WO2024021427A1 - 转子、发电机以及风力发电机组 - Google Patents

转子、发电机以及风力发电机组 Download PDF

Info

Publication number
WO2024021427A1
WO2024021427A1 PCT/CN2022/137197 CN2022137197W WO2024021427A1 WO 2024021427 A1 WO2024021427 A1 WO 2024021427A1 CN 2022137197 W CN2022137197 W CN 2022137197W WO 2024021427 A1 WO2024021427 A1 WO 2024021427A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnetic pole
hole
connecting shaft
radial channel
Prior art date
Application number
PCT/CN2022/137197
Other languages
English (en)
French (fr)
Inventor
彭亮
李术林
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Publication of WO2024021427A1 publication Critical patent/WO2024021427A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This application relates to the technical field of wind power generation, and in particular to a rotor, a generator and a wind power generator set.
  • the generator will generate heat when it is working. To ensure that the generator is not affected by the heat and works normally, the generator needs to be cooled and dissipated.
  • axial ventilation cooling is mostly used for generator cooling in the existing technology.
  • Embodiments of the present application provide a rotor, a generator and a wind turbine generator set.
  • the rotor can utilize the wind friction loss generated during rotation to improve the cooling and heat dissipation effect.
  • a rotor including a rotor bracket, a seal, and a magnetic pole assembly.
  • the rotor bracket includes a connecting shaft and a support ring arranged around the connecting shaft.
  • the support ring is provided with a radial penetrating hole along the connecting shaft.
  • the first through hole, the two ends of the support ring in the axial direction of the connecting shaft are respectively provided with seals, the seals, the connecting shaft and the support ring together form an air chamber connected to the first through hole, and the magnetic pole assembly is connected to The support ring is away from the outer circumferential surface of the connecting shaft.
  • the magnetic pole assembly has a first radial channel extending in the radial direction.
  • the first radial channel is connected to the first through hole, wherein one of the two seals is provided with a seal that is connected to the wind.
  • the second through hole communicates with the cavity.
  • At least the sealing member provided with the second through hole among the two sealing members is in the shape of a conical barrel and is recessed into the air cavity.
  • the support ring includes a coaxially arranged middle partition plate and a magnetic yoke.
  • the length of the magnetic yoke is greater than the length of the middle partition plate.
  • the middle partition plate is connected between the magnetic yoke and the connecting shaft.
  • the first through hole, the magnetic pole assembly and the sealing member are all provided on the magnetic yoke, and the middle partition plate is provided with a third through hole that penetrates in the axial direction.
  • the rotor support further includes a reinforcing member disposed in the wind cavity, and the reinforcing member is connected between at least one sealing member, the middle partition plate and the magnetic yoke.
  • the seal has two or more second through holes, and the two or more second through holes are spaced apart from each other along the circumferential direction of the connecting shaft.
  • the magnetic pole assembly includes a plurality of magnetic pole units, each magnetic pole unit is connected to a support ring, and a first radial channel is formed between two adjacent magnetic pole units along the axial direction.
  • the first through hole is a strip hole extending in the axial direction.
  • the magnetic pole unit includes a box body and two magnetic pole blocks spaced apart and oppositely arranged in the circumferential direction of the rotor.
  • the magnetic pole blocks are arranged in the box body, and the polarities of the two magnetic pole blocks are opposite.
  • the box body includes a groove and accommodating grooves arranged oppositely on both sides of the groove in the circumferential direction.
  • the groove is formed by a recess on the outer surface of the box body away from the rotor bracket toward the side where the rotor bracket is located.
  • the accommodating groove is along the Extending axially, each pole block is arranged in one of the receiving grooves.
  • At least two magnetic pole units are spaced apart in the axial direction and sandwiched with separators to form a first radial channel connected to the first through hole between two adjacent magnetic pole units.
  • the box body has latching grooves on both sides in the circumferential direction, and fixing parts are provided on the support ring.
  • the fixing parts extend axially and are spaced apart in the circumferential direction.
  • the latching grooves are engaged with the fixed parts so that the pole unit is connected to the support ring.
  • an embodiment of the present application provides a generator, including a stator and a rotor as described above.
  • the stator includes a stator bracket and an iron core and windings arranged on the stator bracket.
  • a second radial channel is formed between the iron cores.
  • the rotor and the stator are coaxially arranged and rotationally matched, and the first radial channel is connected with the second radial channel.
  • the generator further includes a flow guide device, the stator is arranged around the rotor, the flow guide device is disposed on a side of the stator away from the rotor, and the flow guide device is configured to guide the external airflow through the first radial channel in sequence and a second radial channel discharge.
  • the windings protrude from the iron core at both ends in the axial direction and form corner portions.
  • the stator bracket is provided with air vents corresponding to the corner portions.
  • the air guide device guides external airflow to enter through the air vents and exchange heat with the corner portions.
  • an embodiment of the present application provides a wind power generator, including the generator as described above, or the rotor as described above.
  • the rotor, generator and wind turbine set proposed in the embodiment of the present application are provided with seals at both ends of the support ring and a second through hole is provided on one of the seals to form a second through hole from the outside world.
  • a second through hole is provided on one of the seals to form a second through hole from the outside world.
  • the parts of the rotor structure that can produce wind friction loss will generate dynamic pressure during the rotation process, and then The external airflow is driven into the air chamber inside the rotor bracket through the second through hole along the axial direction, and then the airflow is driven into the magnetic pole assembly along the radial direction through the first through hole on the outer circumferential surface of the support ring, and finally flows through the first through hole on the magnetic pole assembly.
  • the radial channel discharge makes full use of the dynamic pressure generated by wind friction loss, increases the air volume of the cooling medium, and achieves full heat dissipation of the rotor.
  • the radial heat dissipation cooling method can also prevent the coil ends of the stator from preheating the cooling medium, reducing power consumption and improving the heat dissipation effect.
  • Figure 1 is a schematic structural diagram of a wind turbine generator according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the connection structure of the gearbox and generator according to one embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a rotor according to an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of another rotor according to an embodiment of the present application.
  • Figure 5 is a partial structural schematic diagram of a rotor according to an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a support ring according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of the arrangement structure of a magnetic pole assembly according to an embodiment of the present application.
  • Figure 8 is a schematic connection diagram of a magnetic pole unit according to an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a magnetic pole unit according to an embodiment of the present application.
  • Figure 10 is a partial enlarged schematic diagram of position A in Figure 4.
  • Figure 11 is a schematic diagram of an air-cooling heat dissipation system of a generator according to an embodiment of the present application.
  • 3-magnetic pole assembly 31-magnetic pole unit; 32-box body; 33-magnetic pole block; 32a-groove; 32b-accommodating groove; 32c-latching groove; 34-separator.
  • Existing generator rotors mostly use axial ventilation cooling, but the actual cooling effect is poor. Radial air cooling of the magnetic pole is a good technical improvement direction.
  • the radial air cooling of existing generator rotors mostly uses forced air cooling circuits.
  • the circuit is usually that air (low-temperature cooling medium) enters the interior of the motor through the air inlets at both ends or one end of the stator, and passes through the ends of the windings at both ends or the winding at one end. The end enters the air gap of the motor to cool the magnetic poles. Then, driven by the negative pressure generated by the cooling fan, it enters the radial ventilation channel of the stator core, cools the stator core and winding straight section, and finally flows to the outside of the motor.
  • air low-temperature cooling medium
  • the heat loss at the winding ends usually accounts for a very large proportion, which results in poor cooling of temperature-sensitive magnetic poles (especially NdFeB permanent magnets).
  • temperature-sensitive magnetic poles especially NdFeB permanent magnets.
  • the outer surface of the rotor, radial ribs and other components generate friction with the air. The air will produce resistance to the rotating parts, causing a certain amount of wind friction loss, resulting in poor actual cooling effect.
  • Wind friction loss refers to the friction between the outer surface of the rotor, cooling fan, radial ribs, etc. and the air during the operation of the generator. The air will produce resistance to the rotating parts. The work consumed to overcome these resistances is called wind loss and friction. In the generator test, wind friction loss is counted in the mechanical loss.
  • embodiments of the present application provide a new rotor, generator and wind turbine generator set.
  • the rotor can utilize the wind friction loss generated during rotation to improve the cooling and heat dissipation effect.
  • FIG. 1 is a schematic structural diagram of a wind turbine 400 according to an embodiment of the present application.
  • This embodiment of the present application provides a wind turbine 400, which includes a tower 40a, a nacelle 40b, a generator 40c, and an impeller 40d.
  • the drum 40a is connected to the wind turbine foundation
  • the nacelle 40b is arranged on the top of the tower 40a
  • the generator 40c is arranged on the nacelle 40b.
  • the generator 40c may be located outside the nacelle 40b.
  • the generator 40c may also be located inside the nacelle 40b.
  • the impeller 40d includes a hub 401d and a plurality of blades 402d connected to the hub 401d.
  • the entire impeller 40d When the wind force acts on the blades 402d, the entire impeller 40d is driven to rotate, and further drives the rotating shaft of the generator 40c through the main shaft unit 403b or the main shaft unit 403b and the gearbox. Rotate to convert wind energy into electrical energy.
  • Figure 2 is a schematic diagram of the connection structure of the gearbox and generator of an embodiment of the wind turbine generator set of the present application.
  • the gearbox 404b is usually composed of a multi-stage planetary gear train in series, and the output speed is approximately 100rpm to 900rpm.
  • the generator 40c is usually a permanent magnet generator with an inner rotor and an outer stator.
  • the input shaft of the gearbox 404b is usually machined from a steel forging, and its rotational speed is the rotational speed of the impeller 40d; one end receives the torque from the impeller 40d, and the other end is usually connected to the planetary gear of the first-stage planetary gear train.
  • the box body of the gear box 404b is usually a ring gear structure of a multi-stage planetary gear train connected through flanges. Generally, the box body is fixed on the base or main frame through either flange connection or elastic support of a support arm.
  • the rear end cover of the gear box 404b is usually machined after casting. It is generally connected to the box body through a flange connection and provides support for the output shaft bearing of the gear box 404b.
  • the output shaft of the gearbox 404b is usually connected to the sun gear of the last planetary gear train of the gearbox 404b through splines, locking discs, etc. After the multi-stage planetary gear train increases its speed, its output speed is doubled.
  • the rotor 100 is generally mechanically fixed on the output shaft through flanges, and the stator 200 is generally fixed on the rear end cover of the gearbox 404b through flange bolt connections.
  • a rotor 100 which includes a rotor bracket 1, a seal 2 and a magnetic pole assembly 3.
  • the rotor bracket 1 includes a connecting shaft 11 and a support ring 12 arranged around the connecting shaft 11.
  • the support ring 12 is provided with a first through hole 101 penetrating along the radial direction Y of the connecting shaft 11.
  • the two ends of the support ring 12 along the axial direction X of the connecting shaft 11 are respectively provided with seals 2.
  • the seals 2 and the connecting shaft 11 and the support ring 12 together form an air chamber connected to the first through hole 101.
  • the magnetic pole assembly 3 is connected to the outer peripheral surface of the support ring 12 away from the connecting shaft 11.
  • the magnetic pole assembly 3 has a first radial direction extending along the radial direction Y.
  • Channel 1a the first radial channel 1a communicates with the first through hole 101, wherein one of the two seals 2 is provided with a second through hole 102 that communicates with the air chamber.
  • the second through hole 102 enters the air cavity and is discharged after passing through the first through hole 101 and the first radial channel 1a in sequence.
  • the connecting shaft 11 and the supporting ring 12 may be spaced apart and coaxially arranged.
  • the supporting ring 12 may include a connecting part inside the rotor bracket 1 and a part for installing the magnetic pole assembly 3 .
  • the number of first through holes 101 may be multiple, and the plurality of first through holes 101 are spaced apart on the support ring 12 .
  • the shape of the first through hole 101 may be a circle, an ellipse, a waist circle, or a polygon.
  • the sealing member 2 may be in the form of an annular structure, and may adopt an annular plate structure.
  • the number of the first radial channels 1a may be multiple, and the plurality of first radial channels 1a may be arranged at intervals.
  • the first radial channel 1a may be at least partially opposite to and connected with the first through hole 101 in the radial direction Y, and further connected with the wind cavity.
  • the rotor bracket 1 has a connecting shaft 11 and a support ring 12.
  • the transmission shaft of the gearbox is transmitted to the connecting shaft 11 of the rotor 100 and drives the support ring 12 to rotate, which in turn drives the magnetic pole assembly 3 on the support ring 12 to rotate.
  • the rotor bracket 1 forms an internal air cavity, and a second through hole 102 is provided on the seal 2 to allow the external airflow formed in the axial direction X to pass through the second through hole 102 .
  • the through hole 102 enters the interior of the rotor bracket 1 to achieve air cooling and heat dissipation inside the rotor bracket 1.
  • the second through hole 102 can be set into a circular, elliptical or polygonal hole.
  • the second through hole 102 can be The number of holes 102 may be one, or of course it may be multiple. When there are multiple holes 102 , the plurality of second through holes 102 may be spaced apart and evenly distributed in the circumferential direction Z of the connecting shaft 11 .
  • the external airflow entering the interior of the rotor bracket 1 can pass through the first through hole 101 provided on the support ring 12 in the radial direction Y, thereby forming a radial Y flow of airflow.
  • the first through hole 101 is located in the support ring 12 .
  • the outer surface of 12 has a plurality of first through holes 101 and are evenly spaced between each other, so that the air flow can be evenly distributed in the radial direction Y.
  • the airflow in the axial direction The airflow passes through the first through hole 101 on the support ring 12 .
  • the magnetic pole assembly 3 Since the outer circumferential surface of the support ring 12 is provided with the magnetic pole assembly 3, and the magnetic pole assembly 3 covers the first through hole 101 on the support ring 12, the airflow passing through the first through hole 101 will enter the magnetic pole assembly 3 along the radial direction Y, Perform heat dissipation treatment on the magnetic pole assembly 3.
  • the magnetic pole assembly 3 has a first radial channel 1a extending along the radial direction Y, and the first radial channel 1a is connected to the first through hole 101, so that after the airflow flows through the magnetic pole assembly 3 along the radial direction Y, it is passed through the first radial channel 1a.
  • the radial channel 1a is discharged and takes away the heat in the magnetic pole assembly 3 to complete the heat dissipation process.
  • the rotor 100 proposed in the embodiment of the present application has seals 2 at both ends of the support ring 12 and a second through hole 102 on one of the seals 2.
  • the dynamic pressure generated by the rotation of the rotor 100 causes the external airflow to flow along the rotor 100.
  • the airflow in the axial direction The first radial channel 1a is discharged from the upper part of the rotor bracket 1, which realizes full heat dissipation of the interior of the rotor bracket 1 and the magnetic pole assembly 3, and makes full use of the air flow generated by the dynamic pressure formed when the rotor 100 rotates, while alleviating some wind friction losses, and further
  • the cooling and heat dissipation of the rotor 100 is completed, the air volume is increased, and the radial heat dissipation is more sufficient.
  • the air flow is prevented from passing through the stator coil to generate preheating, which reduces power consumption and improves the heat dissipation effect.
  • At least the seal 2 provided with the second through hole 102 is in the shape of a tapered barrel and is recessed into the air cavity.
  • the seal 2 provided with the second through hole 102 among the two seals 2 can be formed into a tapered barrel shape and is recessed into the air cavity.
  • the two sealing members 2 can both be in the shape of a conical barrel and be recessed into the air cavity.
  • the rotor 100 proposed in the embodiment of the present application takes into account that the external airflow enters the wind cavity from the second through hole 102 on the seal 2 along the axial direction X, by designing the structure of the seal 2 as a cone recessed toward the wind cavity.
  • the barrel shape conforms to the flow direction of the air flow and is conducive to guiding the air flow through the second through hole 102 to achieve a diversion effect, increase the amount of air introduced, and is more conducive to internal cooling and heat dissipation.
  • the support ring 12 includes a coaxially arranged middle partition plate 13 and a magnetic yoke 14. Along the axial direction X, the length of the magnetic yoke 14 is greater than the length of the middle partition plate 13.
  • the partition plate 13 is connected between the magnetic yoke 14 and the connecting shaft 11.
  • the first through hole 101, the magnetic pole assembly 3 and the seal 2 are all provided on the magnetic yoke 14.
  • the middle partition plate 13 is provided with a third through hole penetrating along the axial direction X. Hole 103.
  • the support ring 12 is a metal structural member, which can be machined after welding or casting.
  • the magnetic yoke 14 can be cylindrical with the outer cylindrical surface being a machined surface, providing a radial Y installation reference for the magnetic pole assembly 3, so that the magnetic pole assembly 3 is installed on the magnetic yoke 14, and the magnetic pole assembly 3 is evenly spaced in the circumferential direction of the magnetic yoke 14.
  • a first through hole 101 is provided.
  • the middle partition plate 13 provided inside the rotor bracket 1 is connected between the magnetic yoke 14 and the connecting shaft 11.
  • the middle partition plate 13 is vertically connected to the circumferential surface of the magnetic yoke 14, and corresponds to the cylindrical magnetic yoke 14.
  • the middle partition 13 is in the shape of a disk.
  • the middle partition 13 mainly plays a load-bearing role and transmits the motor torque from the magnetic pole assembly 3 .
  • a third through hole 103 penetrating along the axial direction X is provided on the middle partition 13.
  • the third through hole 103 is a ventilation through hole.
  • a plurality of third through holes 103 can be provided on the middle partition 13 .
  • the rotor 100 proposed in the embodiment of the present application achieves radial Y heat dissipation of the magnetic pole assembly 3 by arranging the first through hole 101 and the magnetic pole assembly 3 on the yoke 14, and a third through hole is provided on the middle partition 13. 103, which can not only ensure the carrying capacity of the magnetic yoke 14, but also realize air flow exchange in the internal air cavity, which is beneficial to the flow of air flow and improves the heat dissipation efficiency.
  • the rotor support 1 also includes a reinforcing member 15 disposed in the wind cavity.
  • the connection between at least one seal 2, the middle partition 13 and the yoke 14 is strengthened. Item 15.
  • the reinforcing members 15 in the wind cavity can be vertically connected to the middle partition 13 and the magnetic yoke 14 in pairs.
  • the reinforcing members 15 mainly increase the stiffness of the rotor bracket 1 and improve the overall load-bearing capacity.
  • the reinforcing member 15 can be designed as a triangular plate structure, and the stability of the triangle can be used to improve the connection strength of the three.
  • a through hole 15a can be opened on the reinforcing member 15 to help guide the air flow in the air cavity.
  • the reinforcing member can also be lowered. 15 weight.
  • the number of reinforcing members 15 may be more than two, and the two or more reinforcing members 15 may be spaced apart around the connecting shaft 11 , thereby improving the connection stiffness of the middle partition 13 and the yoke 14 in all directions.
  • a plurality of reinforcing members 15 can be provided at both ends of the middle partition plate 13 in the axial direction X, which can improve the structural rigidity of both ends of the rotor 100 .
  • the surface of the seal 2 facing the middle partition plate 13 is supported by and connected to the reinforcement 15 , thereby improving the connection rigidity of the seal 2 and the rotor 100 .
  • the rotor 100 proposed in the embodiment of the present application improves the rigidity and rotational stability of the overall structure by connecting the reinforcement 15 between the middle partition 13 and the yoke 14, which is also conducive to the flow of airflow in the wind cavity and reduces the risk of Its own influence on rotational power consumption.
  • the seal 2 has two or more second through holes 102 , and the two or more second through holes 102 are spaced apart from each other along the circumferential direction Z of the connecting shaft 11 .
  • a plurality of second through holes 102 can be provided on the sealing member 2 .
  • the plurality of second through holes 102 are evenly spaced from each other.
  • the number of the second through holes 102 is not specified in this application. Special restrictions.
  • the rotor 100 proposed in the embodiment of the present application has more than two second through holes 102 provided on the seal 2 and distributed at intervals along the circumferential direction Z, thereby increasing the amount of air introduced into the airflow and reducing more wind friction losses. , improving the cooling and heat dissipation efficiency of the rotor 100 .
  • the magnetic pole assembly 3 includes a plurality of magnetic pole units 31. Each magnetic pole unit 31 is connected to the support ring 12. Along the axial direction X, between two adjacent magnetic pole units 31 A first radial channel 1a is formed between them.
  • the magnetic pole assembly 3 can be an integral structure or a split structure, a unipolar magnetic pole structure, or an alternating magnetic pole structure.
  • a split alternating magnetic pole structure is used as an example for explanation. .
  • the plurality of magnetic pole units 31 are partially arranged along the axial direction X and partially arranged along the circumferential direction Z of the support ring 12 , so that the magnetic pole units 31 cover the entire outer peripheral surface of the support ring 12 .
  • the rotor 100 proposed in the embodiment of the present application has a certain degree of convenience during assembly by arranging multiple magnetic pole units 31 and connecting them to the support ring 12, and improves the assembly efficiency, so that the multiple magnetic pole units 31 are spaced apart from each other. cloth, thereby facilitating the formation of the first radial channel 1a and improving radial heat exchange.
  • the first through hole 101 is a strip hole extending along the axial direction X, and multiple magnetic pole units 31 can cover one strip hole, so that one strip hole can communicate with multiple first diameters. Connected to channel 1a.
  • the above arrangement facilitates the communication between the first radial channel 1a formed by two adjacent magnetic pole units 31 in the axial direction X and the first through hole 101, ensuring cooling and heat dissipation requirements.
  • the magnetic pole unit 31 may include a box body 32 and two magnetic pole blocks 33 placed in the box body 32.
  • the two magnetic pole blocks 33 have opposite polarities and are spaced apart from each other, and one of them is N. pole, and the other is the S pole.
  • the magnetic pole block 33 can be made of magnetic steel.
  • the box body 32 mainly includes a number of electrode punching sheets, which are stacked or formed by bonding or self-fastening sheets or self-adhesive sheets.
  • the punching sheets are usually thin silicon steel sheets. The steel strip is die punched or laser cut.
  • the rotor 100 provided by the embodiment of the present application, this structural unit of alternating magnetic poles, avoids the increase in magnetic resistance at the magnetic poles compared with the traditional design, which is very beneficial to the electromagnetic design, and the assembly process of the magnetic pole assembly 3 is good. During installation, the magnetic attraction between the magnetic pole unit 31 and the yoke 14 of the rotor bracket 1 is very small.
  • the box body 32 may include a groove 32a and receiving grooves 32b arranged oppositely on both sides of the groove 32a in the circumferential direction Z.
  • the groove 32a is composed of The outer surface of the box body 32 away from the rotor bracket 1 is recessed toward the side where the rotor bracket 1 is located.
  • the receiving grooves 32b extend along the axial direction X, and each magnetic pole block 33 is disposed in one of the receiving grooves 32b.
  • the magnetic pole block 33 is installed into the receiving groove 32b, and the method of gluing can be used at the same time.
  • the magnetic pole unit 31 is magnetized on a magnetizing machine to finally form alternating magnetic poles.
  • the arrangement of the groove 32a is conducive to the separation and arrangement of the magnetic pole blocks 33 with opposite polarities, ensuring the formation of magnetic circuits.
  • the arrangement of the accommodating groove 32b is conducive to the installation of the magnetic pole blocks 33.
  • At least two magnetic pole units 31 are spaced apart in the axial direction
  • the through hole 101 communicates with the first radial channel 1a.
  • some sealing measures can be used at the joint between the separator 34 and the box body 32 to achieve effective sealing of the magnetic pole unit 31, thereby preventing the magnetic pole block 33 from being affected by the outside world and reducing the risk of contact with the magnetic pole unit 33.
  • Contact with environmental factors such as moisture, salt spray, oil and gas that cause the performance of the magnetic pole block 33 to degrade, thereby improving the reliability of the magnetic pole block 33.
  • the separator 34 may be made of a non-magnetic material, such as austenitic stainless steel (304, 316, etc.).
  • the rotor 100 proposed in the embodiment of the present application defines a first radial channel 1a by sandwiching and disposing a separator 34 between two adjacent magnetic pole units 31, ensuring that the airflow can flow along the radial direction Y, and avoiding The loss of air flow improves the radial Y heat dissipation effect between the magnetic pole units 31 .
  • the box body 32 has locking grooves 32c on both sides in the circumferential direction Z.
  • the support ring 12 is provided with a fixing part 16.
  • the fixing part 16 is arranged along the axial direction X. Extending upward and spaced apart in the circumferential direction Z, the locking grooves 32c are engaged with the fixing member 16 to connect the magnetic pole unit 31 to the support ring 12 .
  • the fixing parts 16 on the support ring 12 are convex structures, and the spacing between the fixing parts 16 is the extension length of the box body 32 in the circumferential direction Z, so that the box body 32 is clamped on the two fixing parts. between 16.
  • the box body 32 is clamped to the fixing member 16 through its own clamping slot 32c, so that the magnetic pole unit 31 is installed on the support ring 12.
  • the box body 32 is punched and stacked, there is a hole for mounting the magnetic pole block 33 on the punched sheet.
  • the tie screws are used to pass through the connection through holes on the punched pieces of the box body 32 along the axial direction X, so that the plurality of magnetic pole units 31 in the axial direction X are connected and fixed.
  • the tie-bar screw provides an axial X preload force, which can prevent the punched sheet of the box body 32 from expanding.
  • the rotor 100 proposed in the embodiment of the present application provides an installation method of the magnetic pole unit 31 by providing a locking slot 32c on the box body 32 and snapping with the fixing member 16, so that the magnetic pole unit 31 can be stably connected to the support.
  • the fixing member 16 can resist circumferential shear force, reducing the risk of falling off and improving the reliability of the rotor 100 during rotation.
  • a generator 40c which includes a stator 200 and the rotor 100 as described above.
  • the stator 200 includes a stator bracket 201 and an iron core 202 and windings 203 arranged on the stator bracket 201.
  • the iron A second radial channel 1b is formed between the cores 202.
  • the rotor 100 and the stator 200 are coaxially arranged and rotated together.
  • the first radial channel 1a is connected with the second radial channel 1b.
  • the generator 40c provided in the embodiment of the present application because it includes the rotor 100 provided in the above embodiments, constitutes a connection between the outside world - the second through hole 102 - the wind chamber - the first through hole 101 - the first radial channel 1a -
  • the parts of the rotor structure that can generate wind friction loss will generate dynamic pressure during the rotation process, thereby driving the external airflow along the axis.
  • the first radial channel 1a enters the second radial channel 1b, and is finally discharged from the second radial channel 1b to the outside of the generator 40c, making full use of the dynamic pressure generated by wind friction damage, increasing the air volume of the cooling medium, and realizing
  • the generator 40c fully dissipates heat as a whole, which not only alleviates part of the wind friction loss, but also optimizes the cooling and heat dissipation effect of the generator 40c.
  • the radial heat dissipation cooling method can also prevent the coil ends of the stator from preheating the cooling medium, reducing power consumption and improving the heat dissipation effect.
  • the generator 40c further includes an air guide device 300, the stator 200 is arranged around the rotor 100, the air guide device 300 is arranged on a side of the stator 200 away from the rotor 100, the air guide device 300 is configured to guide the external airflow through the first The radial channel 1a and the second radial channel 1b discharge.
  • the air guide device 300 may be a centrifugal fan. After the air guide device 300 starts operating on the side of the stator 200 away from the rotor 100, it generates negative pressure at the iron core 202 of the stator 200, so that the external airflow passes through the rotor 100. After passing through the first radial channel 1a, it continues to flow along the radial direction Y, passes through the air gap between the stator 200 and the rotor 100, and then passes through the second radial channel 1b at the core 202 of the stator 200 before being discharged, thereby realizing the control of the stator 200. Effective heat dissipation at core 202.
  • the generator 40c provided in the embodiment of the present application provides the air flow power for the air-cooled heat dissipation system of the generator 40c by setting the flow guide device 300, which facilitates the continuous entry of external airflow and the circulation of the airflow along the radial direction Y, and avoids The airflow heats up and accumulates inside, speeding up the airflow speed, improving the cooling and heat dissipation efficiency of the generator 40c and optimizing the heat dissipation effect.
  • the windings 203 protrude from the iron core 202 at both ends in the axial direction exchange.
  • the iron core 202 of the stator 200 Due to the continuous operation of the air guide device 300, the iron core 202 of the stator 200 always maintains a negative pressure state, thus driving the external airflow toward the iron core 202 of the stator 200, and finally taking away the iron core 202 through the second radial channel 1b. heat at the place.
  • an air outlet 10 is provided at the corner formed by the winding 203 to communicate with the outside world. Since the interior maintains a negative pressure, the outside air flow continues to be input from the outside to the interior. After passing through the winding 203, the winding 203 is cooled and dissipated, and finally The second radial channel 1b that merges into the core 202 of the stator 200 is discharged together.
  • the generator 40c proposed in the embodiment of the present application is provided with a second radial channel 1b connected to the first radial channel 1a of the rotor 100 at the iron core 202 of the stator 200, and uses the air guide device 300 to provide driving force for the air flow. force, achieving effective radial Y heat dissipation of the stator 200 and the rotor 100, forming an overall air-cooled heat dissipation system with continuous heat dissipation, converting part of the wind friction loss into effective heat dissipation, and completing heat dissipation while saving energy consumption. Thereby, the overall heat dissipation effect of the generator 40c is improved.
  • the embodiment of the present application proposes a wind power generator 400, including the generator 40c as described above, or the rotor 100 as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

提供了一种转子(100)、发电机(40c)以及风力发电机组(400),转子(100)包括转子支架(1)、密封件(2)以及磁极组件(3),转子支架(1)包括连接轴(11)以及环绕连接轴(11)设置的支撑环(12),支撑环(12)上设置有沿连接轴(11)的径向贯穿的第一通孔(101),支撑环(12)沿连接轴(11)的轴向上的两端分别设置有密封件(2),密封件(2)、连接轴(11)以及支撑环(12)共同围合形成与第一通孔(101)连通的风腔(20),磁极组件(3)连接于支撑环(12)背离连接轴(11)的外周面,磁极组件(3)具有沿径向延伸的第一径向通道(1a),第一径向通道(1a)与第一通孔(101)连通,其中,两个密封件(2)中的一者上设置有与风腔(20)连通的第二通孔(102),转子(100)转动时外部气流能够由第二通孔(102)进入风腔(20)并依次经过第一通孔(101)和第一径向通道(1a)后排出。转子(100)能够克服部分转动时的风摩损耗,改善冷却散热效果。

Description

转子、发电机以及风力发电机组
相关申请的交叉引用
本申请要求享有于2022年7月29日提交的名称为“转子、发电机以及风力发电机组”的中国专利申请202210906668.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风力发电技术领域,特别是涉及一种转子、发电机以及风力发电机组。
背景技术
发电机在工作时会产生热量,为确保发电机不受热量影响且正常工作,需要对发电机进行冷却散热处理。
与其他冷却方式(如水冷、油冷等)相比,风冷方式更可靠,且成本显著降低,因此现有技术中对发电机冷却大多采用轴向通风冷却。
然而,在发电机工作过程中,转子外表面、径向加强筋等部件与空气产生摩擦,空气会对转动部位产生阻力,形成一定的风摩损耗,从而导致实际冷却效果较差。
发明内容
本申请实施例提供一种转子、发电机以及风力发电机组,转子能够对转动时产生的风摩损耗加以利用,改善冷却散热效果。
一方面,根据本申请实施例提出了一种转子,包括转子支架、密封件以及磁极组件,转子支架包括连接轴以及环绕连接轴设置的支撑环,支撑环上设置有沿连接轴的径向贯穿的第一通孔,支撑环沿连接轴的轴向上的两端分别设置有密封件,密封件、连接轴以及支撑环共同围合形成与第一 通孔连通的风腔,磁极组件连接于支撑环背离连接轴的外周面,磁极组件具有沿径向延伸的第一径向通道,第一径向通道与第一通孔连通,其中,两个密封件中的一者上设置有与风腔连通的第二通孔,转子转动时外部气流能够由第二通孔进入风腔并依次经过第一通孔和第一径向通道后排出。
根据本申请实施例的一个方面,两个密封件中至少设置有第二通孔的密封件呈锥形桶状并向风腔内凹陷设置。
根据本申请实施例的一个方面,支撑环包括同轴设置的中隔板以及磁轭,沿轴向,磁轭的长度大于中隔板的长度,中隔板连接于磁轭以及连接轴之间,第一通孔、磁极组件以及密封件均设置于磁轭,中隔板上设置沿轴向贯穿的第三通孔。
根据本申请实施例的一个方面,转子支架还包括设置于风腔中的加强件,至少一个密封件与中隔板以及磁轭三者之间连接加强件。
根据本申请实施例的一个方面,密封件具有两个以上第二通孔,两个以上第二通孔沿连接轴的周向彼此间隔分布。
根据本申请实施例的一个方面,磁极组件包括多个磁极单元,各磁极单元与支撑环连接,沿轴向,相邻两个磁极单元之间形成有第一径向通道。
根据本申请实施例的一个方面,第一通孔为沿轴向延伸的条形孔。
根据本申请实施例的一个方面,磁极单元包括盒体以及在转子的周向上间隔且相对设置的两个磁极块,磁极块设置于盒体中,两个磁极块的极性相反。
根据本申请实施例的一个方面,盒体包括凹槽以及在周向上相对设置于凹槽两侧的容纳槽,凹槽由盒体背离转子支架的外表面向转子支架所在侧凹陷形成,容纳槽沿轴向延伸,每个磁极块设置于其中一个容纳槽中。
根据本申请实施例的一个方面,至少两个磁极单元在轴向上间隔设置并夹持有分隔片,以在相邻两个磁极单元之间形成与第一通孔连通的第一径向通道。
根据本申请实施例的一个方面,盒体在周向上的两侧具有卡位槽,支撑环上设置固定件,固定件沿轴向上延伸且在周向上间隔设置,卡位槽卡 接于固定件上以使磁极单元连接于支撑环。
另一个方面,根据本申请实施例提供一种发电机,包括定子以及如上所述的转子,定子包括定子支架以及设置于定子支架上的铁芯以及绕组,铁芯之间形成第二径向通道,转子与定子同轴设置并转动配合,第一径向通道与第二径向通道连通。
根据本申请实施例的一个方面,发电机进一步包括导流装置,定子围绕转子设置,导流装置设置于定子远离转子的一侧,导流装置被配置为引导外部气流依次经过第一径向通道和第二径向通道排出。
根据本申请实施例的一个方面,绕组在轴向的两端凸出铁芯设置并形成拐角部,定子支架对应拐角部设置风口,导流装置引导外部气流由风口进入并与拐角部热交换。
另一个方面,根据本申请实施例提供一种风力发电机组,包括如上所述的发电机,或者包括如上所述的转子。
本申请实施例提出的一种转子、发电机以及风力发电机组,通过在支撑环的两端设置密封件,并且在其中一个密封件上设置第二通孔,构成了从外界-第二通孔-风腔-第一通孔-第一径向通道的风路结构,当转子用于发电机并相对定子转动时,转子结构能够产生风摩损耗的部位在转动过程中将产生动压,进而驱使外部气流沿轴向由第二通孔进入到转子支架内部的风腔,再使气流沿径向由支撑环外周面上的第一通孔进入到磁极组件,最终由磁极组件上的第一径向通道排出,相比于传统方案,充分利用了风摩损耗产生的动压,增加了冷却介质的风量,实现了对转子充分散热,在缓解了部分风摩损耗的同时,优化对转子的冷却散热效果。并且,径向散热冷却方式还能够避免定子的线圈端部对冷却介质预热,降低了功耗且改善了散热效果。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一个实施例的风力发电机组的结构示意图;
图2是本申请一个实施例的齿轮箱和发电机的连接结构示意图;
图3是本申请实施例的一种转子的结构示意图;
图4是本申请实施例的另一种转子的结构示意图;
图5是本申请实施例的一种转子的局部结构示意图;
图6是本申请实施例的一种支撑环的结构示意图;
图7是本申请实施例的一种磁极组件的排布结构示意图;
图8是本申请实施例的一种磁极单元的连接示意图;
图9是本申请实施例的一种磁极单元的结构示意图;
图10是图4中A处的局部放大示意图;
图11是本申请实施例的一种发电机的风冷散热系统示意图。
附图标记:
400-风力发电机组;40a-塔筒;40b-机舱;40c-发电机;40d-叶轮;
401d-轮毂;402d-叶片;
403b-主轴单元;404b-齿轮箱;
100-转子;200-定子;201-定子支架;202-铁芯;203-绕组;
300-导流装置;10-风口;20-风腔;
X-轴向;Y-径向;Z-周向;
1a-第一径向通道;1b-第二径向通道;
1-转子支架;11-连接轴;12-支撑环;13-中隔板;14-磁轭;15-加强件;16-固定件;15a-贯穿孔;
101-第一通孔;102-第二通孔;103-第三通孔;
2-密封件;
3-磁极组件;31-磁极单元;32-盒体;33-磁极块;32a-凹槽;32b-容纳槽;32c-卡位槽;34-分隔片。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的转子、发电机以及风力发电机组的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
已有的发电机转子,大多采用轴向通风冷却,实际冷却效果较差。对磁极径向风冷是一个很好的技术改进方向。已有发电机转子的径向风冷大多采用强制风冷散热回路,其回路通常是空气(低温冷却介质)经定子两端或一端的入风口进入电机内部,经两端绕组端部或一端绕组端部进入电机气隙,对磁极进行冷却,然后在散热风扇产生的负压的驱动下,进入定子铁芯的径向通风道,对定子铁芯和绕组直线段进行冷却,最后流向电机外部。由于低温介质先经过绕组端部后对磁极进行冷却,通常绕组端部的损耗的热量占比是非常大,这导致对温度敏感的磁极(特别是钕铁硼类永磁体)冷却不佳。并且,发电机在工作过程中,转子外表面、径向加强筋等部件与空气产生摩擦,空气会对转动部位产生阻力,形成一定的风摩损耗,从而导致实际冷却效果较差。
风摩损耗是指发电机运行过程中,转子外表面、散热风扇、径向加强筋等与空气产生摩擦,空气会对转动部位产生阻力,克服这些阻力所耗用的功就叫风损摩耗。在发电机试验中,风摩损耗是统计在机械耗中的。
因此,为了解决上述技术问题,本申请实施例提供一种新的转子、发 电机以及风力发电机组,转子能够对转动时产生的风摩损耗加以利用,改善冷却散热效果。
为了更好地理解本申请,下面结合图1至图11对本申请实施例的转子、发电机以及风力发电机组进行详细描述。
请结合图1,图1为本申请一个实施例的风力发电机组400的结构示意图,本申请实施例提供一种风力发电机组400,包括塔筒40a、机舱40b、发电机40c、叶轮40d,塔筒40a连接于风机基础,机舱40b设置于塔筒40a的顶端,发电机40c设置于机舱40b。一些示例中,发电机40c可以位于机舱40b的外部,当然,在有些示例中,发电机40c也可以位于机舱40b的内部。叶轮40d包括轮毂401d以及连接于轮毂401d上的多个叶片402d,风力作用于叶片402d时,带动整个叶轮40d旋转,并进一步通过主轴单元403b或主轴单元403b和齿轮箱等带动发电机40c的转轴转动,以将风能转化为电能。
请结合图2,图2为本申请风力发电机组的一个实施例的齿轮箱和发电机的连接结构示意图,其中齿轮箱404b通常由多级行星轮系串联构成,输出转速大致在100rpm~900rpm。其中发电机40c通常为内转子外定子的永磁发电机。
其中齿轮箱404b的输入轴通常为钢锻件经机加工而成,其转速为叶轮40d转速;一端接受来自叶轮40d的转矩,另一端通常连接第一级行星轮系的行星齿轮。齿轮箱404b的箱体通常是多级行星轮系的齿圈结构体通过法兰连接而成,一般箱体通过或法兰连接或支撑臂弹性支撑的方式固定在底座或主机架上。齿轮箱404b的后端盖通常经铸造后机加工得到,一般通过法兰连接的方式与箱体连接为一体,且为齿轮箱404b输出轴轴承提供支撑。齿轮箱404b输出轴通常通过花键、锁紧盘等方式与齿轮箱404b最后一级行星轮系的太阳轮连接在一起,经多级行星轮系的增速后,其输出转速倍增。转子100一般通过法兰机械固定在输出轴上,定子200一般通过法兰螺栓连接的方式固定在齿轮箱404b后端盖上。
请参阅图3至图5,本申请实施例提出了一种转子100,包括转子支架1、密封件2以及磁极组件3,转子支架1包括连接轴11以及环绕连接 轴11设置的支撑环12,支撑环12上设置有沿连接轴11的径向Y贯穿的第一通孔101,支撑环12沿连接轴11的轴向X上的两端分别设置有密封件2,密封件2、连接轴11以及支撑环12共同围合形成与第一通孔101连通的风腔,磁极组件3连接于支撑环12背离连接轴11的外周面,磁极组件3具有沿径向Y延伸的第一径向通道1a,第一径向通道1a与第一通孔101连通,其中,两个密封件2中的一者上设置有与风腔连通的第二通孔102,转子100转动时外部气流能够由第二通孔102进入风腔并依次经过第一通孔101和第一径向通道1a后排出。
可选地,连接轴11以及支撑环12可以间隔且同轴设置,支撑环12可以包括转子支架1内部的连接部分以及用于安装磁极组件3的部分。
可选地,第一通孔101的数量可以为多个,多个第一通孔101在支撑环12上间隔设置。
可选地,第一通孔101的形状可以为圆形、椭圆形、腰圆形或者多边形。
可选地,密封件2可以呈环状结构形式,可以采用环形板状结构。
可选地,第一径向通道1a的数量可以为多个,多个第一径向通道1a间隔设置。
可选地,第一径向通道1a可以与第一通孔101至少部分在径向Y上相对设置并相连通,进而与风腔连通。
转子支架1具有连接轴11以及支撑环12,由齿轮箱的传动轴传动至转子100的连接轴11并带动支撑环12转动,进而带动支撑环12上的磁极组件3转动。
通过在支撑环12轴向X上的两端设置密封件2,使得转子支架1形成内部的风腔,在密封件2上设置第二通孔102以使轴向X形成的外部气流通过第二通孔102进入到转子支架1的内部,实现对转子支架1内部的风冷散热,可选地,第二通孔102可以设置成圆形、椭圆形或者多边形孔,可选地,第二通孔102的数量可以为一个,当然也可以为多个,当为多个时,多个第二通孔102在连接轴11的周向Z上间隔且均匀分布。
进入到转子支架1内部的外部气流可沿径向Y通过支撑环12上设置 的第一通孔101,从而形成气流的径向Y流动,可选地,所设第一通孔101位于支撑环12的外表面,具有多个第一通孔101且彼此之间均匀间隔排布,使得气流能够均匀地在径向Y分布流动。
轴向X的气流由其中一个密封件2上的第二通孔102进入到内部的风腔,由于另一密封件2的密封作用,使气流在风腔中形成流动方向的变换,形成径向气流通过支撑环12上的第一通孔101。
由于支撑环12的外周面上具有磁极组件3,磁极组件3覆盖了支撑环12上的第一通孔101设置,通过第一通孔101的气流会沿径向Y进入到磁极组件3中,对磁极组件3进行散热处理。
磁极组件3中具有沿径向Y延伸的第一径向通道1a,并且该第一径向通道1a与第一通孔101连通,使得气流沿径向Y流经磁极组件3后,由第一径向通道1a排出,带走磁极组件3中的热量,完成散热过程。
本申请实施例提出的一种转子100,通过在支撑环12的两端设置密封件2,并且在其中一个密封件2上设置第二通孔102,转子100转动产生的动压使得外部气流沿轴向X经过第二通孔102进入到转子支架1内部的风腔,再使气流沿径向Y由支撑环12外周面上的第一通孔101进入到磁极组件3,最终由磁极组件3上的第一径向通道1a排出,实现了对转子支架1内部和磁极组件3的充分散热,充分利用了转子100转动时形成动压产生的气流,在缓解了部分风摩损耗的同时,进一步完成了对转子100的冷却散热,增加了气流的风量,使得径向散热更加充分,同时还避免了气流经过定子线圈处产生预热,降低了功耗且改善了散热效果。
作为一种可选的实施例,请继续参阅图3至图5,两个密封件2中至少设置有第二通孔102的密封件2呈锥形桶状并向风腔内凹陷设置。
可选地,可以使得两个密封件2中设置有第二通孔102的密封件2呈锥形桶状并向风腔内凹陷设置。当然,此为一种可选地实施方式,在有些实施例中,可以使得两个密封件2均呈锥形桶状并向风腔内凹陷设置。
本申请实施例提出的一种转子100,考虑到外部气流沿轴向X由密封件2上的第二通孔102进入到风腔,通过将密封件2的结构设计为向风腔凹陷的锥形桶状,顺应了气流的流动方向,利于引导气流通过第二通孔 102,实现导流作用,提高了引入风量,更利于内部的冷却散热。
作为一种可选的实施例,请参阅图6,支撑环12包括同轴设置的中隔板13以及磁轭14,沿轴向X,磁轭14的长度大于中隔板13的长度,中隔板13连接于磁轭14以及连接轴11之间,第一通孔101、磁极组件3以及密封件2均设置于磁轭14,中隔板13上设置沿轴向X贯穿的第三通孔103。
可选地,支撑环12为金属结构件,可通过焊接或铸造后机械加工而成。
可选地,磁轭14可以呈圆筒状且外圆柱面为加工面,为磁极组件3提供径向Y安装基准,以使磁极组件3安装于磁轭14,并且在磁轭14圆周方向均布有第一通孔101。
设置于转子支架1内部的中隔板13连接于磁轭14以及连接轴11之间,可选地,中隔板13与磁轭14的圆周面垂直连接,与圆筒状磁轭14对应的中隔板13呈圆盘状,中隔板13主要起到承载作用,将来自磁极组件3的电机转矩进行传递。
由于中隔板13设置于内部的风腔中,考虑到风腔内的气流交换,在中隔板13上设置沿轴向X贯穿的第三通孔103,第三通孔103为通风过孔,可选地,可在中隔板13上设置多个第三通孔103。
本申请实施例提出的一种转子100,通过在磁轭14上设置第一通孔101和磁极组件3,实现了对磁极组件3的径向Y散热,中隔板13上设置第三通孔103,既可以确保磁轭14的承载能力,又可以实现内部风腔的气流交换,利于气流的流动,提高了散热效率。
作为一种可选的实施例,请继续参阅图6,转子支架1还包括设置于风腔中的加强件15,至少一个密封件2与中隔板13以及磁轭14三者之间连接加强件15。
可选地,风腔中的加强件15与中隔板13和磁轭14可采用两两垂直连接,加强件15主要提高转子支架1的刚度,提高整体的承载能力。
可选地,加强件15可设计成三角板结构,利用三角形的稳定性可提高三者的连接强度。
考虑到加强件15同样是设置于风腔中,为了提高气流在风腔中的流动性,可以在加强件15上开设贯穿孔15a,利于引导风腔中的气流,同时,也能够降低加强件15的重量。
可选地,加强件15的数量可以为两个以上,两个以上加强件15围绕连接轴11间隔分布,由此可以对中隔板13和磁轭14的连接刚度进行全方位的提高。
可选地,可以使中隔板13在轴向X上的两端均设置有多个加强件15,可以提高转子100两端的结构刚度。
可选地,在轴向X上,密封件2朝向中隔板13的表面支撑于加强件15并与加强件15连接,同时提高了密封件2与转子100的连接刚度。
本申请实施例提出的一种转子100,通过在中隔板13和磁轭14之间连接加强件15,提高了整体结构的刚度以及转动稳定性,也有利于风腔中气流的流动且减轻自身对转动功耗的影响。
作为一种可选的实施例,密封件2具有两个以上第二通孔102,两个以上第二通孔102沿连接轴11的周向Z彼此间隔分布。
在本实施例中,可在密封件2上设置多个第二通孔102,可选地,多个第二通孔102之间彼此均匀间隔分布,本申请对第二通孔102的数量不作特殊限定。
本申请实施例提出的一种转子100,通过在密封件2上设置两个以上第二通孔102,且沿周向Z间隔分布,提高了气流的引入风量,降低了更多的风摩损耗,提高了对转子100冷却散热的效率。
作为一种可选的实施例,请参阅图7至图9,磁极组件3包括多个磁极单元31,各磁极单元31与支撑环12连接,沿轴向X,相邻两个磁极单元31之间形成有第一径向通道1a。
可选地,磁极组件3可以是整体式结构,也可以是分体式结构,可以是单极性磁极结构,也可以是交替磁极结构,本实施例中以分体式的交替磁极结构为例进行说明。
可选地,多个磁极单元31部分沿轴向X排布的同时部分沿支撑环12的周向Z排布,以使磁极单元31覆盖于支撑环12的整个外周面。
在轴向X上,相邻磁极单元31之间为第一径向通道1a,第一径向通道1a的数量取决于磁极单元31的数量,本申请对第一径向通道1a的排布数量不作特殊限定。
本申请实施例提出的一种转子100,通过设置多个磁极单元31并连接于支撑环12上,装配时具有一定的便利性,提高了装配效率,使得多个磁极单元31之间彼此间隔排布,从而有利于形成第一径向通道1a,改善径向换热。
在一些可选地实施例中,第一通孔101为沿轴向X延伸的条形孔,多个磁极单元31能够覆盖一个条形孔,以使一个条形孔能够与多个第一径向通道1a连通。
通过上述设置,利于在轴向X上相邻两个磁极单元31形成的第一径向通道1a与第一通孔101的连通,保证冷却散热需求。
在一些可选地实施例中,磁极单元31可以包括盒体32以及放置于盒体32中的两个磁极块33,两个磁极块33具有相反的极性且间隔相对放置,其中一个为N极,另一个为S极,可选地,磁极块33可以采用磁钢。
可选地,盒体32主要包括若干电极冲片,若干电极冲片堆叠,或通过粘接或通过自扣片形式或通过自粘片等方式形成,可选地,冲片通常为硅钢类薄钢带经模具冲制或激光切割而成。
本申请实施例提供的转子100,这种交替磁极的结构单元,相比传统设计,避免了磁极处磁阻的增加,对电磁设计是很有利的,并且磁极组件3装配工艺性好,在推装时,冲过磁的磁极单元31与转子支架1的磁轭14之间的磁吸力非常小。
在一些可选地实施例中,对于磁极单元31的具体结构来说,盒体32可以包括凹槽32a以及在周向Z上相对设置于凹槽32a两侧的容纳槽32b,凹槽32a由盒体32背离转子支架1的外表面向转子支架1所在侧凹陷形成,容纳槽32b沿轴向X延伸,每个磁极块33设置于其中一个容纳槽32b中。
通常待上述盒体32制作完成后,将磁极块33安装至容纳槽32b中, 可同时使用胶接的方式。整体制作完成后,在充磁机上对该磁极单元31进行充磁,最终形成交替磁极。
本申请实施例提供的转子100,凹槽32a的设置有利于极性相反的磁极块33的分离设置,保证磁路的形成需求,容纳槽32b的设置,利于磁极块33的安装。
作为一种可选的实施例,请参阅图10,至少两个磁极单元31在轴向X上间隔设置并夹持有分隔片34,以在相邻两个磁极单元31之间形成与第一通孔101连通的第一径向通道1a。
可选地,在分隔片34和盒体32之间接缝处通过一些密封处理措施,如预涂密封胶等,可实现磁极单元31的有效密封,进而使磁极块33避免受外界影响,减少与如湿气、盐雾、油气等致使磁极块33性能下降的环境影响因素接触,从而提高了磁极块33的可靠性。
为了避免磁极块33在第一径向通道1a处漏磁通过大,可选地,分隔片34可以采用不导磁类材料,例如奥氏体类不锈钢(304、316等)。
本申请实施例提出的一种转子100,通过在相邻两个磁极单元31之间夹持设置分隔片34,限定出了第一径向通道1a,确保气流能够沿径向Y流动,避免了气流风量的损失,改善了磁极单元31之间径向Y散热的效果。
作为一种可选的实施例,请参阅图7至图10,盒体32在周向Z上的两侧具有卡位槽32c,支撑环12上设置固定件16,固定件16沿轴向X上延伸且在周向Z上间隔设置,卡位槽32c卡接于固定件16上以使磁极单元31连接于支撑环12。
可选地,支撑环12上的固定件16为凸起结构,固定件16之间的间隔间距为盒体32在周向Z上的延伸长度,以使盒体32卡接于两个固定件16之间。
盒体32是通过自身的卡位槽32c卡接于固定件16上,从而将磁极单元31安装于支撑环12上的,在盒体32冲片堆叠成型时,冲片上有安装磁极块33的安装孔、通过拉筋螺杆的通孔以及与固定件16相配合的卡位槽32c。
盒体32通过卡位槽32c与固定件16卡接后,利用拉筋螺杆沿轴向X穿过盒体32冲片上的连接通孔,以使轴向X上的多个磁极单元31连接固定,其中,拉筋螺杆提供了轴向X预紧力,可以防止盒体32的冲片涨开。
本申请实施例提出的一种转子100,通过在盒体32上设置卡位槽32c并与固定件16卡接,提供了一种磁极单元31的安装方式,使磁极单元31能够稳定连接于支撑环12上,固定件16能够抵抗周向剪切力,降低了脱落的风险,提高了转子100转动运行时的可靠性。
请参阅图11,本申请实施例提出了一种发电机40c,包括定子200以及如上所述的转子100,定子200包括定子支架201以及设置于定子支架201上的铁芯202以及绕组203,铁芯202之间形成第二径向通道1b,转子100与定子200同轴设置并转动配合,第一径向通道1a与第二径向通道1b连通。
本申请实施例提供的发电机40c,因其包括上述各实施例中提供的转子100,构成了从外界-第二通孔102-风腔-第一通孔101-第一径向通道1a-第二径向通道1b的风路结构,当转子100用于发电机40c并相对定子200转动时,转子结构能够产生风摩损耗的部位在转动过程中将产生动压,进而驱使外部气流沿轴向X由第二通孔102进入到转子支架1内部的风腔,再使气流沿径向Y由支撑环12外周面上的第一通孔101进入到磁极组件3,由磁极组件3上的第一径向通道1a进入第二径向通道1b,最终由第二径向通道1b排出至发电机40c外,充分利用了风摩损坏产生的动压,增加了冷却介质的风量,实现了对发电机40c整体充分散热,在缓解了部分风摩损耗的同时,优化对发电机40c的冷却散热效果。并且,径向散热冷却方式还能够避免定子的线圈端部对冷却介质预热,降低了功耗且改善了散热效果。
可选地,发电机40c进一步包括导流装置300,定子200围绕转子100设置,导流装置300设置于定子200远离转子100的一侧,导流装置300被配置为引导外部气流依次经过第一径向通道1a和第二径向通道1b排出。
可选地,导流装置300可以是离心式风机,导流装置300在定子200远离转子100的一侧开始运行后,在定子200的铁芯202处产生负压,使得外部气流在经过转子100的第一径向通道1a后继续沿径向Y流动,经过定子200与转子100之间的气隙后再经过定子200铁芯202处的第二径向通道1b后排出,从而实现对定子200铁芯202处的有效散热。
本申请实施例提供的发电机40c,通过设置导流装置300,为发电机40c的风冷散热系统提供了气流的流通动力,便于引导外部气流的持续进入以及气流沿径向Y流通,避免了气流升温后在内部堆积,加快了气流的流通速度,提高了发电机40c冷却散热的效率并优化了散热效果。
可选地,绕组203在轴向X的两端凸出铁芯202设置并形成拐角部,定子支架201对应拐角部设置风口10,导流装置300引导外部气流由风口10进入并与拐角部热交换。
由于导流装置300的持续运行,使得定子200铁芯202处始终保持负压状态,因而会驱动外部气流朝向定子200铁芯202处流动,并最终通过第二径向通道1b带走铁芯202处的热量。
可选地,在绕组203形成的拐角部处设置风口10与外界连通,由于内部保持负压,使得外界气流持续从外界向内部输入,经过绕组203后,实现对绕组203的冷却散热,并最终汇入到定子200铁芯202处的第二径向通道1b一并排出。
本申请对设置风口10的具体位置及数量不作特殊限定,能够满足外界气流进入到内部实现有效冷却散热即可。
本申请实施例提出的一种发电机40c,通过在定子200铁芯202处设置与转子100的第一径向通道1a连通的第二径向通道1b,并利用导流装置300提供气流的驱动力,实现了对定子200和转子100的有效径向Y散热,整体形成了风冷散热系统,具有散热的持续性,将部分风摩损耗转换成有效散热,在节省能耗的同时完成散热,从而改善了发电机40c整体的散热效果。
本申请实施例提出了一种风力发电机组400,包括如上所述的发电机40c,或者包括如上所述的转子100。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种转子,其中,包括:
    转子支架,包括连接轴以及环绕所述连接轴设置的支撑环,所述支撑环上设置有沿所述连接轴的径向贯穿的第一通孔;
    密封件,所述支撑环沿所述连接轴的轴向上的两端分别设置有所述密封件,所述密封件、所述连接轴以及所述支撑环共同围合形成与所述第一通孔连通的风腔;
    磁极组件,连接于所述支撑环背离所述连接轴的外周面,所述磁极组件具有沿所述径向延伸的第一径向通道,所述第一径向通道与所述第一通孔连通;
    其中,两个所述密封件中的一者上设置有与所述风腔连通的第二通孔,所述转子转动时外部气流能够由所述第二通孔进入所述风腔并依次经过所述第一通孔和所述第一径向通道后排出。
  2. 根据权利要求1所述的转子,其中,两个所述密封件中至少设置有所述第二通孔的密封件呈锥形桶状并向所述风腔内凹陷设置。
  3. 根据权利要求1所述的转子,其中,所述支撑环包括同轴设置的中隔板以及磁轭,沿所述轴向,所述磁轭的长度大于所述中隔板的长度,所述中隔板连接于所述磁轭以及连接轴之间,所述第一通孔、所述磁极组件以及所述密封件均设置于所述磁轭,所述中隔板上设置沿所述轴向贯穿的第三通孔。
  4. 根据权利要求3所述的转子,其中,所述转子支架还包括设置于所述风腔中的加强件,至少一个所述密封件与所述中隔板以及所述磁轭三者之间连接所述加强件。
  5. 根据权利要求1所述的转子,其中,所述密封件具有两个以上所述第二通孔,两个以上所述第二通孔沿所述连接轴的周向彼此间隔分布。
  6. 根据权利要求1至5任意一项所述的转子,其中,所述磁极组件包括多个磁极单元,各所述磁极单元与所述支撑环连接,沿所述轴向,相 邻两个所述磁极单元之间形成有所述第一径向通道。
  7. 根据权利要求6所述的转子,其中,所述第一通孔为沿所述轴向延伸的条形孔。
  8. 根据权利要求6所述的转子,其中,所述磁极单元包括盒体以及在所述转子的周向上间隔且相对设置的两个磁极块,所述磁极块设置于所述盒体中,两个所述磁极块的极性相反。
  9. 根据权利要求8所述的转子,其中,所述盒体包括凹槽以及在所述周向上相对设置于所述凹槽两侧的容纳槽,所述凹槽由所述盒体背离所述转子支架的外表面向所述转子支架所在侧凹陷形成,所述容纳槽沿所述轴向延伸,每个所述磁极块设置于其中一个所述容纳槽中。
  10. 根据权利要求6所述的转子,其中,至少两个所述磁极单元在所述轴向上间隔设置并夹持有分隔片,以在相邻两个所述磁极单元之间形成与所述第一通孔连通的所述第一径向通道。
  11. 根据权利要求8所述的转子,其中,所述盒体在所述周向上的两侧具有卡位槽,所述支撑环上设置固定件,所述固定件沿所述轴向上延伸且在所述周向上间隔设置,所述卡位槽卡接于所述固定件上以使所述磁极单元连接于所述支撑环。
  12. 一种发电机,其中,包括:
    定子,所述定子包括定子支架以及设置于所述定子支架上的铁芯以及绕组,所述铁芯之间形成第二径向通道;
    如权利要求1至11任一项所述的转子,所述转子与所述定子同轴设置并转动配合,所述第一径向通道与所述第二径向通道连通。
  13. 根据权利要求12所述的发电机,其中,所述发电机进一步包括导流装置,所述定子围绕所述转子设置,所述导流装置设置于所述定子远离所述转子的一侧,所述导流装置被配置为引导所述外部气流依次经过所述第一径向通道和第二径向通道排出。
  14. 根据权利要求13所述的发电机,其中,所述绕组在所述轴向的两端凸出所述铁芯设置并形成拐角部,所述定子支架对应所述拐角部设置风口,所述导流装置引导外部气流由所述风口进入并与所述拐角部热交换。
  15. 一种风力发电机组,其中,包括如权利要求12至14任一所述的发电机,或者包括如权利要求1至11任一项所述的转子。
PCT/CN2022/137197 2022-07-29 2022-12-07 转子、发电机以及风力发电机组 WO2024021427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210906668.7A CN116365753A (zh) 2022-07-29 2022-07-29 转子、发电机以及风力发电机组
CN202210906668.7 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024021427A1 true WO2024021427A1 (zh) 2024-02-01

Family

ID=86929556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137197 WO2024021427A1 (zh) 2022-07-29 2022-12-07 转子、发电机以及风力发电机组

Country Status (2)

Country Link
CN (1) CN116365753A (zh)
WO (1) WO2024021427A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377266A (zh) * 2010-08-10 2012-03-14 株式会社安川电机 旋转电机及风力发电系统
CN102931741A (zh) * 2012-11-13 2013-02-13 永济新时速电机电器有限责任公司 紧凑型永磁风力发电机转子
JP2015198512A (ja) * 2014-04-01 2015-11-09 富士電機株式会社 永久磁石式回転電機
CN209293967U (zh) * 2018-12-24 2019-08-23 新疆金风科技股份有限公司 用于风力发电机的支架、风力发电机和风力发电机组
CN214674573U (zh) * 2021-06-02 2021-11-09 新疆金风科技股份有限公司 支架、电机以及风力发电机组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391208A (zh) * 2015-12-14 2016-03-09 湘潭电机股份有限公司 一种永磁电机转子及永磁电机
CN208571752U (zh) * 2018-07-23 2019-03-01 明阳智慧能源集团股份公司 一种永磁风力发电机转子
US11025114B2 (en) * 2018-12-27 2021-06-01 Ge Aviation Systems Llc Rotor for an electric machine
CN113497502A (zh) * 2020-04-07 2021-10-12 广东德昌电机有限公司 电动工具、电机及其转子
CN212412869U (zh) * 2020-06-03 2021-01-26 明阳智慧能源集团股份公司 一种永磁风力发电机转子结构
CN113315276B (zh) * 2021-06-02 2023-07-11 新疆金风科技股份有限公司 定子冷却装置、电机以及风力发电机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377266A (zh) * 2010-08-10 2012-03-14 株式会社安川电机 旋转电机及风力发电系统
CN102931741A (zh) * 2012-11-13 2013-02-13 永济新时速电机电器有限责任公司 紧凑型永磁风力发电机转子
JP2015198512A (ja) * 2014-04-01 2015-11-09 富士電機株式会社 永久磁石式回転電機
CN209293967U (zh) * 2018-12-24 2019-08-23 新疆金风科技股份有限公司 用于风力发电机的支架、风力发电机和风力发电机组
CN214674573U (zh) * 2021-06-02 2021-11-09 新疆金风科技股份有限公司 支架、电机以及风力发电机组

Also Published As

Publication number Publication date
CN116365753A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN1756052B (zh) 带有双边定子的电机
CN1756051B (zh) 带有双边叠片组的电机
US7692357B2 (en) Electrical machines and assemblies including a yokeless stator with modular lamination stacks
US7619332B2 (en) Permanent magnet type electric rotating machine and wind turbine electric power generation system
JP5441607B2 (ja) 電気機械を冷却するための装置
EP2403107B1 (en) Permanent magnet type rotary machine
AU2017370503A1 (en) Motor rotor support frame and motor
JP2008131813A (ja) 永久磁石式回転電機,風力発電システム,永久磁石の着磁方法
CN202260856U (zh) 一种永磁电机转子散热装置
JP2011211862A (ja) 密閉型回転電機
CN115733325A (zh) 一种带离心风机内置式转子且定子油冷的轴向磁通电机
CN212649301U (zh) 电机转子散热装置及电机
CN112383191B (zh) 一种带外置离心风机的自扇冷轴向磁通电机
CN112383194B (zh) 一种带内置离心风机的自扇冷轴向磁通电机
CN110768414A (zh) 一种永磁电机的冷却结构
WO2024021427A1 (zh) 转子、发电机以及风力发电机组
CN107528423B (zh) 一种小型风力发电用密闭式永磁发电机
CN111884426A (zh) 电机转子散热装置及电机
AU2020104436A4 (en) Motor having speed regulation function
CN209860678U (zh) 用于带式输送机的定子分段错位式外转子直驱永磁电机
CN111934491A (zh) 一种自励性导磁电机
CN212412982U (zh) 一种自励性导磁电机
CN216564700U (zh) 一种散热效果好的新型转子
CN202602496U (zh) 双转子双定子风力发电机及其组成的发电机组
CN220628986U (zh) 一种电机转子冷却结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952861

Country of ref document: EP

Kind code of ref document: A1