WO2024021457A1 - 时间同步装置和方法、无人车、路侧单元、车联网系统 - Google Patents

时间同步装置和方法、无人车、路侧单元、车联网系统 Download PDF

Info

Publication number
WO2024021457A1
WO2024021457A1 PCT/CN2022/140748 CN2022140748W WO2024021457A1 WO 2024021457 A1 WO2024021457 A1 WO 2024021457A1 CN 2022140748 W CN2022140748 W CN 2022140748W WO 2024021457 A1 WO2024021457 A1 WO 2024021457A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
unit
internet
positioning
vehicles
Prior art date
Application number
PCT/CN2022/140748
Other languages
English (en)
French (fr)
Inventor
杨圣波
张占辉
Original Assignee
北京京东乾石科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东乾石科技有限公司 filed Critical 北京京东乾石科技有限公司
Publication of WO2024021457A1 publication Critical patent/WO2024021457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays

Definitions

  • the present disclosure relates to the field of computer technology, specifically to the technical fields of autonomous driving and Internet of Vehicles, and in particular to time synchronization devices, time synchronization methods, unmanned vehicles, roadside units, Internet of Vehicles systems, electronic equipment, and computer-readable media.
  • Embodiments of the present disclosure provide a time synchronization device, a time synchronization method, an unmanned vehicle, a roadside unit, an Internet of Vehicles system, electronic equipment, and a computer-readable medium.
  • a time synchronization device in one or more embodiments of the present disclosure, includes: a time stamp receiver, the time stamp receiver is used to receive positioning and timing information sent by the positioning and timing device; a time synchronization module, Connected to the time stamp receiver, the time synchronization module is used to synchronize the internal time with the time of the positioning and timing device through positioning and timing information; the time compensation module is connected to the time synchronization module, and the time compensation module is used to synchronize the internal time with the time of the vehicle networking unit.
  • the information transmission time compensates for the information transmission error between the vehicle and the Internet of Vehicles unit.
  • an unmanned vehicle which includes: the time synchronization device described in any of the above embodiments.
  • a roadside unit includes: the time synchronization device described in any of the above embodiments.
  • an Internet of Vehicles system includes: at least one unmanned vehicle described in any of the above embodiments; at least one road vehicle described in any of the above embodiments. side unit; the server communicates with the unmanned vehicle and the roadside unit respectively, and controls the internal time of the unmanned vehicle and the roadside unit to synchronize with the time of the positioning and timing device respectively; the unmanned vehicle is based on the communication with the roadside unit
  • the information transmission time with the roadside unit is used to compensate for the information transmission error with the roadside unit; or the roadside unit compensates for the information transmission error with the roadside unit based on the information transmission time with the unmanned vehicle.
  • a time synchronization method includes: controlling a time mark receiver to receive positioning and timing information; and based on the positioning and timing information, comparing the internal time with the time of the timing and timing device. Synchronization; based on the information transmission time with the IoV unit, compensate for the information transmission error with the IoV unit.
  • an electronic device which includes: one or more processors; a storage device with one or more programs stored thereon; when one or more The program is executed by one or more processors, so that the one or more processors implement the time synchronization method described in any of the above embodiments. .
  • a computer-readable medium on which a computer program is stored.
  • the program is executed by a processor, the time synchronization method described in any of the above embodiments is implemented. .
  • a computer program product including a computer program that implements the time synchronization method described in any of the above embodiments when executed by a processor.
  • Figure 1 is a schematic structural diagram of an embodiment of a time synchronization device according to the present disclosure
  • Figure 2 is a schematic structural diagram of a time stamp receiver in an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a time synchronization module in an embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of an unmanned vehicle in an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of an embodiment of the Internet of Vehicles system according to the present disclosure.
  • Figure 6 is a flow chart of one embodiment of a time synchronization method according to the present disclosure.
  • FIG. 7 is a schematic structural diagram of an electronic device suitable for implementing embodiments of the present disclosure.
  • FIG. 1 shows a schematic structural diagram of an embodiment of a time synchronization device to which the present disclosure can be applied.
  • the time synchronization device 100 includes: a time stamp receiver 101.
  • the time stamp receiver is used to receive positioning and timing information sent by a positioning and timing device (not shown in the figure).
  • the time synchronization module 102 is connected to the time stamp receiver 101.
  • the time synchronization module 102 is used to synchronize the internal time with the time of the positioning and timing device through positioning and timing information;
  • the time compensation module 103 is connected to the time synchronization module 102.
  • the time compensation module 103 is used to compensate for the information transmission error between the vehicle and the vehicle networking unit (not shown in the figure) according to the information transmission time between the vehicle and the vehicle networking unit.
  • the time synchronization device 100 can be a device of any Internet of Vehicles unit in the Internet of Vehicles system, and the Internet of Vehicles unit in the Internet of Vehicles system can be a vehicle and a vehicle-mounted subsystem, a roadside unit, or a vehicle. Identifies the subsystem.
  • the terminal car networking unit When the terminal car networking unit is a vehicle and a vehicle-mounted subsystem, it can be a variety of vehicles with display screens.
  • the vehicles include but are not limited to smartphones, tablet computers, e-book readers, MP3 players (Moving Picture Experts Group Audio Layer III , Motion Picture Expert compresses standard audio levels 3), laptops and desktop computers, and more.
  • Vehicles and vehicle-mounted subsystems are every vehicle participating in traffic and various sensor equipment on the vehicle.
  • the vehicle can not only understand its own position, orientation, driving distance, speed and acceleration and other vehicle information in real time, but also
  • the various sensors in the sensor device sense external environment information, including temperature, humidity, light, distance, etc., which not only facilitates the driver to understand the vehicle and information in a timely manner, but also allows timely responses to external changes.
  • the information from these sensor devices can also be sent to surrounding vehicles, pedestrians and roads through wireless networks, and uploaded to Internet of Vehicles servers (such as cloud computing centers) to enhance information sharing capabilities.
  • Vehicles servers such as cloud computing centers
  • the vehicle identification subsystem includes: several signs on the vehicle and identification equipment outside the vehicle, among which the signs are mainly RFID and image recognition.
  • the roadside unit When the Internet of Vehicles unit is a roadside unit, the roadside unit is installed along the traffic network and is generally installed in traffic hot spots, intersections or high-risk areas. By collecting the traffic flow passing through specific locations, it analyzes information on different congested road sections. Several suggestions are given to traffic participants to avoid congestion.
  • the server may also be a server that provides various services, such as a background server that provides support for various applications displayed on each Internet of Vehicles unit.
  • the background server can use the information sent by the Internet of Vehicles unit to determine the information transmission time of each Internet of Vehicles unit and compensate for the information transmission error between the Internet of Vehicles units.
  • the server here can be hardware or software. When they are hardware, they can be implemented as a distributed server cluster composed of multiple servers, or as a single server. When they are software, they can be implemented as multiple software or software modules (for example, used to provide distributed services), or as a single software or software module. There are no specific limitations here.
  • the positioning and timing device may be a Beidou satellite, and the time mark receiver 101 may be a Beidou positioning receiver with PPS (Pulse Per Second, pulse per second).
  • the time mark receiver 101 supports Beidou third-generation time mark reception. machine; optionally, the positioning and timing device can be a global positioning system, through which high-precision positioning and timing can be achieved.
  • the internal time is the clock source for the overall operation of the time synchronization device.
  • each module performs time synchronization based on the clock source.
  • setting the internal time as the time of the positioning and timing device allows all modules in the time synchronization device to have the same internal time.
  • the information transmission time is the time it takes for the time synchronization device to send the message to the Internet of Vehicles unit.
  • the information transmission time can be the time of sending the information or the time of receiving the information.
  • the communication information has a timestamp that represents the information transmission time. Based on the difference between the two timestamps, the information transmission error of the two is determined, and when the two communicate, the information transmission error is compensated during the information transmission time (for example, adding Information transmission error) can enable high-precision time synchronization of all Internet of Vehicles units in the time synchronization device.
  • the time synchronization device includes: a time stamp receiver, which is used to receive positioning and timing information sent by the positioning and timing device; a time synchronization module, connected to the time stamp receiver, and the time synchronization module is used to The internal time is synchronized with the time of the positioning and timing device through positioning and timing information; the time compensation module is connected to the time synchronization module.
  • the time compensation module is used to compensate for the time difference between the IoV units based on the information transmission time with the IoV unit. Information transmission errors.
  • the positioning and timing information of the positioning and timing device is obtained through the time stamp receiver, which ensures the synchronization of the internal time and the time of the positioning and timing device, and improves the reliability of the time synchronization of the Internet of Vehicles; further, according to the communication with the Internet of Vehicles unit
  • the information transmission time compensates for the information transmission error between the vehicle and the Internet of Vehicles unit. By compensating the information transmission time, it is possible to ensure that the signal transmission error is compensated during the information transmission process, thereby improving the accuracy of information transmission.
  • the time stamp receiver 200 includes: a time stamp processing unit 201 and an antenna module 202 electrically connected to the time stamp processing unit 201, a serial port module 203, a time stamp The processing unit has a time stamp port P;
  • the antenna T on the antenna module 202 is used to receive the positioning and timing information sent by the positioning and timing device, and send the positioning and timing information to the time stamp processing unit 201 .
  • the positioning and timing information received by the antenna T is a radio frequency signal.
  • the positioning and timing information represented by a level signal can be obtained.
  • the time stamp processing unit 201 performs data analysis on the positioning and timing information, obtains the first positioning and timing data and the clock synchronization signal, sends the first positioning and timing data to the serial port module 203, and sends the clock synchronization signal to the time stamp port P; the serial port module 203 After receiving the first positioning and timing data, the first positioning and timing data is converted into serial data, and the second positioning and timing data is output through the serial port U. The second positioning and timing data is serial data; the time stamp port P is used to output the clock synchronization signal. PPS.
  • the serial port module 203 is also called a Universal Asynchronous Receiver/Transmitter (UART for short), which is an asynchronous receiver/transmitter and is a part of the time stamp receiver 200. It converts the data to be transmitted between serial communication and parallel communication. As a chip that converts parallel input signals into serial output signals, the serial port module 203 is integrated in the time stamp receiver 200 .
  • UART Universal Asynchronous Receiver/Transmitter
  • the antenna module 202 receives the positioning and timing information sent by the positioning and timing device through the antenna T, and converts the positioning and timing information into a signal that can be recognized by the time stamp processing unit 201.
  • the time stamp receiver 200 receives the positioning and timing data of the Beidou satellite through the antenna T, then sends the positioning and timing data through the serial port of the serial port module, and at the same time outputs 1PPS to the following
  • the time scale processing unit 201 performs time alignment correction. For example, the time stamp receiver 200 receives whole second timing and 1PPS. After receiving the 1PPS, the time stamp processing unit 201 clears its own millisecond timer (a type of vehicle counter) and overwrites it with the year, month, day, hour, minute and second sent by the Beidou satellite.
  • the internal time of the machine this internal time is the clock source of the vehicle.
  • the serial port module generally outputs the timestamp through GPRMC (recommended positioning information, which is a standard format message containing world standard time (accurate to seconds), longitude and latitude positioning data), and the host captures it and sends the time to the local There will be an error, and the 1PPS calibration will eliminate this error, and the 1PPS calibration is a hard trigger, which greatly improves the accuracy of time alignment with the positioning and timing device.
  • GPRMC recommended positioning information, which is a standard format message containing world standard time (accurate to seconds), longitude and latitude positioning data
  • the time stamp receiver provided in this embodiment receives the positioning and timing information sent by the positioning and timing device, and after processing the positioning and timing information, outputs the second positioning and timing data and the clock synchronization signal respectively through the serial port and the time stamp port of the serial port module. It provides a reliable basis for consistent synchronization in each Internet of Vehicles unit.
  • the time synchronization module includes: an internal timer, a calculation processor, a communication unit, and a compensation unit.
  • the internal timer is used to measure the internal time in real time.
  • the internal timer can be a millisecond timer.
  • the millisecond timer can continue to time based on different initial internal times. For example, when the internal time is 00:00:00, The internal timer starts timing from 00:00:00; when the internal time is 00:00:06, the internal timer starts timing from 00:00:06.
  • the calculation processor is connected to the time stamp receiver and the internal timer respectively.
  • the calculation processor is used to clear the internal timer based on the clock synchronization signal and use the second positioning timing after receiving the clock synchronization signal and the second positioning timing data.
  • the data covers the vehicle's internal time.
  • the internal timer continues counting from the vehicle's internal time after overriding.
  • the communication unit is connected to the computing processor and is used for time synchronization with the computing processor through a predetermined time protocol.
  • the compensation unit is connected to the communication unit, and after the internal time is synchronized with the time of the time stamp receiver, communicates with the vehicle networking unit to compensate for the information transmission error between the vehicle networking unit and the vehicle networking unit.
  • the predetermined time protocol can use the PTP (precise time protocol) protocol.
  • the PTP protocol can achieve sub-microsecond accuracy.
  • the basic principle of the PTP protocol is: periodic timing between the master and slave clocks. Synchronize the exchange of information while accurately capturing the sending and receiving times of information packets and stamping the timestamp information.
  • the slave clock receives the synchronization information packet, it can extract the timestamp information from it and calculate the time difference between itself and the master clock as well as the transmission delay in the network to perform local clock calibration.
  • the time synchronization between the internal time and the positioning and timing device is performed by the computing processor through PPS and PTP, and the time accuracy is within 100 ns;
  • the communication unit can be Network switch, if the network switch uses a hardware-based IEEE1588PTPv2 type switch, the time accuracy can be achieved in tens of nanoseconds.
  • Time synchronization is also performed between the computing processor and the vehicle and the on-board equipment OBU in the vehicle and on-board subsystem through PTP. After obtaining this time base, the on-board equipment transmits data with other vehicles or roadside units through the wireless network.
  • the predetermined time protocol can also use NTP (Network Time Protocol).
  • NTP Network Time Protocol
  • NTP is a protocol used to synchronize computer time. It provides high-precision time synchronization.
  • the Internet of Vehicles unit provided by this optional implementation includes an internal timer, a calculation processor, a communication unit, and a compensation unit.
  • the calculation processor clears the internal timer based on the clock synchronization signal and the second positioning timing data, and The second positioning and timing data is used to cover the internal time of the vehicle.
  • the communication unit performs time synchronization with the computing processor through a predetermined time protocol.
  • the compensation unit compensates for the information transmission error with the vehicle networking unit. Therefore, the time synchronization module receives After the clock synchronization signal and the second positioning and timing data are generated, the clock source generated by the calculation processor is used as the overall clock to ensure the unity of the internal time and the time of the positioning and timing device.
  • the present disclosure also provides a drone.
  • the drone 400 includes a time synchronization device 401.
  • the time synchronization device 401 includes a time stamp receiver, a time synchronization module and a time compensation module.
  • the time stamp receiver obtains the positioning and timing information of the positioning and timing device, ensuring that the internal time of the unmanned vehicle is consistent with the time of the positioning and timing device. synchronization; further, through the time compensation module, the information transmission error with the IoV unit is compensated according to the information transmission time with the IoV unit.
  • the Internet of Vehicles network information transmission process can be This ensures that the signal transmission error of the unmanned vehicle is compensated and improves the accuracy of the information transmission of the unmanned vehicle.
  • the above-mentioned unmanned vehicle includes: vehicle-mounted equipment, and the vehicle-mounted equipment is used to perform time synchronization with a time synchronization device through a time protocol.
  • Vehicle-mounted equipment also known as vehicle-mounted unit, is a microwave device that uses DSRC (Dedicated Short Range Communication) technology to communicate with the Internet of Vehicles unit.
  • DSRC Dedicated Short Range Communication
  • the vehicle-mounted equipment is placed on the vehicle, and a Road Side Unit (RSU) is set up on the roadside to communicate with each other through microwaves.
  • RSU Road Side Unit
  • microwave communication is used between the on-board equipment and the RSU.
  • the unmanned vehicle provided by this optional implementation method synchronizes time through the time protocol and the time synchronization device, which can ensure the time synchronization of the on-board equipment in the unmanned vehicle and the positioning and timing device, ensuring the overall time unity of the unmanned vehicle .
  • the unmanned vehicle may also include: sensor 1, sensor 2, sensor 3...sensor n (n is a natural number greater than 3), wherein communication is based on each sensor (sensor 1, sensor 2, sensor 3...sensor n)
  • the processors (such as computing processors and network switches) are different, and the time synchronization methods between each sensor and the processor are different. For example, if sensor 1 and sensor 2 are respectively connected to the computing processor in the unmanned vehicle, then sensor 1 and sensor 2 are different. 2. Perform time synchronization with the computing processor through the clock synchronization signal and the second positioning timing data sent by the computing processor.
  • Sensor 3...sensor n are electrically connected to the network switch in the unmanned vehicle respectively, and sensor 3...sensor n performs time synchronization with the network switch through a predetermined time protocol.
  • the present disclosure also provides a roadside unit, wherein the roadside unit includes a time synchronization device.
  • the roadside unit implements different functions according to its location.
  • RSU is installed on the roadside to establish an unattended express dedicated lane;
  • the highway's A roadside unit is installed on the roadside and uses DSRC technology to communicate with the vehicle-mounted unit to realize vehicle identity recognition and electronic points deduction.
  • the time synchronization device in the roadside unit includes a time stamp receiver, a time synchronization module and a time compensation module.
  • the positioning and timing information of the positioning and timing device is obtained through the time stamp receiver, ensuring that the internal time and positioning of the road side unit are Time synchronization of the timing device; further, through the time compensation module, the information transmission error with the IoV unit is compensated according to the information transmission time with the IoV unit.
  • the IoV can During the network information transmission process, it is ensured that the signal transmission error of the roadside unit is effectively compensated, thereby improving the accuracy of the information transmission of the roadside unit.
  • the communication subunit is also used to communicate with each vehicle networking unit and compensate for information transmission errors with each vehicle networking unit.
  • the communication subunit communicates with each vehicle networking unit to determine the sending timestamp and receiving timestamp of both communicating parties.
  • the network delay is determined through the sending timestamp and receiving timestamp of both parties.
  • the next communication through Adding the network time difference to the timestamp of the communication message can compensate for the information transmission error with each vehicle networking unit.
  • compensation for the information transmission error between each vehicle networking unit may be based on the calculated fixed network delay for each communication.
  • the network delay at different time points can also be calculated periodically, and based on the historical network delay (for example, averaging the historical network delay to obtain the average network delay), (using the average network delay) to compensate and Information transmission errors between various Internet of Vehicles units.
  • the communication sub-unit in the Internet of Vehicles unit compensates for the information transmission error with each Internet of Vehicles unit, so that the entire time synchronization device has a more reliable clock and ensures the time synchronization of each Internet of Vehicles unit. sex.
  • FIG. 5 is a schematic structural diagram of an embodiment of the Internet of Vehicles system of the present disclosure.
  • the system includes: at least one unmanned vehicle. 501, at least one roadside unit 502, a server (not shown in the figure) that communicates with the unmanned vehicle 501 and the roadside unit 502 respectively.
  • the server controls the internal time of the unmanned vehicle 501 and the internal time of the roadside unit 502 respectively.
  • the unmanned vehicle 501 compensates for the information transmission error with the roadside unit based on the information transmission time with the roadside unit; or the roadside unit 502 compensates for the information transmission error with the roadside unit based on the information transmission time with the unmanned vehicle.
  • the information transmission time compensates for the information transmission error between the roadside unit and the roadside unit.
  • unmanned vehicles 501 and roadside units 502 in Figure 5 are only illustrative. Depending on implementation needs, there can be any number of IoV units.
  • At least one of the unmanned vehicles 501 communicates through a network (double arrows in Figure 5), and the network is used to provide a medium for communication links between each unmanned vehicle 501.
  • Networks can include various connection types, such as wired, wireless communication links, or fiber optic cables, among others.
  • the user can interact with the server on the unmanned vehicle 501 through the network to receive or send messages (control information on whether the internal time is synchronized with the positioning and timing device), etc.
  • Various client applications can be installed on the unmanned vehicle 501, such as model training applications, image recognition applications, shopping applications, payment applications, web browsers, and instant messaging tools.
  • each unmanned vehicle 501 and roadside unit 502 in the Internet of Vehicles system 500 is equipped with a time synchronization device 5011 provided by the present disclosure.
  • the time synchronization device 5011 can realize the internal time of the unmanned vehicle 501,
  • the internal time of the roadside unit 502 is synchronized with the time of the positioning and timing device 503 respectively.
  • the positioning and timing device may be a Beidou satellite navigation system, and the timing accuracy of the Beidou satellite navigation system is less than or equal to 20 ns.
  • the Beidou satellite navigation system has the following characteristics: 1. It has both positioning and communication functions and does not require the support of other communication systems. 2. Large coverage area, no communication blind spots. 3. Suitable for large-scale monitoring management and data collection by group users. 4. It integrates the large resources of the Beidou navigation and positioning system and the satellite enhancement system, and has more applications than the Global Positioning System. 5. Autonomous system, safe, reliable and highly confidential.
  • the positioning and timing device is Beidou satellite and any two Internet of Vehicles units (unmanned vehicles or roadside units) adopt C-V2X (Cellular-V2X, Cellular Internet of Vehicles, based on 3G/4G/5G and other cellular communications
  • C-V2X Cellular-V2X, Cellular Internet of Vehicles, based on 3G/4G/5G and other cellular communications
  • the high-precision clock source can be obtained through GPRMC+PPS technology, reducing Remove the transmission delay of C-V2X and achieve the high level of V2X (Vehicle to Everything, vehicle wireless communication technology, a new generation of information communication technology that connects vehicles to vehicles, vehicles to roads, vehicles to people, and vehicles to the network). Precision time synchronization.
  • the Internet of Vehicles system provided by this optional implementation uses the Beidou satellite navigation system to provide positioning and timing information for each Internet of Vehicles unit, which improves the overall timing accuracy of the Internet of Vehicles system.
  • the present disclosure also provides a time synchronization method for Internet of Vehicles.
  • a time synchronization method for Internet of Vehicles Through this time synchronization method for Internet of Vehicles, each Internet of Vehicles unit in the time synchronization device can achieve time synchronization with the timing device, as shown in Figure 6.
  • a process 600 according to an embodiment of the time synchronization method of the present disclosure is shown.
  • the time synchronization method includes the following steps:
  • Step 601 Control the time stamp receiver to receive positioning and timing information.
  • the execution body on which the Internet of Vehicles time synchronization method runs is equipped with a time stamp receiver.
  • the time stamp receiver is used to receive positioning and timing information sent by a positioning and timing device.
  • the positioning and timing device can be a Beidou satellite.
  • the beacon receiver can be a Beidou positioning receiver with PPS.
  • Step 602 Based on the positioning and timing information, synchronize the internal time with the time of the timing timing device.
  • the execution subject on which the Internet of Vehicles time synchronization method runs performs data analysis on the positioning and timing information to obtain level information and clock synchronization signals suitable for the execution subject. Under the guidance of the clock synchronization signal, the internal time is to cover.
  • the above-mentioned synchronization of the internal time with the time of the timing device includes: performing data analysis on the positioning and timing information to obtain the second Certain positioning and timing data and clock synchronization signals are sent to the serial port module, and the clock synchronization signal is sent to the time stamp port, so that the serial port module performs serial data conversion on the first positioning and timing data, which is used in the execution body. All modules provide clock sources.
  • Step 603 Compensate the information transmission error with the IoV unit based on the information transmission time with the IoV unit.
  • each Internet of Vehicles unit is independent, and each Internet of Vehicles unit has its own internal time.
  • the internal time of each Internet of Vehicles unit may be the same, or may have a time deviation. This time deviation will act on information transmission errors, causing The communication between any two Internet of Vehicles units is out of sync.
  • the time synchronization method controls the time mark receiver to receive positioning and timing information; through the positioning and timing information, the internal time is synchronized with the time of the timing and timing device; after the internal time is synchronized with the time of the positioning and timing device, Based on the information transmission time with the Internet of Vehicles unit, the information transmission error with the Internet of Vehicles unit is compensated. Therefore, the positioning and timing information of the positioning and timing device is obtained through the time stamp receiver, ensuring the synchronization of the internal time and the time of the positioning and timing device; further, based on the information transmission time with the IoV unit, the time between the IoV and the IoV unit is compensated.
  • the information transmission error between the two can ensure that the signal transmission error is compensated during the Internet of Vehicles network information transmission process, improving the accuracy of transmission.
  • the above-mentioned information transmission error includes: network delay.
  • the above-mentioned compensation for the information transmission error with the IoV unit based on the information transmission time with the IoV unit includes:
  • the generation time of the message data is recorded.
  • this time record is added to each frame of message data to form a timestamp of the data.
  • the initial timestamp can be the reception timestamp of the message data received by an Internet of Vehicles unit, or it can be the transmission timestamp of the message data sent, where the reception timestamp and the transmission timestamp are relative.
  • one IoV unit records the internal time of sending the message data, and after the communication, get For the timestamp of the received information sent by another Internet of Vehicles unit (the reception timestamp of the other Internet of Vehicles unit), the internal time of the message sent by one Internet of Vehicles unit is subtracted from the timestamp of the other Internet of Vehicles unit to obtain the network delay. hour.
  • one Internet of Vehicles unit receives the message data sent by the other Internet of Vehicles unit.
  • one Internet of Vehicles unit records the internal time of receiving the message data, and after communication, obtains
  • the timestamp of the transmission information sent by another Internet of Vehicles unit (the sending timestamp of the other Internet of Vehicles unit) is the internal time of the message sent by one Internet of Vehicles unit minus the timestamp of the other Internet of Vehicles unit, and the network delay is obtained. hour.
  • each Internet of Vehicles unit (such as vehicle and vehicle subsystem, or RSU device) is equipped with a Beidou positioning receiver with PPS function, so that all devices have a unified Beidou timing clock source.
  • Devices communicate through C-V2X, and the communication information contains timestamps. By subtracting the initial timestamp from the local time, the C-V2X network delay can be calculated to achieve high-precision V2X time synchronization.
  • This optional implementation provides a method for compensating for information transmission errors with the Internet of Vehicles unit.
  • the network delay with the Internet of Vehicles unit is determined, and the network delay is subtracted during subsequent communication with the Internet of Vehicles unit. Delay can ensure the synchronization of real communication time among all Internet of Vehicles units.
  • the above information transmission error Including: time deviation and network delay. The above is based on the information transmission time with the Internet of Vehicles unit to compensate for the information transmission error with the Internet of Vehicles unit, including:
  • the first internal time is the internal time when the execution subject sends the message data of the first communication
  • the receiving timestamp of the Internet of Vehicles unit is the time when the Internet of Vehicles unit receives the message data of the first communication
  • communicate with the Internet of Vehicles unit for the second time to obtain the sending timestamp of the Internet of Vehicles unit and the corresponding second communication
  • the second internal time (the second internal time is the internal time when the execution subject receives the message data of the second communication, and the sending timestamp of the Internet of Vehicles unit is the time when the Internet of Vehicles unit sends the message data of the second communication); based on The first internal time, the second internal time, the receiving timestamp and the sending timestamp are used to obtain the time deviation and network delay; during subsequent communication with the Internet of Vehicles unit, the subsequent timestamp of the Internet of Vehicles unit is subtracted from the time deviation and network delay.
  • the time deviation is the time deviation of the internal time between the execution subject and the vehicle networking unit.
  • the vehicle networking unit lags behind the execution subject by the time indicated by the time deviation;
  • network delay is the delay of data in the communication process. Generally, network latency remains unchanged.
  • the time deviation and network delay between the execution subject and the Internet of Vehicles units can also be calculated periodically.
  • This optional implementation provides a method for compensating for information transmission errors with the Internet of Vehicles unit.
  • the time deviation and network delay with the Internet of Vehicles unit are determined.
  • Subtracting the time deviation and network delay can ensure the synchronization of real communication time among all Internet of Vehicles units.
  • FIG. 7 a schematic structural diagram of an electronic device 700 suitable for implementing embodiments of the present disclosure is shown.
  • the electronic device 700 may include a processing device (eg, central processing unit, graphics processor, etc.) 701 that may be loaded into a random access device according to a program stored in a read-only memory (ROM) 702 or from a storage device 708 .
  • the program in the memory (RAM) 703 executes various appropriate actions and processes.
  • various programs and data required for the operation of the electronic device 700 are also stored.
  • the processing device 701, ROM 702 and RAM 703 are connected to each other via a bus 704.
  • An input/output (I/O) interface 705 is also connected to bus 704.
  • the following devices can be connected to the I/O interface 705: input devices 706 including, for example, a touch screen, touch pad, keyboard, mouse, etc.; output devices including, for example, a liquid crystal display (LCD, Liquid Crystal Display), speakers, vibrators, etc. 707; a storage device 708 including, for example, a tape, a hard disk, etc.; and a communication device 709.
  • Communication device 709 may allow electronic device 700 to communicate wirelessly or wiredly with other devices to exchange data.
  • FIG. 7 illustrates an electronic device 700 having various means, it should be understood that implementation or availability of all illustrated means is not required. More or fewer means may alternatively be implemented or provided. Each block shown in Figure 7 may represent one device, or may represent multiple devices as needed.
  • embodiments of the present disclosure include a computer program product including a computer program carried on a computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via communication device 709, or from storage device 708, or from ROM 702.
  • the processing device 701 the above-described functions defined in the method of the embodiment of the present disclosure are performed.
  • the computer-readable medium in the embodiments of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, in which computer-readable program code is carried. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code contained on a computer-readable medium can be transmitted using any appropriate medium, including but not limited to: wires, optical cables, RF (Radio Frequency, Radio Frequency), etc., or any suitable combination of the above.
  • the above-mentioned computer-readable medium may be included in the above-mentioned server; it may also exist separately without being assembled into the server.
  • the above computer-readable medium carries one or more programs.
  • the server controls the time stamp receiver to receive positioning and timing information; based on the positioning and timing information, combines the internal time with the timing The time of the timing device is synchronized; based on the information transmission time with the Internet of Vehicles unit, the information transmission error with the Internet of Vehicles unit is compensated.
  • Computer program code for performing operations of embodiments of the present disclosure may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, and A conventional procedural programming language—such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as an Internet service provider through Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as an Internet service provider through Internet connection
  • each block in the flowchart or block diagram may represent a module, segment, or portion of code that contains one or more logic functions that implement the specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or operations. , or can be implemented using a combination of specialized hardware and computer instructions.
  • the units involved in the embodiments of the present disclosure may be implemented in software or hardware.
  • the described unit can also be provided in a processor.
  • a time synchronization device including a time stamp receiver, a time synchronization module, and a time compensation module.
  • the names of these units do not constitute a limitation on the unit itself under certain circumstances.
  • a time stamp receiver can also be described as a unit "used to receive positioning and timing information sent by a positioning and timing device.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)

Abstract

本公开提供了一种时间同步装置,涉及车联网技术领域。该装置的一具体实施方式包括:时标接收机,时标接收机用于接收定位授时装置发送的定位授时信息;时间同步模块,与时标接收机连接,时间同步模块用于通过定位授时信息将内部时间与定位授时装置的时间进行同步;时间补偿模块,与时间同步模块连接,时间补偿模块用于根据与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差。

Description

时间同步装置和方法、无人车、路侧单元、车联网系统
相关申请的交叉引用
本申请要求于2022年07月25日提交的、申请号为202210884339.7、发明名称为“时间同步装置和方法、无人车、路侧单元、车联网系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及计算机技术领域,具体涉及自动驾驶、车联网技术领域,尤其涉及时间同步装置、时间同步方法、无人车、路侧单元、车联网系统、电子设备、计算机可读介质。
背景技术
现在智能驾驶车辆大部分是单车智能技术,即完全依赖车辆自身的硬件和软件算法能力实现智能驾驶。车与车之间、车与路之间由于时间同步偏差大,车辆之间的位置、速度等信息,路侧的传感器、红绿灯等信息不能够精确的同步,车联网的优势就很难充分发挥出来。
发明内容
本公开的实施例提出了时间同步装置、时间同步方法、无人车、路侧单元、车联网系统、电子设备、计算机可读介质。
在本公开的一种或多种实施例中,提供了一种时间同步装置,该装置包括:时标接收机,时标接收机用于接收定位授时装置发送的定位授时信息;时间同步模块,与时标接收机连接,时间同步模块用于通过定位授时信息将内部时间与定位授时装置的时间进行同步;时间补偿模块,与时间同步模块连接,时间补偿模块用于根据与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差。
在本公开的一种或多种实施例中,提供了一种无人车,该无人车 包括:上述任一实施例中描述的时间同步装置。
在本公开的一种或多种实施例中,提供了一种路侧单元,该路侧单元包括:上述任一实施例中描述的时间同步装置。
在本公开的一种或多种实施例中,提供了一种车联网系统,该系统包括:至少一个上述任一实施例中描述的无人车;至少一个上述任一实施例中描述的路侧单元;服务器,分别与无人车、路侧单元通信,控制无人车的内部时间、路侧单元的内部时间分别与定位授时装置的时间进行同步;无人车基于与路侧单元之间的信息传输时间,补偿与路侧单元之间的信息传输误差;或者路侧单元基于与无人车之间的信息传输时间,补偿与路侧单元之间的信息传输误差。
在本公开的一种或多种实施例中,提供了一种时间同步方法,该方法包括:控制时标接收机接收定位授时信息;基于定位授时信息,将内部时间与定时授时装置的时间进行同步;基于与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差。
在本公开的一种或多种实施例中,提供了一种电子设备,该电子设备包括:一个或多个处理器;存储装置,其上存储有一个或多个程序;当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现上述任一实施例中描述的时间同步方法。。
在本公开的一种或多种实施例中,提供了一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例中描述的时间同步方法。。
在本公开的一种或多种实施例中,提供了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现上述任一实施例中描述的时间同步方法。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本公开的其它特征、目的和优点将会变得更明显:
图1是根据本公开的时间同步装置的一个实施例的结构示意图;
图2是本公开实施例中时标接收机的结构示意图;
图3是本公开实施例中时间同步模块的结构示意图;
图4是本公开实施例中无人车的结构示意图;
图5是根据本公开的车联网系统的一个实施例的结构示意图;
图6是根据本公开的时间同步方法的一个实施例的流程图;
图7是适于用来实现本公开的实施例的电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
图1示出了可以应用本公开的时间同步装置的一个实施例的结构示意图。
如图1所示,时间同步装置100包括:时标接收机101,时标接收机用于接收定位授时装置(图中未示出)发送的定位授时信息。时间同步模块102,与时标接收机101连接,时间同步模块102用于通过定位授时信息将内部时间与定位授时装置的时间进行同步;时间补偿模块103,与时间同步模块102连接,时间补偿模块103用于根据与车联网单元(图中未示出)之间的信息传输时间,补偿与车联网单元之间的信息传输误差。
本实施例中,时间同步装置100可以是车联网系统中的任一个车联网单元具有的装置,而车联网系统中车联网单元可以是车辆及车载子系统,也可以是路侧单元,或者车辆标识子系统。
当终端车联网单元为车辆及车载子系统时,可以是具有显示屏的各种车辆,车辆包括但不限于智能手机、平板电脑、电子书阅读器、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、膝上型便携计算机和台式计算机等等。车 辆及车载子系统是参与交通的每一个车辆和车辆上的各种传感器设备,通过这些传感器设备,车辆不仅可以实时地了解自己的位置、朝向、行驶距离、速度和加速度等车辆信息,还可以通过传感器设备中的各种传感器感知外界环境信息,包括温度、湿度、光线、距离等,不仅方便驾驶员及时了解车辆和信息,还可以对外界变化做出及时的反应。此外这些传感器设备的信息还可以通过无线网络发送给周围的车辆、行人和道路,上传到车联网的服务器(如云计算中心),加强信息的共享能力。
当车联网单元为车辆标识子系统时,车辆标识子系统包括:车辆上的若干标志标识和车辆外界的标识识别设备,其中标志以RFID和图像识别为主。
当车联网单元为路侧单元时,路侧单元沿交通路网设备,一般会安装在交通热点地区、交叉路口或者高危险地区,通过采集通过特定地点的车流量,分析不同拥堵路段的信息,给予交通参与者避免拥堵的若干建议。
服务器也可以是提供各种服务的服务器,例如对各个车联网单元上显示的各种应用提供支持的后台服务器。后台服务器可以利用车联网单元发送的信息,确定各个车联网单元的信息传输时间,补偿车联网单元之间的信息传输误差。
这里的服务器可以是硬件,也可以是软件。当它们为硬件时,可以实现成多个服务器组成的分布式服务器集群,也可以实现成单个服务器。当它们为软件时,可以实现成多个软件或软件模块(例如用来提供分布式服务),也可以实现成单个软件或软件模块。在此不做具体限定。
本实施例中,定位授时装置可以是北斗卫星,时标接收机101可以是带PPS(Pulse Per Second,秒脉冲)的北斗定位接收机,例如时标接收机101是支持北斗三代的时标接收机;可选地,定位授时装置可以是全球定位系统,通过全球定位系统可以实现高精度的定位和授时。
本实施例中,内部时间是时间同步装置整体运行的时钟源,当时 间同步装置包括多个模块时,每个模块以该时钟源作为基础进行时间同步。在本实施例中,将内部时间设置为定位授时装置的时间,可以使时间同步装置中所有的模块具有一个相同的内部时间。
本实施例中,信息传输时间是时间同步装置将报文发送给车联网单元的用时,信息传输时间可以发送信息的时间或者接收信息的时间,当时间同步装置与车联网单元通过无线网络通信时,通信信息中具有表征信息传输时间的时间戳,基于两者时间戳的不同,确定两者的信息传输误差,并在两者进行通信时,在信息传输时间补偿该信息传输误差(例如加上信息传输误差)可以使时间同步装置中所有车联网单元具有高精度的时间同步。
本公开的实施例提供的时间同步装置,包括:时标接收机,时标接收机用于接收定位授时装置发送的定位授时信息;时间同步模块,与时标接收机连接,时间同步模块用于通过定位授时信息将内部时间与定位授时装置的时间进行同步;时间补偿模块,与时间同步模块连接,时间补偿模块用于根据与车联网单元之间的信息传输时间,补偿车联网单元之间的信息传输误差。由此,通过时标接收机获取定位授时装置的定位授时信息,保证了内部时间与定位授时装置的时间的同步,提高了车联网时间同步的可靠性;进一步,根据与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差,通过对信息传输时间的补偿,可以在信息传输过程中,保证信号传输误差被补偿,提高了信息传输的准确性。
在本实施例的一些可选实现方式中,如图2所示,时标接收机200包括:时标处理单元201以及与时标处理单元201电连接的天线模块202、串口模块203、时标处理单元具有时标端口P;
天线模块202上的天线T用于接收定位授时装置发送的定位授时信息,并将定位授时信息发送给时标处理单元201。本实施例中,天线T接收的定位授时信息为射频信号,通过天线模块202对射频信号进行处理,可以得到以电平信号表示的定位授时信息。
时标处理单元201对定位授时信息进行数据分析,得到第一定位 授时数据和时钟同步信号,将第一定位授时数据发送给串口模块203,将时钟同步信号发送给时标端口P;串口模块203接收第一定位授时数据之后,将第一定位授时数据进行串行数据变换,通过串口U输出第二定位授时数据,第二定位授时数据为串行数据;时标端口P用于输出时钟同步信号PPS。
本实施例中,串口模块203又称为通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,简称UART),是一种异步收发传输器,是时标接收机200的一部分。它将要传输的资料在串行通信与并行通信之间加以转换。作为把并行输入信号转成串行输出信号的芯片,串口模块203集成在时标接收机200中。
本实施例中,天线模块202通过天线T接收定位授时装置发送的定位授时信息,将定位授时信息转化为时标处理单元201可识别的信号。
本实施例中,当定位授时装置是北斗卫星时,时标接收机200通过天线T接收到北斗卫星的定位和授时数据后,通过串口模块的串口发送定位和授时数据,同时输出1PPS给后面的时标处理单元201进行时间对齐校正。比如时标接收机200接收整秒授时和1PPS,时标处理单元201收到1PPS后将自己的毫秒计时器(车辆计数器的一种)清零,用北斗卫星发来的年月日时分秒覆盖本机的内部时间,此内部时间即为车辆的时钟源。北斗三代授时时间精度在20ns以内。本实施例中,串口模块一般是通过GPRMC(推荐定位信息,是一条包含世界标准时间(精确到秒)、经纬度定位数据的标准格式报文)输出时间戳,主机抓取到,并授时到本地会有误差,通过1PPS的校准,会消除这个误差,并且通过1PPS校准属于硬触发,大大提高了与定位授时装置的时间对齐的精确。
本实施例提供的时标接收机,接收定位授时装置发送的定位授时信息,通过对定位授时信息进行处理之后,通过串口模块的串口和时标端口分别输出第二定位授时数据和时钟同步信号,为各个车联网单元中始终的同步提供了可靠依据。
在本实施例的一些可选实现方式中,如图3所示,时间同步模块包括:内部计时器、计算处理器、通信单元、补偿单元。
其中,内部计时器,用于实时计时内部时间,内部计时器可以是毫秒计时器,毫秒计时器可以基于不同的初始的内部时间进行继续计时,例如,当内部时间为00:00:00时,内部计时器从00:00:00开始计时;当内部时间为00:00:06时,内部计时器从00:00:06开始计时。
计算处理器,分别与时标接收机、内部计时器连接,计算处理器用于在接收到时钟同步信号和第二定位授时数据后,基于时钟同步信号清零内部计时器,并采用第二定位授时数据覆盖该车辆的内部时间。内部计时器从覆盖后的该车辆的内部时间开始继续计时。通信单元,与计算处理器连接,用于通过预定的时间协议与计算处理器进行时间同步。补偿单元,与通信单元连接,并在内部时间与时标接收机的时间同步之后,与车联网单元进行通信,补偿与车联网单元之间的信息传输误差。
本实施例中,预定的时间协议可以采用PTP(precise time protocol,精确时间协议)协议,PTP协议可以打到亚微秒级精度,PTP协议的基本原理是:主从时钟之间周期性的进行同步信息的交换,同时精确捕获信息包的发出和接收时间,并加盖时间戳信息。一旦从时钟接收到同步信息包,便可以从中提取到时间戳信息,并据此计算出自己与主时钟的时差以及网络中的传输延时,从而进行本地时钟校准。
本实施例中,内部时间与定位授时装置的时间同步是计算处理器通过PPS和PTP的方式进行时间同步,时间精度在100ns以内;当时间同步模块是车辆及车载子系统时,通信单元可以是网络交换机,如果网络交换机使用支持基于硬件的IEEE1588PTPv2类型交换机,时间精度可以实现几十纳秒。计算处理器和车辆及车载子系统中的车载设备OBU之间也是通过PTP进行时间同步,车载设备获得此时间基准后通过无线网络与其它车辆或路侧单元进行数据传输。
可选地,预定的时间协议还可以采用NTP(Network Time Protocol,网络时间协议),NTP是用来使计算机时间同步化的一种协议,它提供 了高精准度的时间同步。
本可选实现方式提供的车联网单元包括内部计时器、计算处理器、通信单元、补偿单元,计算处理器基于时钟同步信号和第二定位授时数据,基于时钟同步信号清零内部计时器,并采用第二定位授时数据覆盖车辆的内部时间,通信单元通过预定的时间协议与计算处理器进行时间同步,补偿单元补偿与车联网单元之间的信息传输误差,由此,时间同步模块在接收到时钟同步信号和第二定位授时数据后,以计算处理器生成的时钟源作为整体时钟,保证了内部时间与定位授时装置的时间的统一性。
针对上述时间同步装置,本公开还提供的一种无人机,如图4所示,无人机400包括时间同步装置401。
本实施例中,时间同步装置401包括时标接收机、时间同步模块以及时间补偿模块,通过时标接收机获取定位授时装置的定位授时信息,保证了无人车内部时间与定位授时装置的时间的同步;进一步,通过时间补偿模块根据与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差,通过对信息传输时间的补偿,可以在车联网的联网信息传输过程中,保证无人车的信号传输误差被补偿,提高了无人车信息传输的准确性。
在本实施例的一些可选实现方式中,上述无人车包括:车载设备,车载设备用于通过时间协议与时间同步装置进行时间同步。
车载设备又称车载单元,就是采用DSRC(Dedicated Short Range Communication)技术,与车联网单元进行通讯的微波装置。在高速自动收费系统中,车载设备放在车上,路边架设路侧单元(Road Side Unit,简称RSU),相互之间通过微波进行通讯。车辆高速通过RSU的时候,车载设备和RSU之间用微波通讯。
本可选实现方式提供的无人车,通过时间协议与时间同步装置进行时间同步,可以保证无人车中的车载设备与定位授时装置的时间的同步,保证了无人车整体的时间统一性。
可选地,无人车还可以包括:传感器1、传感器2、传感器3…传感器n(n为大于3的自然数),其中,基于各个传感器(传感器1、传感器2、传感器3…传感器n)通信的处理器(如计算处理器、网络交换机)不同,各个传感器与处理器之间的时间同步方式不同,例如,传感器1、传感器2分别与无人车中的计算处理器,则传感器1、传感器2通过计算处理器发送的时钟同步信号和第二定位授时数据与计算处理器进行时间同步。传感器3…传感器n分别与无人车中的网络交换机电连接,传感器3…传感器n通过预定的时间协议与网络交换机进行时间同步。
针对上述时间同步装置,本公开还提供的一种路侧单元,其中,路侧单元包括时间同步装置。
本实施例中,路侧单元按照位置不同实现的功能不同,在高速公路、车场管理中,在路侧安装RSU,建立无人值守的快速专用车道;在高速路电子收费系统中,高速路的路侧安装路侧单元,采用DSRC技术,与车载单元进行通讯,实现车辆身份识别,电子扣分的电子扣分的装置。
本实施例中,路侧单元中的时间同步装置包括时标接收机、时间同步模块以及时间补偿模块,通过时标接收机获取定位授时装置的定位授时信息,保证了路侧单元内部时间与定位授时装置的时间的同步;进一步,通过时间补偿模块根据与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差,通过对信息传输时间的补偿,可以在车联网的联网信息传输过程中,保证路侧单元的信号传输误差被有效补偿,提高了路侧单元信息传输的准确性。
在本实施例的一些可选实现方式中,通讯子单元还用于与各个车联网单元进行通信,补偿与各个车联网单元之间的信息传输误差。
本可选实现方式中,通过通讯子单元与各个车联网单元通信,确定通讯双方发送时间戳和接收时间戳,通过双方的发送时间戳和接收时间戳确定网络时延,在下次通信时,通过在通信的报文的时间戳中 增加网络时差,可以达到补偿与各个车联网单元之间的信息传输误差。
本实施例中,补偿与各个车联网单元之间的信息传输误差可以是通过计算得到的固定的网络时延进行每次通信补偿。可选地,还可以周期计算不同时间点的网络时延,并基于历史的网络时延(例如与历史的网络时延求平均,得到平均网络时延),(采用平均网络时延)补偿与各个车联网单元之间的信息传输误差。
本可选实现方式中,通过车联网单元中的通讯子单元补偿与各个车联网单元之间的信息传输误差,可以使整个时间同步装置具有较可靠的时钟,保证了各个车联网单元时间的同步性。
针对上述无人车以及路侧单元,本公开还提供了一种车联网系统,如图5所示为本公开的车联网系统的一个实施例的结构示意图,该系统包括:至少一个无人车501,至少一个路侧单元502,分别与无人车501、路侧单元502进行通信的服务器(图中未示出),服务器控制无人车501的内部时间、路侧单元502的内部时间分别与定位授时装置503的时间进行同步;无人车501基于与路侧单元之间的信息传输时间,补偿与路侧单元之间的信息传输误差;或者路侧单元502基于与无人车之间的信息传输时间,补偿与路侧单元之间的信息传输误差。
应该理解,图5中的无人车501、路侧单元502的数目仅仅是示意性的。根据实现需要,可以具有任意数目的车联网单元。
本实施例中,至少一个无人车中的无人车501通过网络(如图5中的双箭头)进行通信,网络用以在各个无人车501之间提供通信链路的介质。网络可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
本实施例中,用户可以在无人车501上通过网络与服务器进行交互,以接收或发送消息(内部时间是否与定位授时装置进行同步的控制信息)等。无人车501上可以安装有各种客户端应用,例如模型训练类应用、图像识别应用、购物类应用、支付类应用、网页浏览器和即时通讯工具等。
如图5所示,车联网系统500中的每个无人车501以及路侧单元 502中均设置有本公开提供的时间同步装置5011,时间同步装置5011可以实现无人车501的内部时间、路侧单元502的内部时间分别与定位授时装置503的时间进行同步。
在本实施例的一些可选实现方式中,上述定位授时装置可以为北斗卫星导航系统,上述北斗卫星导航系统的授时时间精度小于或等于20ns。
北斗卫星导航系统具有一下特点:1.同时具备定位与通讯功能,不需要其他通讯系统支持。2.覆盖范围大,没有通讯盲区。3.适合集团用户大范围监控管理和数据采集。4.融合了北斗导航定位系统和卫星增强系统量大资源,比全球定位系统应用更加丰富。5.自主系统,安全、可靠,保密性强。
本实施例中,在定位授时装置是北斗卫星且任意两个车联网单元(无人车或路侧单元)采用C-V2X(Cellular-V2X,蜂窝车联网,基于3G/4G/5G等蜂窝通信技术演进形成的车用无线通信技术)通信时,基于各个车联网单元中支持北斗三代的时标接收机的高精度定位和授时技术,并通过GPRMC+PPS技术可以获取到高精度时钟源,减去C-V2X的传输延时,实现了V2X(Vehicle to Everything,车用无线通信技术,实现车与车、车与路、车与人、车与网相连接的新一代信息通信技术)的高精度时间同步。
本可选实现方式提供的车联网系统,采用北斗卫星导航系统为各个车联网单元提供定位授时信息,提高了车联网系统整体的授时时间精度。
针对上述时间同步装置,本公开还提供了一种车联网时间同步方法,通过本车联网时间同步方法可以使时间同步装置中的各个车联网单元与定时授时装置达到时间同步,如图6,示出了根据本公开的时间同步方法的一个实施例的流程600,该时间同步方法包括以下步骤:
步骤601,控制时标接收机接收定位授时信息。
本实施例中,车联网时间同步方法运行于其上的执行主体上安装 有时标接收机,该时标接收机用于接收定位授时装置发送的定位授时信息,定位授时装置可以是北斗卫星,时标接收机可以是带PPS的北斗定位接收机。
步骤602,基于定位授时信息,将内部时间与定时授时装置的时间进行同步。
本实施例中,车联网时间同步方法运行于其上的执行主体对定位授时信息进行数据分析,得到适用于执行主体的电平信息和时钟同步信号,在时钟同步信号的指导下,对内部时间进行覆盖。
在执行主体对应的车联网单元不同,同步方法不同,在执行主体为车辆及车载子系统时,上述将内部时间与定时授时装置的时间进行同步,包括:对定位授时信息进行数据分析,得到第一定位授时数据和时钟同步信号,将第一定位授时数据发送给串口模块,将时钟同步信号发送给时标端口,以使串口模块对第一定位授时数据进行串行数据变换,为执行主体中所有模块提供时钟源。
步骤603,基于与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差。
本实施例中,各个车联网单元分别独立,各个车联网单元具有各自的内部时间,每个车联网单元的内部时间可能相同,也可能具有时间偏差,该时间偏差会作用在信息传输误差,引起任意两个车联网单元的通信的不同步。
本公开的实施例提供的时间同步方法,控制时标接收机接收定位授时信息;通过定位授时信息,将内部时间与定时授时装置的时间进行同步;在内部时间与定位授时装置的时间同步之后,基于与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差。由此,通过时标接收机获取定位授时装置的定位授时信息,保证了内部时间与定位授时装置的时间的同步;进一步,基于与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差,可以在车联网的联网信息传输过程中,保证信号传输误差被补偿,提高了传输的准确性。
在本公开的一些可选实施例中,上述信息传输误差包括:网络延时,上述基于与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差,包括:
与车联网单元进行初次通信,得到车联网单元的初次时间戳;将初次通信时的内部时间减去初次时间戳,得到网络延时;在与车联网单元进行后续通信时,将车联网单元的后续时间戳减去网络延时,得到补偿后的时间戳。
本实施例中,当任意两个车联网单元通信时,记录报文数据的产生时间,在报文数据传输时,每一帧报文数据加上这个时间记录,形成数据的时间戳。本实施例中,初次时间戳可以是一个车联网单元的接收的报文数据的接收时间戳,也可以是发送的报文数据的发送时间戳,其中,接收时间戳和发送时间戳是相对的概念,例如,任意两个车联网单元初次通信时,一个车联网单元向另一个车联网单元发送报文数据,此时一个车联网单元记录发送报文数据的内部时间,并在通信之后,得到另一个车联网单元发送的接收信息的时间戳(另一个车联网单元的接收时间戳),将一个车联网单元的发送报文的内部时间减去另一个车联网单元的时间戳,得到网络延时。
再如,任意两个车联网单元初次通信时,一个车联网单元接收另一个车联网单元发送的报文数据,此时一个车联网单元记录接收报文数据的内部时间,并在通信之后,得到另一个车联网单元发送的发送信息的时间戳(另一个车联网单元的发送时间戳),将一个车联网单元的发送报文的内部时间减去另一个车联网单元的时间戳,得到网络延时。
在车联网系统中,每个车联网单元(如车辆及车载子系统,或RSU设备)上都安装带PPS功能的北斗定位接收机,这样所有的设备都有了统一的北斗授时时钟源。设备之间通过C-V2X进行通信,通信信息里带有时间戳,通过本机时间减去初次时间戳,就可以推算出C-V2X的网络延时,实现高精度的V2X时间同步。
本可选实现方式提供的补偿与车联网单元之间的信息传输误差的方法,通过与车联网单元通信,确定与车联网单元的网络延时,在与 车联网单元进行后续通信时减去网络延时,可以使所有车联网单元保证真实通信时间的同步。
在车联网单元进行通信时,除了两者之间的网络延时,两者的内部时间还可能具有差别,该差别即为时间偏差,在本公开的一些可选实现方式中,上述信息传输误差包括:时间偏差和网络延时,上述基于与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差,包括:
与车联网单元进行第一次通信,得到车联网单元的接收时间戳和对应第一次通信的第一内部时间(第一内部时间是执行主体发送第一次通信的报文数据的内部时间,车联网单元的接收时间戳是车联网单元接收到第一次通信的报文数据的时间);与车联网单元进行第二次通信,得到车联网单元的发送时间戳和对应第二次通信的第二内部时间(第二内部时间是执行主体接收第二次通信的报文数据的内部时间,车联网单元的发送时间戳是车联网单元发送第二次通信的报文数据的时间);基于第一内部时间、第二内部时间、接收时间戳和发送时间戳,得到时间偏差和网络延时;在与车联网单元进行后续通信时,将车联网单元的后续时间戳减去时间偏差和网络延时,得到车联网单元的补偿后的时间戳。
本实施例中,时间偏差为执行主体与车联网单元之间内部时间的时间偏差,例如,车联网单元滞后于执行主体时间偏差所示的时间;网络延迟,是数据在通信过程中的延迟,一般地,网络延迟不变。
时间偏差和网络延时具体过程如下:接收时间戳-第一内部时间=时间偏差+网络延时;第二内部时间-发送时间戳=网络延时-时间偏差,则网络延时=1/2(接收时间戳-第一内部时间)+1/2(第二内部时间-发送时间戳);时间偏差=1/2(接收时间戳-第一内部时间)-1/2(第二内部时间-发送时间戳)。
可选地,由于任意两个车联网单元之间时间偏差的不固定性,还可以周期性的计算执行主体与车联网单元之间的时间偏差和网络延时。
本可选实现方式提供的补偿与车联网单元之间的信息传输误差的 方法,通过与车联网单元通信,确定与车联网单元的时间偏差和网络延时,在与车联网单元进行后续通信时减去时间偏差和网络延时,可以使所有车联网单元保证真实通信时间的同步。
下面参考图7,其示出了适于用来实现本公开的实施例的电子设备700的结构示意图。
如图7所示,电子设备700可以包括处理装置(例如中央处理器、图形处理器等)701,其可以根据存储在只读存储器(ROM)702中的程序或者从存储装置708加载到随机访问存储器(RAM)703中的程序而执行各种适当的动作和处理。在RAM703中,还存储有电子设备700操作所需的各种程序和数据。处理装置701、ROM 702以及RAM 703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。
通常,以下装置可以连接至I/O接口705:包括例如触摸屏、触摸板、键盘、鼠标、等的输入装置706;包括例如液晶显示器(LCD,Liquid Crystal Display)、扬声器、振动器等的输出装置707;包括例如磁带、硬盘等的存储装置708;以及通信装置709。通信装置709可以允许电子设备700与其他设备进行无线或有线通信以交换数据。虽然图7示出了具有各种装置的电子设备700,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。图7中示出的每个方框可以代表一个装置,也可以根据需要代表多个装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置709从网络上被下载和安装,或者从存储装置708被安装,或者从ROM 702被安装。在该计算机程序被处理装置701执行时,执行本公开的实施例的方法中限定的上述功能。
需要说明的是,本公开的实施例的计算机可读介质可以是计算机 可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开的实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开的实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(Radio Frequency,射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述服务器中所包含的;也可以是单独存在,而未装配入该服务器中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该服务器执行时,使得该服务器:控制时标接收机接收定位授时信息;基于定位授时信息,将内部时间与定时授时装置的时间进行同步;基于与车联网单元之间的信息传输时间,补偿与车联网单元之间的信息传输误差。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的实施例的操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的 软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开的各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开的实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种时间同步装置,包括时标接收机、时间同步模块、时间补偿模块。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,时标接收机还可以被描述为“用于接收定位授时装置发送的定位授时信息”的单元。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (14)

  1. 一种时间同步装置,所述装置包括:
    时标接收机,所述时标接收机用于接收定位授时装置发送的定位授时信息;
    时间同步模块,与所述时标接收机连接,所述时间同步模块用于通过所述定位授时信息将内部时间与所述定位授时装置的时间进行同步;
    时间补偿模块,与所述时间同步模块连接,所述时间补偿模块用于根据与车联网单元之间的信息传输时间,补偿与所述车联网单元之间的信息传输误差。
  2. 根据权利要求1所述的装置,其中,所述时标接收机包括:时标处理单元以及与所述时标处理单元电连接的天线模块、串口模块、所述时标处理单元具有时标端口;
    所述天线模块用于接收所述定位授时装置发送的定位授时信息,并将所述定位授时信息发送给所述时标处理单元;
    所述时标处理单元对所述定位授时信息进行数据分析,得到第一定位授时数据和时钟同步信号,将所述第一定位授时数据发送给所述串口模块,将所述时钟同步信号发送给所述时标端口;
    所述串口模块接收所述第一定位授时数据,进行串行数据变换,输出第二定位授时数据;
    所述时标端口用于输出所述时钟同步信号。
  3. 根据权利要求2所述的装置,其中,所述时间同步模块包括:
    内部计时器,用于实时计时所述内部时间;
    计算处理器,分别与所述时标接收机、所述内部计时器电连接,所述计算处理器用于在接收到所述时钟同步信号和所述第二定位授时数据后,基于所述时钟同步信号清零所述内部计时器,并采用所述第二定位授时数据覆盖该车辆的内部时间;
    通信单元,与所述计算处理器连接,用于通过预定的时间协议与所述计算处理器进行时间同步;
    补偿单元,与所述通信单元连接,并在所述内部时间与所述时标接收机的时间同步之后,与所述车联网单元进行通信,补偿与所述车联网单元之间的信息传输误差。
  4. 一种无人车,其中,所述无人车包括权利要求1-3任一项所述的时间同步装置。
  5. 根据权利要求4所述的无人车,其中,所述无人车包括:车载设备;
    所述车载设备用于通过时间协议与所述时间同步装置进行时间同步。
  6. 一种路侧单元,其中,所述路侧单元包括权利要求1-3任一项所述的时间同步装置。
  7. 一种车联网系统,所述系统包括:
    至少一个如权利要求4或5所述的无人车;
    至少一个如权利要求6所述的路侧单元;
    服务器,分别与所述无人车、所述路侧单元通信,控制所述无人车的内部时间、所述路侧单元的内部时间分别与定位授时装置的时间进行同步;
    所述无人车基于与所述路侧单元之间的信息传输时间,补偿与所述路侧单元之间的信息传输误差;或者
    所述路侧单元基于与所述无人车之间的信息传输时间,补偿与所述路侧单元之间的信息传输误差。
  8. 根据权利要求7所述的系统,其中,所述定位授时装置为北斗卫星导航系统,所述北斗卫星导航系统的授时时间精度小于或等于20ns。
  9. 一种时间同步方法,所述方法包括:
    控制时标接收机接收定位授时信息;
    基于所述定位授时信息,将内部时间与定时授时装置的时间进行同步;
    基于与车联网单元之间的信息传输时间,补偿与所述车联网单元之间的信息传输误差。
  10. 根据权利要求9所述的方法,其中,所述信息传输误差包括:网络延时,所述基于与车联网单元之间的信息传输时间,补偿与所述车联网单元之间的信息传输误差,包括:
    与车联网单元进行初次通信,得到所述车联网单元的初次时间戳;
    将所述初次通信时的内部时间减去所述初次时间戳,得到所述网络延时;
    在与所述车联网单元进行后续通信时,将所述车联网单元的后续时间戳减去所述网络延时,得到补偿后的时间戳。
  11. 根据权利要求9或10所述的方法,其中,所述信息传输误差包括:时间偏差和网络延时,所述基于与车联网单元之间的信息传输时间,补偿与所述车联网单元之间的信息传输误差,包括:
    与车联网单元进行第一次通信,得到所述车联网单元的接收时间戳和对应所述第一次通信的第一内部时间;
    与所述车联网单元进行第二次通信,得到所述车联网单元的发送时间戳和对应所述第二次通信的第二内部时间;
    基于所述第一内部时间、所述第二内部时间、所述接收时间戳和所述发送时间戳,得到所述时间偏差和所述网络延时;
    在与所述车联网单元进行后续通信时,将所述车联网单元的后续时间戳减去所述时间偏差和所述网络延时,得到所述车联网单元的补偿后的时间戳。
  12. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,其上存储有一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求9-11中任一项所述的方法。
  13. 一种计算机可读介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求9-11中任一项所述的方法。
  14. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如权利要求9-11中任一项所述的方法。
PCT/CN2022/140748 2022-07-25 2022-12-21 时间同步装置和方法、无人车、路侧单元、车联网系统 WO2024021457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210884339.7 2022-07-25
CN202210884339.7A CN115242344A (zh) 2022-07-25 2022-07-25 时间同步装置和方法、无人车、路侧单元、车联网系统

Publications (1)

Publication Number Publication Date
WO2024021457A1 true WO2024021457A1 (zh) 2024-02-01

Family

ID=83675413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140748 WO2024021457A1 (zh) 2022-07-25 2022-12-21 时间同步装置和方法、无人车、路侧单元、车联网系统

Country Status (2)

Country Link
CN (1) CN115242344A (zh)
WO (1) WO2024021457A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115242344A (zh) * 2022-07-25 2022-10-25 北京京东乾石科技有限公司 时间同步装置和方法、无人车、路侧单元、车联网系统
CN117040678B (zh) * 2023-10-10 2023-12-22 北京理工大学 一种基于硬件时间同步的时延控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170078990A1 (en) * 2014-05-30 2017-03-16 Huawei Technologies Co., Ltd. Synchronization method, synchronization appratus, and base station
CN109586830A (zh) * 2018-11-22 2019-04-05 中电科技扬州宝军电子有限公司 一种基于北斗导航系统和ptp的高铁同步授时方法及装置
CN110570674A (zh) * 2019-09-06 2019-12-13 杭州博信智联科技有限公司 车路协同数据交互方法、系统、电子设备及可读存储介质
WO2020200002A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 通信的方法和终端装置
CN112394634A (zh) * 2021-01-21 2021-02-23 国汽智控(北京)科技有限公司 车载计算平台的授时方法、装置、设备及存储介质
CN112557049A (zh) * 2019-09-10 2021-03-26 广州中广国科测控技术有限公司 一种车联网的信息同步采集控制方法
CN115242344A (zh) * 2022-07-25 2022-10-25 北京京东乾石科技有限公司 时间同步装置和方法、无人车、路侧单元、车联网系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170078990A1 (en) * 2014-05-30 2017-03-16 Huawei Technologies Co., Ltd. Synchronization method, synchronization appratus, and base station
CN109586830A (zh) * 2018-11-22 2019-04-05 中电科技扬州宝军电子有限公司 一种基于北斗导航系统和ptp的高铁同步授时方法及装置
WO2020200002A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 通信的方法和终端装置
CN110570674A (zh) * 2019-09-06 2019-12-13 杭州博信智联科技有限公司 车路协同数据交互方法、系统、电子设备及可读存储介质
CN112557049A (zh) * 2019-09-10 2021-03-26 广州中广国科测控技术有限公司 一种车联网的信息同步采集控制方法
CN112394634A (zh) * 2021-01-21 2021-02-23 国汽智控(北京)科技有限公司 车载计算平台的授时方法、装置、设备及存储介质
CN115242344A (zh) * 2022-07-25 2022-10-25 北京京东乾石科技有限公司 时间同步装置和方法、无人车、路侧单元、车联网系统

Also Published As

Publication number Publication date
CN115242344A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2024021457A1 (zh) 时间同步装置和方法、无人车、路侧单元、车联网系统
US11204428B2 (en) Communication for high accuracy cooperative positioning solutions
WO2020135382A1 (zh) 多传感器同步授时系统、方法、装置及电子设备
CN112672415B (zh) 多传感器时间同步方法、装置、系统、电子设备及介质
WO2021031604A1 (zh) 仿生眼多通道imu与相机硬件时间同步方法和装置
EP3614176B1 (en) A hardware centralized time synchronization hub for an autonomous driving vehicle
US10791543B2 (en) Service discovery and provisioning for a macro-vehicular cloud
US10863469B2 (en) System and method for accurate timestamping of virtual reality controller data
EP3564921B1 (en) Sensing system and time synchronization method
US10816995B2 (en) GPS based high precision timestamp generation circuit for an autonomous driving vehicle
EP3614222B1 (en) A time source ranking system for an autonomous driving vehicle
US11029165B2 (en) Sensor integration and synchronization unit for an autonomous driving vehicle
US10996681B2 (en) Time source recovery system for an autonomous driving vehicle
WO2021047271A1 (zh) 一种时间同步方法及装置
CN112146679A (zh) 用于提高自动驾驶平台的传感器i/o覆盖率的柔性测试板
CN111860604A (zh) 数据融合方法、系统及计算机存储介质
CN113992469B (zh) 数据融合方法、装置、电子设备和计算机可读介质
WO2021254185A1 (zh) 一种车辆定位方法、装置、设备及存储介质
CN116015523A (zh) 一种时间同步的方法、装置及电子设备
EP4095488A1 (en) Positioning method and apparatus
CN116828281A (zh) 车载摄像头系统数据处理方法、装置、设备及介质
WO2022237502A1 (zh) 一种同步方法和装置
CN115865252B (zh) 一种可设定周期的高精度gnss时间同步方法
Duarte et al. An architecture for monitoring and improving public transportation systems
US11968638B2 (en) Providing a clock value to a client device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952889

Country of ref document: EP

Kind code of ref document: A1