WO2011095020A1 - 带太阳能电池的直流变频空调器 - Google Patents

带太阳能电池的直流变频空调器 Download PDF

Info

Publication number
WO2011095020A1
WO2011095020A1 PCT/CN2010/078619 CN2010078619W WO2011095020A1 WO 2011095020 A1 WO2011095020 A1 WO 2011095020A1 CN 2010078619 W CN2010078619 W CN 2010078619W WO 2011095020 A1 WO2011095020 A1 WO 2011095020A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
solar
inverter
high voltage
unit
Prior art date
Application number
PCT/CN2010/078619
Other languages
English (en)
French (fr)
Inventor
李洪涛
谢志君
许蔡辉
白东培
彭良
Original Assignee
广东美的电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的电器股份有限公司 filed Critical 广东美的电器股份有限公司
Publication of WO2011095020A1 publication Critical patent/WO2011095020A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the invention relates to an air conditioner, in particular to a direct current inverter air conditioner with a solar battery.
  • the existing solar air conditioner driven by solar battery is managed by the solar power controller 9 to supply power to the battery 10 and the DC-high voltage DC inverter 11, and then passes through the high voltage DC-50. Or the 60 Hz high voltage AC converter 13 is converted to the same AC voltage as the mains.
  • the solar power controller 9 detects whether the amount of power of the solar cell 1 and the battery 10 is sufficient, and controls the electronic switch 14. When the amount of power of the solar cell 1 and the battery 10 is insufficient, the control electronic switch 14 is switched to the mains grid 5
  • the DC inverter air conditioner 15 is powered, otherwise, the high voltage DC-50 or 60 Hz high voltage AC converter 13 is switched to supply power to the DC inverter air conditioner 15.
  • the current inverter air conditioners use 50Hz or 60Hz low frequency power like the mains, such as the Chinese patent document number CN 2665593Y published a solar and AC mains dual-supply air conditioning system on December 22, 2004, which includes an air conditioning system body and its power supply.
  • the power supply includes a solar panel and its controller, and is connected to the controller by a power line.
  • the inverter step-up transformer, the control board connected to the controller, the inverter step-up transformer, the battery pack, and the switch of the AC mains power supply and the output of the inverter step-up transformer are connected by wires, and the output of the changeover switch Connected to the air conditioning system body.
  • This solar and AC mains dual-supply air conditioning system first converts solar energy into direct current and stores it in the battery. When it is used, it converts the direct current into alternating current and provides it to the air conditioning system after boosting.
  • the battery's DC 24 ⁇ 48V is converted to The mains needs to pass through: DC-high-voltage DC inverter 11, high-voltage DC-50 or 60Hz high-voltage AC converter 13 in two process transformations. Both conversion processes consume about 5% of the energy, which reduces the efficiency of solar energy use.
  • the inside of the DC inverter air conditioner 15 on the market includes an AC-DC rectifier 8 and a DC inverter air conditioner circuit 7. After the external AC power supply comes in, it needs to pass through the AC-DC rectifier 8 inside the air conditioner and then supply power to the DC inverter air conditioner circuit 7 of the DC inverter air conditioner.
  • the air conditioner power supply circuit of this type increases the power supply loss due to the presence of the AC-DC rectifier 8.
  • the object of the present invention is to provide a DC inverter air conditioner with a solar cell with simple and reasonable structure, low production cost, energy saving and environmental protection, high conversion efficiency, reduced environmental impact, flexible operation, high energy efficiency ratio and wide application range.
  • a DC inverter air conditioner with solar battery designed according to the purpose, comprising a solar battery, a DC inverter air conditioner, a solar power controller connected between the solar battery and the DC inverter air conditioner, and a mains grid, a DC inverter air conditioner
  • the utility model comprises an AC-DC rectifier and a DC inverter air conditioner circuit
  • the solar power controller comprises a DC-high voltage DC inverter and a solar maximum output power MPPT control unit; the solar maximum output power MPPT control unit monitors the output power of the solar battery
  • the DC-high voltage DC inverter is controlled to convert the low-voltage direct current outputted by the solar battery into high-voltage direct current, and directly supplies power to the DC inverter air conditioner circuit.
  • the utility power grid is supplied to the DC inverter air conditioner circuit in parallel with the solar power supply controller after passing through the AC-DC rectifier.
  • the low voltage direct current output by the solar cell is 15V ⁇ 42V.
  • the DC inverter air conditioner circuit comprises a DC inverter air conditioner indoor circuit and a DC inverter air conditioner outdoor circuit, and the DC inverter air conditioner indoor circuit includes a main control MCU, a display unit, a temperature sensor, a switching power supply, a DC fan, an indoor EMC circuit, and a communication.
  • DC inverter air conditioner outdoor circuit includes main control MCU, DC fan, switching power supply, temperature sensor, communication unit, display unit, frequency conversion control and drive unit and inverter compressor; DC-high voltage DC inverter in solar power supply controller The output of the device is connected in parallel with the mains grid of the EMC circuit and the AC-DC rectifier, and then connected to the outdoor circuit of the DC inverter air conditioner and the outdoor circuit of the DC inverter air conditioner.
  • the solar power controller includes a solar power controller main control MCU, an isolated communication unit, a high voltage power supply voltage sampling unit, a high voltage power supply abnormal protection control unit, a DC-high voltage DC inverter, a current detecting unit, and a voltage detecting unit, wherein
  • the high voltage power supply voltage sampling unit is connected between the output end of the DC-high voltage DC inverter and one end of the isolated communication unit, and the other end of the isolated communication unit is connected with the solar power controller main control MCU; one end of the high voltage power supply abnormal protection control unit Parallel to the output of the DC-high voltage DC inverter, the other end of the high voltage power supply abnormal protection control unit is connected to the solar power controller main control MCU; the output of the DC-high voltage DC inverter and the rectified outdoor DC high voltage power supply Connected, the input of the DC-high voltage DC inverter is connected to one end of the current detecting unit; the current detecting unit is connected between the DC-high voltage DC inverter and the solar cell, and the other end of
  • the solar power controller further includes a battery and a battery charge and discharge management unit.
  • One end of the battery charge and discharge management unit is connected in parallel at the output end of the solar battery, and the other end of the battery charge and discharge management unit is connected to the battery, and the battery charge and discharge management unit controls The terminal is connected to the solar power controller.
  • the DC inverter air conditioner further includes a high voltage DC-50 or 60Hz high voltage AC converter, and the high voltage DC-50 or 60Hz high voltage AC converter is connected to the DC-high voltage DC inverter and the utility grid located in the solar power controller. between.
  • the DC-DC conversion process is adopted, and the DC-high voltage DC inverter controlled by the maximum output power of the solar energy MPPT control unit converts the maximum efficiency of the low-voltage direct current output of the solar battery into high-voltage direct current, reducing
  • the "internal high-voltage DC-50 or 60Hz high-voltage AC converter, AC-DC rectifier, battery charge and discharge manager" three losses in the conversion process, improve efficiency.
  • the AC mains power is increased, and the high-voltage direct current is output through the AC-DC rectifier inside the DC inverter air conditioner, and the direct current inverter air conditioner is supplied by the solar battery output.
  • the device is also DC, and the DC itself has no phase compatibility problem. Therefore, the DC output from the solar cell and the DC power from the mains can be simply supplied in parallel to the DC DC inverter control circuit to simplify the utility and solar power. Parallel power supply circuit and reduced electronic switches reduce manufacturing costs.
  • the invention is particularly suitable for an office building where air conditioning is only turned on during the day, and can fully utilize the energy generated by the solar battery.
  • the invention conforms to the development direction of national energy conservation and environmental protection, and has the characteristics of simple and reasonable structure, low production cost, energy saving and environmental protection, reduction of environmental impact, flexible operation, high energy efficiency ratio and wide application range.
  • FIG. 1 is a block diagram of a conventional solar cell driven inverter air conditioner.
  • Figure 2 is a schematic block diagram of the present invention.
  • FIG. 3 is a schematic block diagram of Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing the implementation principle of the solar power controller 2.
  • Fig. 5 is a schematic diagram showing the electrical connection of an AC-DC rectifier, a DC inverter air conditioner circuit and a DC-high voltage DC inverter inside a DC inverter air conditioner.
  • Figure 6 is a schematic diagram of the electrical connection of the first DC-high voltage DC inverter.
  • Fig. 7 is a schematic diagram showing the electrical connection of the second DC-high voltage DC inverter.
  • Figure 8 is a schematic block diagram of a battery system with a second embodiment.
  • Fig. 9 is a schematic block diagram showing the principle of supplying excess power to the commercial power when the air conditioner is not operating in the third embodiment.
  • 1 is solar cell
  • 2 is solar power controller
  • 3 is DC-high voltage DC inverter
  • 4 is solar maximum output power MPPT control unit
  • 5 is mains grid
  • 6 is DC inverter air conditioner
  • 7 is DC inverter air conditioner circuit
  • 8 is AC-DC rectifier
  • 10 is battery
  • 20 is DC inverter air conditioner indoor circuit
  • 21 is DC inverter air conditioner outdoor circuit
  • 23 is EMC circuit
  • 31 is battery charge and discharge management unit
  • 32 is High-voltage DC-50 or 60Hz high-voltage AC converter
  • 34 is AC-DC rectifier circuit
  • 35 is the first DC-high-voltage DC inverter circuit
  • 36 is the second DC-high-voltage DC inverter circuit
  • 37 is PWM Drive unit
  • 40 is solar power controller main control MCU
  • 41 is isolated communication unit
  • 42 is high voltage power supply voltage sampling unit
  • 44 is current detection unit
  • 45 is communication unit
  • 46 is background processing algorithm unit
  • 47 is abnormal protection algorithm
  • the unit 48 is a
  • a DC inverter air conditioner with a solar battery includes a solar battery, a DC inverter air conditioner 6, a solar power controller 2 connected between the solar battery 1 and the DC inverter air conditioner 6, and a utility power grid 5
  • the DC inverter air conditioner 6 comprises an AC-DC rectifier 8 and a DC inverter air conditioner circuit 7,
  • the solar power controller 2 comprises a DC-high voltage DC inverter 3 and a solar maximum output power MPPT control unit 4; the solar maximum output power MPPT control
  • the unit 4 monitors the output power of the solar cell 1, and controls the DC-high voltage DC inverter 3 to convert the low-voltage direct current output from the solar cell 1 into high-voltage direct current, and directly supplies the DC inverter air conditioner circuit 7.
  • the low-voltage DC output of the solar cell 1 is 15V ⁇ 42V.
  • the mains grid 5 is supplied to the DC inverter air conditioner circuit 7 in parallel with the solar power controller 2 via the AC-DC rectifier 8.
  • the solar power output controller 2 has built-in solar maximum output power MPPT control unit 4 for detecting the voltage and current output by the solar cell 1, and controlling the power outputted by the DC-high voltage DC inverter 3 through a dedicated algorithm to supply the DC inverter air conditioner.
  • the DC inverter air conditioner circuit 7 in 6 is used.
  • the solar cell 1 in this embodiment uses an ordinary solar cell panel; a solar panel usually outputs 15 to 42 V, 0 to 240 W; and 1 to 10 solar panels can be used in parallel.
  • the DC inverter air conditioner 6 in this embodiment has two power input ports, the output port of the solar power controller 2 is connected to the first input port of the DC inverter air conditioner 6, and the AC mains grid 5 is connected to the DC inverter air conditioner.
  • the first power input port is directly connected to the DC inverter air conditioner circuit 7 in the DC inverter air conditioner 6, and the second circuit is connected to an AC-DC rectifier 8 and then connected to the DC inverter air conditioner circuit 7.
  • the DC inverter air conditioner circuit 7 in the DC inverter air conditioner 6 is powered by the solar power controller 2, and in the case where the solar battery 1 provides insufficient power, the shortage is provided by the utility grid 5 To meet the DC inverter air conditioner circuit used in the DC inverter air conditioner 6. In order to make full use of the electricity generated by solar energy, reduce the consumption of electricity.
  • the DC inverter air conditioner with solar battery includes a solar battery 1, a solar power controller 2, and a DC inverter air conditioner 6.
  • the solar power controller 2 is connected between the solar battery 1 and the first power supply interface of the DC inverter air conditioner 6.
  • the mains grid 5 is connected to the second power port of the DC inverter air conditioner 6.
  • the complete controller of DC inverter air conditioner 6 borrows the principle of ordinary full DC inverter air conditioner controller, including inverter air conditioner indoor circuit 20, inverter air conditioner outdoor circuit 21, AC-DC rectifier 8 and EMC circuit 23, the whole connection method See Figure 3.
  • the DC inverter air conditioner indoor circuit 20 includes an indoor main control MCU, a display unit, a temperature sensor, a switching power supply, a DC fan, an indoor EMC circuit, a communication unit for communicating with an outdoor part of the DC inverter air conditioner, and other functional units.
  • the DC inverter air conditioner outdoor circuit 21 includes an outdoor main control MCU, a DC fan, a switching power supply, a temperature sensor, a communication unit that communicates with the indoor part of the DC inverter air conditioner, a display unit, a frequency conversion control and drive unit, and an inverter compressor. Other functional units, etc.
  • the DC inverter air conditioner indoor circuit 20 and the DC inverter air conditioner outdoor circuit 21 use DC power sources, all of which are powered by the DC-high voltage DC inverter 3 inside the solar power controller 2, and the utility grid 5 passes the well-known EMC. After the circuit 23 and the AC-DC rectifier 8, the output is connected in parallel to the output of the DC-high voltage DC inverter 3. In other words, the output of the DC-high voltage DC inverter 3 in the solar power controller 2 is connected in parallel with the commercial power grid 5 passing through the EMC circuit 23 and the AC-DC rectifier 8, and then respectively connected to the DC inverter air conditioner indoor circuit. 20 is connected to the outdoor circuit 21 of the DC inverter air conditioner.
  • the solar power controller 2 includes a solar power controller main control MCU 40, an isolated communication unit 41, a high voltage power supply voltage sampling unit 42, a high voltage power supply abnormal protection control unit 50, a DC-high voltage DC inverter 3, a current detecting unit 44, and a voltage detection. Unit 51.
  • the specific connection mode is: the high voltage power supply voltage sampling unit 42 is connected between the output end of the DC-high voltage DC inverter 3 and one end of the isolated communication unit 41, and the other end of the isolated communication unit 41 is connected with the solar power controller main control MCU40.
  • One end of the high voltage power supply abnormality protection control unit 50 is connected in parallel with the output end of the DC-high voltage DC inverter 3, and the other end of the high voltage power supply abnormality protection control unit 50 is connected with the solar power supply controller main control MCU 40; DC-high voltage DC inverter The output of the device 3 (+P and -N terminals) and the rectified outdoor DC high voltage power supply 43 Connected, the input of the DC-high voltage DC inverter 3 is connected to one end of the current detecting unit 44; the current detecting unit 44 is connected between the DC-high voltage DC inverter 3 and the solar cell 1, and the other end of the current detecting unit 44
  • the solar power controller is connected to the MCU 40; one end of the voltage detecting unit 51 is connected in parallel with the solar battery 1, and the other end of the voltage detecting unit 51 is connected to the solar power controller main control MCU 40.
  • the interior of the solar power controller main control MCU 40 includes a solar maximum output power MPPT control unit 4, a communication unit 45, a background processing algorithm unit 46, an abnormality protection algorithm unit 47, a voltage abnormality processing algorithm unit 48, and a DC-high voltage DC inverter algorithm unit. 49 and battery power management algorithm unit 52.
  • FIG. 5 it is a schematic diagram of electrical connection of an AC-DC rectifier, a DC inverter air conditioner circuit and a DC-high voltage DC inverter inside a DC inverter air conditioner.
  • the AC-DC rectifier circuit 34 is a commercially known AC-DC rectifier circuit.
  • the commercial power grid 5 is connected to the input terminal of the AC-DC rectifier circuit 34 via a well-known EMC circuit 23, and is rectified and input through the AC-DC rectifier circuit 34.
  • the direct current is connected to the output of the DC-high voltage DC inverter 3 and the input terminal of the DC inverter air conditioner circuit 7, respectively.
  • the AC-DC rectifier circuit 34 includes a rectifier bridge D5, a filter capacitor C2, a filter capacitor C3, a filter L3, and an electrolytic capacitor E1.
  • FIG. 6 is a schematic diagram of the connection of the first DC-high voltage DC inverter circuit 35.
  • the solar power controller main control MCU40 controls the PWM driving unit 37 to generate a PWM signal, and drives the switch tube Q7, the switch tube Q8, and the switch tube.
  • Q9 and switch tube Q10, switch tube Q7 and switch tube Q8 are connected to one end of isolated step-up transformer T
  • switch tube Q9 and switch tube Q10 are connected to the other end of isolated step-up transformer T
  • switch tube is isolated by isolating step-up transformer T
  • the PWM signal on Q7, switch tube Q8, switch tube Q9 and switch tube Q10 is converted into high voltage alternating current, and then the bridge rectifier circuit composed of diodes D1 ⁇ D4 is used to convert high voltage direct current.
  • the high-voltage direct current rectified by the diodes D1 ⁇ D4 is filtered by the inductor L1, the capacitor C1 and the electrolytic capacitor E1 to become a stable high-voltage direct current, and the output is connected to the +P and -N points.
  • FIG. 7 is a schematic diagram of the connection of a known DC-high voltage DC inverter circuit 36, which is an isolated step-up transformer with different boost ratio outputs, relays based on FIG.
  • the coil control terminals of RL1 and relay RL2 are respectively connected to the PWM driving unit 37, and the PWM driving unit 37 controls the relay RL1 and the relay RL2, and switches different boost according to the input voltage of the solar panel and the power consumption of the DC inverter air conditioner. Than to achieve maximum conversion efficiency.
  • FIG. 8 It is a schematic block diagram of the battery system of the present invention.
  • the user can store the energy generated by the solar cell 1 in the battery 10 without the DC inverter air conditioner 6 operating.
  • the battery 10 can be supplied with the DC inverter air conditioner 6 by increasing the power.
  • the second embodiment includes a solar battery 1, a DC inverter air conditioner 6, a solar power supply controller 2 connected between the solar battery 1 and the DC inverter air conditioner 6, a battery charge and discharge management unit 31, a battery 10, and a utility power grid 5.
  • the specific connection is shown in Fig. 5: solar cell 1, DC inverter air conditioner 6, solar power controller 2, mains grid 5 connection schematic diagram can be seen in the connection description of Figure 2.
  • the battery charge and discharge management unit 31 employs a well-known circuit, one end of which is connected in parallel with the output end of the solar cell 1, and the other end of which is connected to the battery 10, and the control end of the battery charge and discharge management unit 31 is connected to the solar power supply controller 2.
  • the battery electrical management algorithm unit 52 located in the solar power controller 2 realizes charge and discharge management of the battery 10.
  • the DC inverter air conditioner circuit 7 includes a DC inverter air conditioner indoor circuit, a DC inverter air conditioner outdoor circuit, an AC-DC rectifier, and an EMC circuit.
  • the battery due to the limited battery life, the battery is usually damaged in 2 to 3 years, and the battery needs to be replaced frequently.
  • the battery charging and discharging manager 31 in the solar power controller 2 charges and discharges the battery 10 to generate energy. loss.
  • a schematic block diagram of supplying excess power to the commercial power can be used.
  • a high-voltage DC-50 or 60Hz high-voltage AC converter 32 is added on the basis of the second embodiment described above.
  • excess power can be supplied to the utility power grid 5 to realize power generation.
  • the high voltage DC-50 or 60 Hz high voltage AC converter 32 herein is a well known high voltage DC-high voltage AC converter circuit connected between the DC-high voltage DC inverter 3 inside the solar power controller 2 and the utility grid 5.
  • the DC inverter air conditioner circuit 7 includes a DC inverter air conditioner indoor circuit, a DC inverter air conditioner outdoor circuit, an AC-DC rectifier, and an EMC circuit.

Description

带太阳能电池的直流变频空调器 技术领域
本发明涉及一种空调器,特别是一种带太阳能电池的直流变频空调器。
背景技术
现有的由太阳能电池驱动的太阳能空调器,见附图1,由太阳能供电控制器9对太阳能电池1进行管理,对蓄电池10和DC-高压DC逆变器11供电,再经过高压DC-50或60Hz高压AC转换器13转化为和市电一样的交流电压。同时,太阳能供电控制器9检测太阳能电池1和蓄电池10的电量是否足够,控制电子开关14,当太阳能电池1和蓄电池10的电量都不够的情况下,控制电子开关14切换到市电电网5给直流变频空调器15供电,否则,切换到高压DC-50或60Hz高压AC转换器13给直流变频空调器15供电。
这种方式的太阳能空调器,存在以下缺点:
1)目前的变频空调用的都是和市电一样50Hz或60Hz的低频电,如中国专利文献号CN 2665593Y于2004年12月22日公开了一种太阳能和交流市电双电源空调系统,它包括空调系统本体及其供电电源,供电电源包括太阳能电池板及其控制器,与控制器以电源线连接的逆变升压变压器,与控制器、逆变升压变压器、蓄电池组以导线连接的控制板,与交流市电电源和逆变升压变压器的输出以导线连接的转换开关,转换开关的输出与空调系统本体连接。这种太阳能和交流市电双电源空调系统首先将太阳能转化为直流电储存在蓄电池中,使用时再将直接流转换为交流电并经过升压后提供给空调系统,该蓄电池的直流24~48V转换到市电需经过了:DC-高压DC逆变器11﹑高压DC-50或60Hz高压AC转换器13共二个过程转化。这二个转换过程都会损耗5%左右的能量,从而降低了太阳能的使用效率。
2)市场上的直流变频空调器15的内部包括AC-DC整流器8和直流变频空调器电路7。外部AC电源进来后,需经过空调器内部的AC-DC整流器8后再给直流变频空调器的直流变频空调器电路7供电使用。这种方式的空调器供电电路由于AC-DC整流器8的存在,增加了电源的损耗。
技术问题
本发明的目的旨在提供一种结构简单合理、制作成本低、节能环保、转换效率高、减少对环境影响、操作灵活、能效比高、适用范围广的带太阳能电池的直流变频空调器,以克服现有技术中的不足之处。
技术解决方案
按此目的设计的一种带太阳能电池的直流变频空调器,包括太阳能电池、直流变频空调器、连接在太阳能电池和直流变频空调器之间的太阳能供电控制器以及市电电网,直流变频空调器包括AC-DC整流器和直流变频空调器电路,其特征是太阳能供电控制器包括DC-高压DC逆变器和太阳能最大输出功率MPPT控制单元;太阳能最大输出功率MPPT控制单元监控太阳能电池的输出功率,控制DC-高压DC逆变器将太阳能电池输出的低压直流电转化成高压直流电,直接供电给直流变频空调器电路。
所述市电电网经过AC-DC整流器后和太阳能供电控制器并联供电给直流变频空调器电路。
所述太阳能电池输出的低压直流电为15V~42V。
所述直流变频空调器电路包括直流变频空调器室内电路和直流变频空调器室外电路,直流变频空调器室内电路包括主控MCU、显示单元、温度传感器、开关电源、直流风机、室内EMC电路和通讯单元;直流变频空调器室外电路包括主控MCU、直流风机、开关电源、温度传感器、通讯单元、显示单元、变频控制与驱动单元和变频压缩机;太阳能供电控制器中的DC-高压DC逆变器的输出端与经过EMC电路和AC-DC整流器的市电电网并联后,再分别与直流变频空调器室内电路和直流变频空调器室外电路连接。
所述太阳能供电控制器包括太阳能供电控制器主控MCU、隔离通讯单元、高压电源电压取样单元、高压电源异常保护控制单元、DC-高压DC逆变器、电流检测单元和电压检测单元,其中,高压电源电压取样单元连接于DC-高压DC逆变器的输出端和隔离通讯单元的一端之间,隔离通讯单元的另一端和太阳能供电控制器主控MCU连接;高压电源异常保护控制单元的一端和DC-高压DC逆变器的输出端并联,高压电源异常保护控制单元的另一端和太阳能供电控制器主控MCU连接;DC-高压DC逆变器的输出端和经过整流的室外直流高压电源连接,DC-高压DC逆变器的输入端和电流检测单元的一端连接;电流检测单元连接在DC-高压DC逆变器和太阳能电池之间,电流检测单元的另一端和太阳能供电控制器主控MCU连接;电压检测单元的一端和太阳能电池并联,电压检测单元的另一端和太阳能供电控制器主控MCU连接;太阳能供电控制器主控MCU包括太阳能最大输出功率MPPT控制单元、通信单元、后台处理算法单元、异常保护算法单元、电压异常处理算法单元、DC-高压DC逆变算法单元以及蓄电池电管理算法单元。
所述太阳能供电控制器还包括蓄电池和蓄电池充放电管理单元,蓄电池充放电管理单元的一端并联在太阳能电池的输出端,蓄电池充放电管理单元的另一端和蓄电池连接,蓄电池充放电管理单元的控制端和太阳能供电控制器连接。
所述直流变频空调器还包括高压DC-50或60Hz高压AC转换器,高压DC-50或60Hz高压AC转换器连接在位于太阳能供电控制器内的DC-高压DC逆变器和市电电网之间。
有益效果
本发明根据直流变频空调的电路控制特点,采用DC-DC的转换过程,通过太阳能最大输出功率MPPT控制单元控制DC-高压DC逆变器将太阳能电池输出的低压直流电最大效率转化成高压直流电,减少以往“高压DC-50或60Hz高压AC转换器、AC-DC整流器、蓄电池充放电管理器”三个中间环节在转换过程中的损耗,提高了效率。
为了避免因太阳能电池输出功率不够造成不能带动空调的情况发生,而增加了交流市电,通过直流变频空调器内部的AC-DC整流器整流后输出高压直流电,由于太阳能电池输出供给直流的直流变频空调器的也是直流电,而直流电本身没有相位兼容的问题,故可以简单的将太阳能电池输出的直流电和市电整流后的直流电并联供给直流的直流变频空调控制电路使用,从而简化市电和太阳能电的并联供电电路,并减少了电子开关,降低了制作成本。
本发明特别适用于只白天开空调的办公厂地,可以充分利用太阳能电池产生的能量。
本发明符合国家节能环保的发展方向,具有结构简单合理、制作成本低、节能环保、减少对环境影响、操作灵活、能效比高和适用范围广的特点。
附图说明
图1为现有的太阳能电池驱动的变频空调器的方框图。
图2为本发明的原理方框图。
图3为本发明实施例一的原理方框图。
图4为太阳能供电控制器2的实施原理框图。
图5为直流变频空调器内部的AC-DC整流器、直流变频空调器电路和DC-高压DC逆变器的电气连接原理图。
图6为第一种DC-高压DC逆变器的电气连接原理图。
图7为第二种DC-高压DC逆变器的电气连接原理图。
图8为实施例二带蓄电池系统的原理方框图。
图9为实施例三在空调器不运行时,将多余电量供给市电的原理方框图。
图中:1为太阳能电池,2为太阳能供电控制器,3为DC-高压DC逆变器,4为太阳能最大输出功率MPPT控制单元,5为市电电网,6为直流变频空调器,7为直流变频空调器电路,8为AC-DC整流器,10为蓄电池,20为直流变频空调器室内电路,21为直流变频空调器室外电路,23为EMC电路,31为蓄电池充放电管理单元,32为高压DC-50或60Hz高压AC转换器,34为AC-DC整流器电路,35为第一种DC-高压DC逆变器电路,36为第二种DC-高压DC逆变器电路,37为PWM驱动单元,40为太阳能供电控制器主控MCU,41为隔离通讯单元,42为高压电源电压取样单元,44为电流检测单元,45为通信单元,46为后台处理算法单元,47为异常保护算法单元,48为电压异常处理算法单元,49为DC-高压DC逆变算法单元,50为高压电源异常保护控制单元,51为电压检测单元,52为蓄电池电管理算法单元。
本发明的最佳实施方式
下面结合附图及实施例对本发明作进一步描述。
参见图2,一种带太阳能电池的直流变频空调器,包括太阳能电池1、直流变频空调器6、连接在太阳能电池1和直流变频空调器6之间的太阳能供电控制器2以及市电电网5,直流变频空调器6包括AC-DC整流器8和直流变频空调器电路7,太阳能供电控制器2包括DC-高压DC逆变器3和太阳能最大输出功率MPPT控制单元4;太阳能最大输出功率MPPT控制单元4监控太阳能电池1的输出功率,控制DC-高压DC逆变器3将太阳能电池1输出的低压直流电转化成高压直流电,直接供电给直流变频空调器电路7。太阳能电池1输出的低压直流电为15V~42V。
市电电网5经过AC-DC整流器8后和太阳能供电控制器2并联供电给直流变频空调器电路7。
太阳能供电控制器2内置的太阳能最大输出功率MPPT控制单元4用于检测太阳能电池1输出的电压和电流,通过专用算法,控制DC-高压DC逆变器3转换输出的功率,供给直流变频空调器6内的直流变频空调器电路7使用。
本实施例中的太阳能电池1使用普通的太阳能电池板;一块太阳能电池板通常输出为15~42V,0~240W;可以1~10块太阳能电池板并联使用。
本实施例中的直流变频空调器6有二路电源输入口,太阳能供电控制器2的输出口连接到直流变频空调器6的第一路输入口,交流市电电网5连接到直流变频空调器6的第二路输入口。第一路电源输入口直接连接到直流变频空调器6内的直流变频空调器电路7,第二路是连接了一个AC-DC整流器8后再连接到直流变频空调器电路7。平时在太阳能电池1提供电量充足情况下,直流变频空调器6内的直流变频空调器电路7由太阳能供电控制器2供电,在太阳能电池1提供电量不足情况下,不足部分由市电电网5提供,以满足直流变频空调器6内的直流变频空调器电路使用。以达到充分利用太阳能产生的电量,减少对市电的消耗。
实施例一
参见图3,为本发明实施例一的原理方框图。带太阳能电池的直流变频空调器包括太阳能电池1、太阳能供电控制器2和直流变频空调器6。
太阳能供电控制器2连接在太阳能电池1和直流变频空调器6的第一路电源接口之间。市电电网5连接到直流变频空调器6的第二路电源接口。
直流变频空调器6的全套控制器借用了普通的全直流变频空调控制器的原理,包括变频空调器室内电路20、变频空调器室外电路21、AC-DC整流器8和EMC电路23,整个连接方式见图3。
直流变频空调器室内电路20包括了室内的主控MCU、显示单元、温度传感器、开关电源、直流风机、室内EMC电路、与直流变频空调器室外部分进行通讯的通讯单元以及其他功能单元等。
直流变频空调器室外电路21包括了室外的主控MCU、直流风机、开关电源、温度传感器、与直流变频空调器室内部分进行通讯的通讯单元、显示单元、变频控制与驱动单元、变频压缩机以及其他功能单元等。
直流变频空调器室内电路20、直流变频空调器室外电路21使用的都是直流电源,均由太阳能供电控制器2内部的DC-高压DC逆变器3供电,同时市电电网5经过公知的EMC电路23、AC-DC整流器8后,输出并联到DC-高压DC逆变器3的输出端。换句话说,太阳能供电控制器2中的DC-高压DC逆变器3的输出端与经过EMC电路23和AC-DC整流器8的市电电网5并联后,再分别与直流变频空调器室内电路20和直流变频空调器室外电路21连接。
参见图4,为太阳能供电控制器2的实施原理框图。太阳能供电控制器2包括太阳能供电控制器主控MCU40、隔离通讯单元41、高压电源电压取样单元42、高压电源异常保护控制单元50、DC-高压DC逆变器3、电流检测单元44和电压检测单元51。具体连接方式为:高压电源电压取样单元42连接于DC-高压DC逆变器3的输出端和隔离通讯单元41的一端之间,隔离通讯单元41的另一端和太阳能供电控制器主控MCU40连接;高压电源异常保护控制单元50的一端和DC-高压DC逆变器3的输出端并联,高压电源异常保护控制单元50的另一端和太阳能供电控制器主控MCU40连接;DC-高压DC逆变器3的输出端(+P和-N端)和经过整流的室外直流高压电源43 连接,DC-高压DC逆变器3的输入端和电流检测单元44的一端连接;电流检测单元44连接在DC-高压DC逆变器3和太阳能电池1之间,电流检测单元44的另一端和太阳能供电控制器主控MCU40连接;电压检测单元51的一端和太阳能电池1并联,电压检测单元51的另一端和太阳能供电控制器主控MCU40连接。
太阳能供电控制器主控MCU40的内部包括太阳能最大输出功率MPPT控制单元4、通信单元45、后台处理算法单元46、异常保护算法单元47、电压异常处理算法单元48、DC-高压DC逆变算法单元49以及蓄电池电管理算法单元52。
参见图5,为一种直流变频空调器内部的AC-DC整流器、直流变频空调器电路和DC-高压DC逆变器的电气连接原理图。其中,AC-DC整流器电路34是市面公知的AC-DC整流器电路,市电电网5经过公知的EMC电路23连接在AC-DC整流器电路34的输入端,经过AC-DC整流器电路34整流输入高压直流电,分别和DC-高压DC逆变器3的输出端、直流变频空调器电路7的输入端连接。AC-DC整流器电路34包括整流桥D5、滤波电容C2、滤波电容C3、滤波器L3和电解电容E1。
参见图6和图7,为二种DC-高压DC逆变器的电气连接原理图。
图6是公知的第一种DC-高压DC逆变器电路35的连接原理图,由太阳能供电控制器主控MCU40控制PWM驱动单元37产生PWM信号,驱动开关管Q7、开关管Q8、开关管Q9和开关管Q10,开关管Q7和开关管Q8连接到隔离升压变压器T的一端,开关管Q9和开关管Q10连接到隔离升压变压器T的另一端,由隔离升压变压器T将开关管Q7、开关管Q8、开关管Q9和开关管Q10上的PWM信号转换为高压交流电,再通过二极管D1~D4组成的桥式整流电路,变换出高压直流电。经过二极管D1~D4整流后的高压直流电再经过电感L1、电容C1和电解电容E1滤波后,变成稳定的高压直流电,输出连接到+P、-N点。
图7是公知的第二种DC-高压DC逆变器电路36的连接原理图,是在图8的基础上将隔离升压变压器T改为带不同升压比输出的隔离升压变压器,继电器RL1和继电器RL2的线圈控制端分别连接到PWM驱动单元37,由PWM驱动单元37控制继电器RL1和继电器RL2,根据太阳能电池板输入电压和直流变频空调器的用电量大小,切换不同的升压比,以实现最大的转换效率。
实施例二
参见图8 ,为本发明带蓄电池系统的原理框图。在本实施例二中,用户可以在直流变频空调器6不运行的情况下,将太阳能电池1产生的能量储存到蓄电池10内。在直流变频空调器6运行的过程中,如果太阳能电池1产生的电量不足以完全提供直流变频空调器6运行,可以通过蓄电池10增加电量供应直流变频空调器6运行。
本实施例二包括太阳能电池1、直流变频空调器6、连接在太阳能电池1和直流变频空调器6之间的太阳能供电控制器2、蓄电池充放电管理单元31、蓄电池10以及市电电网5。具体连接见图5:太阳能电池1、直流变频空调器6、太阳能供电控制器2、市电电网5的连接原理图可以参见图2的连接说明。
蓄电池充放电管理单元31采用公知的电路,其一端并联在太阳能电池1的输出端,其另一端和蓄电池10连接,蓄电池充放电管理单元31的控制端和太阳能供电控制器2连接。此时,位于太阳能供电控制器2内的蓄电池电管理算法单元52实现对蓄电池10充放电管理。直流变频空调器电路7包括直流变频空调器室内电路、直流变频空调器室外电路、AC-DC整流器和EMC电路。
本实施例二由于目前蓄电池寿命有限,通常2~3年就要损坏,需要频繁更换蓄电池,而且太阳能供电控制器2内部的蓄电池充放电管理器31对蓄电池10进行充电、放电管理也会造成能量损耗。
其余未述部分见第一实施例,不再重复。
实施例三
参见图9 ,为本发明在直流变频空调器6不运行时,可以将多余的电量供给市电的原理方框图。本实施例三是在上述的实施例二基础上增加高压DC-50或60Hz高压AC转换器32,在直流变频空调器6不运行时,可以将多余的电量提供给市电电网5,实现发电机功能。此处的高压DC-50或60Hz高压AC转换器32为公知的高压DC-高压AC转换器电路,连接在太阳能供电控制器2内部的DC-高压DC逆变器3和市电电网5之间。直流变频空调器电路7包括直流变频空调器室内电路、直流变频空调器室外电路、AC-DC整流器和EMC电路。
其余未述部分见第一实施例,不再重复。
所有本专业人士把本发明经过电路结构变换或形式上的变换,没有实质上的创新都属于本发明的保护范围。

Claims (7)

  1. 一种带太阳能电池的直流变频空调器,包括太阳能电池(1)、直流变频空调器(6)、连接在太阳能电池(1)和直流变频空调器(6)之间的太阳能供电控制器(2)以及市电电网(5),直流变频空调器(6)包括AC-DC整流器(8)和直流变频空调器电路(7),其特征是太阳能供电控制器(2)包括DC-高压DC逆变器(3)和太阳能最大输出功率MPPT控制单元(4);太阳能最大输出功率MPPT控制单元(4)监控太阳能电池(1)的输出功率,控制DC-高压DC逆变器(3)将太阳能电池(1)输出的低压直流电转化成高压直流电,直接供电给直流变频空调器电路(7)。
  2. 根据权利要求1所述的带太阳能电池的直流变频空调器,其特征是所述市电电网(5)经过AC-DC整流器(8)后和太阳能供电控制器(2)并联供电给直流变频空调器电路(7)。
  3. 根据权利要求2所述的带太阳能电池的直流变频空调器,其特征是所述太阳能电池(1)输出的低压直流电为15V~42V。
  4. 根据权利要求3所述的带太阳能电池的直流变频空调器,其特征是所述直流变频空调器电路(7)包括直流变频空调器室内电路(20)和直流变频空调器室外电路(21),直流变频空调器室内电路(20)包括主控MCU、显示单元、温度传感器、开关电源、直流风机、室内EMC电路和通讯单元;直流变频空调器室外电路(21)包括主控MCU、直流风机、开关电源、温度传感器、通讯单元、显示单元、变频控制与驱动单元和变频压缩机;太阳能供电控制器(2)中的DC-高压DC逆变器(3)的输出端与经过EMC电路(23)和AC-DC整流器(8)的市电电网(5)并联后,再分别与直流变频空调器室内电路(20)和直流变频空调器室外电路(21)连接。
  5. 根据权利要求4所述的带太阳能电池的直流变频空调器,其特征是所述太阳能供电控制器(2)包括太阳能供电控制器主控MCU(40)、隔离通讯单元(41)、高压电源电压取样单元(42)、高压电源异常保护控制单元(50)、DC-高压DC逆变器(3)、电流检测单元(44)和电压检测单元(51),其中,高压电源电压取样单元(42)连接于DC-高压DC逆变器(3)的输出端和隔离通讯单元(41)的一端之间,隔离通讯单元(41)的另一端和太阳能供电控制器主控MCU(40)连接;高压电源异常保护控制单元(50)的一端和DC-高压DC逆变器(3)的输出端并联,高压电源异常保护控制单元(50)的另一端和太阳能供电控制器主控MCU(40)连接;DC-高压DC逆变器(3)的输出端和经过整流的室外直流高压电源(43) 连接,DC-高压DC逆变器(3)的输入端和电流检测单元(44)的一端连接;电流检测单元(44)连接在DC-高压DC逆变器(3)和太阳能电池(1)之间,电流检测单元(44)的另一端和太阳能供电控制器主控MCU(40)连接;电压检测单元(51)的一端和太阳能电池(1)并联,电压检测单元(51)的另一端和太阳能供电控制器主控MCU(40)连接;太阳能供电控制器主控MCU(40)包括太阳能最大输出功率MPPT控制单元(4)、通信单元(45)、后台处理算法单元(46)、异常保护算法单元(47)、电压异常处理算法单元(48)、DC-高压DC逆变算法单元(49)以及蓄电池电管理算法单元(52)。
  6. 根据权利要求5所述的带太阳能电池的直流变频空调器,其特征是所述直流变频空调器还包括蓄电池(10)和蓄电池充放电管理单元(31),蓄电池充放电管理单元(31)的一端并联在太阳能电池(1)的输出端,蓄电池充放电管理单元(31)的另一端和蓄电池(10)连接,蓄电池充放电管理单元(31)的控制端和太阳能供电控制器(2)连接。
  7. 根据权利要求6所述的带太阳能电池的直流变频空调器,其特征是所述直流变频空调器还包括高压DC-50或60Hz高压AC转换器(32),高压DC-50或60Hz高压AC转换器(32)连接在位于太阳能供电控制器(2)内的DC-高压DC逆变器(3)和市电电网(5)之间。
PCT/CN2010/078619 2010-02-03 2010-11-11 带太阳能电池的直流变频空调器 WO2011095020A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201019050034A CN101806490A (zh) 2010-02-03 2010-02-03 带太阳能电池的变频空调器
CN201019050034.0 2010-02-03
CN201010230977.4 2010-06-30
CN201010230977.4A CN101917054B (zh) 2010-02-03 2010-06-30 带太阳能电池的直流变频空调器

Publications (1)

Publication Number Publication Date
WO2011095020A1 true WO2011095020A1 (zh) 2011-08-11

Family

ID=42608384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078619 WO2011095020A1 (zh) 2010-02-03 2010-11-11 带太阳能电池的直流变频空调器

Country Status (2)

Country Link
CN (2) CN101806490A (zh)
WO (1) WO2011095020A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170191694A1 (en) * 2014-04-22 2017-07-06 Midea Group Co., Ltd. Solar air conditioner and control method and control device thereof
CN108263244A (zh) * 2018-04-08 2018-07-10 北方节能股份有限公司 一种能够自动切换电源的太阳能交流充电桩
WO2024021611A1 (zh) * 2022-07-27 2024-02-01 青岛海尔空调器有限总公司 蓄电池供电的空调器及其自清洁控制方法和控制装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806490A (zh) * 2010-02-03 2010-08-18 广东美的电器股份有限公司 带太阳能电池的变频空调器
HK1145927A2 (en) * 2010-10-25 2011-05-06 Green Power Ind Ltd Solar battery charger based vehicular air-conditioning sys
CN102003769B (zh) * 2010-11-05 2012-11-07 广东美的电器股份有限公司 太阳能空调系统的控制方法
US20120191252A1 (en) * 2011-01-24 2012-07-26 Rocky Research Photovoltaic power source for electromechanical system
CN102798176B (zh) * 2012-08-09 2015-09-09 深圳市索阳新能源科技有限公司 太阳能环保智能空调
CN103633724A (zh) * 2012-08-23 2014-03-12 傅耀贤 太阳能空调供电系统
CN103838339B (zh) * 2012-11-21 2016-08-17 华硕电脑股份有限公司 功率整合模块及电子装置
CN103023127B (zh) * 2012-12-28 2014-12-31 劲达技术(河源)有限公司 太阳能空调及该空调的供电方法
CN103075775A (zh) * 2013-01-31 2013-05-01 台州思特新能源科技有限公司 一种全直流太阳能空调
CN103208837B (zh) * 2013-03-26 2015-04-29 武汉喻科电气有限公司 太阳能空调及该空调的供电方法
CN103259412B (zh) * 2013-04-18 2015-03-11 宁波中博电器有限公司 一种直流升压变频压缩机使用的直流升压电源
CN103647537A (zh) * 2013-09-10 2014-03-19 许继电气股份有限公司 一种取能送能装置及高压电子式直流断路器
CN104713176B (zh) * 2013-12-11 2018-05-22 珠海格力电器股份有限公司 光伏空调系统及其控制方法
CN104848468B (zh) * 2014-02-18 2018-03-06 珠海格力电器股份有限公司 多源供电空调系统的能源处理方法及系统
CN104110795B (zh) * 2014-07-01 2017-01-11 珠海格力电器股份有限公司 光伏空调系统及其控制方法
CN104135027B (zh) * 2014-07-11 2016-09-14 珠海格力电器股份有限公司 光伏变频空调器及其供电控制方法
CN104467148A (zh) * 2014-12-04 2015-03-25 珠海格力电器股份有限公司 电源控制电路、方法和装置
CN104482616B (zh) * 2014-12-14 2017-02-22 云南晶能科技有限公司 一种能够独立运行的离网型光伏空调
CN104566730A (zh) * 2015-01-26 2015-04-29 山东禄禧新能源科技有限公司 一种太阳能光伏空调系统及其供电方法
CN104949364A (zh) * 2015-06-19 2015-09-30 郑州轻工业学院 一种机房空调
CN105490555A (zh) * 2016-01-14 2016-04-13 合肥天鹅制冷科技有限公司 电源变换装置
CN106300622A (zh) * 2016-10-27 2017-01-04 广东美的制冷设备有限公司 太阳能空调器系统及装置
CN106482300A (zh) * 2016-10-31 2017-03-08 广东美的制冷设备有限公司 太阳能空调器控制方法、装置及太阳能空调器
CN107461854A (zh) * 2017-09-20 2017-12-12 广东美博制冷设备有限公司 太阳能空调
CN108988475A (zh) * 2018-07-12 2018-12-11 李�浩 精密空调应急电源系统
CN110849413A (zh) * 2019-05-30 2020-02-28 天津市津源供电设备有限公司 一种油浸式变压器监测系统
CN111219820A (zh) * 2020-01-19 2020-06-02 山东华宇工学院 家用空调混合式能源控制装置及空调
CN111486507A (zh) * 2020-04-28 2020-08-04 宁波奥克斯电气股份有限公司 空调系统和空调系统运行控制方法
CN111765597B (zh) * 2020-07-02 2021-04-27 珠海格力电器股份有限公司 空调系统的能效测试控制方法及空调系统
CN114704892A (zh) * 2022-04-02 2022-07-05 常州世博恩新能源科技有限公司 一种分布式太阳能空调控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157330A (ja) * 1991-12-09 1993-06-22 Sharp Corp 太陽電池出力電力制御回路
JPH07239725A (ja) * 1994-02-25 1995-09-12 Japan Storage Battery Co Ltd 太陽電池の電力変換装置
JP2005201549A (ja) * 2004-01-16 2005-07-28 Toshiba Kyaria Kk 空気調和機、空気調和機用太陽電池及び空気調和機への太陽電池接続方法
CN200979260Y (zh) * 2006-12-11 2007-11-21 广东工业大学 太阳能电池空调系统
CN101464032A (zh) * 2007-12-20 2009-06-24 珠海格力电器股份有限公司 正弦直流变频空调控制器及其控制方法
CN101514826A (zh) * 2008-02-19 2009-08-26 珠海格力电器股份有限公司 太阳能驱动的空调装置及其驱动方法
CN101806490A (zh) * 2010-02-03 2010-08-18 广东美的电器股份有限公司 带太阳能电池的变频空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157330A (ja) * 1991-12-09 1993-06-22 Sharp Corp 太陽電池出力電力制御回路
JPH07239725A (ja) * 1994-02-25 1995-09-12 Japan Storage Battery Co Ltd 太陽電池の電力変換装置
JP2005201549A (ja) * 2004-01-16 2005-07-28 Toshiba Kyaria Kk 空気調和機、空気調和機用太陽電池及び空気調和機への太陽電池接続方法
CN200979260Y (zh) * 2006-12-11 2007-11-21 广东工业大学 太阳能电池空调系统
CN101464032A (zh) * 2007-12-20 2009-06-24 珠海格力电器股份有限公司 正弦直流变频空调控制器及其控制方法
CN101514826A (zh) * 2008-02-19 2009-08-26 珠海格力电器股份有限公司 太阳能驱动的空调装置及其驱动方法
CN101806490A (zh) * 2010-02-03 2010-08-18 广东美的电器股份有限公司 带太阳能电池的变频空调器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170191694A1 (en) * 2014-04-22 2017-07-06 Midea Group Co., Ltd. Solar air conditioner and control method and control device thereof
EP3139104A4 (en) * 2014-04-22 2018-04-04 Midea Group Co., Ltd. Solar air conditioner and control method and control device thereof
US10508825B2 (en) 2014-04-22 2019-12-17 Midea Group Co., Ltd. Solar air conditioner, method and device for controlling solar air conditioner
CN108263244A (zh) * 2018-04-08 2018-07-10 北方节能股份有限公司 一种能够自动切换电源的太阳能交流充电桩
WO2024021611A1 (zh) * 2022-07-27 2024-02-01 青岛海尔空调器有限总公司 蓄电池供电的空调器及其自清洁控制方法和控制装置

Also Published As

Publication number Publication date
CN101917054B (zh) 2015-09-09
CN101917054A (zh) 2010-12-15
CN101806490A (zh) 2010-08-18

Similar Documents

Publication Publication Date Title
WO2011095020A1 (zh) 带太阳能电池的直流变频空调器
CN101855800A (zh) 用于室内多头led灯照明的直流低压配电箱
CN201956730U (zh) 一种外接蓄电池的便携式交流电源
CN208078717U (zh) 分体式直流充电系统
CN205429767U (zh) 一种公安消防多功能应急充电箱
CN104201761A (zh) 一种光伏与通信电源组合使用的供电系统
CN204046190U (zh) 光伏变频空调器
CN201047539Y (zh) 高效非逆变太阳能光伏供电的照明系统
CN102573226B (zh) 并网发电型风光互补路灯系统控制器
CN202709306U (zh) 变频空调器的供电电路装置及变频空调器
CN202818129U (zh) 一种dsp控制的可调式大功率分布式直流电源
CN202749873U (zh) 太阳能/电能双供电系统
CN204696942U (zh) 集中式交直流双输入直流远程供电局端系统
CN205051431U (zh) 一种确保电源不间断输出的交直流转换设备
CN204068409U (zh) 一种光伏与通信电源组合使用的供电系统
CN209913507U (zh) 一种智能直流供电系统及网络
CN209693100U (zh) 一种集中分布式led综合电源系统
WO2021020638A1 (ko) 인버터-충전기 통합 장치 및 이를 제어하는 제어방법
CN207390699U (zh) 一种电梯控制系统
CN102361333A (zh) 一种多用途后备电源
CN214100854U (zh) 一种隧道全直流供电系统
CN208939654U (zh) 一种不间断电源箱
WO2012062159A1 (zh) 整合再生能源的屋内节能供电装置
CN109548237A (zh) 一种集中分布式led综合电源系统
CN214100856U (zh) 一种地铁站全直流供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845103

Country of ref document: EP

Kind code of ref document: A1