WO2024021611A1 - 蓄电池供电的空调器及其自清洁控制方法和控制装置 - Google Patents

蓄电池供电的空调器及其自清洁控制方法和控制装置 Download PDF

Info

Publication number
WO2024021611A1
WO2024021611A1 PCT/CN2023/080002 CN2023080002W WO2024021611A1 WO 2024021611 A1 WO2024021611 A1 WO 2024021611A1 CN 2023080002 W CN2023080002 W CN 2023080002W WO 2024021611 A1 WO2024021611 A1 WO 2024021611A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
battery
air conditioner
target frequency
proportion
Prior art date
Application number
PCT/CN2023/080002
Other languages
English (en)
French (fr)
Inventor
许国景
赵晓明
劳春峰
王宏彩
张峻铖
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024021611A1 publication Critical patent/WO2024021611A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants

Definitions

  • the present invention belongs to the field of air conditioning technology, and specifically relates to air conditioner technology. More specifically, it relates to a battery-powered air conditioner and its self-cleaning control method and control device.
  • the air conditioner forms a refrigerant circulation system through a compressor, condenser, expansion valve, and evaporator. It uses the phase change of the refrigerant to regulate the air, realize cooling, heating, dehumidification and other functions, and provide users with a suitable and comfortable environment.
  • these dirt adhere to the heat exchanger of the indoor unit on the one hand, it will reduce the heat exchange performance of the heat exchanger, leading to a decline in the performance of the air conditioner; on the other hand, the adhesion of dirt can easily breed bacteria and form mold spots, which will Odors generated in the unit, if not cleaned in time, will seriously threaten the health of air conditioner users.
  • Air conditioners usually use the mains power grid to provide power. This power supply method not only consumes a large amount of mains power, but also if the voltage of the mains power grid is unstable, it will affect the stable operation of the air conditioner, and even the air conditioner may not be able to operate due to low power grid pressure. Start running situation.
  • some air conditioners are equipped with batteries, which use batteries to provide electrical energy for the air conditioners.
  • the electric energy stored in the battery can come from clean energy sources such as solar photovoltaic power generation devices and wind power generation devices, so as to use renewable clean energy to power air conditioners to achieve the purpose of energy conservation and emission reduction; it can also come from non-standard sources such as mains power grids and generators. Clean energy uses batteries as backup energy.
  • the mains power is cut off or the mains voltage is too low to provide the power required by the air conditioner, the battery supplies power to the air conditioner to meet the user's demand for the air conditioner to regulate air.
  • the existing technology controls a battery-powered air conditioner
  • the remaining power of the battery is usually considered, and the operating parameters of the air conditioner are controlled based on the remaining power in order to balance energy supply and air conditioning performance.
  • the existing technology rarely considers the self-cleaning control of battery-powered air conditioners, and even less considers the relationship between the energy saving and self-cleaning effect of battery-powered air conditioners. Therefore, it is difficult to obtain overall performance. Better air conditioner self-cleaning control.
  • One of the purposes of the present invention is to provide a self-cleaning control method and control device for a battery-powered air conditioner, to achieve the purpose of improving the balance between energy saving and self-cleaning effect of the air conditioner, and to improve the overall performance of the air conditioner operation.
  • the self-cleaning control method of the battery-powered air conditioner provided by the present invention is implemented by adopting the following technical solutions:
  • a self-cleaning control method for a battery-powered air conditioner includes:
  • the sources of electrical energy include clean energy and non-clean energy.
  • controlling the air conditioner to operate in a self-cleaning mode according to the electric energy source of the battery includes:
  • the first real-time target frequency is reduced to obtain a reduced first actual target frequency.
  • the first actual target Frequency controls compressor operation.
  • field weakening control is performed on the compressor, including:
  • the magnetic field weakening current value has a positive correlation with the proportion of the electric energy source of the battery that comes from clean energy.
  • the field weakening current value is determined based on the proportion of clean energy in the electric energy source of the battery, including:
  • a and b are both known positive numbers, and k is the proportion of the electric energy source of the battery that comes from clean energy.
  • reducing the first real-time target frequency to obtain the reduced first actual target frequency includes:
  • the first real-time target frequency is reduced according to the remaining power to obtain the reduced first actual target frequency.
  • controlling the air conditioner to operate in a self-cleaning mode according to the electric energy source of the battery includes:
  • the second real-time target frequency is reduced to obtain a reduced second actual target frequency, and the operation of the compressor is controlled according to the second actual target frequency.
  • the self-cleaning control device of the battery-powered air conditioner provided by the present invention is implemented using the following technical solutions:
  • a self-cleaning control device for a battery-powered air conditioner which device includes:
  • a battery power source acquisition module is used to obtain the power source of the battery when the air conditioner is powered by a battery
  • a self-cleaning mode control module configured to control the air conditioner to operate in a self-cleaning mode according to the electric energy source of the battery
  • the sources of electrical energy include clean energy and non-clean energy.
  • the self-cleaning mode control module includes:
  • a clean energy proportion judgment unit used to judge whether the proportion of clean energy in the electric energy source of the battery reaches a first proportion threshold, and output the judgment result;
  • a running time acquisition unit configured to acquire the running time of the air conditioner running the self-cleaning mode when the proportion of the electric energy source of the battery that comes from clean energy reaches a first proportion threshold
  • a first real-time target frequency acquisition unit configured to acquire the first real-time target frequency of the compressor when the proportion of clean energy in the electric energy source of the battery reaches a first proportion threshold
  • a running time comparison unit used to compare the running time with the set time threshold and output the comparison result
  • a first self-cleaning mode control unit configured to perform field weakening control on the compressor in the self-cleaning mode when the running time is not greater than the set time threshold
  • the second self-cleaning mode control unit is configured to reduce the first real-time target frequency in the self-cleaning mode to obtain the reduced first actual frequency when the elapsed running time is greater than the set time threshold.
  • Target frequency controlling the compressor operation according to the first actual target frequency.
  • the self-cleaning mode control module includes:
  • a non-clean energy proportion judgment unit used to judge whether the proportion of non-clean energy in the electric energy source of the battery reaches a second proportion threshold, and output the judgment result;
  • a second real-time target frequency acquisition unit configured to obtain a second real-time target frequency of the compressor when the proportion of the electric energy source of the battery that comes from non-clean energy reaches a second proportion threshold;
  • a third self-cleaning mode control unit configured to reduce the second real-time target frequency in the self-cleaning mode, obtain a reduced second actual target frequency, and control the operation of the compressor according to the second actual target frequency.
  • Another object of the present invention is to provide a battery-powered air conditioner, which includes an air conditioner body and a battery.
  • the air conditioner further includes the above-mentioned self-cleaning control device.
  • the self-cleaning control method and control device of a battery-powered air conditioner can obtain the power source of the battery when the air conditioner is powered by a battery. According to the power source, it can be determined whether the power in the battery is charged by clean energy or non-clean energy. Charging can also determine the proportion of electric energy provided by different electric energy sources, which can then reflect the energy status of the environment where the air conditioner is located based on the electric energy source; and then control the air conditioner to operate in a self-cleaning mode based on the electric energy source of the battery, which can achieve a self-cleaning mode based on the actual energy status. Perform self-cleaning control on the air conditioner, so as to achieve a balance between energy saving and self-cleaning effect when using the air conditioner to perform self-cleaning as much as possible, and improve the intelligent control and overall operating performance of the air conditioner.
  • Figure 1 is a flow chart of a first embodiment of a self-cleaning control method for a battery-powered air conditioner of the present invention
  • Figure 2 is a flow chart of the second embodiment of the self-cleaning control method of the battery-powered air conditioner of the present invention
  • Figure 3 is a flow chart of the third embodiment of the self-cleaning control method of the battery-powered air conditioner of the present invention.
  • Figure 4 is a structural block diagram of a first embodiment of a self-cleaning control device for a battery-powered air conditioner of the present invention
  • Figure 5 is a structural block diagram of a second embodiment of a self-cleaning control device for a battery-powered air conditioner of the present invention.
  • Figure 6 is a structural block diagram of a self-cleaning control device for a battery-powered air conditioner according to a third embodiment of the present invention.
  • the air conditioner provided in each of the following embodiments uses a compressor, a condenser, an expansion valve, and an evaporator to perform a cooling and heating cycle of the air conditioner.
  • the cooling and heating cycle includes a series of processes involving compression, condensation, expansion and evaporation to cool or heat indoor spaces.
  • the refrigeration working principle of the air conditioner is: the compressor works to put the indoor heat exchanger (in the indoor unit, the evaporator at this time) in an ultra-low pressure state.
  • the liquid refrigerant in the indoor heat exchanger quickly evaporates and absorbs heat, and the indoor fan blows out the air.
  • the wind is cooled by the indoor heat exchanger coil and then becomes cold air and blows into the room.
  • the evaporated and gasified refrigerant is pressurized by the compressor, it condenses into a liquid state under the high-pressure environment in the outdoor heat exchanger (in the outdoor unit, this is the condenser), releasing heat, and dissipates the heat through the outdoor fan. To the atmosphere, this cycle achieves the refrigeration effect.
  • the heating working principle of the air conditioner is: the gaseous refrigerant is pressurized by the compressor, becomes a high-temperature and high-pressure gas, enters the indoor heat exchanger (in this case, the condenser), condenses and liquefies, releases heat, and becomes a liquid, while heating the indoor air.
  • the liquid refrigerant is decompressed by the throttling device and enters the outdoor heat exchanger (evaporator at this time). It evaporates, vaporizes, absorbs heat, and becomes a gas. At the same time, it absorbs the heat of the outdoor air (the outdoor air becomes colder) and becomes a gaseous refrigerant. Enter the compressor again to start the next cycle.
  • the present invention creatively proposes a new air conditioner to solve the problem that the existing battery-powered air conditioner rarely considers the relationship between the energy saving performance and the self-cleaning effect of the air conditioner and is difficult to obtain self-cleaning control of the air conditioner with better overall performance.
  • the self-cleaning control technology of the battery-powered air conditioner when the air conditioner is powered by the battery, obtains the power source of the battery, and then controls the air conditioner to operate in the self-cleaning mode according to the power source of the battery, which can improve the energy saving and self-cleaning of the air conditioner.
  • the purpose of balancing the effect is to achieve the technical effect of improving the overall performance of the air conditioner operation.
  • FIG. 1 shows a flow chart of a first embodiment of a self-cleaning control method for a battery-powered air conditioner of the present invention.
  • the air conditioner in this embodiment includes a battery module.
  • the battery module can be charged by external energy and store electrical energy. When the battery is required to provide electrical energy, the air conditioner switches to the battery power supply mode.
  • This embodiment is a flow chart of a self-cleaning control method for an air conditioner when powered by a battery.
  • this embodiment adopts the following process to perform self-cleaning control of the air conditioner.
  • the air conditioner is powered by a battery and obtains the power source from the battery.
  • the power sources of batteries include clean energy and non-clean energy.
  • Clean energy is renewable energy such as solar energy, wind energy, and water energy; non-clean energy is mains power grid, generators and other energy sources.
  • an external energy source When an external energy source is used to charge the battery, it can record and store information such as what type of energy the electric energy stored in the battery comes from, the size of the battery charge, and the proportion of different types of energy in the battery power.
  • the air conditioner When the air conditioner is powered by a battery, it can recall stored information to obtain the power source of the battery. Alternatively, other methods can be used to obtain the power source of the battery. All implementations that can obtain the power source of the battery fall within the scope of the present invention.
  • S2 Control the air conditioner to run in self-cleaning mode according to the power source of the battery.
  • the electric energy source of the battery Based on the electric energy source of the battery, it can be determined whether the electric energy in the battery is charged by clean energy or non-clean energy. It can also determine the proportion of electric energy provided by different electric energy sources, which can then reflect the energy status of the area where the air conditioner is located based on the electric energy source. .
  • the battery can obtain charging power in an economical and fast way; then, when using the battery for the air conditioner When the air conditioner is powered and the air conditioner is running in self-cleaning mode, the main goal can be to satisfy the self-cleaning effect and improve the self-cleaning degree, without overly considering the operating cost of the air conditioner, the operating hours of the air conditioner, etc.
  • the battery is used to power the air conditioner and operate the air conditioner.
  • the self-cleaning control of the air conditioner can be realized based on the actual energy status, so as to achieve the balance between energy saving and self-cleaning effect when using the air conditioner to perform self-cleaning as much as possible, and improve the intelligent control of the air conditioner and the overall performance of the air conditioner. Operational performance.
  • Figure 2 shows a flow chart of a second embodiment of the self-cleaning control method for a battery-powered air conditioner of the present invention. Specifically, it is a flow chart of an embodiment of a specific control method for controlling the air conditioner to operate in the self-cleaning mode according to the power source of the battery in the embodiment of FIG. 1 .
  • the first proportion threshold is a preset value. In some embodiments, the first proportion threshold is 60%. If the charging ratio from clean energy reaches the first ratio threshold, it indicates that clean energy contributes significantly to the charging of the battery, reflecting that the environment in which the air conditioner is located is relatively abundant in clean energy.
  • the first real-time target frequency is a target frequency of the compressor when the air conditioner is operating in the self-cleaning mode.
  • the acquisition method can adopt all possible methods of determining the target frequency of the compressor in the self-cleaning mode in the prior art. This embodiment does not do this. limited.
  • S212 Determine whether the running time of the self-cleaning mode is greater than the set time threshold. If yes, execute S213; otherwise, execute S214.
  • the set time threshold is a preset time value. Specifically, it is a running time value that reflects whether the air conditioner can obtain a certain degree of self-cleaning. In some embodiments, the time threshold is set to 10 minutes.
  • S213 In the self-cleaning mode, reduce the first real-time target frequency, obtain the reduced first actual target frequency, and control the operation of the compressor according to the first actual target frequency.
  • the compressor frequency reduction method is adopted to implement the self-cleaning mode. Specifically, the calculated first real-time target frequency is reduced to obtain the reduced first actual target frequency, and the compressor operation is controlled according to the first actual target frequency to maintain the self-cleaning mode to continue operating and further improve the self-cleaning effect. At the same time, it does not consume too much electric energy and achieves energy saving and consumption reduction.
  • Reducing the second real-time target frequency can be achieved by reducing the frequency according to a set ratio, reducing the frequency according to a set frequency difference, and other methods.
  • the following method is used to reduce the first real-time target frequency to obtain the reduced first actual target frequency:
  • the method for obtaining the remaining power can be implemented using existing technology, which is not limited in this embodiment.
  • the first real-time target frequency is reduced according to the remaining power to obtain the reduced first actual target frequency.
  • the actual operating frequency of the compressor is determined based on the remaining power of the battery, and the matching between the frequency and the actual power supply state is improved.
  • the self-cleaning degree of the air conditioner is not sufficient at this time. In this state, improving self-cleaning degree will be the main control objective. Moreover, considering that the working frequency of the compressor is relatively high in the initial stage of the self-cleaning mode, but when powered by a battery, the frequency that the air conditioner can reach is limited. In order to meet the needs of self-cleaning performance, the air conditioner compressor will be operated in the self-cleaning mode. Implement weak magnetic control to enable the compressor to run at a higher speed, ensure normal operation of the self-cleaning mode, and ensure basic self-cleaning requirements.
  • the magnetic field weakening control will consume more electric energy from the battery, since the electric energy source of the battery at this time mainly comes from clean energy, the clean energy in the environment where the air conditioner is located is relatively abundant, and the battery can obtain charging electric energy economically and quickly, which meets the needs of the user. Cleanliness is the priority control target.
  • the specific implementation method of the air conditioner's magnetic field weakening control can be implemented using existing technology.
  • field weakening control is performed on the compressor, specifically including the following control process:
  • Field weakening control is performed based on the field weakening current value.
  • the value of the weak magnetic current has a positive correlation with the proportion of the battery's electric energy source that comes from clean energy. That is, the higher the proportion of clean energy, the greater the value of the field weakening current, and the higher the operating speed and frequency that the compressor can achieve; vice versa. Therefore, the air conditioner's self-cleaning mode can be reasonably controlled based on the actual power source of the battery, maximizing the balance between energy saving and self-cleaning effect of the air conditioner during self-cleaning.
  • a and b are known positive numbers, which can be determined based on experiments, or can be adaptively adjusted based on the working conditions of the environment where the air conditioner is located, the load size of the air conditioner, etc.
  • k is the proportion of the battery’s electric energy source that comes from clean energy.
  • FIG. 3 shows a flow chart of the third embodiment of the self-cleaning control method of the battery-powered air conditioner of the present invention. Specifically, it is a flow chart of an embodiment of a specific control method for controlling the air conditioner to operate in the self-cleaning mode according to the power source of the battery in the embodiment of FIG. 1 .
  • the second proportion threshold is a preset value.
  • the first proportion threshold is 40%. If the charging ratio from non-clean energy reaches the second proportion threshold, it indicates that non-clean energy contributes significantly to the charging of the battery, reflecting the lack or lack of clean energy in the environment where the air conditioner is located.
  • the second real-time target frequency is a target frequency of the compressor when the air conditioner is operating in the self-cleaning mode.
  • the acquisition method can adopt all possible methods of determining the target frequency of the compressor in the self-cleaning mode in the prior art. This embodiment does not do this. limited.
  • S222 In the self-cleaning mode, reduce the second real-time target frequency to obtain the reduced second actual target frequency, and control the operation of the compressor according to the second actual target frequency.
  • the air conditioner operates at a reduced frequency to extend the operating time of the air conditioner in the self-cleaning mode when a battery with limited power is used to power the air conditioner, and to make up for the shortcomings of the reduced frequency operation that affect the self-cleaning effect.
  • Reducing the second real-time target frequency can be achieved by reducing the frequency according to a set ratio, reducing the frequency according to a set frequency difference, and other methods.
  • the actual target frequency is within the preset frequency range to avoid the actual target frequency after frequency reduction being too small. This may result in unstable operation of the air conditioner, or the actual target frequency after frequency reduction is still too high to maintain the long-term self-cleaning operation of the air conditioner.
  • the preset frequency range is 10-40Hz. If the frequency after frequency reduction calculation is within the range of 10-40Hz, the frequency after frequency reduction is determined as the second actual target frequency; if the frequency after frequency reduction calculation is higher than 40Hz, the second actual target frequency is determined to be 40Hz; if If the frequency after frequency reduction calculation is lower than 10Hz, the second actual target frequency is determined to be 10Hz.
  • FIG. 4 shows a structural block diagram of a first embodiment of a battery-powered air conditioner self-cleaning control device according to the present invention.
  • the air conditioner in this embodiment includes a battery module.
  • the battery module can be charged by external energy and store electrical energy. When the battery is required to provide electrical energy, the air conditioner switches to the battery power supply mode.
  • This embodiment is a structural block diagram of a control device for performing self-cleaning of an air conditioner when powered by a battery.
  • the control device of this embodiment includes a battery power source acquisition module 3 and a self-cleaning mode control module 4.
  • the battery power source acquisition module 3 is used to obtain the power source of the battery when the air conditioner is powered by the battery.
  • the power source includes clean energy and non-clean energy; and the self-cleaning mode control module 4 is used to control the air conditioner according to the power source of the battery. The machine runs in self-cleaning mode.
  • the control device of the above structure runs the corresponding software program, performs the corresponding function, and performs self-cleaning control of the air conditioner according to the process of the self-cleaning control method embodiment of the air conditioner in Figure 1 and other embodiments, achieving the same results as the embodiment of Figure 1 and other embodiments. Corresponding technical effects of the embodiment.
  • Figure 5 shows a structural block diagram of a second embodiment of a self-cleaning control device for a battery-powered air conditioner of the present invention. Specifically, it is a block diagram of a specific structure of the self-cleaning mode control module in the embodiment of FIG. 4 .
  • the self-cleaning mode control module in the control device of this embodiment includes structural units, functions of the structural units, and relationships between them, specifically as follows:
  • Controls include:
  • the clean energy proportion judgment unit 411 is used to judge whether the proportion of the battery's electric energy source from clean energy reaches the first proportion threshold, and output the judgment result.
  • the running time acquisition unit 413 is configured to acquire the running time of the air conditioner in the self-cleaning mode when the clean energy ratio determination unit 411 determines that the ratio of the battery's power source from clean energy reaches the first ratio threshold.
  • the first real-time target frequency acquisition unit 412 is used to obtain the first real-time target frequency of the compressor when the clean energy proportion determination unit 411 determines that the proportion of the battery's electric energy source from clean energy reaches the first proportion threshold.
  • the running time comparison unit 414 is used to compare the running time obtained by the running time obtaining unit 413 with the set time threshold, and output the comparison result.
  • the first self-cleaning mode control unit 415 is configured to perform field weakening control on the compressor in the self-cleaning mode when the comparison result output by the running time comparison unit 414 is that the running time is not greater than the set time threshold.
  • the second self-cleaning mode control unit 415 is configured to, in the self-cleaning mode, obtain the first real-time target frequency acquisition unit 412 when the comparison result output by the running time comparison unit 414 is that the running time is greater than the set time threshold.
  • the real-time target frequency is reduced, the reduced first actual target frequency is obtained, and the operation of the compressor is controlled according to the first actual target frequency.
  • the control device with the above structure runs the corresponding software program, performs the corresponding function, and performs self-cleaning control of the air conditioner according to the process of the self-cleaning control method embodiment of the air conditioner in Figure 2 and other embodiments, achieving the same results as the embodiment in Figure 2 and other embodiments. Corresponding technical effects of the embodiment.
  • Figure 6 shows a structural block diagram of a third embodiment of a self-cleaning control device for a battery-powered air conditioner of the present invention. Specifically, it is a block diagram of a specific structure of the self-cleaning mode control module in the embodiment of FIG. 4 .
  • the self-cleaning mode control module in the control device of this embodiment includes structural units, functions of the structural units, and relationships between them, specifically as follows:
  • the non-clean energy proportion judgment unit 421 is used to judge whether the proportion of the battery's electric energy source from non-clean energy reaches the second proportion threshold, and output the judgment result.
  • the second real-time target frequency obtaining unit 422 is used to obtain the second real-time target frequency of the compressor when the non-clean energy proportion determination unit 421 determines that the proportion of the battery's electric energy source from non-clean energy reaches the second proportion threshold.
  • the third self-cleaning mode control unit 423 is configured to reduce the second real-time target frequency obtained by the second real-time target frequency obtaining unit 422 in the self-cleaning mode, and obtain the reduced second actual target frequency. According to the second actual target Frequency controls compressor operation.
  • the control device of the above structure runs the corresponding software program, performs the corresponding function, and performs self-cleaning control of the air conditioner according to the process of the self-cleaning control method embodiment of the air conditioner in Figure 3 and other embodiments, achieving the same results as the embodiment of Figure 3 and other embodiments. Corresponding technical effects of the embodiment.
  • inventions of the present invention also provide a battery-powered air conditioner.
  • the air conditioner also has the self-cleaning control device of the air conditioner of the above embodiments.
  • the air conditioner achieves the technical effect of balancing the energy saving performance and self-cleaning degree of the air conditioner, thereby achieving higher overall performance.

Abstract

一种蓄电池供电的空调器及其自清洁控制方法和控制装置,以实现提高空调器节能性与自清洁效果的平衡的目的,提高空调器的智能化控制及整机运行性能;所述蓄电池供电的空调器的自清洁控制方法包括:在空调器采用蓄电池供电时,获取所述蓄电池的电能来源;根据蓄电池的所述电能来源控制所述空调器运行自清洁模式;所述电能来源包括清洁能源和非清洁能源。

Description

蓄电池供电的空调器及其自清洁控制方法和控制装置 技术领域
本发明属于空气调节技术领域,具体地说,涉及空调器技术,更具体地说,是涉及蓄电池供电的空调器及其自清洁控制方法和控制装置。
背景技术
空调器通过压缩机、冷凝器、膨胀阀和蒸发器等构成制冷剂循环系统,利用制冷剂的相变进行空气调节,实现制冷、制热、除湿等功能,为用户提供适宜舒适的环境。空调器长时间放置或使用后,在空调器内会存在大量的尘垢。这些尘垢附着在室内机的换热器上,一方面会降低换热器的换热性能,导致空调器性能下降;另一方面,尘垢附着容易滋生细菌,形成霉斑,这些细菌和霉斑会在机组内产生异味,如不及时清理,严重威胁着空调器用户的健康。现有空调器具有自清洁功能,利用换热器作为蒸发器使用时产生冷凝水、通过冷凝水带走换热器表面的尘垢,实现空调器换热器的自动清洁。
空调器通常采用市电电网提供电能工作,这种供电方式不仅消耗大量的市电电能,而且,若市电电网电压不稳定,影响空调器稳定运行,甚至会出现因电网压力过低空调器无法启动运行的情况。随着新能源技术的发展以及对节能减排需求的增加,部分空调器配置有蓄电池,利用蓄电池为空调器提供电能。蓄电池所储存的电能,可以是来自太阳能光伏发电装置、风力发电装置等清洁能源,实现利用可再生的清洁能源为空调器供电,达到节能减排目的;也可以来自市电电网、发电机等非清洁能源,利用蓄电池作为备用能源,在市电断电或市电电压过低不能提供空调器所需电能时,由蓄电池为空调器供电,满足用户对空调器调节空气的需求。
现有技术对采用蓄电池供电的空调器进行控制时,通常会考虑蓄电池的剩余电量,根据剩余电量控制空调器运行参量,以期平衡能量供给与空气调节性能。但是,现有技术较少地考虑采用蓄电池供电的空调器的自清洁控制,更是极少地考虑采用蓄电池供电的空调器的节能性与自清洁效果之间的关系,因此,难以获得整体性能更优的空调器自清洁控制。
技术问题
本发明的目的之一在于提供一种蓄电池供电的空调器的自清洁控制方法和控制装置,实现提高空调器节能性与自清洁效果的平衡的目的,提高空调器运行的整体性能。
技术解决方案
为实现上述发明目的,本发明提供的蓄电池供电的空调器的自清洁控制方法采用下述技术方案予以实现:
一种蓄电池供电的空调器的自清洁控制方法,所述方法包括:
在空调器采用蓄电池供电时,获取所述蓄电池的电能来源;
根据所述蓄电池的所述电能来源控制所述空调器运行自清洁模式;
所述电能来源包括清洁能源和非清洁能源。
本申请的一些实施例中,根据所述蓄电池的所述电能来源控制所述空调器运行自清洁模式,包括:
在所述蓄电池的所述电能来源中来自于清洁能源的比例达到第一比例阈值时,获取空调器运行所述自清洁模式的已运行时间以及压缩机的第一实时目标频率;
将所述已运行时间与设定时间阈值作比较;
在所述已运行时间不大于所述设定时间阈值时,在所述自清洁模式中,对压缩机执行弱磁控制;
在所述已运行时间大于所述设定时间阈值时,在所述自清洁模式中,将所述第一实时目标频率降低,获得降低后的第一实际目标频率,根据所述第一实际目标频率控制压缩机运行。
本申请的一些实施例中,对压缩机执行弱磁控制,包括:
根据所述蓄电池的所述电能来源中来自于清洁能源的比例确定弱磁电流值;
根据所述弱磁电流值对压缩机执行所述弱磁控制;
所述弱磁电流值与所述蓄电池的所述电能来源中来自于清洁能源的比例满足正相关关系。
本申请的一些实施例中,根据所述蓄电池的所述电能来源中来自于清洁能源的比例确定弱磁电流值,包括:
按照下述公式计算所述弱磁电流值Id *
Id *=b+a×k;
其中,a、b均为已知的正数,k为所述蓄电池的所述电能来源中来自于清洁能源的比例。
本申请的一些实施例中,将所述第一实时目标频率降低,获得降低后的第一实际目标频率,包括:
获取所述蓄电池的剩余电量;
根据所述剩余电量将所述第一实时目标频率降低,获得降低后的所述第一实际目标频率。
本申请的一些实施例中,根据所述蓄电池的所述电能来源控制所述空调器运行自清洁模式,包括:
在所述蓄电池的所述电能来源中来自于非清洁能源的比例达到第二比例阈值时,获取压缩机的第二实时目标频率;
在所述自清洁模式中,将所述第二实时目标频率降低,获得降低后的第二实际目标频率,根据所述第二实际目标频率控制压缩机运行。
为实现前述发明目的,本发明提供的蓄电池供电的空调器的自清洁控制装置采用下述技术方案予以实现:
一种蓄电池供电的空调器的自清洁控制装置,所述装置包括:
蓄电池电能来源获取模块,用于在空调器采用蓄电池供电时,获取所述蓄电池的电能来源;
自清洁模式控制模块,用于根据所述蓄电池的所述电能来源控制所述空调器运行自清洁模式;
所述电能来源包括清洁能源和非清洁能源。
本申请的一些实施例中,所述自清洁模式控制模块包括:
清洁能源比例判断单元,用于判断所述蓄电池的所述电能来源中来自于清洁能源的比例是否达到第一比例阈值,并输出判断结果;
运行时间获取单元,用于在所述蓄电池的所述电能来源中来自于清洁能源的比例达到第一比例阈值时,获取空调器运行所述自清洁模式的已运行时间;
第一实时目标频率获取单元,用于在所述蓄电池的所述电能来源中来自于清洁能源的比例达到第一比例阈值时,获取压缩机的第一实时目标频率;
运行时间比较单元,用于将所述已运行时间与设定时间阈值作比较,并输出比较结果;
第一自清洁模式控制单元,用于在所述已运行时间不大于所述设定时间阈值时,在所述自清洁模式中,对压缩机执行弱磁控制;
第二自清洁模式控制单元,用于在所述已运行时间大于所述设定时间阈值时,在所述自清洁模式中,将所述第一实时目标频率降低,获得降低后的第一实际目标频率,根据所述第一实际目标频率控制压缩机运行。
本申请的一些实施例中,所述自清洁模式控制模块包括:
非清洁能源比例判断单元,用于判断所述蓄电池的所述电能来源中来自于非清洁能源的比例是否达到第二比例阈值,并输出判断结果;
第二实时目标频率获取单元,用于在所述蓄电池的所述电能来源中来自于非清洁能源的比例达到第二比例阈值时,获取压缩机的第二实时目标频率;
第三自清洁模式控制单元,用于在所述自清洁模式中,将所述第二实时目标频率降低,获得降低后的第二实际目标频率,根据所述第二实际目标频率控制压缩机运行。
本发明的另一目的在于提供一种蓄电池供电的空调器,包括空调器本体及蓄电池,所述空调器还包括上述的自清洁控制装置。
有益效果
与现有技术相比,本发明的优点和积极效果是:
本发明提供的蓄电池供电的空调器的自清洁控制方法和控制装置,在空调器采用蓄电池供电时,获取蓄电池的电能来源,根据电能来源可以确定蓄电池中的电能是由清洁能源充电还是非清洁能源充电,还可以确定不同电能来源所提供的电能的比例,进而能够根据电能来源反映空调器所处环境的能源状况;再根据蓄电池的电能来源控制空调器运行自清洁模式,能够实现基于实际能源状况对空调器进行自清洁控制,从而尽可能地实现使用空调器执行自清洁时的节能性与自清洁效果的平衡,提高空调器的智能化控制及整机运行性能。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明蓄电池供电的空调器的自清洁控制方法第一个实施例的流程图;
图2为本发明蓄电池供电的空调器的自清洁控制方法第二个实施例的流程图;
图3为本发明蓄电池供电的空调器的自清洁控制方法第三个实施例的流程图;
图4为本发明蓄电池供电的空调器的自清洁控制装置第一个实施例的结构框图;
图5为本发明蓄电池供电的空调器的自清洁控制装置第二个实施例的结构框图;
图6为本发明蓄电池供电的空调器的自清洁控制装置第三个实施例的结构框图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
需要说明的是,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时,应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
下述各实施例提供的空调器,通过使用压缩机、冷凝器、膨胀阀和蒸发器来执行空调器的制冷制热循环。制冷制热循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,对室内空间进行制冷或制热。
空调器的制冷工作原理是:压缩机工作使室内热交换器(在室内机中,此时为蒸发器)内处于超低压状态,室内热交换器内的液态冷媒迅速蒸发吸收热量,室内风机吹出的风经过室内热交换器盘管降温后变为冷风吹到室内。蒸发气化后的冷媒经压缩机加压后,在室外热交换器(在室外机中,此时为冷凝器)中的高压环境下凝结为液态,释放出热量,通过室外风机,将热量散发到大气中,如此循环就达到了制冷效果。
空调器的制热工作原理是:气态冷媒被压缩机加压,成为高温高压气体,进入室内热交换器(此时为冷凝器),冷凝液化放热,成为液体,同时将室内空气加热,从而达到提高室内温度的目的。液体冷媒经节流装置减压,进入室外热交换器(此时为蒸发器),蒸发气化吸热,成为气体,同时吸取室外空气的热量(室外空气变得更冷),成为气态冷媒,再次进入压缩机开始下一个循环。
本发明针对现有技术采用蓄电池供电的空调器极少地考虑空调器的节能性与自清洁效果的关系而难以获得整体性能更优的空调器自清洁控制的问题,创造性地提出了一种新的蓄电池供电的空调器的自清洁控制技术,在空调器采用蓄电池供电时,获取蓄电池的电能来源,再根据蓄电池的电能来源控制空调器运行自清洁模式,可实现提高空调器节能性与自清洁效果的平衡的目的,达到提高空调器运行的整体性能的技术效果。
图1所示为本发明蓄电池供电的空调器自清洁控制方法第一个实施例的流程图。该实施例的空调器包括有蓄电池模块,蓄电池模块可通过外部能源充电并存蓄电能,在需要蓄电池提供电能时,空调器切换为蓄电池供电模式。该实施例为采用蓄电池供电时的空调器执行自清洁控制方法的流程图。
如图1所示,该实施例采用下述过程进行空调器自清洁控制。
S1:空调器采用蓄电池供电,获取蓄电池的电能来源。
其中,蓄电池的电能来源包括清洁能源和非清洁能源,清洁能源为太阳能、风能、水能等可再生能源;非清洁能源为市电电网、发电机等能源。外部能源为蓄电池充电时,可以记录并存储蓄电池所存蓄的电能来自何种类型的能源以及不同类型的能源对蓄电池充电量的大小、在蓄电池电量中所占比例等信息。空调器在采用蓄电池进行供电时,能够调用存储的信息,从而获得蓄电池的电能来源。或者,采用其他方式获取蓄电池的电能来源,所有能够获取到蓄电池电能来源的实施方式,均属于本发明的保护范围。
S2:根据蓄电池的电能来源控制空调器运行自清洁模式。
基于蓄电池的电能来源,可以确定蓄电池中的电能是由清洁能源充电还是非清洁能源充电,还可以确定不同电能来源所提供的电能的比例,进而能够根据电能来源反映空调器所处地区的能源状况。譬如,若蓄电池中的电能主要来自于清洁能源,反映了空调器所处环境的清洁能源丰富,可再生能源富足,蓄电池能够以经济、快速的方式获得充电电能;那么,在采用蓄电池为空调器供电,且空调器运行自清洁模式时,可考虑以满足自清洁的效果、提高自清洁度为主要目标,而无需过多考虑空调器的运行成本、空调器的工作时长等。若蓄电池中的电能主要来自于非清洁能源,反映了空调器所处环境的清洁能源匮乏或不足,蓄电池无法经济、快速地获得所需充电电能;则在采用蓄电池为空调器供电、空调器运行自清洁模式时,可能更需要考虑空调器的运行成本、维持空调器的工作时长等。由此,则能够实现基于实际能源状况对空调器进行自清洁控制,从而尽可能地实现使用空调器执行自清洁时的节能性与自清洁效果的平衡,提高空调器的智能化控制及整机运行性能。
图2示出了本发明蓄电池供电的空调器的自清洁控制方法第二个实施例的流程图。具体的,是对图1实施例中根据蓄电池的电能来源控制空调器运行自清洁模式的一个具体控制方法的实施例的流程图。
如图2所示,该实施例在获取到蓄电池电能来源后,采用下述过程进行空调器的自清洁运行控制。
S211:蓄电池的电能来源中来自清洁能源的比例达到第一比例阈值时,获取自清洁模式的已运行时间以及压缩机的第一实时目标频率。
其中,第一比例阈值为预设值。在一些实施例中,第一比例阈值为60%。若来自于清洁能源的充电比例达到第一比例阈值,表明清洁能源对蓄电池的充电贡献较大,反映空调器所处环境的清洁能源较为丰富。
第一实时目标频率为空调器进行自清洁模式运行时压缩机的一个目标频率,其获取方式可采用现有技术中确定自清洁模式时压缩机目标频率的所有可能方式,该实施例对此不作限定。
S212:判断自清洁模式的已运行时间是否大于设定时间阈值。若是,执行S213;否则,执行S214。
设定时间阈值为预设时间值,具体的,为反映空调器是否能够获得一定的自清洁度的一个运行时间值。在一些实施例中,设定时间阈值为10min。
将S211获取的已运行时间与设定时间阈值进行比较,根据两者大小的比较结果,执行不同的控制策略。
S213:在自清洁模式中,将第一实时目标频率降低,获得降低后的第一实际目标频率,根据第一实际目标频率控制压缩机运行。
若S212判断自清洁模式的已运行时间大于设定时间阈值,此时空调器已经能够完成基本的清洁,获得一个较高清洁度的结果,后续自清洁度的边际效应会下降。此状态下,考虑以节能经济为主要目标,采取压缩机降频的方式执行自清洁模式。具体的,是将计算出的第一实时目标频率降低,得到降低后的第一实际目标频率,根据第一实际目标频率控制压缩机运行,以维持自清洁模式继续运行,进一步提升自清洁效果,同时又不消耗过多的电能,实现节能降耗。
将第二实时目标频率降低,可以按照设定比例降频、按照设定频率差降频等方式实现。
在其他一些实施例中,采用下述方法实现将第一实时目标频率降低而获得降低后的第一实际目标频率:
获取蓄电池的剩余电量。剩余电量的获取方法可采用现有技术来实现,该实施例不作限定。
根据剩余电量将第一实时目标频率降低,获得降低后的第一实际目标频率。从而,实现压缩机实际运行频率基于蓄电池的剩余电量确定,提高频率与实际供电状态的匹配。
S214:在自清洁模式中,对压缩机执行弱磁控制。
若S212判断自清洁模式的已运行时间不大于设定时间阈值,此时空调器自清洁度还不足够。此状态下,将以提高自清洁度为主要控制目标。而且,考虑到自清洁模式初期压缩机工作频率较高,但采用蓄电池供电时,空调器所能达到的频率是有限的,为满足自清洁性能需求,将在自清洁模式中对空调器压缩机执行弱磁控制,以使得压缩机能够以较高的转速运行,保证自清洁模式的正常运行,确保基本的自清洁度要求。虽然弱磁控制会消耗蓄电池较多的电能,但由于此时蓄电池的电能来源主要来自清洁能源,空调器所处环境的清洁能源较为丰富,蓄电池能够经济、快速地获得充电电能,则以满足自清洁度为优先控制目标。
空调器弱磁控制的具体实现方法,可采用现有技术来实现。
在其他一些实施例中,对压缩机执行弱磁控制,具体包括下述控制过程:
根据蓄电池的电能来源中来自于清洁能源的比例确定弱磁电流值;
根据弱磁电流值执行弱磁控制。
其中,弱磁电流值与蓄电池的电能来源中来自于清洁能源的比例满足正相关关系。即,来自清洁能源的比例越高,弱磁电流值越大,压缩机所能达到的运转速度和频率越高;反之亦然。从而,达到基于蓄电池实际电能来源合理地进行空调器自清洁模式控制,最大限度实现空调器自清洁时的节能性与自清洁效果的平衡。
在另外一些实施例中,按照下述公式计算弱磁电流值Id *:Id *=b+a×k。
其中,a、b均为已知的正数,可根据试验确定,亦可基于空调器所处环境的工况、空调器负载大小等自适应调整。k为蓄电池的电能来源中来自于清洁能源的比例,具体获取方式参考图1实施例的描述。
图3示出了本发明蓄电池供电的空调器的自清洁控制方法第三个实施例的流程图。具体的,是对图1实施例中根据蓄电池的电能来源控制空调器运行自清洁模式的一个具体控制方法的实施例的流程图。
如图3所示,该实施例在获取到蓄电池电能来源后,采用下述过程进行空调器的控制。
S221:蓄电池的电能来源中来自于非清洁能源的比例达到第二比例阈值时,获取压缩机的第二实时目标频率。
其中,第二比例阈值为预设值。在一些实施例中,第一比例阈值为40%。若来自非清洁能源的充电比例达到第二比例阈值,表明非清洁能源对蓄电池的充电贡献较大,反映空调器所处环境的清洁能源不足或匮乏。
第二实时目标频率为空调器进行自清洁模式运行时压缩机的一个目标频率,其获取方式可采用现有技术中确定自清洁模式时压缩机目标频率的所有可能方式,该实施例对此不作限定。
S222:在自清洁模式中,将第二实时目标频率降低,获得降低后的第二实际目标频率,根据第二实际目标频率控制压缩机运行。
若蓄电池电能来源中来自非清洁能源的比例达到第二比例阈值,空调器所处环境的清洁能源不足或匮乏,蓄电池无法以经济、快速地方式进行重新充电,则在自清洁模式中,控制空调器降频运行,以延长采用有限电量的蓄电池为空调器供电时空调器自清洁模式的运行时间,弥补降频运行而影响自清洁效果的不足。
将第二实时目标频率降低,可以按照设定比例降频、按照设定频率差降频等方式实现。
在其他一些实施例中,将第二实时目标频率降低,获得降低后的第二实际目标频率时,还要保证实际目标频率位于预设频率范围内,避免降频后的实际目标频率过小而造成空调器运行不稳定,或者避免降频后的实际目标频率仍过大而无法维持空调器的长时间自清洁运行。
在一些实施例中,预设频率范围为10-40Hz。若降频计算后的频率在10-40Hz范围内,在降频后的频率确定为第二实际目标频率;若降频计算后的频率高于40Hz,则确定第二实际目标频率为40Hz;若降频计算后的频率低于10Hz,则确定第二实际目标频率为10Hz。
图4所示为本发明蓄电池供电的空调器自清洁控制装置第一个实施例的结构框图。该实施例的空调器包括有蓄电池模块,蓄电池模块可通过外部能源充电并存蓄电能,在需要蓄电池提供电能时,空调器切换为蓄电池供电模式。该实施例为采用蓄电池供电时的空调器执行自清洁的控制装置的结构框图。
如图4所示,该实施例的控制装置包括蓄电池电能来源获取模块3和自清洁模式控制模块4。其中,蓄电池电能来源获取模块3用于在空调器采用蓄电池供电时,获取蓄电池的电能来源,电能来源包括清洁能源和非清洁能源;而自清洁模式控制模块4用于根据蓄电池的电能来源控制空调器运行自清洁模式。
上述结构的控制装置,运行相应的软件程序,执行相应的功能,按照图1空调器的自清洁控制方法实施例及其他实施例的过程进行空调器自清洁控制,达到与图1实施例及其他实施例的相应技术效果。
图5所示为本发明蓄电池供电的空调器的自清洁控制装置第二个实施例的结构框图。具体的,是关于图4实施例中的自清洁模式控制模块的一个具体结构的框图。
如图5所示意,该实施例的控制装置中的自清洁模式控制模块包括的结构单元、结构单元的功能及相互之间的关系,具体如下:
控制装置包括:
清洁能源比例判断单元411,用于判断蓄电池的电能来源中来自于清洁能源的比例是否达到第一比例阈值,并输出判断结果。
运行时间获取单元413,用于在清洁能源比例判断单元411判断蓄电池的电能来源中来自于清洁能源的比例达到第一比例阈值时,获取空调器运行自清洁模式的已运行时间。
第一实时目标频率获取单元412,用于在清洁能源比例判断单元411判断蓄电池的电能来源中来自于清洁能源的比例达到第一比例阈值时,获取压缩机的第一实时目标频率。
运行时间比较单元414,用于将运行时间获取单元413获取的已运行时间与设定时间阈值作比较,并输出比较结果。
第一自清洁模式控制单元415,用于在运行时间比较单元414输出的比较结果为已运行时间不大于设定时间阈值时,在自清洁模式中,对压缩机执行弱磁控制。
第二自清洁模式控制单元415,用于在运行时间比较单元414输出的比较结果为已运行时间大于设定时间阈值时,在自清洁模式中,将第一实时目标频率获取单元412获取的第一实时目标频率降低,获得降低后的第一实际目标频率,根据第一实际目标频率控制压缩机运行。
上述结构的控制装置,运行相应的软件程序,执行相应的功能,按照图2空调器的自清洁控制方法实施例及其他实施例的过程进行空调器自清洁控制,达到与图2实施例及其他实施例的相应技术效果。
图6所示为本发明蓄电池供电的空调器的自清洁控制装置第三个实施例的结构框图。具体的,是关于图4实施例中的自清洁模式控制模块的一个具体结构的框图。
如图6所示意,该实施例的控制装置中的自清洁模式控制模块包括的结构单元、结构单元的功能及相互之间的关系,具体如下:
非清洁能源比例判断单元421,用于判断蓄电池的电能来源中来自于非清洁能源的比例是否达到第二比例阈值,并输出判断结果。
第二实时目标频率获取单元422,用于在非清洁能源比例判断单元421判断蓄电池的电能来源中来自于非清洁能源的比例达到第二比例阈值时,获取压缩机的第二实时目标频率。
第三自清洁模式控制单元423,用于在自清洁模式中,将第二实时目标频率获取单元422获取的第二实时目标频率降低,获得降低后的第二实际目标频率,根据第二实际目标频率控制压缩机运行。
上述结构的控制装置,运行相应的软件程序,执行相应的功能,按照图3空调器的自清洁控制方法实施例及其他实施例的过程进行空调器自清洁控制,达到与图3实施例及其他实施例的相应技术效果。
本发明的其他实施例还提供一种蓄电池供电的空调器,空调器除了包括空调器本体及蓄电池之外,还具有上述各实施例的空调器的自清洁控制装置。通过设置上述各实施例的空调器的自清洁控制装置,使得空调器达到平衡空调器节能性与自清洁度的技术效果,进而具有较高的整体性能。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种蓄电池供电的空调器的自清洁控制方法,其特征在于,所述方法包括:
    在空调器采用蓄电池供电时,获取所述蓄电池的电能来源;
    根据所述蓄电池的所述电能来源控制所述空调器运行自清洁模式;
    所述电能来源包括清洁能源和非清洁能源。
  2. 根据权利要求1所述的蓄电池供电的空调器的自清洁控制方法,其特征在于,根据所述蓄电池的所述电能来源控制所述空调器运行自清洁模式,包括:
    在所述蓄电池的所述电能来源中来自于清洁能源的比例达到第一比例阈值时,获取空调器运行所述自清洁模式的已运行时间以及压缩机的第一实时目标频率;
    将所述已运行时间与设定时间阈值作比较;
    在所述已运行时间不大于所述设定时间阈值时,在所述自清洁模式中,对压缩机执行弱磁控制;
    在所述已运行时间大于所述设定时间阈值时,在所述自清洁模式中,将所述第一实时目标频率降低,获得降低后的第一实际目标频率,根据所述第一实际目标频率控制压缩机运行。
  3. 根据权利要求2所述的蓄电池供电的空调器的自清洁控制方法,其特征在于,对压缩机执行弱磁控制,包括:
    根据所述蓄电池的所述电能来源中来自于清洁能源的比例确定弱磁电流值;
    根据所述弱磁电流值对压缩机执行所述弱磁控制;
    所述弱磁电流值与所述蓄电池的所述电能来源中来自于清洁能源的比例满足正相关关系。
  4. 根据权利要求3所述的蓄电池供电的空调器的自清洁控制方法,其特征在于,根据所述蓄电池的所述电能来源中来自于清洁能源的比例确定弱磁电流值,包括:
    按照下述公式计算所述弱磁电流值Id *
    Id *=b+a×k;
    其中,a、b均为已知的正数,k为所述蓄电池的所述电能来源中来自于清洁能源的比例。
  5. 根据权利要求2所述的蓄电池供电的空调器的自清洁控制方法,其特征在于,将所述第一实时目标频率降低,获得降低后的第一实际目标频率,包括:
    获取所述蓄电池的剩余电量;
    根据所述剩余电量将所述第一实时目标频率降低,获得降低后的所述第一实际目标频率。
  6. 根据权利要求1至5中任一项所述的蓄电池供电的空调器的自清洁控制方法,其特征在于,根据所述蓄电池的所述电能来源控制所述空调器运行自清洁模式,包括:
    在所述蓄电池的所述电能来源中来自于非清洁能源的比例达到第二比例阈值时,获取压缩机的第二实时目标频率;
    在所述自清洁模式中,将所述第二实时目标频率降低,获得降低后的第二实际目标频率,根据所述第二实际目标频率控制压缩机运行。
  7. 一种蓄电池供电的空调器的自清洁控制装置,其特征在于,所述装置包括:
    蓄电池电能来源获取模块,用于在空调器采用蓄电池供电时,获取所述蓄电池的电能来源;
    自清洁模式控制模块,用于根据所述蓄电池的所述电能来源控制所述空调器运行自清洁模式;
    所述电能来源包括清洁能源和非清洁能源。
  8. 根据权利要求7所述的蓄电池供电的空调器的自清洁控制装置,其特征在于,所述自清洁模式控制模块包括:
    清洁能源比例判断单元,用于判断所述蓄电池的所述电能来源中来自于清洁能源的比例是否达到第一比例阈值,并输出判断结果;
    运行时间获取单元,用于在所述蓄电池的所述电能来源中来自于清洁能源的比例达到第一比例阈值时,获取空调器运行所述自清洁模式的已运行时间;
    第一实时目标频率获取单元,用于在所述蓄电池的所述电能来源中来自于清洁能源的比例达到第一比例阈值时,获取压缩机的第一实时目标频率;
    运行时间比较单元,用于将所述已运行时间与设定时间阈值作比较,并输出比较结果;
    第一自清洁模式控制单元,用于在所述已运行时间不大于所述设定时间阈值时,在所述自清洁模式中,对压缩机执行弱磁控制;
    第二自清洁模式控制单元,用于在所述已运行时间大于所述设定时间阈值时,在所述自清洁模式中,将所述第一实时目标频率降低,获得降低后的第一实际目标频率,根据所述第一实际目标频率控制压缩机运行。
  9. 根据权利要求7或8所述的蓄电池供电的空调器的自清洁控制装置,其特征在于,所述自清洁模式控制模块包括:
    非清洁能源比例判断单元,用于判断所述蓄电池的所述电能来源中来自于非清洁能源的比例是否达到第二比例阈值,并输出判断结果;
    第二实时目标频率获取单元,用于在所述蓄电池的所述电能来源中来自于非清洁能源的比例达到第二比例阈值时,获取压缩机的第二实时目标频率;
    第三自清洁模式控制单元,用于在所述自清洁模式中,将所述第二实时目标频率降低,获得降低后的第二实际目标频率,根据所述第二实际目标频率控制压缩机运行。
  10. 一种蓄电池供电的空调器,包括空调器本体及蓄电池,其特征在于,所述空调器还包括上述权利要求7至9中任一项所述的自清洁控制装置。
PCT/CN2023/080002 2022-07-27 2023-03-07 蓄电池供电的空调器及其自清洁控制方法和控制装置 WO2024021611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210893562.8A CN117515834A (zh) 2022-07-27 2022-07-27 蓄电池供电的空调器及其自清洁控制方法和控制装置
CN202210893562.8 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024021611A1 true WO2024021611A1 (zh) 2024-02-01

Family

ID=89705166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080002 WO2024021611A1 (zh) 2022-07-27 2023-03-07 蓄电池供电的空调器及其自清洁控制方法和控制装置

Country Status (2)

Country Link
CN (1) CN117515834A (zh)
WO (1) WO2024021611A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028176A (ja) * 1998-07-09 2000-01-25 Sharp Corp 太陽光発電利用空気調和機
WO2011095020A1 (zh) * 2010-02-03 2011-08-11 广东美的电器股份有限公司 带太阳能电池的直流变频空调器
CN202204074U (zh) * 2011-08-26 2012-04-25 Tcl空调器(中山)有限公司 一种变频空调器
CN103727616A (zh) * 2013-12-20 2014-04-16 濮阳市亮宇实业有限公司 太阳能、风能共控空调
CN105119359A (zh) * 2015-09-15 2015-12-02 无锡市翱宇特新科技发展有限公司 一种风能市电环保空调机组
CN108336812A (zh) * 2018-01-12 2018-07-27 青岛海尔空调器有限总公司 空调供电的控制方法
CN113803848A (zh) * 2021-09-13 2021-12-17 珠海格力电器股份有限公司 自清洁的控制方法、装置、设备和空调系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028176A (ja) * 1998-07-09 2000-01-25 Sharp Corp 太陽光発電利用空気調和機
WO2011095020A1 (zh) * 2010-02-03 2011-08-11 广东美的电器股份有限公司 带太阳能电池的直流变频空调器
CN202204074U (zh) * 2011-08-26 2012-04-25 Tcl空调器(中山)有限公司 一种变频空调器
CN103727616A (zh) * 2013-12-20 2014-04-16 濮阳市亮宇实业有限公司 太阳能、风能共控空调
CN105119359A (zh) * 2015-09-15 2015-12-02 无锡市翱宇特新科技发展有限公司 一种风能市电环保空调机组
CN108336812A (zh) * 2018-01-12 2018-07-27 青岛海尔空调器有限总公司 空调供电的控制方法
CN113803848A (zh) * 2021-09-13 2021-12-17 珠海格力电器股份有限公司 自清洁的控制方法、装置、设备和空调系统

Also Published As

Publication number Publication date
CN117515834A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN102012076B (zh) 以蓄电池作为辅助能源的空调系统的控制方法
CN108168145B (zh) 一种吸附和蒸气压缩结合的制冷系统及其控制方法
CN111964196A (zh) 太阳能相变蓄冷空调系统及控制方法
CN104776533A (zh) 一种微型太阳能直流变频空调
KR100774609B1 (ko) 에어컨 실외기에서 발생하는 풍력을 이용한 절전형 에어컨
CN109764436B (zh) 一种平抑间歇能源短期波动的热泵储能系统
WO2024021611A1 (zh) 蓄电池供电的空调器及其自清洁控制方法和控制装置
WO2024021610A1 (zh) 蓄电池供电的变频空调器及其控制方法和控制装置
CN212841973U (zh) 一种具有储冷功能的氟泵节能精密空调系统
CN202254000U (zh) 一体式节能空调
CN209840338U (zh) 一种应用可再生能源的空调系统
CN211233486U (zh) 集成涡流管和半导体制冷片的空调室外机除霜系统
CN211233200U (zh) 一种基于氯化锂固体吸湿板多级空气降温除湿系统
CN210089177U (zh) 一种除霜期间不间断供热的空气源热泵机组
CN117515837A (zh) 蓄电池供电的空调器及其电加热控制方法和控制装置
CN210070290U (zh) 一种复合式制冷系统
CN117515836A (zh) 蓄电池供电的空调器及其制热控制方法和控制装置
CN2761998Y (zh) 储能式空调
CN111706910A (zh) 一种热泵中央智能控制方法
CN219243957U (zh) 一种低碳健康舒适六恒系统用双源热泵机组
CN217057792U (zh) 一种带有储能装置的热管空调
JP2004205185A (ja) 換気排熱併用高効率暖冷房用ヒートポンプ装置
CN220552027U (zh) 利用太阳能的空气温湿度独立控制的供能系统
CN113865133B (zh) 一种空调系统及其控制方法
CN218269387U (zh) 一种混合能源空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844829

Country of ref document: EP

Kind code of ref document: A1