机驱动扭矩;
电机峰值驱动扭矩确定模块,设置为从各电机驱动扭矩中,确定出最大的电机驱动扭矩为电机峰值驱动扭矩;
电机峰值回收扭矩确定模块,设置为根据与目标车辆的相对应的制动系统特性,确定电机峰值回收扭矩。
在一实施例中,功率确定模块包括:待参考驱动功率确定单元,设置为基于与目标车辆相对应的电机峰值驱动扭矩、预设电机转速以及第一预设常量,确定与目标车辆相对应的待参考驱动功率;
待参考回收功率确定单元,设置为基于与目标车辆相对应的电机峰值回收扭矩、预设电机效率以及第二预设常量,确定与目标车辆相对应的待参考回收功率。
在一实施例中,峰值驱动功率确定模块包括:待使用关联参数获取单元,设置为获取目标车辆的各待使用工况下的待使用关联参数;
待比对驱动功率确定单元,设置为基于与各待使用工况相对应的驱动功率确定函数,对相应的待使用工况的待使用关联参数进行处理,得到相应待使用工况下的待比对驱动功率;
电机峰值驱动功率确定单元,设置为从待参考驱动功率和各待比对驱动功率中,确定出最大驱动功率为电机峰值驱动功率。
在一实施例中,峰值驱动功率确定模块包括:混合驱动功率确定子单元,设置为确定目标车辆在混合动力驱动模式下的混合驱动功率;其中,混合驱动模式包括电机驱动模式和发动机驱动模式;
发动机驱动功率确定子单元,设置为确定目标车辆在发动机驱动模式下的发动机驱动功率;
待使用驱动功率确定子单元,设置为基于混合驱动功率和发动机驱动功率的差值,确定与目标的最高车速所对应的待使用驱动功率。
在一实施例中,峰值回收功率确定模块包括:电机实时回收功率确定单元,设置为基于电机回收扭矩和目标车辆的发动机转速,确定与目标车辆在预设测试工况下的电机实时回收功率;
待使用回收功率确定单元,设置为根据目标车辆所对应的之制动回收功率,确定在目标车辆的发动机克服摩擦力所对应的测试工况下的待使用回收功率;
电机峰值回收功率确定单元,设置为将待参考回收功率、电机实时回收功率和待使用回收功率中的最大回收功率,确定为与目标车辆相对应的电机峰值回收功率。
在一实施例中,车辆驱动模块,设置为将电机峰值驱动功率和电机峰值回收功率,发送至目标车辆的控制系统,以使控制系统调用相应的车辆处理方式,并基于目标车辆处理方式驱动目标车辆。
本申请实施例所提供的车辆电功率确定装置可执行本申请任意实施例所提供的车辆电功率确定方法,具备执行方法相应的功能模块和有益效果。
实施例四
图5示出了本申请的实施例的电子设备10的结构示意图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备(如头盔、眼镜、手表等)和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图5所示,电子设备10包括至少一个处理器11,以及与至少一个处理器11通信连接的存储器,如只读存储器(Read-Only Memory,ROM)12、随机访问存储器(Random Access Memory,RAM)13等,其中,存储器存储有可被至少一个处理器执行的计算机程序,处理器11可以根据存储在只读存储器(ROM)12中的计算机程序或者从存储单元18加载到随机访问存储器(RAM)13中的计算机程序,来执行各种适当的动作和处理。在RAM 13中,还可存储电子设备10操作所需的各种程序和数据。处理器11、ROM 12以及RAM 13通过总线14彼此相连。输入/输出(Input/Output,I/O)接口15也连接至总线14。
电子设备10中的多个部件连接至I/O接口15,包括:输入单元16,例如键盘、鼠标等;输出单元17,例如各种类型的显示器、扬声器等;存储单元18,例如磁盘、光盘等;以及通信单元19,例如网卡、调制解调器、无线通信收发机等。通信单元19允许电子设备10通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
处理器11可以是各种具有处理和计算能力的通用和/或专用处理组件。处理器11的一些示例包括但不限于中央处理单元(Central Processing Unit,CPU)、图形处理单元(Graphics Processing Unit,GPU)、各种专用的人工智能(Artificial Intelligence,AI)计算芯片、各种运行机器学习模型算法的处理器、数字信号处理器(Digital Signal Processor,DSP)、以及任何适当的处理器、控制器、微控制器等。处理器11执行上文所描述的各个方法和处理,例如车辆电功率确定方法。
在一些实施例中,车辆电功率确定方法可被实现为计算机程序,其被有 形地包含于计算机可读存储介质,例如存储单元18。在一些实施例中,计算机程序的部分或者全部可以经由ROM 12和/或通信单元19而被载入和/或安装到电子设备10上。当计算机程序加载到RAM 13并由处理器11执行时,可以执行上文描述的车辆电功率确定方法的一个或多个步骤。备选地,在其他实施例中,处理器11可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行车辆电功率确定方法。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Product,ASSP)、芯片上系统的系统(System on Chip,SOC)、负载可编程逻辑设备(Complex Programmable Logic Device,CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的车辆电功率确定方法的计算机程序可以采用一个或多个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
存储介质可以是非暂态(non-transitory)存储介质。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM) 或快闪存储器、光纤、便捷式紧凑盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在电子设备上实施此处描述的系统和技术,该电子设备具有:用于向用户显示信息的显示装置(例如,阴极射线管(Cathode Ray Tube,CRT)或者液晶显示器(Liquid Crystal Display,LCD)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(Local Area Network,LAN)、广域网(Wide Area Network,WAN)、区块链网络和互联网。
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与虚拟专用服务器(Virtual Private Server,VPS)服务中,存在的管理难度大,业务扩展性弱的缺陷。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,本文在此不进行限制。
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。

Claims (10)

  1. 一种车辆电功率确定方法,包括:
    根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率;
    确定所述目标车辆在至少一种待使用工况下的待比对驱动功率,并基于所述待参考驱动功率和至少一个待比对驱动功率,确定与所述目标车辆相对应的电机峰值驱动功率;其中,所述待使用工况包括最大爬坡工况、预设坡路工况、预设车速所对应的行驶工况,以及预设动力模式工况中的至少一种;
    确定所述目标车辆在至少一种测试工况下的待比对回收功率,并基于所述待参考回收功率和至少一个待比对回收功率,确定与所述目标车辆相对应的电机峰值回收功率;其中,所述测试工况包括系统测试工况,以及所述目标车辆的发动机克服摩擦力所对应的测试工况中的至少一种;
    基于所述电机峰值驱动功率和所述电机峰值回收功率,驱动所述目标车辆行驶。
  2. 根据权利要求1所述的方法,在所述根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率之前,包括:
    基于车辆动力学函数,确定所述目标车辆在所述至少一个待使用工况下的电机驱动扭矩;
    从至少一个电机驱动扭矩中,确定出最大的电机驱动扭矩为所述电机峰值驱动扭矩;
    根据与所述目标车辆的相对应的制动系统特性,确定所述电机峰值回收扭矩。
  3. 根据所述权利要求1所述的方法,其中,所述根据目标车辆的电机峰值驱动扭矩和电机峰值回收扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率,包括:
    基于与所述目标车辆相对应的电机峰值驱动扭矩、预设电机转速以及第一预设常量,确定与所述目标车辆相对应的待参考驱动功率;
    基于与所述目标车辆相对应的电机峰值回收扭矩、预设电机效率以及第二预设常量,确定与所述目标车辆相对应的待参考回收功率。
  4. 根据权利要求1所述的方法,其中,所述确定所述目标车辆在至少一种待使用工况下的待比对驱动功率,并基于所述待参考驱动功率和至少一个待比对驱动功率,确定与所述目标车辆相对应的电机峰值驱动功率,包括:
    获取所述目标车辆的至少一种待使用工况下的待使用关联参数;
    基于与每个待使用工况相对应的驱动功率确定函数,对相应的待使用工况的待使用关联参数进行处理,得到相应待使用工况下的待比对驱动功率;
    从所述待参考驱动功率和至少一个待比对驱动功率中,确定出最大驱动功率为所述电机峰值驱动功率。
  5. 根据权利要求4所述的方法,其中,所述待使用工况为所述预设动力模式工况,所述预设动力模式工况包括混合驱动模式工况和发动机驱动模式工况,所述对相应的待使用工况的待使用关联参数进行处理,得到相应待使用工况下的待比对驱动功率,包括:
    确定所述目标车辆在混合动力驱动模式下的混合驱动功率;其中,所述混合驱动模式包括电机驱动模式和发动机驱动模式;
    确定所述目标车辆在发动机驱动模式下的发动机驱动功率;
    基于所述混合驱动功率和所述发动机驱动功率的差值,确定与所述目标车辆在最高车速下所对应的待使用驱动功率;其中,所述最高车速为所述目标车辆在稳定行驶时的最高车速。
  6. 根据权利要求1所述的方法,其中,所述待比对回收功率包括电机实时回收功率和待使用回收功率,所述确定所述目标车辆在至少一种测试工况下的待比对回收功率,并基于所述待参考回收功率和至少一个待比对回收功率,确定与所述目标车辆相对应的电机峰值回收功率,包括:
    基于电机回收扭矩和所述目标车辆的电机转速,确定与所述目标车辆在所述系统测试工况下的电机实时回收功率;
    根据所述目标车辆所对应的制动回收功率,确定在所述目标车辆的发动机克服摩擦力所对应的测试工况下的待使用回收功率;
    将所述待参考回收功率、所述电机实时回收功率和所述待使用回收功率中的最大回收功率,确定为与所述目标车辆相对应的电机峰值回收功率。
  7. 根据权利要求1所述的方法,其中,所述基于所述电机峰值驱动功率和所述电机峰值回收功率,驱动所述目标车辆行驶,包括:
    将所述电机峰值驱动功率和所述电机峰值回收功率,发送至所述目标车辆的控制系统,以使所述控制系统调用相应的车辆处理方式,并基于所述车辆处理方式驱动所述目标车辆。
  8. 一种车辆电功率确定装置,包括:
    功率确定模块,设置为根据目标车辆的电机峰值驱动扭矩和电机峰值回收 扭矩,分别确定与所述目标车辆相对应的待参考驱动功率和待参考回收功率;
    峰值驱动功率确定模块,设置为确定所述目标车辆在至少一种待使用工况下的待比对驱动功率,并基于所述待参考驱动功率和至少一个待比对驱动功率,确定与所述目标车辆相对应的电机峰值驱动功率;其中,所述待使用工况包括最大爬坡工况、预设坡路工况、预设车速所对应的行驶工况,以及预设动力模式工况中的至少一种;
    峰值回收功率确定模块,设置为确定所述目标车辆在至少一种测试工况下的待比对回收功率,并基于所述待参考回收功率和至少一个待比对回收功率,确定与所述目标车辆相对应的电机峰值回收功率;其中,所述测试工况包括系统测试工况,以及所述目标车辆的发动机克服摩擦力所对应的测试工况中的至少一种;
    车辆驱动模块,设置为基于所述电机峰值驱动功率和所述电机峰值回收功率,驱动所述目标车辆行驶。
  9. 一种电子设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7中任一项所述的车辆电功率确定方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-7中任一项所述的车辆电功率确定方法。
PCT/CN2023/099461 2022-07-28 2023-06-09 车辆电功率确定方法、装置、电子设备及存储介质 WO2024021909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210900079.8A CN115027445A (zh) 2022-07-28 2022-07-28 一种车辆电功率确定方法、装置、电子设备及存储介质
CN202210900079.8 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024021909A1 true WO2024021909A1 (zh) 2024-02-01

Family

ID=83130380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099461 WO2024021909A1 (zh) 2022-07-28 2023-06-09 车辆电功率确定方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115027445A (zh)
WO (1) WO2024021909A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115027445A (zh) * 2022-07-28 2022-09-09 中国第一汽车股份有限公司 一种车辆电功率确定方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103568868A (zh) * 2013-11-04 2014-02-12 浙江大学 一种适用于电动汽车的动力匹配方法
US20180118027A1 (en) * 2016-10-28 2018-05-03 Michael Hall Determining Vehicle Power
CN109033531A (zh) * 2018-06-28 2018-12-18 浙江大学 一种基于多目标规划的电动汽车动力匹配优化方法
CN109278740A (zh) * 2018-08-29 2019-01-29 江铃控股有限公司 混合动力汽车的控制方法、装置、系统及汽车
CN111216557A (zh) * 2019-12-24 2020-06-02 浙江吉利新能源商用车集团有限公司 一种电动汽车能量回收方法、装置及汽车
CN112389208A (zh) * 2020-11-30 2021-02-23 庆铃汽车(集团)有限公司 自动驾驶车辆能量回收方法、系统、终端、介质及车辆
CN115027445A (zh) * 2022-07-28 2022-09-09 中国第一汽车股份有限公司 一种车辆电功率确定方法、装置、电子设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103568868A (zh) * 2013-11-04 2014-02-12 浙江大学 一种适用于电动汽车的动力匹配方法
US20180118027A1 (en) * 2016-10-28 2018-05-03 Michael Hall Determining Vehicle Power
CN109033531A (zh) * 2018-06-28 2018-12-18 浙江大学 一种基于多目标规划的电动汽车动力匹配优化方法
CN109278740A (zh) * 2018-08-29 2019-01-29 江铃控股有限公司 混合动力汽车的控制方法、装置、系统及汽车
CN111216557A (zh) * 2019-12-24 2020-06-02 浙江吉利新能源商用车集团有限公司 一种电动汽车能量回收方法、装置及汽车
CN112389208A (zh) * 2020-11-30 2021-02-23 庆铃汽车(集团)有限公司 自动驾驶车辆能量回收方法、系统、终端、介质及车辆
CN115027445A (zh) * 2022-07-28 2022-09-09 中国第一汽车股份有限公司 一种车辆电功率确定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN115027445A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2024021909A1 (zh) 车辆电功率确定方法、装置、电子设备及存储介质
CN103197667B (zh) 一种混合动力汽车整车控制器的仿真与测试方法
CN109204260A (zh) 电动汽车制动力分配方法
WO2011153949A1 (zh) 一种确定电动汽车剩余里程的方法
CN107657076B (zh) 一种插电式混合动力系统动力匹配方法
WO2023001289A1 (zh) 车辆滚动阻力获取方法、获取模块及存储介质
CN111546903B (zh) 滑行扭矩的确定方法、装置、设备及存储介质
CN110696791A (zh) 电动汽车能量回收控制方法、装置、设备及存储介质
WO2023030360A1 (zh) 汽车输出扭矩的控制方法、装置、电子设备及介质
CN103707889A (zh) 一种控制混合动力汽车动力的方法
CN103991442A (zh) 一种电动车辆的复合制动系统及其复合制动方法
WO2019001372A1 (zh) 变速器最高挡速比的确定方法和装置
CN100364803C (zh) 路面状态变化推定装置、方法及具有该装置的汽车
WO2024001715A1 (zh) 电动汽车动力系统扭矩确定方法、装置、控制器和介质
WO2024045924A1 (zh) 应用于混动车辆的功率控制方法、装置、设备及介质
WO2024022043A1 (zh) 车辆中动力电池的充放电功率控制方法、装置及车辆
CN110466360A (zh) 一种车辆控制方法、装置及车辆
WO2024022051A1 (zh) 车辆的控制方法、装置、电子设备和存储介质
CN110667564B (zh) 并联式混合动力汽车自主队列行驶能量智能管理方法
WO2024041102A1 (zh) 车辆动力电池的配置方法、装置、电子设备和存储介质
WO2023237032A1 (zh) 车辆仪表的数据调整方法、装置、设备及存储介质
WO2024060837A1 (zh) 一种车速控制方法、系统及车辆
Hui et al. Design of a versatile test bench for hybrid electric vehicles
WO2023231833A1 (zh) 爬行控制方法、装置、电子设备和存储介质
CN109466333B (zh) 基于电动客车动态过程质量估计的剩余里程计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845122

Country of ref document: EP

Kind code of ref document: A1